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Deutsche Zusammenfassung

Das Paradigma der mobilen Software-Agenten hat sich nach wie vor in der prak-
tischen Anwendung nicht in aller Konsequenz durchgesetzt. Dies liegt vor allem
an der Schwierigkeit, einzelne autonome Agenten vor böswilligen Gastrechn-
ern zu schützen. Man muß sich nicht nur mit einer möglichen Korruption von
Code und Daten des Agenten befassen, sondern auch damit, daß er nicht kor-
rekt ausgeführt, fehlgeleitet, ausspioniert oder gar gelöscht wird. Diese Arbeit
präsentiert ein Sicherheitsmodell basierend auf Agentenallianzen, welche eine
robuste und geheime Funktionsauswertung in einer nicht vertrauenswürdigen
Umgebung wie dem Internet ermöglichen.
Der Schutz von mobilen Agenten ist ein sehr reges und anspruchsvolles For-
schungsgebiet. Die meisten Publikationen bieten kryptographische Methoden
an, mit denen gezielte Angriffe verhindert bzw. massiv erschwert werden (bei-
spielsweise durch Verschlüssellung von Code und Daten). Wegen der Vielfältig-
keit der Gefahren hat dies zum einen zur Folge, daß die meisten Ansätze sich
lediglich mit einem Angriffstyp befassen können; zum anderen ist ein starker
kryptographischer Schutz in der Regel mit einer zu hohen Komplexität verbun-
den. Auch gibt es bisher kein praktisch einsetzbares Sicherheitsmodell, welches
ohne Verwendung einer vertrauenswürdigen Instanz beweisbare Sicherheit gegen
die Gesamtheit der genannten Bedrohungen liefert.
Die vorliegende Arbeit verfolgt einen völlig anderen Ansatz. Inspiriert durch
kryptographische Protokolle für sichere Mehrparteienberechnungen, werden Al-
lianzen von Agenten erzeugt, die verteilte und fehltertolerante Berechnungen
durchführen. Die Korrektheit dieser Berechnungen ist garantiert, solange ein
aktiver Angreifer nicht mehr als t Agenten gleichzeitig korrumpiert. Der Wert
t ist protokollabhängig und liegt für Allianzen, die aus n Agenten bestehen,
zwischen ⌈ 12n⌉ − 1 und ⌈ 13n⌉ − 1. Die Eingaben der einzelnen Agenten für
die gemeinsam zu berechnende Funktion werden mittels eines (t, n)-Verifiable
Secret-Sharing Schemas in Form sogenannter t-Shares auf alle Agenten verteilt.
Dies impliziert zum einen, daß nur bei Kooperation von mehr als t Agenten
Information über die verteilten Daten bekannt wird, und zum anderen, daß die
Integrität der Shares geprüft werden kann. Die eigentliche Funktionsberechnung
entspricht der Auswertung eines arithmetischen Schaltkreises, wobei Additionen
von jedem Agenten lokal und ohne Kommunikation berechnet werden können.
Für jedes Multiplikationsgatter hingegen muß die Allianz kommunizieren. Dies
bildet den beschränkenden Faktor des vorgestellten Modells für den Einsatz in
realen Netzwerken.
Da Protokolle für sichere Mehrparteienberechnungen n feste Parteien vorsehen,
muß für mobile Agenten das Problem der Migration gehandhabt werden. Bere-
its in einem statischen Szenario ist es unabdingbar, daß alle Mitglieder einer



Allianz auf unterschiedlichen Hosts ausgeführt werden. Andernfalls könnte eine
Allianz kompromittiert werden, obwohl weniger als t Server maliziös sind. Dieses
Sicherheitsproblem verschärft sich in einem dynamischen Szenario, in welchem
die Agenten von Host zu Host migrieren können und dabei ihren Berechnungszu-
stand mitführen. Ein Angreifer könnte durch Ausführung mehrerer Agenten
zu unterschiedlichen Zeitpunkten ausreichend viel Information erlangen, um
den Berechnungszustand aus den gesammelten t-Shares zu rekonsturieren. Fol-
glich ist es notwendig, außerhalb der anwendungsspezifischen Berechnungen (der
Auswertung des Schaltkreises) weitere verteilte Protokolle zur Verfügung zu
stellen, welche eine sichere Migration erlauben. In der vorliegenden Dissertation
wird eine Lösung aufgezeigt, die auf Resharing-Protokollen, Zertifikaten und
Mehrheitsentscheiden beruht.
Ein randomisierte Resharing erlaubt zum Zeitpunkt der Migration eine Neu-
verteilung des Berechnungszustandes einer Allianz, indem mithilfe der aktuellen
t-Shares neue t-Shares für die neuen Hosts erzeugt werden. Das Verfahren stellt
sicher, daß die alten Shares schließlich nutzlos werden. Mit dieser Technik kann
also der Berechnungszustand sicher von einer Menge von Hosts auf eine andere
übertragen werden.
Für statische Daten, wie beispielsweise den Schaltkreis, reicht eine digitale Sig-
natur des Allianzenerzeugers aus, um Hosts von der Integrität der Daten über-
zeugen zu können. Problematischer ist dynamisches Wissen, wie zum Beispiel
eine Liste der aktuellen Hosts der Allianz, welches nicht verteilt aufbewahrt
wird, aber auch nicht signiert werden kann. Das Modell für sichere Multiagen-
tenberechnungen sieht aus Effizienzgründen für diese Art von Daten Mehrheit-
sentscheide vor. Sowohl Hosts als auch die Allianzen bedienen sich dieses Mittels.
Neben dem theoretischen Rahmenwerk für Allianzen schlägt die Dissertation
eine konkrete Implementierung vor, welche eine quadratische Kommunikation-
skomplität erreicht. Dieses Ergebnis ist optimal für den Fall, daß kein Broadcast-
Kanal zur Verfügung steht. Dies ist in realen Netzen, wie dem Internet, meist
der Fall. Der Einsatz einer Broadcast-Simulation ist deswegen notwendig, welche
die Ursache für die quadratische Komplexität des Gesamtprotokolls ist.
Für den Implementierungsvorschlag werden verschiedene Anwendungen vorge-
stellt, deren Komplexität analysiert wird. So zeigt sich, daß das Modell zwar
derzeit für beliebige Anwendungen zu aufwendig, aber für eine sichere Imple-
mentierung verschiedener kryptographischer Primitive durchaus praktikabel ist.
So zum Beispiel für eine verteilte, fehlertolerante Signatur. Mit steigender Band-
breite wird sich die Praktikabilität des Modells in Zukunft erhöhen.
Dank der Natur der verteilten Berechnungen in dem vorgestellten Modell, kön-
nen korrumpierte Agenten entdeckt, eliminiert und ersetzt werden, ohne daß
Kommunikation mit einer vertrauenswürdigen Instanz notwendig wird. Werden
zu keinem Zeitpunkt mehr als t Agenten gleichzeitig korrumpiert, so beeinflussen
sämtliche der eingangs genannten Angriffe die Korrektheit und Geheimhaltung
der Berechnungen nicht. Somit liegt nun endlich ein theoretisches Rahmenwerk
vor, welches den Einsatz von mobilen Agenten für sensitive Anwendungen in
offenen und nicht vertrauenswürdigen Netzen gestattet.
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Introduction

Mobile Agents – A Question of Trust

Mobile Agents – What is missing? The title is from [RHR97] and it implies the
quintessence of the apparent inconsistency dominating the field of mobile agents.
There is a lively interest in the use of mobile agents all over the world. From
day to day, researchers at universities and large companies are developing new
platforms and agent models. Research conferences are interested in and often
enough devoted exclusively to mobile agent technology. Mobile agents have a
high potential, and although one is still missing a so-called killer application
they deserve this attention because of their potential usage for a almost infinite
number of different applications. Their prime advantages can be classified into
software distribution on-demand, asynchronous [Cor] and autonomous [Wei00]
execution of tasks, reduction of communication costs [SS97, CPV97, CK97] and
scalability due to dynamic placement of functions.
Why then do real-world systems not yet tap into the full potential of the mobile
agent paradigm? When searching for commercial application domains of agents,
one rapidly recognises that they mostly eke out a miserable existence. Besides,
one can find agents in various closed systems in which the components have de-
tailed knowledge about each other and thus may trust each other. For instance,
the so-called secured domains of a corporate network fulfil this condition. Within
such a domain an agent could migrate from host to host, but the responsibility
of an agent is generally restricted to a specific monitoring task, and it simply
communicates a system behaviour that deviates from predefined rules to the
responsible instance. Normally, important decisions are made by a human be-
ing.1 Current agents have only a restricted functionality, decision mechanism
and communication capabilities. Still, mobile agents roaming the Internet in
their user’s name, concluding contracts and making autonomous decisions seem
to be out of reach.
What are the reasons for this gap between research goals and results, between
the desires of users and the quite demoralising reality? One could argue about
missing artificial intelligence or about the difficult handling of heterogeneous
operating systems, databases and networks. But in fact, these problems are
secondary. They make the implementation of agent platforms more challenging
and complex, but solutions are available. The most important reasons for the
mobile agent paradigm’s failure in implementation are that people do not trust
this technology far enough to delegate important and security sensitive tasks like
signing a contract to a mobile agent and that the legal conditions are often miss-

