
Maximum Rigid Components as Means for Direction-based
Localization in Sensor Networks?

Bastian Katz Marco Gaertler Dorothea Wagner

Universität Karlsruhe

Abstract. Many applications or algorithms in sensor networks require positional infor-
mation of the sensors. Most approaches for this problem rely either on distances between
communicating node pairs or on local angular information. Although distance-based meth-
ods are widespread, we here present a technique for direction-based localization in general
networks. Whereas Bruck et al. proved that the corresponding realization problem can be
solved by Linear Programming but becomes NP-hard [2] for unit-disk-graphs, we focus
on rigid components which allow both efficient identification and fast, unique realizations.
We propose a technique to group small rigid components that can be found by standard
techniques to maximum such components using a reduction to maximum flow problems.
The method is analyzed for the two-dimensional case, but can easily be extended to higher
dimensions. By evaluating our approach on (quasi-)unit-disk graphs, we observe that the
required density in order to localize a large percentage of the network is comparably small
to previous methods.

1 Introduction

A common field of application for sensor networks is monitoring, surveillance, and general data-
gathering. As an example, we refer to the scenario where parts of the environment is observed.
Such tasks include the monitoring of natural developments like glacier movements or harmful
events like forest fires [15]. Positional information is a key requirement for these applications as
well as for other network services such as geographic routing. For most scenarios, the use of GPS
receivers to gain this information is not an option: They are expensive and clumsy compared to
state-of-the-art sensor nodes. While earlier works in sensor network localization assume at least a
fraction of nodes (so-called anchors) to know their position [13,11], research focused on anchor-free
localization in recent years [4,2,8]. Without any absolute position information, these techniques
can at most retrieve relative positions.

In general, localization approaches can be categorized into two groups, the first is based on
distances between communicating nodes and the other is founded on relative directions. Distance
information can be estimated using the Received Signal Strength Indicator (RSSI), which ap-
pears to be unreliable in practice [3], or by Time (Difference) of Arrival techniques (ToA, TDoA)
requiring additional hardware. Unfortunately, finding valid embeddings for distance constraints
for general and for unit-disk graphs is NP-hard [1]. Nevertheless, most methods for localization
depend on distances [4,8].

Local directions can, for example, be measured using multiple ultrasound receivers [12]. The
only work considering the direction-based case of anchor-free localization we are aware of is the
work of Bruck et al. [2] that presents an NP-hardness result for (quasi-)unit-disk graphs [7] and an
LP heuristic. Although the quasi-unit-disk graph communication model reflects some properties
for wireless networks quite well and led to remarkable results [9], certain real-life scenarios conflict
with this model [14]. Thus, we focus on localization in general networks. Here, the realization
problem can be reduced to an LP and rigidity theory provides a characterization of subgraphs
that have a unique realization. Uniqueness of a graph’s realizability coincides with the notion of

? This work was partially supported by the German Research Foundation (DFG) within the Research
Training Group GRK 1194 ”Self-organizing Sensor-Actuator Networks”, and under grant WA 654/14-3
and by EU under grant DELIS (contract no. 001907).

rigid components. For these rigid components of a network, localization with given communication
directions loses most of its hardness: The localization problem reduces to to a system of linear
equations for these subgraphs. There are some easy techniques to find small rigid structures in a
network that work well especially in geometric graphs. It is more challenging to find a partition
of a network into maximum such components. They could either be seen as the best possible
exact localization or as the preprocessing to reduce a maximal number of variables of an LP which
probably encodes some more constraints (like quasi-unit-disk graph contstraints in [2]).

We know of no algorithm to exploit the fact that small rigid substructures (or bodies) are easy
to compute. Moukarzel [10] proposed an algorithm for identification of rigid structures in so-called
body-bar frameworks where rigid bodies are connected by (multiple) edges. This approach, like
ours, is based on an earlier work of Hendrickson [5], who developed efficient algorithms for rigidity
testing in the plane, later known as the pebble game [6]. While the original work from Hendrickson
cannot take any advantages from a rigid subgraphs that are known or easy to get, Moukarzel’s
approach focuses on a very special case requiring the graph to have some structural properties. We
will provide an algorithm that works on general graphs and takes full advantage of known rigid
substructures.

This paper is organized as follows: Section 2 summarizes preliminaries and some background
work from rigidity theory. In Section 3 we will present the algorithm to find uniquely determined
subgraphs modelling the problem as a flow maximization problem. We also give some results from
our evaluation here. The paper is concluded in Section 4.

2 Preliminaries

Throughout this paper, we model the network topology as an undirected graph G = (V,E) with a
given embedding p : V → R2. We sometimes refer to an edge {v, u} as (v, u) assigning an arbitrary
orientation. As mentioned above, we do not assume this graph to have any specific properties except
for a bounded degree and, of course, connectivity. To recover the true embedding p, we suppose
we are given the directions of all edges as

∀(u, v) ∈ E : αp(u, v) :=
p(v)− p(u)
|p(v)− p(u)|

.

Alternative definitions use local angle information, i. e., for every node the angles between the
incident edges, counterclockwise ordered, are known. Although this probably expresses the local
availability of angular information much better, global directions can be retrieved (up to rotation)
by picking an edge, defining its direction to (1, 0) and propagating this decision along a spanning
tree.

