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Low-Temperature Thermal Conductivity of Superconductors With Gap Nodes
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We report a detailed analytic and numerical study of electronic thermal conductivity in d-wave
superconductors. We compare theory of the cross over at low temperatures from T -dependence to
T 3-dependence for increasing temperature with recent experiments on YBa2Cu3O7 in zero magnetic
field for T ∈ [0.04K, 0.4K] by Hill et al., Phys. Rev. Lett. 92, 027001 (2004). Transport theory,
including impurity scattering and inelastic scattering within strong coupling superconductivity, can
consistently fit the temperature dependence of the data in the lower half of the temperature regime.
We discuss the conditions under which we expect power-law dependences over wide temperature
intervals.

Low-temperature measurements of electronic trans-
port properties have given a wealth of information about
nodal quasiparticles deep in the superconducting phase
of unconventional superconductors [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13]. The ultra-low temperature regime is
of great interest because response functions such as the
zero-frequency charge conductivity, thermal conductiv-
ity, and thermoelectric response function, are believed to
be limited by elastic impurity scattering and obey power
laws [14, 15, 16, 17]. Thermal conductivity is of particu-
lar importance in this context, since theory predicts uni-
versality in the sense that the low-temperature asymp-
totic does not depend on the properties of the impurity
potential [18]. For higher temperatures, of the order of
the low-energy impurity band width γ and higher, ther-
mal conductivity is not universal and is sensitive to the
details of impurity scattering [16].

The universal character of the T → 0 thermal con-
ductance was studied experimentally in great detail for
several different cuprate materials for a wide range of
doping levels [2, 4, 5, 6, 9, 10, 11]. Measurements of
how the universal limit is approached as temperature is
lowered was only recently reported by Hill et al [12] for
YBa2Cu3O7. After subtracting a phonon contribution
∝ T 3, they found an electronic contribution of the form
κel/T = (κ0/T )(1+kT 2), with κ0/T = 0.16 mW/(K2cm)
and the coefficient k = 19.2K−2. This form is consistent
with a Sommerfeld-type expansion of κel(T ) ([16] and
below). However, the large value of k implies an unre-
alistically clean sample if impurity scattering is in the
unitary limit. On the other hand, for Born limit scat-
tering, the concentration required to fit the large slope
is unrealistically large and should lead to a severe reduc-
tion of the critical temperature which is not seen. Their
plausible conclusion was therefore that scattering might
be in between the unitary and Born limits.

In this paper we present results for thermal conduc-
tivity including effects of elastic impurity scattering and
inelastic electron-boson scattering. We focus on how
the universal limit is approached and make a detailed

comparison with the experimental results of Hill et al

[12]. Our results can be summarized as follows. (1) The
main effect of inelastic scattering is an effective mass-
dependence of the universal (with respect to impurity
scattering) T → 0 thermal conductance [19]. The coef-
ficient k is however effective mass independent. (2) We
can fit the data [12] in the lower half of the T−interval
with a best fit for a phase shift slightly below 90o. (3)
The discrepancy at higher T is related to the split of
the low-energy impurity band, which makes it hard to
observe power laws over wide T−intervals in ultra-clean
materials.

