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Introduction

The solution of fluid-dynamic equations from the viewpoint of analytical, nu-
merical and algorithmic aspects is a challenging task. In recent years, lattice Boltz-
mann methods have been developed to face this problem. The performance of the
proposed lattice Boltzmann methods renders convincing results, but less is known
about the mathematical analysis.

Fluid-dynamic equations, for example the Navier-Stokes or the Euler equations,
deal with macroscopic quantities like velocity, pressure or temperature. Lattice
Boltzmann methods follow a different approach. They treat distribution functions
that stem from a particle kinetic framework. Both approaches rely on conservation
principles, the first one on a macroscopic level, the second one on a microscopic
level. Since only macroscopic quantities, that is, physically measurable quantities,
are in the scope of the researcher’s interest, the distribution functions have to be
averaged appropriately to achieve interpretable results. With respect to specific
scalings, it turns out that the averaged quantities approximate solutions of the
fluid-dynamic equations in a certain limit; see for example Ref. [24].

It is an open question whether these different approaches can be related to each
other rigorously or if they represent two independent models. Not only owing to the
complexity of the limiting equations, the analysis of the lattice Boltzmann methods
in the multi-dimensional case is equipped with formidable difficulties. Up to now
there are only a few answers concerning essential issues like stability or convergence
of the used schemes. But the convincing results achieved so far are encouraging to
advance these methods and their analysis.

By the end of the 1980s, lattice Boltzmann methods were introduced by engi-
neers and physicists. Many papers have been written since then, but the mathe-
matical background is still obscure in many fields. Areas of application of lattice
Boltzmann methods are the simulation of incompressible flows in complex geome-
tries, for example the flow of blood in vessels, multiphase and multicomponent
fluids, free surface problems, moving boundaries, fluid-structure interactions, chem-
ical reactions, flow through porous media, suspension flows, magnetohydrodynam-
ics, semiconductor simulations, non-Newtonian fluids, large eddy and turbulence
simulations in aerodynamics, and many more.

The limiting fluid-dynamic equations are determined by the scaling and the
choice of the collision operator, where various models are possible. For this reason,
lattice Boltzmann methods are applicable to a great variety of different problems.
Although lattice Boltzmann methods are universally acclaimed for the applicability
to complex geometries and interfacial dynamics, severe problems appear in the case
of boundary conditions.

The advantages of lattice Boltzmann methods find expression in a comparably
simple explicit algorithm on uniform grids with only local interactions. The paral-
lelization of the algorithms for the speed-up of the computations is straightforward.
A great advantage is the gain of differentiated quantities without performing nu-
merical differentiations.

iii



iv INTRODUCTION

The convection step of the lattice Boltzmann method is a linear operation that
is often combined with a relaxation process. This feature allows for a multiscale
analysis. The incompressible Navier-Stokes equations can be attained in the nearly
incompressible limit. The pressure is computed by the evaluation of an equation
of state, whereas the direct numerical simulation requires the solution of a Poisson
equation for the pressure.

The lattice Boltzmann methods only utilize a minimal set of velocities in the
phase space. This greatly simplifies the kinetic processes motivated by the full
Boltzmann equation. In spite of the simplicity of the discrete models, the conver-
gence often shows a better behavior than for their continuous counterparts.

Although the lattice Boltzmann equations can be viewed as a finite difference
discretization of the fluid-dynamic equations in combination with an explicit Euler
method, they preserve much more physics than any direct discretization of the
macroscopic equations. This is owed to the higher order moments that are not
matched by the fluid-dynamic equations.

In the diffusive scaling of the lattice Boltzmann equations, a coupling of the
grid size h and the time step τ of the form τ ∼ h2 is required. Hence, many time
steps have to be performed and the computational effort grows immensely when
refining the grid. Since the lattice Boltzmann schemes are designed for uniform
grids, a local refinement of the grid is a nontrivial task. As in the boundary case,
severe problems appear at the grid intersection zones. Sophisticated algorithms
have to be applied. In order to minimize the additional effort, it is desirable to
develop a posteriori error estimation techniques to gain information, whether the
grid has to be refined globally or locally or not at all.

In this work, we consider a one-dimensional model problem with the aim to an-
swer some of the open questions concerning the numerical analysis of lattice Boltz-
mann methods. This includes a detailed analysis of the continuous limit equations.

In the first chapter of this work, we outline the passage from the full Boltz-
mann equation to the lattice Boltzmann methods. As an intermediate step, we pay
attention to the discrete velocity models that can be seen as an interface.

In Chapter 2, we set up a linear model problem in one dimension. This model
problem consists of three parts: the macroscopic limit equation, the velocity discrete
system and the discrete lattice Boltzmann equations. In this work, we examine the
convergence of the solutions of the velocity discrete system towards solutions of
the macroscopic limit equation, as well as the convergence of the lattice Boltzmann
solutions. The chosen model enables a deepened analysis of the initial boundary-
value problem for a set of different boundary conditions. In spite of its systematic
simplicity, most of the features of general lattice Boltzmann methods are covered.

The limiting fluid-dynamic equation of the model problem is the heat equation
on a bounded interval equipped with several kinds of boundary conditions. The
basic properties of the corresponding solutions are examined. The regularity of
the solutions of the limiting equations plays a decisive role for all types of con-
vergence processes. For this reason, special care is taken on this topic. Necessary
prerequisites of the data are worked out that ensure the suitable smoothness of the
solutions. These results are important for the ensuing convergence analysis.

The interface between the heat equation and the lattice Boltzmann schemes is
formed by the discrete velocity model presented in Chapter 3, namely the Goldstein-
Taylor model. We examine the behavior of the solutions in the limiting case. It
turns out that we are faced with the solution of telegraph equations that present
a singularly perturbed problem for the heat equation. The corresponding solu-
tions are dealt with in Chapter 4. With the acquired knowledge we can put up
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Fourier solutions for the Goldstein-Taylor model. The perturbation parameter of
the equations is in close correspondence with the grid size of the lattice Boltzmann
schemes.

In Chapter 5, we set up the lattice Boltzmann schemes as discretizations of
the Goldstein-Taylor model. Several types of boundary conditions are introduced.
The discrete schemes are interpreted in a finite difference as well as in a finite
volume context. We prove discrete stability estimates that are in accordance with
the continuous case. Furthermore, we present discrete Fourier solutions that give
a deep insight into the asymptotic behavior of the solutions, when the grid size
h approaches zero. The coupling of the discrete density and the discrete flux is
revealed. As observed in many applications, the choice of the initial data for the
flux is of subordinate importance. The investigation of the eigenvalue distribution
of the time evolution operator leads to the insight that problems may appear, if the
provided data hurt the smoothness prerequisites. These observations are confirmed
by numerical results reported in Chapter 7.

By following the concept of consistency and stability discussed in Chapter 6, we
prove second order convergence in terms of the discrete L∞(L2)-norms with respect
to the grid size h for fixed end times and for all types of the presented boundary
conditions. Second order convergence is also proved for the flux in the discrete
L2(L2)-norms. Further investigations lead to the conjecture that the convergence
orders can be improved for vanishing source terms and a specific choice of the
parameters.

In Chapter 7, we perform numerical experiments to confirm the theoretical re-
sults of the preceding chapters. The experiments show second order convergence
for the density and the flux. We examine the influence of the boundary and the
initial conditions and the dependence on the parameters. We find fourth order
convergence for vanishing source terms and a specific choice for the relaxation pa-
rameter. The lattice Boltzmann methods are compared to the explicit and implicit
Euler methods and to the Crank-Nicolson scheme.

Oscillations in the lattice Boltzmann solutions occur for nonsmooth initial data.
We point out that this is a consequence of the eigenvalue distribution of the discrete
time evolution operator and that there is no remedy for this disadvantage. In this
point, a discretization via the explicit Euler method appears to be superior. Similar
observations are found for the lattice Boltzmann methods for the advection-diffusion
equation. At the end of this chapter, we consider lattice Boltzmann solutions for
the viscous Burgers equation.

Lattice Boltzmann methods are designed for uniform grids. The symmetry of
the stencils is a necessary fundament for many effects. In Chapter 8, we present
algorithms for the coupling of grids with different grid sizes. The performance of
these algorithms is investigated. The grid coupling is a basic ingredient for the
construction of adaptive methods that need to be tackled in future works.
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CHAPTER 1

From Boltzmann to Lattice Boltzmann

In this introductory chapter we outline the relationship between the Boltzmann
equation and the discrete velocity models and their physical properties. For the one-
dimensional discrete velocity models, we present the equations resulting in the fluid-
dynamic limits. Lattice Boltzmann schemes are derived from the discrete velocity
models by applying discretizations with respect to the characteristic directions on
regular lattices.

1.1. The Boltzmann Equation

In a microscopic picture, we consider moving particles subject to binary colli-
sions. In a mathematical framework, the particles are modeled by a distribution
function f = f(t,x,v) that describes particles at the time t at the spatial point
x = [x1;x2;x3] ∈ R

3 having the velocity v = [v1; v2; v3] ∈ R
3. The time evolution

of the distribution function for particles with mass m subject to an external force
K is modeled by the Boltzmann equation (Ref. [9])

d

dt
f(t,x,v) =

(
∂

∂t
+ v · ∇x +

K

m
· ∇v

)
f(t,x,v) = Q(f)(t,x,v). (1.1)

This equation describes the behavior of a rarefied gas. The derivatives have to be
considered with respect to time, space and velocity. We use the operators ∇x :=
[∂/∂x1; ∂/∂x2; ∂/∂x3] and ∇v := [∂/∂v1; ∂/∂v2; ∂/∂v3]. The binary collisions of
the particles are determined by the collision operator

Q(f)(t,x,v) :=

∫

R3

∫

S2

B(v,w,e) [ f(v′)f(w′) − f(v)f(w) ] de dw

with the collision kernel B. The domain of integration is the velocity space R
3 and

the unit sphere S2. Here, v and w denote the velocities before the collision and
v′ and w′ are the velocities after the collisions. The collision kernel describes the
probability that a particle moving with velocity v and colliding with a particle with
velocity w is reflected into the direction e := (v − v′)/|v − v′|. The velocities after
the collision are determined by the relations

v′ = v + ee · (w − v),

w′ = w − ee · (w − v)

that express the conservation of energy and momentum.
Physical effects of the rarefied gas are described by macroscopic quantities that

are obtained by averaging the weighted particle distribution function. The mass
density ρ is defined by

ρ(t,x) :=

∫

R3

f(t,x,v) dv.

The mean velocity u of the fluid is gained by setting

u(t,x) :=
1

ρ

∫

R3

vf(t,x,v) dv,

1
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and the local temperature T is given by

T (t,x) :=
1

ρ

∫

R3

|v − u|2f(t,x,v) dv.

We now disregard external forces and rewrite the Boltzmann equation in scaled
form

κ
∂

∂t
f + v · ∇xf =

1

ǫ
Q(f),

where κ is the Mach number and ǫ is the Knudsen number. The regime κ = 1,
ǫ→ 0 corresponds to the so-called Euler limit, whereas the scaling κ = ǫ→ 0 yields
the diffusive or Navier-Stokes limit. In the corresponding limits, the macroscopic
quantities fulfill equations of continuum theory up to a given order. The fluid-
dynamic limits of the Boltzmann equation are examined in Ref. [21], [2], [3] and
[12]. In both scalings we find Q(f) = 0 in the limit ǫ to zero. A distribution
function f that fulfills Q(f) = 0 is called a Maxwellian.

A function ϕ : R
3 → R is called a collisional invariant, if it is a solution of

∫

R3

Q(f)(v)ϕ(v) dv = 0.

By a manipulation of the collision operator, one finds the necessary condition

ϕ(v) + ϕ(w) = ϕ(v′) + ϕ(w′),

and ϕ has to be of the form

ϕ(v) = a+ b · v + |v|2

for a ∈ R and b ∈ R
3. This choice corresponds to the conservation of mass,

momentum and energy (Ref. [10]).

1.2. A General Discrete Velocity Model

The Boltzmann equation is a seven-dimensional integro-differential equation
that is difficult to handle. For this reason, discrete velocity models are introduced,
where the particles can only possess a finite number of velocities. The basis is a gas
with identical particles. Binary particle collisions result in changes of the velocity.
We follow the description in Ref. [19] and in Ref. [36].

We consider the finite velocity space

F := {u0, . . . ,up−1 |ui ∈ R
d, i = 0, . . . , p− 1}

with p velocities for d ∈ {1, 2, 3}. The corresponding distribution functions are

fi := fi(t,x) := f(t,x,ui) for x ∈ R
d, t ∈ R, i = 0, . . . , p− 1.

Other labels for the distribution functions are particle densities or populations.
For d ∈ {2, 3}, we only allow for binary collisions obeying conservation of

momentum and energy. Let ui and uj be the precollisional velocities and uk and
ul be the postcollisional velocities with i, j, k, l ∈ {0, . . . , p−1}. The velocities have
to obey

ui + uj = uk + ul, u2
i + u2

j = u2
k + u2

l .

External forces are neglected. Mechanical considerations lead to the equations for
the ensemble F := [f0; . . . ; fp−1]
(
∂

∂t
+ ui · ∇x

)
fi = Qi(F ) :=

1

2

∑

j,k,l

pkl
ij |ui − uj |(fkfl − fifj) for i = 0, . . . , p− 1.

(1.2)
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The collisions are determined by the transition probabilities pkl
ij . The analogy to

the Boltzmann equation (1.1) is obvious. We rewrite (1.2) in matrix form by

(
Id

∂

∂t
+ V · ∇x

)
F = Q(F ),

where Id is the unit matrix and V is a diagonal vector matrix with coefficients
V ii := ui−1 for i = 1, . . . , p. The vector Q(F ) has the components Qi−1(F ) for
i = 1, . . . , p.

For a function ϕ : F → R, we define Φ : F → R
p with the components

Φi := ϕ(ui−1) for i = 1, . . . , p. For a given set of distribution functions, we define
the density

ρ :=

p−1∑

i=0

fi

and the moments

Φ :=
1

ρ

p−1∑

i=0

Φi+1fi .

Multiplication of (1.2) by Φi+1 and the summation over i = 0, . . . , p − 1 lead
to the transport equation

∂

∂t
(Φ,F ) + (Φ,V · ∇xF ) = (Φ,Q(F )),

where we employ the scalar product (·, ·) in R
p. The right hand side can be trans-

formed to

(Φ,Q(F )) =
1

8

∑

j,k,l

pkl
ij |ui − uj |(fkfl − fifj)(Φi+1 + Φj+1 − Φk+1 − Φl+1).

In analogy to the case with continuous velocities, we define the collisional invariants
by the relation

Φi + Φj − Φk − Φl = 0.

For collisional invariants we obtain a conservation law in well-known form

∂

∂t
(Φ,F ) + (Φ,V · ∇xF ) = 0.

Typical collisional invariants are the mass with ϕ(ui) := 1, the components of the
velocity with ϕ(ui) := ui · ej for j ∈ {1, . . . , d}, where ej is the jth unit vector in
R

d, and the energy with ϕ(ui) := |ui|2 for i = 0, . . . , p− 1.
By defining the entropy

H(t) :=

p−1∑

i=0

fi log(fi), if fi > 0 for i = 0, . . . , p− 1,

one can find a stability result in the form of the H-Theorem, which essentially states
that H is a monotone decreasing function in time, that is,

d

dt
H(t) ≤ 0,

and that H(t) is bounded from below; see Ref. [19].
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2

3

4
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5

1

Figure 1.1. D3Q6-model with six velocities in three dimensions.

1.3. Examples of Discrete Velocity Models

As a first example of a three-dimensional discrete velocity model we give the
Broadwell model (Ref. [5], [6]). The particles are allowed to move along the six
directions defined by the x-, y- and z-axis according to Figure 1.1. This regular
lattice is known as the D3Q6-model with six velocities in three dimensions. In unit
scales, the equations of the Broadwell model read

∂tf1 + ∂xf1 = σ(f3f4 + f5f6 − 2f1f2),

∂tf2 − ∂xf2 = σ(f3f4 + f5f6 − 2f1f2),

∂tf3 + ∂yf3 = σ(f1f2 + f5f6 − 2f3f4),

∂tf4 − ∂yf4 = σ(f1f2 + f5f6 − 2f3f4),

∂tf5 + ∂zf5 = σ(f1f2 + f3f4 − 2f5f6),

∂tf6 − ∂zf6 = σ(f1f2 + f3f4 − 2f5f6),

where σ is the collision frequency. Furthermore, we abbreviate ∂t := ∂/∂t, ∂x :=
∂/∂x, ∂y := ∂/∂y and ∂z := ∂/∂z. We find conservation of mass, momentum and
energy. By imposing the restriction that there is no dependence on the variables
y and z and setting f3 = f4 = f5 = f6, we find the one-dimensional reduced
Broadwell model with the equations

∂tf1 + ∂xf1 = 2σ(f2
3 − f1f2),

∂tf2 − ∂xf2 = 2σ(f2
3 − f1f2),

∂tf3 = σ(f1f2 − f2
3 ).

As a consequence of the reduction, we do not have conservation of energy anymore.
Conserved quantities are the density ρ := f1 + f2 + 4f3 and the flux j := f1 − f2.
The fluid-dynamic limit of the reduced Broadwell model is examined in Ref. [7].

In many applications the quadratic collision terms are replaced by linearized
relaxation-type collision operators, where the deviations from an equilibrium state
are considered. We want to introduce these models by means of the D2Q9-model
in two dimensions with nine velocities that is displayed in Figure 1.2. We restrict
to a two-dimensional square lattice, where each node has eight neighbors: a left
and a right neighbor, an upper and a lower neighbor, and four neighbors that can
be reached over the diagonals. Including the zero velocity case, we have to consider
nine different velocities u0, . . . ,u8 and the corresponding distribution functions
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Figure 1.2. D2Q9-model with nine velocities in two dimensions.

f0, . . . , f8 on this square lattice. The equations of the corresponding discrete veloc-
ity model are written as

∂fi

∂t
+ ui · ∇xfi =

1

τ

8∑

j=0

Aij(f
eq
j − fj) for i = 0, . . . , 8. (1.3)

The collision matrix A = [Aij ]i,j=0,...,8 is chosen in a way that the total mass
and the total momentum are preserved. The collision frequency is expressed in
the form 1/τ . Details on the collision operator and the equilibrium distributions
can be found in Ref. [30]. Due to the nonlinear computation of the equilibrium
distribution functions f eq

j = f eq
j (f0, . . . , f8), j = 0, . . . , 8, the equations in (1.3)

form a nonlinear system.
In the limit ǫ to zero we distinguish two kinds of scalings. The Euler scaling

∂fi

∂t
+ ui · ∇xfi =

1

ǫ
Qi for i = 0, . . . , 8,

and the diffusive or Navier-Stokes scaling

∂fi

∂t
+

ui

ǫ
· ∇xfi =

1

ǫ2
Qi for i = 0, . . . , 8.

Asymptotic and multiscale expansions like the Hilbert or the Chapman-Enskog
expansions are used to find the compressible and the incompressible Navier-Stokes
equations in the diffusive limit (Ref. [2], [10], [24]).

The distribution functions can be described by a set of moments and the discrete
velocity model can be rewritten as a set of hierarchical equations for the moments.
For certain choices of the moments, the equations for the moments yield the fluid-
dynamic equations up to a certain order. The number of moments has to be chosen
equal to the number of discrete velocities; see Ref. [30]. Since the physical meaning
of the moments of higher order is unclear in some situations, the resulting equations
are cryptic to some extent.

In the following we restrict to one-dimensional discrete velocity models. The
goal is to find appropriate models that cover the properties of multi-dimensional
models. In one dimension we can only postulate conservation of mass and momen-
tum. Conservation of energy in addition is impossible for these models. The two
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2 1

Figure 1.3. D1Q2-model with two velocities in one dimension.

velocity case with u1 := 1 and u2 := −1 is depicted in Figure 1.3. For this spe-
cific model there is only conservation of mass. This corresponds to a nonphysical
choice of the collision operator. Hence, we are treating a fictitious gas. The general
one-dimensional scaled discrete velocity model reads

∂tf1 + ∂xf1 = q(f1, f2),

∂tf2 − ∂xf2 = −q(f1, f2).
We define the mass density ρ := f1 + f2 and the flux j := f1 − f2. Conservation of
mass is given by the equation

∂tρ+ ∂xj = 0,

where j turns out to be a function of ρ and ∂xρ in the limiting case.
In the Goldstein-Taylor model (Ref. [20], [48]), we choose the collision term

q(f1, f2) := σ(f2 − f1).

This model can be seen in the framework of the relaxation-type schemes with the
equilibrium distribution f eq := (f1 + f2)/2. The Carleman model (Ref. [8]) uses

q(f1, f2) := σ(f2
2 − f2

1 ).

The linear Ruijgrok-Wu model (Ref. [44]) employs

q(f1, f2) := αf2 − βf1 for α 6= β.

The nonlinear Ruijgrok-Wu model (Ref. [44]) uses a collision operator of the form

q(f1, f2) := αf2 − βf1 + γf1f2.

An overview over the presented models and their properties can be found in Ref. [28].
The hyperbolic scaling

∂tf1 + ∂xf1 =
1

ǫ
q(f1, f2),

∂tf2 − ∂xf2 = −1

ǫ
q(f1, f2).

in the Euler limit ǫ to zero leads to conservation laws of the form

∂tρ+ ∂xF (ρ) = 0,

where F depends on the choice of the model. Macroscopic variables are the density
ρ := f1 + f2 and the flux j := f1 − f2. In Ref. [18], the relation

j = F (ρ) =
√
ρ2 + 1 − 1

is proved for the nonlinear Ruijgrok-Wu model in the limit ǫ to zero for the choice
γ = 2α = 2β. Entropy bounds and BV -estimates on unbounded domains are
employed to prove the convergence. One gets

f1 =
1

2
(ρ+ F (ρ)), f2 =

1

2
(ρ− F (ρ)).

For small ρ we have

F (ρ) ≈ 1

2
ρ2.

Further results can be found in Ref. [27].
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More interesting are the Navier-Stokes limits of the equations

∂tf1 +
1

ǫ
∂xf1 =

1

ǫ2
q(f1, f2),

∂tf2 −
1

ǫ
∂xf2 =− 1

ǫ2
q(f1, f2)

in the diffusive scaling. As transformed variables we consider the density ρ := f1+f2
and the flux j := (f1 − f2)/ǫ, where we now have

f1 =
1

2
(ρ+ ǫj), f2 =

1

2
(ρ− ǫj).

The diffusive limit ǫ to zero gives rise to the relation

j = F (ρ, ∂xρ).

The Goldstein-Taylor model yields the heat equation (Ref. [32], [35], [34])

∂tρ =
1

2σ
∂2

xρ

in the fluid-dynamic limit with the flux j := −∂xρ/(2σ). The Carleman model
(Ref. [32], [35]) renders

∂tρ =
1

4
∂2

x log(ρ).

For the linear Ruijgrok-Wu model the choice q(f1, f2) = σ
(
f2 − f1 + ǫA(f1 + f2)

)

renders the advection-diffusion equation

∂tρ+A∂xρ =
1

2σ
∂2

xρ

with the flux j := Aρ−∂xρ/(2σ). For the nonlinear Ruijgrok-Wu model (Ref. [44],
[18]) we find

j =
1

2
ρ2 − 1

2σ
∂xρ,

where ρ is a solution of the viscous Burgers equation

∂tρ+
1

2
∂xρ

2 =
1

2σ
∂2

xρ.

Most of the results in the literature are obtained in the absence of boundary con-
ditions; see for example Ref. [18]. In Ref. [45] the diffusive limit for an initial-
boundary value problem for the Goldstein-Taylor model is investigated without
giving error estimates and precise orders of convergence.

1.4. Lattice Boltzmann Methods

The general aim of the study of lattice Boltzmann methods is the solution of
incompressible Navier-Stokes like problems. The basic idea in this approach is to
model the fluid flow by a simplified time evolution of microscopic particles. The
particles in lattice Boltzmann models can only stay in the discrete nodes of a regular
lattice. In each time step the particles can move to neighboring nodes or stay where
they are. Depending on the underlying grid, only a limited number of possibilities
for the movement is given. As in the case of velocity discrete Boltzmann models,
the time evolution of the particles is described by the distribution functions fi,
i = 0, . . . , p − 1, each one belonging to one selected velocity ui, i = 0, . . . , p − 1.
The simplicity of lattice Boltzmann models is constituted in the discrete nature of
the particle positions, the particle velocities and the discrete time.
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Macroscopic quantities are determined by an averaging of the distribution func-
tions. The discrete density ρ and the discrete average velocity u are defined by

ρ :=

p−1∑

i=0

fi, u :=
1

ρ

p−1∑

i=0

fiui.

The time evolution consists of two steps: in the collision step there are interactions
between the particles in the nodes, which result in changed velocities and a redistri-
bution of the densities fi, i = 0, . . . , p− 1. Invariant quantities like the total mass
and the total momentum are unchanged by the collisions in the dimension d = 2 or
d = 3. In the propagation step, the particles move to the neighboring nodes. The
combination of both steps can be written in the simple form

fi(t+ τ,x + τui) = fi(t,x) +

p−1∑

j=0

Aij(f
eq
j (t,x) − fj(t,x)) for i = 0, . . . , p− 1.

(1.4)

These are the lattice Boltzmann equations for this specific collision model. The
evaluation is carried out only in the discrete points x of the lattice. The collision
operator involves the collision matrix A = [Aij ]i,j=0,...,p−1 and the local equilibrium
distributions f eq

j for j = 0, . . . , p−1. In most applications the grid step and the time
step are scaled to one. But this procedure somehow obscures the inherent coupling
of space and time that is determined by the choice of the discrete velocities. Details
for the D2Q9-model with p = 9 can be found in Ref. [30]. In the same paper and in
Ref. [29], it is proved that the lattice Boltzmann equations are a second order finite
difference approximation in space and a first order explicit Euler discretization in
time for the incompressible Navier-Stokes equations.

In the historical development, the lattice Boltzmann models originate from the
theory of cellular lattice gas automata, where only Boolean states for the distribu-
tion functions are considered (Ref. [17], [16], [50], [4]). But it is clear that the
lattice Boltzmann equations (1.4) can be seen as a discretization of the discrete
velocity model (1.3) with respect to the characteristic directions determined by the
p velocities.

Severe problems for the lattice Boltzmann equations occur in the presence of
boundary conditions. At the nodes close to the boundary it is unclear how to
extract the inflow velocity distribution functions. Since the boundary conditions
are expressed in terms of macroscopic quantities, one has to provide conversion
formulas between the macroscopic quantities and the discrete distribution functions.
In most of the models, the number of distribution functions exceeds the number of
macroscopic variables. Hence, the conversion formulas do not form a closed system.
Higher order moments of the distribution functions have to be involved, although
their physical meaning is not clear in many situations. The most commonly used
boundary conditions are of periodic type or the so-called bounce-back boundary
conditions, where the outflow values are used to determine the inflow values. In
the physical interpretation this matches the case of solid walls. Review articles of
lattice Boltzmann methods can be found in Ref. [11] and in Ref. [4].

The lattice Boltzmann equations for the one-dimensional models read

f1(t+ τ, x+ h) = f1(t, x) + q(f1, f2)(t, x),

f2(t+ τ, x− h) = f2(t, x) − q(f1, f2)(t, x).

Boundary values have to be provided for f1 at the left boundary and f2 at the right
boundary.



CHAPTER 2

The Heat Equation

As pointed out in the introduction, the analysis of lattice Boltzmann methods
is a challenging task that is difficult to cope with. For this reason, we restrict our
considerations to a model problem that allows for a deepened analysis. In spite
of the simplicity of the model problem, it preserves the most fundamental features
of more complex velocity models and lattice Boltzmann schemes. We focus on the
linear Goldstein-Taylor model, whose limit equation is the heat equation. At the
end of this work, we present extensions of this model, where the limiting equations
are the advection-diffusion equation and the nonlinear Burgers equation.

The fluid-dynamic limit equation of our linear model problem is the heat equa-
tion on a bounded interval. For the analysis of our model problem and a deep
understanding of the continuous and the discrete convergence processes, we need
to gain information on the behavior of the solutions of the heat equation subject
to different boundary conditions.

We start with a collection of helpful definitions. Then we give an overview
on the passage from the kinetic velocity model to the heat equation in the fluid-
dynamic limit. For the analysis, the underlying advection system is transformed
into two telegraph equations.

For the continuous and the discrete convergence processes, the regularity of
the limit equation is of particular importance. We examine the necessities for
the data to achieve the required regularity for the solutions of the heat equation.
Four different types of boundary conditions are proposed and the reduction of the
boundary values is described even for higher order derivatives. In the space-time
corners specific compatibility conditions need to be fulfilled. Solutions of the heat
equation are investigated in the classical as well as in the weak sense. Fourier
series of the solutions in terms of orthogonal eigenfunctions are presented. A priori
estimates are derived from the Fourier representations and from energy principles.

2.1. Definitions

Let Ω := (xL, xR) ⊆ R be a bounded open domain and let |Ω| := xR − xL

be its length. For 0 < T < ∞, time-dependent partial differential equations are
considered on the space-time domain ΩT := (0, T ]×Ω. Let the parabolic boundary
be defined by

ΓT := {(t, x) ∈ ΩT : t = 0 or x = xL or x = xR}.

Partial derivatives with respect to space and time are denoted by

∂x :=
∂

∂x
, ∂k

x :=
∂k

∂xk
for k ∈ N,

∂t :=
∂

∂t
, ∂k

t :=
∂k

∂tk
for k ∈ N,

in the classical as well as in the weak sense. The total derivative with respect to
time is given by d/dt.

9
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Classical solutions of the partial differential equations can be found in the spaces
of k-times continuously differentiable functions

Ck(Ω) :=
{
u : Ω → R : ∂l

xu is continuous for 0 ≤ l ≤ k
}

for k ∈ N0,

C∞(Ω) := ∩k∈N0
Ck(Ω).

In the same manner, the spaces Ck
(
Ω
)
, Ck([0, T ]) and C0(ΩT ) are defined. In

Ck
(
Ω
)
, k <∞, we define the norm

‖u‖Ck(Ω) := max
0≤l≤k

sup
x∈Ω

|∂l
xu(x)|.

The space of test functions with compact support is defined by

C∞
0 (Ω) :=

{
u ∈ C∞(Ω) : {x ∈ Ω : u(x) 6= 0} ⊂ Ω

}
.

For time-dependent functions, we define for k, l ∈ N0

Ck,l(ΩT ) :=
{
u : ΩT → R : u, ∂xu, . . . , ∂

k
xu, ∂tu, . . . , ∂

l
tu ∈ C0(ΩT )

}
.

For α ∈ (0, 1) and k ∈ N0, we define the spaces of Hölder continuous functions

Cα
(
Ω
)

:=
{
u : Ω → R : ‖u‖Cα(Ω) <∞

}
,

Ck+α
(
Ω
)

:=
{
u : Ω → R : ∂l

xu ∈ Cα
(
Ω
)

for 0 ≤ l ≤ k
}
,

where the norms are given by

‖u‖Cα(Ω) := sup
x∈Ω

|u(x)| + sup
x,x′∈Ω
x6=x′

|u(x) − u(x′)|
|x− x′|α ,

‖u‖Ck+α(Ω) :=

k∑

l=0

‖∂l
xu‖Cα(Ω) .

Similarly, we define the Hölder spaces Cα([0, T ]) and Ck+α([0, T ]). For time-
dependent functions defined on ΩT , we use

Cα
(
ΩT

)
:=
{
u ∈ C0

(
ΩT

)
: |||u|||α <∞

}
,

Ck+α,l+α
(
ΩT

)
:=
{
u ∈ Ck,l

(
ΩT

)
: |||u|||k+α,l+α <∞

}
.

The corresponding norms are given by

|||u|||α := sup
(t,x)∈ΩT

|u(t, x)| + sup
(t,x),(t′,x′)∈ΩT

(t,x) 6=(t′,x′)

|u(t, x) − u(t′, x′)|
dist((t, x), (t′, x′))α

,

|||u|||k+α,l+α := |||u|||α +

k∑

i=1

|||∂i
xu|||α +

l∑

i=1

|||∂i
tu|||α,

with dist((t, x), (t′, x′)) :=
(
|t− t′| + |x− x′|2

)1/2
. See Ref. [15, Chapter 3.2].

The Lebesgue spaces Lp(Ω) with respect to the Lebesgue measure are defined
for 1 ≤ p ≤ ∞ by

Lp(Ω) :=
{
u : Ω → R : ‖u‖Lp(Ω) <∞

}
,

with the norms

‖u‖Lp(Ω) :=

(∫

Ω

|u|p
)1/p

for 1 ≤ p <∞,

‖u‖L∞(Ω) := sup
x∈Ω

|u(x)|.
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More precisely, Lp(Ω) is the space of classes of equivalence of Lebesgue measurable
functions, satisfying the above norm definitions with respect to the equivalence
relation: u ≡ v if u and v are different only on a subset of Ω with Lebesgue
measure zero. For p = 2, we get the Hilbert space L2(Ω) endowed with the scalar
product (·, ·) defined by

(u, v) :=

∫

Ω

uv for all u, v ∈ L2(Ω).

The Lebesgue space L2(ΩT ) and L2((0, T )) are defined in an analogous way.
For the variational formulations of the partial differential equations under ex-

amination, we define the usual Sobolev spaces for k ∈ N0

Hk(Ω) := {u ∈ L2(Ω) : ∂l
xu ∈ L2(Ω) for 0 ≤ l ≤ k},

H1
0 (Ω) := {u ∈ H1(Ω) : u(xL) = u(xR) = 0},

where the derivatives ∂xu are defined in the following weak sense. A function
u ∈ L2(Ω) has a weak derivative v =: ∂xu ∈ L2(Ω), if

(u, ∂xψ) = −(v, ψ) for all ψ ∈ C∞
0 (Ω).

The spaces Hk(Ω) are Hilbert spaces with respect to the scalar products

(u, v)k :=

k∑

l=0

|Ω|2l(∂l
xu, ∂

l
xv).

Further on, we define the symmetric bilinear forms

〈u, v〉k := (∂k
xu, ∂

k
xv) for all u, v ∈ Hk(Ω).

The associated norms and semi-norms on Hk are defined by

‖u‖k := (u, u)
1/2
k for u ∈ Hk(Ω),

|u|k := 〈u, u〉1/2
k for u ∈ Hk(Ω).

In H1
0 (Ω), the symmetric bilinear form 〈·, ·〉1 is a scalar product due to Poincaré’s

inequality

‖u‖0 ≤ |Ω|
π

|u|1 for all u ∈ H1
0 (Ω).

We note the conformity ‖ · ‖0 = | · |0 = ‖ · ‖L2(Ω).

In a Hilbert space V with the scalar product (·, ·)V and the associated norm
‖ · ‖V , the Cauchy-Schwarz inequality

(u, v)V ≤ ‖u‖V ‖v‖V for all u, v ∈ V

is valid. The dual space V ∗ of V is defined by

V ∗ := {f : V → R : v 7→ 〈f, v〉V ∗ := f(v) , f is linear and continuous} .

For f ∈ V , we can define f∗ ∈ V ∗ by 〈f∗, v〉V ∗ := (f, v)V for v ∈ V . The norm in
V ∗ is defined by

‖f‖V ∗ := sup
0 6=ϕ∈V

〈f, ϕ〉V ∗

‖ϕ‖V

.

We get ‖f‖V ∗ = ‖f‖V for f ∈ V .
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When considering space-time functions u : ΩT → R, we employ the spaces

L∞((0, T );L2(Ω)) :=

{
u : (0, T ) → L2(Ω) : sup

t∈(0,T )

‖u(t)‖L2(Ω) <∞
}
,

L2((0, T );V ) :=

{
u : (0, T ) → V :

∫ T

0

‖u(t)‖2
V dt <∞

}
,

C0([0, T ];V ) :=
{
u : [0, T ] → V : u continuous

}
,

where V is a Banach space with norm ‖ · ‖V . See Ref. [22] and Ref. [40] for further
details. Let V be a closed subspace of H1(Ω) with H1

0 (Ω) ⊆ V ⊆ H1(Ω) and the
corresponding norm ‖ · ‖V . We define the space

H1((0, T );V ) :=
{
u ∈ L2((0, T );V ) : ∂tu ∈ L2((0, T );V ∗)

}
.

The derivative ∂tu in the above definition is defined in the following weak sense. A
function u ∈ L2((0, T );V ) has a weak derivative v =: ∂tu ∈ L2((0, T );V ∗), if

∫ T

0

u∂tψ = −
∫ T

0

〈v, ψ〉V ∗ for all ψ ∈ C∞
0 (0, T ).

The above time integral is understood as a Bochner integral over functions with
values in the function space V . A scalar product in H1((0, T );V ) is given by

〈u, v〉H1((0,T );V ) :=

∫ T

0

((u, v)V + 〈∂tu, ∂tv〉V ∗) for all u, v ∈ H1((0, T );V ).

For further reference, we refer to Ref. [49, IV.25] and Ref. [51, §23].
For a function r ∈ C0

(
ΩT

)
and N ∈ N, we define the discrete grid vector

R = R(t) := [Rl(t)]l=1,...,N := [r(t, xL + lh]l=1,...,N ∈ R
N with h := |Ω|/N . Then

we define the discrete L2-norm of R by

‖R(t)‖2 :=

(
N∑

l=1

h|Rl(t)|2
)1/2

.

In the applications we use slight changes of the definition at the boundaries.
For a prescribed time step τ , we introduce the discrete times {tk}k=0,...,M with

tk := kτ for k = 0, . . . ,M . With this definitions we introduce the discrete L∞(L2)-
norm by setting

‖R‖L∞(L2) := max
k=0,...,M

‖R(tk)‖2,

and the discrete L2(L2)-norm by

‖R‖L2(L2) :=

(
M∑

k=0

τ‖R(tk)‖2
2

)1/2

.

We say that function f depending on a small parameter ǫ > 0 is of order O(ǫp)
in the limit ǫ to zero for p ∈ R, if we have

lim
ǫ→0

|f |
ǫp

<∞.

In the same manner, we say that a function g depending on the large value N ≫ 0
is of the order O(Nk) in the limit N to infinity for k ∈ R, if we have

lim
N→∞

|g|
Nk

<∞.
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2.2. The Fluid-dynamic Limit

In the sequel, we outline the passage from the velocity discrete model to the
fluid-dynamic limit equation of our model problem.

The focus of our interest lies on the approximation of the density r that is
modeled by the heat equation by solutions of the velocity discrete system in the
fluid-dynamic limit. In our model problem, the latter one is a linear advection sys-
tem, namely the Goldstein-Taylor model. While the heat equation is the prototype
of a parabolic equation, the Goldstein-Taylor model turns out to be of hyperbolic
type. Hence, we are faced with a singularly perturbed limit problem.

The equations of the Goldstein-Taylor model are the starting point for our
numerical discretizations. The aim is to obtain lattice Boltzmann discretizations in
order to take advantage of all its nice properties that are pointed out in this work.

The heat equation with viscosity ν reads

∂tr − ν∂2
xr = f in ΩT .

On a bounded interval, the heat equation has to be equipped with suited boundary
conditions. We choose, for example, Dirichlet boundary conditions

r(·, xL) = rDi
L (·) in (0, T ),

r(·, xR) = rDi
R (·) in (0, T ).

Furthermore, an initial condition

r(0, ·) = r0(·) in Ω

has to be supplied for the time-dependent problem.
The given data f , rDi

L , rDi
R and r0 are assumed to be smooth. In addition, the

data have to fulfill compatibility conditions to ensure sufficient regularity of the
solution. The data for the heat equation are then used as data for the Goldstein-
Taylor model. The equations of the Goldstein-Taylor model in the diffusive scaling
depend on the additional small parameter ǫ > 0. We have to examine a hyperbolic
system of the form

∂tu
ǫ +

1

ǫ
∂xu

ǫ +
1

2νǫ2
(uǫ − vǫ) =

1

2
f − νǫ

2
∂xf in ΩT ,

∂tv
ǫ − 1

ǫ
∂xv

ǫ − 1

2νǫ2
(uǫ − vǫ) =

1

2
f +

νǫ

2
∂xf in ΩT ,

together with the boundary conditions

uǫ(·, xL) + vǫ(·, xL) = rDi
L (·) in (0, T ),

uǫ(·, xR) + vǫ(·, xR) = rDi
R (·) in (0, T ),

and the initial conditions

uǫ(0, ·) =
1

2
r0(·) −

νǫ

2
∂xr0(·) in Ω,

vǫ(0, ·) =
1

2
r0(·) +

νǫ

2
∂xr0(·) in Ω.

The density r, modeled by the heat equation, is approximated by

rǫ := uǫ + vǫ,

when ǫ approaches zero.
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By defining the flux jǫ := uǫ − vǫ, the equations of the Goldstein-Taylor model
can be written as

∂tr
ǫ +

1

ǫ
∂xj

ǫ = f in ΩT ,

∂tj
ǫ +

1

ǫ
∂xr

ǫ +
1

νǫ2
jǫ = − νǫ∂xf in ΩT .

These equations, together with the given initial and boundary conditions, can be
decoupled and rewritten as two independent telegraph equations for the density
rǫ := uǫ + vǫ

νǫ2∂2
t r

ǫ + ∂tr
ǫ − ν∂2

xr
ǫ = f + νǫ2∂tf + ν2ǫ2∂2

xf in ΩT ,

rǫ(·, xL) = rDi
L (·) in (0, T ),

rǫ(·, xR) = rDi
R (·) in (0, T ),

rǫ(0, ·) = r0(·) in Ω,

∂tr
ǫ(0, ·) = ν∂2

xr0(·) + f(0, ·) in Ω,

and for the scaled flux kǫ := jǫ/ǫ

νǫ2∂2
t k

ǫ + ∂tk
ǫ − ν∂2

xk
ǫ = −ν∂xf − ν2ǫ2∂t∂xf in ΩT ,

∂xk
ǫ(·, xL) = −∂tr

Di
L (·) + f(·, xL) in (0, T ),

∂xk
ǫ(·, xR) = −∂tr

Di
R (·) + f(·, xR) in (0, T ),

kǫ(0, ·) = −ν∂xr0(·) in Ω,

∂tk
ǫ(0, ·) = −ν∂xf(0, ·) in Ω.

Initial conditions for ∂tr
ǫ and ∂tκ

ǫ have to be supplied due to the hyperbolic type
of the telegraph equations. The additional boundary conditions of Neumann type
for the scaled flux are gained from the equations of the advection system that are
extended onto the boundary. If the solutions of the advection system shall be
approximations of the solutions of the heat equation, we have to postulate κǫ ≈
−ν∂xr

ǫ. With this knowledge we can complete the missing initial conditions.
In the form of the telegraph equations, it is easy to discover the singularly

perturbed nature of the Goldstein-Taylor model. In the limit ǫ to zero, we get
two heat equations for the density and the scaled flux, endowed with Dirichlet and
Neumann boundary conditions, respectively. The hyperbolic type of the differential
equations changes in the limit ǫ to zero to parabolic type. At the same time, we
are faced with too many initial conditions.

The telegraph equations are completely solvable in terms of Fourier series, as
well as the heat equation. The solutions for the advection system are then given
by the backward transformations

uǫ =
1

2
(rǫ + ǫkǫ), vǫ =

1

2
(rǫ − ǫkǫ).

In the limit ǫ→ 0, we prove

rǫ → r, ∂xr
ǫ → ∂xr with order ǫ2,

kǫ → −ν∂xr, ∂xk
ǫ → −ν∂2

xr with order ǫ

in L∞((0, T );L2(Ω)) and

kǫ → −ν∂xr, ∂xk
ǫ → −ν∂2

xr with order ǫ2

in L2((0, T );L2(Ω))
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The advection system in the variables uǫ and vǫ is the starting point for the nu-
merical discretizations. The discretizations of the differential operators in advection
form

∂t ± a∂x with a :=
1

ǫ

lead to lattice Boltzmann schemes. In the lattice Boltzmann discretizations the
grid size h is linked to the parameter ǫ. This fact expresses the parabolic limit of
our discretizations.

2.3. The Heat Equation

In this section we examine the solutions of the heat equation on a bounded
interval subject to Dirichlet, Neumann, Robin or periodic boundary conditions.
The results on the solution properties are necessary for the ongoing convergence
proofs.

The heat equation with viscosity ν and a source term f is given by

Lr := ∂tr − ν∂2
xr = f in ΩT . (2.1)

The initial condition is

r(0, ·) = r0(·) in Ω. (2.2)

Four different types of boundary conditions are possible in our context. We can
provide Dirichlet values

r(·, xL) = rDi
L (·) in (0, T ),

(2.3)
r(·, xR) = rDi

R (·) in (0, T ),

Neumann values

∂xr(·, xL) = rNeu
L (·) in (0, T ),

(2.4)
∂xr(·, xR) = rNeu

R (·) in (0, T ),

or a specific choice of Robin boundary values

1

2
r(·, xL) − ϑ

2
∂xr(·, xL) = rRob

L (·) in (0, T ),
(2.5)

1

2
r(·, xR) +

ϑ

2
∂xr(·, xR) = rRob

R (·) in (0, T ),

where ϑ > 0 is chosen as an additional parameter that has to be determined later.
For the continuous approximation problem, ϑ is linked to the parameter ǫ of the
Goldstein-Taylor model and to the viscosity of the heat equation. For the approx-
imation of the discrete lattice Boltzmann solutions, ϑ depends on the grid size. In
both cases, ϑ approaches zero in the limiting case. For the stability considerations
we have to be aware of this property.

In the periodic case we assume periodic initial data r0 as well as a periodic
source term f . Periodic boundary conditions are then chosen by

r(·, xL) = r(·, xR) in (0, T ). (2.6)

Globally continuous classical solutions of the heat equation (2.1) subject to
Dirichlet boundary conditions (2.3) can only exist if the compatibility conditions

rDi
L (0) = r0(xL), rDi

R (0) = r0(xR) (2.7)

for the data are fulfilled. In the Neumann case,

rNeu
L (0) = ∂xr0(xL), rNeu

R (0) = ∂xr0(xR) (2.8)
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has to be postulated for the regularity up to the boundary. The necessary compat-
ibility conditions in the Robin case are

rRob
L (0) =

1

2
r0(xL) − ϑ

2
∂xr0(xL), rRob

R (0) =
1

2
r0(xR) +

ϑ

2
∂xr0(xR). (2.9)

Furthermore, in the Dirichlet case the validity of the heat equation in the corner of
the parabolic boundary may be required, that is,

∂tr
Di
L (0) − ν∂2

xr0(xL) = f(0, xL), ∂tr
Di
R (0) − ν∂2

xr0(xR) = f(0, xR), (2.10)

if the differentiability of the solution at the boundary is a prerequisite. For higher
regularity of the classical solutions at the boundary,

∂k
t r

Di
L (0)−νk∂2k

x r0(xL) =
k−1∑

l=0

νk−l−1∂l
t∂

2(k−l−1)
x f(0, xL), k = 2, 3, . . . ,

∂k
t r

Di
R (0)−νk∂2k

x r0(xR) =

k−1∑

l=0

νk−l−1∂l
t∂

2(k−l−1)
x f(0, xR), k = 2, 3, . . . ,

(2.11)

have to hold. In the Neumann case

∂tr
Neu
L (0) − ν∂3

xr0(xL) = ∂xf(0, xL), ∂tr
Neu
R (0) − ν∂3

xr0(xR) = ∂xf(0, xR)
(2.12)

and the corresponding extensions to higher orders (as in (2.11)) might be necessary.
In the Robin case

∂tr
Rob
L (0) − ν

2

(
∂2

xr0(xL) − ϑ∂3
xr0(xL)

)
=

1

2
(f(0, xL) − ϑ∂xf(0, xL)) ,

∂tr
Rob
R (0) − ν

2

(
∂2

xr0(xR) + ϑ∂3
xr0(xR)

)
=

1

2
(f(0, xR) + ϑ∂xf(0, xR))

and extensions for higher orders may be imposed.
If some of the preceding compatibility conditions are not fulfilled, classical

solutions of the heat equation exist in the interior of the space-time domain due
to the smoothing property of the parabolic operator. But then, singularities in the
space-time corners may occur.

2.4. Existence and Regularity of the Solutions

In a first step we consider classical solutions of the initial-boundary value prob-
lem for the heat equation. We call r ∈ C2,1(ΩT ) ∩ C0

(
ΩT

)
a classical solution to

the Dirichlet problem for the heat equation, if it solves (2.1), (2.2) and (2.3).
For the parabolic operator L, we have the weak maximum principle for classical

solutions:

Theorem 2.1. If Lr ≤ 0 for r ∈ C2,1(ΩT ) ∩ C0
(
ΩT

)
holds in ΩT , then the

maximum of r is achieved at the parabolic boundary, that is,

max
(t,x)∈ΩT

r(t, x) = max
(t,x)∈ΓT

r(t, x).

Proof. See Ref. [15, Theorem 2.2.6]. �

The assertion of Theorem 2.1 can be strengthened. If we have Lr < 0 in ΩT ,
then the maximum is achieved only at the parabolic boundary.

The weak maximum principle ensures uniqueness of the solution. It also allows
to give statements on the positivity of the solutions. For non-negative initial data
r0, non-negative boundary data rDi

L and rDi
R and for a non-negative source term f ,

non-negativity of the solution follows by the weak maximum principle. In this case,
the non-negative minimum is achieved on the parabolic boundary. The same result
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follows in the Neumann case, if we assume rNeu
L ≥ 0 and rNeu

R ≤ 0 (confer Ref. [33,
Problem 8.14]).

In the Dirichlet case we define

rDi
Γ (t, x) := r0(x) +

x− xL

|Ω| (rDi
R (t) − rDi

R (0)) +
xR − x

|Ω| (rDi
L (t) − rDi

L (0)),

which interpolates to the initial-boundary conditions, if the compatibility conditions
(2.7) are fulfilled. Then we have the following existence result:

Theorem 2.2. Let f ∈ Cα
(
ΩT

)
and rDi

Γ ∈ C2+α,1+α
(
ΩT

)
and assume the

compatibility conditions (2.10) to hold true. Then the Dirichlet problem (2.1), (2.2)
and (2.3) for the heat equation has a unique solution r ∈ C2+α,1+α

(
ΩT

)
. Further

on, we have the a priori estimate

|||r|||2+α,1+α ≤ C(|||rDi
Γ |||2+α,1+α + |||f |||α).

Proof. See Ref. [15, Theorems 3.3.6 and 3.3.7]. �

The regularity assumption on rDi
Γ in Theorem 2.2 imposes the compatibility

conditions (2.7). With respect to the assumptions of Theorem 2.2, the heat equation
(2.1) is valid up to the boundary. Additional smoothness of the initial-boundary
data directly carries over to additional smoothness of the solution with respect to
the validity of the compatibility conditions (2.11); see Ref. [15, Theorems 3.4.10 -
3.4.12].

If the regularity of the initial-boundary data is omitted or the compatibility
conditions are not fulfilled, classical solutions still exist in the interior of the domain.
However, the boundedness of the derivatives at the boundaries does not hold any
more in general; see also Ref. [15, Theorems 3.3.5 and 3.4.9].

Weak solutions for the Dirichlet problem are sought for by considering the
variational formulation. We define the symmetric bilinear form

a(u, v) := ν〈u, v〉1 for all u, v ∈ H1(Ω). (2.13)

In the Dirichlet case the boundary conditions for the density r can be reduced by
subtracting

rDi
LR(t, x) :=

x− xL

|Ω| rDi
R (t) +

xR − x

|Ω| rDi
L (t). (2.14)

If the compatibility conditions (2.7) are fulfilled, we get vanishing boundary condi-
tions for rDi

0 := r0 − rDi
LR(0, ·). We are then considering the solution rDi := r− rDi

LR

of the heat equation with vanishing Dirichlet values and right hand side fDi
LR :=

f −LrDi
LR. Hence, we seek a solution rDi ∈ L2((0, T );H1

0 (Ω)) ∩C0([0, T ];L2(Ω)) of
the heat equation such that

lim
t→0

‖rDi(t, ·) − rDi
0 ‖0 = 0

and

d

dt
(rDi(t, ·), v) + a(rDi(t, ·), v) = (fDi

LR(t, ·), v) for all v ∈ H1
0 (Ω). (2.15)

The derivative with respect to the time is meant in the weak sense. Now we have
the following weak existence result:

Theorem 2.3. For rDi
0 ∈ H1

0 (Ω), f ∈ L2(ΩT ) and rDi
L , rDi

R ∈ H1([0, T ]) there
is a unique solution r = rDi + rDi

LR to the Dirichlet problem (2.1), (2.2), (2.3)
for the heat equation, where rDi

LR is given by (2.14) and rDi ∈ L2((0, T );H1
0 (Ω)) ∩

C0([0, T ];L2(Ω)) is a weak solution in the sense of (2.15).

Proof. See Ref. [41, Theorem 7.2.1]. �
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The condition rDi
0 ∈ H1

0 (Ω) requires the compatibility condition (2.7). Apart
from Theorem 2.2, the compatibility assumption (2.10) is not required in The-
orem 2.3. The regularity of the right hand side f can even be relaxed to f ∈
L2((0, T ),H−1(Ω)), where H−1(Ω) is the dual space of H1

0 (Ω). Since we have the
embedding Hk(Ω) ⊆ Ck−1,α

(
Ω
)

for 0 < α ≤ 1/2 (see Ref. [1, Theorem 8.13]), the
solution in Theorem 2.3 is continuous. Especially, we have

|f(x) − f(x′)| =

∣∣∣∣
∫ x

x′

f ′
∣∣∣∣ ≤ |x− x′|1/2|f |1 for f ∈ H1(Ω).

The proof of Theorem 2.3 uses the fact that there exists an orthogonal Hilbert
space basis

{
φDi

k

}
k≥1

of H1
0 (Ω), consisting of eigenfunctions of the associated sta-

tionary eigenvalue problem

a(φDi
k , v) = λk(φDi

k , v) for all v ∈ H1
0 (Ω).

The normalized eigenfunctions are given by

φDi
k (x) :=

√
2

|Ω| sin

(
kπ

|Ω| (x− xL)

)
for k = 1, 2, . . . (2.16)

and the corresponding eigenvalues are

λk := ν
k2π2

|Ω|2 for k = 1, 2, . . . . (2.17)

We have orthogonality of the eigenfunctions in L2(Ω) as well as in H1
0 (Ω), that is,

〈φDi
l , φDi

k 〉1 = (φDi
l , φDi

k ) = 0 for l 6= k.

