
Possible Attacks on and Countermeasures for Secure
Multi-Agent Computation

ABSTRACT
In this paper we improve the model for secure multi-agent
computation proposed by Endsuleit and Mie in [7]. Instead
of Canetti [6] we apply a recent protocol from Hirt and Mau-
rer [9] for secure multi-party computation to build Alliances
of n agents that solve a common task. [9] is very efficient
with a communication load of O(n2 · m) (where m is the
number of multiplications). All computations within the
Alliance are robust as long as not more than tmax := �n

3
�−1

agents are corrupted at the same time.
The main contribution of this paper is an analysis of the

tmax–limit under realistic network assumptions. We use an
attack tree to identify possible attacks and discuss counter-
measures. We also analyse concrete examples for framework
and Alliance sizes, depending on the number of malicious
hosts in the framework. In addition, we discuss different
possibilities to improve Alliance security and to mitigate
Denial-of-Service (DoS) attacks.

1. INTRODUCTION
Today the number of Internet users, hosts and servers

is growing rapidly. As a consequence data gathering be-
comes increasingly difficult and time consuming. Often,
manual search through results delivered by search machines
like google1 is needed but remains unsatisfactory as a solu-
tion. For this reason the idea of using mobile agents that
roam the Internet and act in the user’s name has found a
considerable number of friends recently. Unfortunately, the
security problems arising in connection with such agents are
immense and mostly unsolved. During the last decade a lot
of research has been done on the protection of single mobile
agents. Sander and Tschudin (e.g. [18]) as well as Loureiro
and Molva [12] worked on a technique called function hiding
for confidential computations. To ensure code privacy, Hohl
[10] tried code obfuscation by creative use of variable iden-
tifiers and unstructured implementation. In [21] Wilhelm

1www.google.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ...$5.00.

et al. propose to defend active mobile code (like mobile
agents) against malicious hosts by running it exclusively in-
side trusted hardware. At the moment the idea of trusted
hardware is questionable at best. A lot more work has been
done, but all approaches cover only parts of the security
problems and/or suffer from unrealistic requirements.

Since it is hard to protect a single autonomous mobile
agent without a trusted third party, the use of agent ’Al-
liances’ with mutual protection might become the means of
choice, even though the communication complexity is signif-
icant. In [7] Endsuleit and Mie describe Alliances of n agents
whose private data consist of t-shares which require collabo-
ration of at least t + 1 agents to reconstruct the data. Most
computations are done distributedly based on a protocol for
secure multi-party computation. To handle concurrent exe-
cution of such protocols on the hosting servers the model of
Canetti [6] is used. Public computations which are closely
connected to the agents’ migration are secured by majority
decisions.

This paper is an extension of [7]. We will describe an
implementable protocol outline of a an improved model in
Section 2. In Section 3 we analyse possible concrete attacks
using an attack tree method and discuss countermeasures.
Section 4 looks at Denial-of-Service (DoS) attacks. Section
5 discusses the question of certificates for hosts that run an
agent execution framework. Finally, Section 6 gives prac-
tical considerations on the Alliances’ size. The paper ends
with a brief survey of related work and a conclusion in Sec-
tions 7 and 8.

2. HOW ALLIANCES WORK
In the original model of Endsuleit and Mie [7] the n mem-

bers of an Alliance share their computational state using any
protocol for secure multi-party computation that is compli-
ant with Canetti’s model [6]. Per definition, such a protocol
is intended for n fixed (possibly malicious2) players that im-
plement a common functionality like playing a game. The
common computation are required to be robust against up
to t malicious players. To this end the function to be im-
plemented is translated into a t-robust variant by adding
redundancy. For the execution of this new (distributed)
function it is necessary to split all data input (i.e. function
arguments) into so-called t-shares. These are nothing else
than redundant data slivers, with the additional property
that reconstruction of the original data requires knowledge
of at least t + 1 of the shares. In this paper we do not use

2A malicious player may be active or passive. Malicious
players may work together.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by KITopen

https://core.ac.uk/display/197562909?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Canetti, because we assume that a server hosting agents of
different Alliances at the same time provides sand-boxes for
each of them without any shared memory. This enables us to
include an arbitrary protocol for secure multi-party compu-
tation. We chose Hirt and Maurer [9] because it is likely to
be optimal with regard to communication complexity. The
cost per round is O(n2 ·m) (m is the number of distributed
multiplications) which is linear in the number of partici-
pating parties. Since [9] uses the verifiable secret sharing
scheme of Ben-Or, Goldwasser and Wigderson [4] and the
slightly modified protocol of Beaver [3] for the distributed
computations, we get the same condition for the robustness
of the distributed computations as in [7], namely that the
model can tolerate up to tmax = �n

3
� − 1 malicious players.