Even with fixed edge directions, a graph can still have several embeddings that respect these
constraints. Embeddings that yield the same edge directions are called parallel embeddings. No set
of constraints can determine a graph’s embedding unambiguously in the sense that there are no
parallel embeddings at all: For every c > 0 and x ∈ R2 the embedding p′ given by p′(v) := cp(u)+x
yields the same direction constraints as p regardless of the edges involved. We call these embeddings
similar that differ only by translation and scaling and say that a graph’s embedding is uniquely
determined, if all embeddings that have the same edge directions are similar.

The problem to find an embedding that respects the given constraints can be seen as the
problem to find proper edge lengths ` : E → R+, as edge lengths together with edge directions
determine an embedding up to translation. More precisely, we see that if the graph was a tree, every
length assignment was valid, whereas any edge beyond that introduces additional constraints.

Lemma 1. Let G = (V,E) be a graph, T ⊆ E a spanning tree. For any e = (u, v) ∈ E \ T let
Ce denote the unique cycle in T ∪ {e} with the same orientation as e and C+

e (C−
e) the forward

(backward) edges in Ce. A length assignment ` is compatible with edge directions α, if and only if

∀e ∈ E \ T :
∑

e∈C+
e

`(e)α(e)−
∑

e∈C−
e

`(e)α(e) = 0 . (1)

Proof. Obviously, (1) holds, if ` is compatible with α, i. e., there is an embedding respecting α
where edges have lengths `(e). If on the other hand equation (1) holds, we can first embed the
nodes V along the spanning tree, using only edge lengths and directions for edges e ∈ T . We
denote the resulting embedding with q. Now for any edge in (u, v) ∈ E \ T we have q(v)−q(u) +∑

e∈C+
e \(u,v) `(e)α(e) −

∑
e∈C−

e
`(e)α(e) = 0, since this is a cycle in R2 and thus q(v) − q(u) =

`((u, v))α((u, v)).

From the above lemma, we can formulate the problem as a linear program with the feasible
solutions being valid length assignments:

maximize 1
subject to A(T, α) · ` = 0

` ≥ 0
(2)

This not only implies that valid edge lengths can be found by solving a linear program, but
also that if the embedding is uniquely determined, the feasible solutions kerA(T, α) ∩ R|E|

+ is
{c`p | c ∈ R+}1. That in turn means that kerA(T, α) is has dimension one and thus, solving the
respective homogeneous linear equation system suffices.

There are some quite obvious means to reduce the number of variables, which are also proposed
similarly in [2]. They are all based on the construction of rigid subgraphs, node-induced subgraphs
where all edge length ratios are known and which we also call bodies. Then, every such subgraph
can be represented by one variable instead of each edge having a variable on its own in the LP
formulation. Obviously, every single edge meets this definition and there are simple extensions:
The first is based on the observation that edges have fixed length ratios if they form a triangle.
Moreover, if for a subgraph G(VS) all edge length ratios are known and a node u 6∈ VS is connected
to at least two nodes in VS , all edge length ratios in G(VS ∪ {u}) can easily be calculated. We
call those graphs triangulation graphs. If two triangulation graphs share two nodes, the union is
also rigid. This also applies if they share an edge, which is a special case of node-overlapping (see
Figure 1).

0 0

1 2
3

4

(A) (B) (C)

(D) (E)

Fig. 1: Rigid subgraphs can be found via triangulation (A). If two rigid subgraphs (grey) share an edge,
the union is also rigid (B). The same holds, if two rigid subgraphs share two nodes (C). These approaches
still leave more complex configurations where three (D) or more bodies form a larger rigid body (E).

1 Kernel ker A := {x ∈ Rm | Ax = 0} for A ∈ Rn×m

To pinpoint the edge length ratios for those kinds of subgraphs is comparably inexpensive: Iden-
tifying these ratios for all maximal subgraphs constructible by triangulation and edge-overlapping
for example can be done in O(n log n) steps when the graph has a bounded node degree: During
triangulation, positions are assigned to covered nodes, and whenever two subgraphs are merged,
new positions only have to be assigned to the nodes of the smaller subgraph. For this task, the
known positions of the two common nodes in both subgraphs allow to translate positions between
the two subgraphs. Node-overlapping adds an effort of O(k2) if triangulation and edge-overlapping
leaves k subgraphs to identify overlappings.

Depending on the graph’s topology, these simplifications can decrease the number of variables
dramatically, but not exhaustively. Bruck et al. mention the case were rigid subgraphs that are
found by edge- and node-overlappings form a larger rigid subgraph. Examples are also given in
Figure 1.

This can be used to further reduce the number of variables and constraints of the LP: For every
cycle that travels through multiple rigid subgraphs, one can state an equation similar to the LP
constraints. If there are enough such equations, the ratios among the sizes of some subgraphs can
be uniquely determined. Despite the large improvements these techniques provide for solving the
LP, efficient algorithms were not stated in [2]. In addition, a characterization of subgraphs that
are uniquely determined by their edge directions could be preferred. As a side-effect a topology
control, which constructs a sparse topology, could more easily prune redundant connections with
respect to localization.