The solution rDi in the sense of Theorem 2.3 can be written as a Fourier series

rDi(t, x) =
∞∑

k=1

(
(rDi

0 , φDi
k )e−λkt +

∫ t

0

(fDi
LR(s, ·), φDi

k )e−λk(t−s) ds

)
φDi

k (x). (2.18)

For the derivation of further a priori estimates for the solution of the heat
equation subject to Dirichlet boundary conditions, we need vanishing boundary
values for higher order derivatives. The procedure is as follows. The boundary
conditions for r and ∂2

xr can be reduced at the same time by subtracting

rDi
LR(t, x) :=

x− xL

|Ω| rDi
R (t) +

xR − x

|Ω| rDi
L (t)

− (x− xL)(xR − x)

6ν|Ω| (x− xL + |Ω|)(∂tr
Di
R (t) − f(t, xR)) (2.19)

− (x− xL)(xR − x)

6ν|Ω| (xR − x+ |Ω|)(∂tr
Di
L (t) − f(t, xL))

for smooth right hand side f and smooth rDi
L , rDi

R . We obtain vanishing boundary
values for r, ∂2

xr and for the modified right hand side fDi
LR := f − LrDi

LR. Vanishing
boundary values for ∂2

xr
Di
0 require (2.10). By evaluating the Fourier series (2.18),

we get the following a priori estimates:
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Corollary 2.4. With respect to the assumptions of Theorem 2.3, with rDi
LR

given in (2.19), we gain the a priori estimates

‖rDi(t, ·)‖2
0 ≤ 2‖rDi

0 ‖2
0e

−2λ1t +
1

λ1

∫ t

0

‖fDi
LR(s, ·)‖2

0 ds, (2.20)

ν|rDi(t, ·)|21 ≤ 2ν|rDi
0 |21e−2λ1t +

∫ t

0

‖fDi
LR(s, ·)‖2

0 ds, (2.21)

ν2|rDi(t, ·)|22 ≤ 2ν2|rDi
0 |22e−2λ1t + ν

∫ t

0

|fDi
LR(s, ·)|21 ds, (2.22)

where the last estimate requires rDi
0 ∈ H1

0 (Ω)∩H2(Ω) and fDi
LR ∈ L2((0, T );H1

0 (Ω)).
If we have in addition the validity of (2.10), we get

ν3|rDi(t, ·)|23 ≤ 2ν3|rDi
0 |23e−2λ1t + ν2

∫ t

0

|fDi
LR(s, ·)|22 ds (2.23)

for ∂2
xr

Di
0 ∈ H1

0 (Ω) and fDi
LR ∈ L2((0, T );H1

0 (Ω) ∩H2(Ω)). Furthermore, we have

‖∂tr
Di(t, ·)‖0 ≤ ν|rDi(t, ·)|2 + ‖fDi

LR(t, ·)‖0. (2.24)

If the initial data rDi
0 is less regular, that is, rDi

0 ∈ L2(Ω) only, then there is a
H1-solution for t > 0 only. For t → 0 there may be an initial layer. In particular,
we find

ν|rDi(t, ·)|21 ≤ 1

te
‖rDi

0 ‖2
0 +

∫ t

0

‖fDi
LR(s, ·)‖2

0 ds for t > 0,

(2.25)

ν2|rDi(t, ·)|22 ≤ 2

(te)2
‖rDi

0 ‖2
0 + ν

∫ t

0

|fDi
LR(s, ·)|21 ds for t > 0.

Proof. Use

‖rDi(t, ·)‖2
0 ≤ 2

∞∑

k=1

(rDi
0 , φDi

k )2e−2λkt

+ 2

∞∑

k=1

(∫ t

0

(fDi
LR(s, ·), φDi

k )2 ds

)(∫ t

0

e−2λk(t−s) ds

)

≤ 2e−2λ1t
∞∑

k=1

(rDi
0 , φDi

k )2

+
1

λ1

∫ t

0

∞∑

k=1

(fDi
LR(s, ·), φDi

k )2 ds,

νl|rDi(t, ·)|2l ≤ 2
∞∑

k=1

(rDi
0 , φDi

k )2λl
ke

−2λkt

+ 2
∞∑

k=1

(∫ t

0

λl−1
k (fDi

LR(s, ·), φDi
k )2 ds

)(∫ t

0

λke
−2λk(t−s) ds

)
,

and xle−x ≤ (l/e)l for x ≥ 0 and l ∈ N. �

We made use of

Lemma 2.5. For r ∈ L2(Ω) we have

‖r‖2
0 =

∞∑

k=1

(r, φDi
k )2.
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We have r ∈ H1
0 (Ω), if and only if

ν|r|21 =

∞∑

k=1

λk(r, φDi
k )2 <∞.

Furthermore, we have r ∈ H1
0 (Ω) ∩H2(Ω) if and only if

ν2|r|22 =

∞∑

k=1

λ2
k(r, φDi

k )2 <∞.

Proof. See Ref. [33, Theorem 6.4]. �

Estimates for higher order derivatives can be achieved in the following way.
Define

rDi
2k := ∂2k

x r − rDi
LR,2k for k ≥ 1,

where rDi
LR,2k interpolates the boundary conditions of ∂2k

x r and ∂2k+2
x r instead of r

and ∂2
xr like in (2.19). The data are obtained from the differentiated heat equations

∂k−1
t Lr = ∂k−1

t f and ∂k
t Lr = ∂k

t f . Now rDi
2k has vanishing boundary values and

it solves the heat equation with right hand side fDi
LR,2k := ∂2k

x f − LrDi
LR,2k, which

also has vanishing boundary values. Hence, we can apply the estimates (2.20) -
(2.23) in Corollary 2.4 to rDi

2k and fDi
LR,2k in connection with the assumption of the

compatibility conditions in (2.11).
Next, we take a look at the Neumann and the Robin problem for the heat

equation. We call r ∈ C2,1(ΩT ) ∩ C1
(
ΩT

)
a classical solution to the Neumann

problem or the Robin problem for the heat equation, if it solves (2.1), (2.2) and
(2.4) or (2.5), respectively.

The boundary conditions are reduced by subtracting

rNeu
LR (t, x) :=

(x− xL)2

2|Ω| rNeu
R (t) − (xR − x)2

2|Ω| rNeu
L (t) (2.26)

in the Neumann case and

rRob
LR (t, x) :=

x− xL + ϑ

|Ω| + 2ϑ
rRob
R (t) +

xR − x+ ϑ

|Ω| + 2ϑ
rRob
L (t) (2.27)

in the Robin case. The variational formulation now reads

d

dt
(r(t, ·), v) + a(r(t, ·), v) = (fLR(t, ·), v) for all v ∈ H1(Ω). (2.28)

In the Neumann case we take a(·, ·) as in (2.13). In the Robin case we define

a(u, v) := ν〈u, v〉1 +
ν

ϑ
(u(xL)v(xL) + u(xR)v(xR)) for all u, v ∈ H1(Ω). (2.29)

The right hand side is defined as fLR := fNeu
LR := f − LrNeu

LR or fLR := fRob
LR :=

f − LrRob
LR , respectively. The initial condition translates to

lim
t→0

‖r(t, ·) − rBC
0 ‖0 = 0

with rBC
0 := rNeu

0 := r0 − rNeu
LR (0, ·) in the Neumann case and rBC

0 := rRob
0 :=

r0 − rRob
LR (0, ·) in the Robin case.

In the Neumann case the orthogonal eigenfunctions
{
φNeu

k

}
k≥0

, which now form

a Hilbert basis in H1(Ω), are given by

φNeu
k (x) :=

√
2

|Ω| cos

(
kπ

|Ω| (x− xL)

)
for k = 0, 1, . . . (2.30)
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with the same eigenvalues as in (2.17). In the Robin case, the eigenfunctions{
φRob

k

}
k≥1

, which also form a Hilbert basis in H1(Ω), are given by

φRob
k (x) :=

√
ckϑµk cos (µk(x− xL)) +

√
ck sin (µk(x− xL)) for k = 1, 2, . . . ,

(2.31)

where µk are the positive solutions of the transcendental equation

tan(µk|Ω|) =
2ϑµk

ϑ2µ2
k − 1

and ck is chosen by

ck :=
2

|Ω| + ϑ+ ϑ2µ2
k|Ω| .

We find

(k − 1)
π

|Ω| < µk < k
π

|Ω| for k = 1, 2, . . . ,

lim
ϑ→0

µk = k
π

|Ω| for a fixed k,

lim
k→∞

(
µk − (k − 1)

π

|Ω|

)
= 0 for fixed ϑ.

See also Ref. [47, Chapter 4.3]. The eigenvalues of the corresponding stationary
problem are given by νµ2

k. In the Neumann and in the Robin case we have the
orthogonality of the eigenfunctions in L2(Ω) and in H1(Ω). In the H1-case, or-
thogonality has to be considered with respect to the scalar products (·, ·)1 for the
Neumann case and a(·, ·) as in (2.29) for the Robin case, respectively. Now we have
the following existence results:

Theorem 2.6. For rNeu
0 ∈ H1(Ω), f ∈ L2(ΩT ) and rNeu

L , rNeu
R ∈ H1([0, T ])

there is a unique solution r = rNeu+rNeu
LR to the Neumann problem (2.1), (2.2), (2.4)

for the heat equation, where rNeu
LR is given by (2.26) and rNeu ∈ L2((0, T );H1(Ω))∩

C0([0, T ];L2(Ω)) is a weak solution in the sense of (2.28) with a(·, ·) given by (2.13).

Proof. See Ref. [41, Theorem 7.2.1]. �

Furthermore, we have

Theorem 2.7. For rRob
0 ∈ H1(Ω), f ∈ L2(ΩT ) and rRob

L , rRob
R ∈ H1([0, T ])

there is a unique solution r = rRob + rRob
LR to the Robin problem (2.1), (2.2), (2.5)

for the heat equation, where rRob
LR is given by (2.27) and rRob ∈ L2((0, T );H1(Ω))∩

C0([0, T ];L2(Ω)) is a weak solution in the sense of (2.28) with a(·, ·) given by (2.29).

Proof. See Ref. [41, Theorem 7.2.1]. �

The solutions rNeu and rRob in the sense of the Theorems 2.6 and 2.7 can be
written as Fourier series

rNeu(t, x) =
1

2

(
(rNeu

0 , φNeu
0 ) +

∫ t

0

(fNeu
LR (s, ·), φNeu

0 ) ds

)
φNeu

0 (x)

+

∞∑

k=1

(
(rNeu

0 , φNeu
k )e−λkt +

∫ t

0

(fNeu
LR (s, ·), φNeu

k )e−λk(t−s) ds

)
φNeu

k (x),

rRob(t, x) =

∞∑

k=1

(
(rRob

0 , φRob
k )e−νµ2

kt +

∫ t

0

(fRob
LR (s, ·), φRob

k )e−νµ2
k(t−s) ds

)
φRob

k (x).

From the Fourier representations of the solutions for the Neumann problem we find
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Corollary 2.8. With respect to the assumptions of Theorem 2.6, we have

‖rNeu(t, ·)‖2
0 ≤ 2‖rNeu

0 ‖2
0 + max

{
2t,

1

λ1

}∫ t

0

‖fNeu
LR (s, ·)‖2

0 ds, (2.32)

ν|rNeu(t, ·)|21 ≤ 2ν|rNeu
0 |21e−2λ1t +

∫ t

0

‖fNeu
LR (s, ·)‖2

0 ds. (2.33)

If we have the compatibility condition (2.8), then we get ∂xr
Neu
0 ∈ H1

0 (Ω). If the
right hand side is in L2(0, T ;H1(Ω)), then the solution is in H2(Ω), provided rNeu

0 ∈
H2(Ω). We have

ν2|rNeu(t, ·)|22 ≤ 2ν2|rNeu
0 |22 + ν

∫ t

0

|fNeu
LR (s, ·)|21 ds. (2.34)

Furthermore, the estimates (2.24) and (2.25) are valid.

Note that there is no exponential decay in L2(Ω) with respect to the initial
data as in the Dirichlet case. In Corollary 2.8 we employed

Lemma 2.9. For r ∈ L2(Ω) we have

‖r‖2
0 =

1

2
(r, φNeu

0 )2 +

∞∑

k=1

(r, φNeu
k )2.

Furthermore, we have r ∈ H1(Ω), if and only if

ν|r|21 =

∞∑

k=1

λk(r, φNeu
k )2 <∞.

We have r ∈ H2(Ω), ∂xr ∈ H1
0 (Ω), if and only if

ν2|r|22 =

∞∑

k=1

λ2
k(r, φNeu

k )2 <∞.

Estimates for higher order derivatives can be achieved as follows. Define

rNeu
2k := ∂2k

x r − rNeu
LR,2k for k ≥ 1,

where rNeu
LR,2k interpolates the boundary conditions of ∂2k+1

x r like in (2.26) by using

the known data of the differentiated heat equation ∂x∂
k−1
t Lr = ∂x∂

k−1
t f . Espe-

cially, we use

rNeu
LR,2(t, x) =

(x− xL)2

2|Ω|
1

ν

(
∂xf(t, xR) − ∂tr

Neu
R (t)

)

− (xR − x)2

2|Ω|
1

ν

(
∂xf(t, xL) − ∂tr

Neu
L (t)

)
.

Since now rNeu
2k solves the heat equation with right hand side ∂2k

x f − LrNeu
LR,2k,

we can apply (2.32) (with exponential decay with respect to the initial data and
constant λ−1

1 instead of max{2t, λ−1
1 }, confer (2.20)) and (2.33) of Corollary 2.8.

With respect to the compatibility conditions (2.12) for k = 1 and its higher order
extensions for k ≥ 2, we have vanishing boundary conditions for ∂xr

Neu
2k (0, ·) and

hence we can apply (2.34).
In the Robin case we do not have the orthogonality of the eigenfunctions with

respect to 〈·, ·〉1 (which only induces a semi-norm here), but we do have orthogo-
nality with respect to (·, ·), a(·, ·) and 〈·, ·〉2. More precisely, we get
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Lemma 2.10. For r ∈ L2(Ω) we have

‖r‖2
0 =

∞∑

k=1

(r, φRob
k )2.

For r ∈ H1(Ω) we get

ν|r|21 ≤ a(r, r) =

∞∑

k=1

νµ2
k(r, φRob

k )2 <∞,

where the equal sign holds for r ∈ H1
0 (Ω). Furthermore, we have r ∈ H2(Ω) with

(r − ϑ∂xr)(xL) = 0 and (r + ϑ∂xr)(xR) = 0, if and only if

ν2|r|22 =
∞∑

k=1

(νµ2
k)2(r, φRob

k )2 <∞.

From the Fourier representations of the solutions for the Robin problem we find

Corollary 2.11. With respect to the assumptions of Theorem 2.7, we have

‖rRob(t, ·)‖2
0 ≤ 2‖rRob

0 ‖2
0e

−2νµ2
1t +

1

νµ2
1

∫ t

0

‖fRob
LR (s, ·)‖2

0 ds,

ν|rRob(t, ·)|21 ≤ 2a(rRob
0 , rRob

0 )e−2νµ2
1t +

∫ t

0

‖fRob
LR (s, ·)‖2

0 ds.

In the case of the compatibility conditions (2.9), we have (rRob
0 −ϑ∂xr

Rob
0 )(xL) = 0,

(rRob
0 +ϑ∂xr

Rob
0 )(xR) = 0. For rRob

0 ∈ H2(Ω) and fRob
LR ∈ L2((0, T );H1(Ω)) we get

ν2|rRob(t, ·)|22 ≤ 2|rRob
0 |22e−2νµ2

1t +

∫ t

0

a(fRob
LR , fRob

LR )(s, ·) ds.

Furthermore, the estimates (2.24) and (2.25) are valid.

Estimates for higher order derivatives can be derived by applying similar pro-
cedures as described before.

In the periodic case we seek for solutions in

H1
P(Ω) := {u ∈ H1(Ω) : u(xL) = u(xR)}.

The variational formulation is given by

d

dt
(rP(t, ·), v) + a(rP(t, ·), v) = (f(t, ·), v) for all v ∈ H1

P(Ω), (2.35)

with a(·, ·) as in (2.13). A Hilbert basis in H1
P(Ω), consisting of orthogonal eigen-

functions, is obtained by
{
φP

k

}
k≥0

∪
{
ψP

k

}
k≥1

with

φP
k (x) :=

√
2

|Ω| cos

(
2kπ

|Ω| (x− xL)

)
for k = 0, 1, . . . ,

ψP
k (x) :=

√
2

|Ω| sin

(
2kπ

|Ω| (x− xL)

)
for k = 1, 2, . . . .

The corresponding eigenvalues are given by 4λk with λk as in (2.17).

Theorem 2.12. For r0 ∈ H1
P(Ω) and f ∈ L2(ΩT ) there is a unique solution

rP ∈ L2((0, T );H1
P(Ω)) ∩ C0([0, T ];L2(Ω)) to the periodic problem (2.1), (2.2) and

(2.6) for the heat equation in the sense of (2.35) with a(·, ·) given by (2.13).

Proof. Since we haveH1
0 (Ω) ⊆ H1

P(Ω) ⊆ H1(Ω) we can use Ref. [41, Theorem
7.2.1]. �
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The Fourier series of the periodic solution reads

rP(t, x) =
1

2

(
(r0, φ

P
0 ) +

∫ t

0

(f(s, ·), φP
0 ) ds

)
φP

0 (x)

+

∞∑

k=1

(
(r0, φ

P
k )e−4λkt +

∫ t

0

(f(s, ·), φP
k )e−4λk(t−s) ds

)
φP

k (x)

+

∞∑

k=1

(
(r0, ψ

P
k )e−4λkt +

∫ t

0

(f(s, ·), ψP
k )e−4λk(t−s) ds

)
ψP

k (x).

No we use

Lemma 2.13. For r ∈ L2(Ω) we have

‖r‖2
0 =

1

2
(r, φP

0 )2 +

∞∑

k=1

(
(r, φP

k )2 + (r, ψP
k )2
)
.

Furthermore, we define for l ≥ 2

H l
P(Ω) :=

{
r ∈ L2(Ω) : νl|r|2l =

∞∑

k=1

(4λk)l
(
(r, φP

k )2 + (r, ψP
k )2
)
<∞

}
.

Due to the uniform convergence, we have ∂l−1
x r(·, xL) = ∂l−1

x r(·, xR) for r ∈ H l
P(Ω)

and l ≥ 1. In the periodic case there are no compatibility conditions for higher
order regularity. We find

Corollary 2.14. With respect to the assumptions of Theorem 2.12, we have

‖rP(t, ·)‖2
0 ≤ 2‖r0‖2

0 + max

{
2t,

1

4λ1

}∫ t

0

‖f(s, ·)‖2
0 ds,

ν|rP(t, ·)|21 ≤ 2ν|r0|21e−2λ1t +

∫ t

0

‖f(s, ·)‖2
0 ds.

If for l ≥ 2 the right hand side is in L2(0, T ;H l−1
P (Ω)), then the solution is in

H l
P(Ω), provided r0 ∈ H l

P(Ω). We have

νl|rP(t, ·)|2l ≤ 2νl|r0|2l + νl−1

∫ t

0

|f(s, ·)|2l−1 ds.

The total mass

m(t) :=

∫

Ω

r(t, ·)

in the domain Ω changes in time only due to a flux through the boundaries or the
influence of the source term. We have

d

dt
m(t) = ν

(
∂xr(t, xR) − ∂xr(t, xL)

)
+

∫

Ω

f(t, ·). (2.36)

For vanishing right hand side, the total mass is constant in the periodic case or for
vanishing Neumann boundary conditions. In the case of vanishing Robin boundary
conditions, the total mass decreases provided that r is positive at the boundary.

2.5. Energy Estimates

The energy of a solution r of the heat equation is defined by

E(t) := ‖r(t, ·)‖2
0 + 2ν

∫ t

0

|r(s, ·)|21 ds.
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For vanishing Dirichlet boundary conditions and vanishing right hand side, we find
the typical decay of energy, that is,

E(t) ≤ E(0) for t ≥ 0.

More detailed, we prove the following results.

Theorem 2.15. Let r = rDi, r = rNeu or r = rP be the solutions as in Theorem
2.3, 2.6 or 2.12. Then we have the a priori estimate

‖r(T, ·)‖2
0 +

1

T

∫ T

0

‖r(s, ·)‖2
0 ds+ 2ν

∫ T

0

|r(s, ·)|21 ≤ 4‖r0‖2
0 + 13T

∫ T

0

‖fLR‖2
0

(2.37)

with r0 = rDi
0 , r0 = rNeu

0 or r0 = r0 and fLR = fDi
LR, fLR = fNeu

LR or fLR = f . If
r = rRob as in Theorem 2.7, then the term

2ν

ϑ

∫ T

0

(r2(s, xL) + r2(s, xR)) ds

can be added on the left hand side of (2.37). Here, ϑ > 0 is the small parameter
provided by the Robin boundary conditions (2.5). Choose r0 = rRob

0 and fLR = fRob
LR

in this case. In the Dirichlet case with r = rDi, we get in addition

‖rDi(T, ·)‖2
0 +

νπ2

2|Ω|2
∫ T

0

‖rDi(s, ·)‖2
0 ds+

ν

2

∫ T

0

|rDi(s, ·)|21

≤ ‖rDi
0 ‖2

0 +
|Ω|2
νπ2

∫ T

0

‖fDi
LR‖2

0. (2.38)

Proof. Multiplying the heat equation by r yields

1

2
∂tr

2 − νr∂2
xr = rfLR.

Integration along Ω gives

d

dt
‖r‖2

0 + 2ν‖∂xr‖2
0 − 2ν

[
r∂xr

]xR

xL
≤ 2‖r‖0‖fLR‖0.

The boundary term cancels in the Dirichlet, Neumann and periodic case. For Robin
boundary conditions, we get

−2ν
[
r∂xr

]xR

xL
=

2ν

ϑ

(
r2(·, xL) + r2(·, xR)

)
.

Integration over [0, T ] yields

‖r(T )‖2
0 + 2ν

∫ T

0

|r|21 ≤ ‖r0‖2
0 + 2

∫ T

0

‖r‖0‖fLR‖0. (2.39)

From
∫ T

0

‖r‖2
0 ≤ T‖r0‖2

0 + 2T

(∫ T

0

‖r‖2
0

)1/2(∫ T

0

‖fLR‖2
0

)1/2

we get
(∫ T

0

‖r‖2
0

)1/2

≤
√
T‖r0‖0 + 2T

(∫ T

0

‖fLR‖2
0

)1/2

.

Hence, we end up with

‖r(T )‖2
0 + 2ν

∫ T

0

|r|21 ≤ 2‖r0‖2
0 + 5T

∫ T

0

‖fLR‖2
0.
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By the combination of the obtained results, the assertion (2.37) follows. Using
Poincaré’s inequality in the Dirichlet case on the right hand side of (2.39), we
obtain

2

∫ T

0

‖r‖0‖fLR‖0 ≤ 2
|Ω|
π

∫ T

0

|r|1‖fLR‖0 ≤ ν

∫ T

0

|r|21 +
|Ω|2
νπ2

∫ T

0

‖fLR‖2
0.

Absorbing yields

‖r(T )‖2
0 + ν

∫ T

0

|r|21 ≤ ‖r0‖2
0 +

|Ω|2
νπ2

∫ T

0

‖fLR‖2
0.

If we use Poincaré’s inequality on the left hand side of (2.39), we find

‖r(T )‖2
0 + 2

νπ2

|Ω|2
∫ T

0

‖r‖2
0 ≤ ‖r0‖2

0 +
|Ω|2
νπ2

∫ T

0

‖fLR‖2
0 +

νπ2

|Ω|2
∫ T

0

‖r‖2
0.

By collecting the previous two results, the assertion (2.38) follows. �

In the Robin case the boundary conditions contribute to the decay of the energy
by the additional term on the left hand side of the above estimate. For this reason,
Robin boundary conditions are called dissipative.

Theorem 2.16. Let r = rNeu or r = rP be the solutions as in Theorem 2.6 or
2.12. Then we have the a priori estimate

|r(T, ·)|21 +
1

T

∫ T

0

|r(s, ·)|21 ds+ 2ν

∫ T

0

|r(s, ·)|22

≤ 4|r0|21 + 13T

∫ T

0

|fLR|21.

The initial data r0 and the right hand side fLR has to be chosen according to the
underlying problem. In the Neumann case with r = rNeu we get in addition

|rNeu(T, ·)|21 +
νπ2

2|Ω|2
∫ T

0

|rNeu(s, ·)|21 ds+
ν

2

∫ T

0

|rNeu(s, ·)|22

≤ |rNeu
0 |21 +

|Ω|2
νπ2

∫ T

0

|fNeu
LR |21.

Proof. Differentiate the heat equation with respect to x and multiply by ∂xr.
Then proceed as in the proof of Theorem 2.15. �

Furthermore, we get

Theorem 2.17. Let r = rDi, r = rNeu or r = rP be the solutions as in Theorem
2.3, 2.6 or 2.12. Then we have the a priori estimate

ν|r(T, ·)|21 +

∫ T

0

‖∂tr(s, ·)‖2
0 ds+ ν2

∫ T

0

|r(s, ·)|22 ds ≤ 3ν|r0|21 + 5

∫ T

0

‖fLR‖2
0.

If r = rRob as in Theorem 2.7, then the terms
ν

ϑ

(
r2(T, xL) + r2(T, xR)

)
,

ν

ϑ

(
r20(xL) + r20(xR)

)

have to be added to the left and right hand side of the estimate. The initial data r0
and the right hand side fLR has to be chosen according to the underlying problem.

Proof. Multiplying the heat equation by ∂tr yields

|∂tr|2 − ν∂tr∂
2
xr = ∂trfLR.

Integration along Ω gives

2‖∂tr‖2
0 + ν∂t‖∂xr‖2

0 − 2ν
[
∂tr∂xr

]xR

xL
≤ 2‖∂tr‖0‖fLR‖0.
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The boundary term cancels in the Dirichlet, Neumann and periodic case. For Robin
boundary conditions we get

−2ν
[
∂tr∂xr

]xR

xL
=
ν

ϑ
∂t

(
r2(·, xL) + r2(·, xR)

)
.

Integration over [0, T ] yields

ν|r(T, ·)|21 + 2

∫ T

0

‖∂tr(t, ·)‖2
0 dt ≤ ν|r0|21 + 2

∫ T

0

‖∂tr‖0‖fLR‖0.

Now use

ν2|r|22 ≤ 2‖∂tr‖2
0 + 2‖fLR‖2

0.

�

Theorem 2.18. Let r = rDi, r = rNeu or r = rP be the solutions as in Theorem
2.3, 2.6 or 2.12. Then we have the estimates

T‖r(T, ·)‖2
0 + 2ν

∫ T

0

t|r|21 ≤ 2

∫ T

0

‖r‖2
0 +

∫ T

0

t2‖fLR‖2
0, (2.40)

νT |r(T )|21 +

∫ T

0

t‖∂tr‖2
0 ≤ ν

∫ T

0

|r|21 +

∫ T

0

t‖fLR‖2
0. (2.41)

In the Dirichlet case we find in addition

T‖rDi(T, ·)‖2
0 + ν

∫ T

0

t|rDi|21 ≤
∫ T

0

‖rDi‖2
0 +

|Ω|2
νπ2

∫ T

0

t‖fDi
LR‖2

0.

If r = rRob as in Theorem 2.7, then the term

2ν

ϑ

∫ T

0

s
(
r2(s, xL) + r2(s, xR)

)
ds

can be added on the left hand side of (2.40) and

ν

ϑ
T
(
r2(T, xL) + r2(T, xR)

)
,

ν

ϑ

∫ T

0

(
r2(s, xL) + r2(s, xR)

)
ds

have to be added on the left and right hand side of (2.41), respectively.

Proof. Upon multiplying the heat equation (2.1) by tr and integrating, we
get

t
d

dt
‖r‖2

0 + 2νt‖∂xr‖2
0 − 2νt

[
r∂xr

]xR

xL
≤ 2t‖r‖0‖fLR‖0.

Upon multiplying the heat equation by t∂tr and integrating, the ensuing expression
yields

νt
d

dt
‖∂xr‖2

0 + 2t‖∂tr‖2
0 − 2νt

[
∂tr∂xr

]xR

xL
≤ 2t‖∂tr‖0‖fLR‖0.

�





CHAPTER 3

The Goldstein-Taylor Model

In this chapter, we study the velocity discrete system for our linear model
problem. This a linear advection system, known as the Goldstein-Taylor model.
The purpose of our investigation is to approximate the solutions of the heat equation
by solutions of the advection system under consideration. Variables in the advection
system are the distribution functions uǫ and vǫ, which replace the notation f1 and
f2 from Section 1.3 in order to avoid the lower indices. The upper index expresses
the dependence on the singular perturbation parameter in the diffusive scaling. The
distribution functions refer to particles traveling into the positive and the negative
x-direction as depicted in Figure 1.3. The density r, modeled by the heat equation,
is approximated by the macroscopic quantity rǫ := uǫ + vǫ, while the flux ∂xr is
approximated by −(uǫ − vǫ)/(νǫ), where ν is the viscosity of the heat equation.

The advection system of the Goldstein-Taylor model is the starting point for
the discretizations performed in Chapter 5. The objective is to achieve lattice Boltz-
mann discretizations by exploiting the derivatives with respect to the characteristic
directions.

In the following sections we describe how the boundary conditions for the heat
equation and the corresponding initial data and the source terms have to be inter-
preted for the advection system in order to ensure the convergence of the solutions.
For the a priori estimates of the solutions, the boundary data of the advection
system have to be reduced. By employing energy principles, we prove a priori esti-
mates for the solutions of the advection system. These estimates lead to a rigorous
convergence result in terms of the perturbation parameter ǫ.

3.1. The Advection System in the Diffusion Scaling

For a given viscosity ν and the small singular perturbation parameter ǫ > 0 we
consider the Goldstein-Taylor model in the diffusive scaling with source terms f ǫ

and gǫ. This is a hyperbolic advection system with right hand side in directions
[1; 1] and [1;−1], which reads

∂tu
ǫ +

1

ǫ
∂xu

ǫ +
1

2νǫ2
(uǫ − vǫ) =

1

2
(f ǫ + gǫ) in ΩT ,

(3.1)

∂tv
ǫ − 1

ǫ
∂xv

ǫ − 1

2νǫ2
(uǫ − vǫ) =

1

2
(f ǫ − gǫ) in ΩT .

The characteristics of these equations are

X+(t, x) := x+ at, X−(t, x) := x− at, with a :=
1

ǫ
.

By defining the density rǫ := uǫ + vǫ and the flux jǫ := uǫ − vǫ, the advection
system (3.1) transforms to

∂tr
ǫ +

1

ǫ
∂xj

ǫ = f ǫ in ΩT ,

(3.2)

∂tj
ǫ +

1

ǫ
∂xr

ǫ +
1

νǫ2
jǫ = gǫ in ΩT .

29
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Initial conditions for the advection system (3.1) are supplied by

uǫ(0, ·) = uǫ
0(·) in Ω,

vǫ(0, ·) = vǫ
0(·) in Ω.

Boundary conditions for the advection system (3.1) are provided at the inflow
boundaries, that is,

uǫ(·, xL) = uǫ
L(·) in (0, T ),

vǫ(·, xR) = vǫ
R(·) in (0, T ).

In the sequel, we are interested in approximations of solutions of the heat equation.
For this reason we use the data of the heat equation for the advection system. Let
rDi
L , rDi

R rNeu
L , rNeu

R , rRob
L and rRob

R be the boundary data for the heat equation
belonging to the Dirichlet, Neumann or Robin problem. The following choices for
the boundary conditions are possible for the advection system. In the Dirichlet
case (2.3) we choose density boundary conditions

uǫ
L(·) := rDi

L (·) − vǫ(·, xL) in (0, T ),
(3.3)

vǫ
R(·) := rDi

R (·) − uǫ(·, xR) in (0, T ).

In the Neumann case (2.4) we supply flux boundary conditions

uǫ
L(·) := vǫ(·, xL) − νǫrNeu

L (·) in (0, T ),
(3.4)

vǫ
R(·) := uǫ(·, xR) + νǫrNeu

R (·) in (0, T ).

In the Robin case (2.5) we can define inflow boundary conditions

uǫ
L(·) := rRob

L (·) in (0, T ),
(3.5)

vǫ
R(·) := rRob

R (·) in (0, T ).

In the periodic case (2.6) we use

uǫ
L(·) := uǫ(·, xR) in (0, T ),

(3.6)
vǫ

R(·) := vǫ(·, xL) in (0, T ).

Let r0 be the initial data for the heat equation supplied in (2.2). Initial values
for uǫ and vǫ are chosen by

uǫ
0(·) :=

1

2
r0(·) −

νǫ

2
∂xr0(·) in Ω,

(3.7)

vǫ
0(·) :=

1

2
r0(·) +

νǫ

2
∂xr0(·) in Ω,

if the approximation of solutions for the heat equation is the goal. This choice
corresponds to

rǫ(0, ·) = rǫ
0(·) := r0(·) in Ω,

jǫ(0, ·) = jǫ
0(·) := −νǫ∂xr0(·) in Ω.

3.2. A Priori Estimates

Stability for solutions of the advection system (3.1) in the L2-Norm is given by
the following estimates. In a first step, the boundary conditions are reduced. In the
case of density boundary conditions (3.3), we use the decompositions uǫ = uDen +
uDen

LR and vǫ = vDen + vDen
LR , and accordingly rǫ = rDen + rDen

LR and jǫ = jDen + jDen
LR ,
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where we put uDen := (rDen + jDen)/2 and vDen := (rDen − jDen)/2. For smooth
data, we simultaneously subtract the boundary values for rǫ, ∂xj

ǫ and ∂2
xr

ǫ by using

rDen
LR (t, x) :=

x− xL

|Ω| rDi
R (t) +

xR − x

|Ω| rDi
L (t)

− (x− xL)(xR − x)

6ν|Ω| (x− xL + |Ω|)D2rDi
R (t)

− (x− xL)(xR − x)

6ν|Ω| (xR − x+ |Ω|)D2rDi
L (t),

(3.8)

jDen
LR (t, x) :=

(x− xL)2

2|Ω| ǫ(f ǫ(t, xR) − ∂tr
Di
R (t)) − (xR − x)2

2|Ω| ǫ(f ǫ(t, xL) − ∂tr
Di
L (t)),

where we employ the definitions

D2rDi
R (t) := νǫ2∂2

t r
Di
R (t) + ∂tr

Di
R (t) − f ǫ(t, xR) − νǫ2∂tf

ǫ(t, xR) + νǫ∂xg
ǫ(t, xR),

D2rDi
L (t) := νǫ2∂2

t r
Di
L (t) + ∂tr

Di
L (t) − f ǫ(t, xL) − νǫ2∂tf

ǫ(t, xL) + νǫ∂xg
ǫ(t, xL).

We get

rDen(·, xL) = rDen(·, xR) = 0 in (0, T ),
(3.9)

∂xj
Den(·, xL) = ∂xj

Den(·, xR) = 0 in (0, T ).

After reducing the boundary conditions, we have to consider the modified right
hand sides

fDen
LR := f ǫ − ∂tr

Den
LR − 1

ǫ
∂xj

Den
LR ,

gDen
LR := gǫ − ∂tj

Den
LR − 1

ǫ
∂xr

Den
LR − 1

νǫ2
jDen
LR ,

obeying

fDen
LR (·, xL) = fDen

LR (·, xR) = 0 in (0, T ),

∂xg
Den
LR (·, xL) = ∂xg

Den
LR (·, xR) = 0 in (0, T ).

The initial conditions have to be adapted by rDen
0 := rǫ

0−rDen
LR (0, ·) and jDen

0 := jǫ
0−

jDen
LR (0, ·). Compatibility conditions are required to assure rDen

0 (xL) = rDen
0 (xR) =

0, ∂xj
Den
0 (xL) = ∂xj

Den
0 (xR) = 0 and ∂2

xr
Den
0 (xL) = ∂2

xr
Den
0 (xR) = 0.

In the case of flux boundary conditions (3.4), we use the decomposition uǫ =
uFlu+uFlu

LR and vǫ = vFlu+vFlu
LR , and accordingly rǫ = rFlu+rFlu

LR and jǫ = jFlu+jFlu
LR .

We subtract the boundary values for jǫ, ∂xr
ǫ and ∂2

xj
ǫ by setting

rFlu
LR(t, x) :=

(x− xL)2

2|Ω|
(
ǫgǫ(t, xR) + νǫ2∂tr

Neu
R (t) + rNeu

R (t)
)

− (xR − x)2

2|Ω|
(
ǫgǫ(t, xL) + νǫ2∂tr

Neu
L (t) + rNeu

L (t)
)
,

jFlu
LR (t, x) := −x− xL

|Ω| νǫrNeu
R (t) − xR − x

|Ω| νǫrNeu
L (t) (3.10)

+
(x− xL)(xR − x)

6|Ω| (x− xL + |Ω|)ǫD2jNeu
R (t)

+
(x− xL)(xR − x)

6|Ω| (xR − x+ |Ω|)ǫD2jNeu
L (t),

where we use the definitions

D2jNeu
R (t) := νǫ2∂2

t r
Neu
R (t) + ∂tr

Neu
R (t) + ǫ∂tg

ǫ(t, xR) − ∂xf
ǫ(t, xR),

D2jNeu
L (t) := νǫ2∂2

t r
Neu
L (t) + ∂tr

Neu
L (t) + ǫ∂tg

ǫ(t, xL) − ∂xf
ǫ(t, xL).
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We get

∂xr
Flu(·, xL) = ∂xr

Flu(·, xR) = 0 in (0, T ),
(3.11)

jFlu(·, xL) = jFlu(·, xR) = 0 in (0, T ).

The modified right hand sides

fFlu
LR := f ǫ − ∂tr

Flu
LR − 1

ǫ
∂xj

Flu
LR ,

gFlu
LR := gǫ − ∂tj

Flu
LR − 1

ǫ
∂xr

Flu
LR − 1

νǫ2
jFlu
LR

fulfill

∂xf
Flu
LR (·, xL) = ∂xf

Flu
LR (·, xR) = 0 in (0, T ),

gFlu
LR (·, xL) = gFlu

LR (·, xR) = 0 in (0, T ).

The initial conditions have to be adapted by rFlu
0 := rǫ

0 − rFlu
LR(0, ·) and jFlu

0 := jǫ
0 −

jFlu
LR (0, ·). Compatibility conditions are required to assure jFlu

0 (xL) = jFlu
0 (xR) = 0,

∂xr
Flu
0 (xL) = ∂xr

Flu
0 (xR) = 0 and ∂2

xj
Flu
0 (xL) = ∂2

xj
Flu
0 (xR) = 0.

For inflow boundary conditions (3.5) we use the decompositions uǫ = uIn +uIn
LR

and vǫ = vIn + vIn
LR. We only subtract the boundary values for uǫ and vǫ at the

inflow boundaries by setting

uIn
LR(t, x) := rRob

L (t) +
x− xL

|Ω| + 2νǫ

(
rRob
R (t) − rRob

L (t)
)
,

vIn
LR(t, x) := rRob

R (t) − xR − x

|Ω| + 2νǫ

(
rRob
R (t) − rRob

L (t)
)
.

Here, we use rInLR = uIn
LR + vIn

LR and jInLR = uIn
LR − vIn

LR with

−νǫ∂xr
In
LR = jInLR in ΩT .

We get

uIn(·, xL) = vIn(·, xR) = 0 in (0, T ). (3.12)

For the solutions rǫ and jǫ of the transformed advection system (3.2) we define
the energy

Eǫ(t) := ‖rǫ(t, ·)‖2
0 + ‖jǫ(t, ·)‖2

0 +
2

νǫ2

∫ t

0

‖jǫ(s, ·)‖2
0 ds.

We find a decay of the energy, that is,

Eǫ(t) ≤ Eǫ(0) for t ≥ 0,

for vanishing boundary conditions and vanishing right hand sides. Estimates for
the distribution functions uǫ and vǫ can be gained by observing r2 +j2 = 2u2 +2v2.
More detailed, we prove

Lemma 3.1. Let r = rDen, j = jDen or r = rFlu, j = jFlu or r = rP, j = jP

be the solutions of the advection system (3.2) with reduced density boundary condi-
tions (3.9), reduced flux boundary conditions (3.11) or periodic boundary conditions
implied by (3.6). Then we have

‖r(T, ·)‖2
0 + ‖j(T, ·)‖2

0 +
1

νǫ2

∫ T

0

‖j(s, ·)‖2
0 ds

≤ 2‖r(0, ·)‖2
0 + 2‖j(0, ·)‖2

0 + 2νǫ2
∫ T

0

‖gLR(s, ·)‖2
0 ds+ 5T

∫ T

0

‖fLR(s, ·)‖2
0 ds.
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If we take r = rIn, j = jIn in the reduced inflow case (3.12), then the outflow values

2

ǫ

∫ T

0

(
u2(xR, s) + v2(xL, s)

)
ds

can be added to the left hand side of the estimate.

Proof. Test the equations in (3.1) with u and v, respectively. Adding the
equations leads to

∂t(u
2 + v2) +

1

ǫ
∂x(u2 − v2) +

1

νǫ2
(u− v)2 = fLR(u+ v) + gLR(u− v).

Integration over ΩT yields

‖u(T, ·)‖2
0 + ‖v(T, ·)‖2

0 +
1

2νǫ2

∫ T

0

‖u− v‖2
0

≤ ‖u0‖2
0 + ‖v0‖2

0 +

∫ T

0

‖fLR‖0‖u+ v‖0 +
νǫ2

2

∫ T

0

‖gLR‖2
0.

(3.13)

From this we find
(∫ T

0

(
‖u‖2

0 + ‖v‖2
0

)
)1/2

≤
√
T

(
‖u0‖2

0 + ‖v0‖2
0 +

νǫ2

2

∫ T

0

‖gLR‖2
0

)1/2

+
√

2T

(∫ T

0

‖fLR‖2
0

)1/2

.

�

Estimates for the first order derivatives in space are given in the following way.
In the case of reduced density boundary conditions (3.9), we get ∂xj

Den = 0 at the
boundary. In the reduced flux case (3.11), we have ∂xr

Flu = 0 at the boundary.
Then we have

Lemma 3.2. Let r = rDen, j = jDen or r = rFlu, j = jFlu be the solutions
of the transformed advection system (3.2) with reduced density boundary conditions
(3.9) or reduced flux boundary conditions (3.11). Then we have

|r(T, ·)|21 + |j(T, ·)|21 +
1

νǫ2

∫ T

0

|j(s, ·)|21 ds

≤ 2|r(0, ·)|21 + 2|j(0, ·)|21 + 2νǫ2
∫ T

0

|gLR(s, ·)|21 ds+ 5T

∫ T

0

|fLR(s, ·)|21 ds.

Proof. Take the derivative with respect to x in the advection system (3.1)
and test with ∂xu and ∂xv, respectively. Proceed as in the proof of Lemma 3.1. �

In the periodic case we have

Lemma 3.3. For the solutions rP and jP of the transformed advection system
(3.2) with periodic boundary conditions implied by (3.6), we get for k ∈ N

|rP(T, ·)|2k + |jP(T, ·)|2k +
1

νǫ2

∫ T

0

|jP(s, ·)|2k ds

≤ 2|rP(0, ·)|2k + 2|jP(0, ·)|2k + 2νǫ2
∫ T

0

|gǫ(s, ·)|2k ds+ 5T

∫ T

0

|f ǫ(s, ·)|2k ds,

with the assumption that the data are sufficiently smooth.



34 3. THE GOLDSTEIN-TAYLOR MODEL

For positive solutions, stability estimates of another kind can be achieved by
applying the H-Theorem. Let therefore be the entropy density defined by

qǫ := uǫ log uǫ + vǫ log vǫ for uǫ, vǫ > 0.

We find

∂tq
ǫ = ∂tu

ǫ(log uǫ + 1) + ∂tv
ǫ(log vǫ + 1)

=

(
1

2
gǫ +

vǫ

2νǫ2

(
1 − uǫ

vǫ

))
log

uǫ

vǫ
+

1

2
f ǫ(log uǫ + log vǫ + 2)

− 1

ǫ
∂x (uǫ log uǫ − vǫ log vǫ) .

For f ǫ = gǫ = 0 we have due to (1 − x) log x ≤ 0
∫ xR

xL

∂tq
ǫ ≤1

ǫ
(uǫ

L(t) log uǫ
L(t) + vǫ

R(t) log vǫ
R(t))

− 1

ǫ
(uǫ(t, xR) log uǫ(t, xR) + vǫ(t, xL) log vǫ(t, xL)).

For the total entropy

Hǫ(t) :=

∫ xR

xL

qǫ(t, ·)

we find for positive uǫ and vǫ and for periodic or vanishing flux boundary conditions
and for vanishing source terms

d

dt
Hǫ(t) ≤ 0.

Hence, we have Hǫ(t) ≤ Hǫ(0) for t ≥ 0. Since Hǫ(t) is bounded from below by
−2|Ω|/e, we have

lim
t→∞

d

dt
Hǫ(t) = 0

for decreasing Hǫ. This implies that limt→∞ uǫ = limt→∞ vǫ = rǫ/2 holds true,
since we have (1 − x) log x ≤ 0 for x ≥ 0 and (1 − x) log x = 0 if and only if x = 1.
Hence, we get limt→∞ jǫ = 0.

The total mass for solutions of the advection system is defined by

mǫ(t) :=

∫

Ω

rǫ(t, ·) .

The change of mass is given by

d

dt
mǫ(t) =

1

ǫ

(
jǫ(t, xL) − jǫ(t, xR)

)
+

∫

Ω

f ǫ(t, ·).

For vanishing right hand side we have conservation of mass in the vanishing flux
case and in the periodic case.

3.3. Convergence of the Solutions of the Advection System

By a reformulation of the heat equation as an advection system, we get a con-
vergence result for the solutions of the advection system (3.2) towards the density
modeled by the heat equation and its derivative.

Let r be a solution of the heat equation (2.1) with source term f . Define
j := −νǫ∂xr. Then the heat equation can be reformulated as an advection system
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in the diffusive scaling

∂tr +
1

ǫ
∂xj = f,

∂tj +
1

ǫ
∂xr +

1

νǫ2
j = ∂tj.

The transformation to the variables

u :=
1

2
(r + j), v:=

1

2
(r − j)

yields

∂tu+
1

ǫ
∂xu+

1

2νǫ2
(u− v) =

1

2
(f + ∂tj),

∂tv −
1

ǫ
∂xv −

1

2νǫ2
(u− v) =

1

2
(f − ∂tj).

(3.14)

Now we have the following result.

Theorem 3.4. Let r be the solution of the heat equation (2.1) with viscosity
ν, right hand side f and

i) Dirichlet boundary conditions (2.3),
ii) Neumann boundary conditions (2.4),
iii) Robin boundary conditions (2.5) with ϑ := νǫ,
iv) periodic boundary conditions (2.6).

We choose ǫ as the parameter of the advection system (3.1). Define j := −νǫ∂xr.
Take u := (r + j)/2 and v := (r − j)/2.

Let uǫ and vǫ be the solutions of the advection system (3.1) with right hand
side f ǫ := f and gǫ := −νǫ∂xf , viscosity ν, and the parameter ǫ > 0. Boundary
conditions are chosen as

i) density boundary conditions (3.3),
ii) flux boundary conditions (3.4),
iii) inflow boundary conditions (3.5),
iv) periodic boundary conditions (3.6).

Define rǫ := uǫ + vǫ, jǫ := uǫ − vǫ. Then the errors er := r − rǫ and ej := j − jǫ

can be estimated by

‖er(T, ·)‖2
0+‖ej(T, ·)‖2

0 +
1

νǫ2

∫ T

0

‖ej(s, ·)‖2
0 ds

≤ ‖er(0, ·)‖2
0 + ‖ej(0, ·)‖2

0 + ν5ǫ4
∫ T

0

‖∂3
xr(s, ·)‖2

0 ds.

Proof. The errors eu := u − uǫ and ev := v − vǫ fulfill the advection system
(3.1) with right hand side fe := 0 and

ge := ∂tj − gǫ = −νǫ∂t∂xr + νǫ∂xf = −ν2ǫ∂3
xr.

In the Dirichlet/density case i), we have er(·, xL) = er(·, xR) = 0. In the Neu-
mann/flux case ii), ej(·, xL) = ej(·, xR) = 0 holds. For the Robin/inflow case iii), we
have eu(·, xL) = ev(·, xR) = 0. In the periodic case, there are er(·, xL) = er(·, xR)
and ej(·, xL) = ej(·, xR). The stability estimate (3.13) gives

‖eu(T, ·)‖2
0+‖ev(T, ·)‖2

0 +
1

2νǫ2

∫ T

0

‖eu − ev‖2
0

≤ ‖eu(0, ·)‖2
0 + ‖ev(0, ·)‖2

0 +
νǫ2

2

∫ T

0

‖ν2ǫ∂3
xr‖2

0.
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In the case of Robin/inflow boundary conditions, the outflow errors

1

ǫ

∫ T

0

e2u(·, xR) +
1

ǫ

∫ T

0

e2v(·, xL)

additionally appear on the left hand side of the estimate. �

If the initial values for the advection system are chosen as in (3.7), then the
initial errors vanish, that is, er(0, ·) = ej(0, ·) = 0 in Ω. This yields convergence of
order two for the density and the ǫ-scaled flux in the L∞((0, T );L2(Ω))-norm and
third order convergence for the ǫ-scaled flux in the L2((0, T );L2(Ω))-norm.

Corollary 3.5. Let the assumptions of Theorem 3.4 hold true. Choose the
initial conditions for rǫ and jǫ by (3.7). Then we have

‖er(T, ·)‖2
0 + ‖ej(T, ·)‖2

0 +
1

νǫ2

∫ T

0

‖ej‖2
0 ≤ Cǫ4,

where the constant C only depends on the viscosity ν, the end time T and the
boundary and the initial data for the heat equation.

Proof. By the a priori estimates for the solutions of the heat equation, the
integral expression on the right hand side is bounded by the initial and the boundary
data. �

If the initial data of the advection system are chosen by rǫ(0, ·) = r0 and
jǫ(0, ·) = 0 in Ω, then the convergence is only of order ǫ. A convergence result of
order

√
ǫ is obtained, if the data of a Dirichlet problem for the heat equation is

chosen to initialize the boundary values for the inflow problem, that is, one chooses

uǫ
L(·) = rDi

L (·) in (0, T ),

vǫ
R(·) = rDi

R (·) in (0, T ).

Furthermore, we find

Corollary 3.6. Let the assumptions of Theorem 3.4 hold true. Choose the
initial conditions by (3.7). Then we have in the cases i) and iv)

|er(T, ·)|21 + |ej(T, ·)|21 +
1

νǫ2

∫ T

0

|ej |21 ≤ Cǫ4.

Proof. In the Dirichlet/density case i) we find ∂xej(xL) = ∂xej(xR) = 0 by
the evaluation of ∂ter + ∂xej/ǫ = 0. Apply Lemma 3.2 and Lemma 3.3. �

In the velocity non-discrete case, the convergence of the solutions of a Boltzmann-
like equation to the solutions of the heat equation is only of order O(ǫ). In addition,
boundary layer correctors are required (Ref. [38]).



CHAPTER 4

The Telegraph Equations

For a deeper understanding of the solution behavior, we continue the discus-
sion of the advection system. We demonstrate that the advection system can be
transformed into two independent telegraph equations. A solution formula for the
telegraph equation on unbounded domains is presented. By an extension of the
data, this formula turns out to be applicable even in boundary cases.

The telegraph equations form a singularly perturbed problem for the heat equa-
tion. In the limit ǫ to zero, the hyperbolic type of the telegraph equations and the
advection system changes to parabolic type. This transition is articulated in the be-
havior of the Fourier solutions for the telegraph equation that are presented in this
chapter. By back-transformations we gain Fourier representations for the solutions
of the advection system.

Energy principles for the telegraph equation render additional a priori estimates
for higher order derivatives of the solutions of the advection system.

4.1. Transformation to Telegraph Equations

The advection system in the diffusive scaling in the variables rǫ and jǫ is given
by

∂tr
ǫ +

1

ǫ
∂xj

ǫ = f ǫ in ΩT , (4.1)

∂tj
ǫ +

1

ǫ
∂xr

ǫ +
1

νǫ2
jǫ = gǫ in ΩT . (4.2)

A telegraph equation for rǫ is gained in the following way. We derive (4.1) with
respect to t and (4.2) with respect to x. Then we eliminate ∂x∂tj

ǫ. Furthermore,
we eliminate ∂xj

ǫ by using (4.1). A telegraph equation for jǫ is achieved by deriving
(4.1) with respect to x and (4.2) with respect to t. Then we eliminate ∂x∂tr

ǫ. We
get

νǫ2∂2
t r

ǫ + ∂tr
ǫ − ν∂2

xr
ǫ = F ǫ := f ǫ + νǫ2∂tf

ǫ − νǫ∂xg
ǫ in ΩT , (4.3)

νǫ2∂2
t j

ǫ + ∂tj
ǫ − ν∂2

xj
ǫ = Gǫ := νǫ2∂tg

ǫ − νǫ∂xf
ǫ in ΩT . (4.4)

Telegraph equations for uǫ and vǫ are achieved by taking the sum and the difference
of (4.3) and (4.4).

These telegraph equations have to be equipped with initial conditions

rǫ(0, ·) = rǫ
0(·) in Ω,

jǫ(0, ·) = jǫ
0(·) in Ω.

(4.5)

Since we now have partial differential equations of order two with respect to time,
we need to supply initial data for ∂tr

ǫ and ∂tj
ǫ. This is done by using (4.1) and

(4.2). We define

∂tr
ǫ(0, ·) = rǫ

1(·) := f ǫ(0, ·) − 1

ǫ
∂xj

ǫ
0(·) in Ω,

(4.6)

∂tj
ǫ(0, ·) = jǫ

1(·) := gǫ(0, ·) − 1

ǫ
∂xr

ǫ
0(·) −

1

νǫ2
jǫ
0(·) in Ω.

37
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In order to ensure convergence of order two in ǫ towards the solutions of the heat
equation, we use the data

rǫ
0 := r0, jǫ

0 := −νǫ∂xr0,
(4.7)

f ǫ := f, gǫ := −νǫ∂xf,

as in Theorem 3.4 and Corollary 3.5. Hence, we get

rǫ
1(·) = f(0, ·) + ν∂2

xr0(·) in Ω,

jǫ
1(·) = −νǫ∂xf(0, ·) in Ω.

Periodic boundary conditions for the advection system translate to periodic bound-
ary conditions for the telegraph equations. Hence, the equations (4.3) and (4.4) have
to be solved using

rǫ(·, xL) = rǫ(·, xR) in (0, T ),

jǫ(·, xL) = jǫ(·, xR) in (0, T ).

If we want to approximate the solutions of the Dirichlet problem for the heat
equation, we only know Dirichlet data for rǫ. Hence, we have to solve (4.3) subject
to Dirichlet values

rǫ(·, xL) = rDi
L (·) in (0, T ),

rǫ(·, xR) = rDi
R (·) in (0, T ).

In order to obtain a solution of the advection system subject to the density boundary
conditions (3.3), we use (4.1) to determine

∂xj
ǫ(·, xL) = ǫf ǫ(·, xL) − ǫ∂tr

Di
L (·) in (0, T ),

∂xj
ǫ(·, xR) = ǫf ǫ(·, xR) − ǫ∂tr

Di
R (·) in (0, T ).

Hence, equation (4.4) has to be solved in presence of Neumann boundary values.
If we want to approximate the solutions of the Neumann problem for the heat

equation, we can only provide Dirichlet data for jǫ. Hence, we have to solve (4.4)
subject to the Dirichlet values

jǫ(·, xL) = −νǫrNeu
L (·) in (0, T ),

jǫ(·, xR) = −νǫrNeu
R (·) in (0, T ).

In order to obtain a solution of the advection system subject to the flux boundary
conditions (3.4), we use (4.2) to determine

∂xr
ǫ(·, xL) := ǫgǫ(·, xL) + νǫ2∂tr

Neu
L (·) + rNeu

L (·) in (0, T ),

∂xr
ǫ(·, xR) := ǫgǫ(·, xR) + νǫ2∂tr

Neu
R (·) + rNeu

R (·) in (0, T ).

Hence, we have to solve a Neumann problem for (4.3).
For the inflow problem there is no information on rǫ or jǫ at the boundaries.

For uǫ and vǫ only the inflow values (and their derivatives) are known. Hence, we
cannot determine a solution of this problem by using this approach.

4.2. The Telegraph Equation

We have to consider solutions of the telegraph equation

Lǫsǫ := νǫ2∂2
t s

ǫ + ∂ts
ǫ − ν∂2

xs
ǫ = hǫ in ΩT . (4.8)

This equation is singularly perturbed by the small parameter ǫ. In the limit ǫ to
zero, we formally gain the heat equation. Initial conditions for (4.8) are given by

sǫ(0, ·) = sǫ
0(·) in Ω,

∂ts
ǫ(0, ·) = sǫ

1(·) in Ω.
(4.9)
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We impose either Dirichlet boundary conditions

sǫ(·, xL) = sDi
L (·) in (0, T ),

sǫ(·, xR) = sDi
R (·) in (0, T ),

or Neumann boundary conditions

∂xs
ǫ(·, xL) = sNeu

L (·) in (0, T ),

∂xs
ǫ(·, xR) = sNeu

R (·) in (0, T ).

