
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)

von der Fakultät für Wirtschaftswissenschaften
der Universität Karlsruhe (TH)

genehmigte Dissertation.

Formal Description of Web Services for
Expressive Matchmaking

Dipl.-Inform. Sudhir Agarwal

Tag der mündlichen Prüfung: 04.05.2007

Referent: Prof. Dr. Rudi Studer

Koreferent: Prof. Dr. Christof Weinhardt

Prüfer: Prof. Dr. Andreas Oberweis

2007 Karlsruhe

ii

Abstract

Web services are programmable interfaces that can be invoked via standardized Web
communication protocols, such as HTTP, in order to embed the functionality they offer
in a software system. The necessity of outsourcing parts of business processes together
with the wide acceptance of the Service Oriented Architecture (SOA) will lead to a large
number of Web services. Such a big market of Web services demands automatic methods
for finding suitable Web services. Existing industrial standards for finding Web services
are keyword based and hence require a lot of manual effort to select Web services with
desired functionality and desired interface.

Industrial standard UDDI allow only keyword based search that considers a fixed set
of properties and methods known from research in the field of Semantic Web Services
base on interoperable descriptions of Web service interfaces. However, in real business
scenarios criteria for searching suitable Web services are much richer than just the types
of input and output paremeters. In this work, our aim is to develop automatic methods
for finding Web services based on the functional and non-functional properties of Web
services. To be able to develop automatic reasoning algorithms about the functional
and non-functional properties of Web services, they must be described formally. So, we
first develop a formalism that allows to describe the involved resources, the credentials
of the involved actors and the dynamic behavior of web services including access control
policies in a unifying way.

We identify that in order to support a broader spectrum of use cases, two types of
matchmaking approaches are needed, namely goal based and equivalence based. Goal
based matchmaking deals with specifying constraints on desired Web services and then
finding the Web services that satisfy the constraints, whereas equivalence based match-
making supports the use cases in which an existing Web service should be replaced by
another Web service without changing the overall behaviour of the system it is incorpo-
rated in. In this work, we develop an expressive formalism to specify desired constraints
on a Web service and develop a sound and complete algorithm to check whether a Web
service description fulfills a goal. Furthermore, we develop the notion of equivalence of
Web service functionalities and show how two web service descriptions can be checked
for equivalence. Finally, we present the implementation of our system and conclude by
discussing some problems that may be of future research interest.

iii

iv

Contents

I Introduction 1

1 Motivation 3
1.1 Introduction to Web Services . 3

1.1.1 Web Service Description Language (WSDL) 5
1.1.2 Simple Object Access Protocol (SOAP) 8
1.1.3 Using Web Services . 8

1.2 B2B Integration and EAI with Web Services 9
1.3 Web Service Markets . 11
1.4 UDDI, Current Standard for Web Service Discovery 14

1.4.1 Limitations of UDDI . 17
1.5 Limitations of Existing Semantic Matchmaking Approaches 18
1.6 Outline . 19

2 Requirements 23
2.1 Requirements for Matchmaking . 24

2.1.1 Constraints on Resources . 25
2.1.2 Security and Trust Constraints . 26
2.1.3 Constraints on Behavior . 26
2.1.4 Combination of different Types of Constraints 27

2.2 Requirements for Semantic Description of Web Services 28
2.2.1 Requirements for Resource Descriptions 29
2.2.2 Requirements for Credentials . 30
2.2.3 Requirements for Behavior Description 30

2.3 Conclusion . 34

II Formal Description of Web Services 35

3 Modeling Resources 39
3.1 Introduction to Description Logics . 39
3.2 Basic Description Logic ALC . 40

3.2.1 Description logics with Concrete Domains 42

v

Contents

3.3 More Expressive Description Logic SHOIN (D) 43

3.3.1 The Family of OWL Languages . 45

3.4 Query Languages . 46

3.5 Rule Languages for OWL . 50

3.6 Modeling Resources . 51

4 Modeling Credentials 53

4.1 Role Based Access Control . 53

4.2 Authorization based Access Control with SPKI/SDSI 56

4.3 Modeling Credentials . 61

4.3.1 Scenario . 64

4.3.2 Specification of Certification Policies 64

4.3.3 Users . 67

4.4 Conclusion . 69

5 Modeling Behavior 71

5.1 Introduction to π-calculus . 71

5.1.1 Relation to Other Formalisms . 71

5.1.2 Syntax . 74

5.1.3 Semantics . 77

5.1.4 The Polyadic π-calculus . 78

5.2 Modeling Behavior . 81

5.2.1 Message Types for Communication Operations 82

5.2.2 Introducing Local Operations to Model Updates 83

5.2.3 Integrating Access Control Policies as Conditions 84

5.3 Related Work . 87

5.3.1 OWL-S . 87

5.3.2 WSMO . 91

5.3.3 WSDL-S . 96

5.3.4 BPEL4WS . 97

5.3.5 Access Control Related Work . 97

5.4 Conclusion . 99

III Semantic Matchmaking of Web Services 101

6 Goal Specification 105

6.1 Modal Logics for Processes . 106

6.2 Early Logics . 107

6.3 Introduction to mu-calculi . 108

6.3.1 Syntax and Semantics of µ-calculus 110

vi

Contents

6.3.2 Examples of Some Common Patterns 111

6.4 Specification of Hybrid Formulas with Logic B 112

6.5 Related Work . 114

6.6 Conclusion . 117

7 Goal based Matchmaking 119

7.1 Introduction to Model Checking . 119

7.2 Matchmaking Algorithm . 121

7.2.1 Complexity . 127

7.3 Related Work . 127

7.3.1 OWL-S Matchmaker . 127

7.3.2 WSMO Discovery . 129

7.3.3 Other Matchmaking Approaches 130

7.4 Conclusion . 130

8 Simulation based Matchmaking 133

8.1 Simulation of Resources . 133

8.2 Comparing Credentials of Agents . 136

8.3 Comparing Behavior of Agents . 137

8.3.1 Trace Equivalence: A First Attempt 137

8.3.2 Strong Bisimilarity . 138

8.3.3 Weak Bisimilarity . 139

8.4 Algorithm . 142

8.5 Conclusion . 145

IV Implementation and Applications 147

9 Implementation 151

9.1 KASWS Web Service Management API 151

9.1.1 Generating Domain APIs from Ontology 152

9.1.2 Modeling the Knowledge Base with Description Logics 156

9.2 KASWS Reasoning API . 158

9.3 Bootstrapping . 160

9.4 User Interface . 162

10 Applications 165

10.1 Knowledge Integration in SemIPort . 165

10.1.1 Sample Scenario . 166

10.1.2 Integration of Heterogeneous Information Sources 167

10.2 Modeling Auctions in SESAM . 169

vii

Contents

10.2.1 Introduction . 170
10.2.2 Reference Model for Market Mechanisms 170
10.2.3 Formal Description of Reference Model for Market Mechanisms . . 173

10.3 Further Potential Applications . 175
10.3.1 Verification of Business Processes 175
10.3.2 Reasoning about Market Mechanisms 175
10.3.3 Model Driven Architecture in Software Development 176

10.4 Conclusion . 176

11 Conclusion and Outlook 177
11.1 Contribution . 177
11.2 Open Problems Concerning Our Work . 180

11.2.1 Annotating Web Services with Logic B 180
11.2.2 Semi-Automatic Support for Describing Web Services and Constraints181
11.2.3 Efficient Matchmaking . 181

11.3 Further Research Ideas . 182
11.3.1 Automatic Composition . 182
11.3.2 Preference Based Ranking . 183

viii

List of Figures

1.1 Using Web Services in an Application . 8
1.2 B2B Integration . 10
1.3 Enterprise Application Integration . 12

1.4 Electronic Market Phases . 12
1.5 Publish Find Bind . 14

2.1 Client-Server vs. Distributed Execution 31
2.2 Model of an Agent . 37

3.1 ALC−Constructors . 40

3.2 ALC T-Box Axioms . 41
3.3 ALC A-Box Axioms . 42

4.1 Core Model of Role Based Access Control 55

4.2 Interaction among Parties (logical roles) 65

5.1 Link passing in π-calculus: before and after interaction 74
5.2 Operational Semantics . 79

5.3 OWL-S Top Level Ontology . 87
5.4 OWL-S Top Level Process Ontology . 89
5.5 WSMO Top Level Elements . 91

5.6 Interplay of WSMO Mediators . 94
5.7 WSML Language Variants . 95

6.1 Example of a query on the local knowledge base of an agent 114

6.2 Three major processes in WSMO service discovery 116

7.1 Testing Input Formula . 124
7.2 Eliminating If-Then-Else . 126

8.1 Resource Simulation Example: Individual α is member of the classes D1,D2 and D3. Individual β is mem
8.2 Resource Simulation Example: Property instances p1, p2, p3 are instances of the a property P , whereas prop
8.3 Agent P is simulated by agent Q . 139

8.4 The behaviour of CM ‖ CS . 140

ix

List of Figures

9.1 Architecture of Karlsruhe Semantic Web Service Framework 151
9.2 Ontology for Describing Behaviour of an Agent 157
9.3 Ontology for Describing Behaviour of an Agent 158
9.4 Ontology for Describing Behaviour of an Agent 159
9.5 Ontology for Describing Non-Functional Properties of an Agent 160
9.6 Graphical user interface showing the details of the matches 163

10.1 Specification of Information Sources . 167
10.2 Architecture of the Auction Reference Model 171
10.3 UML Class Diagramm for Data Structure of Minimal Market Model . . . 172

x

Part I.

Introduction

1

1. Motivation

From a historical perspective, Web Services represent the convergence between the
Service-Oriented Architecture (SOA) and the Web. SOAs have evolved over the last
10 years to support high performance, scalability, reliability, and availability. To achieve
the best performance, applications are designed as services that run on a cluster of cen-
tralized application servers. A service is an application that can be accessed through
a programmable interface. In the past, clients accessed these services using a tightly
coupled, distributed computing protocol, such as DCOM, CORBA, or RMI. While these
protocols are very effective for building a specific application, they limit the flexibil-
ity of the system. The tight coupling used in this architecture limits the re-usability
of individual services. Each of the protocols is constrained by dependencies on vendor
implementations, platforms, languages, or data encoding schemes that severely limit in-
teroperability. And none of these protocols operates effectively over the Web. The Web
Services architecture takes all the best features of the service-oriented architecture and
combines it with the Web. The Web supports universal communication using loosely
coupled connections. Web protocols are completely vendor-, platform-, and language-
independent. The resulting effect is an architecture that eliminates the usual constraints
of DCOM, CORBA, or RMI. Web Services support Web based access, easy integration,
and service re-usability.

1.1. Introduction to Web Services

The World Wide Web is more and more used for application to application commu-
nication. The programmatic interfaces made available are referred to as Web ser-
vices [W3C02].

A Web Service is programmable application logic accessible using standard Internet
protocols. Web Services combine the best aspects of component-based development and
the Web. Like components, Web Services represent functionality that can be easily
reused without knowing how the service is implemented. Unlike current component
technologies which are accessed via proprietary protocols, Web Services are accessed
via ubiquitous Web protocols, e.g. HTTP, using universally-accepted data formats, e.g.
XML.

Web services are meant to be offered as building blocks of applications in Internet,
intranet, or extranet. Web Services can support business-to-consumer, business-to- busi-
ness, department-to-department, or peer-to-peer interactions. A Web Service consumer

3

1. Motivation

can be a human user accessing the service through a desktop or wireless browser; it can
be an application program; or it can be another Web Service. Web Services support
existing security frameworks.

Technically, Web services are programming language independent, platform indepen-
dent remote procedures, that can be invoked using web protocols. Web services help in
achieving increased automation across organizational boundaries but also within a large
organization.

Existing definitions of Web services range from the very generic and all-inclusive to
the very specific and restrictive. Often, a web service is seen as an application accessible
to other applications over the Web. this is a very open definition, under which just about
anything that has a URL is a Web service. It can, for instance, include a CGI script. It
can also refer to a program accessible over the Web with a stable API, published with
additional descriptive information on some service directory.

A more precise definition is provided by the UDDI consortium, which characterizes
Web services as “self-contained, modular business applications that have open, Internet-
oriented, standards-based interfaces” [UDD01].

A step further in refining the definition of Web services is the one provided by the
World Wide Web consortium (W3C), and specifically the group involved in the Web Ser-
vice Activity: “a software application identified by a URI, whose interfaces and bindings
are capable of being defined, described, and discovered as XML artifacts. A web ser-
vice supports direct interactions with other software agents using XML-based messages
exchanged via Internet-based protocols“ [ABFG04].

So, there is no single definition of a Web service. In the following, we list some more
well known definitions1.� Web services is an esoteric data exchange technology that has mostly been used as

a platform for connecting information infrastructures within companies [Ric04].� Web Services are a new, standards-based approach to build integrated applications
that run across an intranet, extranet, or the Internet. The approach represents a
major evolution in how systems connect and interact with each other [CI01].� A Service, any service, can be defined as a software component that can be (1)
described in a formal language (2) published to a registry of services (3) discovered
through standard mechanisms (4) invoked over a network (5) composed with other
services [Tch04].� Web Services are services, that can be reached/invoked via the Web(Dieter Fensel)� The term Web Services refers to an architecture that allows applications to talk
to each other [MCK03].

1Courtsey: Mario Jeckle http://www.jeckle.de/webServices/index.html

4

http://www.jeckle.de/webServices/index.html

1.1. Introduction to Web Services� A service that is accessible by means of messages sent using standard Web proto-
cols, notations and naming conventions [FHBF+01].

1.1.1. Web Service Description Language (WSDL)

As communication protocols and message formats are standardized in the Web com-
munity, it becomes increasingly possible and important to be able to describe the com-
munications in some structured way. WSDL addresses this need by defining an XML
grammar for describing network services as collections of communication endpoints capa-
ble of exchanging messages [W3C03]. WSDL service definitions provide documentation
for distributed systems and serve as a recipe for automating the details involved in
applications communication.

WSDL is an XML format for describing network services as a set of endpoints operat-
ing on messages containing either document-oriented or procedure-oriented information.
The operations and messages are described abstractly, and then bound to a concrete
network protocol and message format to define an endpoint. Related concrete endpoints
are combined into abstract endpoints (services). WSDL is extensible to allow description
of endpoints and their messages regardless of what message formats or network protocols
are used to communicate. However, it is mostly used in conjunction with SOAP 1.1,
HTTP GET/POST, and MIME [W3C03].

A WSDL document defines services as collections of network endpoints, or ports.
In WSDL, the abstract definition of endpoints and messages is separated from their
concrete network deployment or data format bindings. This allows the reuse of abstract
definitions: messages, which are abstract descriptions of the data being exchanged, and
port types which are abstract collections of operations. The concrete protocol and data
format specifications for a particular port type constitutes a reusable binding. A port
is defined by associating a network address with a reusable binding, and a collection
of ports define a service. Hence, a WSDL document uses the following elements in the
definition of network services [W3C03]:� Types - a container for data type definitions using some type system (such as

XSD).� Message - an abstract, typed definition of the data being communicated.� Operation - an abstract description of an action supported by the service.� Port Type - an abstract set of operations supported by one or more endpoints.� Binding - a concrete protocol and data format specification for a particular port
type.� Port - a single endpoint defined as a combination of a binding and a network
address.

5

1. Motivation� Service - a collection of related endpoints.

In the following, we explain the various elements of a WSDL document with the help
of an example.

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

xmlns:tns="http://example.com/stockquote.wsdl"

xmlns:xsd1="http://example.com/stockquote.xsd"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns="http://schemas.xmlsoap.org/wsdl/">

<types>

<schema targetNamespace="http://example.com/stockquote.xsd"

xmlns="http://www.w3.org/2000/10/XMLSchema">

<element name="TradePriceRequest">

<complexType>

<all>

<element name="tickerSymbol" type="string"/>

</all>

</complexType>

</element>

<element name="TradePrice">

<complexType>

<all>

<element name="price" type="float"/>

</all>

</complexType>

</element>

</schema>

</types>

The types block defines the schema of the data objects that are expected or returned by
the Web services defined in the WSDL document. These types can be primitive types
like String, Integer or self defined complex types containing elements of primitive types
or other complex types. In the above example, TradePriceRequest is a complex data
type that contains an element of type String.

<message name="GetLastTradePriceInput">

<part name="body" element="xsd1:TradePriceRequest"/>

</message>

<message name="GetLastTradePriceOutput">

<part name="body" element="xsd1:TradePrice"/>

</message>

<portType name="StockQuotePortType">

<operation name="GetLastTradePrice">

<input message="tns:GetLastTradePriceInput"/>

<output message="tns:GetLastTradePriceOutput"/>

</operation>

</portType>

A message block defines a message type by listing the message parts and associating
with each message a type. In our example, the message type GetLastTradePriceInput

has only one part of type TradePriceRequest.

6

1.1. Introduction to Web Services

The element portType groups the set of operations that the web service can per-
form. The element <operation> inside <portType> defines an operation, in our ex-
ample GetLastTradePrice. The order of occurrence of input and output messages
inside an operation block describes the data flow. The order in our example means
that the Web service first performs an input operation expecting a message of type
GetLastTradePriceInput and then an output operation by transmitting a message of
type GetLastTradePriceOutput to the client.

<binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

<soap:binding style="document"

transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="GetLastTradePrice">

<soap:operation soapAction="http://example.com/GetLastTradePrice"/>

<input>

<soap:body use="literal"/>

</input>

<output>

<soap:body use="literal"/>

</output>

</operation>

</binding>

<service name="StockQuoteService">

<documentation>My first service</documentation>

<port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">

<soap:address location="http://example.com/stockquote"/>

</port>

</service>

</definitions>

The binding elements describes the message serialization format and the communi-
cation protocol used during the execution of the web services. The protocol is described
by the attribute transport, which is HTTP in our example. In addition to that, the
binding element describes whether the messages are transmitted in ”RPC style” or in
”document style” and how the inputs and outputs should be encoded. In case of ”docu-
ment style” only data is sent to the corresponding web service, whereas in case of ”RPC
style” information about a particular method together with its parameters is sent, that
is supposed to be called at the end point.

The element service defines end points (ports) and the addresses at which they can
be contacted. In our example the port StockQuotePort is reachable at the address
http://example.com/stockquote. The attribute binding refers to an already defined
operation binding thus connecting the port type to an operation. In our example the
value of the binding attribute for the port StockQuotePort is StockQuoteSoapBinding
which is associated with the operation GetLastTradePrice.

7

http://example.com/stockquote

1. Motivation

Server
Client

Web Service Container

Service
Implementation

Server
Stub

WSDL
int add (int a, int b)

int subtract(int a, int b)

Client
Stub

Client
Application

3

4

1

6
2

5

Figure 1.1.: Using Web Services in an Application

1.1.2. Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is a lightweight protocol intended for exchang-
ing structured information in a decentralized, distributed environment. It uses XML
technologies to define an extensible messaging framework providing a message construct
that can be exchanged over a variety of underlying protocols. The framework has been
designed to be independent of any particular programming model and other implemen-
tation specific semantics.

SOAP describes a message format along with a set of serialization rules for datatypes
including structured types and arrays. In addition, it describes how to use the Hyper-
text Transfer Protocol (HTTP) as a transport for such messages. SOAP messages are
effectively service requests sent to some end point on a network. The end point may be
implemented in any number of ways (e.g. Remote Procedure Call (RPC) server, Com-
ponent Object Model (COM) object, Java servlet, and Perl script) and may be running
on any platform. Thus, SOAP is about interoperability between applications running
on potentially disparate platforms using various implementation technologies in various
programming languages.

Since execution of Web services is not our focus in this work, we do not introduce
SOAP any further and refer to http://www.w3.org/TR/soap12-part1/ for the official
specification of SOAP Version 1.2.

1.1.3. Using Web Services

The steps involved in invoking a Web service are described in Figure 1.1. Let’s suppose
that the client has already discovered the Web service and generated the client stubs from
the WSDL description. Furthermore, the server-side programmer will have generated

8

http://www.w3.org/TR/soap12-part1/

1.2. B2B Integration and EAI with Web Services

the server stubs.

1. Whenever the client application needs to invoke the Web service, it will actually
call the client stub. The client stub will turn this ’local invocation’ into a proper
SOAP request. This is often called the marshaling or serializing process.

2. The SOAP request is sent over a network using the HTTP protocol. The Web
services container receives the SOAP requests and hands it to the server stub. The
server stub will convert the SOAP request into something the service implementa-
tion can understand (this is usually called unmarshaling or deserializing).

3. The service implementation receives the request from the service stub, and carries
out the work it has been asked to do. For example, if the client invokes the int

add(int a, int b) method, the service implementation will perform an addition.

4. The result of the requested operation is handed to the server stub, which will turn
it into a SOAP response.

5. The SOAP response is sent over a network using the HTTP protocol. The client
stub receives the SOAP response and turns it into something the client application
can understand.

6. Finally the application receives the result of the Web Service invocation and uses
it.

1.2. B2B Integration and EAI with Web Services

The contribution of Web services toward resolving the limitations of conventional middle-
ware involves three main aspects: service-oriented architectures, redesign of middleware
protocols, and standardization [EF03]. Figure 1.2 depicts a typical B2B integration
scenario. Organisations A,B,C and D offer their Web services to a B2B marketplace.
They find potential business partners (more precisely their Web services) on the B2B
marketplace and connect their businesses by integrating the corresponding Web services.

Service-oriented Paradigm

Web services work on the assumption that the functionality made available by a company
will be exposed as service. In middleware terms, a service is a procedure, method, or
object with a stable, published interface that can be invoked by a client. The invocation
is made by a program. Thus, requesting and executing a service involves a program
calling another program.

In terms of how they are used, Web services are no different from middleware services,
with the exception that it should be possible to invoke them across the Web and across

9

1. Motivation

B2B electronic trading

B2B
Marketplace

Organisation
A

Organisation
B

Organisation
C

Organisation
D

Figure 1.2.: B2B Integration

companies. As a consequence, web services assume that services are loosely-coupled,
since in general they are defined, developed and managed by different companies. As
web services become more popular and widely adopted, they are likely to lead to a
scenario where service-oriented architectures, advocated for many years, finally become
a reality. In fact, with Web services designers and developers are led to think in the
direction that “everything is a service,” and that different services are autonomous and
independent (as opposed to being, for example, two CORBA objects developed by the
same team). This interpretation has important implications in that it leads to decoupling
applications and to making them more modular. Therefore, individual components can
be reused and aggregated more easily and in different ways.

Middleware Protocols

The second aspect of the Web services approach is the redesign of the middleware pro-
tocols to work in a peer-to-peer fashion and across companies. Conventional middleware
protocols, such as 2PC, were designed based on assumptions that do not hold in cross-
organizational interactions. For example, they assumed a central transaction coordinator
and the possibility for this coordinator to lock resources ad libitum. Lack of trust and
confidentiality issues often make a case against a central coordinator, and therefor 2PC
must now be redesigned to work in a fully distributed fashion and must be extended to

10

1.3. Web Service Markets

allow more flexibility in terms of locking resources. Similar arguments can be made for
all interaction and coordination protocols and, in general, for many for the other prop-
erties provided by conventional middleware, such as reliability and guaranteed delivery.
What was then achieved by a centralized platform must be now redesigned in terms of
protocols that can work in a decentralized setting and across trust domains.

Standardization

The final key ingredient of the Web services recipe is standardization. In conventional
application integration, the presence of standards helped to address many problems.
CORBA and Java, for example, have enabled the development of portable applications,
have fostered the production of low cost middleware tools, and have considerably reduced
the learning curves due to the widespread adoption of common models and abstractions.
Whenever standardizations has failed or proved to be inapplicable due to the presence
of legacy systems, the complexity and cost of the middleware has remained quite high
and the effectiveness rather low. For Web services, where the interactions occur across
companies and on a global scale, standardization is not only beneficial, but a necessity.
Having a service-oriented architecture and redefining the middleware protocols is not
sufficient to address the application integration problem in a general way, unless these
languages and protocols become standardized and widely adopted.

Business to Business and in particular Enterprise Integration Systems represents some
of the most mature service-oriented technology, but is largely based on custom solutions
to large-scale e-commerce problems. It is one of the main targets of the current genera-
tion of Web service development. The key challenge in this area is semantic mediation
between different organizational vocabularies, as service models and protocols have been
coordinated among a few dominant organizations, although there are several competing
standards.

Aim of Enterprise Application Integration (EAI) is to integrate applications within
an organization in such a manner that they run and can be used as a homogeneous
application even if the applications have been developed over a long period of time by
different programmers and in different programming languages for different hardware
and operating systems. This makes it possible to carry out business processes that not
completely covered by a single application. The aims are significant cost reductions not
only by simplified user interactions and hence faster processing, but also by unifying
the data basis, that needs to be maintained only once. All application components are
served by only one data source.

1.3. Web Service Markets

Increasing need for outsourcing certain steps of a business process together with wide
acceptance of service oriented architectures (SOA) would lead to a large number of Web

11

1. Motivation

Application A

Application C

Application B

Application D

EAI Integration
Server

Environment

Figure 1.3.: Enterprise Application Integration

Knowledge Intention Agreement Settlement

Determination of a set
of suitable Web services

or compostions

Selection of the most
suitable Web service

or composition

Formalization of an
agreement between

providers and requesters

Matching

Allocation

Acceptance

Figure 1.4.: Electronic Market Phases

12

1.3. Web Service Markets

services. Similar Web services will be offered by different actors; an actor will offer many
different services; thus leading to a highly competitive market. On the other side actors
will use Web services offered by other actors in order to offer their own, which leads to
a cooperation based market. Markets, in which actors compete as well cooperate are
often called copetitive markets. Web service markets are copetitive markets.

Electronic markets is a well studied topic and there is quite a few work done on
defining and identifying the core elements of an electronic market. In this section, we
give a short introduction of electronic markets and align Web services research to the
phases of electronic markets.

A market transaction transfers the ownership of tangible or intangible objects (e.g.
products, stocks, money etc.), or rights to services (e.g. insurance) from one market par-
ticipant to another. As identified in [SW03], electronic market transactions go through
four primary phases, namely Knowledge, Intention, Agreement and Settlement (refer to
figure 1.4). To begin with, participants must gather information about products available
in the market and about other participants. This takes place in the initial “Knowledge”
phase. In the next phase, the “Intention” phase, individual market participants specify
their purchase and sale offers within the market. In the following “Agreement” phase,
market participants identify appropriate partners for a transaction, identify the terms
and conditions of the transaction and finally, sign a contract. The agreed-upon contract
is then executed in the “Settlement” phase, leading to the payment and potentially, post
sale support.

The “Intention” phase is divided into three subphases, namely Offer Specification,
Offer Submission and Offer Analysis. In this work, our main focus is on the “Agreement”
phase of a Web service market. However, we will also deal with the “Offer Specification”
phase, since the “Agreement Phase” builds on the offers.

Figure 1.4 shows the phases that can be identified in the agreement phase of an
electronic market [SW03] in more detail, since this is mainly the phase that we address
in this work. The “Agreement” is divided into steps Matching, Allocation and finally
Acceptance.

In the “Matching” phase, the published Web service offers are filtered such that the
resulting set of Web service offers are about those Web services that offer the functionality
described by a requester in the request. A requester wishing to accomplish some task
specifies a request for a Web service by describing the functionality needed to accomplish
the task.

Even if there is no single service that directly fulfills a user’s request, there may be
a combination of services that do. Once user’s goal is specified and it is known what
the available Web services do, the idea of automatic composition of Web services is to
compute possible combinations of Web services such that the execution of each such
combination leads the user to the goal.

In the “Matching” phase suitable services are discovered. After having determined
those services that are able to achieve a certain goal an optimal assignment of service

13

1. Motivation

WSDL

WSDL

SOAP

2.1. Find

3.1. Bind / Execute

1. Publish

Service Requester Service Provider

UDDI

2.2. Results

SOAP
3.2. Service Output

Figure 1.5.: Publish Find Bind

requests and offers with respect to the individual utility of the participants or to the
overall welfare has to be found in the “Allocation” phase. To achieve this, negotiations
between the participants might be required. For determining the allocation and price
many different mechanisms are available ranging from simple selection approaches to
complex negotiation or auction schemes. In the “Allocation” step, one of the Web
services or Web service compositions is selected on the basis of requester preferences.

After this allocation, legally binding contracts are closed between the corresponding
business partners in the “Acceptance” phase. These contracts have to be formalized in
a machine-understandable way in order to allow automated execution and monitoring.

In this work, our aim is to address the “Matching” phase of Web service markets.
However, since matchmaking of Web services depends on how Web services and search
requests are described, we need to address the “Offer Specification” too.

1.4. UDDI, Current Standard for Web Service Discovery

Figure 1.5 shows the famous Web service triangle.

1. Web service providers publish the WSDL descriptions of their Web services at
UDDI repository [UDD01].

2. Consumers or requesters search in the UDDI repository for desired services and
can obtain WSDL descriptions of the services that fit their needs.

14

1.4. UDDI, Current Standard for Web Service Discovery

3. Having the WSDL document that contains information needed to execute a Web
service, the requesters can invoke a Web service by sending an appropriate SOAP
message and obtain the service output again as a SOAP message. For more details
about this step refer to Figure 1.1.

UDDI is an acronym for Universal Description, Discovery, and Integration - A platform-
independent, XML-based registry for businesses worldwide to list themselves on the in-
ternet. UDDI is an open industry initiative (sponsored by OASIS) enabling businesses
to publish service listings and discover each other and define how the services or software
applications interact over the Internet.

UDDI is one of the core Web Services standards. It is designed to be interrogated by
SOAP messages and to provide access to Web Services Description Language documents
describing the protocol bindings and message formats required to interact with the Web
services listed in its directory.

UDDI was written in August, 2000, at a time when the authors had a vision of a world
in which consumers of Web Services would be linked up with providers through a public
or private dynamic brokerage system. In this vision, anyone needing a service such as
credit card authentication, would go to their service broker and select one supporting
the desired SOAP or other service interface and meeting other criteria. In such a world,
the publicly operated UDDI node or broker would be critical for everyone. For the
consumer, public or open brokers would only return services listed for public discovery by
others, while for a service producer, getting a good placement, by relying on metadata of
authoritative index categories, in the brokerage would be critical for effective placement.

The UDDI was integrated into the WS-I standard as a central pillar of Web services
infrastructure. By the end of 2005, it was on the agenda for use by more than seventy
percent of the Fortune 500 companies in either a public or private implementation,
and particularly among those enterprises that seek to optimize software or service reuse.
Many of these enterprises subscribe to some form of Service-oriented architecture (SOA),
server programs or database software licensed by some of the professed founders of
UDDI.org and OASIS.

The UDDI specification describes an online electronic registry that serves as electronic
Yellow Pages, providing an information structure where various business entities register
themselves and the services they offer through their WSDL definitions.

The UDDI specification defines a 4-tier hierarchical XML schema that provides a
model for publishing, validating, and invoking information about Web Services. XML
was chosen because it offers a platform-neutral view of data and allows hierarchical re-
lationships to be described in a natural way. UDDI uses standards-based technologies,
such as common Internet protocols (TCP/IP and HTTP), XML, and SOAP (a speci-
fication for using XML in simple message-based exchanges). UDDI is a standard Web
Service description format and Web Service discovery protocol; a UDDI registry can
contain metadata for any type of service, with best practices already defined for those

15

1. Motivation

described by Web Service Description Language (WSDL). There are two types of UDDI
registries: public UDDI registries that serve as aggregation points for a variety of busi-
nesses to publish their services, and private UDDI registries that serve a similar role
within organizations.

A UDDI registry consists of the following data structure types:� businessEntity - The top-level XML element in a business UDDI entry, it captures
the data, that the potential business partners require to find information about
a business service, including its name, industry or product category, geographic
location, and optional categorization and contact information. It includes support
for ”yellow pages” taxonomies to search for businesses by industry, product, or
geography.� businessService - The logical child of a businessEntity data structure as well as
the logical parent of a bindingTemplate structure, it contains descriptive business
service information about a group of related technical services including the group
name, a brief description, technical service description information, and category
information. By organizing Web Services into groups accociated with categories
or business processes, UDDI allows more efficient search and discovery of Web
Services.� bindingTemplate - The logical child of a businessService data structure, it contains
data that is relevant for applications that need to invoke or bind to a specific Web
Service. This information includes the Web Service URL and other information
describing hosted services, routing and load balancing facilities, and references to
interface specifications.� tModel - Descriptions of specifications for Web Services or taxonomies that form
the basis for technical fingerprints; its role is to represent the technical specification
of the Web Service, making it easier for Web Service consumers to find Web Services
that are compatible with a particular technical specification. That is, based on the
descriptions of the specifications for Web Services in the tModel structure, Web
Service consumers can easily identify other compatible Web Services. For instance,
to send a business partner’s Web Service a purchase order, the invoking service
must know not only the location/URL of the service, but what format the purchase
order should be sent in, what protocols are appropriate, what security is required,
an what form of a response will result after sending the purchase order.

A UDDI business registration consists of three components. The information provided
in a UDDI registry can be used to perform three types of searches.� White Pages - Basic contact information and identifiers about a company, including

business name, address, contact information, and unique identifiers such as D-U-
N-S numbers or tax IDs. This information allows others to discover a Web service

16

1.4. UDDI, Current Standard for Web Service Discovery

based upon its business identification. For example, search for a business that a
requester already knows something about, such as its name or some unique ID.� Yellow Pages - industrial categorizations based on standard taxonomies such as the
NAICS2 and UNSPSC3. Information that describes a Web service using different
categorizations (taxonomies) allows others to discover a Web service based upon
its categorization (such as being in the manufacturing or car sales business).� Green Pages - technical information about services exposed by the business includ-
ing references to specifications of interfaces for Web Services, as well as support for
pointers to various file and URL-based discovery mechanisms. Technical informa-
tion that describes the behaviors and supported functions of a Web service hosted
by its business. This information includes pointers to the grouping information of
web services and where the Web services are located.

1.4.1. Limitations of UDDI

Even though the API provided by UDDI allows random searching for businesses, it’s
not feasible for a program to select new business partners dynamically. Realistically,
it’s more likely that business analysts with specific knowledge of the problem at hand
will use UDDI portals to discover potentially interesting services and partners, and
technologists will write programs to use the services from companies that have already
been discovered. Most likely there will be programs that update the data in a UDDI
registry, but most publicly available registries already have a user-friendly interface that
allows human users to update information in a registry.

UDDI basically supports keyword based search, which though being fast and scalable4

has certain limitations. Consider a Web service that sells books and the corresponding
WSDL document that contains an output message of type “Book”. The type “Book”
is defined in the types block of the WSDL document. If a requester searching for a
book selling web service, uses keywords, say “Buch”, “hardcover”, or “volume” instead
of “Book” the book selling Web service will not be found as a match by the UDDI search
algorithm. In other words, the keyword based search detects a Web service as match
only if the requester uses the same terminology as the provider. Consider another Web
service that sells books but not text books. If a requester searches for a web service
that sells text books, keyword based search will detect this Web service as a match. So,
keyword based search suffers from two main problems, namely lack of interoperability
and lack of semantics.

Another limitation of UDDI search is the fixed terminology (cf. UDDI data set) for
describing properties of Web services. Considering the idea of universality of UDDI, a

2North America Industry Classification System http://www.census.gov/epcd/www/naics.html
3United Nations Standard Products and Services Code http://www.unspsc.org/
4Probably the best example of scalable and efficient keyword based search is the Google search engine.

17

http://www.census.gov/epcd/www/naics.html
http://www.unspsc.org/

1. Motivation

small fixed set of properties is not sufficient to describe all sorts of business services.
Different business services have different properties that characterize them most appro-
priately. The properties of two business services may not be comparable with each other.
For example, in case of an information providing Web service the response time may be
interesting and there is no shipment period, whereas in case of a book selling service the
inverse is more interesing.

1.5. Limitations of Existing Semantic Matchmaking

Approaches

The main motivation behind semantic Web services research is to provide formalisms
and tools to automate tasks needed in various phases of Web service markets. The
basic idea is to describe properties and capabilities of Web services in unambiguous and
machine interpretable way. There are already a few approaches available for describing
Web services semantically, differentiating in the underlying formalism and expressivity.
We will discuss them in detail in Section 5.3. However, there is not much new work done
about matchmaking of Web services in the recent years.

Existing matchmaking approaches, though using expressive descriptions of Web service
properties fail to exploit the expressiveness as they use only the interface description
for the purpose of matchmaking. More precisely, most of the existing matchmaking
approaches check whether the types of input and output parameters of a Web service
are compatible with the desired types of input and output parameters, although the
underlying description formalisms typically allow to model much more properties than
just input and output parameters.

Such interface matching approaches have the drawback that they do not lead to au-
tomation, which is one of the primary goals of semantic web services. Consider for
example a book selling Web service that on receiving an ISBN of the desired book and a
delivery address, ships the ordered book to the delivery address. When this Web service
is found on the basis of the type of output parameter (in this case “Book”), a software
engineer can incorporate this Web service in a complex business process at a place, where
a book is expected. However, the software engineer does not know which book the Web
service actually delivers. In this case, obviously the software engineer wanted that the
Web service delivers the order book, that is the book with the entered ISBN and not
just any book.

In order to find out which book the found Web service actually delivers, whether he
gets the electronic version of book per email, or a download link or hard copy of the
buch via surface mail etc., the requester still needs to read description of each match
manually. So, mere interface matching or black box views are actually bottlenecks for
automation and scalability and consequently spontaneity in web service markets.

Another limitation of the existing semantic matchmaking approaches is concerning

18

1.6. Outline

non-functional properties of Web services. Existing approaces suggest to use ontologies,
in particular taxonomies of properties for describing various non-functional properties
of Web services. This is an improvement over UDDI. However they do not deal with the
trust aspect, which is very important while dealing with non-functional properties.

In order to achieve an infrastructure, in which clients can trust Web services on the
basis of their non-functional properties (credentials), it is not practical to abstract from
the issuer of such credentials. A Web service provider will obviously describe his Web
service in such a way that it has credentials that the majority of clients prefer, so that
his Web service is found and used often. However, when the clients know that the
Web service providers can claim to have just any credentials, the credentials of the Web
services will be hardly of any practical use. Rather, there is a need for a technique
that allows parties different from the Web service providers to issue credentials to Web
services and other parties to build trust in Web service on the basis of such credentials.
That is, one needs a technique to determine which credentials of a Web service are worth
considering while matchmaking and which not. The main challenge in this regard is that
the technique should not base on central control.

1.6. Outline

The ultimate goal of this work is to show how semantically rich descriptions of Web
services can improve Web service matchmaking. By improvement, we mean enabling
or improving automation of certain tasks that a user has to accomplish in order to
find a Web service that can be later incorporated in a system. The main contribution
of this work is an expressive formalism for modeling resources, behavior and security
related aspects of Web services in a unified way and algorithms for reasoning about such
properties of Web services to enable expressive and automatic matchmaking of Web
services.

In Chapter 2, we identify the need for more automation and expressivity as basic
requirement for Web service discovery. In Section 2.1, we present illustrating
examples to identify criteria typically used in business scenarios to search for
Web services. The examples illustrate the need for an expressive formalism
that allows to specify constraints on dynamic behavior of Web services, on
trustworthiness of the involved actors and on the objects involved in the
execution of a web service.

Existing matchmaking approaches on one side consider very simple kinds of con-
straints, on the other side have neglected the scenarios, in which a business process
or a software system already uses web services and it is desired to replace a Web service
by another web service, that offers equivalent functionality. In such scenarios, match-
making based on constraint satisfaction is not efficient. Rather, there is a need for a
method that directly checks two Web service descriptions for equivalence.

19

1. Motivation

In order to perform expressive matchmaking, different aspects of web services must be
described in a way that machines can reason about them. We consider dynamic behavior
of Web services, credentials of the involved actors and objects involved in Web service
execution. In Section 2.2, we identify requirements for formal descriptions of
Web services.

In Part II, our focus is on developing a formalism for modeling Web services that can
cover the requirements identified in Section 2.2.

Different Web service providers use different terminologies to describe the objects
involved in the execution of their web services. Typically, there is no shared under-
standing among the web service providers as they act autonomously and independent
of each other. Currently, only users have to understand the terminologies used in the
description of a Web service. However, when Web services are composed, there is a need
for a mechanism that can handle the mappings between the ontologies of different Web
service providers. Existing approaches for describing Web services semantically mainly
focus on this aspect by using ontologies for describing the involved objects in a machine
understandable way. We use description logics for modeling involved objects semanti-
cally. In Chapter 3, we first introduce description logics, ontologies, the Web Ontology
Language (OWL), description logic query and rule languages. Then, we show, how
the the resource schema of an agent can be modeled as a description logic
TBox.

Existing approaches for describing Web services semantically do not deal with the
security related aspects of the Web services, in particular, access control. Access control
roughly means, that only eligible users are allowed to access a Web service. Resolving
access control issues is extremely important, before Web services can be employed in
realistic business settings. In open and distributed environments like the web, identity
based access control is not appropriate, since there is no central instance to check the
correctness of the identities. On the other hand, the identities of the actors are often
unknown. In such environments capability or credential based access control is more
suitable. In Chapter 4, we introduce credential based access control, especially the Sim-
ple Distributed Security Infrastructure (SDSI) and the Simple Public Key Infrastructure
(SPKI) and their combination known as SPKI/SDSI. Even though credential based ac-
cess control is the right paradigm for access control in distributed and open systems,
the available technologies suffer from interoperability problems, since they do not allow
to describe relationships among the certified credentials. For example, it is not possi-
ble to say that the property above21 certified by actor A is a subset of the property
adult certified by actor B. In Section 4.3, we show how access control policies
and certification policies in a credential bases access control system, can be
modeled in an interoperable way with the help of ontologies.

Invoking a Web service can trigger a complex business process that involves many
independent and autonomous actors. Assuming a central instance that controls the
execution of such a distributed process limits the application of Web services to only

20

1.6. Outline

mediator like web services, which means a Web service coordinates all the interactions
with its component Web services and appears as a black box to its user. However, in
many cases a Web service is not a mediator but delegates the responsibility of certain
subtasks to component Web services. For example, a book selling Web service delegates
the task of shipping the book to the customer to some shipping service. For modeling
behavioral aspects of Web services, we use polyadic π-calculus with typed channels,
which we introduce in Chapter 5. Even though π-calculus is a very expressive formalism
while still having a simple syntax, it is not practical to use it in its pure form. The reason
is that it suggests to model everything as processes and hence makes it impossible to
model certain steps as black-boxes. In Section 5.2, we augment the formalism
with a notion of local operations to overcome this problem.

Having description logics, π-calculus and credential bases access control as
basic formalisms at our disposal, we develop a formalism by combining the
three formalisms for describing Web services semantically and illustrate the
strength of the formalism by some examples in Chapter 5. Roughly, the main
idea behind the combination can be summarized as follows: We describe the behavior
of Web services using polyadic π-calculus. Since, π-calculus abstracts from the
meaning of the involved objects in a process by considering objects as strings
without any structure, we use description logic ontologies to describe the
meaning of the involved objects. π-calculus offers the notion of guarded
processes (processes that are executed only if certain condition is fulfilled),
and π-calculus allows equality check on objects as the only condition. We
extend the notion of guarded processes by using using boolean predicate
symbols as condition expressions, for example to embed access checks.

Having an expressive formalism at our disposal for describing web services semanti-
cally, we deal with matchmaking of Web service in Part III. We identify the need for
two types of matchmaking approaches, namely Goal driven Matchmaking and Simulation
based Matchmaking.

In goal driven matchmaking, Web service discovery is triggered by user’s goals. In
business scenarios user’s goals are derived by his business policies and strategies. The
very first problem that needs to be solved and often ignored in related lit-
erature is, how a user’s goal can be specified. We deal with this problem in
Chapter 6.