1This is also caused by legal restrictions
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ing. Both are connected to each other as legislation will provide the legal foun-
dation for this technology as soon as it becomes widely accepted. Trust between
human beings, between humans and computers, and even between computers
is a building block for any interaction. Human trust significantly influences the
trade potential of a company or, on the private level, the possibilities to gain
and keep friends. Consequently, trust is one of the most important components
that rules our daily live. We buy our food at a grocery store where we trust its
owner to act in our interest, only selling food of a certain quality. When making
a decision for an Internet provider we choose the one we trust that it is reliable,
available, secure and well-priced.
But where does this trust come from? How do we determine the level of trust we
have in someone or something? Trust is usually measured by statistical values.
In human interaction these values are implicitly derived from experience of life
allowing to judge the behaviour of people. If another person never betrayed us,
we feel secure in trusting this person. Whereas a treachery decreases the level
of trust. Trust between systems or between humans and systems is achieved
similarly by statistical evaluations of longterm observations. Factors that are
taken into account are for example downtime, response time, reliability, avail-
ability and correctness. Not knowing the counterpart of the interaction makes
it more difficult for humans to determine the level of trust. On the other hand,
in contrast to a purely human interaction, cryptographic methods can be used
to increase the trust people have in a system. These methods may detect devi-
ations from given rules or protocols and thus discourage server operators from
misbehaving. Although there is only one cryptographic primitive that has been
proven to be secure, namely the one-time pad, there are many methods that
make a betrayal computationally infeasible. Consequently, integrating crypto-
graphic security into a system generally creates a high level of human trust in
this system.2

If we return to mobile agents that are supposed to act autonomously in their
users name, it is obvious that a very high level of trust is required. How could be
as “insane” as to send an agent to an unknown host, where it is executed in an
uncontrollable manner, possibly spied out or even manipulated, and finally trust
the results the agent returns? Without satisfactory security measures the answer
to this question must be “nobody”. This is only one part of the interaction. A
similar question must be asked for the server executing an agent. Why should
someone allow an unknown program to enter a computer and to be executed?
In times of viruses, trojans and worms, this seems to be crazy behaviour.
In order to make mobile agents practical, agent platforms have to provide a
satisfactory level of security for both, agents and hosts. While there are solutions
that allow to protect hosts from malicious code, the protection of mobile agents
from malicious hosts is disproportionately more difficult. The server has full
control over the agents it is supposed to execute. Consequently, besides a short
discussion of host security, this thesis focusses on the presentation of an agent
security model.
The following sections provide a brief overview on the security concerns arising in
multi-agent systems followed by a glimpse of the security model that is presented
later.

2This statement is not really correct as most people cannot understand and thus evaluate
the algorithms. Cryptography helps experts to trust a system, and we can hope to have a
certain transitivity by the trust people have in experts.
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Host and Agent Security

Mobile agent platforms in open networks cause threats not only for the par-
ticipating servers but also for the agents themselves. In order to protect hosts
participating in a multi-agent system, one has to face primarily one attack: The
agent can carry malicious code, for example a virus or worm that could destroy
data or operating system components. The host could even be used to perform
Denial-of-Service attacks on other hosts of the agent platform or on arbitrary
servers in the Internet.
To prevent the hosted agent from behaving maliciously, sandboxes can be used
to restrict the agents rights to access system resources, for example in Java3

[Jav06]. Besides, host security can be improved by a correct setup of operating
systems and regular software fixes. This means that the most restrictive instal-
lation should be chosen. Users should get exactly those system and access rights
they need to fulfil their tasks and nothing beyond. Since host security mainly
depends on secure software and operating system design, this topic is mainly
the responsibility of the software producing companies and is subject to their
commercial interests.
The protection of mobile agents seems more challenging as there are various
different attacks. These attacks can be categorised as follows:

• hurting the execution integrity

• malicious routing

• code and data manipulation

• code and data spying

The question, how one could secure a mobile agent from a malicious environment
has lead to an almost unmanageable number of approaches covering the different
security issues. Unfortunately, most approaches only handle one security aspect,
as for example the detection or prevention of malicious routing. Lots of them
use cryptographic methods like digital signatures or authentication, some have
a rather statistical nature like those following the code obfuscation approach
in order to delayed specific attacks beyond a critical time interval. An effective
protection measure is a trusted third party that regularly communicates with
the agent and checks its integrity. But this kind of protection conflicts with the
autonomy of agents and thus is not fully compliant with the agent paradigm.
Furthermore, such an instance is a single point of failure and as such a popular
target for Denial-of-Service (DoS) attacks. It is obvious that it is very difficult if
not impossible to secure a single autonomous mobile agent since the executing
host has full control over code and data. Therefore, a few publications consider
co-operating agents that control each other from time to time. This is a very
promising approach but until now there is no model for co-operating agents that
can provide security guarantees in a larger extend without the use of a trusted
third party. This thesis fills this gap by presenting a framework that allows co-
operating agents to robustly compute a user-defined function on private inputs
in open and untrusted networks like the Internet.

3Most platforms that are currently in use are implemented in Java.
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Secure Multi-Agent Computations

The proposed model is based on cryptographic protocols for secure multi-party
computation (SMPC). The nature of these protocols perfectly fits the needs of
mobile agents that are supposed to live in open and unauthenticated networks
like the Internet: they allow robust and private computation of a predefined
function. Defining so-called secure multi-agent computation (SMAC) my aid of
SMPC allows an Alliance of n co-operating agents to guarantee the correct and
private computation of a user-defined functionality as long as no more than a
(protocol specific) upper limit t of agents is located on malicious hosts at the
same time. The part of the Alliance knowledge that is supposed to be kept secret,
for example a private key, is coded into redundant shares by using a (t, n)-secret
sharing scheme [Sha79]. Computations on these shares are defined over an arith-
metic circuit and are performed in a robust way by distributed computations of
the whole Alliance. Maliciously influencing the common computations is only
successful if more than t corrupted Alliance members co-operate. Analogously, a
reconstruction of shared data is only possible if at least t+1 shares are known.4

The security guarantees that are given by SMPC are quite impressive and solve
most of the security problems arising in multi-agent systems. Unfortunately,
SMPCs requires a fixed group of n parties. This assumption cannot be kept
in a mobile agent scenario. There is an undefined state during the migration
process of one agent, when the old host as well as the new one are involved
in a common transaction, and thus n + 1 parties exist. Consequently, one has
to fill the gap arising from the transition from the static scenario, where all n
agents are constantly hosted on different servers, to the dynamic scenario which
allows migration without losing the security properties. Basically, there are two
problems that need to be addressed:

1. The necessity of suitable methods that allow a secure migration.

2. The collection of shares over the lifetime of an Alliance has to be prevented
in order to avoid mobile adversaries (see chapter 4, page 53).

The first problem is solved by using majority decisions. This mechanism al-
lows an Alliance to perform all computations necessary for the actual migration
robustly, but not privately. The lack of privacy for those computations is not
security relevant since no secret data is reconstructed and the results (like the
destination host) have to be public anyway. The second threat is addressed
by applying a suitable re-sharing method after each migration. Thus, all old
shares are disabled. A positive side-effect of this method is, that it also allows
to exclude agents from the common computation that have been detected as
corrupted. Instead, a new agent can be created via distributed computations of
the Alliance. Consequently, an Alliance has self-healing capabilities that signif-
icantly reduce the probability of an Alliance to get corrupted while performing
its task.
Agent Alliances do not aim at preventing from attacks. Instead, the main inten-
tion is the robustness and privacy which allows to provide solutions to all The
computations are performed in a way that guarantees that

• corrupted agents can be localised and eliminated,

4The exact number depends on the number of actually manipulated shares. In the worst
case, 3t + 1 shares are necessary to perform the necessary fault correction.
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• malicious input of up to t corrupted agents is irrelevant for the correctness
of the common computation,

• there is a certain degree of robustness against Denial-of-Service (DoS)
attacks, and

• shared data remains confidential at any time.

There is a variety of protocols for secure multi-party computation. But the field
is still challenging and the complexity of most protocols leads to their imprac-
ticality. The thesis will shortly discuss some exemplary protocols. The Alliance
model currently uses the synchronous model of Hirt and Maurer [HM01], be-
cause it is the most efficient one5 that has been published until now. Therefore,
the discussion will focus on a security model based on this protocol.
Until today, agent Alliances are the first model that provides such a high level of
security without requiring a trusted third party. Other models aiming on code
privacy [ST98c] through function hiding are defined for few function classes
only and thus drastically restrict the potential user-defined functionalities. The
Alliance model is based on arithmetic circuits. It has been implicitly shown in
[Gál95] that for practical implementations, where only gates with finite fan-in
are required, these circuits have the same computational power as Boolean cir-
cuits. Unfortunately, computations on such circuits cause a high communication
complexity when conventional programming languages are simulated. Nonethe-
less, the Alliance model is the first formal model that demonstrates that mobile
agents can be secured. This represents an outstanding result as a lot of re-
searchers did challenge this. The complexity of the model may still be a bit too
high to use Alliances in a broader range. Nevertheless, for sensitive applications
the quadratic complexity is acceptable, and increasing computational power and
Internet bandwidth will make the model even more practical in the future.