In the Dirichlet case, compatibility conditions for the supplied data are determined
by

sǫ
0(xL) = sDi

L (0), sǫ
0(xR) = sDi

R (0),

sǫ
1(xL) = ∂ts

Di
L (0), sǫ

1(xR) = ∂ts
Di
R (0)

and

νǫ2∂2
t s

Di
L (0) + ∂ts

Di
L (0) − ν∂2

xs
ǫ
0(xL) = hǫ(0, xL),

νǫ2∂2
t s

Di
R (0) + ∂ts

Di
R (0) − ν∂2

xs
ǫ
0(xR) = hǫ(0, xR).

Extensions are needed for the higher order derivatives. In the Neumann case we
have to impose

∂xs
ǫ
0(xL) = sNeu

L (0), ∂xs
ǫ
0(xR) = sNeu

R (0),

∂xs
ǫ
1(xL) = ∂ts

Neu
L (0), ∂xs

ǫ
1(xR) = ∂ts

Neu
R (0)

and

νǫ2∂2
t s

Neu
L (0) + ∂ts

Neu
L (0) − ν∂3

xs
ǫ
0(xL) = ∂xh

ǫ(0, xL),

νǫ2∂2
t s

Neu
R (0) + ∂ts

Neu
R (0) − ν∂3

xs
ǫ
0(xR) = ∂xh

ǫ(0, xR).

For the derivation of a solution formula for the telegraph equation on un-
bounded domains, we follow Ref. [31, 8.36, 9.42-9.43]. We switch to characteristic
variables by taking

ξ :=
1

2νǫ2
(t+ ǫx),

η :=
1

2νǫ2
(t− ǫx).

We define

Sǫ(ξ, η) := sǫ(νǫ2(ξ + η), νǫ(ξ − η))e(ξ+η)/2

and find(
∂ξηS

ǫ − 1

4
Sǫ

)
(ξ, η) = Hǫ(ξ, η) := νǫ2hǫ(νǫ2(ξ + η), νǫ(ξ − η))e(ξ+η)/2.

For fixed (ξ0, η0) ∈ ΩT , we define the Riemann’s function

χ(ξ, η) :=
∞∑

n=0

(ξ0 − ξ)n(η0 − η)n

4n(n!)2
.

This Riemann’s function obeys ∂ξηχ−χ/4 = 0 and χ ≡ 1 along the characteristics
ξ = ξ0 and η = η0. Now we apply Green’s formula

∫ ∫

D0

(vuξη − uvξη) d(ξ, η) =

∫

∂D0

(vuη dη + uvξ dξ)

to u = χ, v = Sǫ and u = Sǫ, v = χ. We integrate over the triangular domain D0

with vertex in (ξ0, η0) and the edges ξ = ξ0, η = η0 and t = 0 and its positively
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D0

(ξ0, η0)

(ξ1, η0) (ξ0, η1)
xL xR

ΩT

Figure 4.1. Integration in D0.

oriented boundary curve ∂D0; see Figure 4.1. Initially, we assume that the charac-
teristics ξ = ξ0 and η = η0 do not intersect with the boundaries x = xL or x = xR.

The solution in (ξ0, η0) is given by

Sǫ(ξ0, η0) =
1

2
Sǫ(ξ1, η0) +

1

2
Sǫ(ξ0, η1) +

∫ ∫

D0

χHǫ

+
1

4

∫ (ξ0,η1)

(ξ1,η0)

(
χ(Sǫ

ξ + Sǫ
η) − Sǫ(χξ + χη)

)
(dξ − dη).

By using the modified Bessel function

I0(r) :=

∞∑

n=0

(r/2)2n

(n!)2
, J0(r) :=

I ′0(r)

r
=

1

2

∞∑

n=0

(r/2)2n

(n+ 1)!n!

and

r = r(s, y) :=
1

2νǫ2

√
(t− s)2 − ǫ2(x− y)2,

we get

Theorem 4.1. In the periodic case or for xL +t/ǫ ≤ x ≤ xR−t/ǫ, the solution
of the telegraph equation (4.8) in (t, x), t ≥ 0, can be represented by

sǫ(t, x) =
1

2

(
sǫ
0(x− t/ǫ) + sǫ

0(x+ t/ǫ)
)
e−t/(2νǫ2)

+
1

2νǫ

∫ t

0

∫ x+(t−s)/ǫ

x−(t−s)/ǫ

e−(t−s)/(2νǫ2)hǫ(s, y)I0(r(s, y)) dy ds

+
t

8ν2ǫ3
e−t/(2νǫ2)

∫ x+t/ǫ

x−t/ǫ

sǫ
0(y)J0(r(0, y)) dy

(4.10)

+
ǫ

2
e−t/(2νǫ2)

∫ x+t/ǫ

x−t/ǫ

(
sǫ
1(y) +

1

2νǫ2
sǫ
0(y)

)
I0(r(0, y)) dy.

If we have hǫ ≥ 0 in ΩT , sǫ
0 ≥ 0 in Ω and sǫ

1 +sǫ
0/(2νǫ

2) ≥ 0 in Ω, then the solution
is non-negative.

In contrast to the heat equation, we have finite speed of information transport.
The modulus of the speed is 1/ǫ and turns to infinity in the limit ǫ→ 0.

In Ref. [31, 9.44], the author intends to construct solutions for the initial-
boundary value problems by following the characteristics and computing surface
elements. The unknown derivatives at the boundary shall be computed by using
the derivatives given at t = 0. The formula 9.44.(3) provided is obviously wrong. It
only holds in the case of the wave equation ∂ξηS = H, where the Riemann’s function
does not depend on ξ and η. Hence, the suggested construction of solutions for the
boundary value problems fails.
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Apart from this fact, in the homogeneous boundary case, solutions can be
gained by extensions of the data, which are described in the following. For vanishing
Dirichlet data, we use odd extensions for hǫ, sǫ

0 and sǫ
1. We define

sǫ
0(x) := −sǫ

0(2xL − x) for xL − |Ω| < x < xL,

sǫ
0(x) := sǫ

0(x− 2k|Ω|) for xR + 2(k − 1)|Ω| < x ≤ xR + 2k|Ω|, k ∈ Z,

and apply the same procedure to sǫ
1 and hǫ(t, ·). In the homogeneous Neumann

case we use even extensions, that is,

sǫ
0(x) := sǫ

0(2xL − x) for xL − |Ω| < x < xL,

sǫ
0(x) := sǫ

0(x− 2k|Ω|) for xR + 2(k − 1)|Ω| < x ≤ xR + 2k|Ω|, k ∈ Z,

and analogous extensions for sǫ
1 and hǫ(t, ·). For vanishing Dirichlet boundary

conditions with sǫ
0(xL) = sǫ

0(xR) = sǫ
1(xL) = sǫ

1(xR) = 0 or vanishing Neumann
boundary conditions, (4.10) applies for all (t, x) ∈ ΩT . In the homogeneous Neu-
mann case, non-negativity of the initial data implies non-negativity of the solution
in ΩT . In the Dirichlet case, the non-negativity of the data does not carry over
to the odd extensions. For the closely related wave equation νǫ2∂2

t s − ν∂2
xs = 0,

Dirichlet boundary conditions lead to a phase reversal. Hence, positive solutions
can turn into negative ones. See also Ref. [39, Chapter 4].

4.3. Fourier Solutions for the Telegraph Equations

Another possibility to present solution formulas for the homogeneous boundary
value problems is the use of Fourier series in terms of the orthogonal eigenfunctions
introduced in Section 2.4 for the solution of the heat equation.

We define pǫ := sǫet/(2νǫ2) and consider the transformed telegraph equation

M ǫpǫ := νǫ2∂2
t p

ǫ − ν∂2
xp

ǫ − 1

4νǫ2
pǫ = hǫet/(2νǫ2),

which is known as the Klein-Gordon equation with imaginary mass. Let

tǫ :=
t

2νǫ2
.

By using the orthogonal eigenfunctions defined in (2.16) and (2.30), we define the
Green’s functions

GDi(t, x, z) :=

∞∑

k=1

2νǫ2

αǫ
k

sinh(αǫ
kt

ǫ)φDi
k (x)φDi

k (z),

GNeu(t, x, z) :=
2νǫ2

|Ω| sinh(tǫ) +

∞∑

k=1

2νǫ2

αǫ
k

sinh(αǫ
kt

ǫ)φNeu
k (x)φNeu

k (z)

for the Dirichlet problem and the Neumann problem. Here, we use the definition

αǫ
k :=

√
1 − 4νǫ2λk for k ≥ 0,

where λk = νk2π2/|Ω|2 are the eigenvalues of the stationary problem for the heat
equation. For small values of ǫ and small k, the quantity αǫ

k takes real values. For
large k, the quantity αǫ

k becomes complex. We remark that the Green’s functions
given in Ref. [37, 7.33.B.2.1 and 7.33.B.2.2] are not written down correctly.

We apply Green’s formula to the domain Ωt∫ ∫

Ωt

(vM ǫu− uM ǫv)dτdz = νǫ2
∫

∂Ωt

(u∂τv − v∂τu)dz + ν

∫

∂Ωt

(u∂zv − v∂zu)dτ

and take u(τ, z) := pǫ(τ, z) with M ǫpǫ = hǫetǫ

and v(τ, z) = GDi(t − τ, x, z) or
v(τ, z) = GNeu(t− τ, x, z). The evaluation of the integrals and the transformation
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to sǫ = pǫe−tǫ

leads to the following solution formulas. For abbreviation, we define
for k ∈ N

aǫ
0(t) ≡ 1,

bǫ0(t) := 1 − e−2tǫ

,

aǫ
k(t) :=

αǫ
k + 1

2αǫ
k

e(α
ǫ
k−1)tǫ

+
αǫ

k − 1

2αǫ
k

e−(αǫ
k+1)tǫ

,

bǫk(t) :=
1

αǫ
k

(
e(α

ǫ
k−1)tǫ − e−(αǫ

k+1)tǫ
)
.

Theorem 4.2. Let sDi
ǫ be the solution of the telegraph equation (4.8) subject to

the initial conditions (4.9) and vanishing Dirichlet boundary conditions sDi
ǫ (·, xL) =

sDi
ǫ (·, xR) = 0. Then sDi

ǫ is given by

sDi
ǫ (t, x) =

∞∑

k=1

∫ t

0

bǫk(t− τ)(hǫ(τ, ·), φDi
k ) dτ φDi

k (x)

+

∞∑

k=1

aǫ
k(t)(sǫ

0, φ
Di
k )φDi

k (x) + νǫ2
∞∑

k=1

bǫk(t)(sǫ
1, φ

Di
k )φDi

k (x),

(4.11)

provided that sǫ
0 and sǫ

1 vanish at the boundary.

The condition that sǫ
0 and sǫ

1 vanish at the boundary is achieved by the fulfill-
ment of the corresponding compatibility conditions.

Theorem 4.3. A solution sNeu
ǫ of the telegraph equation (4.8) subject to the

initial conditions (4.9) and vanishing Neumann boundary conditions sNeu
ǫ (·, xL) =

sNeu
ǫ (·, xR) = 0 is given by

sNeu
ǫ (t, x) =

1

2

∫ t

0

bǫ0(t− τ)(hǫ(τ, ·), φNeu
0 ) dτ φNeu

0 (x)

+
1

2
(sǫ

0, φ
Neu
0 )φNeu

0 (x) +
νǫ2

2
bǫ0(t)(s

ǫ
1, φ

Neu
0 )φNeu

0 (x)

+

∞∑

k=1

∫ t

0

bǫk(t− τ)(hǫ(τ, ·), φNeu
k ) dτ φNeu

k (x)

+

∞∑

k=1

aǫ
k(t)(sǫ

0, φ
Neu
k )φNeu

k (x) + νǫ2
∞∑

k=1

bǫk(t)(sǫ
1, φ

Neu
k )φNeu

k (x).

(4.12)

Proof. The time kernels aǫ
k and bǫk fulfill

νǫ2∂2
t a

ǫ
k + ∂ta

ǫ
k + λka

ǫ
k = 0 in (0, T ),

νǫ2∂2
t b

ǫ
k + ∂tb

ǫ
k + λkb

ǫ
k = 0 in (0, T )

for k ∈ N0, subject to the initial conditions

aǫ
k(0) = 1, νǫ2∂ta

ǫ
k(0) = 0,

bǫk(0) = 0, νǫ2∂tb
ǫ
k(0) = 1.

The assertion of the Theorem 4.2 and 4.3 follows by direct verification. �

Furthermore, we observe

∂ta
ǫ
k + λkb

ǫ
k = 0 in (0, T ),

νǫ2∂tb
ǫ
k + bǫk = aǫ

k in (0, T ).
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Figure 4.2. Time kernels of the Fourier coefficients for data ǫ =
0.01, ν = 0.1, |Ω| = 1 and n0 = 159.

The exponential terms with argument −(αǫ
k + 1)tǫ decay very fast, whereas the

exponential terms with argument (αǫ
k − 1)tǫ approximate the time kernels of the

heat equation for small k.
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Since we have

lim
ǫ→0

αǫ
k = 1,

lim
ǫ→0

αǫ
k − 1

2νǫ2
= −λk

for fixed k, we get

lim
ǫ→0

aǫ
k(t) = e−λkt for t ≥ 0,

lim
ǫ→0

bǫk(t) = e−λkt for t > 0.

In the latter case, convergence cannot be uniform due to bǫk(0) = 0. Furthermore,
we find

lim
ǫ→0

∂ta
ǫ
k(t) = −λke

−λkt for t > 0,

lim
ǫ→0

∂tb
ǫ
k(t) = −λke

−λkt for t > 0.

Hence, we formally have

lim
ǫ→0

sDi
ǫ = sDi, lim

ǫ→0
sNeu

ǫ = sNeu,

where sDi and sNeu are solutions of the heat equation subject to vanishing Dirichlet
or vanishing Neumann boundary conditions.

Let

n0 := n0(ǫ) :=

⌊ |Ω|
2νǫπ

⌋
∈ N0,

where ⌊γ⌋ denotes the largest integer lower or equal the real value γ. Then, for
k ≤ n0, the time kernels aǫ

k and bǫk are positive and show an exponential decay as it
is expected for the solutions of parabolic problems. For k > n0, we have oscillating
time kernels aǫ

k and bǫk. They show a fast exponential decay, but there are frequent
changes in the sign; see Figure 4.2. For k > n0, we have

aǫ
k(t) =

(
1

βǫ
k

sin (βǫ
kt

ǫ) + cos (βǫ
kt

ǫ)

)
e−tǫ

,

bǫk(t) =
2

βǫ
k

sin (βǫ
kt

ǫ) e−tǫ

with βǫ
k := iαǫ

k =
√

4νǫ2λk − 1 ∈ R.
Now we consider the function

Aǫ
k(t, x) :=

1

2
e−π/βǫ

k + aǫ
k(t) sin (kπ(x− xL)/|Ω|)

for n > n0. On the interval Ik := (xL, xL + |Ω|/k), the initial value Aǫ
k(0, ·) is

positive. Furthermore, Aǫ
k is a solution of the telegraph equation LǫAǫ

k = 0 with
∂tA

ǫ
k(0, ·) = 0 and Aǫ

k > 0 on ∂Ik. But for the time Tk := 2νǫ2π/βǫ
k > 0, we have

Aǫ
k(Tk, xL + |Ω|/(2k)) < 0, since aǫ

k(Tk) = −e−π/βǫ
k takes its negative minimum

there. Hence, non-negativity of the data does not guarantee non-negativity of the
solutions.

The initial layers of the time kernels bkǫ (see Figure 4.2) express the fact that we
are examining a singularly perturbed problem. The presence of the second order
derivative in time in (4.8) requires initial conditions for ∂ts

ǫ.
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4.4. Fourier Solutions for the Advection System

With the results of the previous section we can give Fourier solutions for the
advection system of the Goldstein-Taylor model.

Theorem 4.4. Let rǫ and jǫ be solutions of the advection system (4.1) and
(4.2) subject to the boundary conditions rǫ(·, xL) = rǫ(·, xR) = 0 and ∂xj

ǫ(·, xL) =
∂xj

ǫ(·, xR) = 0 in (0, T ). Let the initial conditions be given by (4.5) and (4.6)
with rǫ

0(xL) = rǫ
0(xR) = 0 and ∂xj

ǫ
0(xL) = ∂xj

ǫ
0(xR) = 0. Let F ǫ and Gǫ be

defined in (4.3) and (4.4) with f ǫ and gǫ fulfilling f ǫ(·, xL) = f ǫ(·, xR) = 0 and
∂xg

ǫ(·, xL) = ∂xg
ǫ(·, xR) = 0 in (0, T ). Then we have

rǫ(t, x) =

∞∑

k=1

∫ t

0

bǫk(t− τ)(F ǫ(τ, ·), φDi
k ) dτ φDi

k (x)

+

∞∑

k=1

aǫ
k(t)(rǫ

0, φ
Di
k )φDi

k (x) + νǫ2
∞∑

k=1

bǫk(t)(rǫ
1, φ

Di
k )φDi

k (x),

jǫ(t, x) =
1

|Ω|

∫ t

0

bǫ0(t− τ)(Gǫ(τ, ·), 1) dτ +
1

|Ω|a
ǫ
0(t)(j

ǫ
0, 1) +

νǫ2

|Ω| b
ǫ
0(t)(j

ǫ
1, 1)

+

∞∑

k=1

∫ t

0

bǫk(t− τ)(Gǫ(τ, ·), φNeu
k ) dτ φNeu

k (x)

+

∞∑

k=1

aǫ
k(t)(jǫ

0, φ
Neu
k )φNeu

k (x) + νǫ2
∞∑

k=1

bǫk(t)(jǫ
1, φ

Neu
k )φNeu

k (x).

Proof. Direct computation. �

In the case of density boundary conditions (3.3), the assumptions on the bound-
ary conditions of the data are achieved by subtracting rDen

LR and jDen
LR given in (3.8),

where the data have to fulfill adequate compatibility conditions.

Theorem 4.5. Let rǫ and jǫ be solutions of the advection system (4.1) and (4.2)
subject to the boundary conditions ∂xr

ǫ(·, xL) = ∂xr
ǫ(·, xR) = 0 and jǫ(·, xL) =

jǫ(·, xR) = 0 in (0, T ). Let the initial conditions be given by (4.5) and (4.6) with
∂xr

ǫ
0(xL) = ∂xr

ǫ
0(xR) = 0 and jǫ

0(xL) = jǫ
0(xR) = 0. Let F ǫ and Gǫ be defined in

(4.3) and (4.4) with f ǫ and gǫ fulfilling ∂xf
ǫ(·, xL) = ∂xf

ǫ(·, xR) = 0 and gǫ(·, xL) =
gǫ(·, xR) = 0 in (0, T ). Then we have

rǫ(t, x) =
1

|Ω|

∫ t

0

bǫ0(t− τ)(F ǫ(τ, ·), 1) dτ +
1

|Ω|a
ǫ
0(t)(r

ǫ
0, 1) +

νǫ2

|Ω| b
ǫ
0(t)(r

ǫ
1, 1)

+

∞∑

k=1

∫ t

0

bǫk(t− τ)(F ǫ(τ, ·), φNeu
k ) dτ φNeu

k (x)

+

∞∑

k=1

aǫ
k(t)(rǫ

0, φ
Neu
k )φNeu

k (x) + νǫ2
∞∑

k=1

bǫk(t)(rǫ
1, φ

Neu
k )φNeu

k (x),

jǫ(t, x) =

∞∑

k=1

∫ t

0

bǫk(t− τ)(Gǫ(τ, ·), φDi
k ) dτ φDi

k (x)

+

∞∑

k=1

aǫ
k(t)(jǫ

0, φ
Di
k )φDi

k (x) + νǫ2
∞∑

k=1

bǫk(t)(jǫ
1, φ

Di
k )φDi

k (x).

Proof. Direct computation. �

In the case of flux boundary conditions (3.4), the assumptions on the boundary
conditions of the data are achieved by subtracting rFlu

LR and jFlu
LR given in (3.10),

where the data have to fulfill adequate compatibility conditions.
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A similar representation of the solutions in terms of Fourier series can be ob-
tained for periodic boundary conditions (3.6).

4.5. Energy estimates

For the derivation of a priori estimates we employ the energy functional. Let
the total energy associated to solutions of the telegraph equation (4.8) be defined
by

F ǫ(t) := νǫ2‖∂ts
ǫ(t, ·)‖2

0 + ν‖∂xs
ǫ(t, ·)‖2

0.

For vanishing right hand side hǫ and constant Dirichlet boundary values, vanishing
Neumann boundary values or periodic boundary values, we find decay of the total
energy. More detailed, we prove

Lemma 4.6. Let sǫ be a solution of the telegraph equation (4.8) subject to
constant Dirichlet boundary values, vanishing Neumann boundary values or periodic
boundary values. Then we have

F ǫ(t) +

∫ t

0

‖∂ts
ǫ(s, ·)‖2

0 ds ≤ F ǫ(0) +

∫ t

0

‖hǫ(s, ·)‖2
0 ds for t ≥ 0.

Proof. Due to

∂t

(
νǫ2(∂ts

ǫ)2 + ν(∂xs
ǫ)2
)

= −2(∂ts
ǫ)2 + 2ν∂x(∂xs

ǫ∂ts
ǫ) + 2∂ts

ǫhǫ

we find
d

dt
F ǫ(t) + 2‖∂ts

ǫ(t, ·)‖2
0 ≤ ‖∂ts

ǫ(t, ·)‖2
0 + ‖hǫ(t, ·)‖2

0.

�

By employing the energy principle of the telegraph equation, we find a priori
estimates for the solutions of the advection system.

Corollary 4.7. Let the assumptions of Theorem 4.4 or Theorem 4.5 hold true
or consider periodic boundary conditions (3.6). Use the data given in (4.7) in order
to ensure convergence of the solutions (confer Theorem 3.4 and Corollary 3.5).
Then we get the following a priori estimates for the solutions rǫ and jǫ of the
advection system (4.1) and (4.2):

ν‖∂xr
ǫ(T, ·)‖2

0 +

∫ T

0

‖∂tr
ǫ(s, ·)‖2

0 ds+ νǫ2‖∂tr
ǫ(T, ·)‖2

0

≤ ν‖∂xr0(t, ·)‖2
0 + 2ν3ǫ2‖∂2

xr0‖2
0 + 2νǫ2‖f(0, ·)‖2

0

+ 3

∫ T

0

‖f(s, ·)‖2
0 ds+ 3ν2ǫ4

∫ T

0

‖∂tf(s, ·)‖2
0 ds+ 3ν4ǫ4

∫ T

0

‖∂2
xf(s, ·)‖2

0 ds,

ν‖∂xj
ǫ(T, ·)‖2

0 +

∫ T

0

‖∂tj
ǫ(s, ·)‖2

0 ds+ νǫ2‖∂tj
ǫ(T, ·)‖2

0

≤ ν3ǫ2‖∂2
xr0‖2

0 + ν3ǫ4‖∂xf(0, ·)‖2
0

+ 2ν2ǫ2
∫ T

0

‖∂xf(s, ·)‖2
0 ds+ 2ν4ǫ6

∫ T

0

‖∂t∂xf(s, ·)‖2
0 ds.

Proof. Apply Lemma 4.6. �

For higher order regularity, further compatibility conditions for the data are
required. In the case of desired convergence with data chosen as in (4.7), these com-
patibility conditions have to be seen as extensions of the compatibility conditions
for the heat equation given in Section 2.3. In the case of density boundary con-
ditions, compatibility for the heat equation leads to zero boundary conditions for
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rDen
0 and ∂xj

Den
0 . Zero boundary conditions for ∂2

xr
Den
0 require in addition ∂4

xr0 = 0
at the boundary. For flux boundary conditions, compatibility for the heat equation
leads to zero boundary conditions for jFlu

0 . Zero boundary conditions for ∂xr
Flu
0

and ∂2
xj

Flu
0 require ∂3

xr0 = 0 and ν∂5
xr0 + ∂3

xf = 0 at the boundaries. In the case of
violations, the perturbations are of orders ǫ2.

In the lattice Boltzmann community it is a widespread custom to use Hilbert
expansions or Chapman-Enskog expansions (Ref. [24]) of a function f in terms of
the small parameter ǫ, with the aim to gain insight to the limiting behavior of the
discrete velocity models or the lattice Boltzmann schemes. One uses representations
of the form

f =

∞∑

l=0

ǫlf l.

However, it is a well-known fact that there is no expansion for e−1/ǫ2 about ǫ = 0.
If we consider initial data, where the eigenfunctions φDi

k or φNeu
k are incorporated,

then the solutions of the advection system are equipped with the time kernels aǫ
k

and bǫk, which have parts of the form e−t/(2νǫ2). Hence, not all terms appearing in
the solution are matched by the asymptotic expansions in ǫ.





CHAPTER 5

Lattice Boltzmann Schemes

The goal of our study is the computation of discrete solutions of the heat
equation by using explicit lattice Boltzmann (LB) discretizations of the form

U(t+ τ, x+ h) = U(t, x) +Q(U, V )(t, x) + F+(t, x),

V (t+ τ, x− h) = V (t, x) −Q(U, V )(t, x) + F−(t, x),

whereQ is the collision term and F+ and F− are the source terms. This is done upon
discretizing the advection system (3.1) under consideration of the characteristic
directions. The fluid-dynamic limit, which corresponds to the limit ǫ to zero, is
attained by choosing the fixed space-time coupling

h = γǫ, τ = γǫ2.

The parameter γ has to be chosen as a function of the viscosity of the limiting equa-
tion and the relaxation parameter of the collision term. The respective dependence
may be different for different discretizations.

In this chapter, the lattice Boltzmann discretizations are performed in a fi-
nite difference and in a finite volume context on vertex centered grids and on cell
centered grids. We are treating four different kinds of lattice Boltzmann schemes.
Finite element methods are disregarded, since their application is equipped with
additional technical difficulties. But, as a consequence, the abandonment of varia-
tional formulations is a considerable deficiency.

We present diverse boundary conditions that are chosen in accordance with
the type of the boundary conditions for the heat equation and the underlying grid
situation. The scaling of the lattice Boltzmann schemes is discussed. We identify
the Knudsen number and the Mach number, and we determine the relationship to
the numerical viscosity.

In Section 5.7, we switch to matrix formulations in terms of the macroscopic
quantities. The simultaneous reduction of the boundary values for the density
and for the flux is described. We perform a detailed eigenvalue analysis for the
time evolution matrices and we present discrete Fourier solutions for the lattice
Boltzmann schemes that reveal the coupling of the flux and the density. The
distribution of the eigenvalues gives rise to the conjecture that the lattice Boltzmann
schemes work badly in the case of nonsmooth data.

A discrete stability estimate is proved in the case of the finite difference lattice
Boltzmann schemes. This stability estimate is the basis for the convergence proofs
in Chapter 6. Stability for the finite volume lattice Boltzmann schemes is derived
from the Fourier representations.

5.1. Vertex Centered and Cell Centered Grids

For the discretization of the equations we introduce the following grid on the
interval Ω := (xL, xR) for N ∈ N. We define the grid size

h :=
|Ω|
N

49
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and the grid points

xl := xL + lh for l = 0, . . . , N.

The intermediate grid points xl−1/2 are defined by xl−1/2 := (xl + xl−1)/2 for
l = 1, . . . , N . Furthermore, we define the intervals Kl := (xl−1/2, xl+1/2) for
l = 0, . . . , N and Kl−1/2 := (xl−1, xl) for l = 1, . . . , N , where we employ the
straightforward definition of grid points outside the interval Ω.

By using the constant γ that has to be determined later, we define the uniform
time step

τ :=
h2

γ
.

The time interval (0, T ) is split by the intermediate times tk := kτ for k = 0, . . . ,M
with tM−1 < T ≤ tM . We define Ik := (tk, tk+1) for k = 0, . . . ,M − 1 and
ΩM := (0, tM ) × Ω.

The discretizations are done in a finite difference (FD) or in a finite volume
(FV) context. In the FD context the discrete values Uk

l and V k
l are interpreted as

point values in (tk, xl), that is, we use

Uk
l ≈ u(tk, xl), V k

l ≈ v(tk, xl).

In the FV context we consider integral mean values, that is, we make use of
the approximation properties

Uk
l ≈ 1

h

∫ xl+1/2

xl−1/2

u(tk, ·), V k
l ≈ 1

h

∫ xl+1/2

xl−1/2

v(tk, ·).

We introduce the rectangular cellsXk
l := Ik×Kl and the corresponding discrete

FV space with piecewise constant functions

V V
h :=

{
F ∈ L2(ΩM ) : F (t, x) = F k

l for (t, x) ∈ Xk
l ,
l = 0, . . . , N,
k = 0, . . . ,M − 1

}
.

This grid is referred to as the vertex centered finite volume grid (VCFV grid). The
domain of V V

h is (0, tM ) × (xL − h/2, xR + h/2). Hence, for the discretization the
data has to be extended on the boundary cells Xk

0 and Xk
N . Characteristic cells

Y k
l and Zk

l are defined by having the basis Kl at time tk and the tops Kl+1 and
Kl−1, respectively, at time tk+1. These cells are bounded by the characteristics
(xi ± sh, tk ± sτ) for s ∈ (0, 1) and i = l − 1/2, l + 1/2; see Figure 5.1.

In the same manner, we introduce the rectangular cells Xk
l−1/2 := Ik ×Kl−1/2

for l = 1, . . . , N and k = 0, . . . ,M − 1. Then we define the corresponding discrete
FV space with piecewise constant functions

V C
h :=

{
F ∈ L2(ΩM ) : F (t, x) = F k

l−1/2 for (t, x) ∈ Xk
l−1/2,

l = 1, . . . , N,
k = 0, . . . ,M − 1

}
.

This construction is called cell centered finite volume grid (CCFV grid). Character-
istic cells Y k

l−1/2 and Zk
l−1/2 are defined by having the basis Kl−1/2 at time tk and

the tops Kl+1/2 and Kl−3/2, respectively, at time tk+1. These cells are bounded by
the characteristics (xi±sh, tk ±sτ) for s ∈ (0, 1) and i = l−1, l. The characteristic
cells are cut off at the boundary; see Figure 5.2.

For F ∈ V V
h or F ∈ V C

h we use

F k := F|∪lXk
l

or F k := F|∪lXk
l−1/2

for k = 0, . . . ,M − 1.

In accordance with the above definitions, we call a grid designed for the ap-
plication of FD schemes a vertex centered finite difference grid (VCFD grid), if we
evaluate the functions at the grid points xl for l = 0, . . . , N . In the case of function
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Figure 5.1. Vertex centered finite volume grid (VCFV).

evaluations at the interval midpoints xl−1/2 for l = 1, . . . , N , we refer to cell cen-
tered finite difference grids (CCFD grids). Since the resulting discrete equations are
of a similar structure for finite difference methods and for finite volume methods,
we sometimes refer to vertex centered grids (VC grids) or cell centered grids (CC
grids).

5.2. Lattice Boltzmann Discretizations

In the finite difference context we discretize the advection system (3.1) by
replacing the derivatives by difference quotients, where we take care of the char-
acteristic directions. We use Uk

l ≈ u(tk, xl) and V k
l ≈ v(tk, xl). Here, and in the

following, the upper index ǫ for the solutions uǫ and vǫ of the advection system is
omitted. For the time derivatives we take

∂tu(tk, xl+1) ≈
Uk+1

l+1 − Uk
l+1

τ
, ∂tv(tk, xl−1) ≈

V k+1
l−1 − V k

l−1

τ
.

The space derivatives are replaced by using the one-sided differences

∂xu(tk, xl+1) ≈
Uk

l+1 − Uk
l

h
, ∂xv(tk, xl−1) ≈

V k
l − V k

l−1

h
.

The collision terms u−v are evaluated in the points (tk, xl), where the characteristics
start that meet the points (tk+1, xl+1) for the u-equation and (tk+1, xl−1) for the
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Figure 5.2. Cell centered finite volume grid (CCFV).

v-equation. The source terms are evaluated along the corresponding characteristics.
We take

F k
l,+ := f(tk + sτ, xl + sh), F k

l,− := f(tk + sτ, xl − sh)

for a fixed s ∈ [0, 1]. A discretization of the source term g in (3.1) is disregarded.
By caring of 1/ǫ = γ/h and replacing 1/(2νǫ2) by ω/τ with a relaxation parameter
ω ∈ (0, 1), we find the VCFD lattice Boltzmann equations

Uk+1
l+1 = Uk

l − ω(Uk
l − V k

l ) +
τ

2
F k

l,+ for l = 0, . . . , N − 1,
(5.1)

V k+1
l−1 = V k

l + ω(Uk
l − V k

l ) +
τ

2
F k

l,− for l = 1, . . . , N.

The missing inflow values Uk+1
0 and V k+1

N have to be determined by the boundary
conditions. Initial values have to be supplied for U0

l and V 0
l for l = 0, . . . , N . Then

the lattice Boltzmann (LB) equations have to be solved for k = 0, . . . ,M − 1.
On CCFD grids we get the CCFD lattice Boltzmann equations

Uk+1
l+1/2 = Uk

l−1/2 − ω(Uk
l−1/2 − V k

l−1/2) +
τ

2
F k

l−1/2,+ for l = 1, . . . , N − 1,
(5.2)

V k+1
l−1/2 = V k

l+1/2 + ω(Uk
l+1/2 − V k

l+1/2) +
τ

2
F k

l+1/2,− for l = 1, . . . , N − 1.
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Here, we have to determine the missing values Uk+1
1/2 and V k+1

N−1/2 by an evaluation

of the given boundary conditions.
For FV discretizations we write the advection system in the form

d

dt
u(t, x+ (t− tk)/ǫ) +

ω

τ
(u− v)(t, x+ (t− tk)/ǫ) =

1

2
f(t, x+ (t− tk)/ǫ),

d

dt
v(t, x− (t− tk)/ǫ) − ω

τ
(u− v)(t, x− (t− tk)/ǫ) =

1

2
f(t, x− (t− tk)/ǫ).

Integration over Ik yields

u(tk+1, x+ h) = u(tk, x) −
ω

τ

∫

Ik

(u− v)(s,Xk,+) ds+
1

2

∫

Ik

f(s,Xk,+) ds,

v(tk+1, x− h) = v(tk, x) +
ω

τ

∫

Ik

(u− v)(s,Xk,−) ds+
1

2

∫

Ik

f(s,Xk,−) ds,

where we use Xk,± := Xk,±(s, x) := x ± (s − tk)/ǫ. On VCFV grids we integrate
along Kl and get

1

h

∫

Kl+1

u(tk+1, ·) =
1

h

∫

Kl

u(tk, ·) −
ω

τh

∫ ∫

Y k
l

(u− v) +
1

2h

∫ ∫

Y k
l

f,

1

h

∫

Kl−1

v(tk+1, ·) =
1

h

∫

Kl

v(tk, ·) +
ω

τh

∫ ∫

Zk
l

(u− v) +
1

2h

∫ ∫

Zk
l

f.

Now we replace u and v by U ∈ V V
h and V ∈ V V

h . We end up with the VCFV
lattice Boltzmann equations

Uk+1
l+1 = Uk

l − ω

2
(Uk

l+1 + Uk
l − V k

l+1 − V k
l ) +

τ

2
F k

l,+ for l = 0, . . . , N − 1,
(5.3)

V k+1
l−1 = V k

l +
ω

2
(Uk

l + Uk
l−1 − V k

l − V k
l−1) +

τ

2
F k

l,− for l = 1, . . . , N,

where we define

F k
l,+ :=

1

|Y k
l |

∫ ∫

Y k
l

f, F k
l,− :=

1

|Zk
l |

∫ ∫

Zk
l

f.

The values Uk+1
0 and V k+1

N have to be computed from the boundary conditions.
On CCFV grids we integrate along Kl−1/2 and Kl+1/2 and plug in U ∈ V C

h

and V ∈ V C
h . Hence, we gain the CCFV lattice Boltzmann equations

Uk+1
l+1/2 = Uk

l−1/2 −
ω

2
(Uk

l+1/2 + Uk
l−1/2 − V k

l+1/2 − V k
l−1/2) +

τ

2
F k

l−1/2,+,
(5.4)

V k+1
l−1/2 = V k

l+1/2 +
ω

2
(Uk

l+1/2 + Uk
l−1/2 − V k

l+1/2 − V k
l−1/2) +

τ

2
F k

l+1/2,−,

for l = 1, . . . , N − 1,

where we define

F k
l−1/2,+ :=

1

|Y k
l−1/2|

∫ ∫

Y k
l−1/2

f, F k
l+1/2,− :=

1

|Zk
l+1/2|

∫ ∫

Zk
l+1/2

f.

The values Uk+1
1/2 and V k+1

N−1/2 have to be supplied by the evaluation of the given

boundary conditions.
In order to gain the lattice Boltzmann equations (5.1) and (5.2) by the appli-

cation of FV methods, we have to make use of specific integration formulas for the
integrals of the collision term u− v.

From the lattice Boltzmann variables Uk
l and V k

l we switch to the macroscopic
variables Rk

l and Jk
l by taking

Rk
l := Uk

l + V k
l , Jk

l := Uk
l − V k

l .
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We shall find the approximation properties

Rk
l ≈ r(tk, xl), −2ω

h
Jk

l ≈ ∂xr(tk, xl)

for the FD schemes and

Rk
l ≈ 1

h

∫

Kl

r(tk, ·), −2ω

h
Jk

l ≈ 1

h

∫

Kl

∂xr(tk, ·)

for the FV schemes, where r is the solution of the heat equation with viscosity ν.
While the numerical viscosity of the FD lattice Boltzmann schemes (5.1) and

(5.2) turns out to be

νFD :=
1 − ω

2ω
γ,

we find the numerical viscosity

νFV :=
1

2ω
γ

for the FV lattice Boltzmann schemes (5.3) and (5.4). This means that for a given
viscosity ν and a given relaxation parameter ω the ratio γ = h2/τ has to be adapted
in order to achieve the correct numerical viscosity. Hence, for a given grid size h
there is a prescribed value for the time step τ .

Discrete stability is proved directly only for the FD lattice Boltzmann schemes
(5.1) and (5.2). We shall see that these schemes lack consistency with the equations
of the advection system (3.1). This is no failure, because the approximation of the
solutions of the advection system is not within our scope.

The stability of the FV lattice Boltzmann schemes (5.3) and (5.4) can be proved
after a detailed Fourier analysis.

The choice h = γǫ and τ = γǫ2 leads to a uniform hyperbolic CFL-condition
(Courant-Friedrichs-Levi-condition, see Ref. [22, 7.2]). By using the characteris-
tic gradient a := 1/ǫ we find aτ/h = 1. On the other hand, we have parabolic
dependence in the form γτ/h2 = 1.

5.3. Finite Element Methods

For the technical analysis a variational formulation and the application of
Petrov-Galerkin finite element methods are favorable; see Ref. [40]. This approach
enables the introduction of a posteriori error estimation techniques.

The natural choice is the definition of space-time finite elements along the
characteristic cells with the goal to achieve the explicit lattice Boltzmann schemes
as presented in the previous section. In order to succeed, we have to choose ansatz
functions that are piecewise constant in time or we have to apply specific quadrature
formulas. These quadrature formulas and the displacement of the characteristic
cells of the u-equation and the v-equation lead to additional difficulties.

The second choice is the combination of spatial finite elements and time in-
tegration methods like the explicit Euler scheme. In general, the application of
finite element methods leads to nondiagonal mass matrices that are expected to
be positive definite. As we shall see at the end of Section 6.3, the lattice Boltz-
mann schemes give rise to a system with the central second order schemes for the
derivatives of the macroscopic quantities and a nonsymmetric mass matrix with
non-negative eigenvalues. An interpretation of this structure is still missing.

The crucial point for the discretizations under consideration is the lattice Boltz-
mann type structure. Hence, we can neglect the knowledge of details on their
respective derivations and study the lattice Boltzmann schemes in the presented
form. But it is well-known that the disregard of Hilbert space structures limits the
variety of analytical tools for the investigations of the convergence processes.
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5.4. The Lattice Boltzmann Scaling

The lattice Boltzmann equations

Uk+1
l+1 = Uk

l − ω(Uk
l − V k

l ) for l = 0, . . . , N − 1

V k+1
l−1 = V k

l + ω(Uk
l − V k

l ) for l = 1, . . . , N

can be viewed as discretizations of the equations

∂t̂û+ ∂x̂û+ ω(û− v̂)= 0,

∂t̂v̂ − ∂x̂v̂ − ω(û− v̂)= 0

for the unknowns û = û(t̂, x̂) and v̂ = v̂(t̂, x̂) with the time step ∆t̂ = 1 and the grid
size ∆x̂ = 1. Setting u(t, x) = u(τ t̂, hx̂) := û(t̂, x̂) and v(t, x) = v(τ t̂, hx̂) := v̂(t̂, x̂)
with t := τ t̂ and x := hx̂, we find

τ∂tu+ h∂xu+ ω(u− v)= 0,

τ∂tv + h∂xv − ω(u− v)= 0.

The diffusion scaling and the space-time coupling is attained by using τ := γǫ2 and
h := γǫ. These definitions contain two kinds of information. The characteristic
gradient h/τ = 1/ǫ determines the structure of the characteristic grid. Secondly,
h2/τ = γ arranges the diffusive scaling. By rewriting the latter equations in the
form

ǫ∂tu+ ∂xu+
ω

γǫ
(u− v)= 0,

ǫ∂tv + ∂xv −
ω

γǫ
(u− v)= 0,

we can identify the Mach number ǫ = h/γ and the Knudsen number γǫ = h. Hence,
the parameter γ determines the space-time coupling, but it can also be seen as the
ratio of the Knudsen number to the Mach number. As we shall see, the numerical
viscosity of the lattice Boltzmann schemes depends on the relaxation parameter ω
and on γ.

In the applications the viscosity ν and the discretization parameter N is given.
Upon choosing the relaxation parameter ω, the space-time coupling γ and hence
the time step is determined.

5.5. Boundary Conditions

The missing inflow values are computed by evaluating the boundary conditions.
As in the continuous case, we prescribe periodic, density, flux or inflow boundary
conditions.

For the VC lattice Boltzmann schemes (5.1) and (5.3) boundary values have

to be prescribed for Uk+1
0 and V k+1

N . In the case of periodic boundary conditions
(2.6) for the heat equation, periodic boundary conditions for the VC schemes are
given by

Uk+1
0 := Uk+1

N ,

V k+1
N := V k+1

0 .
(5.5)

For Dirichlet boundary conditions (2.3) for the heat equation, we prescribe
density boundary conditions on VC grids by

Uk+1
0 := rk+1

L − V k+1
0 ,

V k+1
N := rk+1

R − Uk+1
N ,

(5.6)
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with

rk
L := rDi

L (tk), rk
R := rDi

R (tk). (5.7)

Flux boundary conditions on VC grids are given in the case of Neumann bound-
ary conditions (2.4) for the heat equation by choosing

Uk+1
0 := jk+1

L + V k+1
0 ,

V k+1
N := Uk+1

N − jk+1
R ,

(5.8)

with

jk
L := − h

2ω
rNeu
L (tk), jk

R := − h

2ω
rNeu
R (tk). (5.9)

Flux boundary conditions with vanishing flux jk+1
L = jk+1

R = 0 are known as
bounce-back boundary conditions, where the outflow value is used as the inflow
value.

If Robin boundary conditions (2.5) are prescribed for the heat equation, we use
inflow boundary conditions

Uk+1
0 := uk+1

L ,

V k+1
N := vk+1

R ,
(5.10)

with

uk
L := rRob

L (tk), vk
R := rRob

R (tk). (5.11)

The parameter ϑ in (2.5) has to be chosen as ϑ := h/(2ω) in order to gain the
correct consistency of the boundary conditions.

On CC grids the boundary values have to be used to compute Uk+1
1/2 and V k+1

N−1/2.

We define the outflow values

V k+1
Out := V k

1/2 + ω(Uk
1/2 − V k

1/2) +
τ

2
F k

1/2,−,

Uk+1
Out := Uk

N−1/2 − ω(Uk
N−1/2 − V k

N−1/2) +
τ

2
F k

N−1/2,+.

Then we define density boundary conditions for the CC lattice Boltzmann schemes
(5.2) and (5.4), if Dirichlet boundary conditions (2.3) for the heat equation are
prescribed. For a δ ∈ [0, 1], we define tk+δ := tk + δτ and then we put

Uk+1
1/2 := rk+δ

L − V k+1
Out ,

V k+1
N−1/2 := rk+δ

R − Uk+1
Out ,

(5.12)

with rk
L and rk

R given in (5.7).
Flux boundary conditions on CCFD grids can be given in the case of Neumann

boundary conditions (2.4) for the heat equation by choosing

Uk+1
1/2 := (1 − ω)jk+δ

L + V k+1
Out ,

V k+1
N−1/2 := Uk+1

Out − (1 − ω)jk+δ
R ,

(5.13)

with jk
L and jk

R given in (5.9). On CCFV grids we use instead

Uk+1
1/2 := jk+δ

L + V k
1/2,

V k+1
N−1/2 := Uk

N−1/2 − jk+δ
R .

(5.14)

The evaluation of the boundary values is chosen at time tk+δ := tk + δτ for a
δ ∈ [0, 1].
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Let the discrete mass mk
V on VC and mk

C on CC grids be defined by

mk
V :=

h

2
Rk

0 +

N−1∑

l=1

hRk
l +

h

2
Rk

N , mk
C :=

N∑

l=1

hRk
l−1/2.

For periodic boundary conditions (5.5) or flux boundary conditions (5.8) with van-
ishing flux (that is, bounce-back boundary conditions) and for vanishing right hand
side, there is conservation of mass for the VC lattice Boltzmann schemes (5.1) and
(5.3) of the form

mk
V = m0

V for k = 0, . . . ,M − 1.

For vanishing flux boundary conditions (5.13) and vanishing right hand side we
have conservation of mass for the CCFD lattice Boltzmann scheme (5.2), that is,
we have

mk
C = m0

C for k = 0, . . . ,M − 1.

For vanishing flux boundary conditions (5.14) and vanishing right hand side, we
have conservation of mass for the CCFV lattice Boltzmann scheme (5.4).

For non-negative initial data U0
l , V

0
l and non-negative source terms F k

l,+, F k
l,−,

the discrete solutions Uk
l , V k

l of the VCFD lattice Boltzmann equations (5.1) with
periodic boundary conditions (5.5) are non-negative. For non-negative data, the
solutions of (5.1) in combination with density boundary conditions (5.6) are non-
negative, provided ω ≥ 1/2 and rk

L, r
k
R ≥ 0. For the flux boundary conditions (5.8),

we have to impose jk
L ≥ 0 and jk

R ≤ 0 in addition to the non-negativity of the
initial data and the source terms in order to assure non-negativity of the solutions
of (5.1). For the inflow boundary conditions (5.10), we have to provide uk

L, v
k
R ≥ 0.

For the CCFD lattice Boltzmann equations (5.3) in combination with flux

boundary conditions (5.13) with jk+δ
L ≥ 0, jk+δ

R ≤ 0 and non-negative initial data
and source terms, the solutions Uk

l−1/2 and V k
l−1/2 are non-negative.

5.6. Matrix Formulations for the UV -Systems

For an analysis of the lattice Boltzmann equations we switch to matrix formu-
lations. For the FD schemes (5.1) and (5.2) we can directly prove stability with
respect to discrete norms. For the stability of the FV schemes (5.3) and (5.4) the
analysis of Fourier representations is required.

The lattice Boltzmann equations (5.1) on VCFD grids and (5.3) on VCFV grids
can be written in matrix formulation as equation

W k+1 = MW k + Bk + τF k for k = 0, . . . ,M − 1 (5.15)

for the unknowns W k, the boundary values Bk and the source terms F k. Here,
we employ the time evolution matrix M .

On VC grids we consider the unknowns W k given by

W k :=
[
V k

0 ;Uk
1 ;V k

1 ; . . . ;Uk
N−1;V

k
N−1;U

k
N

]
∈ R

2N

and the right hand side

F k :=
1

2

[
F k

1,−;F k
0,+;F k

2,−;F k
1,+;F k

3,−; . . . ;F k
N−2,+;F k

N,−;F k
N−1,+

]
∈ R

2N .
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The time evolution matrix M ∈ R
2N,2N for the lattice Boltzmann equations (5.1)

on VCFD grids in combination with periodic boundary conditions (5.5) is given by

M :=




0 ω 1 − ω
ω 0 0 1 − ω

0 0 ω 1 − ω
1 − ω ω 0 0

0 0 ω 1 − ω
. . .

1 − ω ω 0 0
0 0 ω 1 − ω

1 − ω ω 0 0
1 − ω 0 0 ω

1 − ω ω 0




.

(5.16)
For the lattice Boltzmann equations (5.3) on VCFV grids with periodic boundary
conditions (5.5) the time evolution matrix M ∈ R

2N,2N results in

M :=
1

2




−ω ω 2 − ω ω

ω −ω ω 2 − ω

ω −ω ω 2 − ω
2 − ω ω −ω ω

ω −ω ω 2 − ω
. . .

2 − ω ω −ω ω
ω −ω ω 2 − ω

2 − ω ω −ω ω
2 − ω ω −ω ω
ω 2 − ω ω −ω




.

(5.17)

The boundary values are chosen as Bk := 0 in both cases.
In the density, flux or inflow boundary case on VCFD grids the time evolution

matrix M ∈ R
2N,2N for the lattice Boltzmann equations (5.1) reads

M :=




0 ω 1 − ω
m(ω) 0 0 0

0 0 ω 1 − ω
1 − ω ω 0 0

0 0 ω 1 − ω
. . .

1 − ω ω 0 0
0 0 ω 1 − ω

1 − ω ω 0 0
0 0 m(ω)

1 − ω ω 0




.

(5.18)
For density boundary conditions (5.6) we choose

m(ω) := 2ω − 1 (5.19)

and the boundary values are given by

Bk := (1 − ω)
[
0; rk

L; 0; . . . ; 0; rk
R; 0

]
∈ R

2N .
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For flux boundary conditions (5.8) we choose

m(ω) := 1 (5.20)

and the boundary values are given by

Bk := (1 − ω)
[
0; jk

L; 0; . . . ; 0;−jk
R; 0

]
∈ R

2N .

For inflow boundary (5.10) conditions we choose

m(ω) := ω

and the boundary values are given by

Bk := (1 − ω)
[
0;uk

L; 0; . . . ; 0; vk
R; 0

]
∈ R

2N .

In the density, flux or inflow boundary case on VCFV grids the time evolution
matrix M ∈ R

2N,2N for the lattice Boltzmann equations (5.3) reads

M :=
1

2




m1(ω) ω 2 − ω

m2(ω) −ω ω

ω −ω ω 2 − ω
2 − ω ω −ω ω

ω −ω ω 2 − ω
. . .

2 − ω ω −ω ω
ω −ω ω 2 − ω

2 − ω ω −ω ω
ω −ω m2(ω)

2 − ω ω m1(ω)




.

(5.21)
For density boundary conditions (5.6) we choose

m1(ω) := −2ω, m2(ω) := −(2 − 2ω) (5.22)

and the boundary values are given by

Bk :=
[ω
2
rk
L;
(
1 − ω

2

)
rk
L; 0; . . . ; 0;

(
1 − ω

2

)
rk
R;
ω

2
rk
R

]
∈ R

2N .

For flux boundary conditions (5.8) we choose

m1(ω) := 0, m2(ω) := 2 (5.23)

and the boundary values are given by

Bk :=
[ω
2
jk
L;
(
1 − ω

2

)
jk
L; 0; . . . ; 0;−

(
1 − ω

2

)
jk
R;−ω

2
jk
R

]
∈ R

2N .

For inflow boundary (5.10) conditions we choose

m1(ω) := −ω, m2(ω) := ω

and the boundary values are given by

Bk :=
[ω
2
uk

L;
(
1 − ω

2

)
uk

L; 0; . . . ; 0;
(
1 − ω

2

)
vk

R;
ω

2
vk

R

]
∈ R

2N .

On CC grids with density or flux boundary conditions the lattice Boltzmann
equations (5.2) and (5.4) can be written as matrix equations

W k+1 = MW k + Bk+δ + τF k for k = 0, . . . ,M − 1 (5.24)

for the unknown quantities

W k :=
[
Uk

1/2;V
k
1/2;U

k
3/2;V

k
3/2; . . . ;U

k
N−1/2;V

k
N−1/2

]
∈ R

2N .
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The boundary values are now evaluated at time tk+δ := tk + δτ for a δ ∈ [0, 1].
The time evolution matrix M ∈ R

2N,2N for the lattice Boltzmann equations (5.2)
is chosen as

M :=




n1(ω) n2(ω)
0 0 ω 1 − ω

1 − ω ω 0 0
0 0 ω 1 − ω

. . .

1 − ω ω 0 0
0 0 ω 1 − ω

1 − ω ω 0 0
n2(ω) n1(ω)




. (5.25)

For density boundary conditions (5.12) on CCFD grids we choose

n1(ω) := −ω, n2(ω) := −(1 − ω), (5.26)

the right hand side

F k :=
1

2

[
− F k

1/2,−;F k
3/2,−;F k

1/2,+;F k
5/2,−;F k

3/2,+;F k
7/2,−; . . .

. . . ;FN−5/2,+;F k
N−1/2,−;F k

N−3/2,+;−F k
N−1/2,+

]
∈ R

2N

and boundary values

Bk+δ :=
[
rk+δ
L ; 0; . . . ; 0; rk+δ

R

]
∈ R

2N .

For flux boundary conditions (5.13) on CCFD grids we choose

n1(ω) := ω, n2(ω) := 1 − ω, (5.27)

the right hand side

F k :=
1

2

[
F k

1/2,−;F k
3/2,−;F k

1/2,+;F k
5/2,−;F k

3/2,+;F k
7/2,−; . . .

. . . ;FN−5/2,+;F k
N−1/2,−;F k

N−3/2,+;F k
N−1/2,+

]
∈ R

2N

and boundary values

Bk+δ := (1 − ω)
[
jk+δ
L ; 0; . . . ; 0;−jk+δ

R

]
∈ R

2N .

The time evolution matrix M ∈ R
2N,2N for the lattice Boltzmann equations

(5.4) is chosen as

M :=
1

2




n1(ω) n2(ω)
ω −ω ω 2 − ω

2 − ω ω −ω ω
ω −ω ω 2 − ω

. . .

2 − ω ω −ω ω
ω −ω ω 2 − ω

2 − ω ω −ω ω
n2(ω) n1(ω)




. (5.28)

For density boundary conditions (5.12) on CCFV grids we choose

n1(ω) := −2ω, n2(ω) := −(2 − 2ω), (5.29)
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the right hand side

F k :=
1

2

[
− F k

1/2,−;F k
3/2,−;F k

1/2,+;F k
5/2,−;F k

3/2,+;F k
7/2,−; . . .

. . . ;FN−5/2,+;F k
N−1/2,−;F k

N−3/2,+;−F k
N−1/2,+

]
∈ R

2N

and boundary values

Bk+δ :=
[
rk+δ
L ; 0; . . . ; 0; rk+δ

R

]
∈ R

2N .

For flux boundary conditions (5.14) on CCFV grids we choose

n1(ω) := 0, n2(ω) := 2, (5.30)

the right hand side

F k :=
1

2

[
0;F k

3/2,−;F k
1/2,+;F k

5/2,−;F k
3/2,+;F k

7/2,−; . . .

. . . ;FN−5/2,+;F k
N−1/2,−;F k

N−3/2,+; 0
]
∈ R

2N

and boundary values

Bk+δ :=
[
jk+δ
L ; 0; . . . ; 0;−jk+δ

R

]
∈ R

2N .

5.7. Matrix Formulations for the RJ-Systems

For further examinations we switch to the variables Rk
l and Jk

l describing the
density r and the flux j. This transformation is done upon multiplying the lattice
Boltzmann systems (5.15) and (5.24) by nonsingular transformation matrices T ∈
R

2N,2N .

5.7.1. FD Lattice Boltzmann Schemes. In this section we consider the
systems belonging to the FD lattice Boltzmann schemes (5.1) and (5.2).