With the use of secure multi-party computation in an
agent scenario we get the following additional aspects:

• The hosting servers are the participating parties, since
they get complete control over the agents executed on
them.

• Since the used protocols for distributed communica-
tion assume a synchronous network, timeouts have to
be used in an asynchronous network like the Inter-
net. Failure to answer within the timeout in the asyn-
chronous model is mapped to failure to answer at all
in the synchronous model.

• The agents’ transfer from one host to another is com-
pletely outside of the protocols for secure multi-party
computation. Migration introduces new problems, for
example migration target selection and actual agent
transfer, that may require computations on clear-text
data like location lists. In addition, one must pre-
vent an adversary from accumulating valid shares over
the time. Therefore, mobile agent Alliances need ad-
ditional security measures besides secure multi-party
computation.

In order to analyse the security issues, we first need to
review some important aspects of the Alliance Model:

Structure of an Alliance member
Each agent has 3 different types of data:

1. Static data like the code and the originator’s name is
the same for all agents and secured by a digital signa-
ture of the originator who is assumed to be trustwor-
thy.

2. Dynamic non-secret data (e.g. a location list) is read-
able and changeable by the agents without restriction.

3. Dynamic secret data is stored in tmax-shares created
by the verifiable secret sharing scheme from [4]. The
data itself is not necessarily dynamic, but the way it
is stored changes whenever the shares are re-created.
The idea is that data stored in shares is only accessible
when at least tmax + 1 agents collaborate. Possible
static data in this class is a secret ID that enables the
originator to verify Alliance identity on result return
or a private key for digital signatures.

Computations
We differentiate 2 types of computations depending on their
data input:

1. Distributed computations on shares. They are per-
formed jointly by the Alliance following [9]. These
computations are robust against corruption of up to
tmax Alliance members at any given time.

2. Local computations of dynamic non-secret data and/or
computations using static data. These computations
are executed locally by all agents and are not secure.
The whole Alliance guarantees integrity of the results
by a final majority decisions. This type of computation
is robust but not private and produces data known by
each agent.

Life-cycle of an Alliance
The life-cycle of an Alliance is shown in Figure 1. Because
of the use of a protocol for secure multi-party computation
we differentiate two phases: First, static phases in which all
agents are hosted on different servers an no migration takes
place. A static phase is divided into 3 parts:

1. The migration post-processing phase where the agents
reconstruct their shares and start operating.

2. The computation phase in which all distributed com-
putations for the fulfilment of the Alliance’s task are
done, secured by the protocol for secure multi-party
computation.

3. The migration preprocessing phase in which n migra-
tion targets are determined and asked for their consent
to host an Alliance member. In addition, a re-sharing
takes place to prevent an adversary from collecting
valid shares.

As indicated above, all computations during the static phase
are tmax-robust, i.e. remain secure as long as not more than
tmax participants are malicious. But what happens in the
dynamic phases, when the agents migrate? All agents are
transfered as follows: First, a new location list is deter-
mined (migration preprocessing phase). Then, the old hosts
execute a re-sharing (this could be done by the method of
Ostrovsky and Yung in [14]) to disable the old shares. Af-
ter the re-sharing process each old host owns shares of the
new shares for the new hosts. Next, each old host sends the
static data of his agent together with the new location list
to each new host. The new hosts then perform a majority
decision about the static data. When all potential new hosts
agree to the execution of their agent, each old host sends his
shares of shares to the appropriate new hosts. If at most
tmax dishonest messages arrive at a new host, the new agent
instance there is able to reconstruct the new shares assigned
to it.

Since static data includes the agent’s code we have a self-
repairing system in which a corrupted agent cannot survive
migration. This property helps significantly to prevent the
number of malicious Alliance from exceeding tmax.