A Word on Concurrency

Mostly, a server that is offering an agent platform will execute several agents
at the same time. This is the same with agent Alliances. Thus, the protocol
for SMAC is executed concurrently. From other cryptographic protocols, i.e.
zero-knowledge protocols, it is known that the concurrent execution of several
instances of the same protocol can cause proven secure protocols to become
insecure. Sometimes this is caused by gaining secrets through a clever combina-
tion of information flowing between the parties participating in each protocol
instance. In other cases, a co-operation of malicious parties from each protocol
instance is necessary.
Therefore, the aspect of concurrency should not be disregarded when trying
to build an agent model with proven security. This thesis will therefore offer
a discussion of the exemplary security model for the concurrent execution of
cryptographic multi-party protocols from [Can00] in Appendix B. It is known
that the SMPC protocol of Hirt and Maurer is secure in the framework. For
the SMAC protocol such a proof is not given, as this is beyond the scope of
this thesis. It seems probable, that the SMAC protocol, too, is secure in this

5O(m·n2) communication and computation costs, where m is the number of multiplication
gates and n the number of parties.
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framework as the additional sub-protocols have on influence on the correctness
of the distributed computations. They are meant for migration only.

Structure of this Thesis

Chapter 1

After a short introduction of the mobile agent paradigm this chapter presents
some common notions of the agent field. Especially, the notion of mobility and
trust are introduced. Furthermore, there is a comparison between the agent and
the client/server paradigm which is followed by possible applications for mobile
agents.

Chapter 2

Chapter 2 discusses the security issues arising in a mobile agent scenario. On
the one hand, threats for the hosts are shortly discussed and solutions to these
threats are presented. As this thesis presents a model for agent security, the
remainder of this chapter consists of a broad presentation of agent security. In
this context, the existing approaches are assigned to classes, for example trac-
ing, code obfuscation, encrypted functions and fault-tolerance. Besides software-
based methods, trusted hardware is discussed.

Chapter 3

The model for secure multi-agent computation is based on many sub-protocols
that have to be introduced and understood before the actual protocol can be
given. In order to give the reader a first glimpse on the security model at an
earlier stage, this chapter introduces the notion of agent Alliances which perform
secure multi-agent computations. At this point, the presentation is relatively
abstract as the necessary fundament is not yet available.

Chapter 4

The most important sub-protocol of secure multi-agent computation is one for
secure multi-party computation. At the same time, some other distributed sub-
protocols are based on similar techniques. Therefore, this chapter is devoted
to an overview on cryptographic protocols for SMPC. It concentrates on syn-
chronous protocols as these are more efficient than asynchronous ones. As such,
they make use of secret sharing schemes. So, in order to impart an understand-
ing of the functionality of multi-party computations, the chapter starts with
an explanation of Shamir’s secret sharing scheme [Sha79], followed by the more
powerful verifiable secret schemes and secure multi-party computation. The ex-
emplary protocol of Hirt and Maurer from [HM01] is presented in depth, as it
is proposed to be used for agent Alliances.

Chapter 5

Finally, in chapter 4 the model for secure multi-agent computation is presented.
First, the different phases in an Alliance’s life are discussed in a detailed but
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more informal way. Then, the actual protocol along with its sub-protocols is
given.

Chapter 6

After the more theoretical considerations on the security of the model, this
chapter analyses the protocol behaviour under real network assumptions. It
analyses how the probability of compromising an Alliance can be decreased. In
this context, replay attacks and denial-of-service attacks are discussed. Also,
the influence of certificates on the Alliance model is investigated. The chap-
ter concludes with some arithmetic examples on the probability of an Alliance
compromise, depending on the number of migrations.

Chapter 7

This chapter investigates the simulation of programs by arithmetic circuits.
In this context simulations of the most common control structures are given.
The remainder of this chapter presents the implementation of a long number
arithmetic. An Alliance should be able to use cryptographic primitives like a
digital signature. Since these primitives are often based on long numbers, it is
necessary to discuss their implementation and complexity.

Chapter 8

Chapter 8 provides some efficient applications for SMAC, namely RSA [RSA78,
RSA79] and AES. In this context, side-channel attacks that could be made pos-
sible when simulating a high-level language program are identified and solutions
are proposed.

Chapter 9

Chapter 9 is the last chapter of this thesis and presents the conclusion and
future work. There is a particular focus on a possible asynchronous approach to
the secure multi-agent protocol.

Appendix A

Appendix A gives a summary of the cryptographic primitives used in the model
for secure-multi-agent computation.

Appendix B

Appendix B provides a presentation of the UC framework of Canetti [Can00].
Multi-party protocols that are proven to be secure in this model, provide un-
conditional security. In addition, it is guaranteed, that a concurrent execution
of protocol instances does not cause new security risks.

Appendix C

As the secure multi-party protocol of Hirt and Maurer is based on the verifiable
secret sharing scheme from Ben-Or et al. [BGW88], this protocol is summarised
in Appendix C.
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For the sake of completeness it be mentioned here, that relevant parts of the
results presented in this thesis have been published in advance. They are in-
cluded in the publication list located behind the curriculum vitae. It seemed to
be reasonable to publish the research results at an early stage, since the security
of mobile agents is a very vivid research field.
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Chapter 1

The Mobile Agent
Paradigm

This chapter introduces the most important terms connected to the mobile
agent paradigm. It starts with the presentation of mobile agents and their prop-
erties. Mobility is one of the most intriguing properties of agents. Therefore,
it is discussed in depth by presenting three different classes of mobility. The
chapter continues with a comparison between the mobile agent paradigm and
the client/Server paradigm. This is of importance, since usually one of the first
arguments in discussions with opponents of the mobile agent paradigm is that
the latter is fully satisfactory and that there is no need for agents. The agent-
oriented part of this chapter closes with a short section on application areas
that are of particular interest for the implementation of mobile agents. A last
section introduces the notion of trust. This is a very important pre-condition
for any system in order to become widely accepted. Although being closely re-
lated to system security, trust does not offer security but at most the possibility
to believe in the security of a system. Therefore, trust found its place in this
chapter and is not part of chapter 2 on host and agent security.

1.1 What are Agents?

What are these agents that have been controversely discussed over the last
decades? Why do they pose such a serious threat to servers and, at the same
time, why are they so difficult to protect? Coming to a formal definition of
agents one recognises very quickly that there is no uniform definition the agent
community agrees on. This problem is primarily caused by the question of the
properties the basic agent is supposed to have. The following list of potential
agent properties is neither complete nor are all of the items clearly defined. They
are mainly coined by human intuition. However, the list gives an survey on the
most popular approaches. An agent is defined as

• reactive/active if it just reacts on input of its environment/if it starts
activities on it own.

• communicative if it is able to interact with other entities in its environ-
ment. A communicative agent has the ability to actively initiate a com-
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munication as well as to react to requests.

• flexible in case the agent’s program allows different reactions on the same
action.

• mobile has methods allowing it to migrate from host.

• social if it can imitate human behaviour (within strong limitations) and
interact with other agent.

• learning if is able to adapt to changes in its environment.

• autonomous if it does not require to interact with its originator until it
has completed its task.

• intelligence if it is learning, active and autonomous.

• charismatic if it has a kind of character.

Now, let us return to the original question of how agents are defined. The most
restrictive (but obviously indisputably correct) definition may be the one consid-
ering an agent to be just a piece of code and annotated data (see also [CHK97]).
This definition is not sufficient for mobile agents which require a certain degree of
autonomy and intelligence. The latter two terms are very often used in the same
context since autonomy requires intelligence and intelligence without autonomy
is meaningful only to a limited extent. Thus, some sources define intelligent
agents, while other sources define autonomous agents but the differences are
mostly negligible. In [Wei00] Woolridge gives a general definition of an agent as

“. . . a computer system that is situated in some environment, and
that is capable of autonomous action in this environment in order
to meet its design objectives.”

An agent that is active, reactive and social is then defined as intelligent. These
properties imply the agent’s capability to recognise its environment and to re-
act to changes, to execute a goal-oriented behaviour and interact with other
agents and human beings. However, Franklin and Grasser define in [FG96] an
autonomous agent without social capabilities as:

“An autonomous agent is a system situated within and a part of
an environment that senses that environment and acts on it in
pursuit of its own agenda and so as to effect what it senses in the
future.”

Other definitions have been proposed. For instance, in Game Theory Datta
[Dat03] introduces an agent as follows:

“An agent is an entity which can receive information about a state
of the environment, take actions which may alter that state, and
express preferences among the various possible states. The prefer-
ences are encoded for each agent by a utility function, a mapping
from the set of all states to R.”