Goal based matchmaking is handled in Chapter 7. We develop an algorithm
that selects from a given set of Web services those Web services that offer
the functionality desired by the user (satisfy the formula describing user’s
goal). Since in general, a Web service is a complex process that can take different
execution paths, a Web service may yield desired functionality only if certain conditions
are fulfilled. These conditions can be semantic constraints on the data involved in the
web service execution or security constraints. Our matchmaking algorithm yields not
only yes/no answers but also in case of a positive answer also the conditions under

21

1. Motivation

which a Web service is a match. This is one of the main differences of our matchmaking
approach from existing approaches.

In some scenarios, in which a business process or a software system already uses Web
services, it may be desired to replace the use of a Web service by another Web service,
that offers equivalent functionality. In such scenarios, goal based matchmaking may not
be efficient, since it would require to derive all the goals that the old Web service fulfills.
A better approach is to directly compare two web service descriptions and
check for equivalence. We deal with this problem in Chapter 8.

In Part IV Implementations and Applications, we introduce implementation of our
algorithms in Chapter 9. We present the detailed architecture of the implemented pro-
totype in Sections 9.1 through 9.4.

The main components of the implemented prototype are graphical user interface, rea-
soner, semantic Web services API, knowledge base management and conversion tools
for generating semantic descriptions from WSDL documents and HTML forms. In Sec-
tions 9.1 through 9.4, we describe all the components in detail. In order to show the
practicability of our prototype, we evaluated it: (1) to show that our formalism is ex-
pressive enough for describing real Web services (2) to show our reasoning algorithms
are fast enough for practical application and (3) to show that our implementation scales
for a large number of Web service descriptions and user interfaces are intuitive.

In Chapter 10, we discuss how the techniques developed in this work were used in
SemIPort (Section 10.1) and SESAM (Section 10.2) research projects. We also discuss
possible scenarios in which our techniques and tools can be used like reasoning about
market mechanisms and model driven architecture.

Finally, we conclude in Chapter 11 by summarizing our contributions and presenting
problems that can be of future research interest.

22

2. Requirements

In the previous chapter, we have introduced Web service markets and motivated our
work by identifying the need for automation of various steps that need to be performed
in such a market. In this work, we focus on the matchmaking of Web services, so we
start by identifying requirements for matchmaking that would lead to automation while
finding and binding Web services in an application.

Transparency of a business process is crucial for cooperation and hence automation
in copetitive markets. Consider for example a real world scenario, in which a person,
say A, walking down a shopping street is halted by an employee, say B, of a promotion
company. The person B asks the person A to fill up a form that includes personal
information like credit card details, date of birth, address etc. Typically, the very first
question that arises in the mind of person A is what is he going to get in return and what
happens with all his personal information that he is supposed to fill in. If the person B
does not give him the answer to these questions, it is very unlikely that person A will
cooperate by filling up the form.

Similar is the case with Web services. Web services are technical interfaces to offer
business processes. Their intended use is to incorporate them in larger systems that need
the functionality of the business processes offered by them. Since, we are following the
aim of automation, that is a user must be able to decide automatically whether a Web
service offers the functionality that he needs at a certain point in his business process,
the transparency of the offered business process is necessary. Otherwise, a user will have
to contact the Web service providers and ask them for details, which considering the
large number of Web services, requires a lot of manual effort.

Because of lack of support for transparency, current semantic matchmaking approaches
fall short, since they match the interfaces of a Web service. As a result, the matched
Web services are those web services that a user can in principle execute but there is no
guarantee whether the matched Web services solve the task the user needs to solve in
his larger system.

Requirement 1. Matchmaking should be functionality based rather than interface
based.

In Section 2.1, we will identify which aspects of Web services should be considered
while dealing with matchmaking. That is, which type of conditions a user may wish to
specify in order to find desired Web services. Since matchmaking operates on descriptions
of Web services, the degree of automation of the web service discovery process depends on

23

2. Requirements

the expressivity and the formal nature of the language used for describing Web services.
For example, the limited expressiveness of WSDL for describing the functionality of Web
services together with the informal nature of the UDDI model is the main bottleneck
from the point of view of automation. Therefore, the type of conditions that a user
may wish to specify for finding desired Web services directly pose some requirements
on the formalism for describing Web services. However there are also some additional
requirements for describing Web services. We will deal with the requirements for Web
service description formalism in Section 2.2.

2.1. Requirements for Matchmaking

We first consider the use case that a software engineer is designing a business process
and needs Web services for performing certain tasks in the business process. In order
to find the desired Web services, he specifies the conditions that a Web service has
to fulfill. We call such an approach goal based matchmaking. Goal driven approach
deals with specifying the conditions on a desired Web service description and checking
whether a Web service can fulfill the conditions. In business scenarios, these conditions
are derived from high level business strategies that are typically not formalized or often
not formalizable at all since they often depend on experiences and intuitions of managers.
In this work, we do not deal with the problem of deriving conditions on desired Web
services from business strategies and assume that such conditions are available. Existing
semantic matchmaking approaches fall into the category of goal based matchmaking
even if, as we have discussed earlier, they support very simple kind conditions (types of
input and output parameters).

Often there are cases, in which a business process is already designed and a software
engineer needs to replace an already incorporated Web service by another one without
changing the overall behavior of the whole business process. In such scenarios, one
seeks Web services that offer the same functionality as the Web service that needs
to be replaced. In EAI scenarios, the systems within a large organization with many
departments are connected together via Web services. Since the number of available
Web services can become quite large, humans easily lose overview which Web services
offer which functionalities. This often leads to the problem that new Web services are
programmed per demand although there is already a Web service that offers the same
functionality. In such scenarios, it is desirable to find duplicates and remove them in
order to achieve better management and avoid fragmentation. In both use cases, goal
based matchmaking may not be feasible, since the conditions fulfilled by the Web service
to be replaced are often not available. Rather there is a need for a method for comparing
two Web service descriptions directly for similarity. We call such an approach for directly
comparing two web service descriptions simulation or equivalence based matchmaking.

Requirement 2. In order to cover as many use cases as possible, two kinds of match-

24

2.1. Requirements for Matchmaking

making approaches are needed, namely goal driven and simulation driven.

In the rest of this section, we motivate aspects of Web services one often wishes to
define constraints on in order to find desired Web services.

2.1.1. Constraints on Resources

A Web service operates on resources that can be real world objects or information
objects. A Web service expects resources from the client and delivers resources to the
client. A requester searching for a web service typically wishes to define constraints on
the resources expected from and delivered by the Web service.

Consider for example a library that maintains a wish list of books where the library
members can enter the ISBN of books they would like to have. On the basis of some
ranking (e.g. number of members that wish the book) of the desired books the library
system needs to place book orders at regular intervals. At the time of designing and
implementing the library system the software engineers need to find book selling Web
services. Suitable book selling services are those that accept an ISBN and deliver a book.

Requirement 3. It must be possible to define constraints on the types of input and
output parameters of a Web service.

Considering the library scenario a bit deeper, we identify that the software engineers
are actually interested in Web services that do not sell just any book, but exactly the
book that is ordered by the library software. In this example a suitable Web service is
one that delivers a book with the same ISBN as the one it obtains as input.

Requirement 4. It must be possible to define constraints on the values of the properties
of the resources. In other words, it must be possible to define relationships among
resources.

In realistic scenarios we must consider that there are many book selling Web ser-
vices available and there is no global vocabulary for the domain of books that every
Web service can or wants to use for describing the resources of his book selling Web
service. As a result, we have to assume that in general Web service providers describe
their Web services with their respective vocabularies independently of other Web service
providers. Similarly, a requester needs a vocabulary that he understands to be sure that
the constraints that he specifies capture the intended meaning.

Consider for example, that the output type of a book selling service is Book and a
requester searches for Web services that have output type Buch. If the type Book as
well Buch mean the set of books, then the Web service must be detected as a match.
Note, that problem we are addressing at this point is not the translation from English
to German terms. We have used English and German words for books only to illustrate
the problem and the web service should be detected as a match even if the offered and
requested types are KL651 and T2Z7Q provided both of them mean the set of books.

25

2. Requirements

Requirement 5. The formalism for specifying constraints on resources must be able to
consider mappings among the vocabularies while checking the satisfiability of constraints.

When a Web service executes, it may cause changes in the knowledge state of the
participants. For example, charging requester’s credit card as a consequence of the
order he has placed is performed by means of an update (setting the available credit
amount to a lower value) in the database of the corresponding bank. While searching
for desired Web services, a requester may be interested in specifying which effects he
wishes to take place and which not.

Requirement 6. The formalism for specifying constraints must support specification
of desired and undesired changes in the resources.

2.1.2. Security and Trust Constraints

Because of the vast heterogeneity of the available information, Web service providers
and users, security becomes extremely important. Security related aspects are mostly
classified in three categories, namely confidentiality, integrity and availability [Bis03,
SC01, Den82].

In some cases, the access to a Web service may be restricted. We will discuss this
issue in the next section in more detail. For this moment, we identify the following
requirement.

Requirement 7. The framework should allow end users to check and prove his eligibility
for a Web service.

When a Web service uses other Web services in order to achieve its functionality, it
may be possible that a requester trusts the composite Web service but not its component
Web services.

Requirement 8. The formalism should allow a requester to specify constraints on the
set of parties involved in the execution of a Web service.

2.1.3. Constraints on Behavior

In the above examples, we assumed that the book selling Web service performs input
and output activities in a particular order; first receiving a book order (input activity)
and then sending the book to the client (output activity). Similarly, we assumed that
the client, the library system, performs the activities of opposite polarity in the order
such that the communication between a book selling Web service and the library system
is possible. That is, the library system first sends the book order (output activity) and
then receives the book (input activity).

So, a suitable Web service for the library system, that first sends an book order and
then expects a book, must have the matching (opposite pole) communication pattern.

26

2.1. Requirements for Matchmaking

If the Web services had only one input activity and only one output activity, one may
assume that a web service always perform the output activity after the input activity.
As a consequence matching the communication patterns of the client and a Web service
would be trivial.

However, in general this is not the case. Even if Web services abstract from imple-
mentation details, the process triggered by invoking a Web service may be very complex
involving multiple interactions with the client or other Web services. Consider a book
selling Web service that after receiving a book order, sends a confirmation to the client
and expects a back confirmation. Only after receiving the back confirmation from the
client, it sends the ordered book to the client. Even if the Web service receives an ISBN
in the first input activity and output the book with the same ISBN in the last activity,
it may not be suitable for the library system, if the library system does not foresee to
receive an order confirmation and sending a back confirmation. In other cases, an oppo-
site situation may occur. That is, a client system is ready to receive a book only after
it has received an order confirmation and sent a back confirmation, but the Web service
neither sends any order confirmation nor it waits for a back confirmation before sending
the book to the client.

Requirement 9. In order to find Web services that can be incorporated in the client
system it must be possible for the requester to specify constraints on the communication
pattern of a Web service.

While the above requirement concerns the public communication protocol of the Web
services (choreography), there are use cases, in which a requester may be interested in
specifying constraints on the internal communication structure of a Web service (orches-
tration). Consider, for example a company internal Web service exposing a complex
order process. It may be desired that the ordered good must be approved by at least
two managers before it is bought. In other words, this means that in order to check
whether the Web service is compliant to company’s policies, one must be able to reason
about the information flow and the order of activities that transport information.

Requirement 10. In order to find Web services that can be incorporated in the client
system it must be possible for the requester to specify constraints on the internal com-
munication of a Web service with other services.

2.1.4. Combination of different Types of Constraints

Finally, a requester may wish to combine different types of constraints. In the following,
we give some examples of the combination of different types of constraints.� Combination of Effects and Behaviour A user may wish to search for services

that charge the credit card after the shipment of the ordered book.

27

2. Requirements� Combination of Resources, Behaviour and Trust A Web service may send
some user specific information, e.g. his credit card number or his date of birth,
to its component Web services that a requester (potential user) may not trust. In
order to make sure that a Web service acts in compliance with his privacy policies,
he wishes to specify constraints like “user’s date of birth should not be sent to a
party that the user does not trust”� Combination of Trust and Effects The bank Web service should check that
the book selling Web service is authorized (by the user) to cause an effect in the
user’s bank account.

Requirement 11. The formalism should allow to specify different types of constraints
in a unifying and composable manner. That is, it must be possible to specify complex
constraints from simpler constraints that may be of different types.

2.2. Requirements for Semantic Description of Web Services

In order to enable automatic matchmaking based on complex goals, the necessary infor-
mation about various aspects of Web services must be available in machine interpretable
form. Web services are a technology to offer business processes. Every Web service
has an underlying business process which represents the actual functionality of the Web
service. Such a business process may be simple like querying a weather database and
returning the weather information to the requester or it can be very complex, for exam-
ple complete order processing. In general, invoking a Web service can trigger a complex
business process that involves multiple parties and complex interactions among them. In
order to describe the functionality of a Web service semantically, the underlying business
process has to be described.

While identifying requirements for a formalism for describing web services, we need
to differentiate among (1) which information about Web services should be available in
machine understandable form such that expressive matchmaking is possible (2) which
information web service providers typically do not wish to describe (3) which information
providers have to describe, e.g. because of legal issues, (4) which information providers
would like to describe formally if an appropriate formalism were available.

The primary motivation of Web service providers for publishing machine interpretable
descriptions of their Web services is to achieve better visibility for their Web services.
Web service providers wish that the descriptions of their Web services are found by the
requesters and their Web services are invoked often. So, if a formalism were available
which is expressive enough for modeling properties of web services that the Web ser-
vice providers currently have to describe in natural language, the Web service providers
would describe their web services more expressively provided that the expressive mod-
eling does not require too much manual modeling effort compared to the added value it

28

2.2. Requirements for Semantic Description of Web Services

brings. Note, that the current Web service description standard WSDL is not expressive
enough to describe many aspects of Web services that the providers may wish to publish.
Therefore, providers currently have to describe those aspects in natural language inside
the documentation tag of a WSDL document.

2.2.1. Requirements for Resource Descriptions

A Web service execution involves exchange of resources among the participants. Thus
describing the involved resources is an essential part of a Web service description, so that
the parties can reason about the resources other parties expect from them and vice versa.
However, providers typically do not wish to disclose descriptions of all the resources that
they possess. The reason for this is that in many cases the resources of a provider are
an important asset (e.g. the database of all the books available at Amazon). On the
other side, a requester obviously wishes to have as much information as possible about
the Web service.

Requirement 12. The formalism should not force Web service providers to disclose
descriptions of all their resources base while still allowing reasoning about the involved
resources.

Web service are described by actors acting independently of each other. Assuming
the existence of a global vocabulary for resources is not realistic. Resource descriptions
communicated among different parties must be understandable by them.

Requirement 13. The formalism for describing resources should support semantic
interoperability.

Consider for example a book selling Web service that inputs the ISBN of a book and
outputs an order confirmation. In this case, it is not enough to model the type of the
output, since the order confirmation should be about the book the requester has ordered
and not about any book. In order to describe such an output, one must be able to refer
to the values of properties of inputs. However, the concrete resources that are involved
in the execution of a Web service are known only at run time and not the design time.

Requirement 14. The formalism should support a way for referring to individuals that
become known at run time

In our example, the ISBN of the book ordered by a user is obviously not known at
the time of describing the Web service, but is provided by the client as input.

Requirement 15. It must be possible to describe output resources together with their
relationship with input resources.

29

2. Requirements

2.2.2. Requirements for Credentials

In order to achieve an infrastructure, in which clients can trust Web services on the basis
of their credentials, it is not practical to abstract from the issuer of such credentials.
Every cloth shop obviously advertises that it has great atmosphere and very friendly
salespersons etc. So, people typically do not give too much importance to such self
advertisements. Rather, they look for credentials issued to the shop by some other
party, e.g. Stiftung Warentest. Similarly, if only Web service providers describe their
Web services, the credentials of the Web services will be hardly of any practical use.
Rather, there is a need for techniques in which parties different from the Web service
providers issue credentials Web services and other parties can build trust in Web service
on the basis of such credentials.

Requirement 16. The Web service description formalism should allow to model non-
functional properties in a way that users can build trust in them and there is no need
for a central control.

2.2.3. Requirements for Behavior Description

Considering our example of a Web selling service more deeply, we see that the above
identified requirements does not cover the participating agents. That is, the formalism
just covering the above requirements does not allow to describe that the output (book)
is sent to the same actor (user) that has sent the input (ordered the book).

Requirement 17. The formalism must allow to identify actors and communication
channels between them.

A Web service is an interface that is invocable via standard web protocols like HTTP.
In general, the process triggered by invoking a Web service may involve many actors
that may or may not be Web services. So, behavior of a Web service can not be defined
without defining the non-Web processes. So, we need a formalism that can also describe
a non-Web process.

From the technical point of view, the only difference between Web and non-Web
processes is that they use different communication protocols. The actors involved in a
Web service process communicate by exchanging messages. In case of Web services, the
messages are exchanged via Web protocols like HTTP and are serialized in some web
standard syntax like SOAP, whereas in case of non-Web processes the communication
protocols can be “Phone”, “Fax” “Surface mail”.

In order to describe Web services semantically, we need to describe any type of invo-
cable actors, those that can be reached via Web protocols and those that can be reached
via non-Web protocols. Web services can then be seen as a special type of invocable
actors, namely those that can be invoked via Web protocols.

30

2.2. Requirements for Semantic Description of Web Services

c

w1 w2

1
2 3

4

(a) Execution Controlled by Client

c

w1 w2

1

2

3

(b) Distributed Execution

Figure 2.1.: Client-Server vs. Distributed Execution

Requirement 18. The formalism should support description of business processes that
run in multiple environments.

We have already mentioned that providers typically do not wish to disclose the de-
scriptions of all their resources. Similarly, they typically do not wish to disclose the
identities of their business partners.

Requirement 19. The formalism should not force Web service providers to disclose
the identities of their business partners while still allowing reasoning about the involved
actors.

Centrally controlled vs. distributed execution

Consider a user who wishes to know the average temperature on the new year eve
in Karlsruhe. Further consider, that there is no Web service that offers exactly the
functionality the client is looking for. So, the client thinks of composing some appropriate
Web services together and finds two Web services w1 and w2, where w1 delivers a list of
temperatures (one entry per year) for a given place and a given day and w2 computes
average of a given list of numbers.

To achieve his goal, the client c would specify a composite Web service having w1

followed by w2. In the current approaches, the data flow during the execution of the
composite Web service is as follows (refer to Figure 2.1(a)).

1. The client inputs the values “Karlsruhe” and “31.12” for place and day respectively.

2. The client obtains the list of temperatures from w1.

3. The client sends the list to w2

4. The client obtains the average temperature from w2 .

The execution of the newly composed Web service is controlled by the client. Al-
though, the client is only interested in the end result (average temperature), it has to
remember the list of temperatures returned by w1 and send them unchanged to w2. In

31

2. Requirements

other words, the Web services w1 and w2 do not communicate directly with each other,
but via the client c. The problem becomes even clearer when w1 and w2 are provided by
the same Web service provider and the client is physically far away from w1 and w2 and
possesses only a narrow bandwidth internet connection or has only limited computing
resources, e.g. if the client machine is a mobile phone.

A more efficient approach would be to specify and execute the composed Web service
in such a way that w1 sends the list of temperatures directly to w2, which in turn
calculates the average and sends it to the client. Such an approach would prevent the
client from coordinating the Web services and having the overhead by compulsion of
playing the role of a mediator unnecessarily. In such a distributed execution approach,
that anyway reflects the autonomous functioning of the Web services more realistically,
the communication between the parties will be as follows (refer to Figure 2.1(b)).

1. The client inputs the values “Karlsruhe” and “31.12” for place and day respectively
for w1.

2. The Web service w1 sends the list of temperatures to w2.

3. The Web service w2 sends the average to the client c.

In order to enable scenarios like the one above, the Web service w1 should allow the
user to input the link to a Web service where the output of w1 should be sent to (in
our case w2). Note, that technially it is not a problem to realize such Web services; in
fact there are many Web services that allow such a flexibility. The challenge is rather
to describe such a phenomenon formally.

Requirement 20. The formalism should support description of Web services that can
communicate with other Web services as required by a user.

Updates

During the execution of a Web service, the resources of the involved parties may change.
For example, when a book selling service charges the credit card of the user, the amount
of money in the credit card account of the user is reduced. That is, there is an update
in the data base of the corresponding bank. To model such updates, one needs to model
the bank as another agent. The book selling Web service would send a request to the
bank to reduce the amount from the credit card account of the user.

As another scenario, consider an English auction provided as web service. The Web
service accepts a new bid only if it is higher than the current highest bid. The new bid
then becomes the current highest bid. In order to guarantee the correct functionality
of an English auction the value of the highest bid may not decrease. That is, the Web
service may not update it to a smaller value. Furthermore, resources can be added to
and deleted from the set of resources of a party.

32

2.2. Requirements for Semantic Description of Web Services

Requirement 21. The formalism should allow to model the updates in the data bases
of the involved parties.

Access Control

Not every Web service is intended to be used by everyone freely. In real business sce-
narios, providers need to restrict access to their Web services due to security reasons,
economic reasons and legal reasons. Security related aspects are mostly classified in
confidentiality, integrity and availability. Access control, which means the users must
fulfill certain conditions in order to access certain functionality plays an important role
in all three fields. For example, a student must show her library card to borrow a book
from the university library. In context of confidentiality, it means that a student has
access to the information relevant to only her own library account and thus can not
know which other students have borrowed which books. In context of integrity, it means
that a student may not change or cause a change in information relevant to the library
account of another student. In context of availability, access control helps to prevent
denial of service attacks that can take place if the access is uncontrolled. From the
economic point of view, access control is necessary to for example ensure that only the
users who have paid their annual membership are allowed to use the Web service. To
understand why access control is important from legal perspective, consider again the
example of our book selling services that on receiving ISBN of a book deliver the book
to the client. Considering that there are books that are not allowed to be sold to minors
by law, a book selling Web service is forced to check the age of the user in case a user
orders such a book, before delivering him the book.

Requirement 22. The formalism should allow describing access control policies.

In order to achieve simulation based matchmaking we have the following requirement.

Requirement 23. Web services should be described in a way such that the descriptions
are directly comparable.

Web service descriptions are often composed to form new Web services. In this work,
our focus is not on developing algorithms for the automatic composition of Web ser-
vices. However, in order to support matchmaking of composite Web services, there is
a need for a formalism that allows to describe composite Web services. Furthermore,
a formalism supporting the description of composite Web service would lend itself to
automatic composition algorithms, since they need a way to “write down” the models
they construct.

Requirement 24. The Web service description formalism should support the descrip-
tion of composite Web services.

33

2. Requirements

2.3. Conclusion

In this chapter, we first motivated that for real business scenarios, the criteria for search-
ing for suitable Web services are much richer than just their interfaces. We further
identified that to cover a broader spectrum of use cases, there is a need for two types of
matchmaking approaches, namely goal driven and simulation driven. We have identified
that in order to achieve a functionality based matchmaking, three major aspects of Web
services need to be dealt with namely, involved resources, credentials of the involved
actors and the dynamic behaviour of a Web service. In Section 2.1 we identified various
requirements for a formalism for specifying constraints concerning all the three aspects
of Web services. These requirements are the basis of the goal specification formalism
that we develop in Chapter 6. A matchmaking essentially operates on the description
of Web services. In Section 2.2, we have identified requirements for a formalism for
describing Web services. These requirments are the basis of the Web service description
formalism that we develop in Chapter 5.

34

Part II.

Formal Description of Web Services

35

In this part, we present a formalism for describing Web services functionality. We
have seen in Chapter 2, that in order to describe web service functionality we need to
define invocable agents in general and view Web services as special type of invocable
agents, namely those that can be invoked via Web protocols.

A web service is an interface that is invocable via standard Web protocols like HTTP.
In general, the process triggered by invoking a web service may involve many actors,
that may or may not be web services. The actors run concurrently to each other and
communicate by exchanging resources. These resources can be real world objects or
information objects. Through exchange of resources, the set of resources of the actors
participating in an exchange (communication) may change. Furthermore, the actors may
perform updates in their local set of resources. For example, they can add or remove
resources to and from their respective set of resources or they can define relationships
among the resources in their respective set of resources. The local operations performed
by an actor are not observable by other actors, whereas the communication operations
are observable for the actors that participate in the communication. Furthermore, we
consider that the possiblity of communication between two actors may be restricted.
That is, it is not necessarily the case, that every actor can communicate (exchange
resources) with any other actor. Rather, only actors having certain credentials are
allowed to communicate with another actor.

Agent

Credentials Resources

Behavior

Figure 2.2.: Model of an Agent

In our formal model, we call such invocable actors agents. Figure 2.2 shows the model
of an invocable agent that we consider in this work. Agents have a set of resources, a set
of credentials and a dynamic behavior. Formally, we consider a finite set of agents A.� For each agent A ∈ A, a finite set RA describing the resources of agent A. We will

deal with the description of resources in Chapter 3. In short, we will use expressive

37

description logics to model resource schema of the agents as T-Box and the facts
as A-Box.� For each agent A ∈ A, a finite set CA of credentials that the agent A holds. We will
deal with the modeling of credentials in Chapter 4. In short, we will use methods
known from computer security to model non-functional properties of Web services
as credentials such that users can build their trust in them and there is no need
for a central control.� For each agent A ∈ A, a process BA describing the dynamic behavior of A. We
will deal with modeling of dynamic behaviour including access control policies and
updates in Chapter 5. In short, we will use a process algebra to model the dynamic
behaviour and introduce the notion of local operations to model the updates in the
knowledge base (A-Box) of an agent. The objects communicated among different
agents are given meaning by connecting them to description logic T-Boxes. Fur-
thermore, we embed access control policies in the behaviour description by viewing
them as conditions.

38

3. Modeling Resources

3.1. Introduction to Description Logics

Description logics are a family of knowledge representation formalisms closely related
to first-order and modal logic. They are useful in various application fields, such as
reasoning about database conceptual models, as the logical underpinning of ontology
languages, for schema representation in information integration systems or for metadata
management [BCM+03].

In description logics, the important notions of a domain are described by concept
descriptions that are built from concepts (unary predicates) and roles (binary predi-
cates) by the use of various concept and role constructors. In addition to these concept
descriptions, it is possible to state facts about the domain in the form of axioms. Termi-
nological axioms make statements about how concepts or roles are related to each other,
assertional facts make statements about the properties of individuals of the domain.

In the design of description logics, emphasis is put on retaining decidability of key
reasoning problems and the provision of sound and complete reasoning algorithms. As
the name suggests, Description Logics are logics, i.e. they are formal logics with well-
defined semantics. Typically, the semantics of a description logics is specified via model
theoretic semantics, which explicates the relationship between the language syntax and
the models of a domain.

An interpretation consists of a domain and an interpretation function, which maps
from individuals, concepts and roles to elements of the domain, subsets of the domain and
binary relations on the domain, respectively. A description logic knowledge base consists
of a set of axioms, which act as constraints on the interpretations. The meaning of a
knowledge base derives from features and relationships that are common in all possible
interpretations. An interpretation is said to satisfy a knowledge base, if it satisfies each
axiom in the knowledge base. If there are no satisfying interpretations, the knowledge
base is said to be inconsistent. If the relationship specified by an axiom holds in all
possible interpretations of a knowledge base, the axiom is said to be entailed by the
knowledge base.

Practical applications of DLs usually require concrete properties with values from a
fixed domain, such as integers or strings, supporting built-in predicates. In [BH91],
DLs were extended with concrete domains, where partial functions map objects of the
abstract domain to values of the concrete domain, and can be used for building complex
concepts. Further research on decidability, computational complexity, and reasoning

39

3. Modeling Resources

Name Syntax Semantics

Negation ¬C ∆I \ CI

Conjunction (C ⊓D) CI ∩DI

Disjunction C ⊔D CI ∪DI

Existential Quantifier ∃R.C {d ∈ ∆I | ∃e ∈ ∆I with (d, e) ∈ RI ∧ e ∈ CI}

Universal Quantifier ∀R.C {d ∈ ∆I | ∀e ∈ ∆I s.t. (d, e) ∈ RI ⇒ e ∈ CI}

Figure 3.1.: ALC−Constructors

algorithms for different DLs with concrete domains has influenced the design of the
Ontology Web Language (OWL), which supports a basic form of concrete domains,
so-called datatypes.

3.2. Basic Description Logic ALC

ALC is the most widely accepted basic description logic, first introducted by Schmidt-
Schauß and Smolka in [SSS91]. ALC stands for “Attributive Language with Comple-
ments”. Its semantics is based on an interpretation (∆I , ·I), where ∆I is a non-empty
set (the domain) and ·I is an interpretation function. ·I assigns each concept name C a
subset CI of ∆I and each relation name R a subset RI of ∆I×∆I . It holds ⊥I = ∅ and
⊤I = ∆I . Figure 3.1 summarizes the syntax and semantics of the ALC constructors.� For a concept C, the concept ¬C denotes the set of all individuals that are in the

domain ∆I but not in the set CI .� For concepts C and D, the concept C ⊓D denotes the set of all individuals that
are in the set CI as well as in the set DI .� For concepts C and D, the concept C ⊔D denotes the set of all individuals that
are either in the set CI or in the set DI or in both the sets.� For a relation R and a concept C, the concept ∃R.C denotes the set of all indi-
viduals d for which there exists an individual e such that individuals d and e are
related via the relation R, that is (d, e) ∈ RI , and the individual e belongs to the
set CI .� For a relation R and a concept C, the concept ∀R.C denotes the set of all individ-
uals d that are related via the relation R only to individuals e that are in the set
CI .

40

3.2. Basic Description Logic ALC

Name Syntax Semantics

Concept Equivalence C ≡ D CI = DI

Concept Subsumption C ⊑ D CI ⊆ DI

Relation Equivalence P ≡ R P I = RI

Relation Subsumption P ⊑ R P I ⊆ RI

Figure 3.2.: ALC T-Box Axioms

A description logic knowledge base usually consists of a set of axioms, which can be
distinguished into terminological axioms (building the so-called TBox) and assertional
axioms or assertions (building the so-called ABox).

A TBox is constituted by a finite set of terminological axioms which define subsump-
tion and equivalence relations on concepts and relations. Figure 3.2 summarizes the
ALC TBox axioms.� An equivalence axiom of the form C ≡ D, whose left-hand side is an atomic concept

is called a concept definition. The concept on the left-hand side of the equivalence
axiom (C) is called defined concept. Semantically, C ≡ D states that an individual
either belongs to both the sets CI and DI or none of them.� An equivalence axiom of the form P ≡ R whose left-hand side is an atomic relation
is called a relation definition. The relation on the left-hand side of the equivalence
axiom (P) is called defined relation. Semantically, P ≡ R states that a pair of
individuals either belongs to both the sets P I and RI or none of them.� A subsumption axiom of the form C ⊑ D for complex concept descriptions C
and D are called (general) inclusion axiom. C is called a primitive concept, if
it is atomic and occurs on the left-hand side of an inclusion axiom. A set of
subsumption axioms of the form C ⊑ D where both C and D are atomic concepts
is called a concept hierarchy. Semantically, C ⊑ D states that if an individual i
belongs to the set CI then i also belongs to the set DI .� A set of subsumption axioms of the form P ⊑ R where both R and S are relations
is called a relation or role hierarchy. Semantically P ⊑ R states that if a pair of
individuals (d, e) belongs to the set P I then (d, e) also belongs to the set RI .

Assertional axioms or Assertions introduce individuals, i.e. instances of a concept,
into the knowledge base and relate individuals with each other and the introduced ter-
minology. Figure 3.3 summarrizes the ALC ABox axioms. A finite set of such assertions
is called an ABox.� Individual Assertions express that an individual is member of a concept.

41

3. Modeling Resources

Name Syntax Semantics

Individual Assertion C(i) iI ∈ CI

Relation Filler R(a, b) (aI , bI) ∈ RI

Individual Equivalence i = j iI = jI

Individual Inequivalence i 6= j iI 6= jI

Figure 3.3.: ALC A-Box Axioms� Relation Assertions express that two individuals are related with each other via a
given relation.� Individual equivalence assertions allows to express that two individuals are actually
equivalent.� Individual inequivalence axioms allow to express that two individuals are not the
same.

Reasoning Tasks In the following, we summarize some of the most important rea-
soning tasks performed with ALC.� Satisfiability: A concept C is satisfiable wrt. a TBox T , if there exists a model

I of T such that the interpretation of C is a non-empty set. That is, concept C is
satisfiable if there is a model I of C such that CI 6= ∅.� Subsumption: A concept C is subsumed by a concept D wrt. a TBox T , if for
every model I of T the interpretation of C is a subset of the interpretation of D.
That is, C ⊑ D if CI ⊆ DI in all models I of T .� Equivalence: Two concepts C and D are equivalent wrt. a TBox T if for every
model I of T the interpretation of C is equal to the interpretation of D. That is
C ≡ D, if CI = DI for all models I of T .� Disjointness: Two concepts C and D are disjoint wrt. a TBox T if for every
model I of T the interpretations of C and D are disjoint. That is, CI ∩DI = ∅
for all models I of T .� Instance check: Given an individual a and a concept C, check whether a is an
instance of C. That is aI ∈ CI for all models of the TBox T and ABox A.

3.2.1. Description logics with Concrete Domains

One of the drawback of the description logic ALC is that all the terminological knowledge
has to be defined on an abstract logical level. In many applications, one would like to

42

3.3. More Expressive Description Logic SHOIN (D)

be able to refer to concrete domains and predicates on these domains while defining
concepts. For example the domain of integers or real numbers with predicates like
equality, inequality etc.. In [BH91] a scheme for integrating such concrete domains into
description logics is presented. In the following, we give the basic definitions regarding
description logics with concrete domains and refer to [BH91] for more details.

Definition 1. A concrete domain D = (dom(D), pred(D)) consists of a set dom(D) (the
domain) and a set of predicate symbols pred(D). Each predicate symbol P ∈ pred(D) is
associated with an arity n and an n-ary relation PD ⊆ dom(D)n.

Definition 2. In addition to the concepts expressions in ALC, ALC(D) allows expres-
sions of the form P (u1, . . . , un) as concept descriptions, where P ∈ pred(D) is an n-ary
predicate and u1, . . . un are feature chains. The semantics of such concepts expressions
is defined as follows:

P (u1, . . . , un)I = {d ∈ ∆I |(uI1 (d), . . . uIn(d)) ∈ PD},

where for u = f1 . . . fm a feature chain,

uI(a) = fIm(fIm−1(. . . (f
I
1 (a) . . .).

Definition 3. A concrete Domain D is called admissible iff (1) the set of its predicate
names, pred(D) is closed under negation, (2) pred(D) contains a unary predicate ⊤D

for dom(D), and (3) the satisfiability problem for finite conjunctions over pred(D) is
decidable.

Subsumption and satisfiability of ALC(D) is decidable iff the concrete domain D is
admissible [BH91].

3.3. More Expressive Description Logic SHOIN (D)

Before we formally define the syntax and semantics of the description logics underlying
OWL, we here informally introduce the language constructs of the description logics
SHOIN . In particular we can build complex classes from atomic ones using the follow-
ing constructors:� C ⊓ D (intersection), denoting the concept of individuals that belong to both C

and D,� C ⊔D (union), denoting the concept of individuals that belong to either C or D,� ¬C (complement), denoting the concept of individuals that do not belong to C,

43

3. Modeling Resources� ∀R.C (universal restriction), denoting the concept of individuals that are related
via the role R only with individuals belonging to the concept C,� ∃R.C (existential restriction), denoting the concept of individuals that are related
via the role R with some individual belonging to the concept C,� ≥ nR , ≤ nR (qualified number restriction), denoting the concept of individuals
that are related with at least (at most) n individuals via the role R.� {c1, . . . , cn} (enumeration), denoting the concept of individuals explicitly enumer-
ated.

Based on these class descriptions, axioms of the following types can be formed:� concept inclusion axioms C ⊑ D, stating that the concept C is a subconcept of
the concept D,� transitivity axioms Trans(R), stating that the role R is transitive,� role inclusion axioms R ⊑ S stating that the role R is a subrole of the role S,� concept assertions C(a) stating that the individual a is in the extension of the
concept C,� role assertions R(a, b) stating that the individuals a, b are in the extension of the
role R,� individual (in)equalities a = b, and a 6= b, respectively, stating that a and b denote
the same (different) individuals.

Example 1. In this example we build a small terminology about the bibliographic
domain (based on a fragment of the SWRC ontology [SBH+05]. Consider the atomic
concepts Person, Publication, Article and Book, as well as a role author. We can build
a terminology stating that� Article ⊑ Publication, every article is a publication,� Book ⊑ Publication, every book is a publication,� Article ⊑ ¬Book, articles and books are disjoint, and� Publication ⊑ ∀author.Person, every author of a publication is a person.

Further we can assert facts about individuals, codd and relational model, stating that� Article(relational model), the individual relational model belongs to the concept
Article,

44

3.3. More Expressive Description Logic SHOIN (D)� Person(codd), the individual codd belongs to the concept Person,� author(relational model, codd), codd is the author of the relational model,� A Relational Model of Data for Large Shared Data Banks 6≈ codd, the individuals
codd and relational model are two different individuals1.

Datatypes In addition to the ”abstract” classes considered so far, the SHOIN (D)
description logic further supports reasoning with concrete datatypes, such as strings or
integers. For example, it is possible to define a minor as a person whose age is less
than or equal to 18 in the following way: Minor ≡ Person ⊓ ∃age. ≤18. Instead of
axiomatizing concrete datatypes in logic, SHOIN (D) employs an approach where the
properties of concrete datatypes are encapsulated in so-called concrete domains.

3.3.1. The Family of OWL Languages

Traditionally, a number of different knowledge representation paradigms have competed
to provide languages for representing ontologies, including most notably description log-
ics and frame logics. With the advent of the Web Ontology Language (OWL), developed
by the Web Ontology Working Group and recommended by World Wide Web Consor-
tium (W3C), a standard for the representation of ontologies has been created. Adhering
to this standard, we base our work on the OWL language (in particular OWL DL, as
discussed below) and describe the developed formalisms in its terms.

In this section we introduce the OWL ontology language and Description Logics as
its logical foundations. This introduction is to a great extent inspired by [HPSvH03]
and [BHS04]. The OWL ontology language is based on a family of description logics
languages. Within this family, three members have been standardized as sublanguages of
OWL: OWL Full, OWL DL, and OWL Lite. These sublanguages differ in expressiveness,
i.e. in their provided constructs and the allowed combinations of these constructs.

Several different syntaxes for OWL DL have been defined, including an abstract syntax
as well as XML and RDF-based syntaxes. For our presentation, we use the traditional
description logic notation since it is more compact. For the correspondence between this
notation and various OWL DL syntaxes, see [HPS04b].

Before we discuss the description logic underlying OWL DL in detail, we provide a
brief overview of description logics in general.� OWL Full is the most expressive of the members of the OWL family. It has mainly

been defined for compatibility with existing standards such as RDF (Resource De-
scription Framework, [MM04]). Unfortunately, the satisfiability problem for OWL
Full is undecidable and thus impractical for applications that require complete
reasoning procedures.

1Please note that this fact is not trivial, as OWL does not take the unique names assumption.

45

3. Modeling Resources� OWL DL is a sublanguage that was designed to regain computational decidability.
It directly corresponds to the SHOIN (D) description logic, a decidable logic
with NExpTime complexity. For SHOIN (D), practical reasoning algorithms are
known, and increasingly more tools support SHOIN (D) or slightly less expressive
languages.� OWL Lite corresponds to the less expressive SHIF(D) description logic. Its com-
plexity is known to be ExpTime. OWL Lite has received little interest, mainly due
to the fact that even though its expressiveness is considerably restricted compared
with OWL DL, reasoning with OWL Lite is still intractable.� OWL DLP is a proper subspecies of OWL Lite [GHVD03, HHK+05]. Although it
is only marginally less expressive then OWL Lite, it has polynomial complexity.

3.4. Query Languages

Query languages are an important tool in information management. They provide the
means to access data that is managed using a particular data model. Surprisingly, despite
the advance of OWL as an ontology language, the work on adequate query languages for
OWL is still in its infancy. This is partly due to the fact that traditionally the focus of
Description Logics has not been on managing large sets of assertional facts, but rather
on reasoning over the terminological knowledge. Recently, there have been proposals
for query answering over description logics that are based on a reduction to standard
description logic reasoning problems. While being theoretically elegant it is impractical,
as effectively for every individual in the knowledge base one needs to check whether it
satisfies the query. On the other hand, there is a large body of work on query languages
in database management. Some attempts have been made to build on this work in the
context of query languages for RDF.

In [HBEV04] a comparative analysis for six RDF query languages has been presented .
While some of these query languages are used in many systems as OWL query languages
(simply treating OWL as an extension of RDF), such an approach has major drawbacks.
The main problem lies in the fact that the semantics of RDF query languages is typically
defined via a pattern matching over a particular RDF graph or a set of RDF triples, which
corresponds to one particular model of the RDF knowledge base. Such a semantics is
incompatible with that of description logics in the sense that an answer over a description
logic knowledge base is supposed to hold in any model, of which there may be infinitely
many.

A query language of particular importance is SPARQL, which is currently being stan-
dardized by the W3C as the standard query language for the Semantic Web. While
SPARQL in principle follows the same pattern matching approach as other RDF query
languages, in essence it only standardizes the syntax of a query language, but leaves the

46

3.4. Query Languages

semantics up to the implementation. Although the lack of a well-defined semantics can
be seen as a deficiency, it can also be seen as a feature, as it allows us to use SPARQL
merely as a syntax carrier and to separately assign it a well-defined meaning based on
grounding in descriptions logics. In the following we thus present the semantics of con-
junctive queries over OWL DL ontologies and afterwards show how SPARQL can be
used to encode such conjunctive queries. In our discussion we will further analyze how
these formalisms meet generic criteria desired for any query language. We here review
these criteria from [HBEV04]:� Expressiveness. Expressiveness indicates how powerful queries can be formulated

in a given language. Typically, a language should at least provide the means
offered by relational algebra, i.e. be relationally complete. Usually, expressiveness
is restricted to maintain properties such as safety and to allow an efficient (and
optimizable) execution of queries.� Closure. The closure property requires that the results of an operation are again
elements of the data model. This means that if a query language operates on the
graph data model, the query results would again have to be graphs.� Adequacy. A query language is called adequate if it uses all concepts of the un-
derlying data model. This property therefore complements the closure property:
For the closure, a query result must not be outside the data model, whereas for
adequacy the entire data model needs to be exploited.� Orthogonality. The orthogonality of a query language requires that all operations
may be used independently of the usage context.� Safety. A query language is considered safe, if every query that is syntactically
correct returns a finite set of results (on a finite data set). Typical concepts that
cause query languages to be unsafe are recursion, negation and built-in functions.

Conjunctive Queries

Conjunctive queries are a popular formalism, well explored in database theory, capable
of expressing the class of selection/projection/join/renaming relational queries. The vast
majority of query languages for many data models used in practice fall into this fragment.
Because conjunctive queries have been found useful in diverse practical applications, it
is natural to use them as an expressive formalism for querying ontologies.

When talking about conjunctive queries, we need to distinguish between the query as
a syntactic object and the query mapping, i.e. the function defined by a query under a
specific semantics. Informally, a conjunctive query Q(x,y), is a conjunction of DL-atoms,
i.e. atoms over DL-concepts and roles. x and y denote sets of distinguished and non-
distinguished variables, respectively. Intuitively, the semantics of a conjunctive query is

47

3. Modeling Resources

to ask for concrete individuals that are valid fillers for the distinguished variables, with
the non-distinguished variables existentially bound.

Example 2. The following conjunctive query asks for the title of articles written by the
individual codd:
Q(t, x) : Publication(x) ∧ title(x, t) ∧ author(x, codd)

SPARQL

SPARQL was originally designed as RDF query language. As every OWL ontology can
be encoded in an RDF graph, SPARQL can serve – at least syntactically – as an OWL
query language.