Is the Effort Worth it?
Since all computations are done in a robust way, most of the
security problems ’disappear’. In detail, these are

Processing
MPre- ReturnComputations

Processing
MPost-Initialisation

Figure 1: Life-cycle of an Alliance

1. malicious routing,

2. violation of execution integrity,

3. violation of data integrity,

4. long-lasting and accumulating corruption of agents,

5. spying on sensitive data

6. manipulation of the computed results.

What remains is the ’problem’ that all those nice properties
are closely connected to the upper limit on the number of
malicious Alliance members. As soon as it is violated, an
adversary can get full control over an Alliance.

3. BAD THINGS TO DO TO AN ALLIANCE
As mentioned in the last Section, Alliance compromise

always requires the compromise of at least tmax + 1 of the
agents at any one time. In practical deployment there also
exists the possibility of Denial-of-Service (DoS) attacks, with
various purposes. DoS attacks can aim at or help with the
violation of the tmax–limit. They can also be targeted di-
rectly at Alliance sabotage. DoS Attacks are discussed in
more detail in Section 4.

Attack trees
Attack trees [19] are a specialised version of general decision
trees. They are used to organise complex reasoning that
starts with abstract concepts and sub-sequentially divides
these concepts into more concrete sub-concepts. Our vari-
ant of attack trees represents a more abstract attack by the
incoming edge of a node and the more concrete sub-cases by
the outgoing edges. Hidden assumptions and additional rea-
soning determining the number and nature of the outgoing
edges is attached to the nodes. This additional information
is given in textual form. Node-numbers are used as refer-
ence. A leaf node indicates that the specific sub-attack it
corresponds to is deemed unsuitable for further graphical
subdivision and is discussed in textual form instead.

It is important to note that attack trees are not a method
for formal reasoning in the mathematical sense. Still, they
are a very useful tool to organise informal argumentation,
make it more transparent and facilitate identification of spe-
cial cases. However the analysis itself still relies on human
ingenuity and is contained in the text and not in the tree.
The tree just binds the argumentation together.

Analysis
Our attack tree for secure mobile agent Alliances can be
found in Figure 2. The following list gives hidden assump-
tions and possible attacks and countermeasures on a node-
by-node basis. Many node-comments will contain forward-
references to later parts of the paper.

1. Attacks can only happen during the life-cycle of an
Alliance. The originator is trusted, therefore the initial
migration can be treated like a later migration.

2. The originator is trusted, so no attack is possible.

3. The Alliance is required to follow the life-cycle of Fig-
ure 1. The subdivisions are named a little different,
but represent the same steps. From a security point of
view, the possible vulnerabilities in migration prepara-
tion are centred on migration target selection. Other
preparation steps are just distributed computations.

4. Basically two attacks are possible in result return: To
send fake data to the originator or to impersonate the
originator to obtain the result the Alliance is reporting.
(If both takes place simultaneously, no harm might be
done.)

5. Since the distributed computation method used is be-
lieved to be secure, no compromise is possible during
the computation phase, as long as there are not more
than tmax malicious agents in the Alliance. However
there is not only one computation phase, but one after
each migration. See section 6 for a discussion of the
security implications.

A second concern during the computation phase is De-
nial of Service. See Section 4 for a detailed discussion.

6. The target selection can either be bad because the
computation was compromised or because of random
factors. We do not see an other possibility at the mo-
ment.

7. Possible Attack here: Migration target impersonation.
Whether this is possible depends on the host authen-
tication mechanism used. See Section 5 for a detailed
discussion. If enough malicious hosts can impersonate
non-malicious hosts, this attack succeeds.

Migration source impersonation is not possible. It
would just create a new Alliance. Message manipula-
tion in transit is not possible, since the transmissions
are secured end-to-end. As long as both end hosts are
not impersonated and not malicious, no undetected
message corruption is possible. If too many hosts are
malicious the scheme breaks down in other places any-
way.

8. The computations done here are mainly triple genera-
tion for the distributed computations and re-sharing.
The same discussion as for tree node 5 applies.

9. The originator can be impersonated. However, if the
Alliance encrypts the result data in such a way that
only the originator can decrypt it, originator imper-
sonation degenerates to conventional DoS and does not
compromise confidentiality.