Such agents are able to achieve their goals without external control and are thus
autonomous, too.
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However designed, mobile agents are software objects which are sent to other
hosts in order to be executed, and as such they need a platform to be executed
on. Hosts provide this platform together with additional services. This way,
a host acts as server while the agent is its client. The platform specification
should include mechanisms supporting agent migration, communication with
other agents and hosting of several agents in sufficiently separated areas to
guarantee security for the agents.

1.2 Agent Mobility

There are different qualities of mobility. Rothermel et al. [RHR97] differentiate
four approaches which can be categorised into three classes.
The most limited class is code and data transport. Transport in this context
means that exactly one transfer takes place. The class consists of the two ap-
proaches Remote Execution and Code on Demand. Remote execution means to
transfer the agent’s program together with a set of parameters to one specific
target computer and to execute the program there. It is not mandatory to per-
form the transfer during runtime, it is also possible to distribute agent programs
in advance. An agent that is executed remotely is able to use this mechanism
to start other agents. But, while it can initiate those agents to be transfered,
it cannot transfer itself to another server. Code on demand can be considered
the inverse concept. With this mechanism, the target server initiates the data
transfer and executes the program. Well-known examples for this concept can be
found in the form of Java applets and ActiveX controls which are very common
on the Internet.
The other two classes of mobility are not limited to one transfer only, as both
support migration of code and data. The term “migration” means multiple
changes of the agent’s location and can be divided into weak migration and
strong migration. In order to support strong migration, a runtime environment
must automatically save the execution state of an agent, and be able to continue
the agent execution at this point, without requiring the agent to be programmed
in a specific way. As this operation brings up difficulties, especially for multi-
threaded agents, the class of weak migration has been designed. In contrast to
strong migration, the agent itself has to reconstruct its execution state by aid
of the annotated data. This requires the programmer to code the state of the
agent in variables and to provide a function using these variables in order to
allow the agent to continue its execution.

1.3 Mobile Agent vs. Client/Server Paradigm

A discussion about mobile agents with an “unbeliever” starts with two argu-
ments: First, there is no killer application for mobile agents. This means, there
seems to be no application for which the agent paradigm is the best solution,
worth it the investment necessary for a change of paradigm. Indeed, to my knowl-
edge there is no application of importance that can exclusively be implemented
by using mobile agents. The second argument is the one that the well-known
and popular client/server paradigm is fully satisfactory for everything one could
think of. This section takes a closer look at these arguments and evaluates their
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validity.
In the client/server paradigm servers offer services, the clients call remotely.
From the point of view of the server, the necessary software is trusted (as far
as the producing company can be trusted) since it is installed locally on the
servers and not sent from an unknown source over in the Internet. The system
even allows the servers to offer commercial services for which their operators
demand a fee. On the other hand, all servers willing to offer a service for a spe-
cific application must install the necessary software. Also, software maintenance
regularly requires working hours and and additional financial efforts. Therefore,
one can expect that only those services required by a large number of clients will
ultimately be offered. The more fancy the application, the lower the probability
to find servers that agree on installing the corresponding service. This presents
a disadvantage with respect to the software heterogeneity of the Internet. There
are two more disadvantages of the client/server paradigm. First, a client/server
connection is a point to point connection. If one side is not available anymore
(e.g. because of a system crash or shutdown), the requested service is inter-
rupted when there was a socket connection. Even if both sides are online again,
the computation is not resumed automatically.1 The second disadvantage is the
problem of communication complexity. In case the clients require large amounts
of data, the impact on the network can be significant. As mentioned before, the
client/server paradigm is in heavy use nowadays, the clients go into the millions,
and thus the overall volume of data that has to be transmitted is enormous.
In the mobile agent paradigm the application is sent to a server in form of a
software agent. Thus, independent of the number of services that are actually
executed via agents, a server only has to provide an agent platform. Besides
platform maintenance, no efforts are necessary. This implies that in principle
each application can be executed as long as it does not require more resources
than a server is willing to provide. There is no point-to-point connection between
the agent’s originator and the agent’s host, which means, that after having sent
an agent, the originating server may cut the connection. There is no further
communication necessary until the agent returns with its computation result.
So far the theory. In practice, it is not that simple. On the one hand, executing
an agent costs resources such as processor time. In contrast to the client/server
paradigm it is not yet usual to demand a fee. This is mainly the reason because
a host does not know the semantics of the agent program that is executed.
Consequently, it is more difficult to fix a fee. It would be necessary to count the
processor time or the number of database entries the agent needed. But it is not
easy to find a general agreement within one platform which actions should be
payed for and which not. Also, in case of a fee, the host should be able to prove
the rightfulness of the fee that has been charged. On the other hand, accepting
and executing software originating from an unknown and possibly malicious
source is something a host has to be convinced to do. There are profound security
issues that have to be faced. This will be discussed in section 2.1. Analogously,
unknown hosts can be a threat to an agent. The host has full control over the
agent and could have an interest in an attack for several reasons. On the one
hand the operator of the host could have financial interest in the data, the agent
has, or there could be a social interest in causing damage to the originator of

1A packet-oriented connection connection (http) does not have this problem, as it offers
asynchronous long-running operations using polling.
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the agent. The degree of the control, a host has over the hosted agents, is the
most relevant - and unfortunately, almost challenging - problem arising in the
mobile agent paradigm. Thus, the client/server looks more favourably than the
mobile agent paradigm. This thesis presents a security model for mobile agents,
solving this problem.
The questionable correctness of computation results is a problem both ap-
proaches have in common. Violation of the execution integrity of an agent, but
also manipulated data input can lead to semantically as well as computationally
incorrect results. While there are methods to determine whether the execution
integrity has been violated, there is no means to prevent wrong input. It can-
not even be differentiated whether the wrong input is a matter of an attack or
simply of an incorrect piece of information the server has stored in its database.
However, there is not a big difference between the two concepts. Mobile agents
are software object and the hosts act as servers offering the service of execution
and data access. This is why the mobile agent paradigm can be regarded as an
aggregation of the client/server paradigm and the object-oriented design. And
thus it is a kind of specialisation of the client/server concept.
Although alternatives to mobile agents can be used for each agent application,
there is no single alternative to the wide range of possible applications. This
has already been stated by Chess et al. in [CHK97] and seems still valid today.
Provided that the security problems can be solved satisfyingly, this is more than
sufficient justification for the agent paradigm to become widely adopted.

1.4 Where do we Need Mobile Agents?

It is still one of the most important questions: Where do we need mobile agents?
Isn’t it always possible to find another solution? It is the author’s opinion
that there is not a single application that actually must use the mobile agents
paradigm. It is the variety of possible applications they could be used for. In
fact, there are several areas for which mobile agents are much better suited than
other technologies. The reasons lie in their power to reduce network traffic, to in-
teract asynchronously and to be able to perform remote searching and filtering.
The two important areas, namely mobile clients and e-business, are discussed
in this section. Beyond this, examples for the possible implementation of agents
can be found in the fields of human-computer interaction (multi-modal rooms,
speech recognition), embedded systems (monitoring, management of resources),
system security (monitoring, virus detection/elimination) and co-operation in
distributed systems like Grids and P2P.

Mobile Clients Nowadays, mobile devices such as laptops, mobile phones
and PDAs have become very common. Those devices have three characteristics
which strongly speak for the use of mobile agents instead of RPCs in order to
offer a service.

1. Their connection to the Internet is mostly only intermittent. Thanks to
wireless technologies this has changed over the last years. But still, small
devices as for example PDAs and mobile phones do not possess the same
computational power as desktop computers do and cannot constantly af-
ford costly security mechanisms. A constant connection to the Internet
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is thus too dangerous and often lacks privacy. Besides, IPv6 is not yet
ready to securely manage a mobile device leaving one subnet and entering
another one (which maybe not IPv6 [Mas06]). At the same time, network
hopping poses a major requirement when using mobile devices.

2. Mobile devices usually have a smaller bandwidth. The bandwidth of mo-
dems as well as wireless connections cannot be compared to that of cur-
rent cable-oriented connections, where a bandwidth of 6 GBit is widely
available, today. Thus, instead of performing communication intensive in-
formation retrieval with different servers, it is preferable to send a mobile
agent which completes this work directly on those servers and returns after
having finished its task.

Electronic Commerce Mobile agents are an interesting technology for e-
commerce applications. They can be used to store the clients needs and prefer-
ences. Agents can be used for automatic negotiations and bidding in electronic
auctions. Since they involve money, these applications are very interesting aims
for attackers. Therefore, they require a high security level. Although this cannot
be provided yet, the paradigm seems to be interesting enough to encourage ven-
dors to make use of it even without solving all security issues. An example for
bidding agents are the so-called spider agents which are oftenly used by eBay2

clients. These spiders monitor a specific auction and give a bid in the last mil-
liseconds of the auction. eBay has forbidden the use of spiders. Those bidding
agents offered officially by eBay do not offer the same functionality. They in-
crease the bid as soon as a the current bid has been out-bidden. If several such
agents are used, the bids unnecessarily spiral.