For periodic boundary conditions (5.5) on VCFD grids we use the new variables

P k := [Rk;Jk] := TW k with

Rk :=
[
Rk

0 ; . . . ;Rk
N−1

]
∈ R

N , Jk :=
[
Jk

0 ; . . . ;Jk
N−1

]
∈ R

N . (5.31)

A transformation of the basis results in the matrix equation

P k+1 = KP k + τGk (5.32)

with K := TMT−1 and Gk := [fk; gk] := TF k, where the transformation matrix
T ∈ R

2N,2N is defined by

T :=




1 1
1 1

. . .

1 1
1 1

−1 1
1 −1

. . .

1 −1
1 −1




. (5.33)

Then the time evolution matrix K is of block form. We obtain

K =
1

2

[
A θD

−D −θA

]
, (5.34)
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where we define θ := 2ω − 1. The submatrices A ∈ R
N,N and D ∈ R

N,N are given
by

A :=




0 1 1
1 0 1

. . .

1 0 1
1 1 0



, D :=




0 1 −1
−1 0 1

. . .

−1 0 1
1 −1 0



. (5.35)

Furthermore, we get the transformed right hand sides

fk =
1

2

[
F k

N−1,+ + F k
1,−;F k

0,+ + F k
2,−; . . . ;F k

N−2,+ + F k
N,−
]
∈ R

N ,

gk =
1

2

[
F k

N−1,+ − F k
1,−;F k

0,+ − F k
2,−; . . . ;F k

N−2,+ − F k
N,−
]
∈ R

N .

(5.36)

On VCFD grids with density, flux or inflow boundary conditions we have to incor-
porate the boundary values in the form

P k :=
[
Rk;Jk

]
:= TW k + Qk.

Hence, we get the matrix equation

P k+1 = KP k + Ck + Qk+1 − KQk + τGk (5.37)

with K := TMT−1 and Gk := [fk; gk] := TF k. Furthermore, we use Qk :=

[pk; qk] and Ck := [ck;dk] := TBk.
For density boundary conditions (5.6) on VCFD grids the transformation ma-

trix T ∈ R
2N,2N is defined by

T :=




1 1
. . .

1 1
1 1

−2
1 −1

. . .

1 −1
1 −1

2




. (5.38)

We get the new variables

Rk =
[
Rk

1 ; . . . ;Rk
N−1

]
∈ R

N−1, Jk =
[
Jk

0 ; . . . ;Jk
N

]
∈ R

N+1, (5.39)

using

pk :=
[
0; . . . ; 0

]
∈ R

N−1, qk :=
[
rk
L; 0; . . . ; 0;−rk

R

]
∈ R

N+1.

The time evolution matrix K then reads

K =
1

2

[
A θD

−E −θB

]
(5.40)
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with θ := 2ω − 1 and A ∈ R
N−1,N−1, B ∈ R

N+1,N+1, D ∈ R
N−1,N+1 and

E ∈ R
N+1,N−1 given by

A :=




0 1
1 0 1

. . .

1 0 1
1 0



, D :=




−1 0 1
−1 0 1

. . .

−1 0 1
−1 0 1



,

(5.41)

E :=




2
0 1

−1 0 1
. . .

−1 0 1
−1 0

−2




, B :=




0 2
1 0 1

1 0 1
. . .

1 0 1
1 0 1

2 0




.

The right hand sides take the form

fk =
1

2

[
F k

0,+ + F k
2,−;F k

1,+ + F k
3,−; . . . ;F k

N−2,+ + F k
N,−
]
∈ R

N−1,

gk =
1

2

[
− 2F k

1,−;F k
0,+ − F k

2,−;F k
1,+ − F k

3,−; . . . ;F k
N−2,+ − F k

N,−; 2F k
N−1,+

]
∈ R

N+1

(5.42)

and

ck = (1 − ω)
[
rk
L; 0; . . . ; 0; rk

R

]
∈ R

N−1,

dk = (1 − ω)
[
0; rk

L; 0; . . . ; 0;−rk
R; 0

]
∈ R

N+1.

For flux boundary conditions (5.8) on VCFD grids the transformation matrix
T ∈ R

2N,2N is defined by

T :=




2
1 1

. . .

1 1
1 1

2
1 −1

. . .

1 −1
1 −1




. (5.43)

We get the new variables

Rk =
[
Rk

0 ; . . . ;Rk
N

]
∈ R

N+1, Jk =
[
Jk

1 ; . . . ;Jk
N−1

]
∈ R

N−1, (5.44)

using

pk :=
[
jk
L; 0; . . . ; 0;−jk

R

]
∈ R

N+1, qk :=
[
0; . . . ; 0

]
∈ R

N−1.

The time evolution matrix K now reads

K =
1

2

[
B θE

−D −θA

]
(5.45)
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with θ := 2ω − 1 and A ∈ R
N−1,N−1, B ∈ R

N+1,N+1, D ∈ R
N−1,N+1 and

E ∈ R
N+1,N−1 given in (5.41). We find the right hand sides

fk =
1

2

[
2F k

1,−;F k
0,+ + F k

2,−;F k
1,+ + F k

3,−; . . . ;F k
N−2,+ + F k

N,−; 2F k
N−1,+

]
∈ R

N+1,

gk =
1

2

[
F k

0,+ − F k
2,−;F k

1,+ − F k
3,−; . . . ;F k

N−2,+ − F k
N,−
]
∈ R

N−1

(5.46)

and

ck = (1 − ω)
[
0; jk

L; 0; . . . ; 0;−jk
R; 0

]
∈ R

N+1,

dk = (1 − ω)
[
jk
L; 0; . . . ; 0; jk

R

]
∈ R

N−1.

For inflow boundary conditions (5.10) on VCFD grids the transformation ma-
trix T ∈ R

2N,2N is defined by

T :=




1
1 1

. . .

1 1
1 1

1
1 −1

. . .

1 −1
1 −1




. (5.47)

We get the new variables

Rk =
[
Rk

0 ; . . . ;Rk
N

]
∈ R

N+1, Jk =
[
Jk

1 ; . . . ;Jk
N−1

]
∈ R

N−1, (5.48)

using

pk :=
[
uk

L; 0; . . . ; 0; vk
R

]
∈ R

N+1, qk :=
[
0; . . . ; 0

]
∈ R

N−1.

The time evolution matrix K then reads

K =
1

2

[
A θD

−E −θB

]
(5.49)

with θ := 2ω − 1 and A ∈ R
N+1,N+1, B ∈ R

N−1,N−1, D ∈ R
N+1,N−1 and

E ∈ R
N−1,N+1 given by

A :=




0 1
2ω 0 1

1 0 1
. . .

1 0 1
1 0 2ω

1 0




, D :=




1
0 1

−1 0 1
. . .

−1 0 1
−1 0

−1




,

(5.50)

E :=




−2ω 0 1
−1 0 1

. . .

−1 0 1
−1 0 2ω



, B :=




0 1
1 0 1

. . .

1 0 1
1 0



.
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We find the right hand sides

fk =
1

2

[
F k

1,−;F k
0,+ + F k

2,−;F k
1,+ + F k

3,−; . . . ;F k
N−2,+ + F k

N,−;F k
N−1,+

]
∈ R

N+1,

gk =
1

2

[
F k

0,+ − F k
2,−;F k

1,+ − F k
3,−; . . . ;F k

N−2,+ − F k
N,−
]
∈ R

N−1

(5.51)

and

ck = (1 − ω)
[
0;uk

L; 0; . . . ; 0; vk
R; 0

]
∈ R

N+1,

dk = (1 − ω)
[
uk

L; 0; . . . , 0;−vk
R

]
∈ R

N−1.

On CCFD grids we use

P k :=
[
Rk;Jk

]
:= TW k.

Hence, we get the matrix equation

P k+1 = KP k + Ck+δ + τGk (5.52)

with K := TMT−1, Ck+δ := [ck+δ;dk+δ] := TBk+δ and Gk := [fk; gk] := TF k.
For the density boundary conditions (5.12) and for the flux boundary conditions
(5.13) we use the transformation matrix T ∈ R

2N,2N defined by

T :=




1 1
. . .

1 1
1 1

1 −1
. . .

1 −1
1 −1




. (5.53)

We get the unknowns

Rk =
[
Rk

1/2; . . . ;R
k
N−1/2

]
∈ R

N , Jk =
[
Jk

1/2; . . . ;J
k
N−1/2

]
∈ R

N . (5.54)

For density boundary conditions (5.12) on CCFD grids the time evolution ma-
trix K ∈ R

2N,2N reads

K =
1

2

[
A θD

−E −θB

]
(5.55)

with θ := 2ω − 1 and A,B,D,E ∈ R
N,N given by

A :=




−1 1
1 0 1

. . .

1 0 1
1 −1



, D :=




−1 1
−1 0 1

. . .

−1 0 1
−1 1



,

(5.56)

E :=




1 1
−1 0 1

. . .

−1 0 1
−1 −1



, B :=




1 1
1 0 1

. . .

1 0 1
1 1



.
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We find the right hand sides

fk =
1

2

[
− F k

1/2,− + F k
3/2,−;F k

1/2,+ + F k
5/2,−;F k

3/2,+ + F k
7/2,−; . . .

. . . ;F k
N−5/2,+ + F k

N−1/2,−;F k
N−3/2,+ − F k

N−1/2,+

]
∈ R

N ,

gk =
1

2

[
− F k

1/2,− − F k
3/2,−;F k

1/2,+ − F k
5/2,−;F k

3/2,+ − F k
7/2,−; . . .

. . . ;F k
N−5/2,+ − F k

N−1/2,−;F k
N−3/2,+ + F k

N−1/2,+

]
∈ R

N

(5.57)

and

ck+δ =
[
rk+δ
L ; 0; . . . , 0; rk+δ

R

]
∈ R

N , dk+δ =
[
rk+δ
L ; 0; . . . ; 0;−rk+δ

R

]
∈ R

N .

For flux boundary conditions (5.13) on CCFD grids the time evolution matrix
K ∈ R

2N,2N reads

K =
1

2

[
B θE

−D −θA

]
(5.58)

with θ := 2ω − 1 and A,B,D,E ∈ R
N,N given in (5.56). We find the right hand

sides

fk =
1

2

[
F k

1/2,− + F k
3/2,−;F k

1/2,+ + F k
5/2,−;F k

3/2,+ + F k
7/2,−; . . .

. . . ;F k
N−5/2,+ + F k

N−1/2,−;F k
N−3/2,+ + F k

N−1/2,+

]
∈ R

N ,

gk =
1

2

[
F k

1/2,− − F k
3/2,−;F k

1/2,+ − F k
5/2,−;F k

3/2,+ − F k
7/2,−; . . .

. . . ;F k
N−5/2,+ − F k

N−1/2,−;F k
N−3/2,+ − F k

N−1/2,+

]
∈ R

N

(5.59)

and

ck+δ = (1 − ω)
[
jk+δ
L ; 0; . . . ; 0;−jk+δ

R

]
∈ R

N ,

dk+δ = (1 − ω)
[
jk+δ
L ; 0; . . . ; 0; jk+δ

R

]
∈ R

N .

5.7.2. FV Lattice Boltzmann Schemes. In this section we examine the
discrete systems belonging to the FV lattice Boltzmann schemes (5.3) and (5.4).

While the variables Rk and Jk and their transformations remain unchanged in
comparison to the previous section, the time evolution matrix K and parts of the
right hand sides differ.

For periodic boundary conditions (5.5) on VCFV grids we use T as in (5.33).
We get the matrix equation (5.32) for the variables (5.31) with K given by

K =
1

2

[
A −(1 − ω)D

−D (1 − ω)A − 2ωIdN

]
(5.60)

with A ∈ R
N,N and D ∈ R

N,N given in (5.35). Furthermore, IdN denotes the
identity matrix in R

N,N . The transformed right hand sides are the same as in
(5.36).

On VCFV grids with density, flux or inflow boundary conditions we get the
matrix equation (5.37). For density boundary conditions (5.6) on VCFV grids we
use the transformation matrix T as in (5.38) and the variables (5.39). The time
evolution matrix K then reads

K =
1

2

[
A −(1 − ω)D

−E (1 − ω)B − 2ωIdN+1

]
(5.61)
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with A ∈ R
N−1,N−1, B ∈ R

N+1,N+1, D ∈ R
N−1,N+1 and E ∈ R

N+1,N−1 given in
(5.41). The right hand sides are given by (5.42) and

ck =
(
1 − ω

2

) [
rk
L; 0; . . . ; 0; rk

R

]
∈ R

N−1,

dk =
[
− ωrk

L;
(
1 − ω

2

)
rk
L; 0; . . . ; 0;−

(
1 − ω

2

)
rk
R;ωrk

R

]
∈ R

N+1.

For flux boundary conditions (5.8) on VCFV grids we use T ∈ R
2N,2N as in

(5.43) and the variables (5.44). The time evolution matrix K then reads

K =
1

2

[
B −(1 − ω)E

−D (1 − ω)A − 2ωIdN−1

]
(5.62)

with A ∈ R
N−1,N−1, B ∈ R

N+1,N+1, D ∈ R
N−1,N+1 and E ∈ R

N+1,N−1 given in
(5.41). We find the right hand sides given by (5.46) and

ck =
[
ωjk

L;
(
1 − ω

2

)
jk
L; 0; . . . ; 0;−

(
1 − ω

2

)
jk
R;−ωjk

R

]
∈ R

N+1,

dk =
(
1 − ω

2

) [
jk
L; 0; . . . ; 0; jk

R

]
∈ R

N−1.

For inflow boundary conditions (5.10) on VCFV grids we use T as in (5.47)
and the variables (5.48). The time evolution matrix K then reads

K =
1

2

[
A −(1 − ω)D

−E (1 − ω)B − 2ωIdN−1

]
(5.63)

with A ∈ R
N+1,N+1 and E ∈ R

N−1,N+1 given by

A :=




−ω 1
ω 0 1

1 0 1
. . .

1 0 1
1 0 ω

1 −ω




, E :=




−ω 0 1
−1 0 1

. . .

−1 0 1
−1 0 ω




and B ∈ R
N−1,N−1, D ∈ R

N+1,N−1 given in (5.50). We find the right hand sides
given in (5.51) and

ck =
[ω
2
uk

L;
(
1 − ω

2

)
uk

L; 0; . . . ; 0;
(
1 − ω

2

)
vk

R;
ω

2
vk

R

]
∈ R

N+1,

dk =
(
1 − ω

2

) [
uk

L; 0; . . . , 0;−vk
R

]
∈ R

N−1.

On CCFV grids we get the matrix equation (5.52). For the density boundary
conditions (5.12) and for the flux boundary conditions (5.14) we use the transfor-
mation matrix T defined by (5.53) and the variables (5.54).

For density boundary conditions (5.12) on CCFV grids the time evolution ma-
trix K ∈ R

2N,2N reads

K =
1

2

[
A −(1 − ω)D

−E (1 − ω)B − 2ωIdN

]
(5.64)

with A,B,D,E ∈ R
N,N given by (5.56). We find the right hand sides by (5.57)

and

ck+δ =
[
rk+δ
L ; 0; . . . ; 0; rk+δ

R

]
∈ R

N , dk+δ =
[
rk+δ
L ; 0; . . . ; 0;−rk+δ

R

]
∈ R

N .
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For flux boundary conditions (5.14) on CCFV grids the time evolution matrix
K ∈ R

2N,2N reads

K =
1

2

[
B −(1 − ω)E

−D (1 − ω)A − 2ωIdN

]
(5.65)

with A,B,D,E ∈ R
N,N given in (5.56). We find the right hand sides

fk =
1

2

[
F k

3/2,−;F k
1/2,+ + F k

5/2,−;F k
3/2,+ + F k

7/2,−; . . .

. . . ;F k
N−5/2,+ + F k

N−1/2,−;F k
N−3/2,+

]
∈ R

N ,

gk =
1

2

[
− F k

3/2,−;F k
1/2,+ − F k

5/2,−;F k
3/2,+ − F k

7/2,−; . . .

. . . ;F k
N−5/2,+ − F k

N−1/2,−;F k
N−3/2,+

]
∈ R

N

and

ck+δ =
[
jk+δ
L ; 0; . . . ; 0;−jk+δ

R

]
∈ R

N , dk+δ =
[
jk+δ
L ; 0; . . . ; 0; jk+δ

R

]
∈ R

N .

5.8. Reduction of the Boundary Values

As in the continuous case, boundary values have to be subtracted for the con-
sideration of stability properties and the usage of Fourier series.

For density boundary conditions (5.6) on VC grids we solve

−(K − Id2N )P k
B = Ck − (K − Id2N )Qk.

We take P k
B := [Rk

B ;Jk
B ] and we find in the VCFD case and in the VCFV case

Rk
B := rk

R

[
i

N

]

i=1,...,N−1

+ rk
L

[
N − i

N

]

i=1,...,N−1

∈ R
N−1,

Jk
B := − 1

2ω
(rk

R − rk
L)

[
1

N

]

i=0,...,N

∈ R
N+1.

(5.66)

With

Gk
LR := Gk − 1

τ
(P k+1

B − P k
B) +

1

τ
(Qk+1 − Qk) (5.67)

and P k
LR := P k − P k

B the system (5.37) transforms to

P k+1
LR = KP k

LR + τGk
LR. (5.68)

In the case of flux boundary conditions (5.8) on VC grids we observe that Ck

is not in the range of −(K − Id2N ). But for

v0 :=
[
[1]i=0,...,N ; [0]i=1,...,N−1

]
∈ R

2N

with −(K − Id2N )v0 = 0 and

Ck
0 := −(1 − ω)

jk
R − jk

L

N
v0 in the VCFD case,

Ck
0 := −j

k
R − jk

L

N
v0 in the VCFV case

we can solve

−(K − Id2N )P k
B = Ck − Ck

0 − (K − Id2N )Qk.
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With P k
B := [Rk

B ;Jk
B ] we find in the VCFD and in the VCFV case

Rk
B := −ωjk

R

[
i2

N

]

i=0,...,N

+ ωjk
L

[
(N − i)2

N

]

i=0,...,N

∈ R
N+1,

Jk
B := jk

R

[
i

N

]

i=1,...,N−1

+ jk
L

[
N − i

N

]

i=1,...,N−1

∈ R
N−1.

(5.69)

Now we get

P k+1
LR = KP k

LR + τGk
LR + Ck

0 , (5.70)

where Gk
LR is given in (5.67).

For inflow boundary conditions (5.10) on VC grids we solve

−(K − Id2N )P k
B = Ck − (K − Id2N )Qk.

We take P k
B := [Rk

B ;Jk
B ] and we find in the VCFD and the VCFV case

Rk
B := vk

R

[
1 + 2ωi

1 +Nω

]

i=0,...,N

+ uk
L

[
1 + 2ω(N − i)

1 +Nω

]

i=0,...,N

∈ R
N+1,

Jk
B := −(vk

R − uk
L)

[
1

1 +Nω

]

i=1,...,N−1

∈ R
N−1.

(5.71)

We find the equation (5.68), where Gk
LR is given in (5.67).

For density boundary conditions (5.12) on CC grids we solve

−(K − Id2N )P k
B = Ck.

We take P k
B := [Rk

B ;Jk
B ] and find in the VCFD and in the VCFV case

Rk
B := rk

R

[
2i− 1

2N

]

i=1,...,N

+ rk
L

[
2(N − i) + 1

2N

]

i=1,...,N

∈ R
N ,

Jk
B := − 1

2ω
(rk

R − rk
L)

[
1

N

]

i=1,...,N

∈ R
N .

(5.72)

With

Gk
LR := Gk − 1

τ
(P k+1

B − P k
B) +

1

τ
(Ck+δ − Ck) (5.73)

and P k
LR := P k − P k

B equation (5.52) transforms to (5.68).
In the case of flux boundary conditions (5.13) on CCFD grids and (5.14) on

CCFV grids we observe again that Ck is not in the range of −(K −Id2N ). But for

v0 :=
[
[1]i=1,...,N ; [0]i=1,...,N

]
∈ R

2N

with −(K − Id2N )v0 = 0 and

Ck
0 := −(1 − ω)

jk
R − jk

L

N
v0 in the VCFD case,

Ck
0 := −j

k
R − jk

L

N
v0 in the VCFV case

we can solve

−(K − Id2N )P k
B = Ck − Ck

0 .
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With P k
B := [Rk

B ;Jk
B ] we find in both cases

Rk
B := −ωjk

R

[
(2i− 1)2

4N

]

i=1,...,N

+ ωjk
L

[
(2(N − i) + 1)2

4N

]

i=1,...,N

∈ R
N ,

Jk
B := jk

R

[
2i− 1

2N

]

i=1,...,N

+ jk
L

[
2(N − i) + 1

2N

]

i=1,...,N

∈ R
N .

(5.74)

Now we obtain equation (5.70), where Gk
LR is given in (5.73).

5.9. Discrete Stability of the FD Lattice Boltzmann Solutions

In this section we consider solutions for the periodic problem on VCFD grids,
solutions for the density and flux problem on VCFD grids and CCFD grids, and
solutions for the inflow problem on VCFD grids. Stability can be proved directly
only for these schemes. We exploit the fact that in the periodic case K†K is a
diagonal matrix of a special structure. For the FV schemes this property lacks.

For vectors x = [xi]i and y = [yi]i ∈ R
K , K ∈ N, we define the scalar product

x · y :=

K∑

i=1

xiyi.

All vectors in this work are understood as column vectors. For h := |Ω|/K we
introduce the discrete L1-, L∞- and L2-norms

‖x‖1 :=

K∑

i=1

h|xi|, ‖x‖∞ := max
i=1,...,K

|xi|,

‖x‖2 :=

(
K∑

i=1

h|xi|2
)1/2

= (hx · x)
1/2

.

For a matrix N = [nij ]i,j ∈ R
K,L, K,L ∈ N, we define its transposed matrix

N † := [nji]i,j ∈ R
L,K . For L = K we define the spectral radius of N ∈ R

K,K

ρ(N) := max{|λ| : λ is an eigenvalue of N}
and we use the following matrixnorms

‖N‖2 :=

√
ρ(N †N),

‖N‖1 := max
j=1,...,K

K∑

i=1

|nij |,

‖N‖∞ := max
i=1,...,K

K∑

j=1

|nij |.

We have the following compatibilities

‖Nx‖l ≤ ‖N‖l‖x‖l for x ∈ R
K and l ∈ {1, 2,∞}.

For the FD lattice Boltzmann schemes in Section 5.6 we find by simple computations

‖M‖2 ≤ ‖M‖1 = ‖M‖∞ = 1.

Here, we used the estimate ρ(N) ≤ ‖N‖2 ≤
√

‖N‖1‖N‖∞ for all N ∈ R
K,K .

Hence, we can derive stability estimates in the discrete L1−, L2− or L∞−norm in
the variables Uk and V k. But if we switch to the variables Rk and Jk we find

‖K‖1 = 2, ‖K‖∞ = 2ω.
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Hence, we cannot directly prove stability estimates in the discrete L1− or L∞-norm
for ω ≥ 1/2.

In the periodic case (5.5) and for density boundary conditions (5.12) or flux
boundary conditions (5.13) on CCFD grids we find

K†K = diag2N (1, . . . , 1, θ2, . . . , θ2)

with θ := 2ω − 1. So we have ‖K‖2 = 1. Here, diagK(d1, . . . , dK) ∈ R
K,K is a

diagonal matrix with the diagonal entries d1, . . . , dK .
The solution of the lattice Boltzmann systems (5.68) and (5.70) can be repre-

sented by

P k = KkP 0 +

k−1∑

l=0

τKk−1−lGl +

k−1∑

l=0

Cl
0 ,

where we omit the indices LR and the last expression only appears in the flux case.
Hence, we get estimates of the form

‖Rk‖2 + ‖Jk‖2 ≤
√

2
(
‖Rk‖2

2 + ‖Jk‖2
2

)1/2

=
(
2hP k · P k

)1/2

≤
√

2
(
‖R0‖2

2 + ‖J0‖2
2

)1/2
+
√

2

k−1∑

l=0

τ
(
‖f l‖2

2 + ‖gl‖2
2

)1/2

≤
√

2

(
‖R0‖2 + ‖J0‖2 +

k−1∑

l=0

τ‖f l‖2 +
k−1∑

l=0

τ‖gl‖2

)
.

For flux boundary conditions (5.13) on CCFD grids we have to add the bounded
expression

(1 − ω)
γ√
|Ω|

k−1∑

l=0

τ
|jl

R − jl
L|

h

to the right hand side of the estimate. An analogous expression does not appear in
the continuous case (confer Lemma 3.1) .

We shall see that in the general case we have to adapt the choice of the discrete
norms to the underlying grid situation. For density, flux or inflow boundary con-
ditions on VCFD grids we observe that K†K is not diagonal and that in the first
two cases there are two eigenvalues larger than 1. Hence, we have ‖K‖2 > 1. But
in all three cases we can find diagonal matrices H ∈ R

2N,2N with positive elements
such that K†HK is a diagonal matrix with positive elements. The choice of H

implies the discrete norms that have to be applied to prove discrete stability for
the given schemes.

In the periodic case or on CCFD grids we define the discrete norms for R,J ∈
R

N by

‖R‖2 := (hR · R)
1/2

, ‖J‖2 := (hJ · J)
1/2

(5.75)

with h := |Ω|/N .
For density or flux boundary conditions on VCFD grids we use

d := diagN+1(1/2, 1, . . . , 1, 1/2) ∈ R
N+1,N+1. (5.76)

For density boundary conditions (5.6) on VCFD grids we define for R ∈ R
N−1 and

J ∈ R
N+1

‖R‖2 := (hR · R)
1/2

, ‖J‖2 := (hJ · dJ)
1/2

. (5.77)
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For flux boundary conditions (5.8) on VCFD grids we define for R ∈ R
N+1 and

J ∈ R
N−1

‖R‖2 := (hR · dR)
1/2

, ‖J‖2 := (hJ · J)
1/2

. (5.78)

For inflow boundary conditions (5.10) on VCFD grids we use

e := diagN+1(2, 1, . . . , 1, 2) ∈ R
N+1,N+1, (5.79)

and we define for R ∈ R
N+1 and J ∈ R

N−1

‖R‖2 := (hR · eR)
1/2

, ‖J‖2 := (hJ · J)
1/2

. (5.80)

In all situations we choose h := |Ω|/N .
Now we find

Theorem 5.1. Let [Rl;J l], l = 0, . . . ,M − 1, be the solution of
[
Rk+1

Jk+1

]
=

1

2

[
A1 D1

D2 A2

] [
Rk

Jk

]
+ τ

[
fk

0

gk
0

]
for k = 0, . . . ,M − 1. (5.81)

Let the discrete norms be defined by

‖R‖2 := (hR · d1R)
1/2

, ‖J‖2 := (hJ · d2J)
1/2

with symmetric and positive definite matrices d1 and d2 of appropriate sizes. We
assume equivalence of the norms, that is,

R · R ≤ cR · d1R ≤ CR · R,
J · J ≤ dJ · d2J ≤ DJ · J ,

and

h

4

[
R

J

]
·
[
A

†
1 D

†
2

D
†
1 A

†
2

] [
d1

d2

] [
A1 D1

D2 A2

] [
R

J

]
≤ ‖R‖2

2 + θ2‖J‖2
2

for h := |Ω|/N , c, C, d,D > 0 and θ := 2ω − 1. Then we have

‖Rk‖2
2 + ‖Jk‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

l=0

τ‖J l‖2
2

≤ 2‖R0‖2
2 + 2‖J0‖2

2 + 2τ

k−1∑

l=0

τ‖f l
0‖2

2 + 2τ

k−1∑

l=0

τ‖gl
0‖2

2 (5.82)

+ 5c2tk

k−1∑

l=0

τ‖f l
∗‖2

2 +
d2

ω(1 − ω)
τ

k−1∑

l=0

τ‖gl
∗‖2

2 ,

where we use

fk
∗ :=

1

2
A

†
1d1f

k
0 +

1

2
D

†
2d2g

k
0 ,

gk
∗ :=

1

2
D

†
1d1f

k
0 +

1

2
A

†
2d2g

k
0 .

Proof. Multiply (5.81) by

h

[
Rk+1

Jk+1

]
·
[
d1

d2

]

We gain

‖Rk+1‖2
2 + ‖Jk+1‖2

2 ≤ ‖Rk‖2
2 + θ2‖Jk‖2

2 + τ2‖fk
0‖2

2 + τ2‖gk
0‖2

2

+ 2hτRk · fk
∗ + 2hτJk · gk

∗.
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By observing θ2 = 1 − 4ω(1 − ω) and

2hτJk · gk
∗ ≤ 2dτ‖Jk‖2‖gk

∗‖2 ≤ 2ω(1 − ω)‖Jk‖2
2 +

d2

2ω(1 − ω)
τ2‖gk

∗‖2
2

we get

‖Rk+1‖2
2 + ‖Jk+1‖2

2 + 2ω(1 − ω)‖Jk‖2
2

≤‖Rk‖2
2 + ‖Jk‖2

2 + τ2‖fk
0‖2

2 + τ2‖gk
0‖2

2

+
d2

2ω(1 − ω)
τ2‖gk

∗‖2
2 + 2cτ‖Rk‖2‖fk

∗‖2.

Summation over the time intervals renders

‖Rk‖2
2 + ‖Jk‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

l=0

τ‖J l‖2
2

≤‖R0‖2
2 + ‖J0‖2

2 + τ
k−1∑

l=0

τ‖f l
0‖2

2 + τ
k−1∑

l=0

τ‖gl
0‖2

2 (5.83)

+
d2

2ω(1 − ω)
τ

k−1∑

l=0

τ‖gl
∗‖2

2 + 2c

(
k−1∑

l=0

τ‖Rl‖2
2

)1/2(k−1∑

l=0

τ‖f l
∗‖2

2

)1/2

.

We apply a Gronwall-like argument. We gain

‖Ri‖2
2 ≤ 2c

(
k−1∑

l=0

τ‖Rl‖2
2

)1/2(k−1∑

l=0

τ‖f l
∗‖2

2

)1/2

+ S2 for i = 0, . . . , k,

where S2 consists of all the unmentioned terms of the right hand side in (5.83).
Adding up these terms, we get

k−1∑

l=0

τ‖Rl‖2
2 ≤ 2ctk

(
k−1∑

l=0

τ‖Rl‖2
2

)1/2(k−1∑

l=0

τ‖f l
∗‖2

2

)1/2

+ tkS
2.

This yields

(
k−1∑

l=0

τ‖Rl‖2
2

)1/2

≤ 2ctk

(
k−1∑

l=0

τ‖f l
∗‖2

2

)1/2

+ t
1/2
k S.

By inserting this expression into (5.83), we end up with the estimate (5.82). �

The discrete stability estimate (5.82) in Theorem 5.1 is the discrete counterpart
of the a priori estimate in Lemma 3.1.

In the next step we apply the result of Theorem 5.1 to the different grid and
boundary situations. For the boundary value problems we assume reduced bound-
ary conditions with appropriately adapted right hand sides (see Section 5.8).

Corollary 5.2. In the case of periodic boundary conditions (5.5) on VCFD
grids with A1 = A, A2 = −θA, D1 = θD and D2 = −D with A and D given in
(5.35) we use fk

0 := fk and gk
0 := gk given in (5.36). We find

1

4

[
A θD

−D −θA

]† [
A θD

−D −θA

]
=

[
IdN

θ2IdN

]
.
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So we can apply (5.82) with d1 = d2 = IdN and the discrete norms (5.75) with
c = d = 1. We get

fk
∗ =

1

2
[F k

0,− + F k
0,+; . . . ;F k

N,− + F k
N,+],

gk
∗ =

θ

2
[F k

0,− − F k
0,+; . . . ;F k

N,− − F k
N,+].

Hence, the solutions of the VCFD lattice Boltzmann equations (5.1) with periodic
boundary conditions (5.5) are stable.

Corollary 5.3. In the case of density boundary conditions (5.6) on VCFD
grids with A1 = A, A2 = −θB, D1 = θD and D2 = −E with A, B, D and E

given in (5.41) we use

fk
0 := fk − 1

τ
(Rk+1

B − Rk
B),

gk
0 := gk − 1

τ
(Jk+1

B − Jk
B) +

1

τ
(rk+1

L − rk
L)e1 −

1

τ
(rk+1

R − rk
R)eN+1,

with fk, gk given in (5.42) and Rk
B, Jk

B as in (5.66). We find

1

4

[
A θD

−E −θB

]† [
IdN−1

d

] [
A θD

−E −θB

]
=

[
IdN−1

θ2d

]

with d := diagN+1(1/2, 1, . . . , 1, 1/2). So we can apply (5.82) with d1 = IdN−1 and

d2 = d to Rk
LR and Jk

LR with the discrete norms (5.77) and c = 1 and d = 2. We
get

fk
∗ =

1

2
[F k

1,− + F k
1,+; . . . ;F k

N−1,− + F k
N−1,+] − 1

τ
(Rk+1

B − Rk
B),

gk
∗ =

θ

2
[−F k

0,+;F k
1,− − F k

1,+; . . . ;F k
N−1,− − F k

N−1,+;F k
N,−]

− θ2

τ
d(Jk+1

B − Jk
B) +

θ

2τ
(rk+1

L − rk
L)e1 −

θ

2τ
(rk+1

R − rk
R)eN+1.

Hence, the solutions of the VCFD lattice Boltzmann equations (5.1) with density
boundary conditions (5.6) are stable.

Corollary 5.4. In the case of flux boundary conditions (5.8) on VCFD grids
with A1 = B, A2 = −θA, D1 = θE and D2 = −D with A, B, D and E given
in (5.41) we use

fk
0 := fk − 1

τ
(Rk+1

B − Rk
B) − 1

τ

jk
R − jk

L

N
(1 − ω)[1; . . . ; 1]

+
1

τ
(jk+1

L − jk
L)e1 −

1

τ
(jk+1

R − jk
R)eN+1,

gk
0 := gk − 1

τ
(Jk+1

B − Jk
B),

with fk, gk given in (5.46) and Rk
B, Jk

B as in (5.69). We find

1

4

[
B θE

−D −θA

]† [
d

IdN−1

] [
B θE

−D −θA

]
=

[
d

θ2IdN−1

]

with d := diagN+1(1/2, 1, . . . , 1, 1/2). So we can apply (5.82) with d1 = d and

d2 = IdN−1 to Rk
LR and Jk

LR with the discrete norms (5.78) and c = 2 and d = 1.
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We get

fk
∗ =

1

2
[F k

0,+;F k
1,− + F k

1,+; . . . ;F k
N−1,− + F k

N−1,+;F k
N,−] − 1

τ
d(Rk+1

B − Rk
B)

− 1 − ω

τ

jk+1
R − jk+1

L

N
[1/2; 1; . . . ; 1; 1/2]

+
θ

2τ
(jk+1

L − jk
L)e1 −

θ

2τ
(jk+1

R − jk
R)eN+1,

gk
∗ =

θ

2
[F k

1,− − F k
1,+; . . . ;F k

N−1,− − F k
N−1,+] − θ2

τ
(Jk+1

B − Jk
B).

Hence, the solutions of the VCFD lattice Boltzmann equations (5.1) with flux bound-
ary conditions (5.8) are stable.

Corollary 5.5. In the case of inflow boundary conditions (5.10) on VCFD
grids with A1 = A, A2 = −θB, D1 = θD and D2 = −E with A, B, D and E

given in (5.50) we use

fk
0 := fk − 1

τ
(Rk+1

B − Rk
B) +

1

τ
(uk+1

L − uk
L)e1 +

1

τ
(vk+1

R − vk
R)eN+1,

gk
0 := gk − 1

τ
(Jk+1

B − Jk
B),

with fk, gk given in (5.51) and Rk
B, Jk

B as in (5.71). We find

1

4

[
A θD

−E −θB

]† [
e

IdN−1

] [
A θD

−E −θB

]
=

[
f

θ2IdN−1

]

with e := diagN+1(2, 1, . . . , 1, 2) and f := diagN+1(2ω
2, 1, . . . , 1, 2ω2). So we can

apply (5.82) with d1 = e and d2 = IdN−1 to Rk
LR and Jk

LR with the discrete norms
(5.80) and c = 1 and d = 1. In addition we can add the outflow values

2(1 − ω2)
h

τ

k−1∑

l=0

τ
(
|U l

N |2 + |V l
0 |2
)

to the right hand side of the stability estimate (5.82). This is in accordance with
the continuous case (confer Lemma 3.1). We get

fk
∗ =

1

2
[2ωF k

0,+;F k
1,− + F k

1,+; . . . , F k
N−1,− + F k

N−1,+; 2ωF k
N,−]

− 1

τ
diagN+1(0, 1, . . . , 1, 0)(Rk+1

B − Rk
B)

− 2ω

τ

(
ω

1 +Nω
(vk+1

R − vk
R) +

1 + (N − 1)ω

1 +Nω
(uk+1

L − uk
L)

)
e1

− 2ω

τ

(
1 + (N − 1)ω

1 +Nω
(vk+1

R − vk
R) +

ω

1 +Nω
(uk+1

L − uk
L)

)
eN+1,

gk
∗ =

θ

2
[F k

1,− − F k
1,+; . . . ;F k

N−1,− − F k
N−1,+] − θ2

τ
(Jk+1

B − Jk
B).

Hence, the solutions of the VCFD lattice Boltzmann equations (5.1) with inflow
boundary conditions (5.10) are stable.

Corollary 5.6. In the case of density boundary conditions (5.12) on CCFD
grids with A1 = A, A2 = −θB, D1 = θD and D2 = −E with A, B, D and E

given in (5.56) we use

fk
0 := fk − 1

τ
(Rk+1

B − Rk
B) +

1

τ
(rk+δ

L − rk
L)e1 +

1

τ
(rk+δ

R − rk
R)eN ,

gk
0 := gk − 1

τ
(Jk+1

B − Jk
B) +

1

τ
(rk+δ

L − rk
L)e1 −

1

τ
(rk+δ

R − rk
R)eN ,



76 5. LATTICE BOLTZMANN SCHEMES

with fk, gk given in (5.57) and Rk
B, Jk

B as in (5.72). We find

1

4

[
A θD

−E −θB

]† [
A θD

−E −θB

]
=

[
IdN

θ2IdN

]
.

So we can apply (5.82) with d1 = d2 = IdN to Rk
LR and Jk

LR with the discrete
norms (5.75) and c = 1 and d = 1. We get

fk
∗ =

1

2
[F k

1/2,− + F k
1/2,+; . . . ;F k

N−1/2,− + F k
N−1/2,+] − 1

τ
(Rk+1

B − Rk
B)

+
1

τ
(rk+1

L − rk+δ
L )e1 +

1

τ
(rk+1

R − rk+δ
R )eN ,

gk
∗ =

θ

2
[F k

1/2,− − F k
1/2,+; . . . ;F k

N−1/2,− − F k
N−1/2,+] − θ2

τ
(Jk+1

B − Jk
B)

+
θ

τ
(rk+1

L − rk+δ
L )e1 −

θ

τ
(rk+1

R − rk+δ
R )eN .

Hence, the solutions of the CCFD lattice Boltzmann equations (5.2) with density
boundary conditions (5.12) are stable.

Corollary 5.7. In the case of flux boundary conditions (5.13) on CCFD grids
with A1 = B, A2 = −θA, D1 = θE and D2 = −D with A, B, D and E given
in (5.56) we use

fk
0 := fk − 1

τ
(Rk+1

B − Rk
B) − 1 − ω

τ

jk
R − jk

L

N
[1; . . . ; 1]

+
1 − ω

τ
(jk+δ

L − jk
L)e1 −

1 − ω

τ
(jk+δ

R − jk
R)eN ,

gk
0 := gk − 1

τ
(Jk+1

B − Jk
B)

+
1 − ω

τ
(jk+δ

L − jk
L)e1 +

1 − ω

τ
(jk+δ

R − jk
R)eN ,

with fk, gk given in (5.59) and Rk
B, Jk

B as in (5.74). We find

1

4

[
B θE

−D −θA

]† [
B θE

−D −θA

]
=

[
IdN

θ2IdN

]
.

So we can apply (5.82) with d1 = d2 = IdN to Rk
LR and Jk

LR with the discrete
norms (5.75) and c = 1 and d = 1. We get

fk
∗ =

1

2
[F k

1/2,− + F k
1/2,+; . . . ;F k

N−1/2,− + F k
N−1/2,+] − 1

τ
(Rk+1

B − Rk
B)

− 1 − ω

τ

jk+1
R − jk+1

L

N
[1; . . . ; 1]

− 1 − ω

τ
(jk+1

L − jk+δ
L )e1 +

1 − ω

τ
(jk+1

R − jk+δ
R )eN ,

gk
∗ =

θ

2
[F k

1/2,− − F k
1/2,+; . . . ;F k

N−1/2,− − F k
N−1/2,+] − θ2

τ
(Jk+1

B − Jk
B)

− 1 − ω

τ
θ(jk+1

L − jk+δ
L )e1 −

1 − ω

τ
θ(jk+1

R − jk+δ
R )eN .

Hence, the solutions of the CCFD lattice Boltzmann equations (5.2) with flux bound-
ary conditions (5.13) are stable.

For the FV lattice Boltzmann schemes in Section 5.6 we find

‖M‖1 = ‖M‖∞ = 1 + ω > 1, ‖K‖1 = ‖K‖∞ = 2.

Yet we have not found a symmetric and positive definite matrix H such that
K†HK is a diagonal matrix, as in the FD case. Hence, the stability considerations
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have to be postponed until the examination of the discrete Fourier solutions of the
underlying problems.

5.10. Discrete Fourier Solutions for the FD Lattice Boltzmann Schemes

For the computation of discrete Fourier solutions we consider orthonormal bases
in R

2N . We define the scaled grid points yi := πi/N for i = 0, . . . , N and the
intermediate scaled grid points yi−1/2 := π(2i − 1)/(2N) for i = 1, . . . , N . For
N = 2n− 1 or N = 2n we introduce

S̃
0

c :=
1√
2N

[[
1
1

]]

i=1,...,N

, T̃
0

c :=
1√
2N

[[
1

−1

]]

i=1,...,N

,

S̃
l

c :=
1√
N

[[
cos(2lyi−1/2)
cos(2lyi−1/2)

]]

i=1,...,N

, T̃
l

s :=
1√
N

[[
sin(2lyi−1/2)

− sin(2lyi−1/2)

]]

i=1,...,N

,

(5.84)
S̃

l

s :=
1√
N

[[
sin(2lyi−1/2)
sin(2lyi−1/2)

]]

i=1,...,N

, T̃
l

c :=
1√
N

[[
cos(2lyi−1/2)

− cos(2lyi−1/2)

]]

i=1,...,N

,

for l = 1, . . . , n− 1.

For even N = 2n we add the two basis vectors

S̃
n

s :=
1√
2N

[[
(−1)i+1

(−1)i+1

]]

i=1,...,N

, T̃
n

s :=
1√
2N

[[
(−1)i+1

−(−1)i+1

]]

i=1,...,N

.

The column vectors above are composed by the indicated 2-by-1 blocks in sequence.
Using these vectors we define an orthogonal matrix S ∈ R

2N,2N with S†S = Id2N

by

S := [S̃
0

c , S̃
1

c , T̃
1

s, . . . , S̃
n−1

c , T̃
n−1

s , T̃
n

s ,

T̃
0

c , S̃
1

s, T̃
1

c , . . . , S̃
n−1

s , T̃
n−1

c , S̃
n

s ], if N = 2n,
(5.85)

S := [S̃
0

c , S̃
1

c , T̃
1

s, . . . , S̃
n−1

c , T̃
n−1

s ,

T̃
0

c , S̃
1

s, T̃
1

c , . . . , S̃
n−1

s , T̃
n−1

c ], if N = 2n− 1.

Furthermore, we define for ω ∈ (0, 1)

αl := (1 − ω) sin(2yl), βl := (1 − ω) cos(2yl), Vl :=
√
ω2 − α2

l (5.86)

for l = 1, . . . , n − 1. For ω ∈ [1/2, 1), we find that Vl is a real number for all
l = 1, . . . , n − 1. For ω < 1/2, the Vl are real for small values of l and for values
close to n. For values in between, the Vl are imaginary.

We find that S†MS is a block-diagonal matrix with diagonal elements ±1 and
±θ (θ = 2ω − 1) and with the 2-by-2 blocks

[
βl + ω αl

−αl βl − ω

]
,

[
βl + ω −αl

αl βl − ω

]
for l = 1, . . . , n− 1

on the diagonal. Here, M is the time evolution matrix given in (5.16), belong-
ing to the VCFD lattice Boltzmann equations (5.1) subject to periodic boundary
conditions (5.5). The eigenvalues of M are found to read

λ+
0 = 1, λ−0 = −θ,
λ+

l = βl + Vl,

λ−l = βl − Vl,

}
for l = 1, . . . , n− 1, (5.87)

λ+
n = θ, λ−n = −1 if N = 2n.

See Figure 5.3 for the cases ω > 1/2 and ω = 1/2. Furthermore, we get the
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Figure 5.3. Eigenvalues of M and K in the periodic VCFD case
for ω = 0.5, ω = 0.7 and N = 50.

eigenvectors of M in the form

Ṽ
0

+ := S̃
0

c , W̃
0

− := T̃
0

c ,

Ṽ
l

+ := αlS̃
l

c − (ω − Vl)T̃
l

s,

Ṽ
l

− := αlS̃
l

c − (ω + Vl)T̃
l

s,

W̃
l

+ := αlS̃
l

s + (ω − Vl)T̃
l

c,

W̃
l

− := αlS̃
l

s + (ω + Vl)T̃
l

c,





for l = 1, . . . , n− 1,

Ṽ
n

− := T̃
n

s , W̃
n

+ := S̃
n

s , if N = 2n,

with

MṼ
0

+ = λ+
0 Ṽ

0

+,

MṼ
l

+ = λ+
l Ṽ

l

+,

MṼ
l

− = λ−l Ṽ
l

−,

MṼ
n

− = λ−n Ṽ
n

−,

MW̃
0

− = λ−n W̃
0

−,

MW̃
l

+ = λ+
l W̃

l

+,

MW̃
l

− = λ−l W̃
l

−,

}
for l = 1, . . . , n− 1,

MW̃
n

+ = λ+
n W̃

n

+ if N = 2n.

As Vl turns imaginary for ω < 1/2 for some values of l, the corresponding eigenval-
ues and eigenvectors turn complex. See Figure 5.4 for the case ω < 1/2. For l ≤ l∗

and l ≥ n− l∗ with l∗ := ⌊N arcsin(ω/(1− ω))/(2π)⌋, the eigenvalues are real. For
the remaining values of l, the eigenvalues are located on a circle in the complex
plane with midpoint 0 and radius

√
1 − 2ω.
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Figure 5.4. Eigenvalues of M and K in the periodic VCFD case
for ω = 0.4 and N = 80.

The eigenvectors are not orthogonal, especially we see for ω ≥ 1/2

Ṽ
l

+ · Ṽ l

− = 2α2
l , W̃

l

+ · W̃
l

− = 2α2
l for l = 1, . . . , n− 1.

For further examinations we introduce an orthonormal basis in R
N . For even

N = 2n we use

t̃
0

:=
1√
N

[1]i=0,...,N−1 , t̃
n

:=
1√
N

[
(−1)i

]
i=0,...,N−1

,

(5.88)

s̃
l :=

√
2

N
[sin(2lyi)]i=0,...,N−1 , t̃

l
:=

√
2

N
[cos(2lyi)]i=0,...,N−1 ,

for l = 1, . . . , n− 1.

For odd N = 2n− 1 we omit the vector t̃
n
.

Employing the orthogonal transformation via T̃ := T /
√

2 with T as in (5.33),
we get the eigenvectors of K (given in (5.34)) in the form

P̃
0

+ := T̃ Ṽ
0

+ =

[
t̃
0

0

]
, Q̃

0

− := T̃ W̃
0

− =

[
0

−t̃
0

]
,

P̃
l

+ := T̃ Ṽ
l

+ =

[
(αl cos(yl) − (ω − Vl) sin(yl)) t̃

l

(αl sin(yl) + (ω − Vl) cos(yl)) s̃
l

]
,

P̃
l

− := T̃ Ṽ
l

− =

[
(αl cos(yl) − (ω + Vl) sin(yl)) t̃

l

(αl sin(yl) + (ω + Vl) cos(yl)) s̃
l

]
,

(5.89)

Q̃
l

+ := T̃ W̃
l

+ =

[
(αl cos(yl) − (ω − Vl) sin(yl)) s̃

l

− (αl sin(yl) + (ω − Vl) cos(yl)) t̃
l

]
,

Q̃
l

− := T̃ W̃
l

− =

[
(αl cos(yl) − (ω + Vl) sin(yl)) s̃

l

− (αl sin(yl) + (ω + Vl) cos(yl)) t̃
l

]
,

P̃
n

− := T̃ Ṽ
n

− =

[
t̃
n

0

]
, Q̃

n

+ := T̃ W̃
n

+ =

[
0

−t̃
n

]
, if N = 2n

with the same eigenvalues as for M . If there is a l with (1 − ω) sin(2yl) = ω for
ω ≤ 1/2, that is, Vl = 0, then the rank of the presented eigenvalues is only 2N − 2
(for ω = 1/2 and N = 4m, m ∈ N, or ω < 1/2 and N = 2n − 1) or 2N − 4 (for
ω < 1/2 and N = 2n). In the latter case we get Vl = Vn−l = 0, and hence, we have
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to consider l and n− l. In all these cases we use in addition

P̃
l

J :=
1

2

[
(sin(yl) + cos(yl)) t̃

l

(sin(yl) − cos(yl)) s̃
l

]
, Q̃

l

J :=
1

2

[
(sin(yl) + cos(yl)) s̃

l

− (sin(yl) − cos(yl)) t̃
l

]

with (K − βlId)P̃
l

J = P̃
l

+ = P̃
l

− and (K − βlId)Q̃
l

J = Q̃
l

+ = Q̃
l

−. This renders

two Jordan blocks of length two belonging to the eigenvalue λ+
l = λ−l = βl. In the

case ω = 1/2 and N = 4m we find

K

[
t̃
m

0

]
=

[
0

s̃
m

]
=
√

2P̃
m

+ =
√

2P̃
m

− , K2

[
t̃
m

0

]
= 0,

K

[
s̃

m

0

]
=

[
0

−t̃
m

]
=
√

2Q̃
m

+ =
√

2Q̃
m

− , K2

[
s̃

m

0

]
= 0.

For l = 1, . . . , n− 1, we define

γ±l := αl cos(yl) − (ω ∓ Vl) sin(yl) = (2(1 − ω) cos2(yl) − (ω ∓ Vl)) sin(yl),

δ±l := αl sin(yl) + (ω ∓ Vl) cos(yl) = (2(1 − ω) sin2(yl) + (ω ∓ Vl)) cos(yl),

and for l = 0, . . . , n, we use

S̃
l

D :=

[
s̃

l

0

]
, S̃

l

N :=

[
0

s̃
l

]
, T̃

l

N :=

[
t̃
l

0

]
, T̃

l

D :=

[
0

t̃
l

]
. (5.90)

Basis transformations are then given by

P̃
l

+ = γ+
l T̃

l

N + δ+l S̃
l

N , P̃
l

− = γ−l T̃
l

N + δ−l S̃
l

N ,
(5.91)

Q̃
l

+ = γ+
l S̃

l

D − δ+l T̃
l

D, Q̃
l

− = γ−l S̃
l

D − δ−l T̃
l

D,

and

S̃
l

N =
−γ−l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

+ +
γ+

l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

−,

T̃
l

N =
δ−l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

+ − δ+l
γ+

l δ
−
l − γ−l δ

+
l

P̃
l

−,

S̃
l

D =
δ−l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

+ − δ+l
γ+

l δ
−
l − γ−l δ

+
l

Q̃
l

−,

T̃
l

D =
γ−l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

+ − γ+
l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

−

(5.92)

for l = 1, . . . , n− 1. Furthermore, we find

γ+
l δ

−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1

2
(1 +Al),

γ+
l γ

−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1 − 2ω

2ω
Bl,

(5.93)
−γ−l δ+l

γ+
l δ

−
l − γ−l δ

+
l

=
1

2
(1 −Al),

δ+l δ
−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1

2ω
Bl,

where we use the definitions

Al :=
ω

Vl
cos(2yl), Bl :=

ω

Vl
sin(2yl) for l = 1, . . . , n− 1. (5.94)

The behavior of Al and Bl depending on ω and l is plotted in Figure 5.5. For
ω < 1/2 the values of Al and Bl turn imaginary for l∗ < l < N/2 − l∗ with
l∗ := ⌊N arcsin(ω/(1 − ω))/(2π)⌋. There are poles at l∗ and N/2 − l∗. We find

lim
ω→1/2+

Al =

{
1 if l < N/4,

−1 if l > N/4,
lim

ω→1/2+
Bl =

{
tan(2yl) if l < N/4,

− tan(2yl) if l > N/4.
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Figure 5.5. Behavior of Al and Bl for l = 0, . . . , N/2.

The transformation formulas only fail in the case Vl = 0, which is impossible for
ω > 1/2. For ω = 1/2 and N = 4m we get Vm = 0. For ω < 1/2 we have
Vl = 0, if l fulfills sin(2yl) = ω/(1 − ω). Then the periodic matrices M and K

are not diagonalizable and there are Jordan-blocks of length two belonging to the
eigenvalue λ+

l = λ−l .
Now we find the Fourier representations for the FD lattice Boltzmann solutions.

Theorem 5.8. Assume that ω ∈ (1/2, 1) and N = 2n. Let the initial values

be given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Then the discrete Fourier solution P k = [Rk;Jk] of the system

P l+1 = KP l + τGl for l = 0, . . . , k − 1

for the VCFD lattice Boltzmann equations (5.1) with periodic boundary conditions
(5.5) can be represented in terms of the orthogonal basis (5.88) for k ≥ 0 as

Rk =
(
R0 · t̃0

)
t̃
0

+ (−1)k
(
R0 · t̃n

)
t̃
n

+
n−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)((
R0 · t̃j

)
t̃
j
+
(
R0 · s̃j

)
s̃

j
)

+
θ

2ω

n−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) ((

J0 · s̃j
)

t̃
j −

(
J0 · t̃j

)
s̃

j
)

+ τ

k−1∑

l=0

(
f l · t̃0

)
t̃
0

+ τ

k−1∑

l=0

(−1)k−l−1
(
f l · t̃n

)
t̃
n



82 5. LATTICE BOLTZMANN SCHEMES

+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 +Aj)(λ

+
j )k−l−1

((
f l · t̃j

)
t̃
j
+
(
f l · s̃j

)
s̃

j
)

+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 −Aj)(λ

−
j )k−l−1

((
f l · t̃j

)
t̃
j
+
(
f l · s̃j

)
s̃

j
)

+
θ

2ω
τ

k−2∑

l=0

n−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) ((

gl · s̃j
)

t̃
j −

(
gl · t̃j

)
s̃

j
)
,

Jk = (−θ)k
(
J0 · t̃0

)
t̃
0

+ θk
(
J0 · t̃n

)
t̃
n

+

n−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)((
J0 · t̃j

)
t̃
j
+
(
J0 · s̃j

)
s̃

j
)

− 1

2ω

n−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) ((

R0 · s̃j
)

t̃
j −

(
R0 · t̃j

)
s̃

j
)

+ τ
k−1∑

l=0

(−θ)k−l−1
(
gl · t̃0

)
t̃
0

+ τ
k−1∑

l=0

θk−l−1
(
gl · t̃n

)
t̃
n

+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 −Aj)(λ

+
j )k−l−1

((
gl · t̃j

)
t̃
j
+
(
gl · s̃j

)
s̃

j
)

+ τ
k−1∑

l=0

n−1∑

j=1

1

2
(1 +Aj)(λ

−
j )k−l−1

((
gl · t̃j

)
t̃
j
+
(
gl · s̃j

)
s̃

j
)

− τ

2ω

k−2∑

l=0

n−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) ((

f l · s̃j
)

t̃
j −

(
f l · t̃j

)
s̃

j
)
,

where Aj and Bj are defined in (5.94) and the eigenvalues λ±j are given in (5.87)

with (5.86). For odd N = 2n− 1 the parts with t̃
n

disappear.