1

2 4

1098765

3

11

computation
compromised selcection

random choice
bad

12 13

14 15 16

violate n/3 requirement

impersonation
Alliance

impersonation
orginator

distributed
operation

Alliance creation result return

migration
actual

migration
post−computation phase target

selection
problems

hosts
honest
DoS on compromise

honest
hosts

create
malicious
hosts

with attacker
bad choice

Figure 2: Attack tree

10. Alliance impersonation is feasible. A possible effective
countermeasure is to embed a unique, random ID in
the shared (secret, dynamic) data of the Alliance. An
impersonator cannot get this ID and hence Alliance
impersonation fails.

11. The aim is to increase the relative number of malicious
hosts in order to make a bad choice more likely. By bad
choice we mean that more than tmax malicious migra-
tion targets are selected. The possibilities are to have
more malicious hosts, less honest hosts (general DoS)
or convert honest hosts into malicious ones.

12. Bad random selection of the migration targets is a
problem, see Section 6.

13. Since the distributed computation are secure, this at-
tack is not possible.

14. This attack is possible, depending on the host authen-
tication scheme used, i.e. the condition a host has to
fulfill in order to be a valid migration target. See Sec-
tion 5 for a detailed discussion of some options.

15. This type of attack is similar to general DoS attacks.
It can succeed, yet it can be made harder, as explained
in Section 4.

16. The possibility of host compromise depends on host
security and is out of the scope of this paper. Note
however that host compromise can lead to a retroactive

bad choice where a host was honest before and during
migration and only became malicious after an agent
had been migrated to it or possibly even later when
agent data is not deleted securely the old hosts after
migration.

We see that there are several types of specific security
problems that can cause Alliance compromise. Most are
caused by agent and Alliance migration and are discussed
in the following sections. In addition, there are some not-
quite obvious ways to use DoS attacks as part in an Alliance
compromise attempt.

4. DENIAL OF SERVICE
DoS attacks can be used to facilitate Alliance compromise.

Of course, DoS can also be used as a direct sabotage-type
attack on an Alliance. DoS attacks on one particular Al-
liance could be used to prevent it from obtaining a specific
piece of information, reporting something back to the orig-
inator or executing some action. As an application of this
type of DoS, think e.g. of a vendor that does not want to
honour an offer made to an Alliance earlier.

Generally DoS attacks are very hard to defend against.
Still, in many cases something can be done to make them
harder or less worthwhile. In the case of mobile Alliances one
option is to detect DoS-like conditions and report them back
to the originator of the Alliance. Care needs to be taken to
distinguish network problems and attacks. A second option
is to increase the effort needed for DoS attacks.

Detect and Report
Detection of network problems or insufficient local resources
is easy. Timeouts on computations and communication at-
tempts are sufficient in most cases. Resource exhaustion
attacks on hosts executing the agents can also be detected
in this way. An agent can assume that the environment is
too hostile for further operation when the number of accu-
mulated timeouts exceeds a certain threshold. In this case
the agent could notify the originator. When the originator
gets this type of notification from at least tmax + 1 honest
agents, the originator knows that the Alliance has stopped
to be functional. Since the number of malicious agents in
an Alliance is not larger than tmax, DoS attacks where the
agents running on malicious hosts claim an error condition
are only possible when Alliance compromise is feasible any-
way.

Increase DoS Tolerance
If a DoS attack directly targets individual hosts with agents
on them, these hosts are rendered unusable and unreach-
able in many cases. In the strict model, DoS on even a
single honest host allows Alliance compromise, if the maxi-
mum permitted number of hosts is already malicious. This
is due to the fact that non-responding agents need to be
treated as malicious, since they cannot contribute any cor-
rect data to computations and majority-votes. One way to
deal with this problem is to decrease the number of respond-
ing (and thereby not readily identifiable) malicious host that
are allowed in an Alliance. If, e.g., the number of allowed
responding malicious hosts is decreased to n

6
, then DoS at-

tacks on up to n
6

of the hosts executing an Alliance can be
tolerated. See Section 6 for more details.