1.5 The Notion of Trust

As mentioned in the introduction, the notion of trust is of paramount impor-
tance for the development of secure systems [DoD85, Uni93]. For example, any
system for user authentication needs a trusted functionality for keeping the au-
thentication information. Examples are given by the Kerberos authentication
protocol [SNS88] for open networks or by Woo and Lam [WL92] for distributed
systems. In this thesis, trust is not a prime issue. It is more regarded as a con-
sequence of the presentation of a system for secure multi-agent computation.
Especially in this field of multi-agent systems, trust plays an important role for
their applicability. Normally, such a system is meant for open, unauthenticated
networks. This holds a lot of threats for the agents and their owners. Financial
and social losses have to be worried about. Thus, a potential user of such a
system will be grateful when having a reliable measure for trust at hand. Unfor-
tunately, the meaning of trust is hardly ever clearly defined in these approaches
and left to the readers intuition. A reason for this lack of a clear definition could
be, that trust is a social concept, not a technical one. Thus, it is much more
difficult to give a formal description of a trusted system or functionality.
In [WSB99] an analysis of possible trust relationships between different princi-
pals is given. A principal is thereby understood as a service provider in a net-
work, such as for example any host which is offering its hardware and software

2www.ebay.de
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resources to agents. A principal cannot separate its goals from its behaviour. It
will always behave in a way that allows it to achieve its goals. Therefore, a prime
requisite for a user allowing it to trust a principal is to concur with, or at least,
to approve of its goals. Of course, in general this will be difficult as the goals
of the principal will be unknown. Therefore, the authors from [WSB99] try to
gather the goals of a principal in a policy, which is a set of rules that constrains
the behaviour of this principal. The policy has to be written down and made
available to all other principals. Then, trust in another principal is defined as the
belief that it will adhere to its published policy. In order to determine whether
a certain principal can be trusted, it can be checked if the published policy is
acceptable and if a motivation for the belief that the principal will adhere to its
published policy can be established. Again, the latter is difficult to formalise.
There are two approaches that can be used to make principals to belief that an
entity will adhere to its published policy:

1. trust based on (good) reputation

2. trust based on control and punishment

The first approach is based on the experience and evaluation of users and of-
tenly used. After having taken the services of a principal, the user evaluates its
behaviour by certain criteria (for example response time, available CPU time,
availability, etc.). These criteria allow to compute a reputation value which can
be checked before interacting with this principal. From the security point of
view, this approach is not satisfactory since the evaluation could be done with
ulterior motives for example to destroy the good reputation of a concurring
principal. The second approach offers more security but is much more difficult
to accomplish. Reliable control mechanisms are complex and slow down a sys-
tem. However, punishment, too, is mostly accomplished by just carpeting the
malicious principal. A legal prosecution would require a burden of proof. Thus,
this approach may offer good security in certain systems, but in general the
possible measures that can be taken to punish a misbehaving principal will not
be sufficient to prevent from misbehaviour. This may be the reason why the
first approach is the one that is mostly applied.
The model presented in this thesis achieves trust through a third approach:

3. trust based on the belief in a secure system design

This approach requires a system to be designed in a way that deviations from a
protocol are impossible or that they do not cause harm to anyone. The measures
falling in this class can be briefly separated in cryptographic ones, measures
providing robustness by redundancy, and, finally, trusted hardware. All of them
are extensively discussed in chapter 2.
The second approach to trust uses control and aims at prevention by creating
fear of being detected and punished. It requires reliable control mechanisms
which can be expected to be very complex. I name it a passive approach, as
the system does not actively prevent fraud. In contrast, trust based on the be-
lief in a secure system design can be regarded as an active one. The system
actively handles fraud by providing mechanisms like encryption or authentica-
tion, which make misbehaviour impossible or at least very difficult. We will see
in chapter 2 that these approaches, too, are very complex. But they provide a
better protection and consequently a higher level of trust.
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Chapter 2

Security Issues and Related
Work

Mobile code poses serious threats to hosts that have no way of verifying its
originator or its functionality. Vice versa, an agent that is transfered to an un-
known host cannot trust on its correct execution or the integrity of its data. We
will see in this chapter that while the protection of hosts against malicious code
is mainly a matter of correct system installation and user behaviour, the pro-
tection of mobile agents requires much more sophisticated measures. The main
intent of this thesis is the protection of mobile agents. But for reasons of com-
pleteness, this chapter starts with a discussion on host security before it turns to
agent security. The latter part consists of a presentation of possible threats for
mobile agents and ends with a broad survey of published security approaches.
The section starts with the presentation of security measures against single at-
tacks. Afterwards, methods using fault-tolerance are discussed. They offer the
advantage of not preventing from but being able to bear a specific amount of
attacks. Then, advanced methods on the field of agent security, namely code
obfuscation, function hiding and computing with encrypted data are discussed.
While the first and second class aim to the protection of the agent’s function-
ality, the latter provides data privacy. The section ends with the presentation
of approaches using the concept of co-operation between agents and mutual
control.

2.1 Host Security

In times of the Internet and innumerable computers that are constantly on-
line, system security has become a very challenging task. It is not sufficient
to integrate network security tools like firewalls (e.g. for demilitarised zones),
virus scanners, intrusion detection systems or honey-pots.1 A careful system
design and software development is very important because most weaknesses
that are finally exploited can be found in software that is faulty by design.
Mostly this is caused by an unreasonable schedule during the software devel-
opment process and by releasing it to early. Multi-agent platforms providing

1A honey-pot is a computer connected to the Internet which sole purpose is to distract
possible attackers from sensitive system components.
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a powerful environment for mobile agents to act in, must be extremely care-
fully designed and implemented to provide enough security. In [EC05], we have
shown that half-hearted security integrated into an agent platform (in this case
the JADE platform) is not effective. JADE is a well-known example of a free
platform. Important documentation on the security plug-in was missing and se-
curity measures were only rudimentally implemented. Such circumstances cause
non-expert users to believe themselves to be safe and, consequently, they could
act too careless. This results in even more dramatic consequences than attacks
on unprotected systems, as the agent applications in a seemingly secure system
can be expected to be of much more sensitive nature. The overall evaluation
from [EC05] also mirrors my opinion that system security must be part of the
design process and cannot be considered as a kind of add-on, which could be
taken care of later.

2.1.1 Threats

In this section, we take a look at the potential threats an operator of a multi-
agent platform has to be prepared for. An agent platform with the following
properties serves as a basis for the discussion. The platform should

• be public. This implies that after a preliminary registration, like at a free-
mail provider, everyone can install the platform and start agents.

• offer services like for example home banking, information retrieval or a
portal for auctions.

• have many users. Since a portal with only a few users cannot be regarded
as representative for some security problems, the number of users should
be in the thousands.

Some of the attacks can be considered a threat for all users participating in
arbitrary networks like the Internet, but some of them aim at specific properties
of agents and their environment. As the main focus of this thesis is the protection
of mobile agents and not the protection of hosts, only a short overview is given
here. For more details, the interested reader may take a look at the description
in [EC05] and [Dre05].

Spoofing An agent is said to be spoofing if it takes a false identity in order
to gain access to restricted data or functions. Phishing2 is a current application
of spoofing. It is used by attackers pretending in emails or on web pages to be
legitimate organisations like for example a credit institute, thus trying to spy
on private data of the victims.

Trojan Horse In this attack an agent is used to transport malicious software
like a virus, worm, sniffer or similar program. Nowadays, worms and viruses
are used to transport so-called backdoor programs, allowing an attacker to ac-
cess private data of the user without being detected. A well-known example is
represented by the worm MyDoomM.

2For more information see www.antiphishing.org
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Weed An agent is called a weed if it has no meaningful functionality and
requires only few resources in order to avoid being detected. Each software that
spreads massively, but does not cause direct damage, falls in this class of attacks.
In case of agents which behave inconspicuous in terms of resource consumption,
but appear in large numbers, an agent system can suffer from severe damage.

Freeloader Freeloaders are parasitic agents which live in a commercial envi-
ronment and try to profit from free services. This class of attacks is relatively
new and became important due to the increasing automation in form of agents.
As soon as a provider offers free services, which are financed by the profits from
commercial services, such agents can cause serious financial damage. There are
numerous examples in human behaviour: Using share-ware programs for a longer
period than allowed, registering at free-mail providers without correctly answer-
ing the necessary questionnaires or by-passing commercials in software which
is financed through it (like the browser Opera). Although very similar in their
basic idea, a human and an electronic freeloader have different main objectives.
While a human generally thinks of his own advantage and is not aware that he
causes damage, a freeloader agent aims on causing the highest possible economic
damage to the service. This is reached by a permanent usage of free services,
without using them in a meaningful way. Examples for free services that are used
by agents acting as freeloaders are cost-free sending of SMS over the Internet
or free consulting services offered by credit institutes.

Flying Dutchman A Flying Dutchman is a specific kind of Freeloader but
with main issue on its own continuity. It tries to avoid its termination or, at
least, to reproduce itself before being terminated.