The thermal conductivity κ(T ) of a superconductor
has an electronic contribution κel(T ), a phononic part
κph(T ), and possibly contributions from other existing
excitations. We will only consider κel(T ). To quan-
tify the effects of inelastic scattering on the same footing
as elastic impurity scattering we make a self-consistent
strong-coupling calculation using quasi-classical Eliash-
berg theory [20] including impurity scattering in the
t̂−matrix approximation. We consider a two-spectra
model for electron-boson interactions that generate both
d-wave superconductivity and an inelastic scattering self
energy. One spectrum gives coupling in the s-wave and
d-wave channels, but is attractive only in the d-wave.
Hence, this part is responsible for pairing but also con-
tributes to inelastic scattering. The second spectrum
couples only in the s-wave channel (repulsively) and gives
an incoherent background scattering. Even though the
model is general we choose parameters that generates a
d-wave superconductor with properties close to that of a
weakly coupled superconductor, with a spectroscopic gap
∆0 = 2.59 Tc (Tc = 0.13ωmode) [21]. The temperature de-
pendence κel(T ) is displayed in Fig. 1 for several impurity
concentrations nimp (Γ0 = nimp/πNf ) and near-resonant
impurity scattering (phase shift δ0 = 89.5o). We show
in panels (a) and (b) the electron-boson coupling func-
tions, χ2I(ω), and the resulting density of states, NS(ǫ).
The imaginary part of the inelastic self energy gives a
T−dependent contribution to the scattering rate , Γin(T )
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FIG. 1: Temperature dependence of the electronic contribution to
the thermal conductivity for elastic scattering rates as indicated,
for a phase shift δ0 = 89.5o. Insert (a): the two electron-boson
coupling spectra used in the calculations. Insert (b): single-particle
density of states in the superconducting state at T = 0.

[22, 23, 24], while the contribution from elastic impurity
scattering, Γ = Γ0 sin2 δ0, is T−independent. The rela-
tive importance of the two contributions leads to a cross-
over temperature T ∗. Impurity scattering dominates in
the low−T region, while inelastic scattering dominates in
the high−T region. The cross-over is reflected in κel(T )
as the peak at T ∼ T ∗ in Fig. 1 [19, 24].

Although the imaginary part of the inelastic self-
energy Σ̂R

in is small for T ≪ T ∗, the real part remains
important. By using general symmetry relations we can
write down the renormalization of the energy from both
elastic and inelastic scattering as

ǫ̃R = ǫ −
1

2
Tr

[

τ̂3Σ̂
R(ǫ)

]

= iγ + (1 + λ)ǫ + O
[

ǫ2
]

. (1)

Here is γ solely due to impurity scattering. The slope of
the real part of ǫ̃R(ǫ) has contributions from both impu-
rity scattering and inelastic scattering, λ = λimp + λin.
Because ℜΣR

in(ǫ) is linear in energy up to the mode-
energy, ωmode > ∆0 ≫ T ∗, an effective theory can be
made for T ≪ T ∗ by dividing the transport equation by
1 + λin evaluated in the superconducting phase. The in-
elastic part is then interpreted as an effective mass via
m∗/m = 1 + λin. The contribution from impurity scat-
tering on the other hand, has a non-trivial energy depen-
dence for ǫ . ∆0, and can not be divided out. Within
the effective theory, we use Eq. (1) and the method of
Graf et al [16] to write down the low−T form

κel(T )

T
=

π2

3

2Nfv2
f

πµ∆0

[

1 +
7π2

15

ã2T 2

γ2

]

+O

[

(

T

γ

)4
]

. (2)

Here are Nf and vf the effective density of states at
the Fermi level and the effective Fermi velocity, while

∆0 is the spectroscopic gap and µ is the opening rate
of the gap function at the node. We now find that
the remaining effect at T ≪ T ∗ of inelastic scattering
within strong-coupling superconductivity is a modifica-
tion of the T → 0 asymptotic of the thermal conductance.
When we write explicitly, Nf → N ∗

f = N 0
f (1 + λin), and

vf → v∗f = v0
f/(1 + λin), one factor 1 + λin remains in

the denominator. Within the bare theory, this result can
be traced back to that the spectroscopic gap ∆0 in the
weak-coupling limit is replaced by the strong coupling
off-diagonal function W (0) [19]. In our model W (ǫ) is
a weak function of energy and to a good approximation
W (0) ≈ ∆0(1 + λin). This effective mass dependence
is in sharp contrast to the normal state, in which case
κN

el (T ) = T (π2/3)Nfv2
f/2Γ is independent of m∗, be-

cause of canceling factors of (1 + λin) in Nf , v2
f and Γ in

accordance with general strong-coupling results for trans-
port coefficients [25]. In this sense, transport properties
of quasiparticles in the low-energy nodal impurity band
is quite different from quasiparticles in the normal state.