A connectivity disruption DoS attack can be made more
difficult. There are two variants of this attack: Disrupt con-
nectivity between the agents in a computation phase and
disrupt connectivity to target hosts in agent migration. In
the simple model every agent has to have direct connectivity
of every other agent and migration target. An Alliance can
employ internal dynamic routing of messages that is hard
to understand from the outside. It then forms a dark-net
[5]. Cutting off an agent’s connectivity to the Alliance now
requires cutting off its connectivity to all other agents. For
the case of migration it requires cutting off the connectivity
from all agents to a migration target. Depending on the con-
crete network infrastructure this may or may not be harder
to do than just cutting of some connections.

Alliance-internal routing does not cause additional secu-
rity problems. Messages are routed over an untrusted net-
work anyway. Adding some possible untrusted members of
the alliance in the chain of routers causes no new risks. An
added benefit of Alliance-internal routing is that it increases
the robustness against unreliable networks.

5. WHAT ABOUT CERTIFICATES?
Agents of an Alliance are executed on hosts that supply a

special execution environment with standardised function-
ality. An important degree of freedom in the design of such
frameworks is the question of certificates, i.e. how hosts
running an agent framework can demonstrate their identity.
Several alternatives exist. Each has a different impact on
practicability of the overall system, effort needed and secu-
rity level achieved.

The main use for host identification is the prevention of
an attack where the attacker creates a massive number of
(possibly virtual) malicious hosts that run the agent frame-
work. Identity is also beneficial in the creation of secure
channels between hosts.

The main possibilities are the following:

1. Use Certificates. Each participating host gets a certifi-
cate from one of possibly several well known authori-
ties that allows the host to prove its identity and also
allows to prevent impersonation attacks when estab-
lishing secure connections to other hosts running the
framework.

In addition, this option gives some possibility to detect
the ’malicious host creation’-attack in the certifying
authorities. Still, if one or more of the certifying au-
thorities are malicious, this scheme breaks completely.

The most serious drawback of this option is the need
for non-distributed, trusted infrastructure. The cost
and effort needed to establish and operate this infras-
tructure may well be prohibitive.

2. Web-of-trust. A PGP-like web-of-trust (see e.g. [8])
can be used. This could be done by having certificates
that are signed by other hosts running the framework.
Whether this will prevent the creation of significant
numbers of malicious hosts depends strongly on the
concrete details of the scheme used.

3. Do not use certificates. This is a least-effort least-
security solution. There may be still some weak au-
thentication, namely by IP address, i.e. by reachabil-
ity. If an attacker cannot intercept most/all packets
sent between two specific IP addresses, there is the
possibility to establish secure end-to-end communica-
tion between two specific IP addresses.

While this alternative offers little protection against
the creation of large numbers of (possibly virtual) ma-
licious hosts, such an attack can be made more dif-
ficult. One possibility is to disallow the selection of
migration targets with IP addresses that are close to-
gether or from the same subnet. In [16] Rennhard
and Plattner describe a collusion detection mechanism
along these lines. The reason this is effective to some
degree is that physical subnets on the Internet can only
be allocated in larger portions. The underlying reason
is that routing in the Internet is not done on indi-
vidual addresses but on target address prefixes which
correspond to subnets of groups of subnets that are
physically close together.

With the IP address based countermeasures an at-
tacker can not simply take a class B subnet [15] and
install 65,533 malicious hosts3. Instead, a large num-
ber of smaller subnets has to be obtained or addresses
in many subnets have to be connected to malicious
hosts. This is very expensive, since either hosts physi-
cally connected to the individual subnets are needed or
virtual channels have to be created from the individ-
ual IP addresses to a central pool of (virtual) malicious
hosts.

3At least two addresses are needed for network purposes and
cannot be used as host addresses.

Still, attacks that create large numbers of malicious
hosts are feasible if the attacker does not care about
legality or about doing a huge amount of damage. A
worm could be used to compromise a large number of
well distributed hosts that could then serve as mali-
cious hosts within an agent framework. 100,000 and
more compromised hosts in worm attacks are feasible
today.

Whether this type of attack is visible enough to be
detected remains to be seen. The first attempts at
’stealth worms’ that do not significantly impact host
functionality or performance, and thereby limit the
motivation of host operators to deal with them, have
already been observed.