The SPARQL query language is based on matching graph patterns. The simplest
graph pattern is the triple pattern. In terms of OWL, every unary assertion C(a) can be
represented as a triple (a rdf:type C) and every role assertion R(a, b) can be represented
as a triple (aR b). Triple patterns in queries additionally may contain variables in the
subject, predicate or object positions. Combining triples gives a basic graph pattern,
where an exact match to a graph is needed to fulfill a pattern.

Queries are composed of two main building blocks, the SELECT or CONSTRUCT clause
and the WHERE clause. The SELECT or CONSTRUCT clause identifies the variables to appear
in the query results, they thus correspond to the distinguished variables of a conjunctive
query. The WHERE clause identifies the triple pattern to match. Let us look at an example:

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?book WHERE {

?book rdf:type swrc:Book

}

The PREFIX clause simply allows to declare namespace abbreviations, in this case for
the SWRC ontology. The SELECT clause specifies that the ?book variable should be
returned, and the FROM clause states how an optional FILTER clause further allows to
filter variable bindings, as in the following query that restricts the bindings of books to
those that were published after the year 2000:

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

CONSTRUCT { ?book swrc:year ?year } WHERE {

?book rdf:type swrc:Book .

?book swrc:year ?year . FILTER (?year > 2000)

}

This query also demonstrates the use of the CONSTRUCT clause, which unlike the SELECT

queries does not return tuples of variable bindings, but allows to specify triples that
should be returned.

48

3.4. Query Languages

Multiple patterns can be joined with the UNION clause, as in the following query that
asks for all publications that are either a book or a part of a book:

PREFIX swrc: <http://swrc.ontoware.org/ontology#>

SELECT ?x WHERE {

?x rdf:type swrc:Book

UNION

?x rdf:type swrc:InBook

}

Expressiveness. In terms of expressiveness, an important criterion is relational com-
pleteness, which requires that certain basic algebraic operations are supported, i.e. (i)
selection, (ii) projection, (iii) cartesian product, (iv) difference and (v) union. These
operations can be combined to express other operations such as set intersection, several
forms of joins, etc.. SPARQL is not relationally complete. It does support the rela-
tional operations of selection (FILTER clause), projection (SELECT clause) and cartesian
product (combination of triple patterns in the WHERE clause) as well as union (joining
patterns with the UNION clause). However, it does not support difference, as there is
no notion of negation in SPARQL. For example, it is thus not possible to ask for all
publications that are not books.

Closure. The SPARQL language is closed, if one considers CONSTRUCT queries: The
queries operate in triples, and also return triples as results. This is an important feature
that allows to compose queries on the one hand, and to directly exchange query results
as ontologies on the other hand.

Adequacy. As mentioned above, SPARQL is only partially adequate for querying OWL
DL ontologies: SPARQL supports all elements of the OWL DL data model that are
relevant for querying, but it also provides many features, which have not been presented
above, that are not applicable to OWL DL ontologies (e.g. reification).

Orthogonality. Unfortunately, SPARQL is orthogonal only to a limited extent, as most
of the operators have a very narrow scope of usage. For example, the FILTER operator
can only be used inside of a WHERE clause.

Safety. The safety of the language is obviously depends on the semantics that is given
to it. So far, SPARQL only defines the syntax of a query language. For the semantics
that we define in the following, a sound and complete decision procedure exists, which
implies safety.

Concluding, one can say that SPARQL at this time is an acceptable compromise
for querying OWL ontologies, provided that is used as a syntax carrier for conjunctive
queries, whose semantics is adequately defined separately using model theory.

49

3. Modeling Resources

3.5. Rule Languages for OWL

Although the description logics underlying OWL are very expressive ontology languages,
they cannot be used for modeling particular forms of axioms. Specifically, description
logic axioms are restricted to a tree-structure that disallows to model rule-like axioms
commonly needed for complex data integration tasks that involve queries, views and
transformations. This situation has lead to several proposals for the combination of
ontology languages such as OWL with rule-based languages, which are currently con-
troversially discussed [W3C05]. Just recently the W3C has chartered a working group
for the definition of a standardized Rule Interchange Format (RIF)2. The Semantic Web
Rule Language (SWRL, [HPS04a]) is currently the most prominent proposal for an ex-
tension of OWL DL with rules. From the Description Logics perspective, a main goal in
the definition of a rule language for OWL is to retain decidability of the main reasoning
problems. Unfortunately, SWRL is known to be undecidable. Recently, DL-safe rules,
which can be seen as a syntactic fragment of SWRL, have been proposed as a decidable
rule extension[MSS04].

SWRL - Semantic Web Rule Language

SWRL allows the use of datalog-like horn rules together with OWL axioms. These
rules are of the form of an implication between an antecedent (body) and consequent
(head). The intuitive meaning of a rule is that whenever the conditions specified in the
antecedent hold, then the conditions specified in the consequent must also hold. Both
the antecedent (body) and consequent (head) of a rule consist of zero or more atoms.
Atoms can be of the form C(x), R(x, y), x ≈ y or x 6≈ y, where C is an OWL DL
concept, R is a role, and x,y are either variables, individuals or data values.

Example 3. The fact that a person is an expert on a topic if he has authored a publi-
cation on that topic, can be asserted with the following rule:

expertOn(z, y)← Publication(x) ∧ isAbout(x, y) ∧ author(x, z)

A great advantage of SWRL is the tight integration with the existing OWL standards:
A high-level abstract syntax is provided that directly extends the OWL abstract syntax.
Further, an XML based syntax has been defined An extension of the OWL model-
theoretic semantics provides a formal meaning for SWRL ontologies.

Example 4. The rule from Example 3 stating that a person is an expert on a topic if
he has authored a publication on that topic, can be expressed in SWRL syntax in the
following way:

<swrlx:Ontology swrlx:name=""

2http://www.w3.org/2005/rules/wg/charter

50

http://www.w3.org/2005/rules/wg/charter

3.6. Modeling Resources

xmlns:owlx="http://www.w3.org/2003/05/owl-xml#"

xmlns:ruleml="http://www.w3.org/2003/11/ruleml#"

xmlns:swrlx="http://www.w3.org/2003/11/swrlx#">

<ruleml:imp>

<ruleml:_head>

<swrlx:individualPropertyAtom swrlx:property="expertOn">

<ruleml:var>Z</ruleml:var>

<ruleml:var>Y</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_head>

<ruleml:_body>

<swrlx:classAtom>

<owlx:Class owlx:name="Publication" />

<ruleml:var>X</ruleml:var>

</swrlx:classAtom>

<swrlx:individualPropertyAtom swrlx:property="isAbout">

<ruleml:var>X</ruleml:var>

<ruleml:var>Y</ruleml:var>

</swrlx:individualPropertyAtom>

<swrlx:individualPropertyAtom swrlx:property="author">

<ruleml:var>X</ruleml:var>

<ruleml:var>Z</ruleml:var>

</swrlx:individualPropertyAtom>

</ruleml:_body>

</ruleml:imp>

</swrlx:Ontology>

DL-safe Rules

An unrestricted combination of description logics with rules leads to undecidability. In-
tuitively, the undecidability arises because adding rules to description logics causes the
loss of any form of tree model property. DL-safe rules [MSS04] have been proposed as
a subset of SWRL that allows to regain decidability. In DL-safe rules, the decidability
is retained by restricting the interchange of consequences between the component lan-
guages, without restricting the component languages themselves. Specifically, concepts
(roles) are allowed to occur in both rule bodies and heads as unary (binary) predicates
in atoms, but each variable in a rule is required to occur in a body literal whose predi-
cate is neither a DL-concept nor a DL-role. Intuitively, this restriction makes the logic
decidable because the rules are applicable only to individuals explicitly introduced in
the ABox.

3.6. Modeling Resources

For modeling resources, we use the description logic SHOIN (D) [BCM+03] with DL-
safe rules [MSS04]. We associate with each agent A ∈ A a namespace NSA. The set of

51

3. Modeling Resources

resources RA of the agent A are described as description logic individuals with names
in the namespace NSA. That is, we associate with each agent A ∈ A a description logic
A-Box that represents the knowledge base of the agent A. The A-Box axioms i = j
(sameIndividual) and i 6= j (differentIndividual) allow to describe explicitly whether two
individuals i and j having different names describe the same object or different objects.
Note, that in our setting two individuals belonging to different agents automatically have
different names since they belong to different namespaces.

Now, from Requirement 12, we have that the agents typically do not wish to disclose
their complete database. That is, they do not wish to disclose the description of each
and every resource that they have. However, it is realistic to assume that they are not
reluntant to disclose the schema for their resources. Note, that WSDL also makes this
assumption and proposes to use XML Schema inside the types block.

From the Requirement 13 we have that the schemas must be interoperable. So, we
describe the schemas as description logic T-Boxes, since description logics provide the ⊑
(subClassOf) relation to relate the concepts. A concept denotes a set of individuals and
an individual i can be classified into a concept C either by directly specifying an axiom
C(i) or with the help of DL-safe rules.

So, in our formal model we consider a set of T-Boxes T and a T-Box association
function T : A → T that associates with each agent A ∈ A a T-Box T (A) ∈ T . Note,
that T (A) may have different namespace than NSA. The reason for this is that it is
not necessary to force an agent to use only his own vocabulary. Rather, the agents
should be able to share vocabularies, which is not only more efficient for the agents,
since they do not need to model the ontologies that already exist, but also leads to
better interoperability of the information exchanged among the agents.

Requirement 14 demands the notion of variables for referring to individuals. The
semantics of a variable cannot be captured with description logics, since description
logics cannot reason about changing things. As a result, description logics do not direclty
provide variables. However, as we will also see later, variables of an agent A can be
described as individuals in the namespace NSA and when a variable v is supposed to be
bound to a value, another individual i , then we simply add an axiom v = i. Note, that
even if modeling variables this way is rather easy and captures the correct semantics of
a variable, well known semantic Web service approaches like OWL-S still cannot model
variables correctly.

Having the notion of variables as individuals and that individuals can be related with
each other with A-Box axioms, Requirement 15 is automatically fulfilled.

When resources are transported from one agent to another they need to be serialized.
We assume a set of serialization types S. A serialization type is similar to MIME types.
We assume, that the sets of resources described by the concepts in the T-Boxes T are
associated with a serialization type. That is, for every concept C in a T-Box T ∈ T ,
there is a searialization type SC ∈ S.

52

4. Modeling Credentials

In Web the separation of roles in clients and providers is becoming narrower and one day
it might completely disappear. People will use other Web services to provide their own,
hence becoming client and provider at the same time. On one side they will compete
with each other, on the other side they will collaborate with other.

In such a large and copetitive Web service market, where billions of Web services
are traded, there will be more than one Web services that provide same functionality.
This is analogous to having more than one shop where one can buy clothes. So, the
non-functional aspects of Web services become very important, so that the potential
users can decide which of the many alternatives they should chose. This is analogous to
the phenomenon that despite having a large offer of clothes shops, most people usually
go to their favourite shops because they like the atmosphere in the shop, or they find
the salespersons friendly or they go to a shop someone who they trust in matter of
clothes has recommended to them. Therefore, the credentials of the Web services, in the
literature often referred to as non-functional properties will play an important role.

However, in order to achieve an infrastructure, in which clients can trust Web ser-
vices on the basis of their credentials, it is not practical to abstract from the issuer of
such credentials. Comparing with the clothes shops example, in which every cloth shop
obviously advertises that the respective shop has great atmosphere and very friendly
salespersons etc., if only Web service providers describe their Web services, the creden-
tials of the Web services will be hardly of any practical use. Rather, there is a need for
techniques in which parties different from the Web service providers issue credentials to
Web services and parties can build trust in Web services on the basis of such credentials.

4.1. Role Based Access Control

Because of the vast heterogeneity of the available information, information providers
and users, security becomes extremely important. Security related aspects are mostly
classified in three categories, namely confidentiality, integrity, availability and account-
ability [Bis03, SC01, Den82]. Access control, which means the users must fulfill certain
conditions in order to access certain functionality plays an important role in all three
fields of security.

For example, a student must show his library card to borrow a book from the university
library. In context of confidentiality, it means that a student has access to the information
relevant to only his own library account and thus can not know which other students have

53

4. Modeling Credentials

borrowed which books. In context of integrity, it means that a student may not change
or cause a change in information relevant to the library account of another student. In
context of availability, access control helps to prevent denial of service attacks that can
take place if the access is uncontrolled.

In an access control model, the entities that can perform actions in a system are
called subjects, and the entities representing resources to which access may need to be
controlled are called objects. Access control models used by current systems tend to fall
into one of two classes: those based on capabilities and those based on access control lists
(ACLs). In a capability-based model, holding an unforgeable reference or capability to
an object provides access to the object. For example, the possession of keys of a house
grants access to the house to the holder. In an ACL-based model, a subject’s access to
an object depends on whether the identity of the subject is on a list associated with the
object. For example, a bouncer checks the ID of a potential guest to see if his name is
on the guest list, before allowing him to join a private party.

The concept of Role-Based Access Control (RBAC) began with multi-user and multi-
application online systems pioneered in the 1970s. The central notion of RBAC is that
permissions are associated with roles, and users are assigned to appropriate roles. This
greatly simplifies management of permissions. Roles are created for the various job
functions in an organisation and users are assigned roles based on their responsibilities
and qualifications. Users can be easily reassigned from one role to another. Roles
can be granted new permissions as new applications and systems are incorporated, and
permissions can be revoked from roles as needed.

A role is properly viewed as a semantic construct around which access control policy
is formulated. The particular collection of users and permissions brought together by a
role is transitory. The role is more stable because an organisation’s activities or functions
usually change less frequently.

There are several distinct motivations for constructing a role. A role can represent
competency to do specific tasks, such as a physician or a pharmacist. A role can embody
authority and responsibility, e.g., project supervisor. Authority and responsibility are
distinct from competency, e.g., a person can be competent to head several departments,
but is assigned to head one of them. Roles can reflect specific duty assignments that
are rotated through multiple users, e.g., a duty physician or shift manager. RBAC
models and implementations should be able to conveniently accomodate all of these
manifestations of the role concept.

The central notion of RBAC is that users do not have discretionary access to en-
terprise objects. Instead, access permissions are administratively associated with roles,
and users are administratively made members of appropriate roles. This idea greatly
simplifies management of authorization while providing an opportunity for great flexi-
bility in specifying and enforcing enterprise- specific protection policies. Users can be
made members of roles as determined by their responsibilities and qualifications and can
be easily reassigned from one role to another without modifying the underlying access

54

4.1. Role Based Access Control

structure. Roles can be granted new permissions as new applications and actions are
incorporated, and permissions can be revoked from roles as needed.

The principal motivations behind RBAC are the ability to articulate and enforce
enterprise-specific security policies and to streamline the typically burdensome process
of security management. RBAC represents a major advancement in flexibility and detail
of control from the present-day standards of discretionary and mandatory access control.
In many enterprises within industry and civilian government, end users do not “own”
the information for which they are allowed access as is often assumed by traditional
discretionary access control schemes. For these organizations, the corporation or agency
is the actual “owner” of system objects and discretion on the part of the users may
not be appropriate. With role-based access control, access decisions are based on the
roles individual users have as part of an organization. As such, RBAC is often described
as a form of nondiscretionary access control in the sense that users are unavoidably
constrained by the organization’s protection policies. In non-classified environments,
such policies are not focused on solving the multi-level security problem as is assumed
within the existing standard for nondiscretionary access control. In contrast, RBAC
allows for the specification and enforcement of a variety of protection policies which can
be tailored on an enterprise-by- enterprise basis. The policies enforced in a particular
stand-alone or distributed system are the net result of the precise configuration of the
various components of RBAC. This RBAC framework provides administrators with the
capability to regulate who can perform what actions, when, from where, in what order,
and in some cases under what relational circumstances.

Users Roles Operations Objects

user
assignment

permission
assignment

privileges

Figure 4.1.: Core Model of Role Based Access Control

From a functional perspective, RBAC’s central notion is that of operations represent-
ing actions associated with roles and users that are appropriately made members of
roles. The relationships between users, roles, and operations is depicted in Figure 4.1.
As shown in Figure 4.1, the use of double arrows indicate a many-to-many relationship.
For example, a single user can be associated with one or more roles, and a single role
can have one or more user members. Roles can be created for various job positions in an
organization. For example, a role can include Teller or Loan Officer in a bank, or Doctor,
Nurse, or Clinician in a hospital. The operations that are associated with roles constrain
members of the role to a specified set of actions. For example, within a hospital system

55

4. Modeling Credentials

the role of Doctor can include operations to perform diagnosis, prescribe medication,
and order laboratory tests; the role of Researcher can be limited to gathering anony-
mous clinical information for studies; and the role of Social Worker may be to review
patient profiles to flag possible suicidal patients or determine possible abuse cases.

The association of operations with roles within an enterprise can be in compliance
with rules that are selfimposed. For example, a health care provider may decide that
the role of Clinician must be constrained to post only the results of certain tests rather
than distribute them where routing and human errors can result in a violation of a
patient’s right to privacy. Operations can also be specified in a manner that can be used
in the demonstration and enforcement of laws or regulations. For example, a nurse can
be constrained to adding a new entry to a patient’s history of treatments rather than
being generally able to modify a patient record. A pharmacist can be provided with
operations to dispense, but not to prescribe, medication.

The core model of RBAC consists of following entities:� A set of users U , a set of roles R, a set of operations A and a set of objects O� A relation user assignment UA, UA ⊆ U ×R� A set of privileges P = 2A×O� A relation permission assignment PA, PA ⊆ P ×R� Role hierarchy RH ⊆ R×R, a partial order on the set of roles R� Inhertitance relation r1 � r2 if and only if

– all privileges of r2 are also privileges of r1

– all users of r1 are also users of r2

4.2. Authorization based Access Control with SPKI/SDSI

Current access control is mostly based on authentication, which requires central control
(registration) and proof of identity. Thus identity based authentication leads to cer-
tain limitations regarding the spontaneity and privacy and hence is not always desired.
Therefore, we propose authorization based access control rather than authentication
based access control of Web services. Authorization based access control also includes
authentication, but here the authentication is based on public keys and not on identities.

In most systems access control is based on identity based authentication, which means
that the users must be known to the provider, for example via registration.

Since Web is an open, distributed, decentralized, dynamic and interoperable environ-
ment, in which Web services must be offerable and usable by anyone spontaneously and

56

4.2. Authorization based Access Control with SPKI/SDSI

centralized access control distributed access control

closed organization open environment

immediate inspection trust evaluation whether digi-
tal document presumably cap-
ture properties in real world

established procedures protocols under development

trust based on personal ac-
quintances, law enforcement,
...

trust based on appropricate
protocols

identity based public key based

authentication by “personal
peculiarities” (passwords, bio-
metrics, ...)

authentication by “proof of
secret key” (challenge re-
sponse, biometrics, ...

real world directly observable real world “hidden”, only doc-
uments visible

Table 4.1.: Central vs. distributed access control

dynamically and users do not always wish to disclose their identities, security infras-
tructures that require registrations or any other central controlling components are not
suitable. For instance, a server may receive request not just from the local community
of users, but also from remote, previously unknown users. The server may not be able to
authenticate these users or to specify authorizations for them (with respect to their iden-
tity). The traditional separation between authentication and access control cannot be
applied in this context, and alternative access control methods should be devised. Early
approaches departing from this assumption proposed associating authorizations with
keys rather than users’ identities. This family of trust management systems (e.g. Poli-
cyMaker [BFL96], Keynote [BFIK99], REFEREE [CFL+97]) use credentials to describe
specific delegation of trusts among keys and to bind public keys to authorizations. While
these approaches provide an interesting framework for reasoning about trust among un-
known parties, assigining authorizations to keys may make authorization specifications
difficult to manage.

An alternative promising approach is represented by the use of digital certificates (or
credentials), representing statements certified by given entities (e.g. certification au-
thorities), which can be used to establish properties of their holder (such as identity,
accreditation, or authorizations) [HFPS99]. Credential based access control makes the
access decision of whether or not a party may execute an access dependent on properties
that the party may have, and can prove by presenting one or more certificates (autho-
rization certificates [BFL96] being a special kind of them). Several researchers have
addressed the problem of establishing a Public Key Infrastrucure (which is at the basis

57

4. Modeling Credentials

of credential-management); managing credentials and credential chains and developing
strategies for automated trust-negotiation, that is for determining the credentials to be
required and released when interacting with other parties.

Credentials are digitally signed documents, which can be transmitted over untrusted
channels like the Web, see e.g., [BK02, Cha85]. Credentials assert a binding between a
principal and some property. A principal represents a user and is identified by his public
key. The meaning of a stated property may be a granted capability for a service, an
identity or a non-identifying characteristic of a user like e.g., a skill. For further related
work refer to [Bra00, BFIK99, Sam02]. The credential-based public key infrastructure
SPKI/SDSI [EFL+99a, EFL+99b] allows each principal to issue credentials. Unlike other
public key infrastructures, SPKI/SDSI requires no central certification authority. Thus,
each Web service provider can issue and trust credentials independent of other service
providers and may even define her own trust structure. A Web service provider, acting
as a verifier, can locally and autonomously decide whether access to her service should
be granted or not. Access decisions are based on the provider’s interpretation of a user’s
capabilities or characteristics given by shown SPKI/SDSI certificates. Furthermore,
users can request Web services spontaneously without registering themselves with the
individual Web service providers. Therefore SPKI/SDSI credentials are more suitable
than the classical authentication based systems for specifying access control policies in
the Semantic Web.

In 1996 Lampson and Rivest [RL96] proposed a new public-key infrastructure, called
“a Simple Distributed Security Infrastructure”, abbreviated “SDSI”. Its most interesting
feature is probably its decentralized name space. In SDSI the owner of each public
key can create a local name space relative to that key. These name spaces can be
linked together in a flexible and powerful manner to enable chains of authorization and
define groups of authorized principals. Concurrently, Carl Ellison, Bill Frantz, Brian
Thomas an, Tatu Ylonen and others developed a “Simple Public Key Infrastructure”
abbreviated “SPKI” which emphasized exceptional simplicity of design and a flexible
means of specifying authorizations. The SDSI and SPKI efforts were both motivated in
part by the preceived complexity of the X.509 public-key infrastructure, and also by its
perceived lack of power and flexibility. In 1997 the SDSI and SPKI efforts were merged:
the resulting synthesis has been called “SPKI/SDSI”.

In SPKI/SDSI there is a local name space associated with every public key. There are
no global names in SPKI/SDSI. A local name is a pair consisting of a public key and
an arbitrary identifier. A public key can sign statements (certificates) binding one of its
local names to a value. Values can be specified indirectly in terms of other names, so the
name spaces can become linked and interdependent in a flexible and powerful manner.

In SPKI/SDSI, all pricipals are represented by their public keys. A principal is an
individual, process, or active entity whose messages are distintively recognizable because
they are digitally signed by the public key that represents them. Let K denote the set of
public keys and K,KA,KB ,K1,K2 etc. specific public keys. Because the most important

58

4.2. Authorization based Access Control with SPKI/SDSI

function of a name is to serve as a mnemonic handle of some user, it is important
that users be able to create names rather than freely using well-chosen identifiers. An
identifier is a word over some given standard alphabet, for examples, A, B, Alice, Bob.

Each public key has its own associated name space; there is no global name space or
even a hierarchy of name spaces. SPKI/SDSI does not require a “root” or “root key”; it
can be built “bottom-up” in a distributed manner from a collection of local name spaces.

Definition 4. A local name is a sequence of length two consisting of a public key K
followed by a single identifier

Typical local names might be “K Alice” or “K project-team”. Here, K represents
an actual public key.

The local name “K A” belongs to the local name space of key K. Let NL denote the
set of all local names and NL(K) denote the local name space of key K.

Definition 5. An extended name is a sequence consisting of a key followed by two or
more identifiers.

Typical extended names might me “K Alice mother”, “K microsoft engineering

windows project-mgr” or “K UNIKA personnel-committee”.
Let NE denote the set of all extended names and N = NL ∪ NE denote the set of

all names. Furthermore, let NE(K) denote the set of extended names beginning with
key K and let N (K), called name space of key K, denote the set of all names (local or
extended) beginning with key K.

The SPKI/SDSI expressions are called “terms”; intuitively, a term is something that
may have a value. In SPKI/SDSI values are always set of keys.

Definition 6. A term is either a key or a name. Let T = K ∪ N denote the set of all
terms.

SPKI/SDSI has two types of certificates name certificates, which provide a definition
for a local name, and authorization certificates, which confer authorization on a key or
a name. Compared to X.509 public-key infrastructure schemes [FB97], an SPKI/SDSI
name certificate is comparable to an “ID certificate” and to some forms of “attribute
certificate” that conveys authorization.

Name Certificates

A name certificate provides a definition of a local name (e.g. K A) belonging to the
issuer’s (e.g. K’s) local name space. Only key K may issue (that is, sign) certificates
for names in the local name space NL(K). A name certificate C is a signed four-tuple
(K, A, S, V)� The issuer K is a public key; the certificate is signed by K.

59

4. Modeling Credentials� The identifier A (together with the issuer) determines the local name “K A” that
is being defined; this name belongs to the local name space NL(K) of key K. It
should be noted, that name certificates only define local names (with one identifier);
extended names are never defined directly, only indirectly.� The subject S is a term in T . Intuitively, the subject S specifies a new additional
meaning for the local name “K A”.� The validity specification V provides additional information allowing anyone to
ascertain if the certificate is currently valid, beyond the obvious verification of the
certificate signature. Normally, the validity takes the form of a validity period
(t1, t2): the certificate is valid from time t1 to time t2, inclusive.

In SPKI/SDSI the value of a term T is defined relative to a set C of certificates. Let VC(T)
denote the value of a term T with respect to a set C of certificates (cf. Definition 6).
The value of a term is a set of public keys, possibly empty. For any public key K the
value of K VC(K) = {K} for any set C of certificates. A local name has value that is a
set of public keys; this value may be the empty set, a set containing a single key, or a
set containing many keys. This value is determined by one or more name certificates.
A local name, such as K Alice, need not have the same meaning as the local name K ′

Alice when K 6= K ′; the owner of key K may define K Alice however he wishes, while
the owner of key K ′ may similarly but independently define K ′ Alice in an arbitrary
manner. A name certificate C = (K, A, S, V) (intuitively, defining local name KA in
terms of subject S) should be understood as a signed statement by the issuer asserting
that

VC(KA) ⊇ VC(S) (4.1)

that is, every key in the value VC(S) of subject S is also a key in the value VC(KA).
One name certificate does not invalidate others for the same local name; their effect is
cumulative. That is why the above equation says VC(KA) ⊇ VC(S) and not VC(KA) =
VC(S). Each additional name certificate for KA may add new elements to VC(KA). A
local name in SPKI/SDSI thus without any special fanfare, represent a group of public
keys.

Although a name certificate C = (K, A, S, V) has the explizit function of providing a
definition for the local name KA, it also gives meaning to related extended names. If
the subject S of a name certificate is an extended name, then it is necessary to have a
definition for the value VC(S) in order to interpret Equation 4.1.

The value of an extended name is implied by the values of various related local names
as follows:

Definition 7. The value of an extended name KA1A2 . . . An is defined recursively for
n ≥ 2 as:

VC(KA1A2 . . . An) = {K ′′ : K ′′ ∈ VC(K
′An) (4.2)

60

4.3. Modeling Credentials

for some K ′ ∈ VC(KA1A2 . . . An−1). An equivalent definition is:

KA1A2 . . . An =
⋃

K ′∈VC(KA1)

K ′A2A3 . . . An

Definition 8. For any term T , VC(T) is defined to be the smallest set of public keys
that is consistent with any constraints for the form of equation 4.1 and 4.2 implied by
the name certificates in C.

Authorization Certificates

The function of an authorization certificate is to grant or delegate a specific authorization
form the issuer to the subject. An authorization certificate C is a signed five-tuple
(K,S, d, T, V):� The issuer K is a public key, which signs the certificate. The issuer is the one

granting a specific authorization.� The subject S is a term in T . The public keys in VC(S) are receving the grant of
authorization.� The delegation bit d, if true, grants each key in VC(S) permission to further delegate
to others the authorization it is receiving via this certificate.� The authorization specification or authorization tag T specifies permission or per-
missions being granted. For example it may specify right to read a certain file, or
login to a particular machine.� The validity specification for an authorization certificate is the same as that of a
name certificate.

SPKI/SDSI authorization certificates integrate smoothly with SPKI/SDSI name cer-
tificates. The name certificates are used to give useful symbolic names to individual keys
or groups of keys, and the authorization certificates can be used to authorize those keys
or groups of keys for specific operations.

4.3. Modeling Credentials

Web service providers specify access control policies to restrict access to their Web
services. It turned out, that since the Web is an open, distributed and dynamic environ-
ment, in which a central controlling instance cannot be assumed, capability based access
control is most suitable for this purpose. However, since practically every participant
can certify capabilities defined in his/her own terminology, determining the semantics of

61

4. Modeling Credentials

certified capabilities and the trustworthiness of certification authorities are two major
challenges in such a setting. In this section we show,� how certification authorities and their certification policies can be modeled seman-

tically� how Web service providers can specify and check the consistency of their access
control policies and� how end users can check automatically, whether they can be granted access to a
Web service.

Semantic Web services promise dynamic business that can be offered and carried
out in the Web. In such an open environment, access control plays an important role.
Roughly, access control means that the users must fulfill certain conditions in order
to gain access to certain functionality. Access control is not only important from the
security point of view, but also from a legal point of view. In some cases, even if a Web
service provider does not wish to restrict access to his Web service, he may be forced
by law to do so. As we have discussed earlier capability based access control is much
more suitable for semantic Web services than identity based access control methods. In
such systems, users prove their legitimacy for access by showing an appropriate set of
credentials stating their capabilities. A Web service provider can verify, whether the
shown set of proved credentials satisfy all the required constraints. In case, it does not,
a Web service provider will not allow the user to access his Web service. However, there
are still several open issues that need to be resolved in capability based access control
in open environments. We identify three major roles a participant can play in such a
setting, namely user, Web service provider and certification authority.

Users

Users want to access Web services. In case of restricted access they must prove their
eligibility, e.g. by showing appropriate certificates (in a capability based setting). In
some cases a user wishes to automatically infer whether he/she can fulfill the conditions
imposed by the access control policy of a Web service. In another scenario, a user may
compose some Web services that may belong to different administrative domains. He
then wishes to know the access control requirements of the composed system. To support
such use cases, the access control policies as well as the credentials have to be specified
formally.

Web Service Providers

Web service providers want to restrict access to their services to only eligible users. For
this, they specify and enforce access control policies. If these are specified in terms of

62

4.3. Modeling Credentials

capabilities that need to be proved by certificates, then the following questions need to
be addressed:� What is the meaning of the terminology used by CAs in their certificates?� What is the certification policy of the CA that has issued the certificate?� Which credentials of which certification authorities shall be trusted? On what

grounds are the CAs authorized to certify the respective property?� Are the credentials still valid or have they been revoked?� Considering the certification policies of the CAs, is the specified ACP consistent
with certain conditions and laws?� Is the ACP satisfiable? That is, is it possible for any user at all to fulfill all the
conditions and thus gain access to the Web service?

Certification Authorities

Certification authorities certify users certain properties by issuing certificates. Each cer-
tification authority defines its own terminology that it uses in its certificates, for example,
the names of certifiable properties and the relation between certifiable properties.

Currently, certification authorities specify their certification policies explicitly in doc-
uments that are readable only for humans (see e.g. [Kel04] for an extensive list of cer-
tification authorities). These documents are meant to be read by the service providers
before they define the access control policies for their Web services. In this section we
show how certification authorities can specify their certification policies in a machine
readable form and how they can publish the policy as well as their certification context,
e.g. which properties have been certified to them. This approach has several advantages:
When specifying their access control policies, Web service providers can use these certifi-
cation policies to automatically check, whether the specified ACP fulfills certain (legal as
well as self imposed) requirements. When verifying the access eligibility of a particular
user on the grounds of a presented set of credentials, the Web service provider can make
use of the published certification context to check the validity of the presented credential
chains. Though revocation of certificates has been addressed in several papers, it is still a
controversial issue (e.g. in the context of delegation) and important real life applications
such as tls or ssl simply ignore the possibility of revocation. Our approach can support
the CAs in the implementation and enforcement of revocation of certificates.

We begin with a description of an example scenario that serves as a running example
in Section 4.3.1. In Section 5.2.3, we introduce a simple and novel approach, how a
certification authority can specify explicitly and with machine understandable semantics
which terminology it uses in the certificates that it issues and which relationships exist

63

4. Modeling Credentials

among the certified properties. In Section 5.2.3, we show how Web service providers can
specify the access control policies of their Web services based on their knowledge about
certification authorities.

4.3.1. Scenario

We now describe an example scenario that will be used throughout this chapter as
a running example. We consider the following organizational entities: (1) Outdoor
Shop (OutShop), (2) Wildlife foundation (WLF), (3) Forest Department (FD), (4) Local
Trekking Club (LTC).

The Outdoor Shop OutShop acts as Web service that maintains a list of approved
trekking guides. To register as a guide, a user must be above 25 years old, have good
trekking experience as well as knowledge in first aid. OutShop trusts the Wildlife foun-
dation WLF and the Forest Department FD as well as their delegates to certify guidance
experience.

The Wildlife Foundation WLF issues certificates about guidance experience app guide.
In its certification policy it does not relate this properties to any other properties. Fur-
thermore, it allows the local Trekking Club LTC to act on its behalf and issue guidance
experience certificates.

The Forest Department FD, too, issues certificates about guidance experience. How-
ever, it issues such certificates only to people who are above 25 years old and have
knowledge in first aid (certified e.g. by the Red Cross). This restriction is specified in
FD ’s certification policy.

4.3.2. Specification of Certification Policies

In the Web practically every participant can act as Certification Authority (CA) au-
tonomously and independent of other CAs. It is therefore unrealistic to assume that
there is a global vocabulary of properties that every CA uses (in our example scenario
for instance, the meaning of app guide certified by the Forest Department is different
from the meaning of app guide certified by the Wildlife Foundation). Further, there may
exist logical relationships among certification authorities (e.g. delegation) and among the
properties they certify (e.g. inclusion/exclusion of other properties)(refer to figure 4.2).
For example the certification of the property app guide is delegated from WLF to the
local trekking club LTC, and the certification of app guide by the Forest Department
implies, that the grantee is above 25 years old and is experienced in first aid.

A signed set of properties that a certification authority certifies together with their
relationships and dependencies with other properties (possibly certified by other CAs)
is called a certification policy of the certification authority. A CA can specify its cer-
tification policy and publish its trustworthiness in the Semantic Web with machine
understandable semantics. To do so, the CA specifies

64

4.3. Modeling Credentials

Certification Authority
defines vocabulary and axioms

User
finds WS

checks ACP

WS Provider
builds trust in CAs

publishes ACPs
verifies user’s certificates
grants or denies access

requests
Certificates

issues
Certificates

uses vocabulary and
CA’s properties

invokes service and
shows certificates

provides service output
if access granted

Figure 4.2.: Interaction among Parties (logical roles)� its certification context in terms of certified properties. This ground can help a Web
service provider to decide about the trustworthiness of the certification authority.� the terminology it uses in the certificates that it issues. These certificates are
referenced by a Web service provider in the specification of an access control policy.� relationships among the properties, that it certifies and any axioms about them.

A certification authority is associated with a set of properties that it possesses and a set
of properties that it certifies. In our example, the certification authority LTC possesses
the property that it is delegated to certifiy property app guide to users. This property is
certified by the WLF. In order to talk about such properties and certification authorities
more formally, we model the following concepts.

Property ⊑ ⊤

CA ⊑ ⊤ ⊓ ∃possesses.Property⊓ ∃certifies.Property

Delegation

Logical relationships between various CAs and the properties they certify can be speci-
fied through axioms, in particular class hierarchies over relevant instances of Property.
Note, that the concrete properties used in an axiom by a certification authority C do

65

4. Modeling Credentials

not necessarily need to be the properties that are certified by C. Subclass relationship
between two classes of different certification authorities can be used for specifying dele-
gation structures. Consider for example, certification authorities C1 and C2 that certify
properties P1 and P2, respectively. By defining the axiom P1 ⊑ P2, the certification au-
thority C2 states, that anyone possessing the property P1 also possesses the property P2.
In other words, the certification authority C2 delegates the certification of the property
P2 to the certification authority C1.

Enforcement

We propose to use two kinds of certificates for the enforcement of certification policies,
namely delegation certificates and property certificates. Delegation certificates are meant
for realizing the delegation. A delegation certificate is issued by a certification authority
to another certification authority to allow the latter to issue certificates (delegation or
property) about a property that is defined by the former. This certificate will be signed
by the issuer and contain the public key of the recipient. A property certificate is a
certificate that is issued by a certification authority to an agent certifying that this agent
has a certain property. A property certificate is signed by the certification authority and
contains the public key of the recipient.

Certification Policy - Example

Recalling our example, we consider the certification authorities, namely the WLF , FD,
LTC, GOV and REDCROSS that we model as instances of the concept CA as CA(WLF),
CA(LTC), CA(FD), CA(GOV), CA(REDCROSS).

WLF defines and certifies the property “appguide” to approved guides, which can be
modeled with the following axioms.

Property(WLF.org;#appguide)

certifies(WLF,WLF.org;#appguide)

Further, WLF defines

LTC.org;#appguide ⊑ WLF.org;#appguide (4.3)

to specify the delegation structure which means that the guides approved by LTC are
also approved guides from the point of view of WLF . By specifying such an axiom,
WLF delegates the certification of the property “WLF.org;#appguide” to LTC.

LTC and FD also issue certificates to approved guides. Government GOV certifies
the property state.gov;#above25 to people who are above 25 years of age. Similarly,
REDCROSS issues certifies the property RedCross.org;#firstaid to persons who

66

4.3. Modeling Credentials

have experience in first aid.

certifies(LTC, LTC.org;#appguide)

Property(FD.org;#appguide)

certifies(FD, FD.org;#appguide)

certifies(GOV, state.gov;#above25)

certifies(REDCROSS, RedCross.org;#firstaid)

Though on first sight the properties WLF.org;#appguide and FD.org;#appguide seem
to be equivalent because of their names, they are quite different in their certification
policies: The Forest Department certifies this propety only to guides who are at least 25
years old (certified by the government) and who are knowledgable in first aid (certified
by Red Cross). This restriction can be expressed in the certification policy by stating
the following axiom:

FD.org;#appguide ⊑ state.gov;#above25 ⊓ RedCross.org;#firstaid (4.4)

Note the difference between the two Axioms (4.3) and (4.4): While in Axiom (4.3)
the conclusion of the axiom lies in the namespace of specifying CA, it is the assumption
of Axiom (4.4). In this sense, Axiom (4.3) has more the character of a definition (of
delegation) and may substitute a delegation credential. Axiom (4.4) is more a promise
or an actual certification policy which says, that the CA FD ”promises” to check the age
and the knowledge about first aid before certifying a user that he is an approved guide. In
case there is no axiom in the government’s namespace delegating the certification of the
property age above 25 and in the namespace of the Red Cross delegating the certification
of the property knowledgeable in First Aid, a potential Web service provider now has to
decide whether to trust this policy or not.

4.3.3. Users

We now turn our attention to the third logical role, namely users. Users are mainly
interested in accessing Web services. In case of secure semantic Web services, which is
our main concern in this section, any Web service discovery component must consider
the user’s certificates as well as the access control policies of Web services. Syntactical
certificates description schemas, such as X509, KeyNote or SPKI/SDSI certificates make
it difficult for a client side discovery component to perform matching based on functional
as well as security aspects, because such a discovery component cannot know the meaning
of the certificates that the user has and hence can not know which properties has been
certified to the user.

In our setting, an end user possesses a set of certificates meta-data about each certifi-

67

4. Modeling Credentials

cate. The meta-data contains information about the properties that a certificate actually
certifies and hence describes the semantics of the certificate. Note, that in many cases,
a certificate certifies more than one property. The end users� have their goals in mind and want to discover and compose Web services,� want to access Web services that offer required functionality,� have certain properties certified to them and can use the certificates to prove their

eligibility if access to a Web service is restricted.

Example

Consider an end user, who is an experienced wildlife and trekking guide and holds a
certificate certifying him the property LTC.org;#appguide. The user wishes to register
himself as an approved trekking guide in the Outdoor Shop OutShop.

In our example, the set of Web service descriptions that our end user obtains from
an appropriate discovery component will contain the description of the Web service
OutShop, since the matching software can infer from the certification policy of the wildlife
foundation WLF that LTC.org;#appguide is subset of WLF.org;#appguide and hence a
user possessing the property LTC.org;#appguide has access to the Web service OutShop.

Now, our end user wants to register as a approved trekking guide. He finds out, that
this functionality is accessible only for approved guides from the forest department FD
and from the Wildlife foundation WLF , that are above 25 years old and are knowledge-
able in first aid. By looking at the certification policies of WLF and FD he finds out
automatically, that WLF has delegated the certification of property app guide to the
local trekking club LTC, which means, that it will be enough to hold the certificate
LTC.org;#appguide rather than the certificate WLF.org;#appguide.

The resources of an agent describe his knowledge or assets, the things that he owns
and can exchange with things owned by other agents. Apart from the resources, we
consider the properties of an agent in our formal model to enable access control. For
example, agent i is a university or agent j is above 18 years. Now, in order to realize
systems that consider the properties of agents there must be a way for an agent to prove
that he possesses some property. Note, that if he cannot prove a certain property, it
does not mean that he does not have that property. Consider for example, that an agent
is above 18 years old but he does not have his ID to prove this. In this case, he should
not be allowed to access the service, but the service should not treat him as a minor.

In distributed and open systems like the Web, there is no central certification authority,
i.e. there is no one single actor that alone certifies all sorts of properties to all agents and
whom all other agents can trust. Rather, any agent can act as a certification authority
and certify other agents some properties. So, in distributed and open environment, the
certified properties are relative to the issuer.

68

4.4. Conclusion

In capability based access control system, any agent can act as a certification authority
and certify to other agents some property. Such a certification takes place by issuing
certificates. We denote with P the set of all such properties.

Definition 9 (Certificate). A certificate is a tuple (i, r, p), with i ∈ A is the issuing
agent, r ∈ A the recipient and p is a property, means that the agent i certifies the agent
r to possess the property p ∈ P. We denote with C, the set of all certificates.

4.4. Conclusion

In this chapter, we have presented an approach how properties and certificates can be
modeled as description logics to enable reasoning, interoperability and flexibility in dis-
tributed systems that incorporate trust based access control. The basic idea was to
specify the properties that are certified to agents as description logic concepts and then
use concept subsumption to specify the mapping between different properties. For exam-
ple, by defining the axiom above21 ⊑ adult, an agent acting as a certification authority,
states, that anyone possessing the property above21 also possesses the property adult.
Note, that the concepts above21 and adult may have different name spaces, i.e. they do
not have be issuable by the same agent. This leads to interoperability and flexibility of
access control, since an access control policy requiring an agent to prove the property
adult can grant access to the agent, even if he proves the property above21.

69

4. Modeling Credentials

70

5. Modeling Behavior

Today there is an emerging shift in the area of Business Process Management. People
are used to state-based Workflow Management Systems (WfMS). In these, a workflow
consists of several activities or tasks guided by explicit control flow that defines the state
the workflow is in [vdAvK02]. The workflow itself often resembles some kind of office
process that is enacted in a well defined and closed environment like the department
of an enterprise. Structural change occurs seldom and can be handled in a pre-defined
manne [vdA01].