Denial-of-Service Denial-of-Service (DoS) attacks aim at overloading a sys-
tem in a way that important services cannot be offered anymore. Although this
kind of attack is of very general nature and one of the most powerful and dam-
aging attacks for current computer systems, it is necessary to mention it in the
limited context of agent systems, too. Because of their nature, mobile agents are
a natural means for the execution of DoS attacks. Depending on the platform
design, agents provide a malicious user the opportunity to anonymously attack
specific servers or even the whole system. Receiving an agent, it is in general
impossible to determine its functionality. In some cases, it may be possible to
decide, whether malicious code is contained, but the general equivalence prob-
lem of functions is undecidable. In contrast to malicious code attached to emails,
where the user has learned to be careful, a user participating in an agent system
and receiving an agent usually will not hesitate to execute it. Also for distributed
Denial-of-Service (DDoS) attacks, in which a victim is attacked from several lo-
cations at once, a multi-agent platform is well suited. Designing an agent as a
Flying Dutchman leads to such an attack, that is much more powerful than a
general DoS attack, as it can use more resources.
There already are several examples for most of the attacks mentioned above,
although not designed for agent platforms. But as soon as multi-agent systems
become widespread, this will change. Therefore, it is absolutely important to
address these problems in advance. Threats like Weed agents or Freeloaders are
difficult to detect and to combat. Others, like Spoofing or Trojan horses result
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from security breaches in the platform architecture and can be avoided.
The remainder of this section gives a brief overview of the options a platform
operator has in order to protect her system against the threats mentioned above.

2.1.2 Security Measures

Operating System

Modern operating systems offer a high level of security against malicious pro-
cesses. The most important properties are

• There is a memory protection by catching unauthorised memory accesses.

• An advanced access control mechanism e.g. through Access Control Lists
(ACL). ACLs allow to assign single processes fine grained access permis-
sions on hardware resources like memory, CPU, printers, etc.

• Processes are encapsulated by virtual memory areas.

It is possible to execute programs (like an agent platform) on virtual computers
(VMware3). Doing so, the program is not aware of the real computer and its
resources nor of programs executed on other virtual computers on the same
hardware.
Communication between processes can be made possible by special libraries like
for example the Message Passing Interface (MPI). Beyond other things, it allows
to cluster several heterogeneous machines to one parallel system. A successful
attack thus requires to trick the operating system. Therefore, a modern operat-
ing system can be assumed to offer satisfactory security. As usual, the situation
is not as simple as it seems at first glance. In order to have platform-independent
applications, a programming language offering platform-independence must be
used. In order to achieve platform-independence, programming languages use
different approaches. Two of them are discussed now.
For a given program, the language C generates a platform-dependent code. This
does not create new security breaches, as the resulting programs are directly ex-
ecuted by the operating system. Unfortunately, Java, which is currently the
most popular language for the implementation of multi-agent platforms, uses a
different approach. Java contains a small operating system, which offers a vir-
tual machine (VM) for the different operating systems. As a universal interface
between programs and operating systems, the VM must have extensive access
rights to the computer resources, independent of the nature of the programs that
are executed on it. Thus, the VM can be used to by-pass the security mecha-
nisms of the operating system. To avoid this, Java uses so-called Sandboxes
as additional measure. Sandboxes are program dependent and allow to define
fine-granulated access rights for individual programs like servlets or applets.
Java [GJS96] is the predominant language for mobile agent systems (see for
example [JAD06]). This is with respect to both, implementation of multi-agent
platforms with integrated mobility, and writing mobile agent applications. First,
it inherently supports code mobility by means of dynamic class loading and sep-
arable class name spaces. Second, it offers several security properties. Java seems
perfect for developing an execution environment for mobile agents as it offers

3www.vmware.com
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many features to ease its implementation and deployment. Since Java runtime
systems are available for most hardware platforms and operating systems, agent
platforms that are built on Java are highly portable. At the same time, the un-
derlying Java Virtual Machine (JVM) [LY99] offers sophisticated compilation
techniques and other optimisations. Therefore, in this thesis, the programming
language aspect of host security is limited to a discussion of Java security.

Java Security

In [BR02] Binder and Roth give an analysis of Java as a foundation for secure
multi-agent systems. They point out the following advantages:

1. The Java serialisation mechanism allows to capture an agent’s object in-
stance graph before it migrates. The agent can easily be resurrected at
the new host.

2. Dynamic loading and linking of code through a class loader allows to
isolate classes and components of the agent system, providing separated
name spaces.

3. Multi-threading enables the concurrent execution of agents.

4. Java is a type safe language as the execution of programs proceeds strictly
according to the language semantics. In detail, safety depends on byte-
code verification, strong typing, automatic memory management, dynamic
bound checks and exception handlers.

5. Java provides a sophisticated security model with flexible access control
based on dynamic stack introspection.

As an example, the security model of Java 2 is presented in figure 2.1, illus-
trating the interaction between the individual security components. For more
information, the interested reader may take a look at the book of Gong et al.
[GED03]. Here, only a brief overview is given.
A drawback of Java can be seen in its weakness against Denial-of-Service at-
tacks. Resource consumption (CPU, threads, network bandwidth) is neither ac-
counted nor controlled. Either through poor programming or malicious intents,
the system could easily be compromised. The authors from [BR02] state that
this security concern will be a matter until Java evolves from an application-level
runtime system into a real operating system.

2.2 Agent Security

For a long time, researchers all over the world tend to think that the protection
of mobile agents cannot be accomplished. In fact, this conviction is still very
widespread. How can a program be protected if it is sent to an unknown server,
has to be executable, is depending on unknown resources and under full control
of the server and its operator? Clearly, there are numerous cryptographic tools
that could be used. But on the one hand, they are not omnipotent and cannot
protect the agent against all possible threats it is facing; on the other hand the
performance as well as the size of an agent using these tools are contradicting
the application areas of mobile agents. Therefore, many companies are using
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Figure 2.1: Java 2 Platform Security Model

the mobile agent paradigm without any security mechanism. The risks can be
accepted if the platform is installed within an authenticated local area network,
for example within a large company that is distributed over the world. But
as soon as unknown outside servers are participating in any computation, a
significant number of possible applications for agents, as for example electronic
commerce, has to be omitted. Obviously, missing security is one of the most
important reasons why the agent paradigm has not been widely accepted by the
industry yet.
This section continues with a discussion of possible threats a mobile agent is
confronted with in open networks as for example the Internet. Then a survey
of research results in the field of mobile agent security is given. First, naive
approaches, mostly using well-known cryptographic primitives are presented.
Although called naive, they are widespread and useful as they offer acceptable
performance. Then, more advanced approaches are discussed, offering a higher
level of security. As usual this has to be payed with higher complexity, usually
too high remain practical. The section ends with the introduction of distributed
approaches, where agents protect each other by co-operation and mutual control.
This directly leads to the security model presented later-on in this thesis.

2.2.1 Threats

It was mentioned above that the protection of mobile agents is challenging, if
not impossible. Where does this pessimism come from? If we return to the ba-
sic definition of an agent, we consider an agent as an executable program with
some annotated data. Sending this packet to another (unknown and possibly
malicious) server, attacks on two levels could occur: network attacks and at-
tacks through the malicious hosts. Network attacks happen while the agent is
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transfered from one host to another. There exist

• passive attacks like spying on the agent’s code and data.

• active attacks like delaying the agent for an unknown time, copying, data
and code manipulation, takeover, etc.

Passive attacks are relatively easy to perform and very dangerous in case any
sensitive data (private key, passwords, etc.) is transfered. At the same time they
are easy to prevent by using secure channels. Nowadays, this belongs to the
well-known mechanisms which are already integrated into standard libraries (see
for example the ssh protocol). Although difficult to accomplish because they
require physical network access and expert knowledge, active network attacks
may happen and, unfortunately, can not be completely avoided. By using hash
functions and digital signatures (see appendix A.2 and A.3), it is at least possible
to detect manipulations. Encryption protects against manipulation of specific
parts of the agent and against takeover, but cannot protect against delay or
deleting. The latter can only be fought by security mechanisms which are based
on redundancy.
Attacks performed by a malicious host are very powerful as the host has full
control over the agent. The threats can be categorised into the following attack
classes:

• Spying: Analysis of the agent’s functionality (software piracy, violation of
copyright, violation of the user’s privacy with respect to his intentions
and preferences) and its data (violation of user privacy, trade secrets,
interaction with other agents, etc.).

• Violation of the agent’s integrity: This class consists of three subclasses,
namely violation of code integrity, violation of execution integrity and
violation of the read-only state. Violation of code integrity aims at unau-
thorised changes in the agent’s code and thus implies malicious changes of
its functionality. Limited access to necessary resources like databases and
processor time as well as unnecessary delays or ignoring (= not executing)
parts of the code are violations of the execution integrity. These attacks
can also be regarded as Denial-of-Service attacks. Finally, violations of the
read-only state of an agent include malicious changes of the agent’s data
(like user preferences, account numbers or even its identity) that has been
provided by the user and does not change. This may lead to incorrect
computation results although the execution integrity has been preserved.