One possible and straight-forward approach to determine maximum rigid subgraphs is as fol-
lows: Given the matrix A(T, α) from the LP above – possibly with redundant variables and con-
straints already pruned – calculate the kernel `1, `2, . . . , `k. To find out, which edges have a fixed
edge length ratio to an edge (u, v) for all feasible solutions we can pick one `l with `l(u, v) 6= 0
and rewrite the kernel vectors such that `l(u, v) = 1 and `r(u, v) = 0 for all r 6= l. Then, all
edges with `r(u′, v′) = 0 for all r 6= l have a fixed length ratio to (u, v), namely `l(u′, v′)/`l(u, v).
In order to obtain a LP with a minimum number of variables and constraints (with respect to
rigid components), one has to solve the homogeneous linear system of equations to identify rigid
structures. This approach has the following two drawbacks: First, the time complexity is O(nk2)
for k rigid components and O(n) edges. Furthermore, the complex calculation of edge length ratios
cannot be localized, i. e., performed in an incremental way. An incremental way is more adapted
to the case where small groups of bodies are expected to form larger rigid components. Second,
this approach relies on real-valued arithmetics not only for the definition of length ratios, but also
for the identification of rigid groups. In the case of finite precision, necessary steps can easily fail
due to small errors.

The next section will pick up that the above notion of rigidity corresponds to the one known
from statics and computational geometry. The results developed there will allow us to derive a
much faster way to identify maximum rigid subgraphs and solve (much) smaller linear equation
systems decreasing the overall effort rigorously.

2.1 Rigidity Theory

The rigidity theory traditionally addresses the question whether a so-called bar-and-joint frame-
work, an embedded graph G(p) with fixed edge lengths, can be continuously deformed. Most
interestingly for us, this question can be answered independently from the respective embedding
as long as the embedding is guaranteed to be generic, i. e., there are no algebraic dependencies
between the nodes’ coordinates. This applies to an open, dense subset of almost all embeddings
and especially when the embedding is randomly chosen with a continuous distribution, it is generic
with probability 1. We will give a short outline of the main results here [16]: A (bar-and-joint)
framework that can be deformed continuously without stretching or crushing the bars is said to
be flexible; otherwise it is rigid. For generic embeddings, such a framework is flexible if and only
if there is a non-trivial infinitesimal motion, a vector of velocities v ∈ R2|V | such that

∀(i, j) ∈ E : (p(j)− p(i)) · (v(j)− v(i)) = 0 , (3)

where trivial means that all nodes either have the same motion (v(i) ≡ x for all i ∈ V), rotate
around the origin (v(i) = p(i)⊥) or combine these two motions. More formally, the constraints
from (3) form a rigidity matrix R(G,p) ∈ R|E|×2|V | and the infinitesimal motions correspond
to its kernel. We call a set of edges E′ ⊂ E independent if their respective rows in R(G,p) are
independent. As there exists a three-dimensional space of trivial motions, namely two translations
and one rotation, R(G,p) has at most rank 2|V | − 3. If it has rank 2|V | − 3, it allows only trivial
motions and is therefore rigid. As mentioned above, for generic embeddings p, the rank of the
matrix R(G,p) only depends on the underlying graph: A set of edges E′ is generically independent
if and only if it does not include a subset E′′ with |E′′| > 2|V (E′′)| − 3. This observation is better
known as Laman’s theorem, that gives an combinatorial characterization of generically rigid graphs:

Fig. 2: Both graphs have a sufficient number of
edges to satisfy Laman’s theorem, but only the
right graph is rigid, since the left graph has a sub-
graph with an excessive edge.

u

v

Fig. 3: A rigid, but not 3-connected graph can
have foldings when distances are constrained.

Theorem 1 (Laman’s theorem [16]). A graph G = (V,E) is generically rigid if and only if it
contains a set of edges E′ ⊆ E with |E′| = 2|V | − 3 such that for all subsets E′′ ⊂ E′

|E′′| ≤ 2|V (E′′)| − 3 .

Note this also implies that a generically flexible graph G = (V,E) with a sufficient number
of edges (|E| ≥ 2|V | − 3) edges must either be rigid or have a subgraph S = (VS , ES) ⊂ G with
|ES | > 2|VS | − 3. An example is given in Figure 2.

Unfortunately, even a rigid bar-and-joint framework can have ambiguous edge lengths when
discontinuous deformations are possible. If for example a graph is not 3-connected, it always allows
foldings as shown in Figure 3. But there are more elaborate constructions and [5] presents some
conditions necessary for generic uniqueness leaving the question open whether there is a complete
characterization.

It is merely a marginal note in rigidity theory, how much easier things become when we have
fixed directions instead of fixed edge lengths. These frameworks are named parallel frameworks (or
telescoping frameworks). A parallel drawing of an embedded graph G(p) is an embedding u where
all edges are parallel (or anti-parallel) to the respective edge in the original embedding. This can
be expressed as given in (4).

∀(i, j) ∈ E : (p(j)− p(i))⊥ · (u(j)− u(i)) = 0 (4)

An example is given in Figure 4.
There is a one-to-one correspondence between the solutions of (3) and (4): An infinitesimal

motion v fulfills (3) if and only if u : i 7→ v⊥ fulfills (4):

(p(j)− p(i)) · (v(j)− v(i))

= (p(j)− p(i))⊥ · (v(j)− v(i))⊥

= (p(j)− p(i))⊥ ·
(
v(j)⊥ − v(i)⊥

)

v1 v2

v4

v3

v1 v2

v4v3

Fig. 4: Parallel drawings have parallel or anti-parallel edges.

Again, we have three dimensions of trivial solutions, spanned by the scaled versions of p and the
shifted embeddings px : i 7→ p(i)+(1, 0) and py : i 7→ p(i)+(0, 1). These correspond to the trivial
solutions of (3) as per description. Thus, a generic framework has a non-trivial parallel drawing if
and only if it is flexible. But those parallel drawings have edge lengths that meet the constraint (2)
of the LP except for the non-negativity (anti-parallel edges have negative lengths). More precisely,
if and only if there is a non-trivial parallel drawing, the solution to A(T, α) · ` = 0 is at least
2-dimensional, since parallel drawings whose edge lengths differ only by a constant scaling are all
trivial and vice versa.