Proof. The initial value P 0 and the right hand side Gk of the problem can
be written as

P 0 =
(
R0 · t̃0

)
T̃

0

N +

n−1∑

j=1

((
R0 · t̃j

)
T̃

j

N +
(
R0 · s̃j

)
S̃

j

D

)
+
(
R0 · t̃n

)
T̃

n

N

+
(
J0 · t̃0

)
T̃

0

D +

n−1∑

j=1

((
J0 · t̃j

)
T̃

j

D +
(
J0 · s̃j

)
S̃

j

N

)
+
(
J0 · t̃n

)
T̃

n

D,

Gk =
(
fk · t̃0

)
T̃

0

N +

n−1∑

j=1

((
fk · t̃j

)
T̃

j

N +
(
fk · s̃j

)
S̃

j

D

)
+
(
fk · t̃n

)
T̃

n

N

+
(
gk · t̃0

)
T̃

0

D +

n−1∑

j=1

((
gk · t̃j

)
T̃

j

D +
(
gk · s̃j

)
S̃

j

N

)
+
(
gk · t̃n

)
T̃

n

D.

By applying the transformation formula (5.92), we switch to an eigenvector repre-
sentation. So we can easily apply the time evolution matrix K given in (5.34) and
compute P 1 and all further solutions. Upon applying the transformation (5.91) we
gain the provided representation of the solution with regard to (5.93). �
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In the case ω ∈ (0, 1/2) the solution representation in Theorem 5.8 remains
valid under the constraint

sin(2yl) 6=
ω

1 − ω
for l = 1, . . . , n.

The solution representation remains real although Vl and hence, the eigenvalues
and eigenvectors turn complex for some l. If there is a j with sin(2yj) = ω/(1−ω),
then the jth summand takes the form

(
βk

j + ω cos(2yj)kβ
k−1
j

) ((
R0 · t̃j

)
t̃
j
+
(
R0 · s̃j

)
s̃

j
)

+ θ sin(2yj)kβ
k−1
j

((
J0 · s̃j

)
t̃
j −

(
J0 · t̃j

)
s̃

j
)

for the R-equation and
(
βk

j − ω cos(2yj)kβ
k−1
j

) ((
J0 · t̃j

)
t̃
j
+
(
J0 · s̃j

)
s̃

j
)

− sin(2yj)kβ
k−1
j

((
R0 · s̃j

)
t̃
j −

(
R0 · t̃j

)
s̃

j
)

for the J -equation. Accordingly, we have to add corresponding terms for the right
hand sides.

For the low-frequency coefficients in the solution representation we find

Aj = 1 − θ

2ω2
(2yj)

2 + θO(y4
j ) for j ≪ N,

Bj = 2yj +
3(1 − ω)2 − ω2

6ω2
(2yj)

3 + O(y5
j ) for j ≪ N.

For the corresponding eigenvalues we find

λ+
j = 1 − 1 − ω

2ω
(2yj)

2 + O(y4
j ) for j ≪ N,

(λ+
j )k ≈ e−4νj2π2tk/|Ω|2 for j ≪ N,

where we take ν := (1−ω)γ/(2ω) and tk := kτ = k|Ω|2/(γN2). Hence, the leading
order terms

1

2
(1 +Aj)(λ

+
j )k ≈ e−4νj2π2tk/|Ω|2 for j ≪ N

show the right approximation property. In contrast, we have 1 − Aj = O(y2
j ) and

(λ−j )k is oscillating and it decays in a fast way. Since Bj and J0 are of order O(h),

the terms induced by J0 in the R-representation are only of order O(h2). If we
choose the initial data j0 := −h∂xr0/(2ω), we find
((

J0 · s̃j
)

t̃
j −

(
J0 · t̃j

)
s̃

j
)

=
1

2ω
2yj

((
R0 · t̃j

)
t̃
j
+
(
R0 · s̃j

)
s̃

j
)

+ O(y3
j ).

Then the leading order coefficient in the R-representation is of the form

1

2
(1 +Aj) +

θ

4ω2
2yjBj = 1 + O(y4

j ).

In fact this does not lead to an improvement, since the middle- and high-frequency
terms are only of order h2.

The crucial term in the J -representation is Bj(λ
+
j )k. With the background of

partial integration we find

−Bj

2ω

((
R0 · s̃j

)
−
(
R0 · t̃j

))
≈ − h

2ω

((
DhR0 · t̃j

)
+
(
DhR0 · s̃j

))
,

where we defineDhR0 := [∂xr0(xi)]i. Hence, Jk is an approximation of −h∂xr/(2ω).
The choice of J0 plays a subordinate role.
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In the R-representation the oscillating parts (λ−j )k are hidden in an order

O(h2)-term. In the J -representation the oscillating terms Bj(λ
−
j )k are apparent.

Hence, we get the wrong viscosity in the first steps. After some iterations the
oscillations faded away and the correct viscosity is reached. This can be seen in
numerical experiments (see Section 7.3).

For the special choice ω = (3−
√

3)/2 and vanishing right hand side, we find an
improvement of the convergence properties in the numerical experiments. In this
case we have 3(1 − ω)2 = ω2 and hence we get Bj = 2yj + O(y5

j ).
The behavior of the time-dependent coefficients

Rk
j :=

1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

is examined in Figure 5.6. The poles in Aj for ω < 1/2 are deleted. For large time
steps only the coefficients with j close to 0 and N/2 are of significant size.

Corollary 5.9. In the case ω = 1/2, N = 2n, the solution representation in
Theorem 5.8 for k ≥ 1 simplifies to

Rk =
(
R0 · t̃0

)
t̃
0

+ (−1)k
(
R0 · t̃n

)
t̃
n

+

n−1∑

j=1

cosk(2yj)
((

R0 · t̃j
)

t̃
j
+
(
R0 · s̃j

)
s̃

j
)

+ τ

k−1∑

l=0

(
f l · t̃0

)
t̃
0

+ τ

k−1∑

l=0

(−1)k−l−1
(
f l · t̃n

)
t̃
n

+ τ

k−1∑

l=0

n−1∑

j=1

cosk−l−1(2yj)
((

f l · t̃j
)

t̃
j
+
(
f l · s̃j

)
s̃

j
)
,

Jk = −
n−1∑

j=1

sin(2yj) cosk−1(2yj)
((

R0 · s̃j
)

t̃
j −

(
R0 · t̃j

)
s̃

j
)

− τ

k−2∑

l=0

n−1∑

j=1

sin(2yj) cosk−l−2(2yj)
((

f l · s̃j
)

t̃
j −

(
f j · t̃j

)
s̃

j
)

+ τgk−1.

For odd N = 2n− 1 the parts with t̃
n

disappear.

Proof. We find (1 + Aj)/2 = 1 for j < N/4, (1 + Aj)/2 = 0 for j > N/4,
(1−Aj)/2 = 0 for j < N/4, (1−Aj)/2 = 1 for j > N/4, Bj = tan(2yj) for j < N/4
and Bj = − tan(2yj) for j > N/4. In the case N = 4m, m ∈ N, the solution
representation remains unchanged for j = m = N/4. �

In the case ω = 1/2 the solution for the discrete density matches the solution
obtained from an explicit Euler scheme. We observe that for ω = 1/2 the initial
values J0 have no influence on the solution. The right hand side gk of the flux
equation only has an effect in the following time step.

The structure of the basis vectors t̃
l

and s̃
l implies to interpret the repre-

sentations of the solutions in the context of VCFD grids. It turns out that the

representation of Rk in terms of the odd basis vectors s̃
l and the representation

of Jk in terms of the even basis vectors t̃
l
is the representation of solutions of the

problem subject to vanishing density boundary conditions. By exchanging the roles

of t̃
l
and s̃

l we gain solutions of the vanishing flux boundary value problem.
For an interpretation in the context of CC grids we slightly modify our ap-

proach. All the other previous computations can be applied without changes. Now



5.10. DISCRETE FOURIER SOLUTIONS FOR THE FDLB SCHEMES 85

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 1, ω = 0.7

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 1, ω = 0.4

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 2, ω = 0.7

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 2, ω = 0.4

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 20, ω = 0.7

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 20, ω = 0.4

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 21, ω = 0.7

−1

−0.5

0.5

1

 

 

0

0

Rk
j

j

k = 21, ω = 0.4

Figure 5.6. Behavior of Rk
j for N = 200 and selected time steps k.

we define for N = 2n− 1 or N = 2n

Ŝ
0

c :=
1√
2N

[[
1
1

]]

i=1,...,N

, T̂
0

c :=
1√
2N

[[
1

−1

]]

i=1,...,N

,

Ŝ
l

c :=
1√
N

[[
cos(2lyi)
cos(2lyi)

]]

i=1,...,N

, T̂
l

s :=
1√
N

[[
sin(2lyi)

− sin(2lyi)

]]

i=1,...,N

,

(5.95)

Ŝ
l

s :=
1√
N

[[
sin(2lyi)
sin(2lyi)

]]

i=1,...,N

, T̂
l

c :=
1√
N

[[
cos(2lyi)

− cos(2lyi)

]]

i=1,...,N

,

for l = 1, . . . , n− 1.
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For even N = 2n we further define

Ŝ
n

c :=
1√
2N

[[
(−1)i

(−1)i

]]

i=1,...,N

, T̂
n

c :=
1√
2N

[[
(−1)i

−(−1)i

]]

i=1,...,N

.

By applying the same procedure as before, we obtain the eigenvectors of M (given
in (5.16)) in the form

V̂
0

+ := Ŝ
0

c , Ŵ
0

− := T̂
0

c ,

V̂
l

+ := αlŜ
l

c − (ω − Vl)T̂
l

s,

V̂
l

− := αlŜ
l

c − (ω + Vl)T̂
l

s,

Ŵ
l

+ := αlŜ
l

s + (ω − Vl)T̂
l

c,

Ŵ
l

− := αlŜ
l

s + (ω + Vl)T̂
l

c,





for l = 1, . . . , n− 1,

V̂
n

+ := Ŝ
n

c , Ŵ
n

− := T̂
n

c , if N = 2n,

with

MV̂
0

+ = λ+
0 V̂

0

+,

MV̂
l

+ = λ+
l V̂

l

+,

MV̂
l

− = λ−l V̂
l

−,

MV̂
n

+ = λ+
n V̂

n

+,

MŴ
0

− = λ−n Ŵ
0

−,

MŴ
l

+ = λ+
l Ŵ

l

+,

MŴ
l

− = λ−l Ŵ
l

−,

}
for l = 1, . . . , n− 1,

MŴ
n

− = λ−n Ŵ
n

− if N = 2n.

The eigenvalues λ±l are the same as in (5.87). An orthonormal basis in R
N for

N = 2n is now defined by

t̂
0

:=
1√
N

[1]i=1,...,N , t̂
l
:=

√
2

N

[
cos(2lyi−1/2)

]
i=1,...,N

,

(5.96)

ŝ
l :=

√
2

N

[
sin(2lyi−1/2)

]
i=1,...,N

, ŝ
n :=

1√
N

[
(−1)i+1

]
i=1,...,N

,

for l = 1, . . . , n− 1.

For odd N = 2n − 1 we omit the vector ŝ
n. We get the eigenvectors of K (given

in (5.34)) by transformation via T̂ := T /
√

2 with T given in (5.33) in the form

P̂
0

+ := T̂ V̂
0

+ =

[
t̂
0

0

]
, Q̂

0

− := T̂ Ŵ
0

− =

[
0

−t̂
0

]
,

P̂
l

+ := T̂ V̂
l

+ =

[
(αl cos(yl) − (ω − Vl) sin(yl)) t̂

l

(αl sin(yl) + (ω − Vl) cos(yl)) ŝ
l

]
,

P̂
l

− := T̂ V̂
l

− =

[
(αl cos(yl) − (ω + Vl) sin(yl)) t̂

l

(αl sin(yl) + (ω + Vl) cos(yl)) ŝ
l

]
,

Q̂
l

+ := T̂ Ŵ
l

+ =

[
(αl cos(yl) − (ω − Vl) sin(yl)) ŝ

l

− (αl sin(yl) + (ω − Vl) cos(yl)) t̂
l

]
,

Q̂
l

− := T̂ Ŵ
l

− =

[
(αl cos(yl) − (ω + Vl) sin(yl)) ŝ

l

− (αl sin(yl) + (ω + Vl) cos(yl)) t̂
l

]
,

P̂
n

+ := T̂ V̂
n

+ =

[
0

ŝ
n

]
, Q̂

n

− := T̂ Ŵ
n

− =

[
−ŝ

n

0

]
, if N = 2n.
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Now we find

Theorem 5.10. Assume that ω ∈ (1/2, 1) and N = 2n. Let the initial values

be given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Then the discrete Fourier solution P k = [Rk;Jk] of the system

P l+1 = KP l + τGl for l = 0, . . . , k − 1

for the VCFD lattice Boltzmann equation (5.1) with periodic boundary conditions
(5.5) can be represented in terms of the orthonormal basis (5.96). The representa-

tion is the same as in Theorem 5.8 with s̃
l replaced by ŝ

l for l = 1, . . . n − 1, t̃
l

replaced by t̂
l
for l = 0, . . . , n− 1 and t̃

n
replaced by ŝ

n.

For the examination of discrete Fourier solutions for the density boundary value
problem on VCFD grids we use the orthonormal basis

T̊
0

c :=
1√
2N

[[
1

−1

]]

i=1,...,N

, S̊
N

s :=
1√
2N

[[
(−1)i+1

(−1)i+1

]]

i=1,...,N

,

(5.97)
S̊

l

s :=
1√
N

[[
sin(lyi−1/2)
sin(lyi−1/2)

]]

i=1,...,N

, T̊
l

c :=
1√
N

[[
cos(lyi−1/2)

− cos(lyi−1/2)

]]

i=1,...,N

,

for l = 1, . . . , N − 1.

The eigenvectors of the time evolution matrix M (given in (5.18) and (5.19)) are
then

W̊
0

− = T̊
0

c , W̊
N

+ = S̊
N

s ,

W̊
l

+ = αlS̊
l

s + (ω − Vl)T̊
l

c,

W̊
l

− = αlS̊
l

s + (ω + Vl)T̊
l

c,

}
for l = 1, . . . , N − 1.

For ω ∈ (0, 1) we define

αl := (1 − ω) sin(yl), βl := (1 − ω) cos(yl), Vl :=
√
ω2 − α2

l . (5.98)

We find the corresponding eigenvalues

λ−0 = −θ, λ+
N = θ,

(5.99)
λ+

l = βl + Vl, λ−l = βl − Vl, for l = 1, . . . , N − 1.

For ω ∈ (0, 1/2) the values Vl turn imaginary for some l.
On VC grids we define two sets of basis functions:

s̊
l =

√
2

N
[sin(lyi)]i=1,...,N−1 , l = 1, . . . , N − 1 (5.100)

and

t̊
0

:=
1√
N

[1]i=0,...,N , t̊
N

:=
1√
N

[
(−1)i

]
i=0,...,N

,

t̊
l
:=

√
2

N
[cos(lyi)]i=0,...,N , l = 1, . . . , N − 1.

(5.101)

While {sl}l=1,...,N−1 ⊆ R
N−1 is an orthonormal set, we have to define d :=

diagN+1(1/2, 1, . . . , 1, 1/2) in order to achieve

t̊
i · d̊t

j
=

{
1 if i = j,

0 if i 6= j,
for i, j = 0, . . . , N.
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The eigenvectors of the time evolution matrix K (given in (5.40)) are gained via

the transformation T̊ := T /
√

2 with T given in (5.38)

Q̊
0

− = T̊ W̊
0

− =

[
0

−̊t
0

]
, Q̊

N

+ = T̊ W̊
N

+ =

[
0

−̊t
N

]
,

Q̊
l

+ = T̊ W̊
l

+ =

[
(αl cos (yl/2) − (ω − Vl) sin (yl/2)) s̊l

− (αl sin (yl/2) + (ω − Vl) cos (yl/2)) t̊
l

]
,

Q̊
l

− = T̊ W̊
l

− =

[
(αl cos (yl/2) − (ω + Vl) sin (yl/2)) s̊

l

− (αl sin (yl/2) + (ω + Vl) cos (yl/2)) t̊
l

]
.

For the representation of the discrete Fourier solutions we define

Al :=
ω

Vl
cos(yl), Bl :=

ω

Vl
sin(yl) for l = 1, . . . , N − 1. (5.102)

Theorem 5.11. Assume that ω ∈ (1/2, 1). Let the initial values be given

by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for l =

0, . . . , k − 1. Then the discrete Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR for l = 0, . . . , k − 1

for the VCFD lattice Boltzmann equations (5.1) with reduced density boundary con-
ditions (5.6) can be represented in terms of the bases (5.100) and (5.101) by

Rk =

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · s̊j

)
s̊

j

− θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · d̊t
j
)

s̊j

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · s̊j

)
s̊

j

− θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · d̊t
j
)

s̊j ,

Jk = (−θ)k
(
J0 · d̊t

0
)

t̊
0

+ θk
(
J0 · d̊t

N
)

t̊
N

+

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · d̊t

j
)

t̊
j

− 1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · s̊j
)

t̊
j

+ τ

k−1∑

l=0

(−θ)k−l−1
(
gl · d̊t

0
)

t̊
0

+ τ

k−1∑

l=0

θk−l−1
(
gl · d̊t

N
)

t̊
N

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · d̊t

j
)

t̊
j

− τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · s̊j
)

t̊
j
,

where Aj and Bj are defined in (5.102) and the eigenvalues λ±j are given in (5.99)

with (5.98). We use d := diagN+1(1/2, 1, . . . , 1, 1/2).
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Corollary 5.12. For ω = 1/2 the solution in Theorem 5.11 for k ≥ 1 simplifies
to

Rk =
N−1∑

j=1

cosk(yj)
(
R0 · s̊j

)
s̊j + τ

k−1∑

l=0

N−1∑

j=1

cosk−l−1(yj)
(
f l · s̊j

)
s̊j ,

Jk = −
N−1∑

j=1

sin(yj) cosk−1(yj)
(
R0 · s̊j

)
t̊
j
+ τgk−1

− τ
k−2∑

l=0

N−1∑

j=1

sin(yj) cosk−l−2(yj)
(
f l · s̊j

)
t̊
j
.

For ω ∈ (0, 1/2) there might be values of N such that the time evolution
matrices are not diagonalizable. The comments and computations for the periodic
case apply here with slight changes.

For the flux problem on VC grids we introduce the orthonormal basis

S̊
0

c :=
1√
2N

[[
1
1

]]

i=1,...,N

, T̊
N

s :=
1√
2N

[[
(−1)i+1

−(−1)i+1

]]

i=1,...,N

,

(5.103)
S̊

l

c :=
1√
N

[[
cos(lyi−1/2)
cos(lyi−1/2)

]]

i=1,...,N

, T̊
l

s :=
1√
N

[[
sin(lyi−1/2)

− sin(lyi−1/2)

]]

i=1,...,N

,

for l = 1, . . . , N − 1.

We find the eigenvalues

λ+
0 = 1, λ−N = −1,

(5.104)
λ+

l = βl + Vl, λ−l = βl − Vl, for l = 1, . . . , N − 1

and the eigenvectors of the matrix M (given in (5.18) and (5.20))

V̊
0

+ = S̊
0

c , V̊
N

− = T̊
N

s ,

V̊
l

+ = αlS̊
l

c − (ω − Vl)T̊
l

s,

V̊
l

− = αlS̊
l

c − (ω + Vl)T̊
l

s,

}
for l = 1, . . . , N − 1.

The values αl, βl and Vl are defined in (5.98).

Hence, we get eigenvectors of K (given in (5.45)) via transformation by T̊ :=

T /
√

2 with T given in (5.43)

P̊
0

+ = T̊ V̊
0

+ =

[̊
t
0

0

]
, P̊

N

− = T̊ V̊
N

− =

[
t̊
N

0

]
,

P̊
l

+ = T̊ V̊
l

+ =

[
(αl cos (yl/2) − (ω − Vl) sin (yl/2)) t̊

l

(αl sin (yl/2) + (ω − Vl) cos (yl/2)) s̊
l

]
,

P̊
l

− = T̊ V̊
l

− =

[
(αl cos (yl/2) − (ω + Vl) sin (yl/2)) t̊

l

(αl sin (yl/2) + (ω + Vl) cos (yl/2)) s̊
l

]
.

Theorem 5.13. Assume that ω ∈ (1/2, 1). Let the initial values be given

by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for l =

0, . . . , k− 1. Take Cl
0 := cl0P̊

0

+ with cl0 := −(1− ω)(jk
R − jk

L)/N . Then the discrete

Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR + Cl

0 for l = 0, . . . , k − 1
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for the lattice Boltzmann VCFD equations (5.1) with reduced flux boundary condi-
tions (5.8) can be represented in terms of the bases (5.100) and (5.101) by

Rk =
(
R0 · d̊t

0
)

t̊
0

+
k−1∑

l=0

cl0̊t
0

+ (−1)k
(
R0 · d̊t

N
)

t̊
N

+

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · d̊t

j
)

t̊
j

+
θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · s̊j
)

t̊
j

+ τ

k−1∑

l=0

(
f l · d̊t

0
)

t̊
0

+ τ

k−1∑

l=0

(−1)k−l−1
(
f l · d̊t

N
)

t̊
N

+ τ
k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · d̊t

j
)

t̊
j

+
θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · s̊j
)

t̊
j
,

Jk =

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · s̊j

)
s̊j

+
1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · d̊t
j
)

s̊j

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · s̊j

)
s̊j

+
τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · d̊t
j
)

s̊
j ,

where Aj and Bj are defined in (5.102) and the eigenvalues λ±j are given in (5.104)

with (5.98). We use d := diagN+1(1/2, 1, . . . , 1, 1/2).

Corollary 5.14. For ω = 1/2 the solution in Theorem 5.13 for k ≥ 1 simplifies
to

Rk =

N∑

j=0

cosk(yj)
(
R0 · d̊t

j
)

t̊
j
+ τ

k−1∑

l=0

N∑

j=0

cosk−l−1(yj)
(
f l · d̊t

j
)

t̊
j
,

Jk =

N−1∑

j=1

sin(yj) cosk−1(yj)
(
R0 · d̊t

j
)

s̊j + τgk−1

+ τ

k−2∑

l=0

N−1∑

j=1

sin(yj) cosk−l−2(yj)
(
f j · d̊t

j
)

s̊
j .
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Now we examine solutions of the density boundary value problem on CCFD
grids. To this aim, we choose the following orthonormal basis in R

2N

T
0

c :=
1√
2N

[[
−1

1

]]

i=1,...,N

, T
N

c :=
1√
2N

[[
(−1)i

(−1)i

]]

i=1,...,N

,

(5.105)
S

l

s :=
1√
N

[[
sin(lyi−1)
sin(lyi)

]]

i=1,...,N

, T
l

c :=
1√
N

[[
− cos(lyi−1)

cos(lyi)

]]

i=1,...,N

,

for l = 1, . . . , N − 1.

For the time evolution matrix M (given in (5.25) and (5.26)) we find the eigenvec-
tors

W
0

− := T
0

c , W
N

− := T
N

c ,

W
l

+ := αlS
l

s + (ω − Vl)T
l

c,

W
l

− := αlS
l

s + (ω + Vl)T
l

c,

}
for l = 1, . . . , N − 1,

with the eigenvalues given by

λ−0 = −θ, λ−N = −1,
(5.106)

λ+
l = βl + Vl, λ−l = βl − Vl, for l = 1, . . . , N − 1.

The definition of αl, βl and Vl is given in (5.98).
On CC grids we consider two sets of orthonormal basis vectors in R

N . We
choose the bases

sl :=

√
2

N

[
sin(lyi−1/2)

]
i=1,...,N

, sN :=
1√
N

[
(−1)i+1

]
i=1,...,N

, (5.107)

l = 1, . . . , N − 1,

and

t
0

:=
1√
N

[1]i=1,...,N , t
l
:=

√
2

N

[
cos(lyi−1/2)

]
i=1,...,N

, l = 1, . . . , N − 1.

(5.108)

Upon transformation via T̄ := T /
√

2 with T given in (5.53) we find the eigenvectors
of K (given in (5.55)) by

Q
0

− := T̄W
0

− =

[
0

−t
0

]
, Q

N

− := T̄W
N

− =

[
−sN

0

]
,

Q
l

+ := T̄W
l

+ =

[
(αl cos (yl/2) − (ω − Vl) sin (yl/2)) sl

− (αl sin (yl/2) + (ω − Vl) cos (yl/2)) t
l

]
,

Q
l

− := T̄W
l

− =

[
(αl cos (yl/2) − (ω + Vl) sin (yl/2)) sl

− (αl sin (yl/2) + (ω + Vl) cos (yl/2)) t
l

]
.

We have

KQ
0

− = −θQ0

−, KQ
N

− = −Q
N

− ,

KQ
l

+ = λ+
l Q

l

+, KQ
l

− = λ−l Q
l

−, for l = 1, . . . , N − 1.

Theorem 5.15. Assume that ω ∈ (1/2, 1). Let the initial values be given by

P 0 = [R0;J0] and let the right hand be given by Gl = [f l; gl] for l = 0, . . . , k − 1.

Then the discrete Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR for l = 0, . . . , k − 1
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for the CCFD lattice Boltzmann equations (5.2) with reduced density boundary con-
ditions (5.12) can be represented in terms of the bases (5.107) and (5.108) as

Rk = (−1)k
(
R0 · sN

)
sN + τ

k−1∑

l=0

(−1)k−l−1
(
f l · sN

)
sN

+

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · sj

)
sj

− θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · tj
)

sj

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · sj

)
sj

− θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · tj
)

sj ,

Jk = (−θ)k
(
J0 · t0

)
t
0

+ τ
k−1∑

l=0

(−θ)k−l−1
(
gl · t0

)
t
0

+

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · tj

)
t
j

− 1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · sj
)
t
j

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · tj

)
t
j

− τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · sj
)

t
j
,

where Aj and Bj are defined in (5.102) and the eigenvalues λ±j are given in (5.106)

with (5.98).

Corollary 5.16. For ω = 1/2 the solution in Theorem 5.15 for k ≥ 1 simplifies
to

Rk =

N∑

j=1

cosk(yj)
(
R0 · sj

)
sj + τ

k−1∑

l=0

N∑

j=1

cosk−l−1(yj)
(
f l · sj

)
sj ,

Jk = −
N−1∑

j=1

sin(yj) cosk−1(yj)
(
R0 · sj

)
t
j
+ τgk−1

− τ

k−2∑

l=0

N−1∑

j=1

sin(yj) cosk−l−2(yj)
(
f l · sj

)
t
j
.



5.10. DISCRETE FOURIER SOLUTIONS FOR THE FDLB SCHEMES 93

For the solution of the flux boundary value problem on CCFD grids we define
the orthonormal basis in R

2N by

S
0

c :=
1√
2N

[[
1
1

]]

i=1,...,N

, S
N

c :=
1√
2N

[[
−(−1)i

(−1)i

]]

i=1,...,N

,

(5.109)

S
l

c =
1√
N

[[
cos(lyi−1)
cos(lyi)

]]

i=1,...,N

, T
l

s =
1√
N

[[
− sin(lyi−1)

sin(lyi)

]]

i=1,...,N

,

for l = 1, . . . , N − 1.

We find the eigenvalues

λ+
0 = 1, λ+

N = θ,
(5.110)

λ+
l = βl + Vl, λ−l = βl − Vl, for l = 1, . . . , N − 1.

The eigenvectors of M (given in (5.25) and (5.27)) are given by

V
0

+ := S
0

c , V
N

+ := S
N

c ,

V
l

+ := αlS
l

c − (ω − Vl)T
l

s,

V
l

− := αlS
l

c − (ω + Vl)T
l

s,

}
for l = 1, . . . , N − 1.

We get the eigenvectors of K (given in (5.58)) via transformation by T̄ := T /
√

2
with T given in (5.53)

P
0

+ := T̄ V
0

+ =

[
t
0

0

]
, P

N

+ := T̄ V
N

+ =

[
0

sN

]
,

P
l

+ := T̄ V
l

+ =

[
(αl cos (yl/2) − (ω − Vl) sin (yl/2)) t

l

(αl sin (yl/2) + (ω − Vl) cos (yl/2)) sl

]
,

P
l

− := T̄ V
l

− =

[
(αl cos (yl/2) − (ω + Vl) sin (yl/2)) t

l

(αl sin (yl/2) + (ω + Vl) cos (yl/2)) sl

]
.

In the case ω = 1/2 and N = 2n the rank of the given eigenvectors is only 2N − 1.
We find

K

[
t
n

0

]
=

[
0

sn

]
=

√
2P

n

+ =
√

2P
n

−, K2

[
t
n

0

]
= 0.

This renders a Jordan block of length two belonging to the eigenvalue 0. Hence, K

is not diagonalizable in this case.

Theorem 5.17. Assume that ω ∈ (1/2, 1). Let the initial values be given by

P 0 = [R0;J0] and let the right hand be given by Gl = [f l; gl] for l = 0, . . . , k − 1.

Take Cl
0 := cl0P

0

+ with cl0 := −(1 − ω)(jl
R − jl

L)/N . Then the discrete Fourier

solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR + Cl

0 for l = 0, . . . , k − 1

for the CCFD lattice Boltzmann equations (5.2) with reduced flux boundary condi-
tions (5.13) can be represented in terms of the bases (5.107) and (5.108) by

Rk =
(
R0 · t0

)
t
0

+ τ

k−1∑

l=0

(
f l · t0

)
t
0

+

k−1∑

l=0

cl0t
0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · tj

)
t
j
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+
θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · sj
)
t
j

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · tj

)
t
j

+
θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · sj
)
t
j
,

Jk = θk
(
J0 · sN

)
sN + τ

k−1∑

l=0

θk−l−1
(
gl · sN

)
sN

+
N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · sj

)
sj

+
1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · tj
)

sj

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · sj

)
sj

+
τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · tj
)

sj ,

where Aj and Bj are defined in (5.102) and the eigenvalues λ±j are given in (5.110)

with (5.98).

Corollary 5.18. For ω = 1/2 the solution in Theorem 5.17 for k ≥ 1 simplifies
to

Rk =

N−1∑

j=0

cosk(yj)
(
R0 · tj

)
t
j
+ τ

k−1∑

l=0

N−1∑

j=0

cosk−l−1(yj)
(
f l · tj

)
t
j
,

Jk =

N−1∑

j=1

sin(yj) cosk−1(yj)
(
R0 · tj

)
sj + τgk−1

+ τ

k−2∑

l=0

N−1∑

j=1

sin(yj) cosk−l−2(yj)
(
f j · tj

)
sj .

5.11. Discrete Fourier Solutions for the FV Lattice Boltzmann Schemes

In this section we consider the discrete Fourier solutions for the finite volume
lattice Boltzmann equations (5.3) and (5.4) subject to the provided boundary con-
ditions. First, we take a look at the periodic problem. We define for ω ∈ (0, 1)

sl := sin(2yl), cl := cos(2yl),

Wl :=

((
cl −

ω

2
(1 + cl)

)2

− 1 + ω(1 + cl)

)1/2

,
(5.111)

for l = 1, . . . , n− 1. We find that S†MS, with the periodic time evolution matrix
M given in (5.17) and S defined in (5.85), is a block-diagonal matrix with diagonal
elements ±1 and −θ (θ = 2ω − 1) and with the 2-by-2 blocks

[
cl sl

−(1 − ω)sl (1 − ω)cl − ω

]
,

[
cl −sl

(1 − ω)sl (1 − ω)cl − ω

]
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for l = 1, . . . , n− 1 on the diagonal. We derive the eigenvalues of M

λ+
0 = 1, λ−0 = 1 − 2ω,

λ+
l = cl −

ω

2
(1 + cl) +Wl,

λ−l = cl −
ω

2
(1 + cl) −Wl,

}
for l = 1, . . . , n− 1, (5.112)

λ−n = −1 if N = 2n.

Furthermore, we get the eigenvectors of M in terms of the basis (5.84)

Ṽ
0

+ := S̃
0

c , W̃
0

− := T̃
0

c ,

Ṽ
l

+ := −slS̃
l

c +
(ω

2
(1 + cl) −Wl

)
T̃

l

s,

Ṽ
l

− := −slS̃
l

c +
(ω

2
(1 + cl) +Wl

)
T̃

l

s,

W̃
l

+ := slS̃
l

s +
(ω

2
(1 + cl) −Wl

)
T̃

l

c,

W̃
l

− := slS̃
l

s +
(ω

2
(1 + cl) +Wl

)
T̃

l

c,





for l = 1, . . . , n− 1,

Ṽ
n

− := T̃
n

s , W̃
n

− := S̃
n

s , if N = 2n.

Using the monotone decreasing function f : (0, 1) → (−1, 1)

f(ω) :=
8 − (2 + ω)2

(2 − ω)2
,

we find

Wl =
(
1 − ω

2

)√
(1 + cl)(cl − f(ω))

Hence, we see that Wl is a real number for l/N ≤ arccos(f(w))/2π and imaginary
otherwise. In contrast to the FD schemes we get complex eigenvalues and complex
eigenvectors for all values of ω. The complex eigenvalues are located on a circle
with midpoint −ω/(2− ω) < 0 and radius 2(1− ω)/(2− ω); see Figure 5.7. In this
figure we use l∗ := ⌊N arccos(f(ω))/2π⌋. Since the modulus of the eigenvalues is
equal or less then 1 for all l and ω ∈ (0, 1), the solutions for the underlying lattice
Boltzmann schemes are stable. Increasing ω raises the number of real eigenvalues,
which leads to an improvement of the convergence.

The eigenvectors are not orthogonal, especially we see

Ṽ
l

+ · Ṽ l

− = (2 − ω)s2l , W̃
l

+ · W̃
l

− = (2 − ω)s2l

for l/N ≤ arccos(f(w))/2π. By employing the orthogonal transformation via T̃ :=

T /
√

2 with T as in (5.33), we get the eigenvectors of K (given in (5.60)) in terms
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Figure 5.7. Complex eigenvalues of M and K in the periodic
case for ω = 0.8, ω = 0.4 and N = 100.

of the basis (5.88) in the form

P̃
0

+ := T̃ Ṽ
0

+ =

[
t̃
0

0

]
, Q̃

0

− := T̃ W̃
0

− =

[
0

−t̃
0

]
,

P̃
l

+ := T̃ Ṽ
l

+ =

[
−
(
sin(2yl) cos(yl) −

(
ω
2 (1 + cl) −Wl

)
sin(yl)

)
t̃
l

−
(
sin(2yl) sin(yl) +

(
ω
2 (1 + cl) −Wl

)
cos(yl)

)
s̃

l

]
,

P̃
l

− := T̃ Ṽ
l

− =

[
−
(
sin(2yl) cos(yl) −

(
ω
2 (1 + cl) +Wl

)
sin(yl)

)
t̃
l

−
(
sin(2yl) sin(yl) +

(
ω
2 (1 + cl) +Wl

)
cos(yl)

)
s̃

l

]
,

Q̃
l

+ := T̃ W̃
l

+ =

[ (
sin(2yl) cos(yl) −

(
ω
2 (1 + cl) −Wl

)
sin(yl)

)
s̃

l

−
(
sin(2yl) sin(yl) +

(
ω
2 (1 + cl) −Wl

)
cos(yl)

)
t̃
l

]
,

Q̃
l

− := T̃ W̃
l

− =

[ (
sin(2yl) cos(yl) −

(
ω
2 (1 + cl) +Wl

)
sin(yl)

)
s̃

l

−
(
sin(2yl) sin(yl) +

(
ω
2 (1 + cl) +Wl

)
cos(yl)

)
t̃
l

]
,

P̃
n

− := T̃ Ṽ
n

− =

[
t̃
n

0

]
, Q̃

n

− := T̃ W̃
n

− =

[
0

−t̃
n

]
, if N = 2n.

If there is a l such that 2πl/N = arccos(f(w)), we have Wl = 0 and hence, the rank
of the presented eigenvectors is only 2N − 2. In this case we find

P̃
l

J :=
1

2 − ω

[
−
(√

1 − ω cos(yl) + sin(yl)
)
t̃
l

−
(√

1 − ω sin(yl) − cos(yl)
)
s̃

l

]
,

Q̃
l

J :=
1

2 − ω

[ (√
1 − ω cos(yl) + sin(yl)

)
s̃

l

−
(√

1 − ω sin(yl) − cos(yl)
)
t̃
l

]
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Figure 5.8. Behavior of Al and Bl for l = 0, . . . , N/2.

with (K − λlId)P̃
l

J = P̃
l

+ = P̃
l

− and (K − λlId)Q̃
l

J = Q̃
l

+ = Q̃
l

− with λl :=
cl − ω(1 + cl)/2. This renders two Jordan blocks of length two belonging to the
eigenvalue λl.

For l = 1, . . . , n− 1 and Wl 6= 0 we define

γ±l := sin(2yl) cos(yl) −
(ω

2
(1 + cl) ∓Wl

)
sin(yl)

=
(
2 cos2(yl) −

(ω
2

(1 + cl) ∓Wl

))
sin(yl),

δ±l := sin(2yl) sin(yl) +
(ω

2
(1 + cl) ∓Wl

)
cos(yl)

=
(
2 sin2(yl) +

(ω
2

(1 + cl) ∓Wl

))
cos(yl).

We use (5.90) in order to define the basis transformations

P̃
l

+ = −γ+
l T̃

l

N − δ+l S̃
l

N , P̃
l

− = −γ−l T̃
l

N − δ−l S̃
l

N ,

Q̃
l

+ = γ+
l S̃

l

D − δ+l T̃
l

D, Q̃
l

− = γ−l S̃
l

D − δ−l T̃
l

D,

and

S̃
l

N =
γ−l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

+ − γ+
l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

−,

T̃
l

N =
−δ−l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

+ +
δ+l

γ+
l δ

−
l − γ−l δ

+
l

P̃
l

−,

S̃
l

D =
δ−l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

+ − δ+l
γ+

l δ
−
l − γ−l δ

+
l

Q̃
l

−,

T̃
l

D =
γ−l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

+ − γ+
l

γ+
l δ

−
l − γ−l δ

+
l

Q̃
l

−

for l = 1, . . . , n− 1. Furthermore, we find

γ+
l δ

−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1

2
(1 +Al),

γ+
l γ

−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1 − ω

2ω
Bl,

−γ−l δ+l
γ+

l δ
−
l − γ−l δ

+
l

=
1

2
(1 −Al),

δ+l δ
−
l

γ+
l δ

−
l − γ−l δ

+
l

=
1

2ω
Bl,

where we use the definitions

Al :=
ω

2Wl
(1 + cos(2yl)), Bl :=

ω

Wl
sin(2yl) for l = 1, . . . , n− 1. (5.113)

This transformation fails in the case Wl = 0, that is, there is one l such that
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cl = f(ω). For this reason, we assume

N

2π
arccos(f(ω)) /∈ N. (A)

If the assumption (A) is not fulfilled, then the matrices M and K are not diag-
onalizable anymore, since the rank of the given eigenvectors is then only 2N − 2.
Thus we get Jordan blocks of length two.

The behavior of Al and Bl depending on ω and l is plotted in Figure 5.8. The
values of Al and Bl become imaginary for l > l∗ := ⌊N arccos(f(ω))/(2π)⌋. There
are poles at l∗.

Theorem 5.19. Assume that ω ∈ (0, 1), N = 2n and (A). Let the initial values

be given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Then the discrete Fourier solution P k = [Rk;Jk] of the system

P l+1 = KP l + τGl for l = 0, . . . , k − 1

for the VCFV lattice Boltzmann equations (5.3) with periodic boundary conditions
(5.5) can be represented in terms of the orthonormal basis (5.88) for k ≥ 0 by

Rk =
(
R0 · t̃0

)
t̃
0

+ (−1)k
(
R0 · t̃n

)
t̃
n

+

n−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)((
R0 · t̃j

)
t̃
j
+
(
R0 · s̃j

)
s̃

j
)

− 1 − ω

2ω

n−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) ((

J0 · s̃j
)

t̃
j −

(
J0 · t̃j

)
s̃

j
)

+ τ
k−1∑

l=0

(
f l · t̃0

)
t̃
0

+ τ
k−1∑

l=0

(−1)k−l−1
(
f l · t̃n

)
t̃
n

+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 +Aj)(λ

+
j )k−l−1

((
f l · t̃j

)
t̃
j
+
(
f l · s̃j

)
s̃

j
)

+ τ
k−1∑

l=0

n−1∑

j=1

1

2
(1 −Aj)(λ

−
j )k−l−1

((
f l · t̃j

)
t̃
j
+
(
f l · s̃j

)
s̃

j
)

− 1 − ω

2ω
τ

k−2∑

l=0

n−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) ((

gl · s̃j
)

t̃
j −

(
gl · t̃j

)
s̃

j
)
,

Jk = (−θ)k
(
J0 · t̃0

)
t̃
0

+ (−1)k
(
J0 · t̃n

)
t̃
n

+
n−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)((
J0 · t̃j

)
t̃
j
+
(
J0 · s̃j

)
s̃

j
)

− 1

2ω

n−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) ((

R0 · s̃j
)

t̃
j −

(
R0 · t̃j

)
s̃

j
)

+ τ

k−1∑

l=0

(−θ)k−l−1
(
gl · t̃0

)
t̃
0

+ τ

k−1∑

l=0

(−1)k−l−1
(
gl · t̃n

)
t̃
n

+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 −Aj)(λ

+
j )k−l−1

((
gl · t̃j

)
t̃
j
+
(
gl · s̃j

)
s̃

j
)
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+ τ

k−1∑

l=0

n−1∑

j=1

1

2
(1 +Aj)(λ

−
j )k−l−1

((
gl · t̃j

)
t̃
j
+
(
gl · s̃j

)
s̃

j
)

− τ

2ω

k−2∑

l=0

n−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) ((

f l · s̃j
)

t̃
j −

(
f l · t̃j

)
s̃

j
)
,

where the eigenvalues λ±j are given in (5.112) with (5.111) and Aj and Bj are

defined in (5.113). For odd N = 2n− 1 the parts with t̃
n

disappear.

Although the eigenvalues and the corresponding eigenvectors become complex
for large values of j, the above representations are real.

If there is a j with cos(2yj) = f(ω), then we have the jth summand
(
λk

j +
ω

2
(1 + cj)kλ

k−1
j

)((
R0 · t̃j

)
t̃
j
+
(
R0 · s̃j

)
s̃

j
)

+ (1 − ω)sjkλ
k−1
j

((
J0 · s̃j

)
t̃
j −

(
J0 · t̃j

)
s̃

j
)

for the R-equation and
(
λk

j − ω

2
(1 + cj)kλ

k−1
j

)((
J0 · t̃j

)
t̃
j
+
(
J0 · s̃j

)
s̃

j
)

− sjkλ
k−1
j

((
R0 · s̃j

)
t̃
j −

(
R0 · t̃j

)
s̃

j
)

for the J -equation. Here, we use λj := cj − ω(1 + cj)/2. Accordingly, we have to
add corresponding terms for the right hand sides.

For the low-frequency coefficients in the solution representation we find

Aj = 1 +
1 − ω

2ω2
(2yj)

2 + O(y4
j ) for j ≪ N,

Bj = 2yj +
ω2 − 6ω + 6

12ω2
(2yj)

3 + O(y5
j ) for j ≪ N.

For the corresponding eigenvalues we find

λ+
j = 1 − 1

2ω
(2yj)

2 + O(y4
j ) for j ≪ N,

(λ+
j )k ≈ e−4νj2π2tk/|Ω|2 for j ≪ N,

where we take ν := γ/(2ω) and tk := kτ = k|Ω|2/(γN2). Hence, the leading order
terms

1

2
(1 +Aj)(λ

+
j )k ≈ e−4νj2π2tk/|Ω|2 for j ≪ N

show the correct approximation property. In contrast we have 1−Aj = O(y2
j ) and

(λ−j )k is oscillating and it decays very fast. Since Bj and J0 are of order O(h), the

terms induced by J0 in the R-representation are only of order O(h2).
The decisive term in the J -representation is Bj(λ

+
j )k. With the background of

partial integration we find

−Bj

2ω

((
R0 · s̃j

)
−
(
R0 · t̃j

))
≈ − h

2ω

((
DhR0 · t̃j

)
+
(
DhR0 · s̃j

))
,

where we defineDhR0 := [∂xr0(xi)]i. Hence, Jk is an approximation of −h∂xr/(2ω).
The choice of J0 plays a subordinate role.

In the R-representation the oscillating parts (λ−j )k are hidden in an order

O(h2)-term. In the J -representation the oscillating terms Bj(λ
−
j )k are apparent.

Hence, we get the wrong viscosity in the first steps. After several iterations the
oscillations have faded away and the correct viscosity is reached. This can be seen
in numerical experiments.
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The behavior of the time-dependent coefficients

Rk
j :=

1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

is examined in Figure 5.9. The poles in Aj are deleted. For large time steps only
the coefficients with j close to 0 and N/2 are of significant size. Oscillations are
observed for large values of j.

By switching to the basis (5.95), we find

Theorem 5.20. Assume that ω ∈ (0, 1), N = 2n and (A). Let the initial values

be given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Then the discrete Fourier solution P k = [Rk;Jk] of the system

P l+1 = KP l + τGl for l = 0, . . . , k − 1

for the VCFV lattice Boltzmann equation (5.3) with periodic boundary conditions
(5.5) can be represented in terms of the orthonormal basis (5.96). The representa-

tion is the same as in Theorem 5.19 with s̃
l replaced by ŝ

l for l = 1, . . . n − 1, t̃
l

replaced by t̂
l
for l = 0, . . . , n− 1 and t̃

n
replaced by ŝ

n.

For the consideration of the boundary value problems we define for ω ∈ (0, 1)

sl := sin(yl), cl := cos(yl),

Wl :=

((
(cl −

ω

2
(1 + cl)

)2

− 1 + ω(1 + cl)

)1/2 (5.114)

for l = 0, . . . , N .
The eigenvectors of the time evolution matrix M (given in (5.21) and (5.22))

can be written in terms of the basis (5.97)

W̊
0

− = T̊
0

c , W̊
N

− = S̊
N

s ,

W̊
l

+ = slS̊
l

s +
(ω

2
(1 + cl) −Wl

)
T̊

l

c,

W̊
l

− = slS̊
l

s +
(ω

2
(1 + cl) +Wl

)
T̊

l

c,

}
for l = 1, . . . , N − 1.

We find the corresponding eigenvalues

λ−0 = −θ, λ−N = −1,
(5.115)

λ+
l = cl −

ω

2
(1 + cl) +Wl, λ−l = cl −

ω

2
(1 + cl) −Wl,

for l = 1, . . . , N − 1.

The eigenvectors of K (given in (5.61)) are found via the transformation T̊ :=

T /
√

2 with T given in (5.38) in the form

Q̊
0

− = T̊ W̊
0

− =

[
0

−̊t
0

]
, Q̊

N

− = T̊ W̊
N

− =

[
0

−̊t
N

]
,

Q̊
l

+ = T̊ W̊
l

+ =

[ (
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) −Wl

)
sin(yl/2)

)
s̊l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) −Wl

)
cos(yl/2)

)
t̊
l

]
,

Q̊
l

− = T̊ W̊
l

− =

[ (
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) +Wl

)
sin(yl/2)

)
s̊

l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) +Wl

)
cos(yl/2)

)
t̊
l

]
.

For the representation of the discrete Fourier solutions we define

Al :=
ω

2Wl
(1 + cos(yl)), Bl :=

ω

Wl
sin(yl) for l = 1, . . . , N − 1. (5.116)
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Figure 5.9. Behavior of Rk
j for N = 200 and selected time steps k.
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Furthermore, we assume

N

π
arccos(f(ω)) /∈ N. (A’)

Theorem 5.21. Assume that ω ∈ (0, 1) and (A’). Let the initial values be

given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Then the discrete Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR for l = 0, . . . , k − 1

for the VCFV lattice Boltzmann equations (5.3) with reduced density boundary con-
ditions (5.6) can be represented in terms of the bases (5.100) and (5.101) by

Rk =

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · s̊j

)
s̊

j

+
1 − ω

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · d̊t
j
)

s̊
j

+ τ
k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · s̊j

)
s̊j

+
1 − ω

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · d̊t
j
)

s̊j ,

Jk = (−θ)k
(
J0 · d̊t

0
)

t̊
0

+ (−1)k
(
J0 · d̊t

N
)

t̊
N

+

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · d̊t

j
)

t̊
j

− 1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · s̊j
)

t̊
j

+ τ
k−1∑

l=0

(−θ)k−l−1
(
gl · d̊t

0
)

t̊
0

+ τ
k−1∑

l=0

(−1)k−l−1
(
gl · d̊t

N
)

t̊
N

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · d̊t

j
)

t̊
j

− τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · s̊j
)

t̊
j
,

where the eigenvalues λ±j are given in (5.115) with (5.114) and Aj and Bj are

defined in (5.116). We use d := diagN+1(1/2, 1, . . . , 1, 1/2).

In the flux case the eigenvectors of the matrix M (given in (5.21) and (5.23))
are

V̊
0

+ = S̊
0

c , V̊
N

− = T̊
N

s ,

V̊
l

+ = −slS̊
l

c −
(ω
2

(1 + cl) −Wl

)
T̊

l

s,

V̊
l

− = −slS̊
l

c −
(ω
2

(1 + cl) −Wl

)
T̊

l

s,

}
for l = 1, . . . , N − 1.
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The values sl, cl and Wl are defined in (5.114). We find the eigenvalues

λ+
0 = 1, λ−N = −1,

λ+
l = cl −

ω

2
(1 + cl) +Wl, λ−l = cl −

ω

2
(1 + cl) −Wl,

(5.117)

for l = 1, . . . , N − 1.

Hence, we get the eigenvectors of K (given in (5.62)) via transformation by

T̊ := T /
√

2 with T given in (5.43) in the form

P̊
0

+ = T̊ V̊
0

+ =

[̊
t
0

0

]
, P̊

N

− = T̊ V̊
N

− =

[
t̊
N

0

]
,

P̊
l

+ = T̊ V̊
l

+ =

[
−
(
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) −Wl

)
sin(yl/2)

)
t̊
l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) −Wl

)
cos(yl/2)

)
s̊

l

]
,

P̊
l

− = T̊ V̊
l

− =

[
−
(
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) +Wl

)
sin(yl/2)

)
t̊
l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) +Wl

)
cos(yl/2)

)
s̊l

]
.

We now arrive at

Theorem 5.22. Assume that ω ∈ (0, 1) and (A’). Let the initial values be

given by P 0 = [R0;J0] and let the right hand side be given by Gl = [f l; gl] for

l = 0, . . . , k − 1. Take Cl
0 := cl0P̊

0

+ with cl0 := −(jl
R − jl

L)/N . Then the discrete

Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR + Cl

0 for l = 0, . . . , k − 1

for the lattice Boltzmann VCFV equations (5.3) with reduced flux boundary condi-
tions (5.8) can be represented in terms of the bases (5.100) and (5.101) by

Rk =
(
R0 · d̊t

0
)

t̊
0

+

k−1∑

l=0

cl0̊t
0

+ (−1)k
(
R0 · d̊t

N
)

t̊
N

+
N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · d̊t

j
)

t̊
j

+
θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · s̊j
)

t̊
j

+ τ
k−1∑

l=0

(
f l · d̊t

0
)

t̊
0

+ τ
k−1∑

l=0

(−1)k−l−1
(
f l · d̊t

N
)

t̊
N

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · d̊t

j
)

t̊
j

+
θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · s̊j
)

t̊
j
,

Jk =
N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · s̊j

)
s̊j

+
1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · d̊t
j
)

s̊
j
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+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · s̊j

)
s̊

j

+
τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · d̊t
j
)

s̊
j ,

where the eigenvalues λ±j are given in (5.117) with (5.114) and Aj and Bj are

defined in (5.116). We use d := diagN+1(1/2, 1, . . . , 1, 1/2).

Now we examine solutions of the density boundary value problem on CCFV
grids. For the time evolution matrix M (given in (5.28) and (5.29)) we find the
eigenvectors in terms of the basis (5.105)

W
0

− := T
0

c , W
N

− := T
N

c ,

W
l

+ := slS
l

s +
(ω
2

(1 + cl) −Wl

)
T

l

c,

W
l

− := slS
l

s +
(ω
2

(1 + cl) +Wl

)
T

l

c,

}
for l = 1, . . . , N − 1

with the eigenvalues given by

λ−0 = −θ, λ−N = −1,

λ+
l = cl −

ω

2
(1 + cl) +Wl, λ−l = cl −

ω

2
(1 + cl) −Wl,

(5.118)

for l = 1, . . . , N − 1.

The definitions of sl, cl and Wl are given in (5.114).

By transformation via T̄ := T /
√

2 with T given in (5.53) we find the eigenvec-
tors of K (given in (5.64)) by

Q
0

− := T̄W
0

− =

[
0

−t
0

]
, Q

N

− := T̄W
N

− =

[
−sN

0

]
,

Q
l

+ := T̄W
l

+ =

[
(αl cos (yl/2) − (ω − Vl) sin (yl/2)) sl

− (αl sin (yl/2) + (ω − Vl) cos (yl/2)) t
l

]
,

Q
l

− := T̄W
l

− =

[
(αl cos (yl/2) − (ω + Vl) sin (yl/2)) sl

− (αl sin (yl/2) + (ω + Vl) cos (yl/2)) t
l

]
.

We have

KQ
0

− = −θQ0

−, KQ
N

− = −Q
N

− ,

KQ
l

+ = λ+
l Q

l

+, KQ
l

− = λ−l Q
l

−, for l = 1, . . . , N − 1.

Theorem 5.23. Assume that ω ∈ (0, 1) and (A’). Let the initial values be given

by P 0 = [R0;J0] and let the right hand be given by Gl = [f l; gl] for l = 0, . . . , k−1.

Then the discrete Fourier solution P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR for l = 0, . . . , k − 1

for the CCFV lattice Boltzmann equations (5.4) with reduced density boundary con-
ditions (5.12) can be represented in terms of the bases (5.107) and (5.108) by

Rk = (−1)k
(
R0 · sN

)
sN + τ

k−1∑

l=0

(−1)k−l−1
(
f l · sN

)
sN

+

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · sj

)
sj
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− θ

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · tj
)

sj

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · sj

)
sj

− θ

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · tj
)

sj ,

Jk = (−θ)k
(
J0 · t0

)
t
0

+ τ
k−1∑

l=0

(−θ)k−l−1
(
gl · t0

)
t
0

+
N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · tj

)
t
j

− 1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · sj
)
t
j

+ τ

k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · tj

)
t
j

− τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · sj
)

t
j
,

where the eigenvalues λ±j are given in (5.118) with (5.114) and Aj and Bj are

defined in (5.116).

The eigenvectors of M (given in (5.28) and (5.30)) are given in terms of the
basis (5.109) by

V
0

+ := S
0

c , V
N

− := S
N

c ,

V
l

+ := slS
l

c −
(ω
2

(1 + cl −Wl

)
T

l

s,

V
l

− := slS
l

c −
(ω
2

(1 + cl −Wl

)
T

l

s,

}
for l = 1, . . . , N − 1.

We find the eigenvalues

λ+
0 = 1, λ−N = −1,

λ+
l = cl −

ω

2
(1 + cl) +Wl, λ−l = cl −

ω

2
(1 + cl) −Wl,

(5.119)

for l = 1, . . . , N − 1.