Effective-mass factors from ã and γ cancel in the coef-

ficient k = 7π2

15 (ã/γ)2 in Eq. (2) and it is only dependent
on properties of the impurity potential. In addition to
the electron-hole symmetric part above, also the electron-
hole asymmetric part of the impurity self-energy enters
[26]. Only the imaginary part

1

2
Tr

[

ℑΣ̂R
imp(ǫ)

]

= c ǫ + O
[

ǫ3
]

. (3)

contributes to the conductivity through ã2 = (1+λimp)
2+

2c2 [17]. The presence and importance of c represents the
fact that electron-like and hole-like quasiparticles have
different transport lifetimes above and below the Fermi
level, except in the strict unitary and Born limits for
which it vanishes.

We now discuss the experiment [12] in terms of the
presented effective theory and its low−T expansion in
Eq. (2) with the parameters {γ, λimp, c} computed self-
consistently [17]. Starting for simplicity with s-wave im-
purity scattering, we present in Fig. 2(d) several com-
binations of impurity concentrations and phase shifts
that give good fits to the data in the lower half of the
T−interval. In fact, there is a broad range in parameter
space for which the slope k = 19.2K−2 can be repro-
duced [blue dash-dotted lines in Fig. 2(a)-(c)]. Similarly,
we can find many combinations yielding other values of
k (black and red lines). However, not all combinations
of parameters produce a consistent fit, in the sense that
the expansion Eq. (2) represents over a wide tempera-
ture range the full numerically computed thermal con-
ductivity shown in Fig. 2(d). The deviation from true
T 2-behavior is also seen in the figure: the three curves
start at low T with the same coefficient, k = 19.2K−2,
but deviate at higher T . This is also the reason for the
discrepancy between theory and experiments in the up-
per half of the T−interval. The part in parameter space
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FIG. 2: (a)-(c) The low-temperature parameters in Eqs. (1) and (3) for three values of the T 2-coefficient in Eq. (2) as function of
scattering phase shift. (d) Three sets of parameters that represents our best fits to the data of Ref. [12]. The blue shaded region indicates
the temperature range where a good fit can be made. The dashed curves are from a strong-coupling calculation while the underlying solid
lines are generated by the effective theory. Curve (II) is the low−T part of the black solid line in Fig. 1. In all cases k = 19.2K−2. Note
that the material appears cleaner in the effective theory as Γ∗

0
= Γ0/(1+λin) with Γ0 = nimp/πNf . We normalized κel(T )/T to the T → 0

extrapolated value 0.16mW/(K2cm). The energy scale is Tc = 90K.

for which the Sommerfeld expansion is applicable can be
broadly defined as phase shifts for which λimp is negative.

Let us discuss in more detail why Eq (2) works
well only in a restricted low-T interval. Recall that
the thermal conductivity can be written as κel(T ) =
∫

∞

−∞
dǫK(ǫ)

(

−∂f
∂ǫ

)

, where f is the Fermi function. The

derivative of the Fermi function is sharply peaked at the
Fermi level in an interval of order T , which leads us to
expand all quantities around ǫ = 0, as in Eqs. (1) and
(3), and do a Sommerfeld expansion κel(T ) = K(0) +
∑