Thus, the following theorem holds:

Theorem 2. A generic embedding p : V → R2 of a graph G = (V,E) is uniquely determined up
to translation and scaling by its edge directions αp if and only if G contains a set of edges E′ ⊆ E
with |E′| = 2|V | − 3 such that for all subsets E′′ ⊂ E′

|E′′| ≤ 2|V (E′′)| − 3 .

As rigidity coincides with uniqueness of the parallel drawings in the plane, we will stick to the
term of rigid subgraphs as used in [2] and above. In three dimensions however, the advantages of
edge directions over lengths for our purposes become even clearer: Here we still lack a combinatorial
characterization of generic rigidity whereas theory for parallel drawings can easily be extended to
any dimension: Theorem 2 holds analogously for embeddings p : V → Rd by replacing (??) by
(d− 1)|E′′| ≤ d|V (E′′)| − (d + 1) [16]. As a consequence, the following approach works similarly
for the three-dimensional case.

3 Maximum Rigid Components

We have seen that Laman’s theorem for rigid graphs is also a complete characterization of graphs
where edge directions determine the embedding uniquely. Although there are algorithms to identify
rigid components of a graph, they cannot take advantage of known rigid substructures, which can
be found by much less complex methods as mentioned in the previos section.

3.1 Fundamentals

In this section, we will present an algorithm to obtain maximum rigid components from a given
graph G which is already partitioned into rigid components, for example using edge- and node-
overlappings. By a partition, we here refer to a set of rigid subgraphs that cover all of G’s edges
disjointly but may have common nodes. We call this a Laman partition (see Figure 5):

Definition 1 (Laman partitions). Let G = (V,E) be a simple undirected graph and S be a set
of pairwise edge-disjoint, generically rigid subgraphs. Then

1. The partition graph G(S) := (V (S), E(S)) is defined as the union of the rigid components
graphs, i. e.,

V (S) :=
⋃

(V,E)∈S

V E(S) :=
⋃

(V,E)∈S

E .

The set S is also called a Laman partition (of G(S)). It is rigid, if G(S) is rigid and it is
independent, if there is no S ′ ⊂ S which is rigid2.

2. The redundancy of a node v ∈ V is defined as rdS (v) := | {(V,E) ∈ S | v ∈ V } |−1. The notion
is extended to rigid partitions by rd (S) :=

∑
v∈V (S) rdS (v). We denote the redundantly used

nodes as R(S) := {v ∈ V (S) | rdS (v) > 0}.
3. The surplus of edges in a graph H = (V ′, E′) with respect to Laman’s theorem is denoted by

sp (H) := |E′| − 2|V ′|+ 3. We will also write sp (S) for sp (H(S)). Note that a graph H has
at most E − sp (H) independent edges.

S1

S2

S3
S4

S5

v1

v2

v3

v4

Fig. 5: A Laman partition with five bodies. Nodes have redundancies rdS (v1) = rdS (v4) = 2, rdS (v2) =
rdS (v3) = 1, but, for example, rdS′ (v4) = 1 for S ′ = {S1, S2, S3, S5}. Theorem 3: The surplus of S ′ is
sp (S ′) = 2 · rd (S ′)− 3(|S ′| − 1) = 2 · 5− 3(4− 1) = 1. {S1, S2, S3} is independent and no subset S ′′ ⊆ S ′
with S5 ∈ S ′′ has more surplus.

The simplest Laman partition of a graph is a partition into |E| graphs which all consist of
exactly one edge. Although this will work as well, we assume that in most scenarios, we have
significantly less rigid bodies. Without loss of generality, we assume furthermore that in a Laman
partition every graph S = (V,E) has exactly |E| = 2 · |V | − 3 edges (i.e., sp (S) = 0), which are
all independent. Since these graphs are rigid, they contain such a set of edges and probably some
more which we simply ignore.

The approaches from Hendrickson and Moukarzel have in common that they manage a growing
set of independent edges. Due to the matroidal character of the problem, an edge can greedily
be chosen to join this set if there is no dependency to present edges. Rigid areas of the network
can be identified en passant. When talking about rigid bodies, we lose some of this ease, since a
subgraph can have both, edges that are important for rigidity as well as excessive ones. But the
greedy approach still works: If we go through the bodies of a Laman partition and merge bodies
as soon as there are bodies that form a larger rigid structure, we end up with a partition into
maximum rigid components. Unfortunately, it is not sufficient to look for bodies, that together
have a sufficient number of edges. This would for example apply to the set of all subgraphs in
Figure 5 (sp ({S1, . . . , S5}) = 0), but whereas the bodies S1, S2, S3, S5 have one edge more than
needed, the size ratio of S4 to the other subgraphs is not fixed.

We start with the observation that Laman partition with sufficiently overlapping bodies must
have enough edges to fulfill Laman’s theorem:

Lemma 2. Let S be a rigid partition. Then sp (S) = 2 · rd (S)− 3 · (|S| − 1).