6. NUMBERS MATTER
In the absence of agent migration a secure distributed

computation needs only be concerned with the number of
malicious hosts in the set of hosts carrying out the compu-
tation. A limit on the number of malicious hosts is sufficient
to model the requirement for a secure computation.

With agent migration the problem becomes more difficult.
If there are enough malicious hosts in the set of migration
target hosts to choose from, a bad choice can happen that
selects more malicious targets than the scheme for secure
distributed computation can tolerate. The question of Al-
liance compromise by malicious hosts becomes a matter of
the target selection process and if it is random or has ran-
dom components, a question of probability.

Bad Choice
We now analyse the chances of alliance compromise by bad
random selection of migration targets. The problem exists
in a scenario where the number of malicious hosts is constant
(’attacker-less bad choice’) as well as in the cases where the
relative number of malicious hosts has been increased by
an attacker (’bad-choice with attacker’). For the analysis
there is no real difference. It is just important to keep in
mind that the number of malicious hosts does not need to
be stable during an Alliance’s lifetime.

The following analysis assumes a static number of mali-
cious hosts. In a scenario with dynamically changing ma-
licious host numbers the following limits can still be used
as upper bounds. Special scenarios might need more spe-
cialised models.

To solve the problem for random selection, the overall
fraction of malicious hosts needs to be lower than the frac-
tion of malicious hosts permitted in the Alliance. In addi-
tion the number of migrations m has to be limited, since
the risk of selecting too many malicious hosts exists in each
migration.

Let now km be the number of malicious hosts in the set
of k participating hosts (i.e. hosts that operate an agent
framework) and n the size of the Alliances as before. Then,
the probability of sending exactly i agents to malicious hosts
and n − i agents to honest hosts is (for i ≤ n, k − km ≥ n):

P (i mal. hosts selected) =

(
km
i

) · (k−km
n−i

)
(

k
n

)
With the selected protocols the number of malicious hosts

needs to be smaller than tmax = �n
3
� − 1. Hence the prob-

ability of having selected up to the maximum number of
allowed malicious hosts is now:

P (max. tmax mal. hosts selected) =

∑tmax
i=0

(
km
i

) · (k−km
n−i

)
(

k
n

)
For m migrations we get the probability Pt of having not

more than tmax corrupted agents in the Alliance after each
migration step as follows:

Pt =

(∑tmax
i=0

(
km
i

) · (k−km
n−i

)
(

k
n

)
)m

This means Pt is the overall probability that the alliance
is not compromised because of bad host choices in migra-
tion. In each migration the agents are securely re-created
and consequentially corrupted agents can not move from one
host to the other, hence the argument is valid. For the case
km ≤ tmax we get Pt = 1 because there are not enough
malicious hosts available to break the system.

Bad Choice by Example
Bad choice is a real problem, as will be illustrated now with
some concrete examples. In the following figures we used
Maple [11] to plot Pt for k = 100 and k = 10, 000 partici-
pating hosts and Alliances of sizes of n = 10 (Figures 3, 5)
and n = 50 (Figures 4, 6). The range of the number of ma-
licious hosts km was limited to k

2
, since for more malicious

hosts, Pt is always very close to 0 in our examples.
Choosing k = 100 and n = 10 we get Pt ≈ 0.921 for

having a non-compromised Alliance after 10 migrations if
up to 10 hosts (10%) are malicious. For n = 50 we improve
the result to Pt ≈ 0.996 for km ≤ 20 (20% malicious hosts).
Even with 25% malicious hosts we still have Pt ≈ 0.7245.

0

10

20

30

40

50

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

p
t
p
t

k
m

m

Figure 3: k = 100 and n = 10

As one can see in Figures 5 and 6 the results for k =
10, 000, are a bit worse. For instance in case of n = 10,
km = 1000 and 10 migrations we get Pt ≈ 0.8796. And, as
expected for n = 50 and km = 2000 we have Pt ≈ 0.8665. If
we reduce km to 15% we get Pt ≈ 0.9936.

The following tables 1,2 and 3 demonstrate the necessity
of choosing n big enough. Since Maple has precision issues
when the values approach 0 or 1, the tables where calculated
using the GNU MP [1] library with a floating point precision
of 1024 bits. Entries are rounded in the last digit.