However, things are changing to more flexible, distributed workflows. These “new”
workflows still have a state and are guided by control flow constraints. But the “new
state” is made up of events instead of documents in certain places. These events are con-
sumed and produced by activities that have no static connections but event-connectors.
Events are used as preconditions to trigger activities and produced as an outcome. Some
activities are still executed in closed environments, but most are distributed as services
over open environments like the internet. There is no absolute control of the work-
flow by a single engine, or by any engine, as activities are outsourced and enforced not
by technical issues but rather by legal contracts. The event-based model allows the
flexible integration of activities and sub-workflows into other workflows, wherever they
are distributed, and however they are executed, as long as their interaction behavior is
matching.

5.1. Introduction to π-calculus

5.1.1. Relation to Other Formalisms

Sequential systems are described in the λ-calculus [Bar85] as well as Turing machines [Tur36].
Both theories have been developed in the 1930s. The science evolved to the description of
parallel systems by the use of Petri nets, developed by Carl Adam Petri in the 1960s. An-
other thirty years later, at around 1990, a theory of mobile systems, called the π-calculus,
has been developed by Robin Milner, Joachim Parrow, and David Walker. Sequential
systems are based on the concept of executing one step after the other. Parallel sys-
tems as represented by Petri nets explicitly describe static structures for concurrently
executed steps. Mobile systems are made up of parallel components which communicate
and change their structure – thereby overcoming the limitations of static structures.

71

5. Modeling Behavior

Sequential Systems

Sequential systems can be formally described by λ-calculus as well as Turing machines.
The λ-calculus is a formal system designed to investigate the definition of functions,
which are used for sequential computing. It brought the ideas of recursion and the
precise definition of a computable function into discussion even before the first computers
have been constructed. In the view of computer science, the λ-calculus can be seen
as the smallest universal programming language as any computable function can be
expressed and evaluated using this formalism. A different approach, computational
equal to the λ-calculus, are Turing machines that form the foundation for imperative
programming languages. Both, the λ-calculus as well as Turing machines, can be used to
represent business processes at a very low level of abstraction, already making concepts
like parallelism a complexity overwhelm.

Parallel Systems

While the λ-calculus formed the foundation for many computer science related topics
like programming languages, the description of workflows required a different approach.
In a typical workflow tasks are not only executed in sequential order, rather tasks are
executed in parallel by different employees to speed up the processing. These different
– then again sequential – processing paths have to be created and joined at some points
in the business process. Even further, parallel processing tasks could depend on each
other. The optimization of business processes usually adds parallelism and dependencies
as this is an effective way to reduce the throughput time.

These kinds of parallel processes are hard to describe in terms of the λ-calculus. To
overcome the limitations of sequential systems, an approach to represent parallel systems
called Petri nets has been adapted for workflow representation. Petri nets have a simple
but yet powerful mathematical foundation as well as a strong visual representation. They
use the concept of an explicit state representation for parallel systems. Each Petri net
is always in a precisely defined state denoted by the distribution of tokens over places
contained in the net. The state of the system could then be changed by firing transitions
which relocate the token distribution over the places. Petri nets have been adapted by
many systems that are used in the business process management domain to describe
business processes.

Beside the advantages of Petri nets for the business process management domain, that
include strong visualization capabilities, mathematical foundations, as well as their main
purpose, the description of parallel systems, Petri nets also have some drawbacks. The
main drawbacks are the static structure of the nets (that do not support dynamic process
structures) as well as the missing capabilities for advanced composition as for instance
recursion. Of course, Petri have been extended with support for dynamic structure,
like self modifying Petri nets, recursion, and objects. However, these enhancements also

72

5.1. Introduction to π-calculus

complicate the theory of the nets and thus have reached restricted usage only. A broad
research on the capabilities of Petri nets regarding common patterns of behavior found in
business processes showed that they fulfill basic tasks like splitting and merging process
paths easily, while they fail at advanced patterns like multiple instances of a task with
dynamic boundaries. Whereas there exist approaches to overcome some or all of the
limitations regarding the behavior, the static structure and limited composition of Petri
nets remains [vdAvK02].

Mobile Systems

To overcome the limitations of Petri nets, theories of mobile systems have been devel-
oped. Thereby a mobile system is made up of entities that move in a certain space.
The space consists of processes, and the entities that move are either links between the
processes (link passing mobility) or the processes themselves (process passing mobil-
ity). A theory for mobile systems, the π-calculus, overcomes the limitations of Petri
nets regarding the static structure and limited composition capabilities at the cost of a
more complex representation. The π-calculus represents mobility by directly expressing
movements of links in an abstract space of linked processes (i.e. link passing mobil-
ity). Practical examples are hypertext links that can be created, passed around, and
disappear. The π-calculus does not, however, support another kind of mobility that
represents the movement of processes. An example is code that is sent across a network
and executed at its destination. The π-calculus uses the concept of names with a certain
scope for interaction between different parallel processes. Names are a collective term for
concepts like channels, links, pointers, and so on. As the mobile system evolves, names
are communicated between processes and extrude or intrude their scope regarding to
certain processes. As the synchronization between processes is based on interaction and
received names are also used as communication channels, the link structure is changed
dynamically all the time the mobile system evolves.

In this section, we give a short introduction to π-calculus, a calculus of communicating
systems in which one can naturally express processes which have changing nature. The π-
calculus is a process algebra whose processes interact by sending communication links to
each other. π-calculus was first introduced in [MPW92]. Details about various extensions
of π-calculus can be found in [SW01].

The π-calculus is a mathematical model of processes whose interconnections change
as they interact. The basic computational step is the transfer of a communication
link between two processes; the recipient can then use the link for further interaction
with other parties. This makes the calculus suitable for modelling systems where the
accessible resources vary over times. It also provides a significant expressive power since
the notions of access and resouce underlie much of the theory of concurrent computation,
in the same way as the more abstract and mathematically tractable concept of a function
underlies functional computation.

73

5. Modeling Behavior

Let us consider an example. Suppose a server controls access to a printer and a client
wishes to access it. In the original state only the server itself has access to the printer,
represented by a communication link a in Figure 5.1. After an interaction with the client
along some other link b this access to the printer has been transferred.

Server

a
%%KK

KK
KK

KK
KK
oo

b
// Client

Printer

Server oo
b

// Client
c

yysssssssss

Printer

Figure 5.1.: Link passing in π-calculus: before and after interaction

In the π-calculus this is expressed as follows: the server that sends a along b is ba.S; the
client that receives some link along b and then uses it to send data along it is b(c).cd.P .
In the process expression describing the client, the name c denotes the variable that is
used to remember the link received along b (b(c)) such that it can be used later (cd.P).
The interaction depicted in Figure 5.1 is formulated

ba.S | b(c).cd.P
τ
−→ S | ad.P

We see that a plays two different roles. In the interaction between the server and the
client it is an object transferred from one to the other. In a further interaction between
the client and the printer it is the name of the communication link. The idea that the
names of the links belong to the same category as the transferred objects is one the
cornerstones of the calculus, and is one way in which it is different from other process
algebras.

5.1.2. Syntax

Assume an infinite set N of names and x, y, z, w, v as names. The syntax of an agent
can be summarized as follows:

74

5.1. Introduction to π-calculus

P ::= 0

| τ.P

| y(x).P

| yx.P

| P1 ‖ P2

| P1 + P2

| ω?Q:R

| (new x)P

| A(y1, . . . , yn)� Null Process 0 is a process that does nothing.� A prefix form τ.P , y(x).P or yx.P .

τ is called a silent prefix. τ.P performs the silent action τ and then behaves like
P .

y(x) is called a positive prefix. A name y may be thought of as an input port of an
agent; y(x).P inputs an arbitrary name z at port y and then behaves like P{z/x}
(refer to the definition of substitution below). The name x is bound by the positive
prefix ’y(x)’.

yx is called a negative prefix. y may be thought of as an output port of an agent
which contains it; yx.P outputs the name x at port y and then behaves like P .
Note, that a negative prefix does not bind a name.� A Composition P1 ‖ P2.

This agent consists of P1 and P2 acting in parallel. The components may act
independently; also, an output action of P1 (resp. P2) at any output port x may
synchronize with an input action of P2 (resp. P1) at x, to create a silent (τ) action
of the composite agent P1 ‖ P2.� A Summation P1 + P2

This agent behaves like either P1 or P2.� A Match ω?Q:R behaves like Q if the condition ω is true, and otherwise like R.� Restriction (new x)P This agent behaves as P but the name x is local, meaning
it cannot immediately be used as a port for communication between P and its
environment. However, it can be used for communication between components of
P .

75

5. Modeling Behavior� A defined agent A(y1, . . . , yn).

For any agent identifier A (with arity n) used thus, there must be a unique defin-

ing equation A(x1, . . . , xn)
def
= P , where the names x1, . . . , xn are distinct and

are the only names which may occur free in P . Then A(y1, . . . , yn) behaves like
P{y1/x1, . . . , yn/xn} (see below for the definition of substitution). Defining equa-
tions provide recursion, since P may contain any agent identifier, even A itself.

Definition 10. In each agent of one of the forms x(y).P and (new y)P the occurence
of y within parentheses is a binding occurence, and in each case the scope of occurence
is P . An occurence of y in an agent is said to be free if it does not lie within the scope
of a binding occurrence of y. The set of names occurring free in P is denoted by fn(P).
fn(P,Q, . . . , x, y, . . .) is used as an abbreviation for fn(P) ∪ fn(Q) ∪ . . . ∪ {x, y, . . .}.

Definition 11. A defining equation of an agent identifier A of arity n is of the form

A(x1, . . . , xn)
def
= P

where the xi are pairwise distinct and fn(P) ⊆ {x1, . . . , xn}.

Definition 12. An occurrence of a name in an agent is said to be bound if it is not free.
We assume that the set of bound names of P , bn(P), is defined in such a way that it

contains all names which occur bound in P and that if A(x̃)
def
= Q then bn(A(x̃)) = bn(Q),

where x̃ = x1, . . . , xn. We write n(P) for the set fn(P) ∪ bn(P) of names of P .

Definition 13. A substitution is a function σ from N to N which is almost everywhere
identity. If xiσ = yi for all i with 1 ≤ i ≤ n (and xσ = x for all other names x).

Definition 14. Processes P and Q are α-convertible, denoted as P ≡ Q, if Q can be
obtained from P by a finite number of changes of bound names. α-convertibility can be
seen as syntactic identity between processes.

Let Pσ denote the process obtained by simultaneously substituting zσ for each free
occurrence of z in P for each z, with change of bound names to avoid captures. In
particular the following hold, when the bound name y is replaced by the name y′.

(x(y).P)σ ≡ xσ(y′).P{y′/y}σ

((new y)P)σ ≡ (new y′)P{y′/y}σ

We shall write P{y1/x1, . . . , yn/xn} or P{yi/xi}1≤i≤n or P{ỹ/x̃} for the simulatenous
substitution of yi for all free occurrences of xi (for 1 ≤ i ≤ n) in P , with change of bound
names if necessary to prevent any of the new names yi from becoming bound in P .

76

5.1. Introduction to π-calculus

α Kind Free/Bound Polarity fn(α) bn(α)

τ Silent f 0 ∅ ∅
yx Free Output f − {x, y} ∅
y(x) Input b + {y} {x}
y(x) Bound Output b − {y} {x}

Table 5.1.: The actions

5.1.3. Semantics

The standard way to give an operational semantics to a process algebra is through
a labelled transition system, where transitions are of kind P

α
−→ Q for some set of

actions ranged over by α. The π-calculus follows this norm and most of the rules of
transitions are similar to other algebras. For example, for an agent α.P there will be a
transition labelled α leading to P and the restriction operator will not permit an action
with the restricted name as subject, so (new a)au.P has no transitions and is therefore
semantically equivalent to 0.

However the process (new u)au.P must have some action. Inserted in a context
a(x).Q ‖ (new u)au.P it will enable an interaction since, assuming u /∈ fn(Q), this
term is syntactically congruent to (new u)a(x).Q ‖ au.P and there is an interaction
between the components. So (new u)au.P is not, intuitively, something that behaves as
0. On the other hand it is clearly distinct from au. For example,

a(x).(x = u)?Q:0 ‖ au
τ
−→ (u = u)?Q:0

which can continue as Q, while

(a(x).(x = u)?Q:0) ‖ (new u)au ≡ (new v)(a(x).(x = u)?Q:0 ‖ av)

and
(new v)(a(x).(x = u)?Q:0 ‖ av)

τ
−→ (new v)(v = u)?Q:0

and there are no further actions.
The solution is to give (new u)au a new kind of action called bound output written a(u).

The intuition is that a local name represented by u is transmitted along a, extending
the scope of u to the recipient. In summaray, the actions ranged over by α consists of
the following four classes as shown in Table 5.1

1. The silent action τ . P
τ
−→ Q means that P can evolve into Q, and in doing so

requires no interaction with the environment. Silent actions can naturally arise
from agents of form τ.P , but also from communications within an agent.

2. A free output action xy. The transition P
xy
−→ Q implies that P can emit the free

77

5. Modeling Behavior

name y on the port x. Free output arise from the output prefix form xy.P .

3. An input action x(y). Intuitively, P
x(y)
−→ Q means that P can receive any name w

on the port x, and then evolve into Q{w/y}. Here, (y) represents a reference to
the place where the received value will go; y is enclosed in brackets to emphasize
this fact. Input actions arise from the input prefix for x(y).P .

4. A bound output action x(y). Intuitively, P
x(y)
−→ Q means that P emits a private

name (i.e. a name bound in P) on port x, and (y) is a reference to where this
private name occurs. As in the input action above, y is enclosed in brackets to
emphasize that it is a reference and does not represent a free name. Bound output
actions arise from free output actions which carry name out of their scope, as e.g.
in the agent (new y)xy.P .

The silent action and free output actions are collectively called free actions, while
input actions and bound output actions are called bound actions. Thus, the bound
actions carry “references” rather than values; these references are in the form of names
within brackets.

The free output and bound output actions are collectively called output actions, or
negative actions (actions of negative polarity). Similarly, the input actions are called
positive actions (actions of positive polarity). Two actions must be of opposite polarity
in order to combine into an internal communication.

In the output and input actions mentioned above, x ist the subject and y is the object
or parameter. The object is said to be bound in the bound actions and free in free
actions. The set of bound name bn(α) of an action α is the empty set if α is a free
action; otherwise it contains just the bound object of α. The set of free names fn(α)
of α contains the subject and free object (if any) of α, and the names n(α) of α is the
union bn(α) and fn(α). Note, that n(τ) = ∅.

The operational semantics of π-calculus is given in Figure 5.2. The operational seman-
tics of π-calculus maps a π-calculus process expression to a labeled transition system by
viewing operations (communication operations and silent operation) as transitions and
process expressions as states [MPW92].

5.1.4. The Polyadic π-calculus

A straightforward extension of the π-calculus is to allow multiple objects in communi-
cations: outputs of type a〈y1, . . . , yn〉.P and inputs of type a(x1, . . . , xn).Q where xi are
pairwise distinct. In polyadic calculus, the case n = 0 is also admitted. Though allowing
multiple name does not increase the expressiveness of the calculus since polyadic inter-
actions can be emulated by sequences of monadic interactions over a private link, the
question arises how to treat agents such a(xy).P ‖ a〈u〉.Q where the arity of the output

78

5.1. Introduction to π-calculus

TAU-ACT:
−

τ.P
τ
−→ P

OUTPUT-ACT:
−

xy.P
xy
−→ P

INPUT-ACT:
−

x(z).P
x(w)
−→ P{w/z}

w ∈ fn((z)P)

SUM:
P

α
−→ P ′

P +Q
α
−→ P ′

Q
α
−→ Q′

P +Q
α
−→ Q′

MATCH:
P

α
−→ P ′

[x = x]P
α
−→ P ′

IDE:
P{ỹ/x̃}

α
−→ P ′

A(ỹ)
α
−→ P ′

A(x̃)
def
= P

PAR:
P

α
−→ P ′

P ‖ Q
α
−→ P ′ ‖ Q

bn(α) ∩ fn(Q) = ∅

PAR:
Q

α
−→ Q′

P ‖ Q
α
−→ P ‖ Q′

bn(α) ∩ fn(P) = ∅

COM:
P

xy
−→ P ′ Q

x(z)
−→ Q′

P ‖ Q
τ
−→ P ′ ‖ Q′{y/z}

CLOSE:
P

x(w)
−→ P ′ Q

x(w)
−→ Q′

P ‖ Q
τ
−→ (w)(P ′ ‖ Q′)

RES:
P

α
−→ P ′

(y)P
α
−→ (y)P ′

y ∈ n(α)

OPEN:
P

xy
−→ P ′

(y)P
x(w)
−→ P ′{w/y}

y 6= x,w /∈ fn((y)P ′)

Figure 5.2.: Operational Semantics

79

5. Modeling Behavior

is not the same as the arity of the input. Such an incompatibility should be caught by
a type system. The idea is that each name is assigned a sort, containing information
about the objects that can be passed along the name. If S is a set of sorts, a sort context
∆ is a function from N to S, in other words ∆(a) is the sort of a.

In the simplest system a sort would just be a natural number, S = N, such that ∆(a)
denotes the arity of a, i.e. the number of objects in any prefix where a is the subject.
Formally we write ∆ ⊢ P to mean that P conforms to ∆, and rules for inferring ∆ ⊢ P
can easily be given by induction over the structure of P . For example,

∆ ⊢ P,∆(a) = n

∆ ⊢ a〈x1 . . . xn〉.P

∆ ⊢ P,∆ ⊢ Q

∆ ⊢ P ‖ Q

With this idea the agent a(xy).P ‖ a〈u〉.Q is ill-formed in the sense that it cannot
conform to any sort context: ∆(a) is required to be 2 in one component and 1 in
the other component. However, although this simple scheme works for this particular
example, it is not in general sufficient to catch all incompatible arities that may arise
when an agent executes. Consider:

a(u).u(z).0 ‖ a〈x〉.x〈vv〉.0

A sorting assining 2 to x and 1 to all other names works fine here. Yet the agent can
evolve through an interaction along a to

x(z).0 ‖ x〈vv〉.0

which is ill-formed. To be able to catch not only the immediately obvious arity conflicts
but also any such conflicts that can aries during execution more information must be
added to the sorts. For each name, the number of objects passed along that name is not
enough, also the sort each such object must be included. In the example above, the left
component requires the sort of a to be one object (corresponding to u) which has sort
1 because of the subterm u(z). The right component requires the sort of a to be one
object (corresponding to x) of sort 2 because of the subterm x〈vv〉. With this refined
notion of sort an agent such as a(u).u(z).0 ‖ a〈x〉.x〈vv〉.0 is ill-formed.

Of course arity conflicts can lie arbitrarily deep, meaning that the sort of a must
contain information about the objects which are passed along the objects which are
passed along ... which are passed along a to arbitrary depth. One way to set this up
is the following. To each sort S ∈ S associate a fixed object sort ob(S) in S∗ i.e., the
object sort a (possibly empty) sequence of sorts. The intention is that if a has sort S
where ob(S) = 〈S1, . . . , Sn〉, and a(x1 . . . xn) is a prefix, then each xi has sort Si. The

80

5.2. Modeling Behavior

sorting rule for input then becomes:

∆ ∪ {x̃ 7→ ob(∆(a))} ⊢ P

∆ ⊢ a(x̃).P

It should be read as follows: In order to establish that a(x1 . . . xn).P conforms to ∆, find
the object sorts S1 . . . Sn of a according to ∆, and verify that P conforms to ∆ where
also each xi is assigned sort Si. The rule for output is:

ob(∆(a)) = ∆(y1) . . .∆(yn), ∆ ⊢ P

∆ ⊢ aỹ.P

In order to establish that a〈y1 . . . yn〉 conforms to ∆ it is enough to show that it assigns
y1 . . . yn the object sorts of a, and that P conforms to ∆. In this way agents such aa.P ,
where a name is sent along itself, can also be given a sorting: if S is the sort of a then
ob(S) = 〈S〉.

In conclusion, although polyadic interactions do not really increase the expressiveness
it adds convenience and clarity when using the calculus, and efficiently implementable
sort systems can ascertain that no mismatching arities will ever occur when agents evolve.

Now, we turn our attention to how the sets RA, CA and the behavior BA of an agent
A ∈ A can be modeled formally.

5.2. Modeling Behavior

Now, we turn our attention to modeling the third aspect of an agent, namely, his dynamic
behavior. We use polyadic π-calculus for modeling dynamic behavior of an agent.

Polyadic π-calculus is a powerful tool for describing the dynamics of communicating
mobile processes. However, π-calculus names, i.e. the objects that are communicated
among agent, do not have any structure and any semantics. This is because π-calculus
is a pure process algebra and reasoning about the meaning of the involved static objects
in a process is not the focus in the process algebra community. As a result static objects
are just considered as strings.

Another problem with π-calculus is that it suggests to model even the simplest tasks
like adding two number as processes[Mil80, SW01]. Thus, modeling processes of practical
interest with pure π-calculus syntax is tedious and one obtains unnecessary long process
expressions. This also makes it impossible to model certain tasks as black boxes. Note,
that the pure π-calculus has only the silent action τ as local operation which does not
have any effects.

Finally, although, π-calculus offers the notion of guarded processes (processes that are
executed only if certain condition is fulfilled), the only condition allowed is the equality
check on objects. We extend the notion of guarded processes by using boolean predicate

81

5. Modeling Behavior

symbols as condition expressions, for example to embed access checks.
In this section, we will mainly address these three issues and show how π-calculus

can be combined with description logics and how access control policies can be seen as
conditions.

An agent performs operations alone or jointly with other agents. The joint operations
are communication operations consisting of message exchange. Local operations of an
agents are not observable for other agents, whereas the communication operations are
observable for the agents that participate in the communication.

Definition 15 (Event, Labelling Function, Agent Function). An event e is an occurrence
of an operation. With λ(e), we denote the operation occurred at event e. With α(o),
we denote the set of agents that can perform the operation o. That is, α(o) = {A ∈ A :
o ∈ OA}.

5.2.1. Message Types for Communication Operations

We view π-calculus names as entities, the structure of which is described with TBox and
ABox axioms (cf. Figures 3.2 and 3.3).

In π-calculus agents communicate via exchanging messages, which is one more reason
for the suitability of π-calculus for describing web processes. In general, more than one
resource can be transported or communicated from one agent to another in a commu-
nication action. A resource can be transported from one agent to another only if it is
serializable to an appropriate type.

As we have seen the polyadic π-calculus supports sorts to ensure that the communi-
cation only takes place if the arity of the incoming message matches with the expected
arity. However, it does not ensure that the communication only takes place if the re-
sources sent by one party are of the type that the receiving party expects. Furthermore,
π-calculus abstracts from protocol types. Protocol types are important in practice, since
many business processes run in a mixed environment.

Definition 16 (Message Part). Polyadic π-calculus allows to exchange more than one re-
source within one communication activity by allowing extended syntax elements a〈x1, . . . , xn〉.P
for outputs and a(x1, . . . , xn).Q for inputs activities respectively (refer to Section 5.1.4).
We call one such xi a message part.

Definition 17 (Message Type). We denote with P1:C1, . . . , Pn:Cn a message type, with
each Ci belonging to a T-Box T ∈ T denoting the type of the message part Pi. Further-
more, there must be at least one serialization type common for every Ci.

Definition 18 (Communication Channel). A communication channel is a tuple (p, a, t),
where p is the protocol, a the address and t the type of message that can be transmitted
via the channel. Examples of common communication protocols are “HTTP”, “Phone”,
“Fax”, “Email (SMTP/POP)”, “Surface Mail”. Each protocol supports a set of MIME

82

5.2. Modeling Behavior

types that it can transport. For example, “HTTP” supports “XML” and “HTML” that
can not be sent by “Surface Mail”.

Recall, that an input process c(v1, . . . , vk).Q means that the process first receives a
message with resources r1, . . . , rk along the channel c, binds (r1, . . . , rk) to variables v1
to vk and then behaves like the process Q. An output operation cu1, . . . , uk sends a
message consisting of k parts u1, . . . , uk along the channel c.

In both case, we give c the structure Ci, where C is a communication channel and i
is the unique identifier of the instantiation of C. The semantics of Ci(v1, . . . , vn), with
C = (p, a, t), is an input event e that expects a message of type t at address a and with
the protocol p. Similarly, the semantics of Ci(v1, . . . , vn), with C = (p, a, t), is an output
event e that sends a message of type t at address a and with protocol p.

Finally, by modeling communication channels as description logic individuals we make
sure that channel descriptions can be sent and received just like any other resources and
thus the mobility is kept. While doing so, we model a set of resources Ri ⊆ R as a
description logic concept Ri. For each protocol p and for each serialization type, we model
description logic individuals p and a respectively. A communication channel C = (p, a, t)
with t = R1, . . . , Rn can now be easily modeled by defining corresponding relationships
of the individual C with individuals p and a and with the concepts R1, . . . ,Rn.

5.2.2. Introducing Local Operations to Model Updates

As we have already mentioned, we model the knowledge bases of the agents with de-
scription logics A-Boxes. A DL A-Box consists of the following types of axioms:� ClassMember(x, y): means that the individual x is member or instance of the

concept y.� DataPropertyMember(p, x, y): means that the individual x has y as value of the
data property p.� ObjectPropertyMember(p, x, y): means that the individual x has individual y as
value of the object property p� SameIndividual(x, y): means that the individuals x are y are same.� DifferentIndividual(x, y): means that the individuals x and y are different.

The above types of A-Box axioms represent the only types of changes that can be
performed in an A-Box. When an agent updates his local knowledge base, he adds new
A-Box axioms to his knowledge base or removes some of the existing axioms from his
knowledge base. Obviously, such changes or updates happen locally. That is, except
the agent, whom the knowledge base belongs to, there is no other agent involved in an
update activity. As already mentioned aboove, we call such operations local operations.

83

5. Modeling Behavior

A local operation is a decidable procedure that can add new DL axioms in the knowl-
edge base or remove existing DL axioms from the knowledge base of the agent that exe-
cutes the local operation. So, we model a local operation as l(x1, . . . , xn) and its effects
as a list of changes ∆ , where each element δ ∈ ∆ is a parameterized DL A-Box axiom.
Furthermore, a change δ ∈ ∆ is adorned with a sign (+ or -) that indicates whether the
axiom corresponing to c is added to or removed from the knowledge base. Every param-
eter of an axiom corresponding to a change belong to the set {x1, . . . , xn}. For example,
if A = {classMember(x1, x2)} belongs to the effects of an operation l(x1, x2), executing
l with arguments Peter and Person will add the axiom classMember(Peter, Person)
to the knowledge base.

A local operation may also perform some calculation and connect the result via some
property to an individual. For example, add(x, y, z) adds x and y and assigns the result
(x + y) to z. The result z can then be treated as an individual and connected via a
property to another individual. This can be done by adding a DL-safe rule in the ontol-
ogy1. For example, a DL-safe rule income(Peter, z) ← income(Pedro, x), add(x, 100, z)
sets Peter’s income to 100 more than that of Pedro.

5.2.3. Integrating Access Control Policies as Conditions

In [AS05], we have shown that modeling a property as a description logic concept allows a
straightforward mapping of the set theoretic operations to description logic constructors
(cf. Figure 3.1).

We model access control policies as pre conditions and foresee an input parameter
for the set of certificates a user has to show in order to prove his eligibility to access
a Web service. We use a built-in predicate CCD(C,P), that is true iff the set C of
certificates fulfills the access control policy P according to the certificate chain discovery
algorithm [AS05, CEE+01].

Since we specify the properties that are certified to agents as description logic concepts,
we can use concept subsumption to specify the mapping between different properties.
For example, by defining the axiom P1 ⊑ P2, an agent acting as a certification authority,
states, that anyone possessing the property p1 also possesses the property p2.

We now turn our attention to Web service providers and consider the problem how
they can restrict access to their services. In a capability based setting, access is granted
or denied on the basis of certified properties. For a correct specification of the access
control policy, a Web service provider faces the following two problems: (1) he must
understand the meaning of credentials and certified properties and (2) he must trust
the issuers of credentials. A Web service provider can understand the meaning of the
credentials issued by a certification authority from the description of the properties that
the certification authority certifies. On the basis of the description of the properties

1Note, that in order to support this, rule extensions to description logics must be used.

84

5.2. Modeling Behavior

that a certification authority possesses, a Web service provider can build his trust in the
certification authority.

We now show how a Web service provider can make use of certification policies as
introduced in Section 4.3.2 while (1) specifying the access control policy for his service
and (2) verifying the eligibility for access of a particular user.

Specifying Access Control Policies

An access control policy for a Web service w is a set of authorization terms (p,w, f). Each
authorization term has the intuitive meaning that a user being able to prove property
p is granted access to functionality f of Web service w. The tuple 〈w, f〉 is called an
interface, the set of all interfaces is denoted by I. We define the expansion exp(p,w, f) of
an authorization term to be the set {(s,w, f)| subject s can prove to have property p}
and the expansion exp(Π) of a policy Π to be the union of the expansions of elements
of Π. An authorization term can be defined with DL axioms as follows:

AuthorizationTerm ⊑ ⊤ ⊓ ∃subject.ca-Property⊓

∃object.WebService⊓

∃authorization.WebServiceFunctionality

Verifying Eligibility of a User

When a user requests access by showing his set of certificates the Web service provider
must be able to verify the user’s eligibility in order to decide whether to grant or to
deny access to the user. To verify the eligibility of a user, he checks for each access
requirement, whether the shown set of credentials (plus possibly published certification
policies and delegation credentials published by relevant CAs) contain a valid certificate
chain from some trusted CA to the required property. However, in this process, the
service provider also needs to consider the possible revocation of one or more certificates
shown by the user. This could either be a certificate directly issued to the user or a
certificate in the certificate chain issued to one of the involved CAs. If the CAs publish
their certification policies including the delegation credentials issued to them in machine
readable form on the Web, it might still be possible to automatically find a valid chain
that proves the users’ eligibility, e.g. via newly stated relationships or other published
delegation certificates.

Definition 19 (Access Control Policy). An access control policy is an expression E
defined recursively over the properties from the set of properties P as follows:

E ::= p ∈ P | E + E | E & E | E − E

85

5. Modeling Behavior

The semantics of such policy algebra expression is a function that maps each policy
expression to an expanded policy, inductively extending an environment by using the
pertinent interpretation of the operators over policies. The operators addition (+), the
conjunction (&) and subtraction (−) are interpreted as set-theoretic union, intersec-
tion and difference on the expanded policies, respectively. The scoping restriction ”C”
restricts a policy to the interfaces 〈w, f〉 ∈ C.

Access Control Policy - Example

Let us now consider our running example again to illustrate how a Web service provider
can specify an access control policy using the knowledge he gains from the certification
policies of the certification authorities.

The outdoor shop OutShop offers a registration service for approved trekking guides.
For the registration they have the following access condition: Each trekking guide must
be approved by either the Forest department FD or by the wildlife foundation WLF,
must at least 25 years old and must be knowledgeable in first aid. This leads to the
following access control policy:

ACP (P) := {(WLF, OS.edu, trecking guide), (FD, OS.edu, trecking guide)}

where WLF and FD are defined as follows:

WLF ≡ WLF.org;#appguide ⊓ state.gov;#above25 ⊓ RedCross.org;#firstaid

FD ≡ FD.org;#appguide⊓ state.gov;#above25 ⊓ RedCross.org;#firstaid

From the certification policy, the Web service provider can infer that whoever has the
property FD.org;#appguide also has the properties state.gov;#above25 and RedCross.org;#firstaid

At the time of specification of the policy, it allows him to relax the policy and thus reduce
the number of certificates, a potential user has to present:

ACP (P) := {(WLF, OS.edu, trecking guide), (FD, OS.edu, trecking guide)}

with FD being defined as

FD ≡ FD.org;#appguide.

At the time of verification it allows the Web service provider to verify, that a user,
who has presented ”only” a valid chain for FD.org;#appguide is still eligible for the
registration.

Now, we consider how checking the eligibility of a user according to an access control
policy can be integrated in the behavior of a Web service. Recall from Section 5.1.2
the process expressions of type IfThenElse. A process expression ω?P :Q checks the

86

5.3. Related Work

condition ω and if it holds, the process behaves like the process P otherwise like the
process Q. We model checking of access eligibility as a condition by using a predicate
symbol CCD(C,P, a), that is true iff the set of credentials C proves the eligibility of
the agent a according to the access control policy P . The eligiblity is checked by the
certificate chain discovery algorithm [CEE+01].

Having seen, how resources, credentials and behavior of an invocable agent can be
specified semantically, we just view a Web service as a special type of agent that is
invocable via a standard Web protocol. That is, a Web service is an agent c(. . .).P with
channel c = (p, a, t) such that p ∈ {HTTP, SMTP, . . .}.

5.3. Related Work

5.3.1. OWL-S

OWL-S formerly known as DAML-S [SPAS03] is perhaps the first initiative to address
the need of describing Web services semantically. OWL-S is an OWL ontology for

Service

ServiceProfile ServiceModel ServiceGrounding

presents describedBy supports

Figure 5.3.: OWL-S Top Level Ontology

describing Web services. Figure 5.3 shows the OWL-S top level or upper level ontology.
The structure of the ontology of services is motivated by the need to provide three
essential types of knowledge about a service (Figure 5.3), each characterized by the
question it answers:� What does the service require of the user(s), or other agents, and provide for them?

Thus, the class Service presents a ServiceProfile.� How does it work? Thus, the class Service is describedBy a ServiceModel.� How is it used? Thus, the class Service supports a ServiceGrounding.

The class Service provides an organizational point of reference for declaring Web services;
one instance of Service will exist for each distinct published service. The properties
presents, describedBy, and supports are properties of Service. The classes ServiceProfile,
ServiceModel, and ServiceGrounding are the respective ranges of those properties. Each

87

5. Modeling Behavior

instance of Service will present a descendant class of ServiceProfile, be describedBy a
descendant class of ServiceModel, and support a descendant class of ServiceGrounding.
The details of profiles, models, and groundings may vary widely from one type of service
to another–that is, from one descendant class of Service to another.

Service Profile

The service profile tells “what the service does”; that is, it gives the types of information
needed by a service-seeking agent (or matchmaking agent acting on behalf of a service-
seeking agent) to determine whether the service meets its needs. The Service Profile
does not mandate any representation of services; rather, using the OWL subclassing it
is possible to create specialized representations of services that can be used as service
profiles. OWL-S provides one possible representation through the class Profile. An
OWL-S Profile describes a service as a function of three basic types of information:
what organization provides the service, what function the service computes, and a set
of features that specify characteristics of the service.

The provider information consists of contact information that refers to the entity that
provides the service. For instance, contact information may refer to the maintenance
operator that is responsible for running the service, or to a customer representative that
may provide additional information about the service.

The functional description of the service is expressed in terms of the transformation
produced by the service. Specifically, it specifices the inputs required by the service
and the outputs generated; furthermore, since a service may require external conditions
to be satisfied, and it has the effect of changing such conditions, the profile describes
the preconditions required by the service and the expected effects that result from the
execution of the service. For example, a selling service may require as a precondition a
valid credit card and as input the credit card number and expiration date. As output it
generates a receipt, and as effect the card is charged.

Finally, the profile allows the description of a host of properties that are used to
describe features of the service. The first type of information specifies the category of a
given service, for example, the category of the service within the UNSPSC classification
system. The second type of information is quality rating of the service: some services may
be very good, reliable, and quick to respond; others may be unreliable, sluggish, or even
malevolent. Before using a service, a requester may want to check what kind of service
it is dealing with; therefore, a service may want to publish its rating within a specified
rating system, to showcase the quality of service it provides. It is up to the service
requester to use this information, to verify that it is indeed correct, and to decide what
to do with it. The last type of information is an unbounded list of service parameters
that can contain any type of information. The OWL-S Profile provides a mechanism for
representing such parameters; which might include parameters that provide an estimate
of the max response time or to the geographic availability of a service.

88

5.3. Related Work

Process

AtomicProcess CompositeProcess

SimpleProcess

realizes

realizedBy

expand

collapse

Figure 5.4.: OWL-S Top Level Process Ontology

Service Model

The service model tells “how the service works”; that is, it describes what happens when
the service is carried out. For nontrivial services (those composed of several steps over
time), this description may be used by a service-seeking agent in at least four different
ways: (1) to perform a more in-depth analysis of whether the service meets its needs;
(2) to compose service descriptions from multiple services to perform a specific task; (3)
during the course of the service enactment, to coordinate the activities of the different
participants; and (4) to monitor the execution of the service.

As shown in Figure 5.4, the process model identifies three types of processes: atomic,
simple, and composite. Each of these is described below.

The atomic processes are directly invocable (by passing them the appropriate mes-
sages). Atomic processes have no subprocesses, and execute in a single step, from the
perspective of the service requester. That is, they take an input message, execute, and
then return their output message – and the service requester has no visibility into the
service’s execution. For each atomic process, there must be provided a grounding that
enables a service requester to construct these messages.

Simple processes are not invocable and are not associated with a grounding, but, like
atomic processes, they are conceived of as having single-step executions. Simple processes
are used as elements of abstraction; a simple process may be used either to provide a
view of (a specialized way of using) some atomic process, or a simplified representation
of some composite process (for purposes of planning and reasoning). In the former case,
the simple process is realizedBy the atomic process; in the latter case, the simple process
expandsTo the composite process.

Composite processes are decomposable into other (non-composite or composite) pro-

89

5. Modeling Behavior

cesses; their decomposition can be specified by using control constructs such as Sequence
and If-Then-Else. Such a decomposition normally shows, among other things, how the
various inputs of the process are accepted by particular subprocesses, and how its various
outputs are returned by particular subprocesses.

Service Grounding

A service grounding specifies the details of how an agent can access a service. Typi-
cally a grounding will specify a communication protocol, message formats, and other
service-specific details such as port numbers used in contacting the service. In addition,
the grounding must specify, for each abstract type specified in the ServiceModel, an un-
ambiguous way of exchanging data elements of that type with the service (that is, the
serialization techniques employed).

OWL-S suffers from many problems. Firstly, OWL-S Profile though having elements
for pre- and post conditions, still does not mandate any concrete formalism for specifying
the conditions. In our approach, we have shown how pre conditions and effects can
be modeled. This limitation of OWL-S Profile is directly related to the problem of
describing relations between input and output parameters. Secondly, the OWL-S Process
Model does not have a formal execution semantics. Note, that the execution semantics
presented in [AHS02] is of one of the first versions of DAML-S. Since OWL-S is an OWL
ontology, OWL-S Process Model has a description logics semantics. However description
logics can not capture behavioral semantics, in particular that of changing A-Boxes
of the participating actors and variables. In our approach, we model the behaviour
with π-calculus that has a thoroughly investigated execution semantics. In particular,
the correct semantics of variables is ensured by adding and removing sameIndividual

axioms. We believe, that the non-availability of formal semantics for OWL-S Process
Model is the major reason for the non-availability of matchmakers based on OWL-S
Process Model. The OWL-S matchmaker presented in [SPAS03] actually matches the
subsumptions among the input and output parameter of a web service, which is, as
discussed in Chatper 1, not sufficient for automation. The third problem with OWL-S is
the separation of OWL-S Profile and OWL-S Process Model. Due to this separation, one
needs to relate the elements in OWL-S Profile and elements in OWL-S Process Model
that actually describe the same artifacts. Note, that there is currently no convincing
argument known for this separation. In our approach, we do not have this problem.
Our formalism does not require to model the same artifacts multiple times and therefore
does not require to relate the descriptions of the same artifacts. OWL-S however has
identified and modeled some important non-functional properties of Web services, which
we have abstracted from in this work. We believe, that our formal model can be used
to provide formal execution semantics to OWL-S.

90

5.3. Related Work

Figure 5.5.: WSMO Top Level Elements

5.3.2. WSMO

WSMO (Web Service Modeling Ontology) provides a conceptual underpinning and a for-
mal language for semantically describing web services in order to facilitate the automati-
zation of discovering, combining and invoking electronic services over the Web [RKL+05].
WSMO builds on the Web Service Modeling Framework (WSMF) [FB02]. WSMO is
rather a formalized bird-eye view than a concrete Web service description language. The
WSMO working group develops a conceptual model for the semantic description of web
services. The WSML working group develops a formal language to describe the formal
model developed by the WSMO working group. The WSMX working group works on
the development of a execution environment for semantic web services.

WSMO

The conceptual model WSMO consists of four main elements, namely Ontologies, Goals,
Web Services and Mediators (refer to Figure 5.5).

Ontologies provide the terminology used by other WSMO elements to describe the
relevant aspects of the domains of discourse. Web services describes the computational
entity providing access to services that provide some value in a domain. These descrip-
tions comprise the capabilities, interfaces and internal working of the Web service. Goals
represent user desires, for which fulfilment could be sought by executing a Web service.
Ontologies can be used for the domain terminology to describe the relevant aspects.
Goals model the user view in the Web service usage process. Finally, Mediators describe
elements that overcome interoperability problems between different WSMO elements.
Mediators are the core concept to resolve incompatibilities on the data, process and

91

5. Modeling Behavior

protocol level, i.e. in order to resolve mismatches between different used terminologies
(data level), in how to communicate between Web services (protocol level) and on the
level of combining Web services (and goals) (process level).

Ontologies

Class ontology

hasNonFunctionalProperties type nonFunctionalProperties

importsOntology type ontology

usesMediator type ooMediator

hasConcept type concept

hasRelation type relation

hasFunction type function

hasInstance type instance

hasAxiom type axiom

The following non-functional properties recommended for characterizing ontologies are:
Contributor, Coverage, Creator, Date, Description, Format, Identifier, Language, Owner,
Publisher, Relation, Rights, Source, Subject, Title, Type, Version.

Importing Ontologies allows a modular approach for ontology design. Importing can
be used as long as no conflicts need to be resolved, otherwise an Ontology-Ontology-
Mediator needs to be used.

When importing ontologies, most likely some steps for aligning, merging, and trans-
forming imported ontologies have to be performed. For this reason and in line with the
basic design principles underlying the WSMF ontology mediators (ooMediator) are used
when an alignment of the imported ontology is necessary.

Class concept

hasNonFunctionalProperties type nonFunctionalProperties

hasSuperConcept type concept

hasAttribute type attribute

hasDefinition type logicalExpression multiplicity =

single-valued

Concepts constitute the basic elements of the agreed terminology for some problem
domain. From a high-level perspective, a concept – described by a concept definition –
provides attributes with names and types. Furthermore, a concept can be a subconcept
of several (possibly none) direct superconcepts as specified by the isA-relation. Precise
semantics of the concepts is defined in WSML as it depends on the concrete ontology
formalization language.

A function is a special relation, with an unary range and a n-ary domain (parameters
inherited from the relation), where the range value is functionally dependent on the
domain values. In contrast to a function symbol, a function is not only a syntactical
entity but has a defined semantics that allows to actually evaluate the function if concrete
input values for the parameters are given. That means that one can actually substitute
the (ground) function term in some expression by its concrete value. Functions for

92

5.3. Related Work

example can be used to represent and exploit built-in predicates of common datatypes.
Their semantics can be captured externally by means of an oracle, or can be formalized
by assigning a logical expression to the hasDefinition property inherited from relation.

Instances are either defined explicitly or by a link to an instance store, i.e., an ex-
ternal storage of instances and their values. Again, the semantics of the class-instance
relationship, is determined by the concrete ontology language.

Finally, an axiom is a logical expression together with its annotations.

Web Services WSMO Web service descriptions consist of functional, non-functional
and the behavioral aspects of a Web service. A Web service is a computational entity
which is able (by invocation) to achieve a user’s goal. A service in contrast is the
actual value provided by this invocation. Thereby a Web service might provide different
services, such as for example Amazon can be used for acquiring books as well as to find
out an ISBN number of a book.

Class webService

hasNonFunctionalProperties type nonFunctionalProperties

importsOntology type ontology

usesMediator type {ooMediator, wwMediator}

hasCapability type capability multiplicity = single-valued

hasInterface type interface

A Web service can import ontologies using ontology mediators (ooMediator) when steps
for aligning, merging, and transforming imported ontologies are needed. A Web service
can use wwMediators to deal with process and protocol mediation.