Proof. As the graphs in a rigid partition have disjoint edge sets, the edges of G(S) just sum up
as |E(S)| =

∑
(V,E)∈S |E| =

∑
(V,E)∈S (2 · |V | − 3), whereas the nodes were counted rdS (v) + 1

2 Note, that independency here differs slightly from the notion of independent edges

times. Thus, |V (S)| =
∑

(V,E)∈S |V | − rd (S) holds which results in the following equation:

sp (S) = |E(S)| − 2 · |V (S)|+ 3

=
∑

(V,E)∈S

(2 · |V | − 3)− 2 ·
(∑

(V,E)∈S

|V | − rd (S)
)

+ 3

= 2 · rd (S)− 3 · (|S| − 1) .

From the remark to Laman’s theorem follows that a Laman partition S with sp (S) ≥ 0 at
least contains a rigid subset. Adapting the iterative scheme, we will use the following theorem to
maintain an independent rigid partition merging bodies whenever a rigid subset appears:

Theorem 3. Let S be a rigid partition and S? ∈ S such that S −S? is independent. Then S ′ ⊆ S
is rigid if and only if for all non-empty S ′′ ⊆ S ′ that contain S? the inequality sp (S ′) ≥ sp (S ′′)
holds.

Proof. First assume that S ′ is rigid. If there was any subset S ′′ of S ′ with sp (S ′) < sp (S ′′), one
could not choose |E(S ′)|−sp (S ′) edges from E(S ′) without choosing more than |E(S ′′)|−sp (S ′′)
from E(S ′′). Therefore, any 2|V (S)| − 3 edges from G(S) cannot be independent.

If on the other hand for all S ′′ ⊂ S ′ with S? ∈ S ′′ the inequality sp (S ′) ≥ sp (S ′′) holds,
then we know that sp (S ′) ≥ 0, as it holds for all graphs, i. e., sp (H) = 0 for all H ∈ S.
Suppose that S was not rigid. According to Laman’s theorem, there must be a rigid subgraph
G′ = (V ′, E′) (G(S ′) with |E′| > 2|V (E′)| − 3. This graph G′ spans over at least 2 graphs in S
which also form a rigid graph with at least one dependent edge. All those non-trivial rigid subsets
S ′′ include S?; thus their union Smax forms the unique maximal rigid subgraph G(Smax). But
we’re able to choose |E(S ′)| − sp (S ′) edges from E(S ′) even if we restrict ourselves to take only
a set of independent edges from E(Smax) where we only have to leave out sp (Smax) ≤ sp (S ′).
These 2|V (S ′)| − 3 edges are either all independent, so that S ′ must be rigid, or there still is a
subgraph with G′ = (V ′, E′) (G(S ′) with |E′| > 2|V (E′)|−3 which is not covered by Smax. Both
cases are inconsistent with either the assumptions or the definition of Smax.

In the above example (Figure 5), the surplus of S ′ = {S1, S2, S3, S5} is sp (S ′) = 2 · rd (S ′)−
3(|S ′| − 1) = 2 · 5− 3(4− 1) = 1. {S1, S2, S3} is independent and no subset S ′′ ⊆ S ′ with S5 ∈ S ′′
has more surplus. The detection of subsets with this property is not trivial. We present an efficient
algorithm to solve this task by formulating it as a maximum-flow problem.

Definition 2. For a rigid partition S and a particular graph S? ∈ S such that S − S? is an
independent rigid partition, the bipartite intersection network B(S, S?) = (R(S),S, A, κ, b) is
given by

A = {(v,G) ∈ R(S)× S | v ∈ G} κ ≡ 2

b(v) = 2 · rdS (v) b(G) =
{

3 : G 6= G?

0 : G = G?

A flow then is a function f : A → N with f(a) ≤ κ(a) and

bf (v) := b(v)−
∑

(v,G)∈A

f(v,G) ≥ 0

bf (G) := b(G)−
∑

(v,G)∈A

f(v,G) ≥ 0 .

Definition 3. Let S be a Laman partition, S? ∈ S such that S − S is an independent Laman
partition and f a maximal flow in B(S, S?). Then a subset S ′ is called saturated if and only if
∀S ∈ S ′ :

∑
(v,S) f(v, S) = b(S) and closed if and only if

∀(v, S), (v, S′) ∈ A : S ∈ S ′ ∧ f(v, S) > 0 ∧ f(v, S′) < 2 =⇒ S′ ∈ S ′ ,

i.e., there is no path from a contained graph to one that isn’t by traversing edges in the residual
network. For any set of graphs S ′, the (minimal) closure is denoted by S ′. Analogously, the closure
of a set of nodes R ⊆ R(S) is defined as R := {G ∈ S | f(v,G) < 2}.

v1 v2 v3 v4

S1 S2 S3 S4 S5

0 (4) 1 (2) 0 (2) 0 (4)

0 (3) 0 (3) 0 (3) 1 (3) 0 (0)

2 1 1 12 2 2 00
0

Fig. 6: The intersection network of the graph from Figure 5
(with S? = S5) with a maximum flow f . Nodes and graphs are
annotated with bf (·) (b(·)), edges with f(·).

For example, in Figure 6, the intersection network of the example 5, {S1, S2, S3, S5} is a
maximum closed and saturated subset. {S2, S3, S5} is a smaller closed and saturated set whereas
{S1, S3, S5} is not, as S2 can be reached from S1 by traversing (v, S1) and (v, S2).

The following two lemmas (Lemma 3 and 4) ensure that for a maximum flow firstly any
saturated and closed set is rigid, and secondly as long as a rigid set is contained, there has to be
a saturated and closed set:

Lemma 3. If for any valid flow f in a rigidity network B(S, S?) there is a saturated, closed set
of graphs S ′ then the following properties hold:

1. The flow to S ′,
∑

(v,S)∈A,S∈S′
f(v, S′), is 2rd (S ′)− bf (R(S)).