As a general observation, larger Alliances are more secure,
which is not surprising. It can also be seen that pretty

0

10

20

30

40

50

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

p
t

k
m

m

Figure 4: k = 100 and n = 50

0

1000

2000

3000

4000

5000

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

p
t

k
m

m

Figure 5: k = 10, 000 and n = 10

large numbers of malicious hosts can be tolerated. These
results demonstrate the practical feasibility of the Alliance
approach.

7. RELATED WORK
Recently, some publications considered agent groups. In

[22] Yee uses redundant groups whose members visit the
same servers but not at the same time. The groups of Min-
sky et al. [13] visit servers at the same time with the same
resources. Both use majority decisions as security mecha-
nism. Roth [17] utilises a group of two co-operating agents
with redundantly distributed data. Each of them informs

0

1000

2000

3000

4000

5000

2

4

6

8

10

12

14

0

0.2

0.4

0.6

0.8

1

p
t

k
m

m

Figure 6: k = 10, 000 and n = 50

k = 100

n = 10 (tmax = 3)

m\km 10 20 30

10 0.9207 0.3133 0.0143

30 0.7805 0.0308 ≈ 0

100 0.4378 ≈ 0 ≈ 0

n = 30 (tmax = 9)

10 1−2·10−5 0.7322 0.006

30 1−5·10−5 0.3925 ≈ 0

100 0.9998 0.0443 ≈ 0

Table 1: k = 100

k = 1, 000

m\km 10 30 100 300

n = 10 (tmax = 3)

10 1−1·10−5 0.9988 0.8833 0.0135

30 1−3·10−5 0.9963 0.6893 ≈ 0

100 1−1·10−4 0.9878 0.2893 ≈ 0

n = 30 (tmax = 9)

10 1−1·10−15 1−2·10−8 0.9965 0.005

30 1−3·10−15 1−7·10−8 0.9895 ≈ 0

100 1−1·10−14 1−2·10−7 0.9655 ≈ 0

n = 100 (tmax = 33)

10 ≈ 1 ≈ 1 1−2·10−11 0.0957

30 ≈ 1 ≈ 1 1−5·10−11 0.0009

100 ≈ 1 ≈ 1 1−2·10−10 ≈ 0

Table 2: k = 1, 000

the originator and terminates if there are data discrepan-
cies. Finally, Tate and Xu [20] propose agents that own a
secret key which is distributed to the agents by a dealer us-
ing a secret sharing scheme. The shares are signed by the
(trusted) dealer. Computations are based on Algesheimer
et al. [2] using encrypted circuits.

Although the use of cryptographic protocols for multi-
party computation as a possible solution to the security
problems in mobile multi-agent systems has been suggested
repeatedly (e.g. [18, 22, 2]), Endsuleit and Mie [7] are the
first pursuing this idea in depth. A possible reason is the
absence of an efficient secure multi-party protocol until 2001.

8. CONCLUSION
We have done a detailed security analysis of mobile agent

Alliances. We have then shown how such Alliances can be
secured and which level of security can be expected for differ-
ent parameter choices. Our results imply that secure mobile
agent Alliances are feasible and secure enough to be used in
practice.

What remains to be seen is the actual communication
effort needed for computations and migrations in real de-
ployment. While the amount of data send over the network

k = 10, 000

m\km 30 100 300

n = 10 (tmax = 3)

10 1−1·10−7 1−2·10−5 0.9986

30 1−4·10−7 1−6·10−5 0.9957

100 1−1·10−6 0.9998 0.9857

n = 30 (tmax = 9)

10 1−3·10−18 1−2·10−12 1−9·10−8

30 1−1·10−17 1−5·10−12 1−3·10−7

100 1−3·10−17 1−2·10−11 1−9·10−7

Table 3: k = 10, 000

can be determined analytically, practically important pa-
rameters like computation latency and time needed for a
full migration will likely have to be determined using simu-
lation and test bed deployment, since they depend strongly
on the characteristics of the underlying network infrastruc-
ture. Test bed deployment can also help to determine real
world resource consumption on hosts that execute the indi-
vidual agents.

9. REFERENCES
[1] GNU MP - Library for arithmetic on arbitrary

precision numbers.
http://www.gnu.org/directory/libs/gnump.html.