We get eigenvectors of K (given in (5.58)) via transformation by T̄ := T /
√

2 with
T given in (5.53)

P
0

+ := T̄ V
0

+ =

[
t
0

0

]
, P

N

− := T̄ V
N

− =

[
0

sN

]
,

P
l

+ := T̄ V
l

+ =

[ (
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) −Wl

)
sin(yl/2)

)
t
l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) −Wl

)
cos(yl/2)

)
sl

]
,

P
l

− := T̄ V
l

− =

[
−
(
sin(yl) cos(yl/2) −

(
ω
2 (1 + cl) +Wl

)
sin(yl/2)

)
t
l

−
(
sin(yl) sin(yl/2) +

(
ω
2 (1 + cl) +Wl

)
cos(yl/2)

)
sl

]
.

Theorem 5.24. Assume that ω ∈ (0, 1) and (A’). Let the initial values be given

by P 0 = [R0;J0] and let the right hand be given by Gl = [f l; gl] for l = 0, . . . , k−1.
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Take Cl
0 := cl0P

0

+ with cl0 := −(jl
R − jl

L)/N . Then the discrete Fourier solution

P k
LR = [Rk;Jk] of the system

P l+1
LR = KP l

LR + τGl
LR + Cl

0 for l = 0, . . . , k − 1

for the CCFV lattice Boltzmann equations (5.4) with reduced flux boundary condi-
tions (5.14) can be represented in terms of the bases (5.107) and (5.108) by

Rk =
(
R0 · t0

)
t
0

+ τ

k−1∑

l=0

(
f l · t0

)
t
0

+

k−1∑

l=0

cl0t
0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k +

1

2
(1 −Aj)(λ

−
j )k

)(
R0 · tj

)
t
j

− 1 − ω

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

J0 · sj
)
t
j

+ τ
k−1∑

l=0

N−1∑

j=1

(
1

2
(1 +Aj)(λ

+
j )k−l−1 +

1

2
(1 −Aj)(λ

−
j )k−l−1

)(
f l · tj

)
t
j

− 1 − ω

2ω
τ

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

gl · sj
)
t
j
,

Jk = (−1)k
(
J0 · sN

)
sN + τ

k−1∑

l=0

(−1)k−l−1
(
gl · sN

)
sN

+

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k +

1

2
(1 +Aj)(λ

−
j )k

)(
J0 · sj

)
sj

+
1

2ω

N−1∑

j=1

Bj

(
(λ+

j )k − (λ−j )k
) (

R0 · tj
)

sj

+ τ
k−1∑

l=0

N−1∑

j=1

(
1

2
(1 −Aj)(λ

+
j )k−l−1 +

1

2
(1 +Aj)(λ

−
j )k−l−1

)(
gl · sj

)
sj

+
τ

2ω

k−2∑

l=0

N−1∑

j=1

Bj

(
(λ+

j )k−l−1 − (λ−j )k−l−1
) (

f l · tj
)

sj ,

where the eigenvalues λ±j are given in (5.119) with (5.114) and Aj and Bj are

defined in (5.116).



CHAPTER 6

Convergence of the Lattice Boltzmann Solutions

In this chapter we prove the convergence of the FD lattice Boltzmann solutions
by following the concept of stability and consistency. Since stability estimates are
only available for the lattice Boltzmann schemes (5.1) on VCFD grids and (5.2) on
CCFD grids, we restrict our attention to these cases. For the convergence of the
FV schemes (5.3) and (5.4), one has to invoke the discrete Fourier solutions.

For a fixed end time, we prove second order convergence for the density and
the h-scaled flux in the discrete L∞(L2)-norm and third order convergence for the
h-scaled flux in the discrete L2(L2)-norm towards solutions of the heat equation
with respect to the grid size h.

Special care has to be taken at the boundaries, where the residuals do not show
the right order. This problem can be overcome, however, by methods similar to
those employed when we reduced the boundary values.

We begin with formal asymptotic expansions of the problem.

6.1. A Formal Approach

The question of the numerical viscosity of the lattice Boltzmann schemes has
first been answered by the computation of the discrete Fourier solutions. We now
wish to confirm these results with the aid of a more formal approach.

By using Taylor expansions up to second order in h for the terms uk+1
l+1 and

vk+1
l−1 in the FD lattice Boltzmann scheme (5.1) with the coupling γτ = h2, and

disregarding the indices in uk
l := u(tk, xl), v

k
l := v(tk, xl) and fk

l := f(tk, xl), we
gain

h2∂tu+ γh∂xu+ γ
h2

2
∂2

xu+ γω(u− v) =
h2

2
f,

h2∂tv − γh∂xv + γ
h2

2
∂2

xv − γω(u− v) =
h2

2
f.

Next, we plug in expansions of the form

u = u0 + hu1 + h2u2 + . . . ,

v = v0 + hv1 + h2v2 + . . . .

We take r := u+ v and j := u− v. In zeroth order, we find

u0 = v0 =
1

2
r0 :=

1

2
(u0 + v0) j0 := u0 − v0 = 0.

In first order, we have

∂xu
0 = −ω(u1 − v1),

−∂xv
0 = ω(u1 − v1)

and hence we get

j1 := u1 − v1 = − 1

ω
∂xu

0 = − 1

ω
∂xv

0 = − 1

2ω
∂xr

0.
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Observe that the first order density term r1 := u1 + v1 is yet undetermined. Later
on the numerical convergence results imply that r1 = 0. In second order, we get

∂tu
0 + γ∂xu

1 +
γ

2
∂2

xu
0 + γω(u2 − v2) =

1

2
f,

∂tv
0 − γ∂xv

1 +
γ

2
∂2

xv
0 − γω(u2 − v2) =

1

2
f.

Taking the sum of the previous equations yields

∂tr
0 + γ∂xj

1 +
γ

2
∂2

xr
0 = ∂tr

0 − 1 − ω

2ω
γ∂2

xr
0 = f.

Hence, we find the numerical viscosity

ν: =
1 − ω

2ω
γ

for the FD lattice Boltzmann schemes. From r1 = u1+v1 = 0 we get j2 := u2−v2 =
0. We formally have

u =
1

2
r0 − h

4ω
∂xr

0 +
h2

2
r2 + O(h3),

v =
1

2
r0 +

h

4ω
∂xr

0 +
h2

2
r2 + O(h3),

which implies the approximation of the density and the flux of the orders

r = r0 + h2r2 + O(h3),

j = − h

2ω
∂xr

0 + O(h3).

Here, r0 is the solution of the heat equation and r2 is an unknown function. This
result is quantified in the ensuing sections.

Using Taylor expansions up to second order in h for the terms uk+1
l+1 , vk+1

l−1 in

the FV lattice Boltzmann scheme (5.3) with the coupling γτ = h2 and omitting the
indices for uk

l , vk
l and fk

l yields

h2∂tu+ γh∂xu+ γ
h2

2
∂2

xu+ γ
ω

2
(2j + h∂xj +

h2

2
∂2

xj) =
h2

2
f,

h2∂tv − γh∂xv + γ
h2

2
∂2

xv − γ
ω

2
(2j − h∂xj +

h2

2
∂2

xj) =
h2

2
f.

Using the expansions

u = u0 + hu1 + h2u2 + . . . ,

v = v0 + hv1 + h2v2 + . . .

yields in zeroth order

u0 = v0 =
1

2
r0, j0 = 0.

In first order, we have

∂xu
0 = −ωj1 − ω

2
∂xj

0 = −ωj1,

−∂xv
0 = ωj1 − ω

2
∂xj

0 = ωj1

and hence we gain

j1 = − 1

ω
∂xu

0 = − 1

ω
∂xv

0 = − 1

2ω
∂xr

0.
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In second order, we get

∂tu
0 + γ∂xu

1 +
γ

2
∂2

xu
0 + γωj2 + γ

ω

2
∂xj

1 + γ
ω

4
∂2

xj
0 =

1

2
f,

∂tv
0 − γ∂xv

1 +
γ

2
∂2

xv
0 − γωj2 + γ

ω

2
∂xj

1 − γ
ω

4
∂2

xj
0 =

1

2
f.

Taking the sum of the previous equations yields

∂tr
0 + γ∂xj

1 +
γ

2
∂2

xr
0 + γω∂xj

1 = ∂tr
0 − γ

2ω
∂2

xr
0 = f.

Hence, we obtain the numerical viscosity as

ν =
1

2ω
γ

for the FV lattice Boltzmann schemes. The approximation properties are the same
as in the FD case. As a consequence, the time steps for the FV schemes can
be chosen a factor 1/(1 − ω) larger, so that in total fewer time steps have to be
performed.

Transformation of the heat equation (2.1) to an advection system by defining
u := (r + j)/2, v := (r − j)/2 with j := −h∂xr/(2ω) leads to

∂tu+
1

ǫ
∂xu+

1 − ω

2νǫ2
(u− v)=

1

2
f +

1

2
∂tj −

ω

2(1 − ω)
ν∂2

xr,

∂tv −
1

ǫ
∂xv −

1 − ω

2νǫ2
(u− v) =

1

2
f − 1

2
∂tj +

ω

2(1 − ω)
ν∂2

xr,

where we applied the couplings ǫ := h/γ, γτ = h2 and γ = 2ων/(1 − ω) on FD
grids. In comparison to (3.14), we see that the solution of the FD lattice Boltzmann
schemes that is consistent to the heat equation, cannot be consistent to the solutions
of the advection system (3.1).

For the FV couplings ǫ := h/γ, γτ = h2 and γ = 2ων, we gain

∂tu+
1

ǫ
∂xu+

1

2νǫ2
(u− v) =

1

2
f +

1

2
∂tj,

∂tv −
1

ǫ
∂xv −

1

2νǫ2
(u− v) =

1

2
f − 1

2
∂tj,

which is exactly (3.14). Hence, solutions of the FV lattice Boltzmann schemes are
consistent with the heat equation and with the advection system simultaneously.

From these formal results we now step back to a rigorous study of the conver-
gence. Let us now first consider the consistency of the lattice Boltzmann schemes.

6.2. Consistency of the FD Lattice Boltzmann Schemes

Let r be a solution of the heat equation (2.1) with viscosity ν and source term
f . For a given ω ∈ (0, 1) and grid size h := |Ω|/N we define j := −h∂xr/(2ω).
Furthermore, we define rk

l := r(tk, xl), j
k
l := j(tk, xl) and fk

l := f(tk, xl). In the
inner points we consider the residuals for the FD lattice Boltzmann schemes (5.1)
and (5.2) in the RJ-formulation implied by (5.32). The residuals read

ξk
l := rk+1

l − rk
l − 1

2

(
rk
l+1 − 2rk

l + rk
l−1

)

− 2ω − 1

2

(
jk
l+1 − jk

l−1

)
− τ

2

(
fk

l+1 + fk
l−1

)
,

ηk
l := jk+1

l − jk
l +

1

2

(
rk
l+1 − rk

l−1

)

+
2ω − 1

2

(
jk
l+1 + jk

l−1

)
+ jk

l +
τ

2

(
fk

l+1 − fk
l−1

)
.

(6.1)
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In the periodic case the spatial index l takes the values l = 0, . . . , N − 1. In the
boundary case we choose l = 2, . . . , N − 2 on VC grids and l = 3/2, . . . , N − 3/2 on
CC grids.

By using the relations γτ = h2 and ν = (1 − ω)γ/(2ω) and Taylor series
expansions, we find

ξk
l = h4

(
6ω2 − 8ω + 3

24ω2
∂4

xr
k
l +

1

2γ2
∂tf

k
l +

1 − 3ω

4ωγ
∂2

xf
k
l

)
+ O(h6),

ηk
l = h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
l +

2ω − 1

2ωγ
∂xf

k
l

)
+ O(h5).

(6.2)

Here, we use the definitions ∂j
xr

k
l := ∂j

xr(tk, xl) for j ∈ N and ∂tf
k
l := ∂tf(tk, xl).

For the boundary value problems, we have to consider in addition the residuals
at the boundary. For the VCFD lattice Boltzmann equations (5.1) with density
boundary conditions (5.6) we find

ξk
1 := rk+1

1 − rk
1 − 1

2

(
rk
2 − 2rk

1 + rk
L

)

− 2ω − 1

2

(
jk
2 − jk

0

)
− τ

2

(
fk
2 + fk

0

)
,

ξk
N−1 := rk+1

N−1 − rk
N−1 −

1

2

(
rk
R − 2rk

N−1 + rk
N−2

)

− 2ω − 1

2

(
jk
N − jk

N−2

)
− τ

2

(
fk

N + fk
N−2

)
,

ηk
0 := jk+1

0 − jk
0 + rk

1 − rk+1
L + (2ω − 1)jk

1 + jk
0 + τfk

1 ,

ηk
1 := jk+1

1 − jk
1 +

1

2

(
rk
2 − rk

L

)

+
2ω − 1

2

(
jk
2 + jk

0

)
+ jk

1 +
τ

2

(
fk
2 − fk

0

)
,

ηk
N−1 := jk+1

N−1 − jk
N−1 +

1

2

(
rk
R − rk

N−2

)

+
2ω − 1

2

(
jk
N + jk

N−2

)
+ jk

N−1 +
τ

2

(
fk

N − fk
N−2

)
,

ηk
N := jk+1

N − jk
N + rk+1

R − rk
N−1 + (2ω − 1)jk

N−1 + jk
N − τfk

N−1,

(6.3)

with rk
L and rk

R defined in (5.7). While the residuals ξk
1 , ξk

N−1, η
k
1 and ηk

N−1 have
the same behavior as in the inner points, we see

ηk
0 = h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
0 +

2ω − 1

2ωγ
∂xf

k
0

)
+ O(h4),

ηk
N = h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N +

2ω − 1

2ωγ
∂xf

k
N

)
+ O(h4).

(6.4)
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For the VCFD lattice Boltzmann equations (5.1) with flux boundary conditions
(5.8), we find

ξk
0 := rk+1

0 − rk
0 − rk

1 + rk
0 − (2ω − 1)jk

1 − jk+1
L − τfk

1 ,

ξk
1 := rk+1

1 − rk
1 − 1

2

(
rk
2 − 2rk

1 + rk
0

)

− 2ω − 1

2

(
jk
2 − jk

L

)
− τ

2

(
fk
2 + fk

0

)
,

ξk
N−1 := rk+1

N−1 − rk
N−1 −

1

2

(
rk
N − 2rk

N−1 + rk
N−2

)

− 2ω − 1

2

(
jk
R − jk

N−2

)
− τ

2

(
fk

N + fk
N−2

)
,

ξk
N := rk+1

N − rk
N + rk

N − rk
N−1 + (2ω − 1)jk

N−1 + jk+1
R − τfk

N−1,

ηk
1 := jk+1

1 − jk
1 +

1

2

(
rk
2 − rk

0

)

+
2ω − 1

2

(
jk
L + jk

2

)
+ jk

1 +
τ

2

(
fk
2 − fk

0

)
,

ηk
N−1 := jk+1

N−1 − jk
N−1 +

1

2

(
rk
N − rk

N−2

)

+
2ω − 1

2

(
jk
R + jk

N−2

)
+ jk

N−1 +
τ

2

(
fk

N − fk
N−2

)
,

(6.5)

with jk
L and jk

R defined in (5.9). While the residuals ξk
1 , ξk

N−1, η
k
1 and ηk

N−1 have
the same behavior as in the inner points, we gain

ξk
0 = −h3

(
−4ω2 + 6ω − 3

12ω2
∂3

xr
k
0 +

2ω − 1

2ωγ
∂xf

k
0

)
+ O(h4),

ξk
N = h3

(
−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N +

2ω − 1

2ωγ
∂xf

k
N

)
+ O(h4).

(6.6)

For the VCFD lattice Boltzmann equations (5.1) with inflow boundary condi-
tions (5.10), we find

ξk
0 := rk+1

0 − rk
0 − 1

2
rk
1 + rk

0 − 2ω − 1

2
jk
1 − uk+1

L − τ

2
fk
1 ,

ξk
1 := rk+1

1 − rk
1 − 1

2
rk
2 + rk

1 − ωrk
0

− 2ω − 1

2
jk
2 + (2ω − 1)uk

L − τ

2

(
fk
2 + fk

0

)
,

ξk
N−1 := rk+1

N−1 − rk
N−1 −

1

2
rk
N−2 + rk

N−1 − ωrk
N

+
2ω − 1

2
jk
N−2 + (2ω − 1)vk

R − τ

2

(
fk

N + fk
N−2

)
,

ξk
N := rk+1

N − rk
N − 1

2
rk
N−1 + rk

N +
2ω − 1

2
jk
N−1 − vk+1

R − τ

2
fk

N−1,

ηk
1 := jk+1

1 − jk
1 +

1

2
rk
2 − ωrk

0

+
2ω − 1

2
jk
2 + jk

1 + (2ω − 1)uk
L +

τ

2

(
fk
2 − fk

0

)
,

ηk
N−1 := jk+1

N−1 − jk
N−1 −

1

2
rk
N−2 + ωrk

N

+
2ω − 1

2
jk
N−2 + jk

N−1 − (2ω − 1)vk
R +

τ

2

(
fk

N − fk
N−2

)
,

(6.7)
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with uk
L and vk

R defined in (5.11). The parameter ϑ for the Robin boundary condi-
tion (2.5) for the heat equation has to be chosen as ϑ := h/(2ω). For the residuals,
we gain

ξk
0 = −1

2
h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
0 +

2ω − 1

2ωγ
∂xf

k
0

)
+ O(h4),

ξk
1 = O(h4), ξk

N−1 = O(h4),

ξk
N =

1

2
h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N +

2ω − 1

2ωγ
∂xf

k
N

)
+ O(h4),

ηk
1 =

1

2
h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
1 +

2ω − 1

2ωγ
∂xf

k
1

)
+ O(h4),

ηk
N−1 =

1

2
h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N−1 +

2ω − 1

2ωγ
∂xf

k
N−1

)
+ O(h4).

(6.8)

For the CCFD lattice Boltzmann equations (5.2) with density boundary con-
ditions (5.12), we find

ξk
1/2 := rk+1

1/2 − rk
1/2 −

1

2

(
rk
3/2 − 3rk

1/2 + 2rk
L

)
− rk+δ

L + rk
L

− 2ω − 1

2

(
jk
3/2 − jk

1/2

)
− τ

2

(
fk
3/2 − fk

1/2

)
,

ξk
N−1/2 := rk+1

N−1/2 − rk
N−1/2 −

1

2

(
2rk

R − 3rk
N−1/2 + rk

N−3/2

)
− rk+δ

R + rk
R

− 2ω − 1

2

(
jk
N−1/2 − jk

N−3/2

)
+
τ

2

(
fk

N−1/2 − fk
N−3/2

)
,

(6.9)

ηk
1/2 := jk+1

1/2 − jk
1/2 +

1

2

(
rk
1/2 + rk

3/2

)

+
2ω − 1

2

(
jk
1/2 + jk

3/2

)
+ jk

1/2 − rk+δ
L +

τ

2

(
fk
1/2 + fk

3/2

)
,

ηk
N−1/2 := jk+1

N−1/2 − jk
N−1/2 −

1

2

(
rk
N−1/2 + rk

N−3/2

)

+
2ω − 1

2

(
jk
N−1/2 + jk

N−3/2

)
+ jk

N−1/2 + rk+δ
R − τ

2

(
fk

N−1/2 + fk
N−3/2

)
,

with rk+δ
L and rk+δ

R defined in (5.7) and evaluated in tk+δ = tk + δτ for a given
δ ∈ [0, 1]. Taylor expansions render

ξk
1/2 = h2sk

L + O(h4),

ξk
N−1/2 = h2sk

R + O(h4),
(6.10)

ηk
1/2 = h2sk

L + h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
1/2 +

2ω − 1

2ωγ
∂xf

k
1/2

)
+ O(h4),

ηk
N−1/2 = −h2sk

R + h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N−1/2 +

2ω − 1

2ωγ
∂xf

k
N−1/2

)
+ O(h4),
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where we use the definitions

sk
L :=

2 − 3ω − 4δ(1 − ω)

8ω

(
∂2

xr
k
1/2 −

h

2
∂3

xr
k
1/2

)

+
1 − δ

γ

(
fk
1/2 −

h

2
∂xf

k
1/2

)
,

sk
R :=

2 − 3ω − 4δ(1 − ω)

8ω

(
∂2

xr
k
N−1/2 +

h

2
∂3

xr
k
N−1/2

)

+
1 − δ

γ

(
fk

N−1/2 +
h

2
∂xf

k
N−1/2

)
.

(6.11)

For the CCFD lattice Boltzmann equations (5.2) with flux boundary conditions
(5.13), we find

ξk
1/2 := rk+1

1/2 − rk
1/2 −

1

2

(
rk
3/2 + rk

1/2

)
+ rk

1/2

− 2ω − 1

2

(
jk
3/2 + jk

1/2

)
− (1 − ω)jk+δ

L − τ

2

(
fk
3/2 + fk

1/2

)
,

ξk
N−1/2 := rk+1

N−1/2 − rk
N−1/2 −

1

2

(
rk
N−3/2 + rk

N−1/2

)
+ rk

N−1/2

+
2ω − 1

2

(
jk
N−1/2 + jk

N−3/2

)
+ (1 − ω)jk+δ

R − τ

2

(
fk

N−3/2 + fk
N−1/2

)
,

(6.12)
ηk
1/2 := jk+1

1/2 − jk
1/2 +

1

2

(
rk
3/2 − rk

1/2

)
+
τ

2

(
fk
3/2 − fk

1/2

)

+
2ω − 1

2

(
jk
3/2 − jk

1/2

)
+ jk

1/2 − (1 − ω)jk+δ
L ,

ηk
N−1/2 := jk+1

N−1/2 − jk
N−1/2 +

1

2

(
rk
N−1/2 − rk

N−3/2

)
+
τ

2

(
fk

N−1/2 − fk
N−3/2

)

− 2ω − 1

2

(
jk
N−1/2 − jk

N−3/2

)
+ jk

N−1/2 − (1 − ω)jk+δ
R ,

with jk+δ
L and jk+δ

R defined in (5.9) and evaluated in tk+δ = tk + δτ for a given
δ ∈ [0, 1]. Taylor expansions render

ξk
1/2 = h3sk

L + h3tkL

− h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
1/2 +

2ω − 1

2ωγ
∂xf

k
1/2

)
+ O(h4),

ξk
N−1/2 = −h3sk

R − h3tkR

+ h3

(−4ω2 + 6ω − 3

12ω2
∂3

xr
k
N−1/2 +

2ω − 1

2ωγ
∂xf

k
N−1/2

)
+ O(h4),

(6.13)
ηk
1/2 = h3sk

L − h3tkL + O(h4),

ηk
N−1/2 = h3sk

R − h3tkR + O(h4),

where we use the definitions

sk
L :=

−5ω2 + 15ω − 12 + 12δ(1 − ω)2

48ω2
∂3

xr
k
1/2 −

(1 − δ)(1 − ω)

2ωγ
∂xf

k
1/2 ,

tkL :=
1 − ω

8ω
∂3

xr
k
1/2 ,

(6.14)

sk
R :=

−5ω2 + 15ω − 12 + 12δ(1 − ω)2

48ω2
∂3

xr
k
N−1/2 −

(1 − δ)(1 − ω)

2ωγ
∂xf

k
N−1/2 ,

tkR :=
1 − ω

8ω
∂3

xr
k
N−1/2 .
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The residuals appear as right hand sides of the error equations. With the stability
estimates we can now prove convergence of the FD lattice Boltzmann solutions.

6.3. Convergence of the FD Lattice Boltzmann Solutions

Let r be a solution of the heat equation (2.1) in (0, tM ) × Ω with viscosity ν,

source term f and initial value r0. Define j := −h∂xr/(2ω). Let P k := [Rk;Jk],
k = 0, . . . ,M , be the discrete solutions of the matrix equations (5.37) and (5.52)
belonging to the FD lattice Boltzmann schemes (5.1) on VC grids and (5.2) on
CC grids with grid size h := |Ω|/N and time step τ := h2/γ and the relation
ν = (1 − ω)γ/(2ω).

We define the errors

(ER)
k
l := r(tk, xl) −Rk

l ,

(EJ)
k
l := j(tk, xl) − Jk

l .

Then the error Ek :=
[
[(ER)

k
l ]l; [(EJ)

k
l ]l
]

satisfies the equation

Ek+1 = KEk + Resk

with the residuals

Resk :=
[
ξk;ηk

]
,

with ξk = [ξk
l ]l and ηk = [ηk

l ]l. In the periodic case we gain the following conver-
gence result.

Theorem 6.1. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions
belonging to the VCFD lattice Boltzmann equations (5.1) with relaxation parameter
ω and with periodic boundary conditions (5.5) and initial values R0

l = r0(xl), J
0
l =

−h∂xr0(xl)/(2ω) for l = 0, . . . , N − 1. The right hand sides are evaluated at the
origin of the characteristics, that is, we use F k

l,+ = F k
l,− = f(tk, xl). Then we get

the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.75). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.2, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2
k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
5tk
τ

k−1∑

i=0

‖1

2
A†ξi − 1

2
D†ηi‖2

2 +
θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
D†ξi − 1

2
A†ηi‖2

2,
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with A and D given in (5.35). The residuals ξk = [ξk
l ]l=0,...,N−1 and ηk =

[ηk
l ]l=0,...,N−1 are defined in (6.1). We find

1

2
A†ξk − 1

2
D†ηk =

1

2

[
ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1

]
l=0,...,N−1

,

1

2
D†ξk − 1

2
A†ηk =

1

2

[
ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1

]
l=0,...,N−1

.

With (6.2) we find

ξk
l = O(h4), ηk

l = O(h3),

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1 = O(h4),

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1 = O(h3)

for l = 0, . . . , N − 1 and periodic continuations. By keeping a factor τ = h2/γ for
the summation over the time intervals, we find that the first sum in the estimate is
of order O(h6) and the last three sums are of order O(h4). With the choice of the
initial data, we have E0

R = E0
J = 0. �

An evaluation of the source terms along the characteristics, that is, the choice

F k
l,+ = f(tk + sτ, xl + sh), F k

l,− = f(tk + sτ, xl − sh) for a given s ∈ (0, 1],

does not lead to an improvement of the convergence.

Theorem 6.2. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions
belonging to the VCFD lattice Boltzmann equations (5.1) with relaxation parameter
ω and with density boundary conditions (5.6) and initial values R0

l = r0(xl) for l =
1, . . . , N − 1 and J0

l = −h∂xr0(xl)/(2ω) for l = 0, . . . , N . The right hand sides are
evaluated at the origin of the characteristics, that is, we use F k

l,+ = F k
l,− = f(tk, xl).

Then we get the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.77). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.3, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2

k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
5tk
τ

k−1∑

i=0

‖1

2
A†ξi − 1

2
E†dηi‖2

2 +
4θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
D†ξi − 1

2
B†dηi‖2

2,

with A, B, D and E given in (5.41) and d defined in (5.76). The residuals ξk =
[ξk

l ]l=1,...,N−1 and ηk = [ηk
l ]l=0,...,N are defined in (6.1) for l = 2, . . . , N − 2 and in
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(6.3). We find

1

2
A†ξk − 1

2
E†dηk =

1

2




ξk
2 − ηk

0 + ηk
2[

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1

]
l=2,...,N−2

ξk
N−2 − ηk

N−2 + ηk
N


 ,

1

2
D†ξk − 1

2
B†dηk =

1

2




−ξk
1 − ηk

1

−ξk
2 − ηk

0 − ηk
2[

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1

]
l=2,...,N−2

ξk
N−2 − ηk

N−2 − ηk
N

ξk
N−1 − ηk

N−1



.

With (6.2) and (6.4) we see

ξk
l = O(h4), ηk

l = O(h3) for l = 1, . . . , N − 1 and l = 0, . . . , N.

Furthermore, we obtain

ξk
2 − ηk

0 + ηk
2 = O(h4),

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1 = O(h4) for l = 2, . . . , N − 2,

ξk
N−2 − ηk

N−2 + ηk
N = O(h4),

and

− ξk
1 − ηk

1 = O(h3), −ξk
2 − ηk

0 − ηk
2 = O(h3),

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1 = O(h3) for l = 2, . . . , N − 2,

ξk
N−2 − ηk

N−2 − ηk
N = O(h3), ξk

N−1 − ηk
N−1 = O(h3).

By keeping a factor τ = h2/γ for the summation over the time intervals, we find
that the first sum in the estimate is of order O(h6) and the last three sums are of
order O(h4). With the choice of the initial data, we have E0

R = E0
J = 0. �

Theorem 6.3. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions
belonging to the VCFD lattice Boltzmann equations (5.1) with relaxation parameter
ω and with flux boundary conditions (5.8) and initial values R0

l = r0(xl) for l =
0, . . . , N and J0

l = −h∂xr0(xl)/(2ω) for l = 1, . . . , N − 1. The right hand sides are
evaluated at the origin of the characteristics, that is, we use F k

l,+ = F k
l,− = f(tk, xl).

Then we get the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.78). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.4, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2
k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
20tk
τ

k−1∑

i=0

‖1

2
B†dξi − 1

2
D†ηi‖2

2 +
θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
E†dξi − 1

2
A†ηi‖2

2
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with A, B, D and E given in (5.41) and d defined in (5.76). The residuals ξk =
[ξk

l ]l=0,...,N and ηk = [ηk
l ]l=1,...,N−1 are defined in (6.1) for l = 2, . . . , N − 2 and in

(6.5). We find

1

2
B†dξk − 1

2
D†ηk =

1

2




ξk
1 + ηk

1

ξk
0 + ξk

2 + ηk
2[

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1

]
l=2,...,N−2

ξk
N−2 + ξk

N − ηk
N−2

ξk
N−1 − ηk

N−1



,

1

2
E†dξk − 1

2
A†ηk =

1

2




ξk
0 − ξk

2 − ηk
2[

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1

]
l=2,...,N−2

ξk
N−2 − ξk

N − ηk
N−2


 .

With (6.2) and (6.6) we find

ξk
0 = O(h3), ξk

N = O(h3),

ξk
l = O(h4), ηk

l = O(h3) for l = 1, . . . , N − 1.

Furthermore, we get

ξk
1 + ηk

1 = O(h3), ξk
0 + ξk

2 + ηk
2 = O(h4),

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1 = O(h4) for l = 2, . . . , N − 2,

ξk
N−2 + ξk

N − ηk
N−2 = O(h4), ξk

N−1 − ηk
N−1 = O(h3),

and

ξk
0 − ξk

2 − ηk
2 = O(h4),

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1 = O(h3) for l = 2, . . . , N − 2,

ξk
N−2 − ξk

N − ηk
N−2 = O(h3).

The decreased order of ξk
0 and ξk

N only renders the first sum to be of order O(h5),
which is of subordinate importance. Since ξk

1 + ηk
1 and ξk

N−1 − ηk
N−1 do not show

the right behavior, we have to reduce the residuals ηk
1 and ηk

N−1 by solving

−(K − Id2N )SL = [0;e1],

−(K − Id2N )SR = [0;eN−1].

The solutions are obtained in the form

SL =
1

2(1 − ω)
[2θe1 + θe2;e1] ,

SR =
1

2(1 − ω)
[−θeN − 2θeN+1;eN−1] .

Next, we redefine the errors according to

Ẽ
k

:=

[
Ẽ

k

R

Ẽ
k

J

]
:=

[ [
rk
l −Rk

l

]
l[

jk
l − Jk

l

]
l

]
− ηk

1SL − ηk
N−1SR.

Then the error estimate holds for Ẽ
k

R and Ẽ
k

J with residuals of expected orders and

with the additional higher order source term −(ηk+1
1 − ηk

1 )SL − (ηk+1
N−1 − ηk

N−1)SR.

The last three sums in the estimate are then of order O(h4). The initial errors
vanish due to the choice of the initial data. Since the perturbations of the errors
are of order O(h3), the estimate in Theorem 6.3 remains true for ER and EJ . �
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Theorem 6.4. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions
belonging to the VCFD lattice Boltzmann equations (5.1) with relaxation parameter
ω and with inflow boundary conditions (5.10) and initial values R0

l = r0(xl) for l =
0, . . . , N and J0

l = −h∂xr0(xl)/(2ω) for l = 1, . . . , N − 1. The right hand sides are
evaluated at the origin of the characteristics, that is, we use F k

l,+ = F k
l,− = f(tk, xl).

Then we get the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.80). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.5, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2
k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
5tk
τ

k−1∑

i=0

‖1

2
A†eξi − 1

2
E†ηi‖2

2 +
θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
D†eξi − 1

2
B†ηi‖2

2,

with A, B, D and E given in (5.50) and e defined in (5.79). The residuals ξk =
[ξk

l ]l=0,...,N and ηk = [ηk
l ]l=1,...,N−1 are defined in (6.1) for l = 2, . . . , N − 2 and in

(6.7). We find

1

2
A†eξk − 1

2
E†ηk =

1

2




2ωξk
1 + 2ωηk

1

2ξk
0 + ξk

2 + ηk
2[

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1

]
l=2,...,N−2

ξk
N−2 + 2ξk

N − ηk
N−2

2ωξk
N−1 − 2ωηk

N−1



,

1

2
D†eξk − 1

2
B†ηk =

1

2




2ξk
0 − ξk

2 − ηk
2[

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1

]
l=2,...,N−2

ξk
N−2 − 2ξk

N − ηk
N−2


 .

With (6.2) and (6.8) we find

ξk
0 = O(h3), ξk

N = O(h3),

ξk
l = O(h4), ηk

l = O(h3) for l = 1, . . . , N − 1.

Furthermore, we obtain

2ωξk
1 + 2ωηk

1 = O(h3), 2ξk
0 + ξk

2 + ηk
2 = O(h4),

ξk
l−1 + ξk

l+1 − ηk
l−1 + ηk

l+1 = O(h4) for l = 2, . . . , N − 2,

ξk
N−2 + 2ξk

N − ηk
N−2 = O(h4), 2ωξk

N−1 − 2ωηk
N−1 = O(h3)

and

2ξk
0 − ξk

2 − ηk
2 = O(h3),

ξk
l−1 − ξk

l+1 − ηk
l−1 − ηk

l+1 = O(h3) for l = 2, . . . , N − 2,

ξk
N−2 − 2ξk

N − ηk
N−2 = O(h3).
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Since 2ωξk
1 + 2ωηk

1 and 2ωξk
N−1 − 2ωηk

N−1 do not show the right behavior, we have

to reduce the residuals ηk
1 and ηk

N−1 by solving

−(K − Id2N )SL = [0;e1],

−(K − Id2N )SR = [0;eN−1].

The solutions are obtained by

SL =
1

2(1 − ω)




− θ

[
1 + 2ω(N + 1 − i)

1 +Nω

]

i=1,...,N+1

+ θ(2e1 + e2)

−θ
[

1

1 +Nω

]

i=1,...,N−1

+ e1


 ,

SR =
1

2(1 − ω)



θ

[
1 + 2ω(i− 1)

1 +Nω

]

i=1,...,N+1

− θ(eN + 2eN+1)

−θ
[

1

1 +Nω

]

i=1,...,N−1

+ eN−1


 .

We redefine the errors

Ẽ
k

:=

[
Ẽ

k

R

Ẽ
k

J

]
:=

[ [
rk
l −Rk

l

]
l[

jk
l − Jk

l

]
l

]
− 2ωηk

1SL − 2ωηk
N−1SR.

Then the error estimate holds for Ẽ
k

R and Ẽ
k

J with residuals of expected orders

and with the additional higher order source term −2ω(ηk+1
1 − ηk

1 )SL − 2ω(ηk+1
N−1 −

ηk
N−1)SR. The first sum in the estimate is of order O(h5), the last three sums are

of order O(h4). The initial errors vanish due to the choice of the initial data. Since
the perturbations of the errors are of order O(h3), the estimate in Theorem 6.4
remains true for ER and EJ . �

Theorem 6.5. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions be-
longing to the CCFD lattice Boltzmann equations (5.2) with relaxation parameter ω
and with density boundary conditions (5.12) and initial values R0

l−1/2 = r0(xl−1/2)

and J0
l−1/2 = −h∂xr0(xl−1/2)/(2ω) for l = 1, . . . , N . The right hand sides are eval-

uated at the origin of the characteristics, that is, we use F k
l−1/2,+ = F k

l−1/2,− =

f(tk, xl−1/2). Then we get the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.75). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.6, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2
k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
5tk
τ

k−1∑

i=0

‖1

2
A†ξi − 1

2
E†ηi‖2

2 +
θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
D†ξi − 1

2
B†ηi‖2

2,
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with A, B, D and E given in (5.56). The residuals ξk = [ξk
l−1/2]l=1,...,N and

ηk = [ηk
l−1/2]l=1,...,N are defined in (6.1) for l = 3/2, . . . , N − 3/2 and in (6.9). We

find

1

2
A†ξk − 1

2
E†ηk =

1

2




−ξk
1/2 + ξk

3/2 − ηk
1/2 + ηk

3/2[
ξk
l−3/2 + ξk

l+1/2 − ηk
l−3/2 + ηk

l+1/2

]
l=2,...,N−1

ξk
N−3/2 − ξk

N−1/2 − ηk
N−3/2 + ηk

N−1/2


 ,

1

2
D†ξk − 1

2
B†ηk =

1

2




−ξk
1/2 − ξk

3/2 − ηk
1/2 − ηk

3/2[
ξk
l−3/2 − ξk

l+1/2 − ηk
l−3/2 − ηk

l+1/2

]
l=2,...,N−1

ξk
N−3/2 + ξk

N−1/2 − ηk
N−3/2 − ηk

N−1/2


 .

With (6.2) and (6.10) we find

ξk
1/2 = O(h2), ηk

1/2 = O(h2),

ξk
l−1/2 = O(h4), ηk

l−1/2 = O(h3) for l = 2, . . . , N − 1,

ξk
N−1/2 = O(h2), ηk

N−1/2 = O(h2).

Furthermore, we gain

− ξk
1/2 + ξk

3/2 − ηk
1/2 + ηk

3/2 = O(h2),

ξk
1/2 + ξk

5/2 − ηk
1/2 + ηk

5/2 = O(h2),

ξk
l−3/2 + ξk

l+1/2 − ηk
l−3/2 + ηk

l+1/2 = O(h4) for l = 3, . . . , N − 2,

ξk
N−5/2 + ξk

N−1/2 − ηk
N−5/2 + ηk

N−1/2 = O(h2),

ξk
N−3/2 − ξk

N−1/2 − ηk
N−3/2 + ηk

N−1/2 = O(h2),

and

− ξk
1/2 − ξk

3/2 − ηk
1/2 − ηk

3/2 = O(h2),

ξk
1/2 − ξk

5/2 − ηk
1/2 − ηk

5/2 = O(h2),

ξk
l−3/2 − ξk

l+1/2 − ηk
l−3/2 − ηk

l+1/2 = O(h3) for l = 3, . . . , N − 2,

ξk
N−5/2 − ξk

N−1/2 − ηk
N−5/2 − ηk

N−1/2 = O(h2),

ξk
N−3/2 + ξk

N−1/2 − ηk
N−3/2 − ηk

N−1/2 = O(h2).

Since the residuals at the boundaries do not show the right behavior, we have to
reduce the leading orders of ξk

1/2, η
k
1/2, ξ

k
N−1/2 and ηk

N−1/2 by solving

−(K − Id2N )SL = [e1;e1],

−(K − Id2N )SR = [eN ;−eN ].

The solutions are obtained in the form

SL =

[[
2(N − i) + 1

2N

]

i=1,...,N

;
1

2ω

[
1

N

]

i=1,...,N

]
,

SR =

[[
2i− 1

2N

]

i=1,...,N

;− 1

2ω

[
1

N

]

i=1,...,N

]
.

We redefine the errors

Ẽ
k

:=

[
Ẽ

k

R

Ẽ
k

J

]
:=

[ [
rk
l −Rk

l

]
l[

jk
l − Jk

l

]
l

]
− h2sk

LSL − h2sk
RSR,
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with sk
L and sk

R defined in (6.11). Then the error estimate holds for Ẽ
k

R and Ẽ
k

J

with residuals of expected orders and with additional higher order source terms.
Since the perturbations of the errors are of order O(h2) and the J -component of
the corrections is of order O(h), the estimate in Theorem 6.5 remains true for ER

and EJ . �

Theorem 6.6. Let P k := [Rk;Jk], k = 0, . . . ,M , be the discrete solutions
belonging to the CCFD lattice Boltzmann equations (5.2) with relaxation parameter
ω and with flux boundary conditions (5.13) and initial values R0

l−1/2 = r0(xl−1/2)

and J0
l−1/2 = −h∂xr0(xl−1/2)/(2ω) for l = 1, . . . , N . The right hand sides are

evaluated at the origin of the characteristics, that is, we use F k
l−1/2,+ = F k

l−1/2,− =

f(tk, xl−1/2). Then we get the error estimate

‖EM
R ‖2

2 + ‖EM
J ‖2

2 + 2ω(1 − ω)
1

τ

M−1∑

i=0

τ‖Ei
J‖2

2 ≤ Kh4,

with the discrete norms defined in (5.75). The constant K only depends on the
relaxation parameter ω, the end time tM , higher order derivatives of the solution
of the heat equation and hence on the viscosity.

Proof. According to Theorem 5.1 and Corollary 5.7, the errors obey the es-
timate

‖Ek
R‖2

2 + ‖Ek
J‖2

2 + 2ω(1 − ω)
1

τ

k−1∑

i=0

τ‖Ei
J‖2

2

≤ 2‖E0
R‖2

2 + 2‖E0
J‖2

2 + 2

k−1∑

i=0

‖ξi‖2
2 + 2

k−1∑

i=0

‖ηi‖2
2

+
5tk
τ

k−1∑

i=0

‖1

2
B†ξi − 1

2
D†ηi‖2

2 +
θ2

ω(1 − ω)

k−1∑

i=0

‖1

2
E†ξi − 1

2
A†ηi‖2

2,

with A, B, D and E given in (5.56). The residuals ξk = [ξk
l−1/2]l=1,...,N and

ηk = [ηk
l−1/2]l=1,...,N are defined in (6.1) for l = 3/2, . . . , N −3/2 and in (6.12). We

find

1

2
B†ξk − 1

2
D†ηk =

1

2




ξk
1/2 + ξk

3/2 + ηk
1/2 + ηk

3/2[
ξk
l−3/2 + ξk

l+1/2 − ηk
l−3/2 + ηk

l+1/2

]
l=2,...,N−1

ξk
N−3/2 + ξk

N−1/2 − ηk
N−3/2 − ηk

N−1/2


 ,

1

2
E†ξk − 1

2
A†ηk =

1

2




ξk
1/2 − ξk

3/2 + ηk
1/2 − ηk

3/2[
ξk
l−3/2 − ξk

l+1/2 − ηk
l−3/2 − ηk

l+1/2

]
l=2,...,N−1

ξk
N−3/2 − ξk

N−1/2 − ηk
N−3/2 + ηk

N−1/2


 .

With (6.2) and (6.13) we find

ξk
1/2 = O(h3), ηk

1/2 = O(h3),

ξk
l−1/2 = O(h4), ηk

l−1/2 = O(h3) for l = 2, . . . , N − 1,

ξk
N−1/2 = O(h3), ηk

N−1/2 = O(h3).
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Furthermore, we gain

ξk
1/2 + ξk

3/2 + ηk
1/2 + ηk

3/2 = O(h3),

ξk
1/2 + ξk

5/2 − ηk
1/2 + ηk

5/2 = O(h3),

ξk
l−3/2 + ξk

l+1/2 − ηk
l−3/2 + ηk

l+1/2 = O(h4) for l = 3, . . . , N − 2,

ξk
N−5/2 + ξk

N−1/2 − ηk
N−5/2 + ηk

N−1/2 = O(h3),

ξk
N−3/2 + ξk

N−1/2 − ηk
N−3/2 − ηk

N−1/2 = O(h3),

and

ξk
1/2 − ξk

3/2 + ηk
1/2 − ηk

3/2 = O(h3),

ξk
1/2 − ξk

5/2 − ηk
1/2 − ηk

5/2 = O(h3),

ξk
l−3/2 − ξk

l+1/2 − ηk
l−3/2 − ηk

l+1/2 = O(h3) for l = 3, . . . , N − 2,

ξk
N−5/2 − ξk

N−1/2 − ηk
N−5/2 − ηk

N−1/2 = O(h3),

ξk
N−3/2 − ξk

N−1/2 − ηk
N−3/2 + ηk

N−1/2 = O(h3).

Since the residuals at the boundaries do not show the right behavior, we have to
reduce the leading orders of ξk

1/2, η
k
1/2, ξ

k
N−1/2 and ηk

N−1/2 by solving

−(K − Id2N )SL = [e1;e1],

−(K − Id2N )SR = [−eN ;eN ],

−(K − Id2N )T L = [0;e1],

−(K − Id2N )T R = [0;eN ].

The solutions are obtained by

SL =
1

1 − ω

[
ω

[
(2(N − i) + 1)2

4N

]

i=1,...,N

;

[
2(N − i) + 1

2N

]

i=1,...,N

]
,

SR =
1

1 − ω

[
−ω

[
(2i− 1)2

4N

]

i=1,...,N

;

[
2i− 1

2N

]

i=1,...,N

]
,

T L =
1

2(1 − ω)
[θe1;e1] ,

T R =
1

2(1 − ω)
[−θeN ;eN ] .

We redefine the errors[
Ẽ

k

R

Ẽ
k

J

]
:=

[
Ek

R

Ek
J

]
− h3(sk

L + tkL)SL − h3(sk
R + tkR)SR + 2h3tkLT L + 2h3tkRT R,

with sk
L, sk

R, tkL, tkR defined in (6.14). Then the error estimate holds for Ẽ
k

R and Ẽ
k

J

with residuals of the expected orders and with additional higher order source terms.
Since the perturbations of the error are of order O(h3), the estimate in Theorem
6.6 remains true for ER and EJ , although the R-component of the corrections is
of order O(h−1). �

The leading order of the error estimate is determined by three sums of the same
order, each one considered by itself. But it might be that there are correlations
between these sums and hence cancellations may appear. In the numerical exper-
iments we shall see that there is a specific value for the relaxation parameter ω,
for which we get improved convergence results. This fact can be described in the
following way.
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In the periodic case on FD grids we define

G :=
1

4ω

[
θA + 2IdN θD

−D −A + 2IdN

]
∈ R

2N,2N ,

with the matrices A and D given in (5.35) and N = 2n or N = 2n−1. We consider
the modified lattice Boltzmann matrix equation (5.32)

G
(
P k+1 − P k

)
= G(K − Id2N )P k + τGGk. (6.15)

The matrix G has the same eigenvectors as K (see (5.89)). The corresponding
eigenvalues of G are given by

µ+
0 := 1, µ−

0 := 0,

µ+
l :=

1

2ω
(1 − βl + Vl) ,

µ−
l :=

1

2ω
(1 − βl − Vl) ,

for l = 1, . . . , n− 1,

µ+
n :=

1

ω
, µ−

n :=
1 − ω

ω
, if N = 2n,

with βl and Vl given in (5.86). The interesting fact now is to find

G(K − Id2N ) =
1 − ω

2ω

[
A − 2IdN

A − 2IdN

]
.

This is the canonical matrix for the determination of the second order derivatives
in combination with the numerical viscosity of the scheme. Hence, the equation
(6.15) can be seen as a discretization of the heat equation with the mass matrix
G. For ω = 1/2, the R-component of the mass matrix G is the unit matrix. In
order to fit the system (6.15) into a finite element setting, we have to find discrete
basis function that render the mass matrix G and yield the central second order
derivatives in the stiffness matrix. This problem is unsolved yet.

In the case of boundary conditions, analogous mass matrices are determined by
the choice of the eigenvalues as above and with the same eigenvectors as the time
evolution matrix K.

In the periodic case the residuals of (6.15) are defined by

ξk
l :=

1

2

(
rk+1
l+1 − rk

l+1 + rk+1
l−1 − rk

l−1

)

− 1

4ω

(
rk+1
l+1 − rk

l+1 − 2rk+1
l + 2rk

l + rk+1
l−1 − rk

l−1

)

+
2ω − 1

4ω

(
jk+1
l+1 − jk

l+1 − jk+1
l−1 + jk

l−1

)
− 1 − ω

2ω

(
rk
l+1 − 2rk

l + rk
l−1

)

− τ

4

(
fk

l+2 + 2fk
l + fk

l−2

)
+

τ

8ω

(
fk

l+2 − 2fk
l+1 + 2fk

l − 2fk
l−1 + fk

l−2

)

+
2ω − 1

8ω
τ
(
fk

l+2 − 2fk
l + fk

l−2

)
,

ηk
l := − 1

4ω

(
rk+1
l+1 − rk

l+1 − rk+1
l−1 + rk

l−1

)

− 1

4ω

(
jk+1
l+1 − jk

l+1 − 2jk+1
l + 2jk

l + jk+1
l−1 − jk

l−1

)

− 1 − ω

2ω

(
jk
l+1 − 2jk

l + jk
l−1

)
+

τ

4ω

(
fk

l+1 − fk
l−1

)
.
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If r is a solution to the heat equation, we find

ξk
l = h4

(
(1 − ω)

2ω2 − 6ω + 3

24ω3
∂4

xr
k
l +

1 − 12ω

8ωγ
∂2

xf
k
l +

1

2
∂tf

k
l

)
+ O(h6),

ηk
l = h3

(
1 − ω

8ω3
∂3

xr
k
l +

1

4ω2γ
∂xf

k
l

)
+ O(h5).

For the special choice ω = (3 −
√

3)/2, the coefficient of ∂4
xr

k
l in ξk

l vanishes. For
schemes without source terms, the residual becomes of order O(h6). A pronounced
improvement of the convergence can be seen in the numerical experiments in Section
7.2.

It is not clear how these results can be expressed in an error estimate. For low
frequency solutions, the crucial eigenvalues µ+

l of G with l ≪ N/2 are of order O(1),

whereas we find µ−
l = O(h2) for l ≪ N/2. Hence, the norm of the pseudo-inverse

of G is of order O(h−2).



CHAPTER 7

Numerical Results

In this chapter we want to confirm the analytical results of the previous chap-
ters by performing numerical experiments. All computations are done by using
Matlab

R©; see http://www.mathworks.com.
The investigations mainly face the question of the convergence of the lattice

Boltzmann schemes. In Chapter 6, we proved second order convergence of the
lattice Boltzmann solutions towards the density r, modeled by the heat equation,
in the discrete L∞(L2)-norm and second order convergence towards the flux ∂xr
in the discrete L2(L2)-norms, both considered for a fixed end time T with respect
to the grid size h. The numerical results imply that the second order convergence
for the flux ∂xr also holds in the discrete L∞(L2)-norm, whereas our theoretical
results in Chapter 6 only ensure first order convergence in this norm.

7.1. Experimental Orders of Convergence

In a first step, we consider known solutions for the heat equation on bounded
intervals. In our Example 1, this is the eigenfunction solution

r(t, x) := exp(−4νπ2t) sin(2πx) in (0, T ] × (0, 1)

with the choice ν = 0.1 for the viscosity. The solution up to the end time T = 1.0 is
plotted in Figure 7.1. For the lattice Boltzmann solutions we examine the behavior
of the errors on a sequence of grids for different kinds of boundary conditions. In
each grid point, we gain information on the discrete solution and the exact solution.

0
0.2

0.4
0.6

0.8
1

0

0.2
0.4

0.6

0.8
1

−1

−0.5

0

0.5

1

Example 1

t x

Figure 7.1. Solution r(t, x) := exp(−4νπ2t) sin(2πx) in the do-
main (0, 1] × (0, 1) with ν = 0.1.
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Figure 7.2. Nodal values, interpolated values and exact values of
the initial data r0(x) := sin(2πx) for Example 1 with N = 10.

Hence, we can determine the nodal error. By a linear interpolation we construct
a globally continuous numerical solution. Hereby, we can determine a continuous
error function, which is denoted by the interpolated error in the sequel. Linear
interpolation turns out to be sufficient to preserve the nodal convergence properties.
In Section 8.5, we see that the interpolated errors show a better performance on
coupled grids than the nodal errors. Superconvergence properties are lost by the
linear interpolation only in the case of a specific choice for the parameters, where
the nodal errors show a convergence of fourth order. The corresponding results can
be found in Section 7.2.

In Figure 7.2 the exact, the nodal and the interpolated initial data for the
r-equation is plotted for the case N = 10. By performing several time steps, the
errors increase. The nodal and the interpolated errors at time t = 0.2 are plotted in
Figure 7.3 for a grid withN = 50. The nodal error is an envelope to the interpolated
error. In each grid cell, there is a zero of the interpolated error.

From the nodal errors we can compute the discrete L2-errors introduced in
Chapter 5.9. The choice of the discrete L2-norms depends on the grid and the
employed boundary condition. For periodic boundary conditions on VC grids we
use for example

Ek
N (r) :=

(
N−1∑

l=0

h|r(tk, xl) −Rk
l |2
)1/2

,

Ek
N (j) :=

(
N−1∑

l=0

h|j(tk, xl) − Jk
l |2
)1/2

.

The linear interpolants of the vector valued discrete solutions Rk and Jk are
denoted by I(Rk) and I(Jk). For the indices l = 0, . . . , N , we have I(R)k

l :=

I(Rk)(xl) = Rk
l and I(J)k

l := I(Jk)(xl) = Jk
l . By involving the linear interpolants

I(Rk), I(Jk) and a finer grid {zl}l=0,...,NK , where we introduce K − 1 additional
equidistant points in each grid cell with zlN = xl, l = 0, . . . , N , we can compute
an approximation of the L2-errors by the application of the trapezoidal rule for the
integral expressions. For the indices l = 0, . . . , NK, we define I(R)k

l := I(Rk)(zl)
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Figure 7.3. Nodal errors and interpolated errors of the lattice
Boltzmann solution for the density at time t = 0.2 for Example 1
with N = 50.

and I(J)k
l := I(Jk)(zl). We end up with the errors

Ek(r) :=

(
NK−1∑

l=0

h

K
|r(tk, zl) − I(R)k

l |2
)1/2

,

Ek(j) :=

(
NK−1∑

l=0

h

K
|j(tk, zl) − I(J)k

l |2
)1/2

.

We call these errors the approximated L2-errors. In our applications, typical values
are K = 10, 20, 50, 100, depending on the size of N .

In order to assess the performance of the lattice Boltzmann schemes, we ex-
amine the experimental order of convergence (EOC). The underlying assumption is
the validity of error laws of the form

Ek
N (r) = Kk

rN
−p, Ek

N (j) = Kk
j N

−q

for positive values p and q and N -independent constants Kk
r and Kk

j . The error
constants (as well as the errors) depend on the time tk. In logarithmic terms the
error laws can be rewritten as linear polynomials with slopes −p and −q of the
form

log(Ek
N (r)) = log(Kk

r ) − p log(N),

log(Ek
N (j)) = log(Kk

j ) − q log(N).

We determine the errors EM
N (r) and EM

N (j) for a fixed end time tM on a sequence
of grids. Then we compute the EOCs p and q and the error constants KM

r and
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Figure 7.4. Logarithmic plot of the errors.

KM
j by least square polynomial fitting. With the aid of the error laws we are able

to estimate the fitted errors for all values of N in some limited range.
For Example 1 with end time tM = 0.2, the logarithmic error plot for the

lattice Boltzmann solutions on VC grids with density boundary conditions on a
grid sequence with N = 100, 325, 550, 775, 1000 is shown in Figure 7.4. The fitted
linear polynomials for the density r and the h-scaled flux j meet the fitting points
quite closely. The slopes −2 for the density and −3 for the h-scaled flux are obvious.
The upper time index k for the errors and the error constants are disregarded in
the following. The missing index indicates the measurement at the given end time.