∞

n=1
d2nK(ǫ)

dǫ2n

∣

∣

∣

ǫ=0
anT 2n, where the for us relevant coeffi-

cients a1 = π2/6 and a2 = 7π4/360. However this scheme
works well only if the function K(ǫ) is slowly varying on
the scale T . In our case we can write K(ǫ) = ǫ2κ̃(ǫ) and
study the energy dependence of κ̃(ǫ), see Fig. 3(d). The
fine structure at low energies for phase shifts below 90o,
can intuitively be understood by studying the phase shift
dependence of the self-energy. In a d-wave superconduc-
tor with a single impurity scattering strongly (near the
unitary limit) there is a resonance in the t̂−matrix at [27]
ǫres ≈ ±π cot δ0/[2 ln(8/π cot δ0)] where the sign corre-
sponds to the electron and hole sectors. The width of
the resonance is smaller than the resonance energy by a
factor 1/ ln(8/π cot δ0) ≪ 1. Within transport theory we
employ an impurity averaging technique [28] to obtain
the self-energy for a material with a small concentration
of randomly distributed impurities. As a result of the
configuration average, the single impurity resonance is
broadened into an impurity band of width γb, centered
around an energy slightly shifted from the single impu-
rity resonance ǫres → ǫb. The impurity bands are shown

in Fig. 3(a)-(c). For clean systems with a phase shift
deviating substantially from 90o, the resulting bands are
split into two parts symmetrically positioned above and
below the Fermi level. The critical point is when the
slope at zero energy of the real part of the self energy
changes sign, i.e. when λimp = −ℜΣR

3 (0) turns posi-
tive. The structures in the self-energy lead to structures
also in the response functions at low temperatures on the
scale T ∼ ǫb ≪ γb, see Fig. 3(d), and the applicability of
Eq. (2) is drastically reduced in temperature by the new
constraint T ≪ ǫb.

In a more realistic model, impurity scattering is
anisotropic. The main technical complication in this case
is the necessity to take care of vertex corrections. They
are small in the limit T ≪ γ [18], but are important for
higher temperatures. In particular they contribute to the
coefficient ã in Eq. (2). For definiteness we have included
p-wave and d-wave scattering channels and considered ar-
bitrary phase shifts [29]. In general we obtain a pair of
resonances, one electron-like and one hole-like (symmet-
rically positioned on each side of the Fermi level), for
each phase shift. This fact was also noted recently in
Ref. [30]. The main conclusion relevant in the present
discussion is that the impurity self-energy aquires more
structures (related to the new resonances) and the range
of applicability of Eq. (2) is not improved.

In summary, let us list our results and make a few re-
marks. (1) Inelastic scattering contributes to the T → 0
asymptotic (i.e. κ0 ∝ T ), but plays no role for the
T 3 coefficient (i.e. k). (2) The low−T half of the ex-
perimental data can be consistently fitted with param-
eters representing a wide range of impurity concentra-
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FIG. 3: (a)-(b) The impurity scattering self-energy and (c) the
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(d) The kernel κ̃(ǫ) of the thermal conductivity contains structures
at low energies for phase shifts below 90o because of the split im-
purity bands seen in (a)-(c). Also shown is the derivative of the
Fermi function which has a peak at the Fermi level of width ∼ T .
Here is T = 0.005Tc = 0.45K for Tc = 90K.

tions and phase shifts. The best fit to the large coeffi-
cient k = 19.2K−2 is obtained for a rather clean material
with a scattering phase shift slightly below the unitary
limit (δ0 < 90o). (3) However, we find deviations in
the high−T region. The reason is that the expansion
Eq. (2) has a limited range of applicability, smaller than
the temperature range in which the T 3 term was found
experimentally to dominate. Indeed, in an earlier discus-
sion of the data [12] in Ref. [31], model parameters were
chosen so that the expansion Eq. (2) was inapplicable.
In their work the unit-term Eq. (3) was neglected, which
changed their results by about a factor two. We con-
clude that a clear cross over between T−dependence to
T 3-dependence, with the respective power laws holding in
wide T−intervals, is most easily observable in dirty to in-
termediately clean, but not in ultra-clean, materials. Fi-
nally, an alternative way of extracting information about
impurity scattering from transport properties, would be
to study the thermoelectric effect [17]. In this case, the
non-universality of the T → 0 asymptotic can be used.
This quantity, the analogue of κ0, should be easier to
measure and interpret than the T 3−part of κel.
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