[2] Joy Algesheimer, Christian Cachin, Jan Camenisch,
and Günter Karjoth. Cryptographic security for
mobile code. In Proc. IEEE Symposium on Security
and Privacy, pages 2–11, 2001.

[3] Donald Beaver. Efficient multiparty protocols using
circuit randomization. In Advances of Cryptology –
Crypto ’91, volume 576 of LNCS, pages 420–432.
Springer Verlag, 1991.

[4] Michael Ben-Or, Shafi Goldwasser, and Avi
Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed
computation. In Proc. 20th ACM Symposium on the
Theory of Computing (STOC), pages 1–10, 1988.

[5] Peter Biddle, Paul England, Marcus Peinado, and
Bryan Willman. The darknet and the future of
content distribution. In Proceedings of the 2002 ACM
Workshop on Digital Rights Management, 2002.

[6] Ran Canetti. Universally composable security: A new
paradigm for cryptographic protocols. Cryptology
ePrint Archive, Report 2000/067.

[7] Regine Endsuleit and Thilo Mie. Secure multi-agent
computations. In Proc. of Int. Conference on Security
and Management, volume 1, pages 149–155. CSREA,
2003.

[8] Patrick Feisthammel. Explanation of the web of trust
of pgp.
http://www.rubin.ch/pgp/weboftrust.en.html,
2002.

[9] Martin Hirt and Ueli Maurer. Robustness for free in
unconditional multi-party computation. In Proc. of
Advances in Cryptology - CRYPTO 2001, volume 2139

of Lecture Notes in Computer Science, pages 101–118.
Springer, 2001.

[10] Fritz Hohl. An approach to solve the problem of
malicious hosts. Technical Report 1997/03,
Universität Stuttgart, 1997. Fakultätsbericht.

[11] Waterloo Maple Inc. Maple V, Release 4.

[12] Sergio Loureiro and Refik Molva. Function hiding
based on error correcting codes. In Proc. of Cryptec
’99 — International Workshop on Cryptographic
Techniques and Electronic Commerce, pages 92–98,
1999.

[13] Yaron Minsky, Robbert van Renesse, Fred Schneider,
and Scott Stoller. Cryptographic support for
fault-tolerant distributed computing. In Proc. of the
7th ACM SIGOPS European Workshop, pages
109–114, 1996.

[14] Rafail Ostrovsky and Moti Yung. How to withstand
mobile virus attacks. In Proc. of the 10th Ann. ACM
Symp. on Principles of Distributed Computing, pages
51–59, 1991.

[15] Jon Postel. Rfc790.
http://www.ietf.org/rfc/rfc0790.txt, September
1981.

[16] Marc Rennhard and Bernhard Plattner. Introducing
MorphMix: Peer-to-Peer based Anonymous Internet
Usage with Collusion Detection. In Proc. of the
Workshop on Privacy in the Electronic Society (in
association with 9th ACM Conference on Computer
and Communications Security), pages 91–102, 2002.

[17] Volker Roth. Mutual protection of co-operating
agents. In J. Vitek and Ch. Jensen, editors, Secure
Internet Programming: Security Issues for Mobile and
Distributed Objects, volume 1603 of Lecture Notes in
Computer Science, pages 275–285. Springer Verlag,
1999.

[18] Tomas Sander and Christian F. Tschudin. Protecting
mobile agents against malicious hosts. In G. Vigna,
editor, Mobile Agents and Security, volume 1419 of
Lecture Notes in Computer Science, pages 44–60.
Springer Verlag, 1998.

[19] Bruce Schneier. Attack trees. Dr. Dobb’s Journal,
December 1999.

[20] Stephen R. Tate and Ke Xu. Mobile agent security
through multi-agent cryptographic protocols. In Proc.
of 4th Intern. Conf. on Internet Computing, pages
462–468, 2003.

[21] Uwe G. Wilhelm, Sebastian Staamann, and Levente
Buttyán. Introducing trusted third parties to the
mobile agent paradigm. In J. Vitek and C.D. Jensen,
editors, Secure Internet Programming, volume 1603 of
Lecture Notes in Computer Science, pages 469–489.
Springer Verlag, 1999.

[22] Bennet S. Yee. A sanctuary for mobile agents. In
Secure Internet Programming, pages 261–273, 1999.