Goals Goals are representations of an objective for which fulfillment is sought through
the execution of a Web service. Goals can be descriptions of Web services that would
potentially satisfy the user desires. The following listing presents the goal definition:

Class goal

hasNonFunctionalProperties type nonFunctionalProperties

importsOntology type ontology

usesMediator type {ooMediator, ggMediator}

requestsCapability type capability multiplicity = single-valued

requestsInterface type interface

A capability defines the Web service by means of its functionality. An interface describes
how the functionality of the Web service can be achieved (i.e. how the capability of a
Web service can be fulfilled) by providing a twofold view on the operational competence
of the Web service:� choreography decomposes a capability in terms of interaction with the Web service.� orchestration decomposes a capability in terms of functionality required from other

Web services.

93

5. Modeling Behavior

Figure 5.6.: Interplay of WSMO Mediators

This distinction reflects the difference between communication and cooperation. The
choreography defines how to communicate with the Web service in order to consume its
functionality. The orchestration defines how the overall functionality is achieved by the
cooperation of more elementary Web service providers

Mediators WSMO distinguishes among four different types of mediators:� ggMediators: Mediators that link two goals. This link represents the refinement
of the source goal into the target goal or state equivalence if both goals are sub-
stitutable.� ooMediators: Mediators that import ontologies and resolve possible representation
mismatches between ontologies.� wgMediators: Mediators that link Web services to goals, meaning that the Web
service (totally or partially) fulfills the goal to which it is linked. wgMediators
may explicitly state the difference between the two entities and map different
vocabularies (through the use of ooMediators).� wwMediators: Mediators linking two Web services.

In contrast to OWL-S WSMO differentiates between the descriptions of goals and web
services.

94

5.3. Related Work

Figure 5.7.: WSML Language Variants

WSML

The Web Service Modeling Language (WSML) aims at providing means to formally
describe all the elements defined in WSMO. The different variants of WSML correspond
to different levels of logical expressiveness and the use of different languages paradigms.
More specifically, Description Logics, First-Order Logic and Logic Programming are
taken as starting points for the development of the WSML language variants. The basic
language with the least expressive power is WSML-Core. This language is defined by the
intersection of Description Logic and Horn Logic, based on Description Logic Programs.
The main features of the language are the support for modeling classes, attributes,
binary relations and instances. Furthermore, the language supports class hierarchies, as
well as relation hierarchies. WSML-Core provides support for datatypes and datatype
predicates.

WSML-DL is an extension of WSML-Core which fully captures the Description Logic
SHIQ(D), which captures a major part of the (DL species of the) Web Ontology Lan-
guage OWL, with a datatype extension based on OWL-E, which adds richer datatype
support to OWL. WSML-Flight is an extension of WSML-Core with such features as
meta-modeling, constraints and nonmonotonic negation. WSML-Flight is based on a
logic programming variant of F-Logic [Kifer et al., 1995] and is semantically equivalent
to Datalog with inequality and (locally) stratified negation. As such, WSML-Flight
provides a powerful rule language. WSML-Rules is an extension of WSML-Flight in
the direction of Logic Programming. The language captures several extensions such

95

5. Modeling Behavior

as the use of function symbols and unsafe rules. WSML-Full unifies WSML-DL and
WSML-Rule under a First-Order umbrella with extensions to support the nonmono-
tonic negation of WSML-Rule. It is yet to be investigated which kind of formalisms are
required to achieve this. Possible formalisms are Default Logic, Circumscription and
Autoepistemic Logic.

The WSMX-Architecture consists of a set of loosely-coupled components that can be
plugged-in and plugged-out from the system. For each component, public interfaces
are defined, that can be either accessed by components provided with the reference im-
plementation, or by components provided by independent component providers. Since,
execution of Web services is not our focus in this work, we will not discuss WSMX in
further detail. For more details on WSMX we refer to [HCM+05].

WSMO is a conceptual model and the modeling approach that we have presented may
be seen as a reference implementations of WSMO since we support all top level elements
of WSMO, namely ontologies, goals2,Web services and mediation. So, our formalism for
modeling Web services is rather on the level of WSML. However, even if the WSMO
conceptual model addresses the need of choreography and orchestration, WSML does not
provide any formalism to model them. From this perspective, our Web service modeling
language implements WSMO better than WSML. Furthermore, WSMO’s definition of
effects is still vague. We have shown that invoking a Web service can have two kinds
of effects, namely input/output activities and updates. We have also shown how the
updates can be modeled with the help of local operations.

5.3.3. WSDL-S

WSDL-S does not provide a formalism for describing Web services semantically. Rather,
it extends WSDL by providing extensibility elements to connect semantic descriptions
to WSDL documents. It is a means to add semantics inline to WSDL for (1) inputs
and outputs (2) Operations and (3) Service categorization. It is agnostic to a particular
ontology representation language. WSDL-S is defined by extending the WSDL XML
schema.

WSDL-S augments the expressivity of WSDL with semantics by employing concepts
analogous to those in OWL-S while being agnostic to the semantic representation lan-
guage [AFM+05]. The advantage of this evolutionary approach to adding semantics to
WSDL is multi-fold. First, users can, in an upwardly compatible way, describe both the
semantics and operation level details in WSDL-S a language that the developer com-
munity is familiar with. Second, by externalizing the semantic domain models, we take
an agnostic approach to ontology representation languages. This allows Web service
developers to annotate their Web services with their choice of ontology language (such
as UML or OWL). While it is noted that the theoretical underpinnings of OWL-S in de-

2we will address goals in the next part of this work.

96

5.3. Related Work

scription logic makes it a richer language for representing semantics, authors believe that
extending the industry standards such as WSDL to include semantics is a more practical
approach for adoption. Moreover, authors claim that by externalizing the semantic do-
main models in their proposal, they allow for richer representations of domain concepts
and relationships in languages such as OWL and UML, thereby bringing together the
best of both worlds.

So, our approach is complementary to WSDL-S in a sense that the descriptions of
Web services with our formalism can be connected to WSDL-S documents.

5.3.4. BPEL4WS

BPEL4WS [ACD+03] is a popular formalism for modeling business processes in the Web.
It combines XLANG and WSFL. However, it still lacks formal semantics and reasoning
procedures. Therefore, our work is complementary to BPEL4WS as our formal model
may be used in its extended form to specify formal semantics for BPEL4WS, which is
needed in order to prove certain properties of reasoning algorithms based on BPEL4WS.
Note that all the attempts to define formal semantics of BPEL4WS cover only the
dynamic behavior of BPEL4WS and resource schemas that are an essential part of multi
party business processes are not considered. Furthermore, the main focus of BPEL4WS
lies in the execution of business processes, which we have abstracted from. BPML3 is
similar to BPEL4WS in the sense that it focuses more on the execution of a business
process than on reasoning about properties of a process.

Perhaps, the work that is closest to our work is [BCG+05]. In [BCG+05] an approach
is presented to characterize Web services with their transition behavior and their im-
pacts on the real world (modeled as relational databases). Our Web service modeling
approach though follows similar thoughts is different as we have presented a concrete
syntax and semantics for modeling Web services, whereas [BCG+05] only uses a math-
ematical model of transition systems. With our language such transitions systems can
be modeled. Another difference between our approach and [BCG+05] is that we model
the local knowledge bases of the participating actors with decidable description logics,
whereas [BCG+05] proposes to use relational databases.

Finally, to the best of our knowledge, ours is the only work that has addressed the
need of credential based access control policies and can model and reason about them
together with other aspects of Web services.

5.3.5. Access Control Related Work

In the area of service oriented computing there are already several approaches for declara-
tively modeling the user’s objectives; mainly in terms of policies. On the one hand, there
are XML-based approaches, like WS-Security, XACML, EPAL, etc.. These approaches

3http://www.bpmi.org

97

5. Modeling Behavior

allow to model constraints about domain-specific attributes of a service. XACML has
been approved by OASIS and that promises to standardize policy management and ac-
cess decisions. However, XACML focusses more on technical issues and addresses how
the access control can be enforced. EPAL and XACML specifications greatly overlap
and do very similar things in slightly different ways. As a consequence, the user has to
learn the different approaches and work with different policy tools. Furthermore, it is not
possible to specify a policy that combines privacy and communication security concerns
such as: send sensitive content over secured lines only. WS-Policy introduces a logic
framework that allows domain-specific policy assertions to be plugged in. Nevertheless,
the supported assertions are very simplistic in nature and still require the respective
native policy interpreters. The major disadvantage of XML is that the semantics is con-
tained implicity in the expressions. Meaning arises only from the shared understanding
derived from human consensus. This leads to extra manual work for software engineers
and could easily result in fragmentation.

Security-related ontologies to markup DAML-S [ABH+02] elements such as input and
output parameters with respect to their security characteristics, such as encryption and
digital signatures have been developed in [DKF+03, KFD+04]. [KFJ04] gives an short
introduction to Rei, case studies, use cases and open issues. However, the mechanism
described in the paper requires clients to send their privacy policies and permissions to
a Web service provider, which is not always wishful. Nevertheless, the authors identify
the enforcement problem as an open issue. [PKKJ04] introduces an enforcement archi-
tecture based on a policy engine and the policy enforcement mechanism for pervasive
environments. The policy engine reasons over policies described in Rei and uses Prolog
for its reasoning engine. [KFJ03] discusses the policy language Rei in more detail. How-
ever, neither [PKKJ04] nor [KFJ03] provide Rei’s mapping to Prolog. So, it is not clear
what the policy engine acutally does. Since Rei requires a special reasoner, it is not
clear, what is the added value of Rei as compared to pure syntax based (mostly XML)
approaches except that it is more expressive.

Our work is complementary to the existing approaches as it also addresses the need
of machine understandable specification of certification policies that are specified by
the certification authorities. It also presents how Web services providers can use such
semantically-rich specifications for defining their access control policies. Consequently,
our approach covers a broader spectrum and also shows the added value of specifications
with formal semantics within the context of access control. We also address the issue
of enforcement which can not be ignored while dealing with security related aspects.
Finally, our approach is completely based on description logics which is the formalism
behind the W3C standard OWL (Web Ontology Language). Consequently, we do not
require the users and providers of semantic Web services to install a special reasoner.

98

5.4. Conclusion

5.4. Conclusion

In this chapter, we have developed a novel formalism for modeling the behaviour of Web
services. We have shown in Chapter 3 how resources and schemas can be modeled with
an expressive description logic like SHOIN (D) and DL-safe rules and hence in the spirit
of Web since OWL-DL, a W3C standard is based on SHOIN (D).

In Chapter 4, we showed how non-functional properties of Web services can be mod-
eled such that users can build their trust in them. In a capability based access control
system a Web service provider specifies the access requirements for his service in terms of
required properties. For gaining access, users have to prove that they satisfy these prop-
erties. To do so, they need to present certificate chains that prove a delegation chain from
a trusted certification authority to the required property. Our approach shows how cer-
tification policies can be specified in the semantic Web in a machine understandable way,
which makes them suitable for automatic verification of the compatibility between access
control policies and governmental or self imposed laws. Further, delegation structures
of CAs can be made explicit in our approach, which allows CAs to handle revocation of
(delegation) certificates in an online manner.

We then showed, how the behavior of an agent can be described with π-calculus. We
augmented π-calculus channels with protocols and types in order to model agents that
run in mixed environments. We introduced the notion of local operations for modeling
updates in the knowledge bases of the agents and integrated access control policies as
conditional processes. The formalism allows to model the resources involved in a Web
service, credentials of the involved parties and the dynamic behavior of a Web service
in a unified way.

99

5. Modeling Behavior

100

Part III.

Semantic Matchmaking of Web
Services

101

In the previous part, we have seen how Web services can be described semantically. We
developed an expressive formalism for modeling functional and non-functional properties
of Web services. The main reason of developing such a formalism was to enable expressive
matchmaking of Web service, which is our focus in this part of our work. We develop
two matchmaking approaches, which we call goal based matchmaking and simulation
based matchmaking respectively. Goal based matchmaking covers the classical case, in
which a user specifies the desired constraints on the properties of Web services and every
Web service that satisfies the constraints is considered as a match. Simulation based
matchmaking deals with the problem which is hardly addressed in the literature though
very common in practice. It deals with the case in which two Web service descriptions
are matched directly to find out whether one Web service can be replaced by another
without changing the overall behaviour of the system they are embedded in.

In order to achieve goal based matchmaking, one needs a formalism for specifying the
goals, the desired constraints. Even though we use the goal specification formalism only
for matchmaking in this work, such a language can serve for specifying constraints for
automatic composition of Web services as well. Therefore, we develop a goal specification
formalism in Chapter 6 separately from the goal based matchmaking algorithm. Having
a goal specification formalism, we develop the goal based matchmaking algorithm in
Chapter 7. In Chapter 8, we turn our attention to simulation based matchmaking. We
develop an algorithm that checks whether two Web service descriptions are equivalent.

103

104

6. Goal Specification

In the previous part, we have developed an expressive formalism for describing Web
services semantically. In order to perform matchmaking that uses all the expressiveness
of the formalism, one first needs a technique that allows a user to specify properties
of desired web services. The properties specified by a user are constraints that a Web
service must fulfill in order to be considered as a match. In this chapter, our focus is on
developing a formalism for specification of various types of constraints on the properties
of Web services.

In Chapter 2, we have identified types of constraints a user may wish to specify in
order to search for desired Web services. In most cases, a user is a potential client of
a Web service. That is, he is looking for Web services that he can incorporate in his
system. However, in some cases a user only wants to ensure whether a Web is compliant
with certain policies. For example, a Web service provider himself may wish to check
whether the process underlying his Web service behaves as it is supposed to, before he
publishes its description. In other example, a user might be just looking for Web services
that uses secure communication because he is doing a survey for his student research
project.

So, we do not want to restrict the search possibilities for a user to matchmaking based
on input/output types, as it is the case in existing approaches. In our approach, a user
must be able to select Web services by any properties that we model, since those who
describe a Web service do not know in which context a user may be interested in the
Web service.

In Chapter 2, we have identified that a user may wish to specify constraints on the
resources and the actors that may be involved in the run of a Web service and on the
choreography and orchestration of Web services. The requirements regarding resources,
that is Requirment 3, 4, 5 and 6 are directly supported due to availability of the query
language SPARQL for expressive description logics like SHOIN (D). We have shown
in Chapter 5 that checking whether an actor’s credentials are enough to prove his trust-
worthiness according to some access control policy, can be performed by a description
logic query. So, SHOIN (D) with DL-safe rules and SPARQL fulfill the Requirements 7
and 8. Therefore, our first aim in this chapter is to develop a formalism for specifying
constraints on the choreography (Requirments 9) and orchestration (Requirments 10) of
Web services. Then, we will focus on combining different types of constraints to build
complex constraints in order to fulfill the Requirement 11.

105

6. Goal Specification

6.1. Modal Logics for Processes

The application of modal and temporal logics to process calculi is part of a line of
program verification going back to the 1960s and program schemes and Floyed-Hoare
logic. Originally the emphasis was on proof: Floyd-Hoare logic allows one to make
assertions about programs, and there is a proof system to verify these assertions. This
line of work has continued and today there are highly sophisticated theories for proving
properties of programs, and equally sophisticated machine support for these theories.
However, the use of proof systems has some disadvantages, and one hankers after a
more purely algorithmic approach for simple problems. One technique was pioneered by
Manna and Pneuli [MP69], who turned program properties into questions of satisfiability
or validity in first order logic, which can then be attacked by means that are not just
proof-theoretic; this idea was later applied by them to linear temporal logics.

During tre 1970s, the theory of program correctness was extended by investigating
more powerful logics, and studying them in a manner more similar to the traditions of
mathematical logic. A family of logics which received much attention was that of dy-
namic logics, which can be seen as extending the ideas of Hoare logic [Pra76]. Dynamic
logics are modal logics, where the different modalities correspond to the execution of
difference programs – the formula 〈α〉φ is read as “it is possible for α to execute and
result in a state satisfying φ”. The programs may be of any type of interest; the variety
of dynamic logic most often referred to is a propositional language in which the programs
are built from atomic programs by regular expression constructors; henceforth, Proposi-
tional Dynamic Logic, PDL refers to this logic [FL79]. PDL is interpreted with respect
to a model on a Kripke structure, formalizing the notion of the global state in which
programs execute and which they change – each point in the structure corresponds to
a possible state, and programs determine a relation between states giving the changes
effected by the programs.

Once one has the idea of a modal logic defined on a Kripke structure, it become quite
natural to think the finite case and write programs which just check whether a formula
is satisfied. This idea was developed in early 80s by Clarke, Emerson, Sistla and others.
They worked with a logic that has much simpler modalities than PDL–in fact, it has
just a single “next state” modality – but which has built-in temporal connectives such
as “until”. This logic is CTL, and it and its extensions remain some of the most popular
logics for expressing properties of systems [CES86].

Meanwhile, the theory of process calculi was being developed in the late 1970s, most
notably my Milner. An essential component was the use of labeled Kripke structures
(“labeled transitions systems”) as a raw model of concurrent behavior. An important
difference between the use of Kripke structures here and their use in program correct-
ness was that the states are the behavior expressions, which model concurrent systems,
themselves and the labels on the accessibility relation (the transitions) are simple actions
(and not programs). Hennessy and Milner [HM80] introduced a primitive modal logic in

106

6.2. Early Logics

which the modalities refer to actions: 〈α〉φ means “it is possible to do an α action and
then have φ be true” and its dual [α]φ meaning “φ holds after every α action”. Together
with the usual boolean connectives, this given Hennessy-Milner logic, HML [HM80].
However, HML is inadequate to express many properties, as it has no means of say-
ing “always in the future” or other temporal connectives–except by allowing infinitary
conjunction. Using an infinitary logic is undesirable both for the obvious reason that
infinite formulae are not amenable to automatic processing, and because infinitary logic
gives much more expressive power than is needed to express temporal properties.

In 1983, Dexter Kozen published a study of a logic that combined simple modalities,
as in HML, with fixpoint operators to provide a form of recursion [Koz83]. This logic,
the modal mu-calculus has become probably the most studied of all temporal logics
of programs. It has a simple syntax, an easily given semantics, and yet the fixpoint
operators provide immense power. Most other temporal logics, such as the CTL family,
can be seen as fragments of the modal mu-calculus. Moreover, this logic lends itself to
transparent model-checking algorithms.

6.2. Early Logics

HML, Hennessy-Milner Logic [HM80], is a primitive modal logic of action. The syntax
of HML has, in addition to the boolean operators, a modality 〈α〉, where α is a process
action. A structure for the logic is just a labeled transition system. Atomic formulas of
the logic are the constants tt and ff. The meaning of 〈α〉 is “it is possible to do an
α-action to a state where φ holds”. The formal semantics is given in the obvious way by
inductively defining when a state (a process) of a transition system has a property; for
example E |= 〈α〉 iff ∃F.E

α
−→ F and F |= φ. We may also add some notion of variable

or atomic proposition to the logic, in which case we provide a valuation which maps a
variable to the set of states at which it holds. The expressive power of HML in this form
is quite weak; obviously a given HML formula can only make statements about a given
finite number of steps into the future. HML was introduced not so much as a language
to express properties, but rather as an aid to understanding process equivalence: two
processes are equivalent iff they satisfy exactly the same HML formulae. To obtain the
expressivity desired in practice, we need stronger logics.

The logic PDL, Propositional Dynamic Logic [FL79, Pra76], as mentioned above, is
both a development of Floyd-Hoare style logics, and a development of modal logics.
PDL is an extension of HML in the circumstance that the action set has some structure.
There is room for variation in the meaning of action, but in the standard logic, a program
is considered to have a number of atomic actions, which in process algebraic terms are
just process actions, and α is allowed to be a regular expression over the atomic actions;
a, α, β, α ∪ β, or α∗. We may consider atomic actions to be uninterpreted atoms; but
in the development form Floyd-Hoare logics, one would see the atomic actions as, for

107

6. Goal Specification

example, assignments statement in a while program.

PDL enriches the labels in the modalities of HML. An alternative extension of HML
is to include further modalities. The branching time logic CTL, Computational Tree
Logic [CE82], can be described in this way as an extension of HML, with some extra
“temporal” operators which permit expression of liveness and safety properties. For the
semantics we need to consider “runs” of a process. A run from an intial state or process
E0 is a sequence E0

a1−→ E1
a2−→ . . . which may have finite or infinite length; if it has

finite length then its final process is a “sink” process which has no transitions. A run
E0

a1−→ E1
a2−→ . . . has the property φUψ, φ until ψ, if there is an i ≥ 0 such that E |= ψ

and for all j : 0 ≤ j ≤ i, Ej |= φ.

E0
a1 // E1

a2 // . . . Ei

ai+1 // . . .

|= |= . . . |=

φ φ ψ

The formula Fφ = (ttUφ) means “φ eventually holds” and Gφ = ¬(ttU¬φ): “φ
always hold”. For each “temporal” operator such as U there are two modal variants, a
strong variant ranging over all runs of a process and a weak variant ranging over some
run of a process. We preface a strong version with ∀ and a weak variant with ∃. If
HML is extended with the two kinds of until operator the resulting logic is a slight but
inessential variant of CTL. The formal semantics is given by inductively defining when
a state (process) has a property. For instance E |= ∀[φUψ] iff every run of E has the
property φUψ.

CTL has variants and enrichments such as CTL* [EL86] and ECTL [VW83]. These
allow free mixing of path operators and quantifiers: for example, the CTL* formula
∀[PU∃FQ] is also a CTL formula, but ∀[PUFQ] is not, because the F is not immediately
governed by a quantifier. Hence expansions also cover traditional temporal logics–that is,
literally logics of time–as advocated in Manna and Pnueli and others. In this view, time
is a linear sequence of instants, corresponding to the the states of just one execution path
through the program. One can define a logic on paths which has operators Oφ meaning
“in the next instant (on this path) φ is true”, and φUψ meaning “φ holds until ψ holds
(on this path)”; and then a system satisfies a formula if all execution paths satisfy the
formula – in CTL* terms, the specification is a path formula with a single outermost
universal quantifier. One can also extend PDL with temporal operators, as in process
logic.

6.3. Introduction to mu-calculi

The defining feature of mu-calculi is the use of fixpoint operators. The use of fixpoint
operators in program logic goes back at least to De Bakker, Part and Scott [Par69].

108

6.3. Introduction to mu-calculi

However, their use in modal logics of programs dates from work of Pratt, Emerson and
Clarke and Kozen. Pratt’s version [Pra82] used a fixpoint operator like the minimiza-
tion operator of recursion theory, and this has not been further studied. Emerson and
Clarke added fixed points to a temporal logic to capture fairness and other correctness
properties [EC80]. Kozen’s introduced the modal mu-calculus as we use it today, and
established a number of basic results [Koz83].

Suppose that S is the state space of some system. For example S could be the set
of all processes reachable from by arbitrary length sequences of transitions from some
initial process E. One way to provide semantics of a state-based modal logic is to map
formulae φ to sets of states, that is to elements of 2S . For any formula φ this mapping
is given by JφK. The idea is that this mapping tells us in which states each formula
holds. If we allow our logic to contain variables with interpretations ranging over 2S ,
then we can view the semantics of a formula with a free variable, φ(Z), as a function
f : 2S → 2S . If we take the usual lattice structure on 2S , given by set inclusion, and if f
is a monotonic function, then by the Knaster-Tarski theorem we know that f has fixed
points, and indeed has a unique maximal and a unique minimal fixed point. So we could
extend our basic logic with a minimal fixpoint operator µ, so that µZ.φ(Z) is a formula
whose semantics is the least fixed point of f ; and similarly a maximal fixpoint operator
ν, so that νZ.φ(Z) is a formula whose semantics is the greatest fixed point of f .

The reason we might want to do this is that, as in domain theory for example, it
provides a semantics for recursion. Writing recursive modal logic formulae may not be
an immediately obvious thing to do, but it provides a neat way of expressing all the usual
operators of temporal logics. For example, consider the CTL formula ∀Gφ, “always φ”.
Another way of expressing this is to say that it is a property X such that if X is true,
then φ is true, and wherever we go next, X remains true; so X satisfies the modal
operation

X = φ ∧ [−]X

where = is logical (truth-table) equivalence, and [−]X means that X is true at every
immediate successor. So we could write this formula as ?X.φ ∧ [−]X. But what is ’?’?
Which fixed point is the right solution of the equation – least, greatest, or something
in between? We may argue thus: if a state satisfies any solution X ′ of the solution,
then surely it satisfies ∀Gφ. Hence the meaning of the formula is the largest solution,
νX.φ ∧ [−]Z.

On the other hand, consider the CTL property ∃Fφ, “there exists a path on which φ
eventually holds”. We could write this recursively as “Y holds if either φ holds now, or
there is some successor on which Y is true”:

Y = φ ∨ 〈−〉Y.

This time, it is perhaps less obvious which solution is correct. However we can argue

109

6. Goal Specification

that if a state satisfies ∃Fφ, then it surely satisfies any solution Y ′ of the equation; and
so we want the least such solution.

It is easy to notice that the equations do no capture the meaning of the English
recursive definition–we should have written

X ⇒ φ ∧ [−]X

and
Y ⇐ φ ∨ 〈−〉Y,

or in terms of the semantic function,

JXK ⊆ Jφ ∧ [−]XK

and
JY K ⊇ Jφ ∨ 〈−〉K.

6.3.1. Syntax and Semantics of µ-calculus

Let V ar be an (infinite) set of variables names, typically indicated by X,Y,Z . . .; let
Prop be a set of atomic propositions, typically indicated by P,Q, . . .; and let A be
a set of action typically indicated by a, b, The set of formulae (with respect to
(V ar, Prop,A) is defined as follows:� P is a formula� Z is a formula� If φ1 and φ2 are formulae, so is φ1 ∧ φ2� If φ is a formula, so is [a]φ� If φ is a formula, so is ¬φ� If φ is a formula, then νZ.φ is a formula, provided that every free occurrence of Z

in φ occurs positively, i.e. within the scope of an even number of negations.

It is usually convenient to introduce derived operators defined by de Morgan duality and
work in positive form:� φ1 ∨ φ2 means ¬(¬φ1 ∧ ¬φ2)� 〈a〉φ means ¬[a]¬φ� µZ.φ(Z) means ¬νZ.¬φ(¬Z)

110

6.3. Introduction to mu-calculi

Note the triple use of negation in µ, which is required to maintain the positivity. A
formula is said to be in positive form if it written with the derived operators so that ¬
only occurs applied to atomic propositions. It is in positive normal form if in addition
all bound variables are distinct. Any formula can be put into positive normal form by
use of de Morgan laws and α-conversion.

Definition 20 (Structure). A structure T (over Prop, A) is a labeled transition systems,
namely a set S of states and a transition relation →⊆ S × A × S, together with an
interpretation VProp : Prop→ P(S) for the atomic propositions. We often write s

a
−→ t

for (s, a, t) ∈→.

Given a structure T and an interpretation V : V ar → P(S) of the variables, the set
JφKV of states satisfying a formula φ is defined as follows:

JP KV = VProp(P)

JZKV = V(Z)

J¬φKV = S − JφKV

Jφ1 ∧ φ2KV = Jφ1KV ∩ Jφ2KV

J[a]φKV = {s|∀t.s
a
−→ t⇒ t ∈ JφKV}

JνZ.φKV =
⋃
{S ⊆ S|S ⊆ JφKV [Z:=S]}

where V[Z := S] is the valuation which maps Z to S and otherwise agrees with V. The
semantics of the derived operators is defined by duality as follows:

Jφ1 ∨ φ2KV = Jφ1KV ∪ Jφ2KV

J〈a〉φKV = {s|∃t.s
a
−→ t ∧ t ∈ JφKV}

JµZ.φKV =
⋂
{S ⊆ S|S ⊇ JφKV [Z:=S]}

6.3.2. Examples of Some Common Patterns� Until The formula µX.(G∨(F ∧〈−〉true∧ [−]X)) describes F until G, as it can be
read as: either G holds in the current state or sooner or later the process reaches
a state in which G holds and until then F holds.� Always The formula for “P is true along every a-path” can be written as νZ.P ∧
[a]Z.� Eventually Having the next and until modalities, the modality eventually can be
easily defined as true Until G.

111

6. Goal Specification

6.4. Specification of Hybrid Formulas with Logic B

µ-calculus in its pure form is a logic with arbitrary valuations for atomic propositions, but
this is neither possible nor desirable in practice. In practice one needs to fix a language
for specifying atomic propositions to be able to reason about “sensible” properties of
a system. Note, that restricting the language for atomic propositions does not lead to
better decidability, complexity etc. as it might appear at the first sight. The reason is
that the basic µ-calculus operators are sufficient to expose any undecidability that be
lurking in a system - for example, the halting property is just µZ.[−]Z.

In this section our aim is to develop a logic for reasoning about agents. We derive the
logic B from µ-calculus for specifying constraints on Web service processes. µ-calculus
abstracts from the meaning and structure of the propositions in the same way the π-
calculus abstracts from the meanings of π-calculus names.

The main idea is to fix the language for atomic propositions to description logics
queries. That is, we fix the valuation function VProp to description logic query answering.
In the rest of this section, we describe how description logic queries are connected to
µ-calculus formulas.

Credentials

As described in Chapter 5, an agent α has a set of certificate Cα and agents trust other
agents on basis of their credentials. As we have seen in Chapter 6, users can restrict the
desired set of agents that may be involved in a Web service process.

In Chapter 5 and 6, we have shown how certifiable properties can be modeled as
concept expressions. The fact that an agent α possesses a property P is modeled by
a description logic class membership axiom P (α). Furthermore, trust as well as access
control policies are modeled as description logic queries such that checking whether an
agent can be trusted or granted access is reduced to checking whether the agent is in the
answer of the corresponding query. Sometimes, we will refer to such a trust or access
control query as agent selection query as it is used to select agents on the basis of their
credentials. An example of such an agent selection query is the description logic concept
Adult ⊓Male which denotes the set of all agents that are adults as well as male.

Propositions

The set of propositions of an agent corresponds to the facts in the knowledge base of the
agent. The facts in the knowledge base of an agent at some point of time represent the
set of propositions that are true at that point of time. Furthermore, the facts that can
be derived from the explicit facts in the knowledge base also represent the propositions
that are true.

Recall from Section 6.3.1 formulas of type atomic proposition. We give an atomic
proposition P the structure QF @QAg. The proposition QF @QAg is true if the answer of

112

6.4. Specification of Hybrid Formulas with Logic B

the query QF performed by an agent that is in the answer of the agent selection query
QAg on his local knowledge base is not empty.

Actions

We make similar structural extensions for an atomic action a that appears in formulas
〈a〉φ and [a]φ (refer to Section Recall from Section 6.3.1). We differentiate between two
types of atomic actions, namely input actions and output actions. Since input actions
receive values and output actions emit values, we will use + and − for input and output
actions respectively to differentiate them for each other.

Input and output actions take place via communication channels. As defined is Chap-
ter 5, a communication channel is characterized by a tuple (p, a, t), where p is a protocol
type, e.g. HTTP, Email, Fax, Phone, a is the address and t is a message type. A
communication channel is instantiated to receive or send messages of type t.

With expression
+(P)(A)(v1:T1, . . . , vm:Tm)@QAg

in place of a in formulas 〈a〉φ and [a]φ we denote the set of input actions that are
performed by an agent in the answer of the agent selection query QAg and that can
receive m values of types T1, . . . , Tm respectively over a channel of protocol type P at
address A and bind them to process variables v1, . . . , vm. The process variables are used
to remember the received values so that they can be referred to in other formulas as we
will see below. T1, . . . , Tm are description logic concepts.

With expression
−(P)(A)(q1, . . . , qm)@QAg

in place of a in formulas 〈a〉φ and [a]φ we denote the set of output actions that are
performed by an agent in the answer of the agent selection query QAg and that send m
values which are answers of the resource selection queries q1 . . . , qm respectively along a
channel of protocol type P and address A. The queries q1 . . . , qm can use the process
variables, e.g. those bound by an input action. This way, it becomes possible to establish
a relationship between inputs and outputs.

Consider a Web service depicted in Figure 6.1. The white circles denote the commu-
nication activities and the black circles denote the local operations. Suppose the book
selling Web services has credentials above21. The Web service obtains a book description
and a delivery address as input (refer to receive order activity in Figure 6.1). According
to the execution semantics of an input activity the axioms

?bookDesc = inBookDesc

and
?delAdd = inDelAdd

113

6. Goal Specification

book description

receive order OC = createConfirmation(...)

+
delivery address

setBookDesc(OC, bookDesc)

OCUser

Book Selling Web Service

Figure 6.1.: Example of a query on the local knowledge base of an agent

are added in the local knowledge base of the Web service. After the input activity, the
Web service performs two local operations, one for creating a new order confirmation
and the other for setting the book description of the newly created order confirmation
equal to the book description that has been entered by user. This happens by adding
axioms

OC rdf:type Confirmation

and
OC hasBookDesc ?bookDesc

respectively.

Now, suppose one wishes to know whether in the Web service process there exists an
agent who is adult and who sends an order confirmation about the ordered book. Such
a constraint can be formulated with our goal specification as:

〈c(select ?x where ?x rdf:type Confirmation. ?x hasBookDesc inBookDesc)〉TRUE@Adult

Considering that the A-Box of the Web service contains the above four axioms, it is easy
to see that the answer of the query

select ?x where ?x rdf:type Confirmation. ?x hasBookDesc inBookDesc

is not empty. Further considering that above21 ⊑ Adult it is easy to see that the Web
service provider fulfils the agent selection query too.

6.5. Related Work

OWL-S Matchmaker [SPAS03] uses OWL-S Profile for describing Web services as well
as describing the goal. Recall, that even if OWL-S Profile is designed for modeling

114

6.5. Related Work

pre and post conditions in addition to the types of input and output parameters of the
Web services, there is still no concrete formalism fixed for describing the conditions. As
a result, the goal specification reduces to the types of input and output parameters.
So, it neither allows the specification of relationships between inputs and outputs nor
constraints on the temporal structure of a Web service.

Secondly, in scenarios, e.g. continuous double auctions1, the allocation mechanism
must be able to differentiate among offers and requests. Otherwise, the allocation mech-
anism may allocate a web service offer to another Web service offer or a request to
another request. In the electronic market theory often Web service requests and Web
service offers are not distinguished and both forms are just considered as bids. However,
one still needs a mechanism to determine which bids will fit with which other bids. This
is best illustrated with the example of a partner matching portal. Both women and men
register their profiles, so there is differentiation between offers and requests. However
according to gender information in the profiles, it is still possible to determine which
profiles are matching candidates for which other profiles.

In case of OWL-S profiles however, there is no possibility to determine which other
OWL-S profiles can be potential candidates for a match. We believe, this problem can
be easily resolved if OWL-S introduces a simple temporal structure in OWL-S profile.
The simple temporal structure would only fix whether the input happens before or after
output. Currently, input and output are just properties and one does not know whether
input takes place before or after output. Having such a simple constraint on the sequence
of inputs and outputs, one can view OWL-S profiles with “input first” as provider bids
wheres those with “output first” as client bids.

[APS05] presents a procedure for the verification of correctness claims about OWL-S
process models. It presents a mapping of OWL-S Process to PROMELA that can then
be verified using SPIN model checker. SPIN model checker supports LTL as a constraint
specification language. However, the authors did not show that the mapping of OWL-S
Process to PROMELA is correct. In order to prove the correctness of the mapping, one
needs formal semantics of OWL-S Process Model, which does not exist. Secondly, the
authors have abstracted from the ontological descriptions of resources involved in the
Web service process. In OWL-S however the input and output activities have types. The
intended semantics of input and output types is that a communication should only take
place if the types are compatible. Abstracting from the types loses this useful feature.
The fundamental problem with this work is that if authors’ claim that OWL-S Process
Model can be mapped to PROMELA, a process description language, is true, then there
is no added value of OWL-S Process Model except being an XML syntax for PROMELA.

WSMO defines a conceptual service discovery model consisting of the elements shown

1A ”continuous double auction” is one in which many individual transactions are carried on at a single
moment and trading does not stop as each auction is concluded. The pit of the Chicago Commodities
market is an example of a continuous double auction and the New York Stock Exchange is another.
In those institutions a specialist matches bids and asking prices to find matches.

115

6. Goal Specification

Goals
Web Service
Discovery

Web Services

Goal
Discovery

Service
Discovery

Desire Services

Figure 6.2.: Three major processes in WSMO service discovery

in Figure 6.2. WSMO discovery approach recommends the need for a “Goal Discovery”
component that extracts user’s goal from his desire by making user’s desire more generic.

WSMO goal specification approach actually represents a general framework for de-
scribing goals and Web services. WSMO proposes the same formalism for specifying
Web services as well as goals. In WSMO Web service discovery Web services as well as
goals are represented as sets of objects.

A WSML goal specification is identified by the goal keyword and consists of capabil-
ity and interfaces. A capability description consists of shared variables, pre- and post
conditions as well as assumptions and effects. Due to the availability of shared variables
WSML goals are more expressive than OWL-S Profiles. The interface description is used
to specify the desired choreography and orchestration of a Web service. In other words,
WSMO interface used in a goal specifies constraints on the dynamic behaviour of a Web
service. However, currently there is no concrete proposal for describing the choreog-
raphy and orchestration. Furthermore, due the separation of capabilities and dynamic
behaviour already at the conceptual level, one would not be able to specify temporal
constraints on effects. That is, constraints like “credit card should be charged (effect)
should take place after delivery (choreography)“. Furthermore, WSMO goal specifica-
tion does not address trust and access control policies. However, we believe that access
control policies can be integrated in WSML as pre-conditions.

In [NS06] authors propose SWRL rules for specifying constraints on business processes
and checking the satisfiability of the constraints using a description logic reasoner, such
as KAON2. Firstly, SWRL is undecidable. Secondly, even if DL-safe rules, a decidable
fragment of SWRL, are used, the semantics of a DL-safe rule is an implication and not a
constraint. In other words, a DL-safe rule A(x)→ B(x) means “if A(x) holds then B(x)

116

6.6. Conclusion

holds” and not “something may/should/must hold”. The latter semantics is the seman-
tics of a query. In any case, authors use syntactically wrong DL-safe rules, because they
use a predicate inside another predicate for example, M(Property(X), P roperty(Y)).
Furthermore, DL-safe rules can not capture the semantics of the dynamic changes that
occur during the execution of a business process. Such a DL-safe rules and query based
approach is covered by our formalism by the formulae of type atomic propositions.

Major difference between [BCG+05] and our work is the choice of the logic for spec-
ifying constraints on Web services. [BCG+05] uses propositional dynamics logic (PDL)
whereas we have used a more expressive logic known as µ-calculus, which also allows to
specify fixpoint formulae.

6.6. Conclusion

In this chapter, we have developed an expressive formalism for modeling goals. We
showed how temporal and security constraints as well as constraints on the objects
involved in a Web service process can be specified with one logic. The logic developed in
this chapter is a novel combination of description logics query language and µ-calculus.
We have shown in Chapter 4, that credentials of an agent can be modeled with description
logics and the verification of eligibility can be checked with description logic queries.
Hence, our goal or request specification formalism presented in this chapter covers all
the three aspects of the agents that we are considering in this work.

117

6. Goal Specification

118

7. Goal based Matchmaking

Goal based matchmaking deals with finding Web services that fulfill some user defined
requirements. These requirements may or may not be derived from the business goals
automatically. Large number of web services and hence their descriptions lead to the
need for automated Web services matchmaking procedures.

Current approaches for matchmaking focus on the interface description and not on
the functionality of the Web service. Interface matching is important in order to ensure
that a Web service can be actually embedded in a business process, i.e. to ensure that
there are no type errors during the execution of a business process that incorporates
Web services. However, when a user is looking for a Web service, he is not interested
only in Web services, that he can actually execute but his primary interest is to find
Web services that offers the functionality that he needs.

In chapters 5 and 6, we have seen how Web services can be modeled and how con-
straints can be specified formally. In this chapter our aim is to develop an algorithm
that can check for a given Web service description and a given specification, whether
the description fulfills the specification. Such an approach is called model checking in
literature since one aims at checking whether a description is a model of a specificitation
and the algorithm that checks this is called model checking algorithm.

7.1. Introduction to Model Checking

Model checking has turned out to be one of the most useful techniques for automated
reasoning about reactive systems began with the advent of the efficient temporal logic
model checking [CE82, CES86, Eme81, QS82]. The basic idea is that the global state
transition graph of a finite state reactive system defines a (Kripke) structure in the
sense of temporal logic (cf. [Pnu77]), and we can give an efficient algorithm for checking
if the state graph defines a model of a given specification expressed in an appropriate
temporal logic. While earlier work in the protocol community had addressed the prob-
lem of analysis of simple reachability properties, model checking provided an expressive,
uniform specfication language in the form of temporal logic along with a single, effi-
cient verification algorithm which automatically handled a wide variety of correctness
properties.

Model checking methods can be rougly categorized as follows:

119

7. Goal based Matchmaking

Exiplicit State Representation vs. Symbolic State Representation In the explicit
state approach the Kripke structure is represented extensionally using conventional data
structures such as adjancency matrices and linked lists so that each state and transi-
tion is enumerated explicitly. In contast, in the symbolic approach boolean expressions
denote large Kripke structures implicitly. Typically, the data structure involved is that
of Binary Decision Diagrams (BDDs), which can, in many applications, although not
always, manipulate boolean expressions denoting large sets of states efficiently.

The distinction between explicit state and symbolic representation is to a large extent
an implementation issue rather than a conceptual one. The original model checking
method was based on an algorithm for fixpoint computation and it was implemented us-
ing explicit state representation. The subsequent symbolic model checking method uses
the same fixpoint computation algorithm, but now represents sets of states implicitly.
However, the succinctness of BDD data structures underlying the implementation can
make a significant practical difference.

Global Calculation vs. Local Search In the global approach, we are given a structure
M and a formula φ. The algorithm calculates φM = {s : M,s |= φ}, that is the set of
all states in M where φ is true. This necessarily entails examining the entire structure.
Global algorithms typically proceed by induction on the formula structure, calculating
ψM for the various subformula ψ of φ. The algorithm can be presented in recursive form;
as the recursion “unwinds” the values of the shorter subformula are calculated first, then
the next shortest and so on.

In contrast, in the local approach, we are given a specific state s0 in M along with
M and φ. We wish to determine whether M,s0 |= φ. The computation proceeds by
performing a search of M starting at s0. The potential advantage is that, many times
in practice, only a portion of M may need to be examined to settle the question. In the
worst case, however, it may still be necessary to examine all of M (cf. [SW91]).

While the local model-checking problem must determine modelhood of a single state,
the global problem must decide modelhood of all the states in the structure. Obviously,
solution of the global model-checking problem comprises solution of the local problem,
and solving the local model-checking problem for each state in the structure solves the
global model-checking problem. Thus, the two problems are closely related, but global
and local model-checker have different applications.

For example, a classic application of model-checking is the verification of properties
of models of hardware systems, where the hardware system contains many parallel com-
ponents whose interactions is modeled by interleaving. The system’s model structure
grows exponentially with the number of parallel components, a problem known as state-
explosion problem. A similar prolem arises when software systems, with variables ranging
over a finite domain, are analyzed – the state space grows exponentially with the number
of variables.

120

7.2. Matchmaking Algorithm

In such an application, local model-checking is usually preferred, because the property
of interest is often expressed with respect to a specific initial state–a local model checker
might inspect only a small part of the structure to decide the problem, and the part of the
structure that is not inspected need not even be constructed. Thus, local model-checking
is one means for fighting the state-explosion problem.