We investigate the experimental orders of convergence for the FD lattice Boltz-
mann schemes (5.1) on VC grids and (5.2) on CC grids depending on different
boundary conditions. For all presented boundary conditions we proved L2-stability
for the solutions and second order convergence for the density. Initial conditions
are chosen by R0

l = r0(xl) and J0 = −h∂xr0(xl)/(2ω), where the range of the in-
dices depends on the type of the grid and the boundary conditions. The initial and
boundary data are taken from the knowledge of the exact solution. For Example
1, there is no source term in the corresponding heat equation. The number of grid
points is chosen by N = 60, 145, 230, 315 and 400. For the relaxation parameter
ω = 0.7 the detected values for the EOCs with respect to the discrete L2-norms
are displayed in Table 7.1. The EOCs are independent of the choice of the pre-
sented boundary conditions. We find second order convergence for the density r
and third order convergence for the h-scaled flux j. This translates to second order
convergence for the flux ∂xr. The error constants Kr for the density errors are
of moderate size. For all types of flux boundary conditions the errors and error
constants are slightly increased. The best choice for flux boundary conditions is
(5.13) on CC grids with δ = 0. The errors presented in the table are the polynomial
fitted errors on the finest grid with N = 400. The errors for the flux are smaller
by one magnitude than the errors for the density because of the h-scaling of the
flux j. The corresponding error constants are larger by factors of size 5 to 25 than
those of the r-equation.

In Table 7.2 we consider the results of the FV lattice Boltzmann schemes (5.3)
and (5.4) depending on the presented boundary conditions. All boundary conditions
are proved to render L2-stable solutions.

The results for the experimental orders of convergence are the same as for the
FD schemes. The error constants for the density are larger by a factor of up to 10,
whereas the error constants for the flux are smaller except for the last presented flux
boundary conditions. Due to the changed space-time coupling in the FV context,
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Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Density (5.6) VC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Flux (5.8) VC 2.00 1.63e0 1.01e-5 3.00 7.20e0 1.13e-7
Inflow (5.10) VC 2.08 5.95e-1 2.37e-6 2.99 8.63e0 1.41e-7
Density (5.12), δ = 0 CC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Density (5.12), δ = 1 CC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Flux (5.13), δ = 0 CC 2.00 7.33e-1 4.59e-6 3.00 1.15e1 1.80e-7
Flux (5.13), δ = 1 CC 2.00 1.45e0 9.08e-6 3.00 7.14e0 1.12e-7

Table 7.1. Example 1: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the FD lattice Boltzmann schemes (5.1) and (5.2) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2, ν = 0.1
and ω = 0.7, depending on the boundary conditions.

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Density (5.6) VC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Flux (5.8) VC 2.00 2.67e0 1.65e-5 3.01 4.17e0 6.04e-8
Inflow (5.10) VC 1.99 3.09e0 2.00e-5 3.05 1.16e0 1.32e-8
Density (5.12), δ = 0 CC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Density (5.12), δ = 1 CC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Flux (5.14), δ = 0 CC 2.00 3.85e0 2.39e-5 3.00 6.81e0 1.08e-7
Flux (5.14), δ = 1 CC 2.00 4.89e0 3.05e-5 3.00 2.44e1 3.81e-7

Table 7.2. Example 1: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the FV lattice Boltzmann schemes (5.3) and (5.4) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2, ν = 0.1
and ω = 0.7, depending on the boundary conditions.

time steps are now larger by a factor 1/(1 − ω) = 10/3. This fact finds expression
in larger errors for the density. However, the errors for the flux are smaller than
those of the FD lattice Boltzmann solutions.

We remark that although all variables in these schemes and their derivations
were interpreted in a finite volume context, all data and the errors are evaluated in
a pointwise sense and not in the mean integral sense.

In Table 7.3 we examine the experimental orders of convergence with respect to
the approximated L2-errors for the FD lattice Boltzmann schemes (5.1) and (5.2).
The results for the EOCs are the same as for the discrete L2-errors. The errors and
the error constants are more or less of the same magnitude. For the determination
of the approximated L2-errors we use K = 20 additional grid points per cell.

Qualitatively, the same results are obtained when considering the approximated
L2-errors for the FV lattice Boltzmann schemes (5.3) and (5.4); see Table 7.4.

In Example 1, we are in the situation of vanishing density boundary condi-
tions. In order to examine nonhomogeneous density boundary values, we modify



130 7. NUMERICAL RESULTS

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 8.34e-1 5.22e-6 3.00 4.86e0 7.65e-8
Density (5.6) VC 2.00 8.34e-1 5.22e-6 3.00 4.86e0 7.65e-8
Flux (5.8) VC 2.00 1.31e0 8.17e-6 3.00 5.60e0 8.78e-8
Inflow (5.10) VC 1.97 7.13e-1 5.19e-6 2.99 4.56e0 7.64e-8
Density (5.12), δ = 0 CC 2.00 8.36e-1 5.22e-6 3.09 8.37e0 7.82e-8
Density (5.12), δ = 1 CC 2.00 8.36e-1 5.22e-6 3.09 8.37e0 7.82e-8
Flux (5.13), δ = 0 CC 2.00 1.42e0 8.98e-6 3.05 1.04e1 1.17e-7
Flux (5.13), δ = 1 CC 2.00 1.20e0 7.31e-6 3.03 6.28e0 8.04e-8

Table 7.3. Example 1: Experimental orders of convergence, error
constants and fitted errors with respect to the approximated L2-
norms for the FD lattice Boltzmann schemes (5.1) and (5.2) on
a sequence of grids with N = 60, 145, 230, 315, 400 with data
T = 0.2, ν = 0.1 and ω = 0.7, depending on the boundary condi-
tions.

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 4.29e0 2.67e-5 3.00 6.12e0 9.42e-8
Density (5.6) VC 2.00 4.29e0 2.67e-5 3.00 6.12e0 9.42e-8
Flux (5.8) VC 2.00 3.68e0 2.30e-5 3.00 7.85e0 1.21e-7
Inflow (5.10) VC 2.00 4.15e0 2.67e-5 2.99 5.58e0 9.38e-8
Density (5.12), δ = 0 CC 2.00 4.29e0 2.67e-5 3.02 6.67e0 9.44e-8
Density (5.12), δ = 1 CC 2.00 4.29e0 2.67e-5 3.02 6.67e0 9.44e-8
Flux (5.14), δ = 0 CC 2.00 4.87e0 3.03e-5 3.06 9.05e0 9.71e-8
Flux (5.14), δ = 1 CC 2.00 5.07e0 3.14e-5 2.99 2.62e1 4.29e-7

Table 7.4. Example 1: Experimental orders of convergence, error
constants and fitted errors with respect to the approximated L2-
norms for the FV lattice Boltzmann schemes (5.3) and (5.4) on
a sequence of grids with N = 60, 145, 230, 315, 400 with data
T = 0.2, ν = 0.1 and ω = 0.7, depending on the boundary condi-
tions.

the solution under consideration. In Example 2, we investigate the numerical ap-
proximation of the eigenfunction solution

r(t, x) := exp(−4νπ2t) cos(2πx) in (0, T ] × (0, 1)

subject to the choice ν = 0.1. For the end time T = 1.0 the solution is plotted in
Figure 7.5.

As before, we use the initial conditions R0
l = r0(xl) and J0 = −h∂xr0(xl)/(2ω),

where the initial and boundary data is taken from the knowledge of the exact
solution. Like in Example 1, there is no source term in the corresponding heat
equation.

The numerical results for the experimental orders of convergence are presented
in Table 7.5 for the FD lattice Boltzmann schemes (5.1) and (5.2) and in Table
7.6 for the FV lattice Boltzmann schemes (5.3) and (5.4). Both tables contain the
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Figure 7.5. Solution r(t, x) := exp(−4νπ2) cos(2πx) in the do-
main (0, 1] × (0, 1) with ν = 0.1.

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Density (5.6) VC 2.00 2.79e-1 1.78e-6 3.00 8.44e0 1.32e-7
Flux (5.8) VC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Inflow (5.10) VC 2.00 2.87e-1 1.78e-6 3.00 8.56e0 1.33e-7
Density (5.12), δ = 0 CC 2.00 3.15e-1 1.98e-6 3.00 7.99e0 1.26e-7
Density (5.12), δ = 1 CC 2.00 2.27e0 1.39e-5 3.00 3.98e0 6.16e-8
Flux (5.13), δ = 0 CC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
Flux (5.13), δ = 1 CC 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7

Table 7.5. Example 2: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the FD lattice Boltzmann schemes (5.1) and (5.2) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2, ν = 0.1
and ω = 0.7, depending on the boundary conditions.

results with respect to the discrete L2-norms. The results are pretty much the same
as for Example 1.

In the same manner, high-frequency eigenfunction solutions of the heat equa-
tion are suited to be the objective of the convergence investigations. Due to the
fast decay of the solutions and hence of the errors, smaller time scales or smaller
viscosities have to be used. Otherwise, we get in conflict with the machine precision
and the logarithmic error curves do no longer show linear behavior. For the initial
data r0(x) := sin(20πx) on a grid with N = 100 points and viscosity ν = 0.1, we
have to restrict to the end time T = 0.05 to achieve the desired results. Within
these bounds the convergence orders are confirmed. For the high-frequency eigen-
function solutions, that is, the frequency is close to the number of the grid points,
the lattice Boltzmann solutions do not show the expected decay. Hence, there is no
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Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Density (5.6) VC 2.00 2.45e0 1.52e-5 3.00 8.22e0 1.28e-7
Flux (5.8) VC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Inflow (5.10) VC 2.01 2.52e0 1.52e-5 2.98 7.02e0 1.27e-7
Density (5.12), δ = 0 CC 2.00 3.13e0 1.95e-5 2.89 1.31e1 4.06e-7
Density (5.12), δ = 1 CC 2.00 5.48e0 3.43e-5 2.82 1.62e1 7.34e-7
Flux (5.14), δ = 0 CC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
Flux (5.14), δ = 1 CC 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8

Table 7.6. Example 2: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the FV lattice Boltzmann schemes (5.3) and (5.4) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2, ν = 0.1
and ω = 0.7, depending on the boundary conditions.

convergence. This fact is subject of our investigations performed in the following
sections.

A further possibility for the computation of the unknown inflow values at the
boundary is the usage of data extrapolation from the interior of the domain. But
as expected, the obtained results are unsatisfactory, because the boundary values
are not involved into the computation. The extrapolation of either the missing
distribution function or the density leads to first order convergence for the density
and second order convergence for the h-scaled flux in the best case. Stable solutions
are only obtained in the case of inflow boundary conditions with extrapolations.
However, the performance is unsatisfactory. For Example 1, these results are gained
for linear or cubic extrapolation. For Example 2, quadratic extrapolation seems to
be more appropriate. This awareness has to be kept in mind when it comes to the
grid coupling on nonuniform grids in Chapter 8.

The examples so far are furnished with vanishing source terms in the corre-
sponding heat equation. In Example 3, we consider the time-periodic solution

r(t, x) := 256 sin(4πt)x4(1 − x)4 in (0, T ] × (0, 1)

with nonvanishing source term. The solution up to the end time T = 1.0 is plotted
in Figure 7.6. By the application of the heat equation we determine the necessary
source term f . The initial and boundary data are chosen from the exact solution.
Initial values are taken in the form R0

l = r0(xl) and J0
l = −h∂xr0(xl)/(2ω), where

the range of l depends on the grid and the boundary conditions.
The results of the convergence investigations for the FD lattice Boltzmann

solutions are shown in Table 7.7. For all given boundary conditions, the errors and
error constants are increased by a factor of up to 30 in comparison to the previous
examples.

The long time behavior of the error is examined in Figure 7.7, where the nodal
error of the VC lattice Boltzmann solution in x = 0.5 is displayed in the time
interval (0, 50]. The number of 233100 time steps have to be computed to reach
the end time T = 50 on a grid with N = 100, viscosity ν = 0.1 and the relaxation
parameter ω = 0.7. Once the error is tuned in after t ≈ 4.0, the amplitude of
the error in the density remains on the same level. The error for the flux behaves
similarly.



7.2. DEPENDENCE ON THE PARAMETERS 133

0

0.5

1

00.20.40.60.81
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Example 3

t
x

Figure 7.6. Solution r(t, x) := 256 sin(4πt)x4(1 − x)4 in the do-
main (0, 1] × (0, 1) with ν = 0.1.

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Density (5.6) VC 2.00 1.04e1 6.48e-5 3.00 1.79e1 2.77e-7
Flux (5.8) VC 2.00 1.07e1 6.64e-5 3.00 1.41e1 2.18e-7
Inflow (5.10) VC 2.00 1.05e1 6.48e-5 2.99 1.70e1 2.77e-7
Density (5.12), δ = 0 CC 2.00 1.04e1 6.47e-5 3.00 1.79e1 2.77e-7
Density (5.12), δ = 1 CC 2.00 1.04e1 6.47e-5 3.00 1.79e1 2.77e-7
Flux (5.13), δ = 0 CC 2.01 1.10e1 6.64e-5 2.97 1.19e1 2.17e-7
Flux (5.13), δ = 1 CC 2.01 1.10e1 6.64e-5 2.97 1.19e1 2.17e-7

Table 7.7. Example 3: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the FD lattice Boltzmann schemes (5.1) and (5.2) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2, ν = 0.1
and ω = 0.7, depending on the boundary conditions.

7.2. Dependence on the Parameters

The performance of the lattice Boltzmann methods depends on the choice of
the relaxation parameter ω. At first sight, it mainly decides on the space-time
coupling. For a prescribed viscosity we found τ/h2 = (1 − ω)/(2ων) for the FD
lattice Boltzmann schemes and τ/h2 = 1/(2ων) for the FV lattice Boltzmann
schemes. Hence, the time step size approximates 0 when ω reaches 1 in the case of
the FD lattice Boltzmann schemes. This leads to a large number of necessary time
steps for increasing ω. In Table 7.8 the time step size and the number of necessary
time steps to reach the end time T = 0.2 on a grid with N = 400 points is shown.
The FV lattice Boltzmann schemes appear to be preferable due to the smaller time
steps.
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Figure 7.7. Example 3: Long time behavior of the density error
in x = 0.5 on the time interval (0, 50].

FD lattice Boltzmann FV lattice Boltzmann
ω τ #Time steps τ #Time steps

0.2 1.25e-4 1601 1.56e-4 1281
0.3 7.29e-5 2743 1.04e-4 1921
0.4 4.69e-5 4267 7.81e-5 2560
0.5 3.13e-5 6400 6.25e-5 3201
0.6 2.08e-5 9601 5.21e-5 3840
0.7 1.34e-5 14934 4.46e-5 4480
0.8 7.81e-6 25600 3.91e-5 5121
0.9 3.47e-6 47601 3.47e-5 5760

Table 7.8. Dependence of the time steps on the relaxation pa-
rameter ω for the FD lattice Boltzmann schemes (5.1) and (5.2)
and the FV lattice Boltzmann schemes (5.3) and (5.4) on a grid
with N = 400, viscosity ν = 0.1 and end time T = 0.2.

On the other hand, smaller time steps for the FD lattice Boltzmann schemes
directly lead to smaller errors, as can be seen in Table 7.9, where the discrete L2-
errors, the error constants and the experimental orders of convergence are listed
depending on ω. These results are achieved by applying Example 1 with periodic
boundary conditions to grid sequences withN = 60, 145, 230, 315 and 400 on VCFD
grids. In Table 7.10 the corresponding results for the VCFV lattice Boltzmann
solutions are shown depending on ω.

Taking a closer look, we find that the steps in ω were chosen too large to resolve
all subtleties of the convergence process. In Figure 7.8 the logarithms of the errors
for the density and the flux are plotted with a step size ∆ω = 0.01 for Example 1.
Here, the vanishing right hand side in the heat equation plays a crucial role. The left
figure shows the decay of the discrete L2-errors, in the right figure the approximated
L2-errors are visualized. On the basis of the discrete L2-errors there is huge decay
of the density error for a specific choice of ω. As pointed out at the end of Chapter
6, the minimal error is attained for the value ω∗ := (3−

√
3)/2 ≈ 0.63397. For this

specific value we find E100(r) = 9.51e-8 and E100(j) = 1.05e-5.
In Figure 7.9 the behavior of the discrete L2-errors is plotted with ω-steps of

size 1e-4 around the minimum.
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Density Flux
ω EOC Kr E400(r) EOC Kj E400(j)

0.2 2.01 4.08e1 2.45e-4 3.09 3.38e2 3.00e-6
0.3 2.00 1.30e1 7.99e-5 3.02 6.34e1 9.00e-7
0.4 2.00 4.86e0 3.00e-5 3.00 2.59e1 4.17e-7
0.5 2.00 1.69e0 1.04e-5 3.00 1.58e1 2.51e-7
0.6 2.01 2.87e-1 1.74e-6 3.00 1.13e1 1.79e-7
0.7 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7
0.8 2.00 6.70e-1 4.24e-6 3.00 7.56e0 1.19e-7
0.9 2.00 7.95e-1 5.02e-6 3.00 6.62e0 1.04e-7

Table 7.9. Example 1: Experimental orders of convergence, error
constants and fitted errors with respect to the discrete L2-norms
for the VCFD lattice Boltzmann scheme (5.1) on a sequence of
grids with N = 60, 145, 230, 315, 400 with data T = 0.2 and
ν = 0.1, depending on ω.

Density Flux
ω EOC Kr E400(r) EOC Kj E400(j)

0.2 2.01 5.48e1 3.23e-4 3.13 4.11e2 3.01e-6
0.3 2.01 2.19e1 1.32e-4 3.00 4.87e1 7.49e-7
0.4 2.00 1.13e1 6.90e-5 3.00 1.50e1 2.32e-7
0.5 2.00 6.80e0 4.17e-5 2.94 3.22e0 7.23e-8
0.6 2.00 4.51e0 2.78e-5 2.86 3.06e-1 1.10e-8
0.7 2.00 3.23e0 2.00e-5 3.02 1.05e0 1.42e-8
0.8 2.00 2.48e0 1.53e-5 3.02 1.82e0 2.46e-8
0.9 2.00 1.99e0 1.24e-5 3.01 1.94e0 2.88e-8

Table 7.10. Example 1: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms for the VCFV lattice Boltzmann scheme (5.3) on a sequence
of grids with N = 60, 145, 230, 315, 400 with data T = 0.2 and
ν = 0.1, depending on ω.
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Figure 7.8. Example 1: Dependence of the errors on the relax-
ation parameter ω for the FD lattice Boltzmann solutions with
vanishing source term and N = 100.
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Figure 7.9. Example 1: Dependence of the errors on the relax-
ation parameter ω for the FD lattice Boltzmann solutions with
vanishing source term and N = 100.
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Figure 7.10. Example 3: Dependence of the errors on the re-
laxation parameter ω for the FD lattice Boltzmann solutions with
nonvanishing source term and N = 100.
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Figure 7.11. Example 1: Dependence of the errors on the re-
laxation parameter ω for the FV lattice Boltzmann solutions with
vanishing source term and N = 100.

Since the decay of the errors cannot be seen in terms of the approximated L2-
errors, this is an effect owed to nodal superconvergence. The effect of improved
convergence for the specific choice of ω is due to the vanishing right hand side in
the heat equation. The appearance of source terms spoils this advantage. In Figure
7.10 the error curves for the FD lattice Boltzmann solutions of Example 3 with a
nonzero source term are plotted.
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Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Density (5.6) VC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Flux (5.8) VC 2.00 1.63e0 1.02e-5 3.00 8.54e0 1.34e-7
Inflow (5.10) VC 2.97 6.69e0 1.24e-7 2.99 1.01e1 1.64e-7
Density (5.12), δ = 0 CC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Density (5.12), δ = 1 CC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Flux (5.13), δ = 0 CC 2.00 1.01e0 6.26e-6 3.00 1.40e1 2.18e-7
Flux (5.13), δ = 1 CC 2.00 1.81e0 1.13e-5 3.00 8.78e0 1.38e-7

Table 7.11. Example 1: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms for the FD lattice Boltzmann schemes (5.1) and (5.2) on
a sequence of grids with N = 60, 145, 230, 315, 400 with data
T = 0.2, ν = 0.1 and ω = ω∗ := (3 −

√
3)/2, depending on the

boundary conditions.

For the FV lattice Boltzmann solutions there is a similar effect, but here the
decay of the error can be seen for the flux and not for the density; see Figure 7.11.

For the choice ω = ω∗, the experimental orders of convergence for the FD
lattice Boltzmann solution of Example 1 are given in Table 7.11. We find fourth
order convergence for the density in the case of periodic or density boundary con-
ditions. For the inflow boundary conditions we gain third order convergence. No
improvements can be achieved in the case of flux boundary conditions.

The situation changes, when considering Example 2 instead. From the results
given in Table 7.12, we find that the convergence behavior on VC grids remains the
same for periodic and density boundary conditions. For flux and inflow boundary
conditions on VC grids, we find an improvement. On CC grids the convergence
is of second order in the case of density boundary conditions, whereas in the case
of flux boundary conditions we find fourth order convergence. This fact implies
that the odd and even higher order derivatives of the density have to vanish at the
boundaries to achieve improvements.

In Table 7.13 the experimental convergence orders for the FV lattice Boltzmann
solutions are displayed for Example 1. For the specific choice ω = ω∗, we get
improved convergence results for the flux. Further investigations show that the
convergence can be improved up to fifth order, when choosing a slightly smaller
value for ω close to 0.6322.

Numerical examples with different viscosities cannot be compared directly. The
exponential decay of the solution changes as the viscosity is varied. For constant
νT , the solution behavior remains unchanged. Hence, we have to consider different
end times (but the same number of time steps), if we want to compare solutions
with different viscosities. The errors and the error constants are invariant as long
as νT is kept at a constant value.
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Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Density (5.6) VC 4.00 8.32e0 3.25e-10 3.00 1.04e1 1.64e-7
Flux (5.8) VC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Inflow (5.10) VC 3.99 7.65e0 3.25e-10 3.00 1.04e1 1.64e-7
Density (5.12), δ = 0 CC 2.00 1.84e-1 1.17e-6 3.00 1.10e1 1.72e-7
Density (5.12), δ = 1 CC 2.00 2.59e0 1.63e-5 3.00 4.22e0 6.46e-8
Flux (5.13), δ = 0 CC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7
Flux (5.13), δ = 1 CC 4.00 9.47e0 3.72e-10 3.00 1.04e1 1.64e-7

Table 7.12. Example 2: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms for the FD lattice Boltzmann schemes (5.1) and (5.2) on
a sequence of grids with N = 60, 145, 230, 315, 400 with data
T = 0.2, ν = 0.1 and ω = ω∗ := (3 −

√
3)/2, depending on the

boundary conditions.

Density Flux
Boundary conditions Grid EOC Kr E400(r) EOC Kj E400(j)

Periodic (5.5) VC 2.00 4.00e0 2.47e-5 4.07 1.25e1 3.26e-10
Density (5.6) VC 2.00 4.00e0 2.47e-5 4.07 1.25e1 3.26e-10
Flux (5.8) VC 2.00 3.26e0 2.01e-5 3.01 5.91e0 8.67e-8
Inflow (5.10) VC 1.99 3.78e0 2.46e-5 4.27 1.41e2 1.08e-9
Density (5.12), δ = 0 CC 2.00 4.00e0 2.47e-5 4.07 1.25e1 3.26e-10
Density (5.12), δ = 1 CC 2.00 4.00e0 2.47e-5 4.07 1.25e1 3.26e-10
Flux (5.14), δ = 0 CC 2.00 4.53e0 2.78e-5 3.01 8.98e0 1.33e-7
Flux (5.14), δ = 1 CC 2.00 5.57e0 3.48e-5 3.00 3.07e1 4.65e-7

Table 7.13. Example 1: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms for the FV lattice Boltzmann schemes (5.3) and (5.4) on
a sequence of grids with N = 60, 145, 230, 315, 400 with data
T = 0.2, ν = 0.1 and ω = ω∗ := (3 −

√
3)/2, depending on the

boundary conditions.

7.3. Dependence on the Initial Data

For the initial data there are two possible choices. The first and natural choice
are the first order initial data for the lattice Boltzmann schemes given by

U0 :=
1

2
[r0(xl)]l −

h

4ω
[∂xr0(xl)]l,

V 0 :=
1

2
[r0(xl)]l +

h

4ω
[∂xr0(xl)]l,

(7.1)

with R0 = U0 + V 0 = [r0(xl)]l and J0 = U0 − V 0 = −h/(2ω)[∂xr0(xl)]l. The
indices l take their values depending on the underlying grid. The second choice is
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Density Flux
Initial conditions T EOC Kr E400(r) EOC Kj E400(j)

0th order 0.1 2.00 3.54e0 2.23e-5 3.00 5.07e0 7.92e-8
1st order 0.1 1.99 2.67e-1 1.74e-6 3.00 1.21e1 1.90e-7

0th order 0.2 2.00 2.20e0 1.38e-5 3.00 2.58e0 4.03e-8
1st order 0.2 2.00 3.67e-1 2.34e-6 3.00 8.98e0 1.41e-7

0th order 0.5 2.00 5.01e-1 3.16e-6 3.02 1.89e-2 2.65e-10
1st order 0.5 2.00 2.85e-1 1.79e-6 3.00 3.52e0 5.52e-8

0th order 1.0 2.00 3.00e-2 1.90e-7 3.00 1.76e-1 2.75e-9
1st order 1.0 2.00 7.95e-2 4.97e-7 3.00 6.69e-1 1.05e-8

Table 7.14. Example 2: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms of the VCFD lattice Boltzmann scheme (5.1) on a sequence
of grids with N = 60, 145, 230, 315, 400 for ω = 0.7, depending on
the initial conditions and different end times T .

given by the zeroth order initial values

U0 :=
1

2
[r0(xl)]l,

V 0 :=
1

2
[r0(xl)]l,

(7.2)

with R0 = U0 + V 0 = [r0(xl)]l and J0 = U0 − V 0 = 0.
The examination of the experimental orders of convergence shows that the

initial data have no effect on the experimental orders of convergence. In Table
7.14 the results of the application of the VCFD lattice Boltzmann scheme (5.1)
to Example 2 with relaxation parameter ω = 0.7 are displayed depending on the
initial conditions and different end times T . For both types of initial conditions we
find second order convergence for the density and third order convergence for the
h-scaled flux in the discrete L2-norms.

In Figure 7.12 the nodal errors in the density are plotted up to the end time
T = 1.0 on a grid with N = 100 points for Example 2. Here, the first order initial
conditions (7.1) are used. Up to the time t ≈ 0.2 the error increases, before the
exponential decay becomes effective.

In Figure 7.13 the nodal errors in the density are displayed for the zeroth order
initial conditions (7.2). Here, the exponential decay starts with the first time step,
but there is an initial layer. The sign of the error is opposite compared to the
previous choice. The nodal errors are larger by two orders of magnitudes.

The nodal errors for the flux are displayed in Figures 7.14 and 7.15. In Figure
7.14 the first order initial conditions (7.1) find application. We detect the expected
exponential decay. For zeroth order initial conditions (7.2) there is an initial layer
at t = 0 that is visualized in Figure 7.15. For a finer resolution on a short time
scale the same errors are plotted in Figures 7.16 and 7.17.

The evaluation of the Fourier representations of the lattice Boltzmann solution
leads to the insight that there are initial oscillations of the error in the flux. These
oscillations can be seen in the numerical solutions in Figures 7.16 and 7.17.

For further investigations, we define the step dependent numerical viscosities

νk
r :=

γ|Ω|2
L2π2h2

(
1 − ‖Rk‖∞

‖Rk−1‖∞

)
, νk

j :=
γ|Ω|2
L2π2h2

(
1 − ‖Jk‖∞

‖Jk−1‖∞

)
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Figure 7.12. Example 2: Error in the density with 1st order
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Figure 7.13. Example 2: Error in the density with 0th order
initial conditions.
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Figure 7.14. Example 2: Error in the flux with 1st order initial conditions.
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Figure 7.15. Example 2: Error in the flux with 0th order initial conditions.
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Figure 7.16. Example 2: Error in the flux with 1st order initial
conditions on a short time scale.
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Figure 7.17. Example 2: Error in the flux with 0th order initial
conditions on a short time scale.
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Figure 7.18. Example 1: Numerical viscosity of the density and
the flux depending on the time steps for ω = 0.95 and N = 50.

for k = 1, . . . ,M . Here, L is the frequency of the eigenfunction solution. These
formulas are motivated by the knowledge that in each time step the eigenfunction
solution with frequency L shall decay with the rate 1− νL2π2/(γN2). The desired
values are (1−ω)γ/(2ω) for the FD lattice Boltzmann solutions and γ/(2ω) for the
FV lattice Boltzmann solutions.

In Figure 7.18 the achieved values of νk
r and νk

j are plotted depending on the
time steps k. The underlying test problem is Example 1 on a VC grid with N = 50
and L = 2. The relaxation parameter is chosen as ω = 0.95. We find an oscillating
behavior for the fluxes for both types of schemes. The correct numerical viscosities
are reached after some time steps, when the oscillating parts belonging to the
eigenvalue λ−2 have vanished (see Sections 5.10 and 5.11). The density is equipped
with the right numerical viscosity from the first time step on.

Smaller values for the relaxation parameter lead to a faster decay of the os-
cillations. By performing a Taylor series analysis of the Fourier representations of
the FD lattice Boltzmann solutions, we gain an iteration formula for the numerical
viscosities of the form

c0 := 0,

vk := (3 − 4ω + 12ωck)/6,

ck+1 := ck − vk + (1 − ω)/(2ω),

}
for k = 0, . . . ,M,

where vk is an approximation of νk
j /γ. The results of these iterations are plotted

in Figure 7.19 depending on the relaxation parameter ω ∈ [1/2, 1). For each time
step, there is a solid line approaching the right viscosity (1−ω)/(2ω) for increasing
k. In the first approximation we get the lowest straight line. Most oscillations occur
close to ω = 1. For ω = 1/2, the right value is reached in the second time step.

All computations put forward on the previous pages are done with the choice
of the first order initial data for the flux, that is, j0 := −h∂xr0/(2ω). If we start
with the initial data j0 := 0, then the correct numerical viscosity is also reached
after some time steps. This can be seen in Figure 7.20.

7.4. Numerical Reference Solutions

If we want to apply the lattice Boltzmann schemes to further test problems,
we need numerical reference solutions in order to rate the quality of the solutions.
Numerical methods for the computation of the reference solutions are introduced
in this section.
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Figure 7.20. Example 1: Numerical viscosity of the density and
the flux depending on the time steps for ω = 0.95 and N = 50 for
the initial condition J0 = 0.

In the case of periodic, Dirichlet or Neumann boundary conditions for the heat
equation, numerical reference solutions for the density and the flux can be obtained
by solving the discrete equations

(Id − σκA)Rk+1 = (Id + (1 − σ)κA)Rk + τF k + σκRk+1
B + (1 − σ)κRk

B ,

(Id − σκB)Jk+1 = (Id + (1 − σ)κB)Jk − τh

2ω
DF k + σκJk+1

B + (1 − σ)κJk
B ,

(7.3)

for k = 0, . . . ,M − 1 with

κ := ν
τ

h2

and σ ∈ {0, 1/2, 1}. The schemes in (7.3) are called the σ-schemes in the following.
Here, the heat equation for the density and the additional heat equation for the flux
are discretized with one sided forward difference quotients for the time derivatives
and central difference quotients for the second order spatial derivatives. For σ = 0,
this is the explicit Euler scheme, for σ = 1 the scheme is recognized as the implicit
Euler scheme and for σ = 1/2 we gain the well-known Crank-Nicolson scheme. In
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the latter two cases, the computational effort is increased, since we have to solve
an additional linear system of equations in each time step.

For periodic boundary conditions (2.6) on VC grids, we choose

A := B :=




−2 1 1
1 −2 1

. . .

1 −2 1
1 1 −2



∈ R

N,N , F k :=




fk
0

...

fk
N−1



, DF k :=




∂xf
k
0

...

∂xf
k
N−1



,

and Rk
B := Jk

B := 0.
For Dirichlet boundary conditions (2.3) for the heat equation on VC grids, we

choose

A :=




−2 1
1−2 1

. . .

1−2 1
1−2



∈ R

N−1,N−1, F k :=




fk
1

...

fk
N−1



, Rk

B :=




rk
L

0
...
0
rk
R



,

B :=




−2 2
1−2 1

. . .

1−2 1
2−2



∈ R

N+1,N+1, DF k :=




∂xf
k
0

...

∂xf
k
N



, Jk

B :=




−2hdjk
L

0
...
0

2hdjk
R



.

Dirichlet values for the density are given by rk
L := rDi(tk, xL), rk

R := rDi(tk, xR) and
Neumann values for the flux are chosen by djk

L := h(f(tk, xL)−∂tr
Di(tk, xL))/(2ων),

djk
R := h(f(tk, xR) − ∂tr

Di(tk, xR))/(2ων) by invoking the heat equation.
For Dirichlet boundary conditions on CC grids, we use

A :=




−3 1
1−2 1

. . .

1−2 1
1−3



∈ R

N,N , F k :=




fk
1/2

...

fk
N−1/2



, Rk

B :=




2rk
L

0
...
0

2rk
R



,

B :=




−1 1
1−2 1

. . .

1−2 1
1−1



∈ R

N,N , DF k :=




∂xf
k
1/2

...

∂xf
k
N−1/2



, Jk

B :=




−hdjk
L

0
...
0

hdjk
R



,

with rk
L, rk

R, djk
L and djk

R chosen as in the previous case.
For Neumann boundary conditions (2.4) on VC grids, we choose

A :=




−2 2
1−2 1

. . .

1−2 1
2−2



∈ R

N+1,N+1, F k :=




fk
0

...

fk
N



, Rk

B :=




−2hdrk
L

0
...
0

2hdrk
R



,
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B :=




−2 1
1−2 1

. . .

1−2 1
1−2



∈ R

N−1,N−1, DF k :=




∂xf
k
1

...

∂xf
k
N−1



, Jk

B :=




jk
L

0
...
0
jk
R



.

Neumann values for the density are given by drk
L := rNeu(tk, xL), drk

R := rNeu(tk, xR)
and Dirichlet values for the flux are chosen by jk

L := −hrNeu(tk, xL)/(2ω), jk
R :=

−hrNeu(tk, xR)/(2ω).
For Neumann boundary conditions on CC grids, we use

A :=




−1 1
1−2 1

. . .

1−2 1
1−1



∈ R

N,N , F k :=




fk
1/2

...

fk
N−1/2



, Rk

B :=




−hdrk
L

0
...
0

hdrk
R



,

B :=




−3 1
1−2 1

. . .

1−2 1
1−3



∈ R

N,N , DF k :=




∂xf
k
1/2

...

∂xf
k
N−1/2



, Jk

B :=




2jk
L

0
...
0

2jk
R



,

with drk
L, drk

R, jk
L and jk

R chosen as in the previous case.
The explicit and implicit Euler schemes are known to have consistency of order

O(h2 + τ). For the choice τ ∼ h2, one can prove convergence behavior of the same
order. Reduced consistency at the boundaries does not lead to a decreased order
of convergence for the presented discretizations; see Ref. [26, Chapter 5].

For the FD lattice Boltzmann schemes (5.1) and (5.2), in each timestep 4N
multiplications are required. The number of total time steps is

M =

⌊
T

τ

⌋
+ 1 ≈ νT

|Ω|2
2ω

1 − ω
N2.

Consequently, the total computational effort is of order O(N3). The FV lattice
Boltzmann schemes require 8N multiplications in each time step. However, the
number of time steps is only

M =

⌊
T

τ

⌋
+ 1 ≈ νT

|Ω|2 2ωN2.

Hence, the ratio of the computational costs of both approaches is 2(1 − ω). The
explicit Euler method requires 6N multiplications in each time step. If we use the
LU -factorizations of the tridiagonal system matrices (see Ref. [25]), the Crank-
Nicolson scheme and the implicit Euler scheme require 14N operations. For these
methods the choice of the time step is only restricted by stability considerations.

For all introduced numerical methods the number of degrees of freedom DOF in
space and time is given by DOF = CN3 for a given constant C. The error tolerance

tol is chosen as tol = 1/N2 ∼ h2. We find the relation DOF = tol−3/2. Hence,
the decrease of the error by a factor of two requires the raise of the computational
effort by a factor of 2

√
2 ≈ 2.8.

In Figure 7.21 the experimental orders of convergence of the explicit Euler
scheme is displayed in comparison to those of the lattice Boltzmann solutions. The
underlying test problem is Example 1. We find a slightly smaller error constant
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Figure 7.21. Example 1: Logarithmic error plot for the explicit
Euler scheme and the FD lattice Boltzmann scheme.

for the explicit Euler schemes. The corresponding results for the Crank-Nicolson
scheme and the implicit Euler scheme are very similar.

The consistency of the Crank-Nicolson scheme is of order O(h2 + τ2), if the
right hand side is evaluated at time tk+1/2 instead of tk. Hence, the choice τ ∼ h
seems to be appropriate to reduce the computational effort. Less time steps have
to be performed. But due to the lack of maximum principles and L∞-stability, the
choice τ ∼ h leads to very poor results. We shall elucidate this point in a numerical
example.

Maximum principles and L∞-stability for the discrete equations (7.3) can be
verified by following the concept of inverse monotone M-matrices. A matrix M =
[mij ]i,j ∈ R

N,N is called L-matrix, if we have mij ≤ 0 for all i 6= j (i, j = 1, . . . , N)
andmii > 0 for i = 1, . . . , N . An L-matrix M is called M-matrix, if it is nonsingular
with M−1 = [m−1

ij ]i,j and m−1
ij ≥ 0 for i, j = 1, . . . , N . Then for x ≤ y with x,y ∈

R
N we find M−1x ≤ M−1y, where the less or equal sign has to be understood in

the componentwise sense.
The matrix M is called diagonally dominant, if we have

N∑

j=1,j 6=i

|mij | < |mii| for i = 1, . . . , N.

Diagonally dominant L-matrices are M-matrices (see Ref. [22]). Hence, we find
that the matrices on the left hand side of (7.3) are M-matrices (or the unit matrix)
for all given choices of A and B. Maximum principles can now be assured, if the
matrix on the right hand side is non-negative in the componentwise sense. We find
the condition 1− (1−σ)κ|m| ≥ 0, where |m| is the modulus of the largest diagonal
entry of the corresponding matrix A or B. We find |m| = 2 or |m| = 3 in our
applications. For σ ∈ {0, 1/2} we arrive at the step size restriction

ν
τ

h2
≤ 1

(1 − σ)|m| .

For the implicit Euler schemes with σ = 1 there is no restriction on the step size,
but an equivalent choice is necessary to attain second order for the consistency and
the convergence.
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The step size restrictions have to be compared with the lattice Boltzmann
space-time coupling, where we have

κ := ν
τ

h2
=





1 − ω

2ω
, for the FD schemes,

1

2ω
, for the FV schemes.

The proof of a maximum principle can be found in Ref. [23, Section 100]. Stability
in the L∞-norm can be proved in an analogous way. See also Ref. [22].

The eigenvectors of the matrices A and B are given by (5.88) in the periodic
case, (5.100) and (5.101) in the boundary case on VC grids and (5.107) and (5.108)
in the boundary case on CC grids. The corresponding eigenvalues are 2 cos(2yj)−2
in the periodic case and 2 cos(yj)−2 in the boundary case, where we use yj := jπ/N .
Hence, we find the eigenvalues of the discrete equations (7.3) in the form

λ0
j = 1 + 2κ(cj − 1) for σ = 0,

λ
1/2
j =

1 + κ(cj − 1)

1 − κ(cj − 1)
for σ = 1/2,

λ1
j =

1

1 − 2κ(cj − 1)
for σ = 1,

where we use cj := cos(yj). For the low-frequency eigenvalues we find

λσ
j ≈ 1 − κy2

j + O(y4
j ) for j ≪ N and σ ∈ {0, 1/2, 1}.

The same behavior for j ≪ N is attained for the eigenvalues λ+
j = (1 − ω)cj +

(2ω − 1 + (1 − ω)2c2j )
1/2 of the FD lattice Boltzmann discretizations and λ+

j =

(1 − ω/2)cj − ω/2 + (((1 − ω/2)cj − ω/2)2 + ω(1 + cj) − 1)1/2 of the FV lattice
Boltzmann discretizations with regard to the corresponding space-time couplings.
Hence, we find in all cases the correct approximation of the time kernel of the heat
equation, that is,

(λj)
k ≈ exp(−νj2π2tk/|Ω|2) for j ≪ N.

The more decisive point is the decay of the high-frequency parts. Here, we find

λ0
j ≈ 1 − 4κ for σ = 0 and j ≈ N,

λ
1/2
j ≈ 1 − 2κ

1 + 2κ
for σ = 1/2 and j ≈ N,

λ1
j ≈ 1

1 + 4κ
for σ = 1 and j ≈ N.

In order to achieve stability in the L2-sense, these expressions have to be larger or
equal than -1. For σ = 0, we have to require κ ≤ 1/2. For σ = 1/2 and σ = 1,
we find unconditional stability with respect to the L2-norm. For the explicit Euler
schemes we observe problems in the performance for nonsmooth data and κ = 1/2.
The high-frequency parts in the solution are not negligible in this case. Due to the
missing decay, these parts lead to spurious oscillations. Numerical evidence for this
phenomenon is presented in the next section.

The same problem appears for the FD lattice Boltzmann discretizations, where
the eigenvalues λ−j tend to -1 when j approaches N . In the case of the FV lattice

Boltzmann discretizations, the eigenvalues λ+
j and λ−j take imaginary values and

tend to -1; see Figures 5.3 and 5.7. For the choice ω = 1/2, the discretization of the
density stemming from the FD lattice Boltzmann equations (5.1) and (5.2) coincides
with the explicit Euler scheme with κ = 1/2. These schemes show oscillations for
nonsmooth data. Whereas the explicit Euler scheme can be cured by decreasing
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Figure 7.22. Behavior of the eigenvalues λσ
j of the σ-schemes for

N = 100 and κ = 1/2 and the behavior after k = 20 time steps.
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Figure 7.23. Behavior of the eigenvalues λσ
j of the σ-schemes for

N = 100 and κ = 1/3 and the behavior after k = 20 time steps.

the time step in order to keep the eigenvalues away from -1, we are trapped in the
fixed space-time coupling for the lattice Boltzmann schemes.

In Figure 7.22 and 7.23 we examine the behavior of the eigenvalues of the
σ-schemes (7.3) for σ ∈ {0, 1/2, 1}. In Figure 7.22 we choose κ = 1/2, which
corresponds to the case ω = 1/2 for the FD lattice Boltzmann schemes with the
same time step. In the plot on the right hand side we see the decay after 20
time steps. This figure has to be compared with Figure 5.6 for the FD lattice
Boltzmann schemes. In Figure 7.23 we consider smaller time steps with κ = 1/3.
For FD lattice Boltzmann schemes the same time step requires ω = 3/4. While the
explicit Euler scheme now shows a fast decay for the high-frequency parts, the FD
lattice Boltzmann schemes are not equipped with this feature (see Figure 5.6).

Numerical reference solutions can also be computed with the aid of the two
step Du Fort-Frankel scheme

Rk+1
l = Rk−1

l + 2κ
(
Rk

l+1 −Rk+1
l −Rk−1

l +Rk
l−1

)
+ 2τfk

l .

The Du Fort-Frankel scheme is an unconditionally stable explicit scheme that is
second order consistent to the heat equation and to the telegraph equation presented
in Chapter 4. The space-time coupling τ ∼ h2 is required; see Ref. [26] and
Ref. [33].

In Example 4 we investigate the solution of the heat equation with the concen-
trated initial data

r0(x) := sin100(πx) in Ω.
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Figure 7.24. Lattice Boltzmann solution for the density with
the concentrated initial data r0(x) := sin100(πx) in the domain
(0, 1/2] × (0, 1) with ν = 0.1 and N = 200.
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Figure 7.25. Lattice Boltzmann solution for the flux with the
initial data r0(x) := sin100(πx) in the domain (0, 1/2]× (0, 1) with
ν = 0.1 and N = 200.

The lattice Boltzmann solutions are plotted in Figures 7.24 and 7.25.
The application of the Crank-Nicolson scheme with the space-time coupling

τ ∼ h leads to wrong results. In Figure 7.26 the Crank-Nicolson solution for
Example 4 with time step τ = 2h is plotted. At the peak there is an unphysical
oscillation. In Ref. [23, Section 100], the author attributes this behavior to the lack
of maximum principles. As for the lattice Boltzmann schemes, the coupling τ ∼ h2

is required.
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Figure 7.26. Example 4: Crank-Nicolson solution at time t = 0.1
for the time step size τ = 2h and N = 100.

Density Flux
σ-scheme EOC Kr E400(r) EOC Kj E400(j)

Explicit Euler 2.00 3.83e-1 2.46e-6 3.00 8.34e0 1.32e-7
Crank-Nicolson 2.00 2.94e-1 1.84e-6 3.00 2.38e0 3.82e-8
Implicit Euler 2.00 9.79e-1 6.15e-6 3.00 6.68e0 1.04e-7

Table 7.15. Example 4: Experimental orders of convergence, er-
ror constants and fitted errors with respect to the discrete L2-
norms. The VCFD lattice Boltzmann solution are compared with
the solutions of the σ-schemes on the same grid, where we use a
sequence of grids with N = 60, 145, 230, 315, 400, the end time
T = 0.1 and ω = 0.7.

In Table 7.15 we examine the error behavior of the FD lattice Boltzmann solu-
tion for Example 4. All errors are determined on the basis of the reference solutions
of the σ-schemes on the same grids. We find the expected second order convergence
for the density and third order convergence for the h-scaled flux.

7.5. Nonsmooth Data

In many (multi-dimensional) applications the given data do not have the re-
quired regularity. In our test problems we consider initial data representing a shock
or a concentrated peak.

In Example 5, the initial data for the heat equation is given by the shock

r0(x) :=

{
0, for x ∈ (0, xS),

1, for x ∈ [xS , 1)

for fixed xS ∈ (0, 1). The corresponding VC lattice Boltzmann solution for the
density with vanishing density boundary conditions, xS = 0.7, ν = 0.1, ω = 0.7,
N = 100 and the end time T = 0.02 is shown in Figure 7.27. In Figure 7.28
the corresponding flux is displayed. In Figure 7.27 no oscillations are observed in
the solution for the density. The flux shows some minor initial oscillations (as for
smooth initial data).

As reference solutions we choose the Crank-Nicolson solutions on the same grid.
The errors for the density and the flux with respect to the Crank-Nicolson solutions
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Figure 7.27. Lattice Boltzmann solution for the density with the
initial shock in (0, 0.02]×(0, 1) with ν = 0.1, ω = 0.7 and N = 200.
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Figure 7.28. Lattice Boltzmann solution for the flux with the
initial shock in (0, 0.02]×(0, 1) with ν = 0.1, ω = 0.7 and N = 200.

are displayed in Figures 7.29 and 7.30. The error in the density changes sign in
every grid point around the shock.

If we consider the errors with respect to the Crank-Nicolson solutions on the
same grid on a sequence of grids, then the experimental orders of convergence are
not the same as for smooth data. There is only first order convergence for the
density and the h-scaled flux. Due to the missing decay of the high-frequency
parts, the lattice Boltzmann solutions are responsible for this failure.
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Figure 7.29. Error of the lattice Boltzmann solution for the den-
sity with respect to the Crank-Nicolson solution.
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Figure 7.30. Error of the lattice Boltzmann solution for the flux
with respect to the Crank-Nicolson solution.

In Example 6, we examine the lattice Boltzmann solutions, where the initial
data

r0(x) :=





x− xS−K

xS − xS−K
for x ∈ (xS−K , xS),

xS+K − x

xS+K − xS
for x ∈ (xS , xS+K),

0 else,



154 7. NUMERICAL RESULTS

0
0.2

0.4
0.6

0.8
1

0

0.1

0.2

0

0.2

0.4

0.6

0.8

1

Example 6

t
x

Figure 7.31. Crank-Nicolson solution for the density.
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Figure 7.32. Lattice Boltzmann solutions and Crank-Nicolson
solutions with the same time step size for the density and the flux
at time t = 0.2 with N = 100 and ω = 0.7.

for K ∈ N and S ∈ {K, . . . , N −K} find application. This is a hat function with
peak in xS and a basis of length 2Kh.

The Crank-Nicolson solution for the density with ν = 0.1 and vanishing density
boundary conditions on a VC grid with N = 100 is plotted in Figure 7.31.

Taking a look at the lattice Boltzmann solutions, we find disturbing oscillations,
whereas the Crank-Nicolson solutions or the explicit Euler solutions are smooth.
In Figure 7.32 the lattice Boltzmann solutions for ω = 0.7 and the Crank-Nicolson
solutions for the density and the flux are plotted at time t = 0.2. In this example
we find first order convergence for the density and second order convergence for
the h-scaled flux, where the errors are taken with respect to the Crank-Nicolson
solutions on the same grids.

7.6. Lattice Boltzmann or σ-Schemes?

In this section we shall briefly summarize the advantages and disadvantages of
the lattice Boltzmann schemes and compare them with the presented σ-schemes.
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The first point is the fact that all lattice Boltzmann methods are explicit meth-
ods, which only work with the constraint of step size restrictions. But if we take a
look at the implicit Euler scheme, we find that due to the consistency the same step
size restriction has to be applied here. For the Crank-Nicolson schemes, larger time
step can be chosen from a theoretical point of view. However, the oscillations in the
solution show that this is not a good choice in most of the applications. Because
of the larger numerical effort of the implicit schemes, the lattice Boltzmann meth-
ods can be seen in competition with the explicit Euler scheme only. The number
of required multiplications in each time step is smaller for the lattice Boltzmann
schemes. However, the total number of timesteps may differ. For all methods the
total computational amount is of order O(N3).

For vanishing source terms, the lattice Boltzmann schemes on VC grids are
superior due to the fourth order convergence for the density for the specific choice
of the relaxation parameter.

For the application of the explicit Euler scheme, the data of the right hand side
have to be differentiated for the flux equation. For the lattice Boltzmann methods
there is no differentiation of the source data required. For Dirichlet boundary
conditions, the heat equation as the limiting equation has to be employed for the
data of the σ-schemes.

The decisive disadvantage of the lattice Boltzmann schemes is the distribution
of the eigenvalues. For all parameter choices there are eigenvalues close to -1. This
fact leads to oscillations for nonsmooth data. In the case of the explicit Euler
scheme, this effect only appears for the choice ντ/h2 = 1/2. For smaller time steps
this lack can be repaired. For the lattice Boltzmann schemes there is no comparable
mending. Even in the presence of transport terms this behavior does not change,
as we shall see in the next section, where we examine lattice Boltzmann methods
for the advection-diffusion equation.

7.7. The Advection-Diffusion Equation

The linear Ruijgrok-Wu model is a velocity discrete system of the form

∂tu
ǫ +

1

ǫ
∂xu

ǫ +
1

2νǫ2
(uǫ − vǫ) − A

2νǫ
(uǫ + vǫ) =

1

2
f in ΩT ,

∂tv
ǫ − 1

ǫ
∂xv

ǫ − 1

2νǫ2
(uǫ − vǫ) +

A

2νǫ
(uǫ + vǫ) =

1

2
f in ΩT .

(7.4)

As before we define the density rǫ := uǫ + vǫ and the scaled flux κǫ := (uǫ − vǫ)/ǫ.
The fluid-dynamic limit equation of this system is the advection-diffusion equation

∂tr +A∂xr − ν∂2
xr = f, (7.5)

where the flux is defined by Ar− ν∂xr. Numerical problems for the solution of the
advection-diffusion equation appear, when the ratio A/ν is large. This is known
as the convection dominated case. In typical situations boundary layers have to
be treated. In fact, in the lattice Boltzmann approach we have to treat a double
singularly perturbed problem then. In the following, we assume that the ratio A/ν
is of moderate size.

The lattice-Boltzmann equations on VC grids for this advection-diffusion equa-
tion are obtained in the form

Uk+1
l+1 = Uk

l − ω(Uk
l − V k

l ) + ωA
τ

h
(Uk

l + V k
l ) +

τ

2
F k

l , l = 0, . . . , N − 1,

V k+1
l−1 = V k

l + ω(Uk
l − V k

l ) − ωA
τ

h
(Uk

l + V k
l ) +

τ

2
F k

l , l = 1, . . . , N.
(7.6)

Boundary conditions have to be supplied for Uk+1
0 and V k+1

N . The space-time
coupling has to be chosen of the form γ = h2/τ = 2ων/(1 − ω). Hence, we find
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Figure 7.33. Eigenvalues of the time evolution matrix of the
VC lattice Boltzmann schemes for the advection-diffusion equa-
tion with ν = 0.1, A = 1.0 and N = 100 in dependence on ω.

ωAτ/h = (1 − ω)Ah/(2ν). The complex eigenvalues of the corresponding time-
evolution matrix are plotted in Figure 7.33 for ν = 0.1, A = 1.0 and N = 100. For
this choice of the parameters we gain L2-stable solutions. The stability gets lost,
when the local Péclet number Ah/ν becomes larger (Ref. [26]).

For all values of ω, there are several eigenvalues close to −1, which is also
attained as a eigenvalue. This leads to the conjecture that there is an oscillatory
behavior for the lattice Boltzmann solutions in the case of nonsmooth data.

The lattice Boltzmann solution for the advection-diffusion equation (7.5) with
A = 10 and ν = 0.1 for the nonsmooth initial data from Example 6 is plotted in
Figure 7.34. Taking a closer look at the solution at time t = 0.02, we find the
expected oscillations in the density; see Figure 7.35.

7.8. The Viscous Burgers Equation

The nonlinear Ruijgrok-Wu model

∂tu
ǫ +

1

ǫ
∂xu

ǫ +
1

2νǫ2
(uǫ − vǫ) − B

νǫ
uǫvǫ =

1

2
f in ΩT ,

∂tv
ǫ − 1

ǫ
∂xv

ǫ − 1

2νǫ2
(uǫ − vǫ) +

B

νǫ
uǫvǫ =

1

2
f in ΩT

(7.7)

is a velocity discrete model with the viscous Burgers equations

∂tr +
B

2
∂xr

2 − ν∂2
xr = f (7.8)

as the fluid-dynamic limit equation. The flux is defined by B/(2γ)r2 − 1/(2ω)∂xr.
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Figure 7.34. Example 6: Density solution of the advection-
diffusion equation with nonsmooth initial data.
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Figure 7.35. Example 6: Oscillations in the density solution of
the advection-diffusion equation at time t = 0.02.

The lattice Boltzmann equations on VC grids for the viscous Burgers equation
read

Uk+1
l+1 = Uk

l − ω(Uk
l − V k

l ) + 2ωB
τ

h
Uk

l V
k
l +

τ

2
F k

l , l = 0, . . . , N − 1,

V k+1
l−1 = V k

l + ω(Uk
l − V k

l ) − 2ωB
τ

h
Uk

l V
k
l +

τ

2
F k

l , l = 1, . . . , N,
(7.9)

with additional boundary conditions for Uk+1
0 and V k+1

N . The space-time coupling
has to be chosen by γ = h2/τ = 2ων/(1 − ω).

As test example we consider the moving shock solution

r(t, x) :=
1

2

(
1 − tanh

(
2x− t− 1

8ν

))
in (0, T ] × (0, 1)

of the viscous Burgers equation (7.8) with B = 1. We choose a small viscosity with
ν = 0.01. The solution for the density with end time T = 0.5 is plotted in Figure
7.36.
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Figure 7.36. Moving shock solution of the viscous Burgers equation.
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Figure 7.37. Error of the moving shock solution of the viscous
Burgers equation.

The nodal errors of the lattice Boltzmann solution are plotted in Figure 7.37.
The error increases as the time advances. For the density boundary conditions we
find second order convergence for the density and third order convergence for the
h-scaled flux.



CHAPTER 8

Lattice Boltzmann Methods on Coupled Grids

Lattice Boltzmann methods are designed for uniform grids. The symmetry
of the grids is a basic ingredient for the performance. But due to the space-time
coupling, local refinements of the grid are desirable. This is the basis for the setup
of adaptive methods. In order to preserve the influence of the symmetry, only
refinements with locally constant grid sizes can be chosen. The grid sizes of two
neighboring grids should differ by a factor of two and the refinement zones have to
possess a minimal number of cells in their width.