• Manipulation of variable data: Variable data consist of information the
agent has collected and filtered during its journey through the network.
Malicious changes of this data normally causes the agent’s originator to
make wrong decisions. For instance, instead of booking the cheapest flight
to Paris, which has been maliciously altered, a much more expensive one
is chosen. In general, significant financial losses must be feared.

• Malicious routing: Even if a predefined route belongs to the agent’s read-
only data, the host can decide wherever it finally sends the agent. Thus,
the agent could get lost in a subnet of malicious co-operating hosts, not
being able to finish its task correctly.
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• Masquerading of the host: A malicious server could intercept or copy an
agent transfer and start the agent by masking itself as the correct receiving
host. This kind of attack can also be regarded as a network attack, because
a host could function as a “host-in-the-middle4”.

• Returning wrong results on system calls issued by the agent: By return-
ing manipulated data to agent queries, the semantics of the agent gets
corrupted. This attack can cause serious consequences as the computed
results are not reliable in any way. It seems impossible to protect against
attacks on the semantic level. First, it cannot be differentiated whether
the host knowingly performed the attack or whether it just kept wrong
information in its databases. Second, on the semantic level it is very diffi-
cult to automatically determine whether an arbitrary piece of information
is correct or not.

Recapitulating, one can say that due to its mobility, an agent is faced with nearly
all kinds of attack, one can think of in computer networks. At the same time,
the potential damage is very high. Its whole extend depends on the authority
assigned to the agent in order to act autonomously in its users name.

2.2.2 Approaches against Single Attacks

This section is dedicated to a survey on security measures for agents whose
protectional power is limited to one attack type only. The means mainly consist
of cryptographic primitives which can be considered standard today. But also
approaches offering security by redundancy are discussed. A common nominator
of the measures presented here is that they are relatively cheap in terms of
computation and communications complexity. Thus, these approaches are those
which are currently used in practice. For now, they seem to provide a satisfactory
trade-over between effectiveness and cost for most of today’s applications.

No Protection

Although “no protection” is obviously a trivial security measure,5 it has a right
to exist and to be discussed shortly. Many application areas for agents are not
very attractive for attackers (for example simple web search and filtering tasks).
Although there may be a loss of some kind if the agent gets corrupted, there
is little profit in attacking such agents and consequently only small interest in
actually performing an attack. In such cases, the cost-value ratio may allow
unprotected computations. “No protection” is of particular interest for compu-
tations that allow an efficient verification of their results.

Legal Protection

Legal protection is desirable for two reasons: First, many people do not dare to
misbehave in a way that is not only morally condemnable but also against some
law. Second, this kind of protection has no negative influence on the complexity
of the computations nor on the size of the agents. Besides protection through
laws, protection through contracts are possible. For example, a server operator

4in analogy to the well-known “Man-in-the-Middle” attacks from cryptography
5if even considered as such
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could be hold responsible for providing security against external attackers, for
the protection of the computations against unauthorised access and to guarantee
computation integrity.
The problems of this kind of protection can be summarised as follows:

• It is difficult to detect and prove breaches of contracts.

• The existence of tamper-proof log files as legal proof is necessary.

• Server operators are reluctant to take this responsibility. This is espe-
cially problematic in systems with a large number of users, as for example
Internet providers are faced with.

• As the Internet is global, a standardised international regulation is re-
quired to be able to prosecute malpractice.

Trusted Networks

This class of measures contains approaches that avoid the problems by using a
setting where hosts are trusted. Some of them employ a host infrastructure that
is operated by a single party (see e.g. [Gen96]). This is for example given in large
companies. It is also known from the field of Grid computations, where usually
the Grid operator is the one in charge of detecting and punishing misbehaviour.
Although in this case nothing is written down in a contract,6 to this kind of
control is often sufficient in this field. Other approaches allow a migration to
trusted hosts only [FGS96]. Alternatively, they could migrate to hosts with
good reputation. Rasmussen and Jansson [RJ96] first introduce the term “soft
security”. They claim that software agents must handle trust without human
aid, but with soft means like social control. In general, the computational rules
for trust and reputation must be chosen wisely in order to prevent from follow-up
attacks, aiming at manipulations of trust values and destroying the reputation
of honest parties.

Trusted Hardware

Another means to create trust in hosts is trusted hardware. This method does
not aim at avoidance but on the impossibility of any attack and is achieved
by using tamper proof hardware. This approach has been mentioned early by
Yee [Yee94], Chess et al. [CGH+95] and by Palmer [Pal94]. Although originally
not designed for mobile agents, the approach is of significant interest for this
domain. It allows an agent to execute sensitive functions like e.g. a digital sig-
nature on an unknown host in a secured way. In [WSB99], trusted hardware is
used to protect the predefined itinerary of an agent. On the other hand, Schneier
states in [Sch00], that he doubts that it will be possible to prevent such hard-
ware from physical side-channel attacks. The approach is inflexible and very
costly. Also, it could open the door for monopolistic hardware producers. It
must be doubted that users will accept those disadvantages in order to profit
from the advantages of a multi-agent system. A well-known and recent exam-
ple for the public rejection of trusted hardware can be seen in smart cards for
home banking. A protected processor allows secure authentication but requires

6Some companies use contract-like documents to control their employees.
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to buy a card reader. Users did not accept this technology for several reasons
like the additional costs for the reader and being dependent on specific software.
Still, they prefer to use the unconvenient authentication method using personal
identification number (PIN) and transaction numbers (TAN).

Protection of Code Integrity and Read-Only State

Both, code and read-only data of an agent, do not change during its lifetime.
More specifically, they are not allowed to change. Such data can be protected by
adding a digital signature of the originator. At best, there is a trusted certifica-
tion authority, but for most (private) applications concepts like a web of trust
are fully satisfactory. A signature enables hosts to check whether code and data
have been maliciously changed. As such, hosts can make the decision whether
they are willing to execute an agent on this basis. The level of trust, a server
operator has in an authenticated agent can be much higher than he can have in
unknown code originating from an unknown source. The advantage of this tool
lies in the assumption that honest hosts will inform the originator or another
instance in charge about the attack. On the other hand, using digital signatures
only allows an attacker to substitute parts of the agent and add her own signa-
ture. This is similar to a takeover, but at least the hosts can be relatively sure
not to execute code that could be dangerous for them.

Protection of Communication Privacy and Prevention from Malicious
Changes

Privacy of communication can be achieved with symmetric encryption like the
Advanced Encryption Standard (AES). This also results in the impossibility of
attacks which aim at specific parts of the agent or its communication. Malicious
changes of encrypted data lead to the impossibility of meaningful decryption
and will be detected.

Prevention from Malicious Routing

A very common mean to prevent from malicious routing is to attach a digitally
signed itinerary to the agent. Yee mentions this approach in [Yee99] assuming
authenticated and encrypted channels. He proposes to use a public certification
chain and to attach the root certificate to the agent. This enables all hosts to
check the origin of the agent and the correctness of its route. Unfortunately, this
does not offer the agent the opportunity to check the identity of its host. Since
the server has full control over the agent it could just by-pass the cryptography-
based identity query. If there is only one malicious host on the route causing the
agent to take a detour over a series of malicious hosts, the attack is detected as
soon as the agent returns to an honest host of its route. Thanks to the authen-
tication, this is possible by checking whether the former host is on the agent’s
itinerary. Figure 2.2 demonstrates the situation if more than one malicious host
lies on the agent’s itinerary. The depart from the route cannot be detected if
and only if the departure starts and ends at a malicious server.
Digitally signed messages like “The agent was on host x” would at least enable
the user to check whether all hosts on the route have actually been visited.
But as long as there is no mathematical entanglement between the signatures,
it is possible to remove specific parts and thus to pretend that the itinerary
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Figure 2.2: Undetected malicious routing in the presence of more than one ma-
licious host

had been violated. In fact, there are many security approaches in the field of
malicious routing. Most of them, which do not use a predefined route, require
regular communication with trusted servers. This contradicts the agent’s au-
tonomy. At the same time, limiting the agent by an inflexible route causes the
same contradiction. The problem of malicious routing is challenging and not yet
solved.

Protection of Read-Write Data

Variable data is difficult to protect. If the data from the single hosts are not
entangled in any way, it could be protected by means of digital signatures and
become read-only data. In general, this will not be possible. This results in the
following situation.

• An agent that has left a malicious host cannot trust its complete memory.
Unfortunately, an agent will not be able to determine whether the last
host was malicious or not. Consequently, it cannot trust its memory at
any point in time after having left the originator’s server.

• Data is only trustworthy if

– it has been generated after having visited the last malicious host on
the route, and

– if its computation was independent from data of former hosts.

This, too, is only of theoretical interest as it is most unlikely that the agent
or its originator are able to determine which hosts have been malicious.