For other applications, like the use of model-checking for data-flow analysis, one is
really interested in solving the global question, as the very purpose of the model-checking
activity is to gain knowledge about all the states of a structure. Such applications use
structures that are rather small in comparison to those arising in verification activities,
and the state explosion problem hold less importance. Global methods are preferred in
such situations.

Monolithic Structures vs. Incremental Algorithms To some extent this is also more of
an implementation issue than a conceptual one. Again, however, it can have significant
practical consequences. In the monolithic approach, the entire structure M is built and
represented at one time in computer memory. While conceptually simple and consistend
with standard conventions for judging the complexity of graph algorithms, in practice
this may be highly undesirable because the entire graph of M may not fit in computer
memory at once. In contrast, the incremental approach (also referred to as the “on-the-
fly” or “online” approach) entails building and storing only small portions of the graph
of M at any one time (cf. [JJ89]).

7.2. Matchmaking Algorithm

Now, we present a matchmaking algorithm for Web services that works on the seman-
tically rich descriptions of Web services rather than just the types of input and output
parameters. Furthermore, our matchmaking algorithm not only returns match/no-match
answers but in case of a match a set of conditions under which a Web service offers the
desired functionality.

Definition 21 (Matchmaking Problem). A process P satisfies a formula φ under the
conditions Ω if and only if the initial state s of the process P such that s |= φ under
conditions Ω .

We adapt the approach of local model checking [SW91] in which for dertermining the
truth of s |= φ, one looks at the immediate neighbourhood of s as required by the formula.
If there are fixpoints, one will of course move further and further away from s, but one
can stop as soon as the truth or falsity of φ at s is established, rather than working with
the whole state space. The reason for choosing this approach is also that in our case the
states are process expressions and the operational semantics of the underlying process

121

7. Goal based Matchmaking

algebra gives the transition graph and we can save the effort of building the transition
graph explicitly. The algorithm first decomposes a formula φ.

In outline, suppose we want to check E |= φ. We start with a sequent E ⊢ φ, and then
apply rules according to the structure of φ. For example, if φ = φ1 ∧ φ2, the there is an
∧ rule which is:

E ⊢ φ1 ∧ φ2

E ⊢ φ1 E ⊢ φ2

and if we get to a sequent s ⊢ 〈a〉ψ, we apply the 〈〉-rule

E ⊢ 〈a〉ψ

F ⊢ ψ
E

a
−→ F

The transition E
a
−→ F is derived from the transition rules for the process calculus. If

we reach a fixpoint formula, or a variable Z which is bound by µZ.ψ or νZ.ψ, we apply
the fixpoint rules:

E ⊢ µZ.ψ

E ⊢ Z

E ⊢ Z

E ⊢ ψ

and
E ⊢ νZ.ψ

E ⊢ Z

E ⊢ Z

E ⊢ ψ

Then we build up (or rather down, since the rules grow downwards) a goal-directed tree
of sequents to be estrablished. The question is, when do we stop. and how do we know
we’ve succeeded. Obviously we stop on an a-modality if the process has no a-transitions,
in which case E ⊢ [a]ψ succeeds and E ⊢ 〈a〉ψ fails; and we stop at E ⊢ P , when we
look E up in the proposition valuation to determine success. The key is the treatment
of fixpoints. If we get to E ⊢ φ, and we have already seen the same sequent higher up
in the tree, then we stop and examine the highest fixed point variable Z between these
repeated sequents; the leaf sequent is successful if Z is bound by ν and unsuccessful if
it is bound by µ. One we have a finite tree, we propogate success and failure back up to
the root via the rules.

The model checker is a tableau system for testing whether or not a state E has the
property expressed by a closed formula φ. As is common in tableau systems, the rules
are inverse deduction typed rules. Here they are built from sequents of the form E ⊢ φ,
proof-theoretic analogues of E ∈ JφKV . The premise sequent E ⊢ φ is the goal to be
achieved while the consequents are the subgoals, which are determined by the structure
of the model near E and the structure of φ. [SW91] presented the following tableau
rules for the modal µ-calculus.

E ⊢ ¬¬φ

E ⊢ φ

122

7.2. Matchmaking Algorithm

E ⊢ φ1 ∧ φ2

E ⊢ φ1 E ⊢ φ2

E ⊢ ¬(φ1 ∧ φ2)

E ⊢ ¬φ1

E ⊢ ¬(φ1 ∧ φ2)

E ⊢ ¬φ2

E ⊢ [a]φ

E1 ⊢ φ . . . En ⊢ φ
{E1, . . . , En} = {E′|E

a
−→ E′}

E ⊢ ¬[a]φ

E′ ⊢ ¬φ
E

a
−→ E′

E ⊢ νZ.φ

E ⊢ U
U = νZ.φ

E ⊢ ¬νZ.φ

E ⊢ U
U = ¬νZ.φ

E ⊢ U

E ⊢ φ[Z := U]

E ⊢ ¬U

E ⊢ ¬φ[Z := U]

A tableau for E ⊢ φ is a maximal proof tree whose root is labelled with the sequent
E ⊢ φ. The sequents labelling the immediate successors of a node labelled E ⊢ φ
are determined by an application of one of the rules, dependent on the structure of φ.
Maximaality means that no rule applies to a sequent labelling a leaf of a tableau.

A successful tableau for E ⊢ φ1 is a finite tableau in which every leaf is labelled by a
sequent F ⊢ φ2 fulfilling one of the following requirements:

1. φ2 = Q and F ∈ V(Q)

2. φ2 = ¬Q and F /∈ V(Q)

3. φ2 = [a]φ3

4. φ2 = U and ∆(U) = νZ.φ3

Tableau rules for the derived operators are just reformulations of some of the negation
rules.

E ⊢ φ1 ∨ φ2

E ⊢ φ1

E ⊢ φ1 ∨ φ2

E ⊢ φ2

123

7. Goal based Matchmaking

E ⊢ 〈a〉φ

E′ ⊢ φ
E

a
−→ E′

E ⊢ µZ.φ

E ⊢ U
U = µZ.φ

Having the tableau rules for the propositional µ-calculus, we build our algorithm with
the following idea. In the tableau rules above E is a state, which is equivalent to a process
expression considering the semantics of the behavior (π-calculus) presented in Chapter 5.
Roughly, the tableau rules break down a complex formula into atomic formulas. So the
only thing that we need to do is to check when a process expression satisfies an atomic
formula.

Recalling the formal model of an agent, we have for each agent A ∈ A a process
BA describing its behavior. In the following, let P denote the process representing the
behavior of an agent and ΩP the set of conditions intialized to ∅.� If P = 0, do nothing, since this process cannot satisfy any formula except false.� If P = c(v1, . . . , vk).Q with channel c = (p, a, t) having the message type t =

p1:R1, . . . , pk:Rk, we add in the knowledge base of agent A axioms sameIndividual(vi, cpi
)

for each i ∈ {1, . . . , k} to bind the variables v1, . . . , vk to message parts p1, . . . , pk.
Then we continue with the process Q.

If φ = c(u1:S1, . . . , un:Sn)

– if for each ui there exists a vj such that Si ⊑ Tj, then add P to the resulting
set of states, where Tj is the current type of the variable vj .

– if there exists an input activity cl(v1:T1, . . . , vn:Tn) if for each ui there exists
a vj such that Si ⊓ Tj 6= ∅, then add P to the resulting set of states and add
the condition Ω(e) ∪ {”typeOf(pj(c)) ⊑ Si ⊓ Tj”} (refer to Figure 7.1).

Tj

Si SiSi ⊓ TjTj

Figure 7.1.: Testing Input Formula

An input event e = cl(v1:T1, . . . , vn:Tn) models c(u1:S1, . . . , un:Sn)

124

7.2. Matchmaking Algorithm

– under conditions Ω(e) if for each ui there exists a vj such that Si ⊑ Tj .

– under conditions Ω(e) ∪ {”typeOf(pj(c)) ⊑ Si ⊓ Tj”} if there exists an input
activity cl(v1:T1, . . . , vn:Tn) if for each ui theres exists a vj such that Si⊓Tj 6= ∅
(refer to Figure 7.1).

Consider a Web service that requires an input and has the output type C. Further,
depending on the value of an input parameter the Web service either returns an
output of type C1 or of type C2, where C1 ⊑ C and C2 ⊑ C. If a user requests for
Web services that have output type C1, this Web service should be detected as a
match. Since, the output type of the Web service is C. This can be done easily by
subsumption check. However, it is important to tell the user for which values of
the input the service will offer the desired output, that is of type C1.� If P = cu1, . . . , uk.Q with channel c = (p, a, t) having the message type t =
p1:R1, . . . , pk:Rk, we add in the knowledge base of agent A axioms sameIndividual(ui, cpi

)
for each i ∈ {1, . . . , k} to bind the message parts p1, . . . , pk to values u1, . . . , uk.
Then we continue with the process Q.

If φ = c(q1, . . . , qn) then perform queries q1, . . . , qn on the local knowledge base of
the current agent and add P to the resulting set of states if the set of answers for
each query qi is not empty.

An output event e = cl(v1, . . . , vn) models c(q1, . . . , qn) under conditions Ω(e) if
for each qi there exists a unique vj such vj belongs to answer of query qi.� If P = l(x1, . . . , xn).Q with effects (X,Y), we add each axiom in the set X in the
knowledge base of A and remove each axiom in the set Y from the knowledge base
of A appropriately instantiated with the parameters x1, . . . , xn.

If φ = q@A where q is a query and A is an agent, then pose the query on the local
knowledge base of the agent A. Proposition q@A holds in a state, if the answer of
the query q performed by agent A on its local knowledge base is not empty. If this
is the case, then add P to the resulting set of states.� If P = τ.Q, we continue with Q.� If P = P1 ‖ P2, we continue with P1 as well as P2� If P = P1 + P2, we continue with P1 and P2 alternatively.� If P = (new x)Q, we create a new individual x in the knowledge base of A and
continue with process Q.� If P = ω?Q:R, we add ω to Ω(Q) and continue with Q and add ¬ω to Ω(R) and
continue with R.

125

7. Goal based Matchmaking

P1 [ω]P1

ω
true

??��������

false ��?
??

??
??

? =⇒ +

P2 [¬ω]P2

Figure 7.2.: Eliminating If-Then-Else

A Web service can take different execution paths at run time, depending on the
values of the input parameters provided by the user, access control policies or any
other semantic constraints of the web service process. So, we have to consider all
possible runs of a web service process to check whether there is a run of the Web
service process that satisfies the request.� If P = B(y1, . . . , yn), we continue with the defining process of the agent identifier
B.

Consider the example from Section 6.4. Suppose a user wishes to know whether
the Web service eventually outputs an order confirmation for a book with the same
description as entered by the client. From Section 6.3.2, we know that the modality
“eventually φ” can be modeled as true Until φ. Now considering the query from the
example in Section 6.4, our user can define his query as

true Until 〈c(Q)〉true@Adult

where Q is defined as

Q = select ?x where ?x rdf:type Confirmation. ?x hasBookDesc inBookDesc

The formula true Until 〈c(Q)〉true@Adult is equal to

µX.(G ∨ (true ∧ 〈−〉true ∧ [−]X)),

where
G = 〈c(Q)〉true@Adult

As we have shown in Section 6.4, the formula G holds in the last activity of the Web
service, in which it outputs an order confirmation. Applying the tableau rule

E ⊢ µZ.φ

E ⊢ U
U = µZ.φ

126

7.3. Related Work

to the our formula recursively, we obtain that the formula hold in start state of the Web
service. Thus, the Web service form Section 6.4 satisfies the constraint that it eventually
emits an order confirmation with the same book description as entered by the user.

7.2.1. Complexity

To discuss the complexity of our model-checking algorith, we need to introduce the notion
of alternation depth. Intuitively, it means the maximum number of µ/ν alternations in
a chain of nested fixpoints.

Theorem 1. The model-checking problem for a formula of size m and alternation depth
d on a system of size n is O(m · nd+1), where d is the depth of fixpoint operators.

Proof. Every fixpoint closes at, at worst, the nth approximant. Calculating the boolean
takes time O(n); calculating modalities takes time O(n). For an innermost fixpoint,
given a valuation of the free variables, we may need to evaluate the body n times to
close. So, the innermoset fixpoint takes time O(n ·(mn)). Now the next fixpoint out may
also need to be evaluated n times, each of which involves evaluating the inner fixpoint
(and some non-fixpoint operators); and so that takes O(n · n · (mn)). And so on: so we
end up with O(m · nd+1).

So model-checking in general is exponential in alternation depth. However, it is a
very behaved exponential problem, both theoretically, as by stratifying the formulae
according to alternation depth one gets a chain of polynomial problems of increasing
degree; and practically, because systems are typically large, formulae are typically small,
and alternation depths are typically 1 or 2.

7.3. Related Work

Recently, automatic matchmaking of Web services has gained tremendous importance
and new approaches are introduced frequently. In the following, we will discuss some of
the most widely known approaches.

7.3.1. OWL-S Matchmaker

OWL-S Matchmaker [SPAS03] matches a request described as OWL-S profile with the
OWL-S profiles of the Web services. Let Req denote the OWL-S profile describing the re-
quest and Ad the OWL-S profile of a Web service. If inAd and inReq represent the inputs
of the advertisement and the request respectively, and outAd and outReq represent their
outputs, the OWL-S matchmaker recognizes an exact output match when outAd = outReq

and an exact input match when inAd = inReq. Also, the matchmaker recognizes a plugIn
match when outAd ⊐ outReq, or inReq ⊐ inAd. When the outputs of the advertisement

127

7. Goal based Matchmaking

are more specific than the outputs of the request, then the advertised service provides
less information than the requester needs. Still, it may be that the information provided
by the advertiser is all that the requester needs, or that the requester may find another
provider for the remaining data. In these cases, the matchmaker recognizes a subsumed
match. Formally, the matchmaker recognizes a subsumed match when outReq ⊐ outAd

or inAd ⊐ inReq. When neither of the conditions above succeeds, there is not relation
between the advertisement and the request and the match fails. OWL-S matchmaker
defines a scoring function based on the degree of match detected. The scoring function
is ordered as exact match > plugIn match > subsumed match > no match. Further-
more, in general the matchmaker prefers output matches over input matches. This is
because the requester knows what he expects form the provider, but he cannot know
what the provider needs until the provider is actually selected. Input matching is there-
fore relegated to a secondary role of tie breaker among the providers with equivalent
outputs.

OWL-S matchmaking approach does not consider the relationship between inputs
and outputs [PKPS02, SPAS03]. Because of this, the meaning of the service has to be
described with a natural language text (refer to the text ”The service advertised is a
car selling service which given a price reports which cars can be bought for that price” in
section 3.2 of [PKPS02]). OWL-S foresees to specify pre- and postconditions as SWRL
rules to model relationships between inputs and outputs. However, to the best of our
knowledge there is no matchmaking approach that uses the SWRL rules. Considering
only the types of input and output parameter is the major shortcoming of OWL-S
matchmaker. Consider two Web services, one adds two numbers and the other subtracts
two numbers. That is, both the services have same input types and same output type.
OWL-S matchmaker will detect both the services as a match to a request asking for a
Web service that can add two numbers or a Web service that can multiply two numbers.
Further, note that matchmaking algorithms that consider only the types of input and
output parameters do not actually require OWL-S profile, since the required information
is available is WSDL documents.

The basic difference between OWL-S Matchmaker [SPAS03, PKPS02] and our ap-
proach is that the former matches interfaces whereas the latter the functionality of Web
services. The idea behind the work done in [APS05] is closer to ours. However, there
are still some major differences. The approach developed in [APS05] considers only the
dynamic behaviour of processes whereas our approach considers ontology based resource
descriptions as well as access control and trust policies. Note, that verifying only the dy-
namic behaviour of processes has been already thoroughly investigated in past decades.
Further the approach presented in [APS05], since based on SPIN model checker, uses
LTL, whereas our formalism is based on µ-calculus which is more expressive than LTL.

128

7.3. Related Work

7.3.2. WSMO Discovery

WSMO Web service discovery approach differentiates between service and Web service
discovery [KLP+04]. In WSMO Web service discovery Web services as well as goals are
represented as sets of objects. The objects described in some Web service description
and the objects used in some goal description can or might be interrelated in some way
by ontologies. In the general case, this interrelation has to explicated by a suitable
mediator that resolves heterogenities amongst the terms used in goal and web service
descriptions. In order to consider a goal G and a Web service W to match on a semantic
level, the sets RG and RW describing their elements are interrelated as follows:� RG = RW . Here the objects that are advertised by the service provider (and which

thus can potentially be delivered by the described web service W) and the set of
relevant objects for the requester as specified in the goal G perfectly match, i.e.
they coincide. In other words, the service might be able to deliver all relevant
objects. In any case, it is guaranteed that no irrelevant objects will be delivered
by the service.� RG ⊆ RW . Here the relevant objects that are advertised by the service provider
form a superset of the set of relevant objects for the requester as specified in the
goal G. In other words, the service might be able to deliver all relevant objects.
Moreover, there is no guarantee that no irrelevant objects will be delivered by the
service, i.e. it is possible that the service delivers objects that are irrelevant for
the client as well.� RW ⊆ RG. Here the relevant objects that are advertised by the service provider
only form a subset of the set of relevant objects for the requester as specified in the
goal G. In other words, the service in general is not able to deliver all objects that
are relevant objects for the requester. But, there is a guarantee that no irrelevant
objects will be delivered by the service.� RG ∩ RW 6= ∅. Here there the set of relevant objects that are advertised by the
service provider and the set of relevant objects for the requester have a non- empty
intersection, i.e. there is an object (in the common) universe which is declared as
relevant by both parties. In other words, the service in general is not able to deliver
all objects that are relevant objects for the requester, but at least one such element
can be delivered. Moreover, there is no guarantee that no irrelevant objects will
be delivered by the service.� RG ∩ RW = ∅. Here, the objects the web service description refers to and the
objects the requester goal refers to are disjoint. That means there is no semantic
link between both descriptions; they are talking about different things.

129

7. Goal based Matchmaking

As we have mentioned in the previous chapter, WSMO goals are more expressive
than OWL-S Profile and less expressive than the formalism that we developed in the
previous chapter. WSML captures the relationships between various resources with the
help of rules, whereas OWL-S has not yet showed how the pre- and postconditions can
be modeled concretely. However, WSML lacks a syntax and semantics for specifying
constraints on the dynamic behaviour of Web services. Furthermore, to the best of our
knowledge there exist no algorithms for matching goals and Web services described in
WSML.

7.3.3. Other Matchmaking Approaches

In [LH03], service advertisements and goals are specified as DL concepts and the ap-
proach has similar drawbacks as the goal specification technique in OWL-S Matchmaker.

In [GMP04], it is argued that subsumption based matchmaking can be too strong.
That is, it may not find some matches. The authors suggest entailment of concept
non-disjointness instead of subsumption to overcome this shortcoming. Section 4.3
of [GMP04] says ”The requester accepts shipping from Plymouth or Dublin and the
provider accepts shipping from UK cities. Since Dublin is not in the UK, neither of the
two associated sets of service instances fully contains the other in every possible world.”.
That is, matching based on subsumption will not detect the service as a match, but
matching based on entailment of concept non-disjointness will. However, only a positive
boolean answer may make a requester believe that the service also accepts shipping from
Dublin.

Major difference between our approach and all other currently existing approaches is
that the existing approaches produce only yes/no answers. That is, they either do not
consider the conditions while performing matchmaking or do not provide the client with
conditions under which a Web service offers the desired functionality. Another difference
between our approach and existing approaches is that we consider security constraints
in the matchmaking. Furthermore, our request specification technique is much more
expressive than those used in the existing approaches that allow only the type of output
as request and hence a user can filter Web services in a much richer way than only the
by the types of their inputs and outputs.

7.4. Conclusion

In this chapter, we presented a matchmaking approach based on model checking. Unlike
most of the existing approaches that may provide expressive formalism for describing
Web services but do not provide matchmaking algorithms that exploits the expressiveness
of the formalism, our matchmaking approach can use all the available information in the
semantic description of Web services. To the best of our knowledge ours is the only work
that has considered the matchmaking problem as a satisfiability problem and could thus

130

7.4. Conclusion

gain from the insights gained from many years of theortical work done in the process
algebra community.

Our matchmaking approach matches functionalities of Web services rather only their
interface with user request. That is, our technique allows users to define constraints
on the Web service functionalities and then search for Web services that fulfill the con-
straints. Note that matching Web service interfaces only ensures that a user can execute
a Web service found as a match. However, when a user needs a Web service, his main
concern is to find Web services that offer the required functionality and not Web services
that he can invoke in principle. Furthermore, our goal specfication formalism developed
in the previous chapter covers the interface matching due to the availability of constraints
on the type and values of input and output parameters.

131

7. Goal based Matchmaking

132

8. Simulation based Matchmaking

In the previous two chapters we have seen how goals can be specified and how Web
services that satisfy a goal can be found. Such a technique can be used to specify certain
steps of a business process as goals rather than hard-wiring a concrete Web service.
When the business process is executed, Web services satisfying the goals can be found
and integrated automatically. In some situations Web services are already integrated
in a business process. In such scenarios, it is often desired to simply replace one Web
service by another Web service that offers the same functionality. That is given a Web
service Wold that needs to be replaced, one seeks another Web service Wnew such that
for all formulas φ if the old Web service Wold satisfies the formula φ, Wnew must also
satisfy the formula φ. However, often the specifications of the constraints that Wold

satisfies may not be available. In order to use the model checking based matchmaking
developed in the previous chapter, one needs to derive from the description of Wold all
the formulas, say φ1, . . . , φn, that Wold satisfies and then check for each Web service W
whether W satisfies each φi. Since n, the number of formulas that Wold satisfies, can
be very large, finding an equivalent new Web service by model checking is not efficient.
Rather, there is a need for an alternative approach, that can directly check whether a
Web service can offer the same functionality as another Web service. In this chapter, we
develop a technique for determining simulation of agents by comparing them directly.

For comparing two agents directly, we need to consider all the three aspects of the
agent, namely the credentials of the agents, the resources of the agents and the behavior
of the agents. Otherwise, we can not ensure that the two agents satisfy same set of
formulas.

8.1. Simulation of Resources

In case of resources, we differentiate between actual resources and resource types, where
the latter denotes a set of resources. In Chapter 5, we have modeled resource types as
description logic concepts. Thus, simulation of resource types can be directly obtained
by subsumption of the corresponding concepts.

Description logics however do not provide any reasoning procedure to directly find
out whether a resource can be replaced by another. Note, that the sameIndividual(x, y)
axiom provided by OWL has the semantics that x and y describe the same resource.
To determine whether a resource x can be replaced by another resource y, we need to
ensure that for any given DL query q, if x is an answer to query q, y is also the answer

133

8. Simulation based Matchmaking

of query q. Obviously if the individuals x and y are equal either both or none of them
appears in the answer of any DL query. However, equality is too strong for the notion
of simulation that we seek.

Consider for example two book selling Web services A and B. Both of them require the
ISBN of the desired book and delivery address as input and send the ordered book to the
delivery address. Now, if A and B are provided by different organizations, say amazon.de
and bol.de, they have different warehouses, that is disjoint sets of resources. So, they
will actually deliver different copies, say α and β, of the ordered book and not the same
copy. However, both the copies α and β, even if being two different real world resources,
have same properties, i.e. same ISBN, same title etc.. The sameIndividual(α, β) axiom
means that α and β describe the same resource.

Definition 22 (Simulation of Resources). We define simulation of resources α and β as
follows:� If α = β then a is simulated by b and b is simulated by a� If α 6= β, α is simulated by β, if the following two conditions hold

D1 D2 D3 D′
1

⊑

{{
D′

2 D′
3

⊑

yy

⊑

uu
D′

4

α

`` OO >>

β

`` OO >> 66

Figure 8.1.: Resource Simulation Example: Individual α is member of the classes D1,D2

and D3. Individual β is member of the classes D′
1,D

′
2, D

′
3 and D′

4. Further-
more, D′

1 ⊑ D1, D
′
3 ⊑ D2 and D′

3 ⊑ D3 hold.

1. for every decription D that α is member of there must exist a description D′

that β is member of such that D′ ⊑ D (refer to Figure 8.1).

2. for every property instance p of a property P that α has with an individual γ,
there must exist a unique property instance p′ of the property P ′ ⊑ P that β
has with an individual γ′ such that γ is simulated by γ′ (refer to Figure 8.2).

Now, we present the algorithm to determine whether a resource α can be simulated by
another resource β. The idea is to build a binary relation S as defined in the definition
above and then check whether the pair (α, β) belongs to S or not. We initialize the
relation S as presented in the Algorithm 1.

134

8.1. Simulation of Resources

Algorithm 1 Initialize

calculate the set of all individuals reachable directly or indirectly by α and denote it
by A.
Add α to A.
calculate the set of all individuals reachable directly or indirectly by β and denote it
by B.
Add β to B.
for all pairs (a, b) such that a ∈ A and b ∈ B do

if a = b then
add (a, b) to S.

end if
end for

Algorithm 2 Constructing the Simulation Relation between Resources

while (α, β) /∈ S do
set changed = false
for all (a, b) ∈ A×B do

if (a, b) /∈ S then
if for every description D that a is a member of there exists a description
D′ ⊑ D that b is member of then

if for every property instance p of property P that a has with an individual
c, there exists a unique property instance p′ of property P ′ ⊑ P with an
individual c′ such that (c, c′) ∈ S then

add (a, b) to S
set changed = true

end if
end if

end if
end for
if changed = false then

return false
end if

end while
return true

135

8. Simulation based Matchmaking

α
p1

���
�

�
�

�

p2

���
�

�

p3

��?
?

?
?

? β
p′
1

���
�

�
�

p′
2

���
�

�

p′
3 ��?

?
?

?

p′4 ''O
O

O
O

O
O

O
O

γ1

simulated by

AA
γ2

simulated by

>>
γ3

simulated by

88γ′1 γ′2 γ′3 γ′4

Figure 8.2.: Resource Simulation Example: Property instances p1, p2, p3 are instances of
the a property P , whereas property instances p′1, p

′
2, p

′
3, p

′
4 are instances of

property P ′, with P ′ ⊑ P

Having initialized the relation, we build the set as presented in the Algorithm 2. The
outermost while loop of the Algorithm 2 terminates if (α, β) ∈ S, hence it returns true.
Otherwise, it keeps on checking whether an individual a ∈ A can be simulated by an
individual b ∈ B. If such a pair is found it is added in the set S and the fact that the
set S has been changed is recorded by setting a boolean variable changed to true. After
all the pairs (a, b) ∈ A×B have been processed, a new round is started if the set S was
changed. Otherwise, that is if changed = false, we have arrived the saturation since
the set S is not changing and there is no need of starting another round. In this case,
the algorithm terminates by returning false, which means that the resource α can not
be simulated by resource β.

The complexity of the algorithm is easy to determine. Let |A×B| denote the number
of elements in the set A×B. Every round, except perhaps the last round, adds at least
one (a, b) ∈ A × B to S. So, there can be atmost |A × B| rounds before a round takes
place that does not change the set S, which leads to termination. In every round |A×B|
elements are processed. So, the complexity of the algorithm is O(|A×B|2).

8.2. Comparing Credentials of Agents

As described in Chapter 5, an agent α has a set of certificate Cα and agents trust other
agents on basis of their credentials. As we have seen in Chapter 6, users can restrict the
desired set of agents that may be involved in a Web service process.

If an agent α is supposed to be replaced by another agent β, a user must be able to
trust agent β at least as much as he trusts agent α. Since, we do not know the user and
his trust policy, agent β should fulfill every trust policy that agent α also fulfills in order
to be a replacement candidate for agent α.

In Chapter 5 and 6, we have shown how certifiable properties can be modeled as

136

8.3. Comparing Behavior of Agents

concept expressions. The fact that an agent α possesses a property P is modeled by
a description logic class membership axiom P (α). Furthermore, trust as well as access
control policies are modeled as description logic queries such that checking whether an
agent can be trusted or granted access is reduced to checking whether the agent is in
the answer of the corresponding query.

In order to ensure that agent β is trusted or granted access, whenever α is trusted or
granted access, agent β must also have at least those properties that agent α has. In
other words, for every property P , if the axiom P (α) exists then there must an axiom
P ′(β) with P ′ ⊑ P .

Consider for example, properties above18 and above25 and an obvious axiom

above25 ⊑ above18,

which means that an agent who is above 25 years is also above 18 years. Suppose, an
agent α possesses the property above18, that is there exists an axiom above18(α) and
agent β possesses the property above25, that is there exists an axiom above25(β). Now,
if the only criteria for trusting or granting access to an agent is that the agent must be
above 18 years of age, then agent β can always be trusted or granted access whenever
agent α is trusted or granted acesss.

Coming back to general case, suppose agent α has properties P1, . . . , Pn. That is there
exists axioms P1(α), . . . Pn(α). Similarly, supppose agent β has properties Q1, . . . , Qm.
That is there exists axioms Q1(β), . . . Qm(β). We require that agent β must also have
all the properties that agent α has. That is, for every i ∈ {1, . . . , n} there must be a
j ∈ {1, . . . ,m} such that Qj ⊑ Pi.

8.3. Comparing Behavior of Agents

Now we turn our attention to the last aspect that is simulation of agent behaviors.

8.3.1. Trace Equivalence: A First Attempt

Let us say that a trace of a process P is a sequence α1, . . . , αk such that there exists a
sequence of transitions

P = P0
α1→ P1

α2→ . . .
αk→ Pk,

for some P1, . . . Pk. Let us denote with Γ(P) the collection of traces of P . Since ΓP
describes all the possible finite sequences of interactions that we may have with process
P , it is reasonable to require that our notion of behavioral equivalence only relates
processes that afford the same traces, or else we should have a very good reason for
telling them apart – namely a sequence of communications that can be performed with
one, but not with the other. This means that, for all processes P and Q, we require that
if P and Q are behaviorally equivalent, then Γ(P) = Γ(Q).

137

8. Simulation based Matchmaking

This point of view is totally justified and natural if we view our labelled transition
systems as non-deterministic devices that may generate or accept sequences of actions.
However, it turned out that trace equivalence is not particularly reasonable if we view
our automata as reactive machines that interact with their environment.

To understand this, consider two coffee machines CTM and CTM ′ defined as follows:

CTM
def
= coin.(coffee.CTM + tea.CTM)

CTM ′ def
= coin.coffee.CTM ′ + coin.tea.CTM ′

It is easy to see that CTM and CTM ′ afford the same traces. However if a user, a
coffee addict (CA) wants coffee and not tea, he will prefer to interact with CTM and
not CTM ′. The reason is that the machine CTM will give him coffee after receiving
a coin, whereas CTM ′ may refuse to deliver coffee after having accepted his coin. The
reason why the machines behave differently from the point of view of the user become
clearer if we formalize the user, a coffe addict as follows:

CA
def
= coin.coffee.CA

and the processes of his interaction with the coffee machines as

CA ‖ CTM

and
CA ‖ CTM ′

In the first case, after the coin has been inserted, the user is willing to accept coffee and
the machine CTM can provide coffee or tea. However, since the user is willing to accept
only coffee, the interaction can take place only if coffee is delivered. In the second case,
however the machines decides already before the user inserts the coin, whether it would
deliver coffee or tea after the user has inserted the coin. In case, it decides to deliver
tea, it will lead to a deadlock since the user is willing to accept only coffee whereas the
machine is only willing to deliver tea, as a result the interaction can not take place.

Therefore we need to refine our notion of equivalence in order to differentiate processes
that, like the two vending machines above, exhibit different reactive behaviour while still
having the same traces.

8.3.2. Strong Bisimilarity

The problem with trace equivalence is that when looking purely at the (completed) traces
of a process, we focus only on the sequence of actions that the process may perform, but
do not take into account the communication capabilities of the intermediate states that
the process traverses as it computes. As the above example shows, the communication

138

8.3. Comparing Behavior of Agents

potential of the intermediate states does matter when we may interact with the process
all the times. In particular, there is a crucial difference in the capabilites of the states
reached by CTM and CTM ′ after inputting a coin. Indeed, after accepting a coin the
machine CTM always enters a state in which it is willing to output either coffee or tea,
depending on what its user wants, whereas the machine CTM ′ can only enter a state in
which it is willing to deliver either coffee or tea, but not both.

The insight that we gain from the above example is that a suitable notion of behavioral
relation between reactive systems should allow us to distinguish processes that may have
different deadlock potential when made to interact with other processes. Such a notion
of behavioral relation must take into account the communication capabilities of the
intermediate states that processes my reach as they compute. One way to ensure that
this holds is to require that in order for two processes to be equivalent, not only they
should afford the same traces, but, in some formal sense, the states that they reach
should still be equivalent.

P
α //

≤

P ′

≤

Q
α // Q′

Figure 8.3.: Agent P is simulated by agent Q

A binary relation ≤ on agents is a simulation if P ≤ Q implies that any transition
from P to P ′ must be simulated by a transition in Q to Q′ such that the derivatives P ′

and Q′ remain in the simulation, that is P ′ ≤ Q′ holds (refer to Figure 8.3).

Definition 23. A binary relation S on agents is a (strong) simulation if PSQ implies

1. If P
α
−→ P ′ and α is free action, then for some Q′, Q

α
−→ Q′ and P ′SQ′

2. If P
x(y)
−→ P ′ and y /∈ n(P,Q), then for some Q′, Q

x(y)
−→ Q′ and for all w,

P ′{w/y}SQ′{w/y}

3. If P
x(y)
−→ P ′ and y /∈ n(P,Q), then for some Q′, Q

x(y)
−→ Q′ and P ′SQ′

Definition 24. The relation S is a (strong) bisimulation if both S and its inverse are
simulations. The relation ∼̇, (strong) bisimilarity, on agents is defined by P ∼̇Q if and
only if there exists a bisimulation S such that PSQ.

8.3.3. Weak Bisimilarity

Consider, for instance, the processes a.τ.0 and a.0. Since τ actions should be unob-
servable, we intuitively expect these to be observationally equivalent. Unfortunately,

139

8. Simulation based Matchmaking

however, the process a.τ.0 and a.0 are not strongly bisimlar. In fact, the definition of
strong bisimulation requires that each transition in the behaviour of one process should
be matched one transition of the other, regardless of whether that transition is labelled
by an observable action or τ , and a.τ.0 affords the trace aτ , whereas a.0 does not.

In hindsight, this failure of strong bisimlarity to account for the unobservable nature of
τ actions is expected because the definition of strong bisimulation treats internal actions
as if they were ordinary observable actions. What we should like to have is a notion
of bisimulation equivalence that affords all of the good properties of strong bisimilarity,
and abstracts from τ actions in the behaviour of processes. However, in order to fulfill
the aim, first we need to understand what “abstracting from τ actions” actually means.
Does this simply mean that we can “erase” all of the τ actions in the behaviour of a
process? This would be enough to show that a.τ.0 and a.0 are equivalent, as the former
process is identical to the latter if we “erase the τ prefix”.

Start

pub
��

CM ‖ CS
τ

xxrrrrrrrrrr
τ

%%KKKKKKKKKK

Good

τ

��

Bad

Start

Start
def
= CM ‖ CS

Good
def
= coffee.CM ‖ CS′′

Bad
def
= CM ‖ CS′′

CS
def
= pub.CS′

CS′ def
= coin.CS′′

CS′′ def
= coffee.CS

Figure 8.4.: The behaviour of CM ‖ CS

To understand this issue better let us consider a variation of the coffee machine

CM
def
= coin.coffee.CM + coin.CM

140

8.3. Comparing Behavior of Agents

Note that, upon receipt of a coin, the coffee machine CM can decide to go back to its
initial state without delivering the coffee. Figure 8.4 describes the possible behaviours
of the sytem CM ‖ CS. Note, that the two possible τ -transitions that stem form the
process CM ‖ CS′, and that one of them, namely

CM ‖ CS′ τ
→ CM ‖ CS′′,

leads to a deadlocked state. Although directly unobservable, this transition cannot be
ignored in our analysis of the behaviour of this system because it pre-empts the other
possible behaviour of the machine. So, unobservable actions cannot be just erased from
the behavour of processes because, in light of their pre-emptive power in the presense of
non-deterministic choices, they may affect what we may observe.

In order to define a notion of bisimulation that allows us to abstract from internal
transitions in process behaviours, a new notion of transition relation between processes
is introduced.

Definition 25. Let P and Q be processes. We write P
ǫ
⇒ Q iff there is a (possibly

empty) sequence of τ -labelled transitions that lead from P to Q. (if the sequence is
empty, then P = Q.)

For each action α, we write P
α
⇒ Q iff there are processes P ′ and Q′ such that

P
ǫ
⇒ P ′ α

→ Q′ ǫ
⇒ Q.

For each action α, we use hatα to stand for ǫ if α = τ , and for α otherwise. Thus P
α
⇒ Q

holds if P can reach Q by performing an α-labelled transition, possibly preceded and
followed by sequences of τ -transitions. For example, a.τ.0

a
⇒ 0 and a.τ.0

a
⇒ τ.0 both

hold.

In the LTS depicted in Figure 8.4, apart from the obvious one step pub-labelled tran-
sition, we have that

Start
pub
⇒ Good

Start
pub
⇒ Bad

Start
pub
⇒ Start

Now we use the new transition relations presented above to define a notion of bisim-
ulation that can be used to equate processes that offer the same observable behaviour
despite possibly having every different amount of internal computations. The idea un-
derlying the definition of the new notion of bisimulation is that a transition of a process
can now be matched by a sequence of transitions from the other that has the same

141

8. Simulation based Matchmaking

“oberservational content” and leads to a state that is similar to that reached by the first
process.

Definition 26 (Weak Bisimulation and Observational Equivalence). A binary relation
R over the set of states of an LTS is a weak bisimulation iff whenever s1Rs2 and α is
an action:� if s1

α
→ s′1 then there is a transition s2

α̂
⇒ s′2 such that s′1Rs

′
2� if s2

α
→ s′2 then there is a transition s1

α̂
⇒ s′1 such that s′1Rs

′
2

Two states s and s′ are observationally equivalent (or weakly bisimlar), written s ≈ s′,
iff there is a weak bisimulation that related them. Henceforth the relation ≈ will be
referred to as observational equivalence or weak bisimilarity.

8.4. Algorithm

For two Web service descriptions W1 and W2, we wish to determine, whether they are
congruent. That is, whether one can be replaced by another in a larger system without
changing the functionality of the larger system.

α-convertibility is a well known technique used in process algebras to determine two
process expressions P and Q can become syntactically equal by renaming their variables
without changing their semantics [MPW92].

Consider u = v. That is, u is bound and v is free. Renaming v to u will lead to u = u,
which is a problem, since it changes the semantics of the process. The solution is to first
rename u to a new name, say u1 and then rename v to u. That is, changing of a bound
name is a recursive process.

Definition 27 (Sub Process). The set of direct sub processes DSP (P) of a process P
is defined as follows (refer to Section 5.1.2 for the syntax of valid process expressions):� P = 0 implies DSP (P) = ∅.� P = τ.Q implies DSP (P) = {Q}.� P = y(x).Q implies DSP (P) = {Q}.� P = yx.Q implies DSP (P) = {Q}.� P = Q ‖ R implies DSP (P) = {Q,R}.� P = Q+R implies DSP (P) = {Q,R}.� P = ω?Q:R implies DSP (P) = {Q,R}.

142

8.4. Algorithm� P = (new x)Q implies DSP (P) = {Q}.� P = A(y1, . . . , yn) implies DSP (P) = {Q} if A(x1, . . . , xn)
def
= Q.

The set of all sub processes of a process P is defined as the union of the set of all direct
sub processes of P and sets of all sub processes of the all direct sub processes of P

Now, we present the algorithm for checking the equivalence of the Web services W1

and W2.

1. Let B1 and B2 denote the processes describing the dynamic behaviours of the Web
services W1 and W2 respectively.

2. We first construct the sets of all the sub processes of P and Q and denote the set
by S (refer to Definition 27).

3. Intitialize a set R to ∅. The set R will contain the pairs of processes that are
equivalent. That is, (P,Q) ∈ R it means that P ≡ Q (refer to Definitions 13 and
14).

After the above initialization steps, we construct the set R by the following rules for
each pair (P,Q), with P,Q ∈ S. In the following, whenever we deduce P ≈ Q it means
that we insert the (P,Q) in the set R.� Syntactic Equivalence P = Q⇒ P ≈ Q� Congruence P ≈ Q⇒

– τ.P ≈ τ.Q

– xy.P ≈ xy.Q

– P +R ≈ Q+R

– P ‖ R ≈ Q ‖ R

– (x)P ≈ (x)Q

– ω?P :R ≈ ω?Q:R

– ω?R:P ≈ ω?R:Q

– P{z/y} = Q{z/y}, for all names z ∈ fn(P,Q, y),⇒ x(y).P ≈ x(y).Q� Summation

– P + 0 ≈ P

– P + P ≈ P

– P +Q ≈ Q+ P

143

8. Simulation based Matchmaking

– P + (Q+R) ≈ (P +Q) +R� Restriction

– (new x)P ≈ P , if x /∈ fn(P)

– (new x)(new y)P ≈ (new y)(new x)P

– (new x)P +Q ≈ (new x)P + (new x)Q

– (new x)α.P ≈ α.(new x)P for α an input, output or local action and if
x /∈ n(α)

– (new x)α.P ≈ 0 for α an input, output or local action and if x is the subject
of α� IfThenElse

– ω?P :Q ≈ P if ω = true

– ω?P :Q ≈ Q if ω = false

– ω1?P :Q ≈ ω2?P :Q if ω1 ⊑ ω2 and ω2 ⊑ ω1� Communication

– xy.P ≈ xz.P if resource y simulates resource z.

– x(z).P ≈ y(z).P , if the message type of channel x simulates the message type
of channel y.� Identifier A(x1, . . . , xn)

def
= P ⇒ A(y1, . . . , yn) ≈ P{y1/x1, . . . , yn/xn}

After the saturation is complete, we check whether the pair (B1, B2) is in the set
R. If (B1, B2) ∈ R, then they are equivalent and we stop with a positive answer. If
(B1, B2) /∈ R, then they are not equivalent and we stop with a negative answer.

Consider the Web services w1 and w2 defined as follows:

w1 = a(x1, x2, x3).bx1.0

w2 = a(y1, y2, y3).by1.0

From the rule for syntactic equivalence (α conversion), it can be found out, that w1 and
w2 are identical except the choice of the names of the variables. That is, if the variable
y1 is renamed by x1 in the definition of w2, w2 becomes syntactially identical to w1.

Now consider two more Web services w3 and w4 defined as follows:

w3 = a(x).P erson(x)?w1:0

w4 = a(x).P erson(x)?w2:0

144

8.5. Conclusion

Consider the rule ω?P :R ≈ ω?Q:R, given P ≈ R. Since we know that w1 and w2 are α
convertible, we can replace w2 by w1 in the definition of w4 as w3 and w4 check exactly
the same condition Person(x). That is, we would identify w3 and w4 as equivalent Web
services.

8.5. Conclusion

In this chapter, we have developed an algorithm for directly comparing two Web service
descriptions. We developed methods for simulation of resources and showed that the
simulation of credentials can be done with subsumption of concepts that is directly pro-
vided by description logics. Finally, we presented a complete algorithm by combining
the weak bisimulation of behavior known from process algebras with bisimulation of re-
sources. The algorithm checks whether a Web service can simulate the other Web service.
Such a technique for directly comparing two Web services is useful in business scenarios,
where a business process already uses Web services for certain tasks and a Web service
it is desired to replace a web service by another that offers the same functionality. To
the best of our knowledge existing Web service matchmaking approaches are goal driven
and ours is the only work that motivates the need for a simulation based matchmaking
and provides a procedure for checking whether a Web service can be replaced by another
by comparing them directly.

145

8. Simulation based Matchmaking

146

Part IV.