At the intersections of the refinement zones with grid sizes h = hC and h =
hF = hC/2 intersection conditions for the distribution functions have to be pre-
scribed. Since we are interested in the approximation of the macroscopic mass
density r and its derivative ∂xr, we postulate the discrete continuity of U + V

and (U − V )/h at the intersections, that is, the corresponding quantities have to
coincide on the coarse and on the fine grid in selected points of the intersection
zones. Due to the approximation properties

U ≈ 1

2
[r(xl)]l −

h

4ω
[∂xr(xl)]l,

V ≈ 1

2
[r(xl)]l +

h

4ω
[∂xr(xl)]l,

the distribution functions u and v cannot be assumed to be continuous at the zone
intersections because of their dependence on the grid size h. The approximation
properties lead to a dependence on the grid size for the initial data and for the
inflow boundary conditions. The data for the distribution functions have to be
computed with respect to the grid size. Since the parameters ν and γ do not (or
should not) depend on the grid size, the relaxation parameter ω does not depend
on the grid size. By refining and coarsening the grid, the grid size h changes. Since
U +V and (U −V )/h should be left unchanged, we have to rescale the distribution
functions U and V . For the refinement and the coarsening, we impose invariance
of U + V and (U − V )/h. Hence, we get the transformation conditions

RC = UC + V C = UF + V F = RF ,

JC = UC − V C = 2UF − 2V F = 2JF .

The upper indices indicate the affiliation of the variables to the coarse grid (C) or
to the fine grid (F ). For the distribution functions we find the converse relations

UC =
1

2

(
RC + JC

)
=

1

2

(
RF + 2JF

)
=

3

2
UF − 1

2
V F ,

V C =
1

2

(
RC − JC

)
=

1

2

(
RF − 2JF

)
= −1

2
UF +

3

2
V F ,

UF =
1

2

(
RF + JF

)
=

1

2

(
RC +

1

2
JC

)
=

3

4
UC +

1

4
V C ,

V F =
1

2

(
RF − JF

)
=

1

2

(
RC − 1

2
JC

)
=

1

4
UC +

3

4
V C .
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xI+1/2

xI+1/2

xI+1
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xI+2

xI+2

Figure 8.1. Grid intersections for VC grids.

(a) Single overlapping CC grids

(b) Double overlapping CC grids

Coarse grid

Coarse grid

Fine grid

Fine grid
xI−2

xI−2 xI−1

xI−1

xI−3/2 xI−1/2

xI−1/2

xI

xI

xI+1/2

xI+1/2

xI+1

xI+1

Figure 8.2. Grid intersections for CC grids.

For the refinement, the data for U + V and U − V have to be interpolated and
transformed. For the coarsening of the grid, the data have to be restricted to the
nodes of the coarse grid and transformed.

Due to the space time coupling τ = h2/γ, four time steps have to be performed
on grids with halved grid size in order to arrive at the same physical time that is
reached after one time step on the nonrefined grid. At the grid intersections time
interpolations are required for the intersection conditions.

In computations with a fixed end time T , a global refinement of the grid de-
creases the error by a factor of four. This result is implied by the quadratic con-
vergence with respect to the grid size that is approved from the theoretical and
experimental results in this work. However, the computational effort is raised by a
factor of eight due to the necessary space-time coupling.

8.1. Overlapping Grids

For the exchange of the data at the intersection zones, the coarse and the fine
grids have to overlap to some extent. We describe some of the possible choices.
For VC grids and for CC grids we consider single and double overlapping grids as
depicted in Figure 8.1 and in Figure 8.2.

In the situation of double overlapping grids one can restrict to the interior grid
points, where all information on the macroscopic quantities is available. On single
overlapping grids the data of both grids have to be used at the same time.
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The numerical results on single overlapping grids do not yield the desired per-
formance in all situations. For Example 8 in Section 8.5, the errors are amplified
at the intersection and the density error takes its maximum there. Similar observa-
tions are found for some of the coupling conditions on double overlapping grids. The
density intersection conditions on double overlapping grids turn out to be favorable,
since they render the expected improvement for the computations.

8.2. Intersection Conditions

For the treatment at the intersection zones, there are three possibilities to
determine the missing inflow values.

(1) For single overlapping VC grids, the outermost points of the coarse and
the fine grid coincide. Hence, the two outflow values of the coarse and
the fine grid can be used to determine the two missing inflow values. If
the coarse grid is on the left hand side, then the outflow values UC

Out and
V F

Out are known. The inflow values UF
In and V C

In can be computed by

UF
In =

1

3
V F

Out +
2

3
UC

Out,

V C
In =

4

3
V F

Out −
1

3
UC

Out.

If the coarse grid is on the right hand side, then the inflow values V F
In and

UC
In can be determined by employing the known outflow values V C

Out and
UF

Out in the form

V F
In =

1

3
UF

Out +
2

3
V C

Out,

UC
In =

4

3
UF

Out −
1

3
V C

Out.

See Figure 8.3.
(2) For double overlapping VC grids, the missing inflow values on the fine

grid can be determined by using the information that is given on the
coarse grid and the other way round by restricting to interior points. For
the determination of the inflow values on the fine grid, there are three
possibilities given:

i) Determine RC on the coarse grid and use the density intersection
condition RF = RC .

ii) Determine JC on the coarse grid and use the flux intersection condi-
tion JF = JC/2.

iii) Determine RC and JC on the coarse grid and use the inflow in-
tersection conditions UF = RC/2 + JC/4 or V F = RC/2 − JC/4,
respectively.

For the determination of the inflow value on the coarse grid, there are four
possibilities:

i) Determine RF on the fine grid and use the density intersection con-
dition RC = RF .

i) Determine JF on the fine grid and use the flux intersection condition
JC = 2JF .

iii) Determine RF and JF on the fine grid and use the inflow intersection
conditions UC = RF /2 + JF or V C = RF /2 − JF , respectively.

iv) Determine RF and JF on the fine grid and update the inflow and
the outflow value on the coarse grid by using UC = RF /2 + JF and
V C = RF /2 − JF .
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t = 1/2

t = 3/4

t = 1

Known value

Time interpolated value

Determine value by the intersection cond.

Value of no interest

Fitting at the intersection

One time step on the coarse grid.

Time interpolation of the outflow value on the coarse grid at the intersection.

Four time steps on the fine grid.

Figure 8.3. Fitting at the intersections for single overlapping VC grids.

(3) For single overlapping grids, the missing inflow values can be extrapolated
from the interior of the domain.

The extrapolation of the inflow values from the interior of the domain leads to
reduced orders of convergence in the boundary situations. The same poor perfor-
mance is attained at the grid intersections. Hence, we do not pursue the approach
in (3).

On CC grids the loci of the coarse and the fine grid points do not coincide at
the intersection zone. Hence, a spatial interpolation is required. These additional
interpolations render unsatisfactory convergence results.

The general algorithm is the same for all cases. Assume that all data is given at
the lattice Boltzmann time t = 0. At first, one lattice Boltzmann step is performed
on the coarse grid to arrive at lattice Boltzmann time t = 1. The data from the
coarse grid at the intersection has to be interpolated in time to the intermediate
times t = 1/4, t = 1/2 and t = 3/4. From this interpolated data the inflow values
on the coarse grid are determined. Now there are four lattice Boltzmann steps to
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Coarse grid

Fine grid

U

U
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U
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U

V
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V

V
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t = 0

t = 1/4, 1/2, 3/4

t = 1

Known value

Time interpolated value

Determine value by the intersection conditions

Figure 8.4. Fitting at the intersections for double overlapping
VC grids.

be done on the fine grid to arrive at the time t = 1. Then the missing inflow value
on the coarse grid at the time t = 1 is completed by the use of the data of the fine
grid.

8.3. Algorithms for VC Grid Intersections

In the following, capital letters U , V , R and J denote the grid functions on
the coarse grid, and small letters u, v, r and j denote the grid functions on the
fine grid. In the descriptions of the algorithms we distinguish if the coarse grid is
located at the left hand side of the fine grid (coarse - fine) or if it is located on the
right hand side of the fine grid (fine - coarse).

LB-algorithm for single overlapping VC grid intersections :

See Figure 8.1(a). The intersection point is xI .

(1) Let the solutions U0, V 0 on the coarse grid, and u0, v0 on the fine grid
be given for the time t = 0.

(2) Perform one LB-step on the coarse grid to get U1, V 1. The inflow value
on the coarse grid at the intersection is missing.

(3) Interpolate the outflow values on the coarse grid to the intermediate times
t = 1/4, t = 1/2 and t = 3/4:
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coarse - fine fine - coarse

U0
I , U1

I → U
k/4
I , k = 1, 2, 3, V 0

I , V 1
I → V

k/4
I , k = 1, 2, 3,

(4) Perform four LB-steps on the fine grid. Determine the inflow value on the
fine grid in each step:

coarse - fine fine - coarse

u
k/4
I = v

k/4
I /3 + 2U

k/4
I /3, v

k/4
I = u

k/4
I /3 + 2V

k/4
I /3,

k = 1, 2, 3, 4, k = 1, 2, 3, 4.

(5) Update the unknown inflow value on the coarse grid:
coarse - fine fine - coarse

V 1
I = 4v1

I/3 − U1
I /3 U1

I = 4u1
I/3 − V 1

I /3.

LB-algorithm for double overlapping VC grid intersections:

See Figure 8.1(b). The intersection point is xI . Extend the fine grid into the coarse
grid.

(1) Let the solutions U0, V 0 on the coarse grid, and u0, v0 on the fine grid
be given for the time t = 0.

(2) Perform one LB-step on the coarse grid to get U1, V 1. The inflow value
on the coarse grid at the intersection is missing.

(3) Restrict to the inner point xI−1 (coarse - fine) or xI+1 (fine - coarse) of
the coarse grid.

(4) Interpolate the macroscopic values R0, J0 and R1, J1 to the intermediate
times t = 1/4, t = 1/2 and t = 3/4:

coarse - fine fine - coarse

R0
I−1, R

1
I−1 → R

k/4
I−1, k = 1, 2, 3, R0

I+1, R
1
I+1 → R

k/4
I+1, k = 1, 2, 3,

J0
I−1, J

1
I−1 → J

k/4
I−1, k = 1, 2, 3, J0

I+1, J
1
I+1 → J

k/4
I+1, k = 1, 2, 3.

(5) Perform four LB-steps on the fine grid. Determine the inflow value on the
fine grid in each step by using the

i) density intersection conditions
coarse - fine

u
k/4
I−1 + v

k/4
I−1 = R

k/4
I−1, k = 1, 2, 3, 4,

fine - coarse

u
k/4
I+1 + v

k/4
I+1 = R

k/4
I+1, k = 1, 2, 3, 4,

ii) flux intersection conditions
coarse - fine

u
k/4
I−1 − v

k/4
I−1 = J

k/4
I−1/2, k = 1, 2, 3, 4,

fine - coarse

u
k/4
I+1 − v

k/4
I+1 = J

k/4
I+1/2, k = 1, 2, 3, 4,

iii) inflow intersection conditions
coarse - fine

u
k/4
I−1 = R

k/4
I−1/2 + J

k/4
I−1/4, k = 1, 2, 3, 4,
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fine - coarse

v
k/4
I+1 = R

k/4
I+1/2 − J

k/4
I+1/4, k = 1, 2, 3, 4.

(6) Determine the inflow value on the coarse grid by the macroscopic variables
r1I and j1I in the inner point of the fine grid by using the

i) density intersection condition U1
I + V 1

I = r1I ,
ii) flux intersection condition U1

I − V 1
I = 2j1I ,

iii) inflow intersection condition U1
I = r1I/2 + j1I (coarse - fine) or V 1

I =
r1I/2 − j1I (fine - coarse),

iv) update the inflow and outflow value on the coarse grid by taking
U1

I = r1I/2 + j1I and V 1
I = r1I/2 − j1I .

In both proposed algorithms we use linear time interpolations at the intersec-
tion.

8.4. Algorithms for CC Grid Intersections

LB-algorithm for single overlapping CC grid intersections:

See Figure 8.2(a). The intersection point is xI−1/2.

(1) Let the solutions U0, V 0 on the coarse grid, and u0, v0 on the fine grid
be given for the time t = 0.

(2) Perform one LB-step on the coarse grid to get U1 and V 1. The inflow
value on the coarse grid at the intersection is missing.

(3) Interpolate the outflow values on the coarse grid to the intermediate times
t = 1/4, t = 1/2 and t = 3/4:

coarse - fine

U0
I−1/2, U

1
I−1/2 → U

k/4
I−1/2, k = 1, 2, 3,

fine - coarse

V 0
I+1/2, V

1
I+1/2 → V

k/4
I+1/2, k = 1, 2, 3.

(4) Perform four LB-steps on the fine grid. Determine the inflow values on
fine grid in each step:

coarse - fine

u
k/4
I−3/4 = (v

k/4
I−3/4 + v

k/4
I−1/4)/3 + 4U

k/4
I−1/2/3 − u

k/4
I−1/4, k = 1, 2, 3, 4,

fine - coarse

v
k/4
I+3/4 = (u

k/4
I+1/4 + u

k/4
I+3/4)/3 + 4V

k/4
I+1/2/3 − v

k/4
I+1/4, k = 1, 2, 3, 4.

(5) Update the unknown inflow value on the coarse grid:
coarse - fine

V 1
I−1/2 = 2(v1

I−3/4 + v1
I−1/4)/3 − U1

I−1/2/3,

fine - coarse

U1
I+1/2 = 2(u1

I+1/4 + u1
I+3/4)/3 − V 1

I+1/2/3.

LB-algorithm for double overlapping CC grid intersections:

See Figure 8.2(b). The intersection point is xI−1/2. Extend the fine grid into the
coarse grid.

(1) Let the solutions U0, V 0 on the coarse grid, and u0, v0 on the fine grid
be given for the time t = 0.
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(2) Perform one LB-step on the coarse grid to get U1, V 1. The inflow value
on the coarse grid at the intersection is missing.

(3) Restrict to the inner value xI−3/2 (coarse - fine) or xI+3/2 (fine - coarse)
of the coarse grid.

(4) Interpolate the macroscopic quantities R0, J0 and and R1, J1 to the in-
termediate times t = 1/4, t = 1/2 and t = 3/4:

coarse - fine

R0
I−3/2, R

1
I−3/2 → R

k/4
I−3/2, k = 1, 2, 3,

J0
I−3/2, J

1
I−3/2 → J

k/4
I−3/2, k = 1, 2, 3,

fine - coarse

R0
I+3/2, R

1
I+3/2 → R

k/4
I+3/2, k = 1, 2, 3,

J0
I+3/2, J

1
I+3/2 → J

k/4
I+3/2, k = 1, 2, 3.

(5) Perform four LB-steps on the fine grid. Determine the inflow value on the
fine grid in each step by using the

i) density intersection conditions
coarse - fine

(u
k/4
I−7/4 + v

k/4
I−7/4 + u

k/4
I−5/4 + v

k/4
I−5/4)/2 = R

k/4
I−3/2, k = 1, 2, 3, 4,

fine - coarse

(u
k/4
I+5/4 + v

k/4
I+5/4 + u

k/4
I+7/4 + v

k/4
I+7/4)/2 = R

k/4
I+3/2, k = 1, 2, 3, 4,

ii) flux intersection condition
coarse - fine

(u
k/4
I−7/4 − v

k/4
I−7/4 + u

k/4
I−5/4 − v

k/4
I−7/2)/2 = J

k/4
I−3/2/2, k = 1, 2, 3, 4,

fine - coarse

(u
k/4
I+5/4 − v

k/4
I+5/4 + u

k/4
I+7/4 − v

k/4
I+7/4)/2 = J

k/4
I+3/2/2, k = 1, 2, 3, 4,

iii) inflow intersection conditions
coarse - fine

(u
k/4
I−7/4 + u

k/4
I−5/4)/2 = R

k/4
I−3/2/2 + J

k/4
I−3/2/4, k = 1, 2, 3, 4,

fine - coarse

(v
k/4
I+5/4 + v

k/4
I+7/2)/2 = R

k/4
I+3/2/2 − J

k/4
I+3/2/4, k = 1, 2, 3, 4.

(6) Determine the inflow value on the coarse grid by the inner information of
fine grid by using the

i) density intersection conditions
coarse - fine

U1
I−1/2 + V 1

I−1/2 = (u1
I−3/4 + v1

I−3/4 + u1
I−1/4 + v1

I−1/4)/2,

fine - coarse

U1
I+1/2 + V 1

I+1/2 = (u1
I+1/4 + v1

I+1/4 + u1
I+3/4 + v1

I+3/4)/2,
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ii) flux intersection conditions
coarse - fine

U1
I−1/2 − V 1

I−1/2 = u1
I−3/4 − v1

I−3/4 + u1
I−1/4 − v1

I−1/4,

fine - coarse

U1
I+1/2 − V 1

I+1/2 = u1
I+1/4 − v1

I+1/4 + u1
I+3/4 − v1

I+3/4,

iii) inflow intersection conditions
coarse - fine

U1
I−1/2 = (r1I−3/4 + r1I−1/4)/4 + (j1I−3/4 + j1I−1/4)/2,

fine - coarse

V 1
I+1/2 = (r1I+1/4 + r1I+3/4)/4 − (j1I+1/4 + j1I+3/4)/2,

iv) update the inflow and outflow values on the coarse grid by taking
U1

I−1/2 = (r1I−3/4 + r1I−1/4)/4 + (j1I−3/4 + j1I−1/4)/2 and V 1
I+1/2 =

(r1I+1/4 + r1I+3/4)/4 − (j1I+1/4 + j1I+3/4)/2.

In both proposed algorithms we use linear time interpolations at the intersec-
tion.

8.5. Numerical Results

For the investigation of the performance of the proposed grid coupling algo-
rithms, we consider Example 7 given by the eigenfunction solution

r(t, x) := e−νπ2t sin(πx) in (0, T ] × (0, 1),

with the data ν = 0.1 and T = 0.2. The interval (0, 1) is divided at the intersection
point xI = 0.5. At the left hand side (0, xI) of the interval (0, 1) we define a coarse
grid with grid size h, and on the right hand side (xI , 1) we define a fine grid with
grid size h/2. The grids are overlapping in the single or double sense as displayed
in Figure 8.1 and Figure 8.2. On both grids we examine the experimental orders
of convergence (EOC) for the nodal L2-errors and the approximated L2-errors. We
use a grid sequence with N = 50, 134, 217, 300 and the relaxation parameter
ω = 0.7 in combination with density boundary conditions for the left boundary of
the coarse grid and the right boundary of the fine grid. At the intersection point
xI = 0.5 we employ the proposed intersection conditions. For single overlapping
grids we use the continuity condition for the macroscopic quantities. For double
overlapping grids we combine the density, flux or inflow intersection conditions for
the fine grid with the density, flux, inflow or update intersection conditions for the
coarse grid. The errors on the coarse and the fine grid are computed independently.

In nearly all of the examined situations the EOCs show the expected behavior,
that is, we find second order convergence for the density and third order conver-
gence for the h-scaled flux with respect to the nodal L2-errors and the approxi-
mated L2-errors. Only for the CCFV lattice Boltzmann schemes (5.4) with density
intersection conditions we obtain weak performance. The results for the EOCs are
displayed in Tables 8.1 - 8.4. In Table 8.1 the results are listed for the VCFD lattice
Boltzmann schemes (5.1) depending on several intersection conditions. Table 8.2
contains the results for the CCFD schemes (5.2). The corresponding results for the
VCFV lattice Boltzmann schemes (5.3) and the CCFV lattice Boltzmann schemes
(5.4) are presented in Table 8.3 and in Table 8.4.

Further investigations show that the maintenance of the EOCs is not the deci-
sive criterion for the performance of the grid coupling algorithms. Computational
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Nodal L2-errors Approximated L2-errors
Coarse Grid Fine Grid Coarse Grid Fine Grid

Density Flux Density Flux Density Flux Density Flux

Single overlap with continuity intersection conditions
1.98 3.00 1.98 3.00 2.00 3.00 2.01 3.00

Double overlap with density/density intersection conditions
1.98 3.02 1.99 3.00 2.00 3.00 2.01 2.99

Double overlap with flux/flux intersection conditions
1.99 3.00 2.04 3.01 2.01 3.00 2.01 3.02

Double overlap with inflow/inflow intersection conditions
1.97 3.00 1.98 2.99 2.00 3.00 2.01 2.99

Double overlap with density/update intersection conditions
1.98 3.00 1.99 3.00 2.00 3.00 2.01 2.99

Double overlap with flux/update intersection conditions
1.94 3.00 1.89 2.99 2.00 3.00 2.02 2.98

Double overlap with inflow/update intersection conditions
1.97 3.00 1.96 2.99 2.01 3.00 2.02 2.99

Table 8.1. Example 7: Experimental orders of convergence on
coupled VCFD grids. Intersection point is xI = 0.5 with data
ν = 0.1, T = 0.2, ω = 0.7 and grid sequences with N = 50, 134,
217, 300 with respect to the nonrefined grid.

Nodal L2-errors Approximated L2-errors
Coarse Grid Fine Grid Coarse Grid Fine Grid

Density Flux Density Flux Density Flux Density Flux

Single overlap with continuity intersection conditions
2.06 3.00 1.99 2.99 2.01 3.01 2.03 2.99

Double overlap with density/density intersection conditions
2.06 3.00 2.00 2.99 2.01 3.01 2.03 2.99

Double overlap with flux/flux intersection conditions
1.98 3.00 2.07 3.02 2.01 3.00 2.02 3.04

Double overlap with inflow/inflow intersection conditions
2.08 3.00 2.00 2.98 2.01 3.01 2.03 2.98

Double overlap with density/update intersection conditions
2.06 3.00 2.00 2.99 2.01 3.01 2.03 2.99

Double overlap with flux/update intersection conditions
2.14 3.00 1.96 2.97 2.02 3.00 2.05 2.96

Double overlap with inflow/update intersection conditions
2.09 3.00 1.99 2.98 2.01 3.00 2.04 2.98

Table 8.2. Example 7: Experimental orders of convergence on
coupled CCFD grids. Intersection point is xI = 0.5 with data
ν = 0.1, T = 0.2, ω = 0.7 and grid sequences with N = 50, 134,
217, 300 with respect to the nonrefined grid.
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Nodal L2-errors Approximated L2-errors
Coarse Grid Fine Grid Coarse Grid Fine Grid

Density Flux Density Flux Density Flux Density Flux

Single overlap with continuity intersection conditions
2.00 3.00 2.00 3.00 2.00 3.00 2.00 3.00

Double overlap with density/density intersection conditions
1.99 3.00 2.01 3.00 2.00 3.00 2.01 3.01

Double overlap with flux/flux intersection conditions
2.00 3.00 2.02 3.01 2.00 3.00 2.01 3.02

Double overlap with inflow/inflow intersection conditions
2.00 3.00 2.02 3.01 2.00 3.00 2.01 3.02

Double overlap with density/update intersection conditions
2.00 3.00 2.01 3.01 2.00 3.00 2.01 3.01

Double overlap with flux/update intersection conditions
2.00 3.00 2.02 3.01 2.01 3.00 2.01 3.02

Double overlap with inflow/update intersection conditions
2.00 3.00 2.01 3.01 2.00 3.00 2.01 3.01

Table 8.3. Example 7: Experimental orders of convergence on
coupled VCFV grids. Intersection point is xI = 0.5 with data
ν = 0.1, T = 0.2, ω = 0.7 and grid sequences with N = 50, 134,
217, 300 with respect to the nonrefined grid.

Nodal L2-errors Approximated L2-errors
Coarse Grid Fine Grid Coarse Grid Fine Grid

Density Flux Density Flux Density Flux Density Flux

Single overlap with continuity intersection conditions
2.00 3.00 1.99 3.12 2.01 3.00 2.01 3.11

Double overlap with density/density intersection conditions
2.00 3.02 0.99 1.87 2.00 3.03 1.02 1.87

Double overlap with flux/flux intersection conditions
2.00 3.00 2.03 3.02 2.01 3.00 2.03 3.04

Double overlap with inflow/inflow intersection conditions
2.00 3.00 2.00 2.96 2.00 3.01 2.02 2.97

Double overlap with density/update intersection conditions
2.00 3.00 0.99 1.87 2.00 3.01 1.02 1.87

Double overlap with flux/update intersection conditions
2.01 3.00 2.05 3.00 2.01 3.00 2.03 3.01

Double overlap with inflow/update intersection conditions
2.00 3.00 2.00 2.96 2.00 3.01 2.01 2.96

Table 8.4. Example 7: Experimental orders of convergence on
coupled CCFV grids. Intersection point is xI = 0.5 with data
ν = 0.1, T = 0.2, ω = 0.7 and grid sequences with N = 50, 134,
217, 300 with respect to the nonrefined grid.
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Nodal L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
3.49e-6 1.75e-6 1.71e-6 2.29e-7 2.04 7.66

Double overlap with density/density intersection conditions
3.47e-6 1.75e-6 1.74e-6 2.26e-7 1.99 7.75

Double overlap with flux/flux intersection conditions
6.75e-6 1.83e-6 2.39e-6 2.14e-7 2.83 8.52

Double overlap with inflow/inflow intersection conditions
3.44e-6 1.75e-6 1.69e-6 2.26e-7 2.03 7.76

Double overlap with density/update intersection conditions
3.46e-6 1.75e-6 1.73e-6 2.26e-7 2.00 7.75

Double overlap with flux/update intersection conditions
3.23e-6 1.75e-6 1.45e-6 2.23e-7 2.23 7.84

Double overlap with inflow/update intersection conditions
3.38e-6 1.75e-6 1.63e-6 2.25e-7 2.07 7.78

Table 8.5. Example 7: Ratio of the nodal L2-errors on the cou-
pled coarse and fine VCFD grids.

advantages can only be achieved, if the errors on the fine grid decrease as implied
by the convergence orders. Since our test solution is symmetric with respect to the
grid intersection, we expect in the optimal case that the errors in the density are
smaller by a factor of four on the fine grid and the errors for the h-scaled flux are
smaller by a factor of eight. Otherwise, the additional expense for the computation
of the solutions on coupled grids is not justified.

Expressed in formulas, we wish for

‖eR‖C
2

‖eR‖F
2

= 4,
‖eJ‖C

2

‖eJ‖F
2

= 8.

Here, ‖ · ‖C
2 denotes the norm on the coarse grid and ‖ · ‖F

2 denotes the norm on the
fine grid. We consider the nodal L2-norms, as well as the approximated L2-norms.

The nodal L2-errors for the solutions of the VCFD lattice Boltzmann schemes
are displayed in Table 8.5 depending on the intersection conditions. While the
errors of the h-scaled flux nearly show the expected ratio, the errors for the density
only render a ratio of approximately two.

The reason for this unsatisfactory behavior is founded in the nonlocal nature of
the errors. In Figure 8.5 the errors on the uniform grid are displayed. The largest
error for the density is attained in the intersection point xI . Hence, for the refined
grid the error on the fine grid is coupled to the error on the coarse grid; see Figure
8.6. The decay of the error on the fine grid is restricted. A better result is attained
for the flux, because the flux error has a zero at the intersection point and hence the
errors are decoupled to some extent. In the error plots for the flux we use the grid
independent scaling (U −V )/h, such that these are the errors for the macroscopic
quantity that approximates ∂xr up to a constant.

In Table 8.6 we examine the behavior of the approximated L2-errors for the
VCFD lattice Boltzmann solutions. It is quite astonishing that the approximated
L2-errors for the density show the right decay on the finer grid. In order to clarify
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Figure 8.5. Example 7: Nodal errors on a uniform grid for N = 100.
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Figure 8.6. Example 7: Nodal errors on coupled grids.

Approximated L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
4.95e-5 8.41e-7 1.17e-5 1.14e-7 4.23 7.37

Double overlap with density/density intersection conditions
4.95e-5 8.41e-7 1.18e-5 1.13e-7 4.20 7.45

Double overlap with flux/flux intersection conditions
4.69e-5 9.11e-7 1.48e-5 1.26e-7 3.17 7.24

Double overlap with inflow/inflow intersection conditions
4.95e-5 8.40e-7 1.18e-5 1.12e-7 4.19 7.48

Double overlap with density/update intersection conditions
4.95e-5 8.40e-7 1.18e-5 1.13e-7 4.19 7.46

Double overlap with flux/update intersection conditions
4.97e-5 8.37e-7 1.20e-5 1.09e-7 4.14 7.64

Double overlap with inflow/update intersection conditions
4.96e-5 8.39e-7 1.19e-5 1.12e-7 4.17 7.52

Table 8.6. Example 7: Ratio of the approximated L2-errors on
the coupled coarse and fine VCFD grids.
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Figure 8.7. Example 7: Interpolated errors on a uniform grid for
N = 100.
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Figure 8.8. Example 7: Interpolated errors on coupled grids.

this result, we regard the interpolated errors of this problem. In Figure 8.7 the in-
terpolated errors on a uniform grid are displayed. Figure 8.8 shows the interpolated
errors on the coupled grids. The decay of the errors on the finer grid is pronounced.

In Example 8, we consider the eigenfunction solution

r(t, x) := e−νπ2t cos(πx) in (0, T ] × (0, 1),

with the data ν = 0.1 and T = 0.2. This solution has a zero at the intersection
point and hence, a zero is expected for the density error at the intersection point
due to the symmetry of the problem. This fact should be expressed in a better
error decay for the density on the coupled grids. A worse performance is expected
for the flux error. The nodal errors on the uniform grid are depicted in Figure 8.9,
the nodal errors on the coupled grids can be found in Figure 8.10. The solutions are
computed with the density intersection conditions that do not ensure continuity of
the flux. Hence, the flux error shows a jump at the intersection.

In Figure 8.11 we examine the interpolated errors for the VCFD lattice Boltz-
mann solutions on a uniform grid. In Figure 8.12 the interpolated errors on the
coupled grids are displayed.

The behavior of the nodal L2-errors on the coupled grids is listed in Table
8.7. Only for the density/density intersection conditions the optimal results can
be achieved. Better results are obtained for the approximated L2-errors; see Table
8.8. The nodal errors with respect to different intersection conditions are displayed
in the Figures 8.13 - 8.19. For the continuity intersection conditions on single over-
lapping grids, the maximal density error is attained in the intersection point; see
Figure 8.13. For the flux error there is only a slight improvement on the finer grid.
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Figure 8.9. Example 8: Nodal errors on a uniform grid for N = 100.
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Figure 8.10. Example 8: Nodal errors on coupled grids.
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Figure 8.11. Example 8: Interpolated errors on the uniform grid.

These results are quite unsatisfactory. The same has to be said for the flux/flux
intersection conditions on double overlapping grids; see Figure 8.15. A marginal
improvement for the density errors can be found in the case of the inflow/inflow
intersection conditions in Figure 8.16. By far the best results are obtained for the
density/density intersection conditions on double-overlapping grids in Figure 8.14.
The density/update intersection conditions in Figure 8.17, the flux/update inter-
section conditions in Figure 8.18 and the density/update intersection conditions in
Figure 8.19 do also not render convincing results. Hence, the favored choice are
the density/density intersection conditions on double overlapping VC grids. All of
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Figure 8.12. Example 8: Interpolated errors on coupled grids.

Nodal L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
9.60e-6 1.35e-6 7.92e-6 4.18e-7 1.21 3.23

Double overlap with density/density intersection conditions
2.75e-6 1.72e-6 6.47e-7 2.26e-7 4.24 7.59

Double overlap with flux/flux intersection conditions
9.94e-6 1.34e-6 8.10e-6 4.21e-7 1.23 3.18

Double overlap with inflow/inflow intersection conditions
6.12e-6 1.52e-6 4.22e-6 3.26e-7 1.45 4.66

Double overlap with density/update intersection conditions
3.19e-6 1.84e-6 3.18e-6 1.55e-7 1.00 11.87

Double overlap with flux/update intersection conditions
9.58e-6 1.35e-6 8.43e-6 4.28e-7 1.14 3.16

Double overlap with inflow/update intersection conditions
2.93e-6 1.67e-6 9.57e-7 2.42e-7 3.07 6.89

Table 8.7. Example 8: Ratio of the nodal L2-errors on the cou-
pled coarse and fine VCFD grids.

the results remain unchanged, if we consider quadratic time interpolation instead
of linear time interpolation. Hence there is no need for this additional effort.

The examination of the grid coupling algorithms for the VCFV lattice Boltz-
mann scheme (5.3) leads to similar results as for the VCFD lattice Boltzmann
scheme (5.1) that has been considered so far. Example 7 serves as the test prob-
lem. The results for the decay of the nodal L2-errors can be found in Table 8.9.
The density errors decay by a factor of two, whereas the flux errors decay by a
factor of eight. For the approximated L2-errors we only find a decay of the density
errors by a factor of three; see Table 8.10. In comparison to the results in Table
8.6 for VCFD grids, this is a deterioration.

The performance of the grid coupling algorithms on CC grids turns out to be
insufficient. This has to be attributed to the additional spatial interpolations. The
results for the nodal and the approximated L2-errors on CCFD grids are presented
in Table 8.11 and in Table 8.12. The nodal L2-errors for the density on the fine
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Approximated L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
4.90e-5 5.86e-7 1.66e-5 2.93e-7 2.93 2.00

Double overlap with density/density intersection conditions
5.04e-5 8.18e-7 1.25e-5 1.11e-7 4.02 7.38

Double overlap with flux/flux intersection conditions
4.90e-5 5.60e-7 1.65e-5 2.96e-7 2.98 1.96

Double overlap with inflow/inflow intersection conditions
4.95e-5 6.74e-7 1.41e-5 2.03e-7 3.50 3.35

Double overlap with density/update intersection conditions
5.13e-5 9.35e-7 1.21e-5 6.92e-8 4.23 13.51

Double overlap with flux/update intersection conditions
4.90e-5 5.86e-7 1.67e-5 3.02e-7 2.94 1.94

Double overlap with inflow/update intersection conditions
5.03e-5 7.94e-7 1.27e-5 1.24e-7 3.95 6.39

Table 8.8. Example 8: Ratio of the approximated L2-errors on
the coupled coarse and fine VCFD grids.
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Figure 8.13. Example 8: Nodal errors on single overlapping
VCFD grids with continuity intersection conditions.
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Figure 8.14. Example 8: Nodal errors on double overlapping
VCFD grids with density/density intersection conditions.
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Figure 8.15. Example 8: Nodal errors on double overlapping
grids with flux/flux intersection conditions.
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Figure 8.16. Example 8: Nodal errors on double overlapping
grids with inflow/inflow intersection conditions.
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Figure 8.17. Example 8: Nodal errors on double overlapping
grids with density/update intersection conditions.

grid are larger than those on the coarse grid. The approximated L2-errors for the
flux do not render the expected results.

The situation is a little bit improved for the coupled CCFV grids. The results
for the nodal and the approximated L2-errors are listed in the Table 8.13 and in
Table 8.14.

The application of quadratic or cubic data interpolation in space at the inter-
section does not render improved results.
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Figure 8.18. Example 8: Nodal errors on double overlapping
grids with flux/update intersection conditions.
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Figure 8.19. Example 8: Nodal errors on double overlapping
grids with inflow/update intersection conditions.

Nodal L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
2.82e-6 2.50e-6 1.35e-5 3.02e-7 2.09 8.27

Double overlap with density/density intersection conditions
2.79e-6 2.50e-6 1.37e-5 3.14e-7 2.04 7.99

Double overlap with flux/flux intersection conditions
2.95e-6 2.45e-6 1.24e-5 2.90e-7 2.39 8.47

Double overlap with inflow/inflow intersection conditions
2.81e-6 2.50e-6 1.38e-5 3.07e-7 2.03 8.16

Double overlap with density/update intersection conditions
2.80e-6 2.51e-6 1.37e-5 3.14e-7 2.04 8.00

Double overlap with flux/update intersection conditions
2.81e-6 2.50e-6 1.39e-5 3.07e-7 2.02 8.14

Double overlap with inflow/update intersection conditions
2.80e-6 2.50e-6 1.38e-5 3.06e-7 2.04 8.18

Table 8.9. Example 7: Ratio of the nodal L2-errors on the cou-
pled coarse and fine VCFV grids.
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Approximated L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
7.98e-5 1.52e-6 2.59e-5 2.16e-7 3.08 7.04

Double overlap with density/density intersection conditions
7.96e-5 1.53e-6 2.62e-5 2.24e-7 3.04 6.81

Double overlap with flux/flux intersection conditions
8.12e-5 1.47e-6 2.51e-5 1.91e-7 3.24 7.66

Double overlap with inflow/inflow intersection conditions
7.97e-5 1.52e-6 2.63e-5 2.23e-7 3.02 6.82

Double overlap with density/update intersection conditions
7.96e-5 1.53e-6 2.62e-5 2.24e-7 3.03 6.81

Double overlap with flux/update intersection conditions
7.98e-5 1.52e-6 2.64e-5 2.24e-7 3.02 6.78

Double overlap with inflow/update intersection conditions
7.97e-5 1.52e-6 2.63e-5 2.23e-7 3.03 6.86

Table 8.10. Ratio of the approximated L2-errors on the coupled
coarse and fine VCFV grids.

Nodal L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
3.43e-6 1.64e-6 7.37e-6 3.00e-7 0.46 5.46

Double overlap with density/density intersection conditions
3.49e-6 1.64e-6 7.56e-6 2.98e-7 0.46 5.50

Double overlap with flux/flux intersection conditions
7.50e-6 1.85e-6 3.59e-6 2.24e-7 2.09 8.25

Double overlap with inflow/inflow intersection conditions
3.57e-6 1.64e-6 7.47e-6 2.96e-7 0.48 5.53

Double overlap with density/update intersection conditions
3.50e-6 1.64e-6 7.53e-6 2.98e-7 0.46 5.50

Double overlap with flux/update intersection conditions
4.05e-6 1.63e-6 6.92e-6 2.88e-7 0.59 5.65

Double overlap with inflow/update intersection conditions
3.69e-6 1.64e-6 7.33e-6 2.95e-7 0.50 5.54

Table 8.11. Ratio of the nodal L2-errors on the coupled coarse
and fine CCFD grids.

8.6. Concentrated Errors

In the problems considered so far, the error functions had a global spread.
Hence, the solutions on coupled grids suffered from global pollution errors. A con-
siderable decay of the errors can only be expected, if the refined grids are adapted
to the error distributions. In the following, we consider a test problem, where the



8.6. CONCENTRATED ERRORS 179

Approximated L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
5.51e-5 7.81e-7 8.11e-6 1.93e-7 6.79 4.04

Double overlap with density/density intersection conditions
5.52e-5 7.79e-7 8.17e-6 1.93e-7 6.75 4.04

Double overlap with flux/flux intersection conditions
4.67e-5 9.45e-7 1.60e-5 1.51e-7 2.93 6.26

Double overlap with inflow/inflow intersection conditions
5.52e-5 7.79e-7 8.20e-6 1.91e-7 6.73 4.08

Double overlap with density/update intersection conditions
5.52e-5 7.78e-7 8.19e-6 1.93e-7 6.74 4.03

Double overlap with flux/update intersection conditions
5.57e-5 7.76e-7 8.47e-6 1.82e-7 6.58 4.25

Double overlap with inflow/update intersection conditions
5.53e-5 7.77e-7 8.28e-6 1.89e-7 6.68 4.10

Table 8.12. Ratio of the approximated L2-errors on the coupled
coarse and fine CCFD grids.

Nodal L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
3.33e-5 2.37e-6 1.07e-5 1.94e-6 3.12 1.22

Double overlap with density/density intersection conditions
3.31e-5 2.40e-6 1.12e-4 3.20e-5 0.30 0.07

Double overlap with flux/flux intersection conditions
2.90e-5 2.48e-6 1.36e-5 3.02e-7 2.14 8.20

Double overlap with inflow/inflow intersection conditions
3.33e-5 2.37e-6 1.55e-5 1.54e-6 2.14 1.54

Double overlap with density/update intersection conditions
3.30e-5 2.38e-6 1.12e-4 3.20e-5 0.30 0.07

Double overlap with flux/update intersection conditions
3.37e-5 2.36e-6 8.83e-6 3.14e-7 3.82 7.52

Double overlap with inflow/update intersection conditions
3.33e-5 2.37e-6 1.55e-5 1.54e-6 2.15 1.54

Table 8.13. Ratio of the nodal L2-errors on the coupled coarse
and fine CCFV grids.

error is mainly located on the refined grid. The initial profile with a peak is depicted
in Figure 8.20.

The lattice Boltzmann solutions for the viscosity ν = 0.1 and the end time
T = 0.2 are plotted in Figure 8.21 on two uniform grids with N = 50 and N = 100.
We use the VCFD lattice Boltzmann schemes (5.1) with vanishing density boundary
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Approximated L2-errors
Coarse Grid Fine Grid Ratios

‖eR‖C
2 ‖eJ‖C

2 ‖eR‖F
2 ‖eJ‖F

2 ‖eR‖C
2 /‖eR‖F

2 ‖eJ‖C
2 /‖eJ‖F

2

Single overlap with continuity intersection conditions
8.57e-5 1.39e-6 2.15e-5 1.13e-6 3.98 1.23

Double overlap with density/density intersection conditions
8.54e-5 1.41e-6 6.82e-5 1.86e-5 1.25 7.58

Double overlap with flux/flux intersection conditions
8.14e-5 1.50e-6 2.64e-5 2.15e-7 3.08 6.99

Double overlap with inflow/inflow intersection conditions
8.56e-5 1.39e-6 2.27e-5 8.99e-7 3.77 1.55

Double overlap with density/update intersection conditions
8.53e-5 1.40e-6 6.82e-5 1.86e-5 1.25 0.08

Double overlap with flux/update intersection conditions
8.61e-5 1.38e-6 2.19e-5 2.04e-7 3.93 6.78

Double overlap with inflow/update intersection conditions
8.56e-5 1.39e-6 2.27e-5 8.98e-7 3.77 1.55

Table 8.14. Ratio of the approximated L2-errors on the coupled
coarse and fine CCFV grids.
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Figure 8.20. Initial profile with a concentrated peak.

conditions and density intersection conditions on double overlapping grids. As
expected, in the case of nonsmooth data, the lattice Boltzmann solutions on the
coarse grid with N = 50 show obvious oscillations. The oscillations are considerably
smaller on the finer grid with N = 100.

We define the intersection point xI = 0.4 and introduce a coarse grid on the left
hand side with grid size h = 1/50. On the right hand side of the interval we define
a finer grid with h = 1/100. The lattice Boltzmann solutions on the coupled grids
are displayed in Figure 8.22. Even on the coarse grid no oscillations are observed
in the solutions.

In the domain of the coarse grid the error is expected to be small. The main
part of the error is located in the domain of the fine grid. As time advances, a
portion of the error is transported onto the coarse grid. The nodal errors of the
density and the flux on the coarse and on the fine grid are shown in Figure 8.23.
In addition, the errors on the uniform grid with N = 100 are displayed. The errors
are measured with respect to the lattice Boltzmann solution on a uniform grid with
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Figure 8.21. Lattice Boltzmann solutions for the concentrated
initial peak on uniform grids.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

 

 

x

Coarse grid
Fine Grid

Density

0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

 

 

x

Coarse grid
Fine Grid

Flux

Figure 8.22. Lattice Boltzmann solutions for the concentrated
initial peak on coupled grids with h = 1/50 and h = 1/100.
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Figure 8.23. Errors of the lattice Boltzmann solutions for the
concentrated initial peak on coupled grids.

N = 3200 that is viewed as a proper approximation of the exact solution. The
nodal errors on the fine grid exhibit oscillations. The errors on the uniform grid are
envelopes to the errors on the fine grid. In this sense, the solutions on the coupled
grids render the optimal results. The error in the flux on the coarse grid is slightly
amplified in comparison to the one on the fine grid.

In reasonable applications, the local refinements of the grid have to be adapted
to the distribution of the errors. The grid intersections have to be kept away from
the maxima of the errors in order to avoid amplifications of the errors. However,
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Occupation pattern

Figure 8.24. Occupation pattern for the time evolution matrix
on double overlapping VCFD grids with density intersection con-
ditions.

this procedure requires knowledge of the structure of the errors. For most of the
problems, this knowledge can only be gained by a posteriori error estimation tech-
niques that are not yet available in the context of lattice Boltzmann methods.

8.7. The Time Evolution Operator on Coupled Grids

On the examined coupled grids, one lattice Boltzmann step on the coarse grid
requires four lattice Boltzmann steps on the fine grid. The data have to be ex-
changed via interpolation steps. In the matrix formulation for the RJ-systems,
these steps can be combined and rewritten as a single matrix operation. The occu-
pation pattern of the time evolution matrix for the coupling of double overlapping
VCFD grids with density intersection conditions is depicted in Figure 8.24. The
nonsymmetric entries stem from the interpolation steps and the data exchange at
the intersection.

By using the Matlab
R©-routine eig, we examine the eigenvectors of the time

evolution operator for double overlapping VCFD grids with density intersection
conditions. In the following figures the density component and the flux component
of the eigenvectors are plotted on the coarse and on the fine grid. For eigenvalues
close to 1, we find low-frequency eigenvectors with a global spread; see Figure 8.25.
For increasing frequencies the eigenvalues decay as expected.

Furthermore, we discover low-frequency eigenvectors that only live on the finer
grid without any interference onto the coarse grid. In Figure 8.26 one can see
that these eigenvectors have vanishing values in the grid points that stem from the
unrefined grid. This structure enables the handling of additional information on
the finer grid, which finds expression in the improved convergence on the coupled
grids.

On the coarse grid low-frequency eigenvectors can be found with eigenvalues
close to 1−2ω; see Figure 8.27. For a relaxation parameter ω > 1/2, this fact leads
to fast-decaying oscillations with respect to time.
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Figure 8.25. Low-frequency eigenvector on the global grid for an
eigenvalue . 1.
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Figure 8.26. Low-frequency eigenvector on the fine grid for an
eigenvalue . 1 with vanishing values in the global grid points.
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Figure 8.27. Low-frequency eigenvector on the coarse grid with
an eigenvalue ≈ 1 − 2ω.

High-frequency eigenvectors on the coarse grid can be found with eigenvalues
close to −1. These eigenvectors are responsible for the oscillations of the solutions
for nonsmooth data.

The high-frequnecy oscillations on the fine grid are furnished with eigenvalues
close to (2ω−1)2. Hence, these eigenvectors are decaying very fast and do not give
rise to spurious oscillations with respect to time.

Not all of the eigenvectors show a global behavior or are simply restricted to
the coarse or the fine grid. We also find eigenvectors with interferences between the
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Figure 8.28. Highly oscillating eigenvector on the coarse grid
with an eigenvalue & −1.
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Figure 8.29. Highly oscillating eigenvector on the fine grid with
an eigenvalue ≈ (2ω − 1)2.
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Figure 8.30. Eigenvector on the fine grid with transmission to
the coarse grid with an eigenvalue . 2ω − 1.

coupled grids. In Figure 8.30 one of these eigenvectors is plotted. The corresponding
eigenvalue is close to 2ω − 1.

8.8. LB-Algorithms on a Hierarchy of Refinement Zones

In the applications it may be required to use nested grids with multiple refine-
ment zones, where the basis is a uniform grid with grid size hC . Let the interval Ω
be divided into K subintervals Ωi, i = 1, . . . ,K. Each subinterval Ωi is uniformly
discretized with the grid size hi and contains at least eight nodes. The grid sizes
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have to be of the form hi = hC2−pi , where pi gives the refinement level of the
subinterval Ωi, pi = 0, 1, 2, . . ., and hC is the grid size of the coarsest level with
pi = 0. Neighboring subintervals are allowed to differ by one level only. The lattice
Boltzmann algorithm on this hierarchy of grids can be described as follows:
Let the initial density r0 be given. Define the local fluxes ji

0 := −hi∂xr0/(2ω) in
Ωi for i = 1, . . . ,K. Compute the local distribution functions ui

0 and vi
0 by

ui
0 :=

1

2
(r0 + ji

0), i = 1, . . . ,K,

vi
0 :=

1

2
(r0 − ji

0), i = 1, . . . ,K.

The algorithm on the hierarchy of grids then reads:

LB-Algorithm on a hierarchy of refinements:

i) Start on the intervals Ωi of the coarsest level with pi = 0.
ii) Perform one LB-step on all intervals of this level. Interpolate the outflow

values at the intersections to the neighboring finer grid in time.
iii) Goto the next finer level.
iv) Repeat ii) and iii) until the finest level is reached.
v) Perform four LB-steps on the finest level. Compute the missing inflow

values at the intersections by fitting the interpolated values.
vi) Goto the next coarser level. Fit the missing inflow values with the infor-

mation from the finer grid.
vii) Do one LB-step on all intervals of this level and check:

• If the number of the total LB-steps done on this level is not divisible
by four, then interpolate the data at the intersections and goto the
next finer level (if finer level exists, otherwise stay and proceed).

• If the number of the total LB-steps done on this level is divisible by
four, then goto the next coarser level and fit the missing inflow values
on the coarse grid.

viii) Repeat vii) until the coarsest level is reached again. Then goto i).

8.9. Efficiency of Local Refinements

In this closing section we want to examine the efficiency of local refinements
with respect to the premise of optimal decay of the errors on the refined grids.

We assume that the error is uniformly distributed in the interval Ω up to a
small domain Ωµ with relative width µ, where the error is amplified by a factor of
f . The total operating expense on a uniform grid with N grid points and the grid
size h is given by A0 = CN3 with a constant C, due to the prescribed space-time
coupling. For a globally uniform error distribution, the domain Ωµ has to be refined
with a grid size 2−ph for a p ∈ N, where staggered grids have to be used. For the
uniform error distribution, we require f = 4p in the optimal case which leads to a
condition for p. The additional computational expense is Aµ = Cµ8pN3 = µ8pA0.
Hence, the total expense for the local refinement is given by

A = (1 − µ)A0 +Aµ ≈ (1 + µ8p)A0 = (1 + µf3/2)A0.

On a uniformly refined grid, the total effort would be 8pA0 to achieve the same
local error. Hence, the local refinement reduces the total effort by a factor of
approximately µ. For an adequate performance of the adaptive algorithm µf3/2 =
O(1) is required. The effect for the applications is that only refinements about
points should be used.

In the d-dimensional case with d ∈ {2, 3} we consider a rectangle or a cuboid

Ωµ with relative edge lengths µi, i = 1, . . . , d, and volume Vµ :=
∏d

i=1 µi. In Ωµ
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the local error is assumed to be amplified by a factor of f . A local refinement on
Ωµ with grid size 2−ph leads to a decay of the local error by a factor of 4p. The
total operating expense on a uniform grid with N gridpoints in each dimension is
A0 = CN2+d. The additional effort needed to achieve a globally uniform error
distribution by applying local grid refinement is Aµ = 2(2+d)pVµA0 = f1+d/2VµA0.
Hence we gain the total effort

A = (1 − Vµ)A0 +Aµ ≈ (1 + Vµ2(2+d)p)A0 = (1 + Vµf
1+d/2)A0.

On a uniformly refined grid, the total effort would be 2(2+d)pA0 to achieve the same
local error. Hence, the total effort is reduced by a factor of approximately Vµ by
applying local refinement in Ωµ. Therefore, appropriate choices are refinements
about lines or planes, where Vµ tends to zero.



Summary and Outlook

The topic of this work was the study of lattice Boltzmann methods for a one-
dimensional model problem. The analytical examinations were basically split into
three major parts.

In the first part, we considered the fluid-dynamic limit equation of the model
problem, namely the heat equation on a bounded interval subject to several types
of boundary conditions. We gave results on the classical and on the weak existence
theory. Furthermore, we proved a priori estimates for the solutions in terms of
energy estimates and by following the concept of Fourier solutions. Special care
was taken on the regularity of the solutions and the necessary assumptions on the
data.

In the second part, the interface between the fluid-dynamic limit equation and
the discrete lattice Boltzmann equations was set up by the velocity discrete system.
For our model problem, this is the Goldstein-Taylor model which forms a hyperbolic
advection system. The parabolic limit of this advection system was worked out by
the transformations to singularly perturbed telegraph equations. The presented
Fourier solutions clarified the passage from the hyperbolic nature to the parabolic
nature. A priori estimates for the solutions were given in terms of energy estimates.
With the aid of the a priori estimates we proved convergence of the solutions of
the advection system towards solutions of the heat equation in second order with
respect to the scaling factor that corresponds to the Knudsen number and the Mach
number.

In the third and major part, we derived the lattice Boltzmann schemes as
discretizations of the advection system in the diffusion scaling and performed a
detailed numerical analysis including numerical experiments. The equations were
discretized in a finite difference and in a finite volume context, following the char-
acteristic directions on vertex centered and cell centered grids. An extensive list of
boundary conditions was proposed.

For a given viscosity, the lattice Boltzmann schemes are endowed with a pre-
scribed coupling of the time step τ and the grid size h of the form γτ = h2. Beside
the number N of grid points, the only free quantity to choose is the relaxation
parameter ω of the collision term. The choice of ω has a direct influence on the
distribution of the eigenvalues of the time evolution matrix. However, there is no
possibility to keep the eigenvalues away from the value −1, which turned out to be
unfavorable in the case of nonsmooth data.

A discrete Fourier analysis of the time evolution matrices in several boundary
situations was performed, which led to an insight into the structure of the discrete
solutions and the coupling of the flux and the density. A priori estimates for the
discrete solutions were found in the finite difference context. These estimates were
used to prove second order convergence of the lattice Boltzmann solutions towards
the solution of the heat equation in terms of the grid size h for a fixed end time.
Special attention was taken at the boundaries, where the residuals show decreased
consistency orders.

187
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The numerical results confirmed the obtained theoretical results. Second order
convergence was observed for the density and the flux for all presented boundary
conditions. The dependence on the parameters and the initial data was checked.
For vanishing source terms and a specific choice of the parameters, fourth order
convergence for the density was detected.

Oscillations in the lattice Boltzmann solutions were observed for nonsmooth
data. This behavior has to be attributed to the eigenvalues close to −1. In this
context, discretizations in connection with the explicit Euler method appeared to
be superior. Here, the space-time coupling has not to be kept at a fixed ratio.

For the application of nested grids, we provided several grid coupling algo-
rithms. On vertex centered grids, we obtained the desired improvements that enable
the reduction of the computational effort in the case of concentrated errors.

In future works, we have to face the question how our stability and convergence
results can be extended to nonlinear and multi-dimensional problems. As we have
seen, the convergence processes depend on the smoothness of the analytical solution.
But for the Navier-Stokes equations, the regularity of the solutions is an unsettled
problem.

Furthermore, the question has to be tackled how the lattice Boltzmann methods
can be included in a variational framework. An approach by Petrov-Galerkin finite
element methods would allow for a posteriori error estimation techniques that are
the basis for the introduction of adaptive methods. The space-time coupling and
the corresponding high computational costs require reductions.

A variational framework for Boltzmann-type equations with respect to veloci-
ties can be found for the semiconductor model in Ref. [46] and in Ref. [43]. Spec-
tral Galerkin methods employing Hermite polynomials up to arbitrary orders are
used and adaptive numerical implementations are introduced. The equations of
the Goldstein-Taylor model can be obtained from the semiconductor model by the
application of Gaussian quadrature formulas.

Another issue that has to be investigated in future works is the grid coupling
in the multi-dimensional case. In higher dimensions, the transformation of the
distribution functions and the macroscopic quantities do not form a closed sys-
tem. Furthermore, the requirement of overlapping grids is a challenge. For our
one-dimensional model problem, stability estimates and convergence proofs for the
coupled problem on nonuniform grids are still missing. With respect to our re-
sults, improved data interpolation formulas have to be found in the case of grid
coupling on cell centered grids. Spatial interpolations are also required in the
multi-dimensional case.

Grid coupling algorithms are proposed in Ref. [13] and Ref. [14]. In the two-
dimensional case, double overlapping grids are used, since the equilibrium distri-
butions are employed to determine the intersection conditions. Single overlapping
grids for a one-dimensional model with three velocities are the objective in Ref. [42].
Extensions are provided for the two-dimensional case.

The great advantage of lattice Boltzmann methods is its easy implementation
and the applicability to a great variety of problems. With few lines of code rea-
sonable solutions can be found, whereas standard procedures as the finite element
method applied to the classical fluid-dynamic equations require much more techni-
cal background.
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