2. The graph S? is contained in S ′, i. e., S? ∈ S ′.
3. The set S ′ is rigid.

Proof. We prove these properties one at a time:

1. As f(v, S) = 2 holds for all v ∈ S ′ and S 6∈ S ′, we obtain the following equalities:

∑
(v,S)∈A,S∈S′

f(v, S) =
∑

v∈R(S′)

 ∑
(v,S)∈A

f(v, S)−
∑

(v,S)∈A,S 6∈S′
2

=

∑
v∈R(S′)

2rdS (v)− bf (v)−
∑

v,S∈A,S 6∈S′
2

=

∑
v∈R(S′)

(2rdS′ (v)− bf (v))

= 2rd (S ′)− bf (R(S ′)) .

2. As the flow saturates the graphs in S ′,
∑

(v,S)∈A,S∈S′ f(v, S′) ≥ 3(|S ′| − 1). Thus, 2rd (S ′) ≥
2rd (S ′) − bf (R(S ′) = 3(|S| − 1). Therefore, S ′ at least contains a rigid subset, which then
must contain S?.

3. With theorem 3 it is sufficient to show that for all subsets S ′′ ⊆ S ′ that include S? sp (S ′) ≥
sp (S ′′). For a closed, saturated subset S ′′ ⊆ S ′ is sp (S ′′) = bf (R(S ′′)) since (see considerations
above)

3(|S ′′| − 1) =
∑

(v,S)∈A,S∈S′′
f(v, S) = 2rd (S ′′)− bf (R(S ′′))

⇐⇒ 3(|S ′′| − 1)− 2rd (S ′′)︸ ︷︷ ︸
=−sp(S′′)

= −bf (R(S ′′)) .

For a saturated, but not necessarily closed set S ′′ 3 S? this becomes sp (S ′′) ≤ bf (R(S ′′)).
Therefore, when S ′ is a saturated, closed subset with respect to f , and S ′′ ⊂ S ′ such that
S? ∈ S ′′ the following inequality holds:

sp (S ′′) ≤ bf (R(S ′′)) ≤ bf (R(S ′)) = sp (S ′) .

Lemma 4. Let S be a rigid partition, S? ∈ S such that S − S? is independent. If S contains a
non-trivial rigid subset and S ′ is an inclusion-maximal rigid subset, then for any maximum flow
in B(S, S?), S ′ is saturated and closed.

Proof. Let S ′ be a non-trivial, inclusion-maximal rigid subset of S. As all rigid subsets overlap
in S?, S ′ is well-defined as the union of all rigid subsets of S. Suppose, S ′ was not closed or
saturated with respect to a maximum flow f . Then bf (R(S ′)) > sp (S ′) and therefore Rf = {v ∈
R(S ′) | bf (v) > 0} must be non-empty. But the closure S ′′ := Rf is saturated. As S ′′ is rigid,
S ′′ ⊆ S ′. Furthermore, by this choice we assure that bf (S ′′) = bf (S ′). However, this contradicts
with bf (S ′′) = sp (S ′′) ≤ sp (S ′) < bf (R(S ′)).

3.2 Implementation

Together, the Lemma 3 and 4 are the foundation for our algorithm that finds maximum rigid
components starting with a Laman partition S. It is given in pseudo-code in Algorithm 1.

Algorithm 1: MergeRigidComponents(S)

SI ← ∅;
while S 6= ∅ do

choose S? from S;
S ← S − S?;

A while ∃S ∈ SI : |V (S?) ∩ V (S)| > 1 do
SI ← SI − S;
S? ← G({S, S?});

B f ← maximum flow in B(SI ∪ {S?}, S?);
S ′ ← maximum closed and saturated set with respect to f ;
if |S ′| > 1 then

S? ← G(S ′);
SI ← SI \ S ′;

SI ← SI ∪ {S?};

First, this algorithm clearly ensures SI to be the unique partition into maximum rigid sub-
graphs. As an invariant, SI is independent: Before we add a graph S? to SI , we find the maximum
rigid subset of SI ∪ {S?}, remove the involved graphs from SI and add the graph formed by the
subset to SI . For this to hold, we don’t need the steps marked with A, which will only play an
important role for the analysis. Second, this algorithm runs in O(n + l log l + k2) for k := |S|
and l := |R(S)|. We first iterate over all graphs in S and all contained nodes to find the nodes
from R(S) and to annotate the graphs with their respective intersection nodes. With a bounded
node degree of ∆, this can be done in O(n) as no node can be part of more than ∆ edge-disjoint
graphs. This annotation can be kept up-to-date during merging operations by processing only the
annotations of the smaller graph (in terms of intersection nodes). This can be done with an overall
effort of O(l log l) steps. Now we have k iterations of the outer ’while’-loop. For every S? ∈ S, we
first test, whether there is a graph in SI which has two nodes with S? in common. This check can
at most be performed 2k − 1 times over all, k times failing (once for every S?) and at most k − 1
times succeeding and combining two graphs, i. e., reducing the overall number of graphs. For such
a check, at most k intersection nodes must be considered. The k-th intersection node at the latest

is the second common node with one of the other graphs. The analysis of the second (’B’-) part of
the algorithm is more cumbersome. We therefore first analyze the structure of B(SI ∪ {S?}, S?).
Every node in R(SI ∪{S?}) has at least two incident edges in A. Less than 3/2|SI | − 3/2 of them
can have more than two edges to graphs in SI , as every such node has rdSI (v) > 0 and SI is
independent. On the other hand, nodes with only one edge to graphs in SI must have an edge
to S?. This can only apply to at most |SI | nodes. Thus, we have less than 5/2|SI | − 3/2 ∈ O(k)
intersection nodes. Similarly, as only |SI | edges can be incident to S?, and for every node all but
one incident edge corresponds to a redundant use, we have rd