Implementation and Applications

147

In this final part of the work, we present in Chapter 9 the detailed architecture of our
protypical implementation of the Web service description formalism developed in Part II
and the algorithms developed in Part III. We will then present how our methods have
been employed in the context of research projects in Chapter 10. In Chapter 11, we
conclude by summarizing our main contributions and referring to our own publications,
in which the results presented in this work have published. Furthermore, we discuss
some open problems that may be of further research interest.

149

150

9. Implementation

In this chapter, we present the protypical implementation of our semantic Web service
modeling and matchmaking tool. We call the tool KASWS which stands for Karl-
sruhe Semantic Web Services Framework. KASWS is an open source tool and hosted
at http://sourceforge.net/projects/kasws/. We present the architecture of the
system and discuss its various components in detail. Figure 9.1 shows the overall archi-
tecture of KASWS.

automatically
found ontology
mappings

Edit, Add WS
descriptions.
Edit, Add Ontology
Mappings

search, compose,
select web services

WSDL

WSDL

HTML
Form

semantic descriptions
of web services

KAON2
Ontology API

KASWS
WS Mgmt. API

KAON2
Reasoning API

KASWS
Reasoning API

WS Descriptions
Ontologies,
Mappings

FOAM

HTML Form
To WSDL

WSDL To
KASWS

Web
Crawler

KASWS
Web Services

Dynamic WS
Binding Application

Figure 9.1.: Architecture of Karlsruhe Semantic Web Service Framework

9.1. KASWS Web Service Management API

The KASWS system needs to maintain a large number of Web service descriptions in the
formalism we have developed in Part II. In general every Web service description may be

151

http://sourceforge.net/projects/kasws/

9. Implementation

associated with a separate ontology and there may be mappings among such ontologies.
So, the system also needs to manage a large set of ontologies. We use KAON21 to
manage the repository. KAON2 is an infrastructure for managing OWL-DL ontologies
with DL-Safe rules. KAON2 is a successor to the KAON2 project. The main difference
to KAON is the supported ontology language. KAON used a proprietary extension of
RDFS, whereas KAON2 is based on OWL-DL. The KASWS Web Service Management
API allows to work with the Web service descriptions in the repository.

While the ontologies associated with Web services can be directly managed by KAON2,
we developed an extra component to manage the behavioural descriptions of Web ser-
vices. Although KAON2 repository together with a repository of behavioural descrip-
tions fulfilled the purpose, it was hard to manage them since they have to be synchronized
all the time. Another drawback of having two repositories was that we needed to im-
plement methods for the retrieval of information about the behaviour needed by the
reasoning algorithms. The fact that KAON2 can efficiently manage any type of informa-
tion expressable with OWL-DL and provides efficient query answering, that is retrieval
of the information led us to the idea that modeling the behaviour of Web services as an
ontology would save us to manage a separate repository.

9.1.1. Generating Domain APIs from Ontology

Mapping Ontologies To Packages

We map ontologies to java packages. For programmatic access, we generate for each
ontology O an interface O∗. Our generator expects a simple mapping from logical URIs
denoting ontologies to java package names. This enables flexible configuration of the
mapping and enables collaborative ontology development. The mapping is needed in
order to know the java package name a generated interface should belong to.

In KAON2 an ontology can include other ontologies. If the ontology O includes
ontologies O1, . . . , Ok, the interface O∗ is sub interface of O∗

1, . . . , O
∗
k, where O∗

i denotes
the generated interface for the ontology Oi. If O does not include any models it is
subinterface of RootModel, which is a manually programmed interface having methods
as described below. Further, if an ontology O∗

i includes other ontologies, we generate
import statements to import packages corresponding to the included ontologies according
to the mappings between logical URIs and java package names. Interface RootModel has
the following methods:� public RootClass[] getAll(Class c) – returns all instances of the given type

c from this model� public RootClass createNew(Class c) – creates a new instance

1http://kaon2.semanticweb.org
2http://kaon.semanticweb.org

152

http://kaon2.semanticweb.org
http://kaon.semanticweb.org

9.1. KASWS Web Service Management API� public void remove(RootClass c) – removes a given instance c from the model� public void save() – manages the model persistence� public RootClass rdfToJava(RDFTriple[] triples) – allows objects serialised
as RDF to be read back in� public RootClass[] executeQuery(String query) – allows to use the expres-
sivity of KAON2 queres within the model

Now, we consider the set of concepts C in an ontology O. For every concept c ∈ C,
we generate methods public C∗ createC∗() and public C∗[] getAllC∗s() in the
interface O∗. The method createC∗ returns a new object of type C∗ whereas the method
getAllC∗s returns all objects of type C∗ that exist in the ontology O.

Mapping Concepts to Interfaces

In order to represent the concepts in java, we generate a Java interface for each con-
cept. The root concept of the ontology, ⊤, maps to a manually programmed interface
RootClass with the following methods:� public String getID() – return a unique identifier string� public RDFTriple[] toRDF() – serialises this concept as RDF triples� public String toHTML() – returns a human-readable HTML representation for

displaying at the user interface

More formally, for a given set of concepts C, we generate for each concept c ∈ C, an
interface c∗. The package of the interface c∗ is same as that of the interface O∗, if the
set of concepts C belongs to the ontology O. Further, if the concept c is sub concept
of c1, . . . , ck, the interface c∗ is sub interface of c∗1, . . . , c

∗
k, where c∗1, . . . , c

∗
k denote the

interfaces generated for the concept ci. If c has no super concepts, c∗ is subinterface of
RootClass only.

Mapping Relations to Methods

Now, we consider the set of relations R of the ontology O. While processing a concept c,
we are only interested in those relations that have the concept c as their domain concept.
That is, for a given concept c, we are interested in all relations p ∈ R such that c ∈ d(p).
Let Rc = {p : p ∈ R and c ∈ d(p)}. Now, we generate get and set methods in the
interface A for each relation p ∈ Rc as described in algorithm 33.

3we currently do not support mulitple ranges of a relation.

153

9. Implementation

We support primitive Java data types via a small ontology. These are handled specially
with a built-in mapping. We perform type conversions to and from primitive types
internally as needed.

Algorithm 3 generateGetSetMethods(Relation p)

consider the set of range concepts of the relation p, r(p), let concept b denote the
range concept of the relation p, thus r(p) = {b}.
if nmax(p) = 1 then

generate method "public "+lC(b)+" get"+lR(p)+"()"
generate method "public void set"+lR(p)+"("+lC(b)+" value)"

else
generate method "public "+lC(b)+"[] get"+lR(p)+"()"
generate method "public void set"+lR(p)+"("+lC(b)+"[] values)"

end if

Mapping Instances to Proxy Objects

At runtime, ontology instances are mapped to Java dynamic proxies. Instances of
this class java.lang.reflect.Proxy can implement a set of interfaces at runtime.
Method calls are redirected to the method invoke of an implementation of the class
InvocationHandler of the Java package java.lang.reflect. We implement our inter-
faces using this technique and map method calls on objets to KAON2 API method calls
inside the invoke method. Our proxy object instances are obtained by the developer
through the methods of the ModelImpl in the same package. All method invocations are
handled by ClassImpl, which uses the KAON2 API.

Now, we turn our focus to ClassImpl implements java.lang.reflect.Invoca-

tionHandler. Recall, that we have generated an interface for each concept c with
methods "set"lR(p) and "get"lR(p) for each property. Now, we describe how these
getters and setters are implemented inside the implementation of the invoke method of
the class ClassImpl.

Set-methods

Since, the method names are generated from the name lR(p) of the relation p, we can
extract it from the method name. At this stage, we do not have the URI of the relation
p yet. Luckily, we can get the package name, in which the class on which the method
"set"lR(p) has been called, resides. Then, we use the mapping between packages and
logical URIs of the ontologies to get the logical URI of the ontology and construct
the property URI from it. Now, we have the property URI and a value that should
be set for the given instance. Depending on the maximum cardinality nmax(p) of the

154

9.1. KASWS Web Service Management API

relation p, the value to be set can either be a single value or an array of values. Recall,
that we have also differentiated between these two case while generating the "get"lR(p)
methods. The internal methods setPropertyValue and setPropertyValues set the
values for the relation p by directly using the KAON2 API. Though KAON2 allows to
model the cardinalities, it does not check whether the cardinality constraints are fulfilled
when relation instances are inserted in the ontology. The setPropertyValues method
solves this problem by first checking whether the number of elements in array fulfils the
cardinality constraints. If not, it throws an exception, otherwise it sets the values by
calling the appropriate KAON2 API methods.

Get-methods

Here, we have to differentiate, whether the return type is an array or not. Here, we will
describe only the former case.

To construct the required array, it is not sufficient to retrieve the instances that are
in relation p with the given instance and then wrap them to the type of the array. The
reason is, if two concepts a and b are related by p, every subconcept ai of a is also related
by p with every sub concept bj of b. Which means, if an instance α of any ai is related
with an instance of any bj and the method getp is called from α∗, then it should not
deliver the objects of type b∗, but of type b∗j . To achieve this, we first retrieve the set of
instance that are in relation p with the given instance and obtain the parent class of the
instances by first obtaining the direct parent concept and then mapping the concept to
the java class. These steps are performed in the method getParentClass. We create
an array of the parent class with appropriate number of elements. This array will be the
return value of the method.

The only thing that remains is to fill this array. Again, we have to differentiate between
two cases. The return type may be a primitive data type or an interface generated from
the ontology. Here, we will describe only the latter case. In this case, we iterate through
the set of instances that are in relation p with the given instance, wrap each instance to
the parent class with the help of the method wrapInstance and insert the java object
in the array.

Models At Runtime

Now we take a step back an look at the big picture. The class ModelFactory is a utility
class to manage different ontologies. It can be parameterised with a KAON2 model,
which is then the target of all data manipulations. We need this parametrisation to
avoid passing the instance of Model as parameter to every constructor of a class that
needs it.

Additionally, it has a static method

public static Model createModel(String logicalURI)

155

9. Implementation

for creating new models. Every KAON2 ontology has a unique URI, which is also called
logical URI of the ontology. This method expects such a URI. First it generates an
instance of OIModel (KAON2-API class to manage a model) by passing the logical URI
and then, it creates and returns a java object that wraps the KAON2 OIModel within
a dynamic proxy , where iface is the class generated for the ontology with the given
logical URI.

A Dynamic Model Implementation

The class ModelImpl implements java.lang.reflect.InvocationHandler is the dy-
namic implementation for all interfaces of type Model or its subinterfaces. We mentioned
above the generated methods getAllcs and createc in a subinterface of Model. Now, we
describe their respective implementations within the method invoke. getAllCs – This
method returns the set of all instances of interface c∗ that exist in the ontology. createC
– This methods creates a new instance of type C∗. The method createInstance creates
a new instance in the ontology via KAON2 API and is not described here any further.
At this moment, only the else case is important, in which the class ClassImpl is used
as the implementation of the interface.

9.1.2. Modeling the Knowledge Base with Description Logics

KAON2 can efficiently manage and reason about OWL-DL knowledge bases that may
also include DL-safe rules. We have seen in the previous section how a domain specific
Java API can be automatically generated from an OWL-DL ontology. Such an automat-
ically generated API allows to rapidly build Java applications and lifts the availability
of the description logic reasoning algorithms to the application layer.

Figure 9.2 shows different types of processes that are allowed to model the behavior
of an agent (cf. Section 5.1.2). The concept Process is a central concept that represents
an abstract process, whereas the sub concepts of Process correspond to the types of
processes that build the behavior of an agent.

Figure 9.3 shows various properties of the different types of processes. Most notable
are the concepts AgentIdentifier and Condition and the property definition. The concept
AgentIdentifier denotes a named process description, whereas the concept Agent is an
invocation of a named process. The property definition describes which agent identifier
an agent is an invocation of.

Figure 9.4 shows the two types of sequential processes in more detail. Aligned with
the terminology of π-calculus, we denote sequential composition with the concept Prefix.
A sequential process performs either a communication activity or a local operation.
Further, a communication activity is either an input activity or an output activity.

The concept AgentIdentifer denotes the set of agents A. Instances of AgentIdentifer

are the agent descriptions, in particular Web service descriptions. The concept Certifi-

156

9.1. KASWS Web Service Management API

Process Null

Prefix

Composition

Summation

Agent

IfThenElse

Restriction

Figure 9.2.: Ontology for Describing Behaviour of an Agent

cationAuthority denotes the subset of agents that can issue credentials to other agents
(refer to Figure 9.5). The concept Property represents the set of properties that can be
issued by a certification authority to an agent. We foresee a description logic concept
P ⊑ Property, thus allowing an ontology of property names as described in Chapter 5.
The concept Credential represents the set of credentials C. The properties issuer and
recipient with domain Credential and range AgentIdentifier represent the issuer and recip-
ient agent of a credential, whereas the property about with range Property denotes the
certified property.

The property definition of AgentIdentifer with range Process connects an agent to a
process that describes its dynamic behaviour. The concepts Input, Output, Local, Agent,
Composition, Summation and IfThenElse represent different types of processes that our
formalism supports. The property hasID of the concept Agent connects it to an AgentI-

dentifier and thus allows to call a Web service from another Web service. The properties
next, first and second have obvious meanings. The concept Channel represents the set
of communication channels connected with properties hasType with the concept Mes-

sageType.

Note, that the sole reason of modeling the behavior of Web services as an ontology is
to reuse the data management facilities of KAON2 and thus save time in the software

157

9. Implementation

Prefix

Process

next

IfThenElse

trueProcessfalseProcess

Condition

condition

Composition

component

Summation

summand

Agent

AgentIdentifier

hasID

definition

Figure 9.3.: Ontology for Describing Behaviour of an Agent

development process. Reasoning about the temporal aspects of Web services has to take
place outside the KAON2 DL reasoner, since DL reasoning does not support changes in
the knowledge bases during a run of a DL reasoner. At this point we wish to remark
that the process ontolgoy presented above, though being rather small as compared to
OWL-S process model, allows to model processes that are Turing complete, whereas the
expressivity of the OWL-S process model is unknown. Furthermore, OWL-S has till
date failed to point out that the added value of modeling behaviour as a DL ontology is
that it enables the reuse of ontology managment infrastructures for managing behavior
descriptions and not that DL reasoning can be used to reason about the dynamics of
processes.

9.2. KASWS Reasoning API

KASWS reasoning API uses KASWS Web Service Management API to retrieve required
information from the repository. KASWS Reasoning API provides reasoning algorithms
for checking satifiability of a formula, checking whether a Web service description is
a model of a formula and checking whether a Web service can simulate another Web
service. As shown in the Chapters 6, 7 and 8, the KASWS reasoning algorithms need
to check for concept subsumtion or perform a query on a description logic knowledge
base at various stages. We use KAON2 reasoning API for performing reasoning tasks
on the ontologies of Web services.

KASWS Reasoning API also provides API methods to create formulas of the logic B
developed in Chapter 6. It also provides a concrete syntax for the formulas and contains
a parser written in JavaCC 4. JavaCC (Java Compiler Compiler) is an open source
parser generator for the Java programming language. JavaCC is similar to Yacc in that

4https://javacc.dev.java.net/

158

https://javacc.dev.java.net/

9.2. KASWS Reasoning API

Input

Communication

Channel

channel

Prefix

Output

MessageType

messageType

Protocol

protocol

String

address

MessagePart

messagePart

name

Thing

partType

Local

LocalOperation

label

Figure 9.4.: Ontology for Describing Behaviour of an Agent

it generates a parser for a grammar provided in EBNF notation, except the output is
Java source code. Unlike Yacc, however, JavaCC generates top-down parsers, which
limits it to the LL(k) class of grammars, in particular, left recursion cannot be used.

Furthermore, the search, compose and selection algorithms5 are exposed as Web ser-
vices so that external client applications can embed KASWS funtionalities in their ap-
plications. From this perspective, KASWS system is used like a UDDI repository with
the difference that it allows much more expressive search and thus the matches are more
likely suitable for direct (without human intervention) dynamic binding than those found
in a UDDI search.

5Note, that the architecture of the KASWS system is designed to provide composition and selection
facilities, although the topics were not the focus of this work

159

9. Implementation

CertificationAuthority

AgentIdentifier

Credential

has

issuer

recipient

Property

about

Figure 9.5.: Ontology for Describing Non-Functional Properties of an Agent

9.3. Bootstrapping

In order to show the suitability of our Web service description formalism for real Web
services and evaluate the performance of our algorithms, we needed a significantly large
set of Web service descriptions. Obviously, one can always generate arbitrary large set of
Web service descriptions randomly. However, since showing suitability of our formalism
for randomely generated descriptions would be a weak argument for practicability, we
aimed at using descriptions of Web services that already exist and used in practice.

So the first idea was to develop a tool for converting WSDL documents into descrip-
tions in our formalism automatically. Obviously, an automatically generated description
is often not semantically correct. Apart from that a lot of information that is present
inside the documentation tag in natural language is not considered during the conver-
sion. Therefore, automatically generated descriptions have to be manually completed or
rectified. Even though, automatic conversion tools like WSDL to KASWS converter are
very helpful, since one does not have to describe Web services from scratch, which saves
time. Another advantage of such tools is of psychological nature. Most people have less
hesitation to rectify information rather than creating new information. Probably, the
best known system that works on this assumption is CiteSeer 6. In the following, we
describe how WSDL to KASWS converstion tool works. The tool was developed in the
scope of a student research project [Bai06].

A WSDL document describes more than one Web service. For each Web service, there

6http://citeseer.ist.psu.edu/

160

http://citeseer.ist.psu.edu/

9.3. Bootstrapping

is an Operation block inside the portType block. The XML schema used for describing
the Web services is defined in the types block. Each Operation block contains operation
name, input message and output message.� For each operation in the portType block create a new instance of the concept

AgentIdentifier. For example, consider the following fragment of a WSDL docu-
ment.

<wsdl:portType name="CityInfo">

<wsdl:operation name="getCityInfo" parameterOrder="plz">

<wsdl:input message="impl:getCityInfoRequest" name="getCityInfoRequest" />

<wsdl:output message="impl:getCityInfoResponse" name="getCityInfoResponse" />

</wsdl:operation>

</wsdl:portType>

The portType specifies an operation getCityInfo. Therefore, a new instance
getCityInfo of AgentIdentifier is inserted in the knowledge base by calling appropriate
methods of the KASWS WS Management API.� Similarly, instances of the concept MessageType are inserted in the knowledge base
for the input and output parameters. In our example, getCityInfoRequest and
getCityInfoResponse are input and output message types respectively. Both
message types are put together inside the operation getCityInfo. The order of
occurrence of the messages inside the Operation block (in our example, first input
message then output message) defines the data flow (in our example it corresponds
to request-response message exchange pattern).

<wsdl:message name="getCityInfoResponse">

<wsdl:part name="getCityInfoReturn" type="tns1:City" />

</wsdl:message>

The parts of a message type are listed inside the message block. In our example,
the message type getCityInfoRequest contains only one part plz.� For every complex type the XML schema described in the types block, a corre-
sponding concept is inserted.

<complexType name="City">

<sequence>

<element name="cid" nillable="true" type="xsd:string" />

<element name="latitude" type="xsd:int" />

<element name="longitude" type="xsd:int" />

<element name="name" nillable="true" type="xsd:string" />

</sequence>

</complexType>

For the above example, concept City for the complex type City is inserted in the
knowledge base. Furthermore, for the elements of the complex type cid, latitude,

161

9. Implementation

longitude and name, object properties with corresponding names and domain City

are inserted. For the range of the properties, we do not use primitive data types
like xsd:string, xsd:int etc., since they rather represent the serialization types
needed at the time of execution of the Web service and it is not possible to relate
them to other concepts of the ontology via subsumption. We rather create concepts
Cid, Latitude, Longitude, and Name from the property names by replacing the first
character of a property name by its upper case representation. These concepts
are then defined as ranges of the corresponding properties by inserting appropriate
axioms in the knowledge base with the help of the KASWS WS Management API.� Finally, the instance of the AgentIdentifier is connected to an instance of the concept
Process via the property definition. The instance of Process is derived from the data
flow information inside the Operation block. In our example, the process is an
instance of the concept Input connected via the property next with an instance of
the concept Output.

While looking for WSDL documents in the Web, we faced the problem that there
are not many WSDL documents available or not easily accessible. To overcome this
problem, we used a slightly modified version of the open source tool FORM2WSDL 7 to
convert HTML forms to WSDL. Having the two converters, we could easily generate a
large number of semantic description of Web services.

Since the types used in various WSDL documents are not interconnected and it is a
time consuming task to map the large number of ontologies manually, we use the tool
FOAM 8 for detecting simple mappings between the ontologies automatically [ESS05].

9.4. User Interface

The Graphical User Interface component supports a user to do various tasks.� It allows to describe a new Web service including the corresponding ontology graph-
ically and save it in the knowledge base.� The automatically generated Web service descriptions from WSDL documents and
HTML forms have very simple temporal structure due to the missing information
in the corresponding documents. Apart from that, the automatic generated de-
scription may be semantically incorrect. Therefore, the GUI allows the user to
edit existing descriptions and ontologies. Similarly, since the automatically found
ontology mappings can be faulty, the GUI allows to manually edit the ontology
mappings and add new more expressive ones [HM05].

7http://www.yourhtmlsource.com/projects/Form2WSDL/
8http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

162

http://www.yourhtmlsource.com/projects/Form2WSDL/
http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/

9.4. User Interface

Figure 9.6.: Graphical user interface showing the details of the matches� The GUI allow a user to specify his request graphically and send it to the KASWS
reasoner. Furthermore, a user can select a Web service from the list of Web service
and search for similar Web services. The matches are presented graphically to the
user.

163

9. Implementation

164

10. Applications

In this chapter, we present how some of the formalisms and techniques developed in this
work and presented in the previous chapters have been used in concrete setting given
by the research projects we have been involved in. Further we discuss some potential
applications in which our formalisms and techniques can be directly used.

10.1. Knowledge Integration in SemIPort

SemIPort stands for “Semantic Methods and Tools for Information Portals”. It is a
research project funded by german ministry for education and research (Bundesmin-
isterium für Bildung und Forschung (bmb+f)). The overall goal of the project is to
develop innovative techniques and tools for semantic based information portals.

The number of information sources in the Web is growing day by day with a tremen-
dous speed. At the same time, users tend to manage more and more tasks electroni-
cally, thereby using publicly available information sources. Since the Web is an open,
distributed and dynamic environment, in which information sources are offered and con-
trolled autonomously and independently, the interoperability of available information is
still a big challenge. The ever growing number of information sources in the Web and
the ever increasing tendency of users to accomplish more and more tasks electonically
give rise to the need of dynamic and flexible methods for knowledge integration. Aim of
the work package “Knowledge Integration” in the SemIPort project is to develop flexi-
ble techniques to integrate different heterogeneous information sources. The information
sources can be already equipped with schemas or ontologies. The technique should allow
dynamic integration of the information sources provided by the user.

In this section, we present how our formalisms and techniques were used for integrating
various information sources and illustrate our approach by an example. Our approach
also allows dynamic and flexible integration of information sources provided by the users.

The heterogeneity of information sources can be classified in the following three cate-
gories.� Heterogeneity in software and hardware architectures. For example, dif-

ferent operating systems, different programming languages and different hardwares
like PCs, mainframe, Sun etc.. When various heterogeneous information sources
are supposed to be integrated they must be able to communicate with each other.

165

10. Applications

Since the information sources may have different software and hardware architec-
tures their native access methods differ. For example, software written in Java is
easily accessible with Java RMI, whereas software written in C is easily accesible
via sockets. Therefore, we need a more abstract communication medium that is
suitable for accessing any information source. This is where Web services come into
play. Web services provide a standard communication mechanism for controlled
access to different heterogeneous information sources.� Heterogeneity in the structure and syntax of the information sources.
For example, relational databases, object-oriented databases, XML databases etc..
In order to overcome this problem, we abstract from the concrete structures and
syntaxes and use OWL-DL ontologies for modeling the information.� Heterogeneity in the modeling of the information stored in the infor-
mation sources. For example, one information source models firstname and
lastname as one attribute say name, the other models them as two attributes.
Other causes are different languages, for example german and english and different
naming conventions. We assume that the ontologies of information sources that
can be subscribed by a user are known. The access to the content or functionalities
provided by an information source is done via Web services and the ontology of
an information source is published alongwith the description of the web services.
When a user subscribes a new information source the new ontologies must be in-
tegrated with the already existing ontologies. For mapping among the various
ontologies, we rely on methods known from [HM05]

An information source consists of information and operations that can be performed
to access or modify the information. Current approaches for schema integration consider
the integration on the data level and can be used for generating an integrated view of
the schemas [Len02]. Hence, they are suitable for integrating information but not for
information sources and offer solutions for relatively static situations.

To enable dynamic and flexible integration of information sources, the operations of an
information source must also be taken into account. So, we propose a Web services based
approach for flexible and dynamic integration of heterogeneous information sources. Our
approach also allows integration of information sources provided by the users. The basic
idea lies in abstract specification of information as well the operations of an information
source. We specify each use case as a process with the formalism that we introduced in
Chapter 5. Once the information sources are described in such a way, the integration of
the sources can be specified by composing various relevant processes.

10.1.1. Sample Scenario

In our sample scenario, we consider the integration of multiple bibliographic information
sources in a semantic portal. These information sources are heterogeneous both with

166

10.1. Knowledge Integration in SemIPort

Figure 10.1.: Specification of Information Sources

respect to their schema as well as the operations they provide. Suppose, one of the
information sources is the DBLP bibliographic database, organized according to the
DBLP metadata scheme. The DBLP database can be queried using a simple operation
with the query as the input and the query result as the output. Suppose, another
data source in the scenario is the ACM Digital Library, which uses its own metadata
scheme for organizing its data. Also, the process for querying the ACM Digital Library
is more complex: The user has the choice to either logon to the library and use more
advanced search capabilities (e.g. on a more extensive dataset), or he may perform query
operations without providing account information. When integrating these information
sources to provide transparent querying in a semantic portal, we need to provide an
integration on both the schema and the process level. We will use this sample scenario
throughout the following sections to explain the model of process-based integration of
information sources.

10.1.2. Integration of Heterogeneous Information Sources

In this section, we show how the schemas of information sources can be specified with
ontologies, giving them formal and hence machine understandble semantics. Further,
we show how the operations offered by an information source can be specified homo-
geneously with our process decription language introduced in Chapter 5. Having the
formal descriptions of the various schemas and processes, we the show how various in-
formation sources can be integrated dynamically and flexibly, once their schemas and
operations have been specified formally and abstractly, simply by composing the desired
processes (refer to Figure 10.1).

167

10. Applications

Specifying Schemas with Ontologies

The integration of the information residing in heterogenous information sources requires
to consider the intended meaning of the information to achieve an interoperability on a
semantic level.

A database schema typically only describes the structural representation of the in-
formation. Ontologies feature richer modelling primitives, such as concept and relation
hierarchies as well as axioms. Ontologies thus provide the means to formally specify the
conceptualization of a domain, allowing for a semantic interoperability. Using ontologies
to specify the meaning of the schemas therefore enables to semantically integrate the
underlying information sources [WVV+01].

In many cases, a description of the structural schema of the information sources is
already given. Several approaches exist to extract the conceptualization inherent in a
schema, such as relational schemas and XML schema as an ontology [VOSS03]. The re-
lationship between the ontology and the information sources they describe is established
via mappings that resemble and enrich the structure of the information source and are
used to define and annotate terms and resources from the information source and its
schema.

To integrate the schemas of multiple heterogeneous sources, either a global ontology
is derived which integrates local schemas, or each information source has its own ontol-
ogy and the different ontologies are linked directly. Hybrid solutions combine the two
approaches by building ontologies of single information sources using elements from a
shared vocabulary. Again, mappings are used to express the relationship between the
ontologies. The mappings can either be defined manually or automatically by using
lexical relations, top-level groundings and semantic correspondences.

For the sample scenario, the content of the ACM and DBLP information sources would
be described using an ontology reflecting their respective metadata schemes. However,
the user would be presented with an integrated ontology (obtained by one of the means
described above), allowing transparent querying against the various information sources.

Specifying Operations as Processes

In general, an information source has many use cases. For each use case, it offers
operations to users. In simple cases, such operations are like remote procedures, but in
general, especially in case of Web portals, they can be more complex and need multiple
user interactions. Further, an information source performs local operations as partial
tasks of a user case, e.g. calculations or database query.

In this step, we model each use case of an information source as a process with our
process description language introduced in Chapter 5. The process description uses the
ontology described in the previous section in order to refer to any objects that take part
in the process. The local operations are specified as local operation activities and can be

168

10.2. Modeling Auctions in SESAM

mapped to a concrete implementation, e.g. a method in a Java bean. Any interaction
with the user is specified as communication activities. In general, an information source
can itself be an integrated information source. That is, it may use operations of other
information sources. In such a case the owner of the information may or may not want
to disclose this. In the first case, he specifies the operation as process activity and in
the second case as a local activity.

For our sample scenario, the querying of the DBLP database can be specified as a
sequence of a message, a local operation and another message. The querying of the
ACM Digital Library consists of a sequence of a message and a choice. The message is
for asking the user about his choice. The choice consists of two sequences, which are
similar to the sequence for DBLP.

Integration of Sources by Composing Processes

We assume the situation that there are many information sources that have been spec-
ified as described in Section 10.1.2 and their specifications (ontologies and process de-
scriptions) are publicly available. Process descriptions serve as semantical descriptions
(at least execution semantics) of the corresponding operations. In order to have an
integrated system spanning over some information sources, an actor identifies for each
use case how its functionality can be implemented by using the operations provided by
other information sources or locally available [AHS03, AHS05, SPAS03]. The operations
of other information sources can be embedded as process activities or local activities
in the description of the use case. Since the basic activities of a process have concrete
groundings, such a process specification is directly executable. Mappings between dif-
ferent ontologies can be integrated as local operations to support interoperability at the
data level.

For our sample scenario, the process for querying the integrated system consists of a
sequence of a message and a choice. As in ACM, the message is for asking the user about
his choice. The choice contains for each choice value two sequences (one for querying
DBLP and the other for querying ACM) that are executed in parallel.

In this section, we have shown how the declarative formal specification of heteregenous
information sources help to integrate the information sources in a flexible way. A user can
easily add or remove information sources as per demand dynamically and the integrated
“virtual” information source can be queried efficiently.

10.2. Modeling Auctions in SESAM

SESAM1 stands for “Self-Organisation and Spontaneity in Liberalized and Harmonized
Markets”. It is a research project funded by the German Ministry for Education and

1http://www.sesam.uni-karlsruhe.de

169

http://www.sesam.uni-karlsruhe.de

10. Applications

Reseach (bmb+f) under the reseach program “Internetökonomie”.

10.2.1. Introduction

In order to achieve a flexible implementation of market mechanisms in the SESAM
prototype, it is necessary to describe the course and regulations as well as the necessary
calculations of an auction in a declarative way. Such a description should be composable
in the sense that it should consist of of reusable components, that can be replaced and
recombined without easily to form new auctions. On the other side, such declarative
descriptions enable the use of generic execution engines for running an auction. Minimal
Market Model developed in one of the earlier work packages play an important role by
providing basic data structures.

On one side, in dynamic environments such as virtual power plants, it should be pos-
sible to customize market mechanisms during run time of the system. In the current
implementation of the system though the allocation service can be replaced completely;
it is neither possible to customize an existing allocation service nor it is possible to un-
dertake any dynamic customizations during the current market events. On the other
side, decomposing market mechanisms in functional units build a basis for the decen-
tralization of mechanism in the following work packages.

To cover both the requirements - the flexibility of market mechanisms as well as
their decentralization - we chose to model the market mechanisms declaratively as
processes that use reusable components. The approach uses the minimal market on-
tology developed in the work package 2.1 “Minimal Market Model” of the project
SESAM [RA03, RNW04] and the modeling formalism presented in Chapter 5 for mod-
eling dynamics of a market mechanism.

In the following, we first present a reference model for market mechanisms that is
based on the earlier works in the field of auctions [RE05]. Then we present how the
processes of market mechanisms can be modeled.

10.2.2. Reference Model for Market Mechanisms

Figure 10.2 depicts the architecture of the auction reference model as introduced by [RE05].
On the bottom of the Figure 10.2 is the data basis that contains the market instance
data. The parallelogram in the middle of the picture represents an excerpt of an auction
mechanism that always consists of stages or phases. There is only one stage active at
a time and the sequence of stages is controlled by the auction flow. For example, in
a classical english auction, stages are executed sequentially The first phase accepts the
intention of the seller about his offer. The second phase accepts the offers of the bidders.
The third phase calculates the result of an auction. Each stage contains componenents
of four types, view, validation, agreement generator and transition. At its top the Fig-
ure 10.2 shows participants. Naturally, they do not belong to the auction mechanism

170

10.2. Modeling Auctions in SESAM

Auction

Mechanism

Auction

Data

Auction

Participants

agreement

generator

data basis

intentionintention

transition viewvalidation

auction flow

active stage

participant of type 1 (buyer) participants of type 2 (suppliers)

Figure 10.2.: Architecture of the Auction Reference Model

itself. They are primarily displayed for illustrating how views take effect. The middle
and the right participants are of the same type and therefore share the same view and
consequently can see the same market instance information in the active stage. The par-
ticipant of the left is of another type and therefore can only access another view which
implies different information visibility of him. The right participant submits an intention
that is checked positive and forwarded to the data basis by the validation component.

Data Structure

Figure 10.3 shows Minimal Market Model as UML class diagramm. As shown in Fig-
ure 10.3 an Intention is defined by relationships to a participant und two types of prod-
ucts, namely incoming product and outgoing product. Incoming products are those,
that the corresponding participant wishes to obtain, whereas he is willing to give the
outgoing product in return. An Intention can be defined as binding, which means that
the corresponding participant is commited to fulfill the terms in the offer. If an Intention
is not binding, it just represents an information in the market, which is by no means a
commitment of the participant. An agreement describes the connection between two in-
tentions in a deal. If more than one intentions are connected by XOR, it means that only
one of the intentions can be accepted in an agreement. All other with XOR connected
intentions the become invalid [RNW04].

The data structure for Minimal Market Model was introduced in the work package 2.1
“Minimal Market Model” of the project SESAM [RA03, RNW04]. This data structure
serves as static model for modeling market mechanisms as processes. Since the Minimal

171

10. Applications

product

name: Name

product

name: Name

participant

name: Name

participant

name: Name

attribute

name: Name

forMatching: Boolean

value

1..*

*

subAttribute1 *

2 *

1

1..*

incomingProduct

1 1

1..* 1..* outgoingProduct

constitutes
intention

binding: Boolean

intention

binding: Boolean

agreementagreement

has

comprises

describes

Figure 10.3.: UML Class Diagramm for Data Structure of Minimal Market Model

Market Model (MMM) is generic and can be applied to every kind of market, its data
structures can be overtaken in auctions and negotation scenarios. For the scenarios of
combinatorial nature, in which various products and tarifs can be combined in an offer
or bid, the MMM was extended by a logical XOR-component.

View

The theory of the pure MMM is not primarily designed for creating views on the market
data. However, while dealing with market mechanisms, it is essential to have a possibility
to provide different participants different views on market data at different points of time.
For this purpose, we use views. There can be zero to many views in a phase. The access
on the views and thus on the information they deliver is controlled by access control
policies. Every view has principly access to all all the data in the data base that is
assigned to it. The view can limit this data or expand this data(e.g. by calculating an
average of some values), before it delivers the data to the participant.

An illustrating example of the views is the second phase of the english auction. The
seller has the right to see all bids together with the corresponding participants and prices
entered until some point of time. Whereas, the participants in the role of a bidder are
only allowed to see the current highest price.

Validation

In every phase, there is exactly one validation component. During the whole execution
of the corresponding process, the component checks whether incoming intentions are ad-
missible in the respective aucton or negotiation. In case they are, they stored unchanged

172

10.2. Modeling Auctions in SESAM

in the data base; otherwise they are rejected.

In the english auction for example, the validation component in the second phase
checks whether the corresponding intention of the incoming bid has a higher price than
the current highest price. Only if this is the case, a bid is accepted.

Transition

The purpose of transitions is to end the phase they are assigned to. A simple example
of an english auction with fixed end is the transition in phase two. Such a transition
can wait exactly one hour, for example with the help of a timer, and then terminate the
bidding phase.

Agreement Generator

The generator for agreements is responsible for determining the results, that is, who
exchanges which products to which conditions. A generator can create multiple agree-
ments. A generator is executed at the beginning of a phase, which means it is triggered
from the transition of the previous phase. In order to create agreements, a generator
can access all intentions the data base as well as information about the dynamic of the
market mechanism and the previous agreements.

In the third pahse of an english auction, an agreement generator takes the intention
of the seller from phase one and the intention with highest offered price from phase two.
It connects both the intentions in form of an agreement and reconciles the values, e.g.
the final price in both the intentions.

10.2.3. Formal Description of Reference Model for Market Mechanisms

In this section, we show how we describe the reference model for market mechanisms
with our formalism.

Data Structures

We model the necessary data structures with description logics concepts. The classes and
the relationships among them correspond to those depicted in the UML class diagramm
in Figure 10.3.

Intention ⊑ ∃incomingProduct.Product ⊓ ∃outgoingProduct.Product

Product ⊑ ∃name

Participant ⊑ ∃name ⊓ offers.Intention

Attribute ⊑ ∃name ⊓ ∃forMatching ⊓ ∃value ⊓ ∃describes.Product

Agreement ⊑ ∃offer.Intention ⊓ ∃acceptance.Intention

173

10. Applications

Notable is the concept Agreement that constitutes of two intentions. One intention
(connected via the property offer) represents the offering intention, that is one specified
by the participant who is willing to sell some product, the other intention (connected
via the property acceptance represents the intention specified by the buyer.

Modeling the Phases of an Auction

We model an auction as a process. An auction consists of multiple phases that are as
processes as well. In the following, we show how the components of a phase can be
modeled.

Views Since in general, a participant is allowed to access different informations at
different points of time, it is not sufficient to bind the access rights to a participant
statically. Rather the access control policies must be context dependent that is dependent
on the state of the process. Therefore, we model views as processes with access control
policies. A view without any access control policy means that every participant has
access to the information provided by the view. A view is a process that answers the pre
defined paramerterized query. The process expects as input the values for the parameters
from the user. In case the user has the required credentials, the process sets the values
in the corresponding parameters to obtain a syntactially correct query. It then poses
the query to the knowledge base. The answer delivered by the knowledge base is then
forwarded to the user.

Validation Each phase of an auction can receive intentions. However, the incoming
intentions must fulfill certain conditions in order to be accepted in a phase. The condi-
tions are dependent on the phase, that is, for different phases, the incoming intentions
must fulfill different conditions.

We model such conditions as description logic predicates. For example, the condition
that an incoming intention I1 should be equal to an existing intention I2, can be mod-
eled with equals(I1, I2). In another phase, the condition that the price of an incoming
intention I1 should be higher than the current highest price can be modeled as

Pmax(price,maxPrice) ⊓ P>(newPrice,maxPrice).

Transitions Each phase has exactly one transition that represents the termination con-
dition of the phase. The transition condition is checked at the end of an interation of a
phase. In case, it is evaluated to true, the process representing the phase is terminated
thereby yielding control back to the process that triggered it. In case, the condition is
not met, a new iteraction of the phase is stated.

174

10.3. Further Potential Applications

Agreement Generator Agreement generator is also modeled as a process, that inserts
a new agreement in the knowledge base. Agreement genarator obtains as input two
intentions and inserts a new instance of the concept Agreement in the knowledge base.

user(i1, i2).new agr.setIntentions(agr, i1, i2).0

where setIntentions(a,i,j) is a local operation that adds axioms offer(a, i) and acceptance(a, j)
in the local knowledge base. That is, the invocation of the local operation setIntentions(agr, i1, i2)
will add axioms offer(agr, i1) and acceptance(agr, i2) in the knowledge base.

In this section, we have shown how auctions can be modeled with our formalisms
presented in Part II. Modeling auctions in such a declarative and formal way brings
many advantages. Firstly, it enables easy replacement of an auction by another without
writing program code. Secondly, a generic process execution engine will suffice to run
any sort of auction that can be modeled with the formalism and there is no need to
implement each kind of auction separately. Thirdly, the formal nature of the modeling
language allows to develop automatic reasoning procedures for reasoning about various
properties of auctions.

10.3. Further Potential Applications

10.3.1. Verification of Business Processes

The Web services description formalism developed in Part II is based on the idea that
every Web service has an underlying process that can be very simple like answering a
simple query or very complex involving multiple interactions with multiple actors having
different credentials and access rights. The formalism allows to model the functional-
ity of Web services as distributed processes that may run in multiple environments.
Hence, the formalism can be directly used to model business processes that run inside
an organization or even across organizations. Similar arguments hold for the formalism
and algorithms that we have presented in Part III. In particular, our goal specifica-
tion language can be used for specifying constraints on business processes and the goal
based matchmaking algorithm for verifying business processes. Furthermore, simulation
based matchmaking algorithm can be used to detect duplicate business processes or sub
processes which can be very useful for managing business processes effectively.

10.3.2. Reasoning about Market Mechanisms

In Section 10.2, we presented an approach for formalizing auctions by modeling them
with our process description formalism presented in Part II. With the availability of
an execution engine such models can be directly executed and easily replaced by other
auctions in a larger system. Another advantage of formalizing the auction or in general

175

10. Applications

market mechanisms is that one can reason about them automatically by employing our
algorithms from Part III. For example, before participating in an auction, one could
automatically detect whether an auction accepts only higher bids.

10.3.3. Model Driven Architecture in Software Development

We have presented in Section 9.1 an approach for generating Java API from a domain
ontology in such a way that the API can be used in a typical programming style while the
data is managed by the underlying ontology management system, in our case KAON2.
Such a technique not only enables faster development since the conceptual model is the
executable model are same but also lifts the reasoning capabilities of the underlying
description logic reasoner to the application level. Similarly, our formalism for modeling
processes (even without the credentials part) can be used to programm business logic by
modeling instead of programming. In Section 9.1, we also presented a description logic
ontology for modeling the dynamic behavior of a process, which allows to manage even
the instances of a process with an ontology management system.

10.4. Conclusion

In this chapter, we have presented how some of the formalisms and techniques developed
in this work and presented in the previous chapters have been used in concrete setting
given by the research projects SemIPort and SESAM we have been involved in. Further
we have discussed some potential applications in which our formalisms and techniques
can be directly used.

176

11. Conclusion and Outlook

In this chapter, we will summarize our main contributions and align them to our own
publications, in which the results have been published. Furthermore, we will discuss
some open problems that are directly related to our work as well as ideas that can be of
further research interest.

11.1. Contribution

In this work, we addressed the problem of automatic matchmaking of Web services.
Part I of this work was meant for motivating the problem of automatic matchmaking of
Web services and identifying requirements for such matchmaking. We began in Chap-
ter 1 with the introduction of Web services, standards for describing and executing Web
services, namely WSDL and SOAP as well as industrial standard of Web service dis-
covery, namely UDDI. We motivated the problem of automatic reasoning about Web
services, especially matchmaking of Web services by introducing the vision of Web ser-
vice markets. We shared the idea of many other researchers that in order to achieve
spontaneous and transparent Web services markets, current UDDI based discovery is
not sufficient, since it requires a lot of manual effort.

Existing semantic Web service matchmaking approaches propose to use ontologies for
achieving interoperability among the terminologies used in schemas of Web services as
well as between request and offer descriptions. As a result, Web services can be found
even if requests and offers are described using different terminologies provided there
are semantical relationships such as subsumption among the terminologies. We argue
in Chapter 1, that such approaches represent the first step in the right direction and
there is need for more expressivity in order to achieve automated matchmaking. The
main reason for this is that existing semantic Web service matchmaking approaches
enable only limited automation, since they consider Web services as black boxes and
match only their interfaces. Though interface matching is important to ensure that
a Web service can be incorporated in a larger system, it is not sufficient Web service
discovery. The main reason for this is that a user looking for Web services has some
task that he wishes to accomplish by using a Web service. So, his primary interest is
the functionality of the Web service, that is what a Web service actually does and not
whether he can invoke a Web service in principle. Furthermore, we identify the need
for two types of matchmaking approaches, namely goal based and simulation based.
Existing matchmaking approaches fall into the category of goal based and to the best of

177

11. Conclusion and Outlook

our knowledge ours is the only work that has addressed the problem of simulation based
matchmaking.