(
SI
)

> |A| − |SI | − 5/2|SI | − 3/2.
Since rd

(
SI
)

< 3/2|SI | − 3/2 holds, we also get |A| < 2 · |SI | ∈ O(k). Furthermore we know,
that a maximum flow can have at most a value of 3|SI |. Näıvely implemented, this still could lead
to a complexity of Θ(k2) per solved maximum flow problem. Fortunately, there is an easy way to
re-use solutions from the preceding iteration. If fi is a valid flow in B(SI

i , S?
i), the intersection

network of the ith iteration, then a valid flow for the network B(SI
i+1, S

?
i+1) can be constructed

in O(k) by

fi+1(a) =

{
fi(a) : if a ∈ Ai

0 : else
.

This flow fi+1 cannot violate any of the conditions as

– no edge a has fi+1(a) > 2 if this held for fi,
– no graph S ∈ SI

i+1 gets more flow than 3 if no graph S ∈ SI
i did, and

– every node v ∈ R(SI
i+1 ∪ {S?

i+1}) is either included in the same set of graphs as in the i-th
iteration and has therefore the same value for b(v) which is not violated by fi+1, or it must
be in S?

i+1. In this case, there is an edge a = (v, S?
i+1) ∈ Ai+1 with fi+1(a) = 0. It then must

have bf (v) ≥ 0 by construction.

Fig. 7: Virtual edges used to determine edge length ratios.

Although the changes of SI look quite complex, we only have k additions of a new graph, and by
the re-use of flows, the flow accepted by any graph is non-decreasing. Therefore, we have at most
3k successful augmenting steps and k failing tests in flow maximization over all, which can then
be done in O(k2).

While the above algorithm finds maximum rigid components of a graph, it does not maintain
unique valid embeddings for these components. If valid embeddings are known for the graphs in S,
it is sufficient to calculate embeddings whenever S? is replaced by either the union of two graphs
in the case of two overlapping nodes (A) or the union of a rigid set of graphs S ′ found in section
B. In both cases, we have to calculate length ratios of the involved graphs first. This is quite
easy for the union of two graphs S?, S′ with overlapping nodes u and v. Here, the ratio is simply
|pS?(u)− pS?(v)|/|pS′(u)− pS′(v)|.

When more graphs (k′ := |S ′|) are involved, we first observe that we can only have O(k′)
intersection nodes. This follows analogously to the considerations above: S ′ always consists of a
set of independent graphs S ′∩SI , which can only have O(k′) intersection nodes among them, and
a fresh graph S?, which can have at most one node in common with every graph in S ′.

To determine the correct length ratios, it is sufficient to consider only a set of ”virtual” edges
for every graph: If a graph S contains l intersection nodes u1, . . . , ul, we can treat it like the
complete graph on these nodes and restrict ourselves to a maximum independent subset of the
edges, for example the edges {u1, u2} ∪ {{ui, uj} | i ≤ 2, j > 2}} (see Figure 7). This means that
for a body with l intersection nodes we introduce less than 2l edges. As every intersection node
can only be part of a constant number of bodies we have an overall of O(k′) edges to consider.
The following steps, choosing a spanning tree T , solving the homogeneous linear equation system
from (2) and assigning consistent coordinates to the intersection nodes then take O(k′3). As in
every merging step with k′ graphs the number of graphs decreases by k′ − 1, this sums up to at
most O(k3) since ∑

i

k3
i ≤

(∑
i

(ki − 1) + 1

)3

for ki ≥ 2 . (5)

Here, the left-hand side is an upper bound for the complexity of solving i subproblems, whereas
the right-hand side corresponds to the complexity of solving the whole linear equation system
(up to constant factors). This is of course in a worst-case scenario (where k = m and the graph
G(S) is minimally rigid) as bad as determining the kernel of A(G(S), T, α) as mentioned in the
preliminaries, but in most scenarios, the number of bodies left by triangulation, edge- and node-
overlapping is much smaller than the number of edges, and usually the iterative approach identifies
smaller rigid sets of graphs reducing the number of graphs stepwise. Note that for decreasing size
(and increasing number) of subproblems, the gap in (5) increases dramatically.

3.3 Evaluation on Quasi-Unit-Disk Graphs

The presented algorithm has been evaluated on random quasi unit-disk graphs with 10000 nodes
and different node densities. Here, the density refers to the average number of nodes per unit
square. Node positions were chosen uniformly distributed from the square area [0,

√
n/d]2 for n

nodes with a density d. Edges have been introduced for all node pairs with a distance of less

2.0 2.5 3.0 3.5 4.0 4.5 5.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

node density

co
ve

ra
ge

 (
no

de
s)

●

●

●

●

●

●

●
●

● ●

● largest connected component
edge−overlapping triangulation
nodeoverlapping triangulation
maximum rigid subgraphs

Fig. 8: The coverage of the largest component to be localized by edge- and node-overlapping triangulation
and the identification of maximum rigid components compared with the largest connected component.

3.5 4.0 4.5 5.0

0
20

0
40

0
60

0
80

0

node density

#r
ig

id
 s

ub
gr

ap
hs

●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ●

● edge−overlapping + triangulation
node−overlapping + triangulation
maximum rigid subgraphs

Fig. 9: Number of rigid subraphs left after standard techniques and identification of maximum rigid sub-
graphs.

than 0.5 and for node pairs with a distance 0.5 < r < 1.0 with probability 2 · (1 − r). The
results of these tests are shown in Figure 8. For quasi-unit-disk graphs, the critical density for
direction-based localization is significantly smaller when maximum components are used instead
of node- and edge-overlapping triangulation only; without using Linear Programming heuristics,
a node density of 3.5 was sufficient to localize more than 80% of the nodes. Similarily, when the
approach is used as a preprocessing to the technique of Bruck et al., the number of variables for
the respective LP can be reduced by a factor of 2 with respect to node- and edge-overlappings
for certain node densities. Our tests furthermore showed, that the iterative approach identified
almost only very small groups of bodies that formed larger rigid areas. Hence the computational
bottleneck from determining matrix kernels played no role in these settings.

4 Conclusion

In this paper we presented an approach for direction-based localization in sensor networks, which
can be applied to general networks and systematically exploits rigidity theory. Unlike for distance-
based localization, this theory provides a full characterization of rigid network structures that
are sufficient for this task and can be extended to the R3. Our approach is an advancement and
generalization of the technique [2] for direction-based localization. Our algorithm not only considers
node- and edge-overlapping components but also identifies maximum rigid components. Thus, the
size of the associated LP can be drastically reduced up to a factor of 2 with respect to node- and
edge-overlappings. Furthermore, if the network exceeds a certain density, a large percentage of the
network can be localized without considering the LP at all. The iterative approach in almost all
scenarios reduces the complexity by applying the costly operations only to necessary and in most
cases very small subproblems.

References

1. J. Aspnes, D. Goldenberg, and Y. Yang. On the computational complexity of sensor network localiza-
tion. In Proceedings of the First International Workshop on Algorithmic Aspects of Wireless Sensor
Networks, 2004.

2. J. Bruck, J. Gao, and A. Jiang. Localization and routing in sensor networks by local angle information.
pages 181–192, New York, NY, USA, May 2005. ACM Press.

3. Quentin Lindsay Dimitrios Lymberopoulos and Andreas Savvides. An Empirical Characterization
of Radio Strength Variability in 3-D IEEE 802.15.4 Networks Using Monopole Antennas. In Third
European Workshop on Wireless Sensor Networks, February 2006.

4. C. Gotsman and Y. Koren. Distributed graph layout for sensor networks. In Proceedings of the 12th
International Symposium on Graph Drawing (GD’04), volume 3383 of Lecture Notes in Computer
Science, pages 273–284, 2005.

5. B. Hendrickson. Conditions for unique graph realizations. SIAM J. Comput., 21(1):65–84, 1992.
6. D. Jacobs and B. Hendrickson. An algorithm for two dimensional rigidity percolation: The pebble

game, 1997.
7. F. Kuhn, R. Wattenhofer, and A. Zollinger. Ad-hoc networks beyond unit disk graphs. In DIALM-

POMC ’03: Proceedings of the 2003 Joint Workshop on Foundations of Mobile Computing, pages
69–78, New York, NY, USA, 2003. ACM Press.

8. D. Moore, J. Leonard, D. Rus, and S. Teller. Robust distributed network localization with noisy range
measurements. In SenSys ’04: Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 50–61, New York, NY, USA, November 2004. ACM Press.

9. T. Moscibroda, R. O’Dell, M. Wattenhofer, and R. Wattenhofer. Virtual coordinates for ad hoc and
sensor networks. In DIALM-POMC ’04: Proceedings of the 2004 joint workshop on Foundations of
mobile computing, pages 8–16, New York, NY, USA, 2004. ACM Press.

10. C. Moukarzel. An efficient algorithm for testing the generic rigidity of graphs in the plane. In J. Phys.
A: Math. Gen., volume 29, page 8079, 1996.

11. D. Niculescu and B. Nath. Dv based positioning in ad hoc networks. In Telecommunication Systems,
Volume 22, Issue 1 - 4, Pages 267 - 280, 2003.

12. N. B. Priyantha, A. K. L. Miu, H. Balakrishnan, and S. Teller. The cricket compass for context-
aware mobile applications. In MobiCom ’01: Proceedings of the 7th annual international conference
on Mobile computing and networking, pages 1–14, New York, NY, USA, 2001. ACM Press.

13. A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic fine-grained localization in ad-hoc networks of
sensors. In MobiCom ’01: Proceedings of the 7th annual international conference on Mobile computing
and networking, pages 166–179, New York, NY, USA, 2001. ACM Press.

14. Stefan Schmid and Roger Wattenhofer. Algorithmic Models for Sensor Networks. In 14th International
Workshop on Parallel and Distributed Real-Time Systems (WPDRTS), Island of Rhodes, Greece, April
2006.

15. M. Tubaishat and Sanjay Madria. Sensor networks: An overview. In IEEE Potentials, 22(2), pages
20–23, 2003.

16. W. Whiteley. Matroids from discrete applied geometry. In Matroid Theory, AMS Contemporary
Mathematics, pages 171–311, 1996.

	Maximum Rigid Components as Means for Direction-based Localization in Sensor Networks
	Bastian Katz Marco Gaertler Dorothea Wagner