In Chapter 2, we presented requirements for expressive matchmaking of Web ser-
vices. Since matchmaking algorithms work on the Web service descriptions, expressive
matchmaking directly imposes requirements for an expressive Web service description
formalism. In this work, we considered three aspects of Web services, namely, involved
resources, credentials of involved actors and the dynamic behavior of the Web service
process.

In Part II, we presented a formalism for specifying resources, dynamics and security
aspects of invocable agents in a unified and interoperable way. We analyzed and com-
pared available techniques for formalizing the three aspects and identified description
logics, in particular SHOIN (D) with DL-Safe rule extensions for resources, SPKI/SDSI
certificates for credentials and π-calculus as best suited for our purpose. In Chapter 3,
we have shown how the resources of the actors involved in the execution of a Web ser-
vice can be specified with expressive description logics, like SHOIN (D) [Aga04, AH04,
AS06, AS07].

In Chapter 4, we have shown how the non-functional properties of the actors can be
modeled in a way such that parties can build their trust in them as well as automatically
reason about them. By modeling SPKI/SDSI certificates with description logics, we have
given them a formal semantics. Furthermore, we have shown how certification policies,
that are currently described in natural language, can be formalized with description
logics axioms. Thus, reducing the task of verification of the eligibility of a user to
answering a description logic query [ASW04, AS04, AS05].

In Chapter 5, we have shown how the dynamic behavior of Web services can be mod-
eled. Since many Web service processes do not necessarily run entirely inside the Web,
the problem of describing the functionality of Web service then became equivalent to de-
scribing any type of invocable agents and viewing Web services as special type of agents
that that invocable via Web protocols. We showed how the notion of communication
channels known from π-calculus and other process algebras can be augmented with pro-
tocol types to support mixed environments [Aga04]. Having a formalism for each of the
three aspects that we considered in this work, we presented the overall formalism that
combines the aspects of the Web services by connecting π-calculus names with descrip-
tions logic ontologies, introducing local operations for modeling changes (updates) in
the set of resources of the involved actors [AS06, AS07] and embedding credential based
access control as conditions in the Web service process [ASW04, AS04, AS06, AS07].

The unified formalism has many useful properties. It can be used for describing ex-
ecutable processes as well compositions of Web services. So, in contrast to existing
approaches, we do not require any additional formalism for describing Web service com-
positions. This is useful since while performing automatic composition of Web services,
one anyway needs a way for “writing down” composed models. Furthermore, the for-
malism can be used to describe workflow systems in a formal way [Aga04, AS06, AS07].

178

11.1. Contribution

Note, that describing workflow systems was not our primary focus in this work. How-
ever, the formalism we needed to develop for describing Web services is general enough
and has formal semantics in contrast to most of the workflow languages like BPEL4WS.

Having a formalism for describing Web services in a very expressive way, we turned
our attention to matchmaking of Web services in Part III. We considered two types
of matchmaking approaches, namely goal based and simulation based. Goal based ap-
proach deals with specifying constraints for desired Web services, whereas simulation
bases approach directly compares two Web services. So, the simulation based approach
works directly with Web service descriptions, whereas the goal based approach needs a
formalism for specifying desired constraints on the functionality of Web services. We
developed such an expressive goal specification formalism in Chapter 6. We have bulit
our goal specification formalims on the well known modal temporal logic µ-calculus,
which is the most expressive decidable temporal logic. Our goal specification formalism
emerges by using description logic queries in place of µ-calculus atomic propositions and
augmenting µ-calculus atomic actions by structures. This enables support for different
types of communication protocols, allows to differentiate between input and output ac-
tions and enables reasoning about static objects (resources) that are involved during the
execution of a Web service [Aga04, AS06, AS07].

Having the formalisms for describing Web services and goals respectively at our dis-
posal, we then developed algorithms for goal based matchmaking in Chapter 7 and for
simulation based matchmaking in Chapter 8. The algorithm for goal based matchmak-
ing builds on the technique known as local model checking that does not require explicit
calculation of all the states of a system and hence avoids the state explosion problem
to some extent. The algorithm is sound, complete and decidable. The algorithm for
simulation based matchmaking gains from the theory of equivalence of processes, a thor-
oughly studied topic in the field of process algebras. However, since dynamic behavior is
only one of the three aspects that we considered in this work, we needed to define notion
of (bi)simulation of resources and credentials of agents [AS06]. We then presented the
algorithm for simulation based matchmaking, that unifies the simulation relationships
of behavior, resources and credentials. The algorithm checks for two given Web service
descriptions whether the one Web service can be replaced by another without changing
the overall behavior of the systems they are embedded in. The algorithm builds on the
algorithms known from congruency theory of π-calculus augmented with the algorithms
developed by us for checking simulation of resources and credentials [AS07].

In Part IV, the final part of the work, we presented the prototypical implementation
of the formalism and algorithms developed in this work as well their applications in
the context of research projects. In Chapter 9, we have presented the architecture of
our open source prototypical implementation1 and discussed its various components in
detail. We have evaluated the performance of our algorithms on a fairly large set of Web

1The source code of the prototype is available at http://kasws.sourceforge.net/

179

http://kasws.sourceforge.net/

11. Conclusion and Outlook

service descriptions. For managing the set of Web service descriptions efficiently, we
have first developed a technique to automatically generate Java API from an OWL-DL
ontology [AV05]. Then, we presented an ontology for modeling agents, in particular Web
services.

In Chapter 10, we presented applications in which the techniques developed in this
work have been used among others also in the scope of the BMBF projects SeMIPort[AH04]
and SESAM[EA04, AR05].

11.2. Open Problems Concerning Our Work

11.2.1. Annotating Web Services with Logic B

In Chapter 7 we have developed a model-checking algorithm that checks whether a Web
service description fulfills a formula φ ∈ B. The model checking algorithm checks whether
the states of the transition system described by a Web service fulfill sub formulas of φ. It
is worth considering whether we can achieve a more efficient model checking algorithm
if the Web services are annotated explicitly with the sub formulas they satisfy.

Annotating a Web service w with a formula φ is actually nothing more than saying
w |= φ explicitly. The semantics of the formulas of logic B is defined on the set of states
of a process. So, we need to clarify the semantics of such annotations. A Web service
process is a labeled transition system with a unique start state. Denoting the start state
of a Web service w with s(w), we can define the semantics of an annotation w |= φ as
s(w) ∈ JφK.

Another advantage of explicit annotations is that it makes possible to describe Web
services semantically by simply categorizing them. Or in other words, our logic B can
be used to describe the semantics of category based approaches like the MIT process
handbook 2. To achieve this, it is sufficient to give logic B formulas names. For example,
one can define a book selling service as a process that eventually delivers a book as follows

BookSellingService := true until [c(Book)]true.

Now, if a Web service w is a book selling service, one would simply annotate the Web
service w with BookSellingService instead of with the formula on the right side in the
definition of BookSellingService.

However, note that annotating Web services with this technique that requires manual
effort. An annotator has to find the categories (ideally all the categories) that his Web
service may fit into and annotate his Web service with the categories. Finding appro-
priate categories is not only time consuming task but also requires human intelligence,
since the annotator has to understand the semantics of a category by looking at its
definition. In the above example, an annotator needs to understand what the category

2http://ccs.mit.edu/ph/

180

11.2. Open Problems Concerning Our Work

BookSellingService actually means before he can decide whether he can annotate his Web
service with this category. On the other hand, while describing a Web service with the
formalism presented in Chapter 5 a Web service provider only needs to describe what his
Web service does, which is obviously known to him. Since the formalism for modeling
Web services is a process oriented formalism and Web service are often implemented
in procedural programming languages like Java, we hope that an initial description of
a Web service can be automatically generated from the implementation code. Such an
automatically generated pre-description then only needs to be fine tuned by the annota-
tor. So, it is an interesting open problem to find how much efficiency we can gain from
explicit annotations and whether the manual effort needed for annotations is worth it
or not.

11.2.2. Semi-Automatic Support for Describing Web Services and
Constraints

In this work, we have developed expressive formalisms for describing Web services and
specifying constraints on Web services in Chapter 5 and Chapter 6 respectively. The
prototypical implementation presented in Chapter 9 provides a user graphical interfaces
for describing Web services as well as specifying constraints.

The WSDL2KASWS conversion tool can automatically generate first draft of the
semantic description of Web services from their WSDL description. However, WSDL
allow to model only minimal information about the behavior of a Web service and rest
of the information about the dynamics is described inside the documentation tag in
natural language. In this work, we did not deal with extracting formal descriptions from
the information available in natural language. Another idea could be to go one step
deeper than WSDL and extract Web service descriptions from the impmentation of the
Web service.

Similarly, we did not deal with deriving the constraints on Web services a user may
have (semi)-automatically. Since Web services are primarily meant for being incorpo-
rated in larger business processes, it might be possible to derive the goals from the
business context.

11.2.3. Efficient Matchmaking

The matchmaking algorithms presented in Chapter 7 and Chapter 8 go through all Web
service descriptions linear. That is, for n Web service descriptions in the repository,
they check each of them one by one. In theory model checking algorithms work on one
goal and one description and simulation algorithms on two descriptions. However, in
the concrete practical problem of matchmaking, it might not be necessary. In typical
discovery use cases, a requester is interested in all the matches. So, one might use efficient
data structures for managing Web service descriptions and matchmaking algorithms

181

11. Conclusion and Outlook

that work on the whole repository in one shot rather than processing each Web service
description one after another and independently of each other.

11.3. Further Research Ideas

11.3.1. Automatic Composition

In this work, we addressed the problem of matchmaking of Web services. We considered
the situation that given a collection of Web service descriptions, how can the Web services
from the collection can be detected that fulfill certain conditions or that offer the same
functionality as a given Web service. In some cases, there may exist combinations of
Web services that can fulfill the desired constraints or offer same functionality as a given
Web service. The problem of finding such combinations is referred to as automatic
composition of Web services and is a topic of big interest in the community. There
has been already some work done in this field [MSZ01, MS02, SPW+04]. However,
the results are still not satisfactory. In our opinion, one of the main problems with
most of existing automatic composition techniques is that they incorporate AI planning
techniques. AI planning techniques are typically backward chaining algorithms that
given a desired output type or conditions in the real world (goal), a set of atomic actions
(Web services) and client’s knowledge base, compose a sequence of actions in order to
reach the aimed situation. AI planning techniques are useful for example in controlling
the movement of robots that have the task of moving from one position to other while
having a fixed set of actions as its disposal. However, the main problem of Web service
composition is different in that one is interested in finding a composition of Web services
that has some desired behavior. Such a composition should be usable by any one and
not only by the client who performed the composition. Note that AI planning based
algorithms construct a client specific sequence of actions and thus the generated plans
can be used only once. An approach that goes in the right direction in our opinion
is presented in [BCG+05]. However, there are still some open issues that need further
consideration. The approach presented in [BCG+05] is not goal driven but simulation
driven. That is, given a Web service, the approach tries to build a mediator, which
uses messages to interact with pre-existing Web services and the client such that overall
behavior of the mediated system faithfully simulates the behavior of the goal service. The
issue that remains open is the goal based automatic composition. We believe that our
model checking algorithm can be generalized to construct mediators or synchronization
skeletons as they are often called in the theory, to glue together Web services and thus
obtaining Web service compositions. The goal based matchmaking approach that we
have presented in this work can then be seen as a special case in which the mediator is
empty, that is there is no need for glue. The approach presented in [BCG+05] is based on
databases schemas and does not support complex type and mappings between schemas.
An alternate approach could be to use ontologies in place of database schemas.

182

11.3. Further Research Ideas

11.3.2. Preference Based Ranking

The matchmaking approaches presented in this work detect the set of Web service that
satisfy a given goal or offer the same functionality as another Web service. The goals
specification technique presented in this work does not allow specification of preferences
on the desired properties. As a result, the matchmaking techniques presented in this work
deliver a set and not a list ordered by the rank of Web services. Ranking of Web services
can be important in practical settings, in which a user does not have hard constraints on
properties but soft constraints described as preferences. For example, a user may wish
to specify that he prefers if the credit card is charged after the delivery to if it is charged
before the delivery. Having such preferences the matches can be automatically ranked
and the top ranked match can be automatically incorporated in the business process
of the user (cf. “I’m Feeling Lucky” button in Google). There is already some work
done in this direction. There are approaches based on Fuzzy Logic, for example [AL05a,
AL05b] and on utility theory [LAO+06]. However, it is still not quite clear how the
specification of user preferences can be unified with our goal specification formalism.
Another interesting work that goes in this direction is [BFM06], in which the authors
address the problem of specifying and generating preferred plans using rich, qualitative
user preferences with the help of a logic for specifying non-Markovian preferences over
the evolution of states and actions associated with a plan. The approach supports
qualitative rather than ordinal temporal preferences.

In this work we have presented a holistic approach for automatic reasoning about
various aspects of Web services. Not only the holistic nature of our work but also
the expressiveness of the developed formalisms represent a significant improvement to
existing semantic Web service approaches. Considering the vision of semantic Web
service markets, although there are still a few open problems that need to be solved, our
formalisms build a solid basis and the tools developed in the scope of this work can be
used to realize the first architecture of semantic Web service markets.

183

11. Conclusion and Outlook

184

Bibliography

[ABFG04] Daniel Austin, Abbie Barbir, Christopher Ferris, and Sharad Garg. Web
services architecture requirements. Technical report, W3C, February 2004.

[ABH+02] Anupriya Ankolekar, Mark H. Burstein, Jerry R. Hobbs, Ora Lassila, David
Martin, Drew V. McDermott, Sheila A. McIlraith, Srini Narayanan, Mas-
simo Paolucci, Terry R. Payne, and Katia Sycara. DAML-S: Web Service
Description for the Semantic Web. In Horrocks and Hendler [HH02], pages
348–363.

[ACD+03] Tony Andrew, Francisco Curbera, Hitesh Dholakia, Yaron Goland, Jo-
hannes Klein, Frank Leymann, Kevin Liu, Dieter Roller, Doug Smith, Satish
Thatte, Ivana Trickovic, and Sanjiva Weerawarana. Business process execu-
tion language for web services. Technical report, BEA Systems, IBM Corp.,
Microsoft Corp., SAP AG, Siebel Systems, 2003.

[AFM+05] Rama Akkiraju, Joel Farrell, John Miller, Meenakshi Nagarajan, Marc-
Thomas Schmidt, Amit Sheth, and Kunal Verma. Web Service Semantics-
WSDL-S, A Joint UGA-IBM Technical Note, Version 1.0,. Technical report,
IBM and LSDIS, April 2005.

[Aga04] Sudhir Agarwal. Specification of Invocable Semantic Web Resources. In
Zhang [Zha04], pages 124–131.

[AH04] Sudhir Agarwal and Peter Haase. Process-Based Integration of Heteroge-
neous Information Sources. In informatik04-Workshop Semantische Tech-
nologien für Informationsportale, volume 51 of LNI, pages 164–169, Ulm,
Germany, September 2004. Springer.

[AHS02] Anupriya Ankolekar, Frank Huch, and Katia Sycara. Concurrent Execution
Semantics for DAML-S with Subtypes. In Horrocks and Hendler [HH02],
pages 14–21.

[AHS03] Sudhir Agarwal, Siegfried Handschuh, and Steffen Staab. Surfing the Service
Web. In Fensel et al. [FSM03], pages 211–226.

[AHS05] Sudhir Agarwal, Siegfried Handschuh, and Steffen Staab. Annotation, Com-
position and Invocation of Semantic Web Services. Journal of Web Seman-
tics, 2(1):1–24, 2005.

185

Bibliography

[AL05a] Sudhir Agarwal and Steffen Lamparter. sMart - A Semantic Matchmaking
Portal for Electronic Markets. In Guenter Mueller and Kwei-Jay Lin, edi-
tors, Proceedings of the 7th International IEEE Conference on E-Commerce
Technology 2005, pages 405–408, Munich, Germany, July 2005. IEEE Com-
puter Society.

[AL05b] Sudhir Agarwal and Steffen Lamparter. User Preference based Automated
Selection of Web Service Compositions. In Kunal Verma; Amit Sheth;
Michal Zaremba; Christoph Bussler, editor, ICSOC Workshop on Dynamic
Web Processes, pages 1–12, Amsterdam, Netherlands, DEC 2005. IBM.

[APS05] Anupriya Ankolekar, Massimo Paolucci, and Katia P. Sycara. Towards a
formal verification of owl-s process models. In Yolanda Gil, Enrico Motta,
V. Richard Benjamins, and Mark A. Musen, editors, International Semantic
Web Conference, volume 3729 of Lecture Notes in Computer Science, pages
37–51. Springer, 2005.

[AR05] Sudhir Agarwal and Daniel Rolli. SESAM Project Deliverable AP-2.5:
Prozessmodellierung für Auktionen und Verhandlungen (Process Modeling
for Auctions and Negotiations). Technical report, University of Karlsruhe
(TH), December 2005.

[AS04] Sudhir Agarwal and Barbara Sprick. Access Control for Semantic Web
Services. In Zhang [Zha04], pages 770–773.

[AS05] Sudhir Agarwal and Barbara Sprick. Specification of Access Control and
Certification Policies for Semantic Web Services. In Kurt Bauknecht, Bir-
git Prll, and Hannes Werthner, editors, 6th International Conference on
Electronic Commerce and Web Technologies, volume 3590 of LNCS, pages
348–357, Copenhagen, Denmark, August 2005. Springer.

[AS06] Sudhir Agarwal and Rudi Studer. Automatic Matchmaking of Web Ser-
vices. In Liang-Jie Zhang, editor, IEEE 4th International Conference on
Web Services, pages 45–54, Chicago, USA, September 2006. IEEE Com-
puter Society.

[AS07] Sudhir Agarwal and Rudi Studer. Semantic Matchmaking of Web Ser-
vice Functionalities. International Journal of Web Services Research
(JWSR)[AS06], 2007. Invited submission for special issue on selected papers
of ICWS’06. Currently in fast review track.

[ASW04] Sudhir Agarwal, Barbara Sprick, and Sandra Wortmann. Credential Based
Access Control for Semantic Web Services. In Payne et al. [PDL+04].

186

Bibliography

[AV05] Sudhir Agarwal and Max Voelkel. Towards more efficient software engi-
neering with formal mda. In Evan Wallace, Jeff Z. Pan, Phil Tetlow, and
Elisa F. Kendall, editors, Proceedings of Workshop on Semantic Web En-
abled Software Engineering (SWESE), Galway, Ireland, November 2005.

[Bai06] Tian Bai. Automatische Extraktion von Semantischen Beschreibungen von
Web Services (Automatic Extraction of Semantic Description of Web Ser-
vices). Student Research Project supervised by Sudhir Agarwal and Rudi
Studer, October 2006.

[Bar85] Hendrik Pieter Barendregt. The Lambda Calculus - Its Syntax and Seman-
tics. Elsevier, 1985.

[BCG+05] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Richard Hull,
and Massimo Mecella. Automatic Composition Of Transition-Based Seman-
tic Web Services With Messaging. In Klemens Bhm, Christian S. Jensen,
Laura M. Haas, Martin L. Kersten, and Beng Chin Ooi Per-ke Larson, ed-
itors, VLDB ’05: Proceedings of the 31st international conference on Very
large data bases, pages 613–624, Trondheim, Norway, August-September
2005. ACM.

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory
Implemenation and Applications. Cambridge University Press, 2003.

[BFIK99] Matt Blaze, Joel Feigenbaum, John Ioannidis, and Angelos D. Keromytis.
The Role Of Trust Management In Distributed Systems Security. In Secure
Internet Programming: Issues in Distributed and Mobile Object Systems,
volume 1603 of Lecture Notes in Computer Science, pages 183–210. Springer
Verlag, Berlin, July 1999.

[BFL96] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Man-
agement. In Proc. of 1996 IEEE Symposium of Security and Privacy, pages
164–173, Oakland, CA, May 1996.

[BFM06] Meghyn Bienvenu, Christian Fritz, and Sheila A. McIlraith. Planning with
Qualitative Temporal Preferences. In Patrick Doherty, John Mylopou-
los, and Christopher A. Welty, editors, Proceedings of the Tenth Interna-
tional Conference on Principles of Knowledge Representation and Reason-
ing, pages 134–144, Lake District of the United Kingdom, June 2006. AAAI
Press.

[BH91] Franz Baader and Philipp Hanschke. A Schema for Integrating Concrete Do-
mains into Concept Languages. In Proceedings of the Twelfth International

187

Bibliography

Joint Conference on Artificial Intelligence (IJCAI-91), pages 452–457, Syd-
ney, 1991.

[BHS04] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics. In
Staab and Studer [SS04], pages 3–28.

[Bis03] Matt Bishop. Computer Security – Art and Science. Addison Wesley, 2003.

[BK02] Joachim Biskup and Yücel Karabulut. A Hybrid PKI Model With An Ap-
plication For Secure Mediation. In Ehud Gudes and Sujeet Shenoi, editors,
Research Directions in Data and Applications Security, IFIP Proceedings
of the 16th Annual IFIP WG 11.3 16th International Conference on Data
and Application Security, volume 256 of IFIP Conference Proceedings, pages
271–282. King’s College, Cambridge, UK, Kluwer, July 2002.

[Bra00] Stefan Brands. Rethinking Public Key Infrastructures and Digital Certifi-
cates. MIT Press, Cambridge-London, 2000.

[CE82] Edmund M. Clarke and E. Allen Emerson. Design And Synthesis Of Syn-
chronization Skeletons Using Branching-Time Temporal Logic. In Logic of
Programs, Workshop, pages 52–71, London, UK, 1982. Springer-Verlag.

[CEE+01] Dwaine E. Clarke, Jean-Emile Elien, Carl M. Ellison, Matt Fredette,
Alexander Morcos, and Ronald L. Rivest. Certificate Chain Discovery In
SPKI/SDSI. Journal of Computer Security, 9:285–322, 2001.

[CES86] Edmund M. Clarke, E. Allen Emerson, and A. Prasad Sistla. Automatic
Verification Of Finite State Concurrent System Using Temporal Logic. ACM
Transactions on Programming Languages and Systems, 8:244–263, 1986.

[CFL+97] Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnik, and Mar-
tin Strauss. REFEREE: Trust Management For Web Applications. World
Wide Web Journal, 2(3):706–734, 1997.

[Cha85] David Chaum. Security Without Identification: Transaction Systems To
Make Big Brother Obsolete. Communication of the ACM, 10(28):1030–
1044, 1985.

[CI01] Daniel T. Chang and Sridhar Iyengar. CWM Web Services Specification -
Joint Submisstion By IBM And Unisys. http://www.omg.org/docs/ad/01-
10-07.pdf, October 2001.

[Den82] Dorothy E. Denning. Cryptography and Data Security. Addison Wesley,
1982.

188

Bibliography

[DKF+03] Grit Denker, Lalana Kagal, Tim Finin, Massimo Paolucci, and Katia
Sycara. Security For DAML Web Services: Annotation and Matchmak-
ing. In Fensel et al. [FSM03], pages 335–350.

[EA04] Andreas Eberhart and Sudhir Agarwal. SmartAPI - Associating Ontologies
and APIs for Rapid Application Development. In Ontologien in der und für
die Softwaretechnik, March 2004.

[EC80] E. Allen Emerson and Edmund M. Clarke. Characterizing Correctness Prop-
erties Of Parallel Programs Using Fixpoints. In Proceedings of ICALP’80,
volume 85, pages 169–181, 1980.

[EF03] Andreas Eberhart and Stefan Fischer. Web Services. Grundlagen und Prak-
tische Umsetzung mit J2EE und .NET. Hanser, 2003.

[EFL+99a] Carl M. Ellison, Bill Frantz, Butler Lampson, Ronald L. Rivest,
Brian M. Thomas, and Tatu Ylonen. Simple public key certificate.
http://world.std.com/̃cme/html/spki.html, July 1999.

[EFL+99b] Carl M. Ellison, Bill Frantz, Butler Lampson, Ronald L. Rivest, Brian M.
Thomas, and Tatu Ylonen. SPKI certificate theory. Internet RFC 2693,
September 1999.

[EL86] E. Allen Emerson and Chin-Laung Lei. Efficient Model Checking in Frag-
ments of the Propositional mu-Calculus. In Proceedings 1st IEEE LICS,
1986.

[Eme81] E. Allen Emerson. Branching Time Temporal Logics and the Design of
Correct Concurrent Programs. PhD thesis, Division of Applied Sciences,
Harvard University, 1981.

[ESS05] Marc Ehrig, Steffen Staab, and York Sure. Bootstrapping Ontology Align-
ment Methods with APFEL. In Y. Gil, E. Motta, V. R. Benjamins, and
M. A. Musen, editors, Proceedings of the 4th International Semantic Web
Conference, ISWC 2005, Galway, Ireland, November 6-10, 2005., volume
3729 of LNCS, pages 186–200. Springer, November 2005. Nominated for
best paper award!

[FB97] Warwick Ford and Michael S. Baum. Secure Electronic Commerce: Building
the Infrastructure for Digital Signatures and Encryption. Prentice Hall,
1997.

[FB02] Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework
WSMF. Electronic Commerce Research and Applications, 1(2), 2002.

189

Bibliography

[FHBF+01] Warwick Ford, Phillip Hallam-Baker, Barbara Fox, Blair Dillaway, Brian
LaMacchia, Jeremy Epstein, and Joe Lapp. XML Key Management Speci-
fication (XKMS). Technical report, W3C, March 2001.

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional Dynamic Logic of
Regular Programs. Journal of Computer and Sytem Science, 18:194–211,
1979.

[FSM03] Dieter Fensel, Katia Sycara, and John Mylopoulos, editors. Proceedings
of the 2nd International Semantic Web Conference, volume 2870 of LNCS,
Sandial Island, Fl, USA, October 2003. Springer.

[GHVD03] Benjamin Grossof, Ian Horrocks, Raphael Volz, and Stephan Decker. De-
scription Logic Programs: Combining Logic Programs with Description
Logic. In Proceedings of WWW 2003, Budapest, Hungary, May 2003.

[GMP04] Stephan Grimm, Boris Motik, and Chris Preist. Variance in e-Business
Service Discovery. In Semantic Web Services: Preparing to Meet the World
of Business Applications, workshop at ISWC 2004, 2004.

[HBEV04] Peter Haase, John Broekstra, Andreas Eberhart, and Raphael Volz. A Com-
parison of RDF Query Languages. In Proceedings of the Third International
Semantic Web Conference, Hiroshima, Japan, 2004., NOV 2004.

[HCM+05] Armin Haller, Emilia Cimpian, Adrian Mocan, Eyal Oren, and Christoph
Bussler. WSMX - A Semantic Service-Oriented Architecture. In Proceedings
of the International Conference on Web Service (ICWS 2005), pages 321–
328, Orlando, Florida, 2005.

[HFPS99] Russ Housley, W. Ford, William T. Polk, and D. Solo. Internt X.509 Public
Key Infrastrucure Certificate and CRL Profile. RFC 2459 Edition, January
1999. http://www.ietf.org/rfc/rfc2459.txt.

[HH02] Ian Horrocks and James A. Hendler, editors. Proceedings of the First In-
ternational Semantic Web Conference: The Semantic Web (ISWC 2002),
volume 2342 of Lecture Notes in Computer Science (LNCS), Sardinia, Italy,
2002. Springer.

[HHK+05] Pascal Hitzler, Peter Haase, Markus Krötzsch, York Sure, and Rudi Studer.
DLP isn’t so bad after all. In Proceedings of the Workshop OWL - Experi-
ences and Directions, Galway, Ireland, November 2005, NOV 2005.

[HM80] Mathew Hennessy and Robin Milner. On Observing Non-Determinism and
Concurrency. In Proceedings of ICALP’80. LNCS, 1980.

190

Bibliography

[HM05] Peter Haase and Boris Motik. A Mapping System for the Integration of
OWL-DL Ontologies. In Axel Hahn, Sven Abels, and Liane Haak, editors,
IHIS 05: Proc.s of the 1st Int. Workshop on Interoperability of Heteroge-
neous Information Systems, pages 9–16. ACM Press, NOV 2005.

[HPS04a] Ian Horrocks and Peter F. Patel-Schneider. A Proposal for an OWL Rules
Language. In Proceedings of the Thirteenth International World Wide Web
Conference (WWW 2004), pages 723–731. ACM, 2004.

[HPS04b] Ian Horrocks and Peter F. Patel-Schneider. Reducing OWL Entailment to
Description Logic Satisfiability. Journal of Web Semantics, 1(4):345–357,
2004.

[HPSvH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From
SHIQ and RDF to OWL: The Making of a Web Ontology Language . Jour-
nal of Web Semantics, 1(1), 2003.

[JJ89] Claude Jard and Thierry Jron. On-line Model Checking for Finite Linear
Time Spefications. In International Workshop on Automatic Verification
Methods for Finite State Systems, number 407 in LNCS. Springer, 1989.

[Kel04] Stefan Kelm. The Pki Page – Extensive List Of Certification Authorities.
http://www.pki-page.org/, 2004.

[KFD+04] Lalana Kagal, Tim Finin, Grit Denker, Massimo Paolucci, Katia Sycara,
and Naveen Srinivasan. Authorization and Privacy for Semantic Web Ser-
vices. In Payne et al. [PDL+04].

[KFJ03] Lalana Kagal, Tim Finin, and Anupam Joshi. A Policy Language for A
Pervasive Computing Environment. In IEEE 4th International Workshop
on Policies for Distributed Systems and Networks. IEEE, June 2003.

[KFJ04] Lalana Kagal, Tim Finin, and Anupam Joshi. Declarative Policies for De-
scribing Web Service Capabilities and Constraints. In W3C Workshop on
Constraints and Capabilities for Web Services, Oracle Conference Center,
Redwood Shores, CA, USA, October 2004. W3C.

[KLP+04] Uwe Keller, Ruben Lara, Axel Pollers, Ioan Toma, Michel Kifer,
and Dieter Fensel. WSMO Web Service Discovery, November 2004.
http://www.wsmo.org/TR/d5/d5.1/v0.1.

[Koz83] D Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27:333–354, 1983.

191

Bibliography

[LAO+06] Steffen Lamparter, Anupriya Ankolekar, Daniel Oberle, Rudi Studer, and
Christof Weinhardt. A Policy Framework for Trading Configurable Goods
and Services in Open Electronic Markets. In Bruce Spencer, Mark S. Fox,
Weichang Du, Donglei Du, and Scott Buffett, editors, Proceedings of the
8th Int. Conference on Electronic Commerce (ICEC’06), pages 162 – 173,
Fredericton, New Brunswick, Canada, AUG 2006.

[Len02] Maurizio Lenzerini. Data Integration: A Theoretical Perspective. In Pro-
ceedings of the twenty-first ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 233–246. ACM Press, 2002.

[LH03] Lei Li and Ian Horrocks. A Software Framework For Matchmaking Based
On Semantic Web Technology. In Www ’03: Proceedings Of The Twelfth
International Conference On World Wide Web, pages 331–339. ACM Press,
2003.

[MCK03] KIRK MCKUSICK. A Conversation with Adam Bosworth. ACM Queue,
1(1), MArch 2003.

[Mil80] R. Milner. A Calculus for Communicating Processes, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[MM04] Frank Manola and Eric Miller. Resource Description Frame-
work (RDF) Model and Syntax Specification, February 2004.
http://www.w3.org/TR/rdf-primer/.

[MP69] Zohar Manna and Amir Pnueli. Formalization of Properties of Recursively
Defined Functions. In ACM STOC, pages 201–210, 1969.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of Mobile
Processes, Part I+II. Journal of Information and Computation, pages 1–87,
September 1992.

[MS02] Sheila A. McIlraith and Tran Cao Son. Adapting Golog for Composition of
Semantic Web Services. In 8th International Conference on Principles of
Knowledge Representation and Reasoning, Toulouse, France, April 2002.

[MSS04] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with
Rules. In Sheila A. McIlraith, Dimitris Plexousakis, and Frank van Harme-
len, editors, Proc. of the 3rd. Int. Semantic Web Conference (ISWC 2004),
volume 3298 of LNCS, Hiroshima, Japan, November 2004. Springer.

[MSZ01] S. McIlraith, T.C. Son, and H. Zeng. Semantic Web Services. IEEE Intelli-
gent Systems, Special Issue on the Semantic Web, 16(2):46–53, March/April
2001.

192

http://www.w3.org/TR/rdf-primer/

Bibliography

[NS06] Kioumars Namiri and Nenad Stojanovic. Towards Business Level Verifi-
cation of Cross-Orgranizational Business Processes. In Proceedings of the
Workshop on Semantics for Business Process Management, pages 101–112,
Budva, June 2006.

[Par69] David Park. Fixpoint Induction And Proofs Of Program Properties. Ma-
chine Intelligence, 5:59–78, 1969.

[PDL+04] Terry Payne, Keith Decker, Ora Lassila, Sheila McIlraith, and Katia Sycara,
editors. AAAI Spring Symposium - Semantic Web Services, Stanford, Cal-
ifornia, USA, March 2004.

[PKKJ04] Anand Patwardhan, Vladimir Korolev, Lalana Kagal, and Anupam Joshi.
Enforcing Policies in Pervasive Environments. In International Conference
on Mobile and Ubiquitous Systems: Networking and Services, Cambridge,
MA, August 2004. IEEE.

[PKPS02] Massimo Paolucci, Takahiro Kawamura, Terry R. Payne, and Katia Sycara.
Semantic Matching of Web Service Capabilities. In Horrocks and Hendler
[HH02].

[Pnu77] Amir Pnueli. A Temporal Logic of Programs. In 18th Annual IEEE-CS
Symposium on Foundations of Computer Science, pages 46–57, 1977.

[Pra76] Vaughan R. Pratt. Semantical Considerations of Floyd-Hoare logic. In
Proceedings of 16th IEEE FOCS, pages 109–121, 1976.

[Pra82] Vaughan R. Pratt. A Decidable Mu-Calculus. In Proceedings of 22nd IEEE
FOCS, pages 421–427, 1982.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and Verificiation of
Concurrent Programs in CESAR. In Proceedings of 5th International Sym-
posium on Programming, number 137 in LNCS, pages 195–220. Springer,
1982.

[RA03] Daniel Rolli and Sudhir Agarwal. SESAM Project Deliverable AP-2.1: Min-
imales Marktmodell (Minimal Market Model). Technical report, University
of Karlsruhe (TH), September 2003.

[RE05] Daniel Rolli and Andreas Eberhart. An Auction Reference Model for De-
scribing and Running Auctions. In Proceedings of the Wirtschaftsinformatik
Conference, Bamberg, Germany, 2005.

[Ric04] Mike Ricciuti. Will Jini-like wishes come true? http://news.com.com/2010-
1071-5170275.html, March 2004.

193

Bibliography

[RKL+05] Dumitru Roman, Uwe Keller, Holger Lausen, Jos de Bruijn, Ruben Lara,
Michael Stollberg, Axel Pollers, Cristina Feier, Christoph Bussler, and Di-
eter Fensel. Web Service Modeling Ontology. Applied Ontology, 1(1):77–106,
2005.

[RL96] Ronald L. Rivest and Butler Lampson. SDSI - A Simple Distributed Security
Infrastructure. http://theory.lcs.mit.edu/̃cis/sdsi.html, April 1996.

[RNW04] Daniel Rolli, Dirk Neumann, and Christoph Weinhardt. A Minimal Mar-
ket Model in Ephermal Markets. In TheFormEMC, pages 86–100, Toledo,
Spain, 2004.

[Sam02] Pierangela Samarati. Enriching Access Control To Support Credential-
Based Specifications. In Bernd Reusch Sigrid Schubert and Norbert Jesse,
editors, “Informatik bewegt” Proc. of the 32. Jahrestagung der Gesellschaft
für Informatik, volume P-19 of Lecture Notes in Informatics, pages 114–
119. German Informatics Society (GI), Dortmund, Germany, October 2002.
http://ls6-www.cs.uni-dortmund.de/issi/cred ws/index.html.de.

[SBH+05] York Sure, Stephan Bloehdorn, Peter Haase, Jens Hartmann, and Daniel
Oberle. The SWRC Ontology - Semantic Web for Research Communities. In
Carlos Bento, Amilcar Cardoso, and Gael Dias, editors, Proceedings of the
12th Portuguese Conference on Artificial Intelligence - Progress in Artificial
Intelligence (EPIA 2005), volume 3803 of LNCS, pages 218 – 231, Covilha,
Portugal, DEC 2005. Springer.

[SC01] Pierangela Samarati and Sabrina de Capitani di Vimercati. Access Con-
trol: Policies, Models, And Mechanisms. In Riccardo Focardi and Roberto
Gorrieri, editors, Foundations of Security Analysis and Design (FOSAD),
volume 2171 of Lecture Notes in Computer Science, pages 137–196. FOSAD
2000, Bertinoro, Italy, Springer Verlag, Berlin, October 2001.

[SPAS03] Katia Sycara, Massimo Paolucci, Anupriya Ankolekar, and Naveen Srini-
vasan. Automated Discovery, Interaction and Composition of Semantic Web
Services. Journal of Web Semantics, 1(1):27–46, December 2003.

[SPW+04] Evren Sirin, Bijan Parsia, Dan Wu, James Hendler, and Dana Nau. HTN
planning for web service composition using SHOP2. Journal of Web Se-
mantics, 1(4):377–396, 2004.

[SS04] Steffen Staab and Rudi Studer, editors. Handbook on Ontologies. Interna-
tional Handbooks on Information Systems. Springer, 2004.

[SSS91] Manfred Schmidt-Schauss and Gert Smolka. Attributive Concept Descrip-
tions With Complements. Artificial Intelligence, 48(1):1–26, 1991.

194

Bibliography

[SW91] Colin Stirling and David Walker. Local Model Checking in the Modal mu-
Calculus. Theoretical Compututer Science, 89(1):161–177, 1991.

[SW01] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, New York, NY, USA, 2001.

[SW03] Michael Stroebel and Christof Weinhardt. The Montreal Taxonomy for
Electronic Negotiations. Group Decision and Negotiation, 12(2):143–164,
2003.

[Tch04] Dimitri Tcherevik. Managing Web Services with CA Web Services Dis-
tributed Management. Technical report, Computer Associates, May 2004.

[Tur36] Alan M. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. In Proceedings of the London Mathematical Society,
volume 2, pages 230–265, 1936.

[UDD01] UDDI. UDDI Executive White Paper. Technical report, UDDI.org, Novem-
ber 2001.

[vdA01] Wil M. P. van der Aalst. Exterminating the Dynamic Change Bug: A
Concrete Approach to Support Workflow Change. Information Systems
Frontiers, 3(3):297–317, 2001.

[vdAvK02] W.M.P. van der Aalst and Hee van Kees. Workflow Management: Models,
Methods and Systems. The MIT Press, 2002.

[VOSS03] Raphael Volz, Daniel Oberle, Steffen Staab, and Rudi Studer.
Ontolift prototype. WonderWeb Deliverable D11, 2003.
http://wonderweb.semanticweb.org.

[VW83] Moshe Y. Vardi and P. Wolper. Yet Another Process Logic. In Logic of
Programs, volume 820, pages 501–512. LNCS, 1983.

[W3C02] W3C. Web service activity. http://www.w3.org/2002/ws/, 2002.

[W3C03] W3C. Web Service Description Language (WSDL) Version 1.2, March 2003.
http://www.w3.org/TR/wsdl.

[W3C05] Accepted Papers of the W3C Workshop on Rule Languages for
Interoperability, 27-28 April 2005, Washington, DC, USA, 2005.
http://www.w3.org/2004/12/rules-ws/accepted.

[WVV+01] Holger Wache, Thomas J. Voegele, Ubbo Visser, Heiner Stuckenschmidt,
Gerhard Schuster, Holger Neumann, and Sebastian Huebner. Ontology-
Based Integration of Information – A Survey of Existing Approaches. In

195

Bibliography

IJCAI-01 Workshop: Ontologies and Information Sharing, pages 108–117,
2001.

[Zha04] Liang-Jie Zhang, editor. Proceedings of the 2nd International Conference
on Web Services, San Diego, California, USA, July 2004. IEEE Computer
Society.

196

	Introduction
	Motivation
	Introduction to Web Services
	Web Service Description Language (WSDL)
	Simple Object Access Protocol (SOAP)
	Using Web Services

	B2B Integration and EAI with Web Services
	Web Service Markets
	UDDI, Current Standard for Web Service Discovery
	Limitations of UDDI

	Limitations of Existing Semantic Matchmaking Approaches
	Outline

	Requirements
	Requirements for Matchmaking
	Constraints on Resources
	Security and Trust Constraints
	Constraints on Behavior
	Combination of different Types of Constraints

	Requirements for Semantic Description of Web Services
	Requirements for Resource Descriptions
	Requirements for Credentials
	Requirements for Behavior Description

	Conclusion

	Formal Description of Web Services
	Modeling Resources
	Introduction to Description Logics
	Basic Description Logic ALC
	Description logics with Concrete Domains

	More Expressive Description Logic SHOIN(D)
	The Family of OWL Languages

	Query Languages
	Rule Languages for OWL
	Modeling Resources

	Modeling Credentials
	Role Based Access Control
	Authorization based Access Control with SPKI/SDSI
	Modeling Credentials
	Scenario
	Specification of Certification Policies
	Users

	Conclusion

	Modeling Behavior
	Introduction to -calculus
	Relation to Other Formalisms
	Syntax
	Semantics
	The Polyadic -calculus

	Modeling Behavior
	Message Types for Communication Operations
	Introducing Local Operations to Model Updates
	Integrating Access Control Policies as Conditions

	Related Work
	OWL-S
	WSMO
	WSDL-S
	BPEL4WS
	Access Control Related Work

	Conclusion

	Semantic Matchmaking of Web Services
	Goal Specification
	Modal Logics for Processes
	Early Logics
	Introduction to mu-calculi
	Syntax and Semantics of -calculus
	Examples of Some Common Patterns

	Specification of Hybrid Formulas with Logic B
	Related Work
	Conclusion

	Goal based Matchmaking
	Introduction to Model Checking
	Matchmaking Algorithm
	Complexity

	Related Work
	OWL-S Matchmaker
	WSMO Discovery
	Other Matchmaking Approaches

	Conclusion

	Simulation based Matchmaking
	Simulation of Resources
	Comparing Credentials of Agents
	Comparing Behavior of Agents
	Trace Equivalence: A First Attempt
	Strong Bisimilarity
	Weak Bisimilarity

	Algorithm
	Conclusion

	Implementation and Applications
	Implementation
	KASWS Web Service Management API
	Generating Domain APIs from Ontology
	Modeling the Knowledge Base with Description Logics

	KASWS Reasoning API
	Bootstrapping
	User Interface

	Applications
	Knowledge Integration in SemIPort
	Sample Scenario
	Integration of Heterogeneous Information Sources

	Modeling Auctions in SESAM
	Introduction
	Reference Model for Market Mechanisms
	Formal Description of Reference Model for Market Mechanisms

	Further Potential Applications
	Verification of Business Processes
	Reasoning about Market Mechanisms
	Model Driven Architecture in Software Development

	Conclusion

	Conclusion and Outlook
	Contribution
	Open Problems Concerning Our Work
	Annotating Web Services with Logic B
	Semi-Automatic Support for Describing Web Services and Constraints
	Efficient Matchmaking

	Further Research Ideas
	Automatic Composition
	Preference Based Ranking