Works addressing the integrity of collected data can be found in [AKG98, Yee99]
using hash chaining as the basic technique. As mentioned before, data must be
somehow entangled. Hash chaining is such an entanglement. Basically, all col-
lected data is stored along with a hash value computed by the visited hosts. In
detail this means that each host Hi computes subsequent hash values hi(hi−1 |
di) out of the hash value of the former host Hi−1 and the data di it added to the
agent. Unfortunately, data collection schemes using hash chaining are static with
respect to data updates. For more dynamic scenarios like distributed auctions
they are not suited. Loureiro et al. propose in [LMP01] an alternate approach,
based on a cryptographic hash function and the difficulty of computing a dis-
crete logarithm (the so-called Diffie-Hellman Assumption). They also compute
hash values of the collected data, but define a set hashing which allows to make
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authenticated updates. In addition, a verification of the data is possible at any
time. The protocol is of particular interest as the integrity verification is inde-
pendent of the sequence of data transmissions. The complexity of the verification
is not computationally intensive (one exponentiation) and almost independent
from the number of visited hosts.

Tracing

Tracing aims at the detection of violations against execution integrity. In [Vig98]
Vigna proposes to force hosts to log all queries the agents issues to the server. As
in general this protocol will be too large to add it to the agent’s data, the host
is obliged to store it for a specified time and to protect it against subsequent
changes by providing the agent with a signed hash value that has been computed
over the log file. In case the originator suspects malicious behaviour it can ask
for the file and check its correctness. The approach is not satisfactory as the
originator only receives the computation result and the hash values. Thus, it is
impossible to find out which one of the visited servers was possibly malicious.
To check all protocols per default is out of the question as it is as expensive as
the computations themselves.
Vignas approach can be improved using techniques from the domain of prob-
abilistic proofs. Biehl et al. state in [BMW98] that the data volume necessary
to verify the protocol can be drastically decreased. The protocol must be trans-
formed into a specific certificate, also called a holographic proof, which can be
verified through a constant number of its bits (independent of its length). Until
now, the problem suffers from the absence of a an efficient transformation from
conventional log files into holographic proofs.

Fault-Tolerance

Although a suitable combination of cryptographic primitives is able to protect
an agent against several attacks, this approach is not satisfactory. There are
too many possible attacks, significantly diverging in their nature, to be able
to offer protection against all of them. Therefore, it is worth it to take a look
at an alternative approach already used in hardware design: fault-tolerance. In
this context, fault-tolerance means redundancy only, co-operation of agents is
left out and discussed in section 2.2.4 as it promises to be a very promising
approach.
Minsky et al. did an exemplary work in [MvRSS96]. They faced the problem
of performing a reliable distributed computation in the presence of malicious
servers. They did not consider an agent scenario. Nonetheless, their method
could also be used for the protection of agent computations. Their idea is basi-
cally to divide a computation in several phases, where in each phase identical
computations are performed on n servers instead of one. After each phase, the
servers send their intermediate results to each server of the next phase. Those
can make a voting on the received results and determine the data with which to
proceed. The method is illustrated in figure 2.3 for three servers in each phase.
The model tolerates all errors/attacks, as long as a majority of the servers in
each phase is honest and able to transmit their intermediate results to the servers
of the next phase.
Obviously, in this example, two co-operating servers of two different phases could
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Figure 2.3: Server replication with voting

pretend to be servers of the last phase and trick the receiver of the computation
results. The realisation of this attack is illustrated in figure 2.4.

?

Figure 2.4: Attack on the server replication approach

Minsky et al. propose to use a secret sharing scheme to distribute intermediate
results in order to prevent from such an attack. Still, the model is unrealistic as
each replicated server must have the same information. In addition, server repli-
cation mostly results in very similar hardware and software. In case, one server
gets compromised, all of them are at risk. This is a contradiction to the fault
model of [MvRSS96], which assumes that replicated servers fail independently.
In an overall evaluation, this approach is not convincing. However, the way of
evaluating functions in parallel can be considered as a prequel to the model for
secure multi-agent computation presented later-on.
An approach to a fault-tolerant collection of trade offers can be found in [Yee99]
based on an agent replication model. Yee limits the number of malicious hosts
on the agent’s predefined route S to one and excludes Denial-of-Service attacks.
The model is based on the secure channel model and meant for agents that
are supposed to collect trade offers. If all these assumptions are kept, malicious
changes of the collected offers are either detected by the originator of the agent,
or a betrayal does not cause financial harm. The main idea of this approach is
to send two agents A1, A2 to visit all servers on route S = s1, s2, . . . , sn, where
A1 starts at server s1 and ends with sn, while agent A2 starts at server sn and
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ends at s1. The approach is illustrated in figure 2.5 with one malicious server.

A1 A2

S1 S2

. . .

Si

Sn−1 Sn

(best offer) (malicious)

O1 O2 On−1 On

Figure 2.5: Agent replication in presence of one malicious server

Host sn−1 acts maliciously. A1 already collected the best offer O2 at server s2

when reaching sn−1 which implies that it will either change the memory of A1

or adapt its own offer accordingly. On the other hand, sn−1 has no interest in
changing the memory of A2 as it did not get the best offer yet, when reaching
sn−1. After having returned, the originator can compare all offers and in case he
detects differences, he knows that an attack took place. Although functioning,
this approach is too limited in its application area and demands too strong and
unrealistic preconditions.

Summary

The naive approaches offer security against very specific threats. Unfortunately,
mobile agent applications tend to be very security sensitive as they aim to act in
the originator’s name. So, in this field, the simple approaches cannot provide a
satisfactory security level. In order to increase security, several of them have to
be combined. A proof of security is very difficult in this case as the combination
of cryptographic protocols can cause new security breaches. In addition, the
more protocols are used, the higher is the risk of erroneous implementation.
Approaches offering fault-tolerance seem promising but waste a lot of hardware
resources. Their security is only statistical and strongly depends on network
assumptions. On the other hand, they do not require as much computational
power as cryptographic methods.

2.2.3 Advanced Approaches

Code Obfuscation

In the field of agent security, not only the protection of data is of interest.
Depending on the application, it could also be necessary to keep the algorithm
that is implemented in an agent private. One reason could be that parts of
the algorithm are copyrighted and should not be open to an analysis. Another
reason is the prevention from meaningful manipulations.
Code obfuscation means messing up a computer program in a way that it be-
comes unreadable. It is hard to read uncommented code. Even if it is written
by one’s own hand and seems (while programming) to be well structured it
may give the impression of a complete chaos looking at it some weeks later.
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This could be considered a kind of natural incompatibility between computers
and the human brain. Thus, intentionally obfuscating programs immediately
suggests itself as a solution to keep code secret.
Code obfuscation is done by so-called mess-up algorithms. Given a program P ,
arbitrary input x and output P (x) = y, a mess-up algorithm generates another
program P ′ with the same property: P ′(x) = y. This means, P ′ computes
exactly the same result as P , input and output are in clear-text, but P ′ looks
different.
In [Hoh98] Hohl applies the mess-up approach to mobile agents by defining a
black-box property:

Definition 2.1. If at any point of time

1. neither the agent’s code nor its data can be read and

2. neither the agent’s code nor its data can be manipulated,

an agent is called black-boxed.

- -

6

r

A A
′

mess-up

algorithm

Figure 2.6: Generation of blackbox agents

As illustrated in figure 2.6, the mess-up algorithm gets the input agent A as well
as a random parameter r. The latter guarantees an indeterministic behaviour
of the black-box, which means that feeding the agent specification A into the
black-box twice does result into two different obfuscated agents A′ and A′′.
Key ingredients of mess-up algorithms are

• variable recomposition

• conversion of control flow elements into value-dependent jumps

• deposited keys

Obviously, it is not possible to prove that the analysis of a messed-up program
falls into a specific complexity class. The duration of an attack strongly depends
on the computational power of the attacker, the kind of obfuscation that has
been used and the attackers programming experience. However, until now those
algorithms are not strong enough to protect a program for an unlimited time.
Therefore, Hohl suggests the the so-called time limited black-box security. The
definition is the same as in definition 2.1 with the restriction that the properties
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1 and 2 must be kept for a predefined time interval t instead of for unlimited
time. In this setting, each agent is assigned an expiration date that is signed by
a trusted authority. As soon as the expiration date has expired the agent and its
data must be considered corrupted. Servers should reject to execute such agents
since they could contain malicious code (like a virus or worm).
Compared to cryptographic solutions this approach can be regarded as efficient.
Black-boxed agent code is larger than “normal” code, efficient library calls can-
not be used, but after all it is still executable code which does not require any
costly encryption or decryption. Nonetheless, code obfuscation has two security
flaws:

1. The determination of the time interval t during which the agent is sup-
posed to be uncorrupted is difficult.

2. Mess-up algorithms must be very carefully designed, also taking into ac-
count that there are tools for decompiling code. We did some experiments
showing that compiling and decompiling messed-up code returns a much
better structured and readable program that may break under analysis
much earlier than the messed-up one.

Actually, the security of such black-boxed agents is more a matter of believe
than a matter of mathematical proof. Besides these more practical problems,
code obfuscation faces some serious theoretical problems. In 2001 Barak et al.
formalised the notion of circuit (program) obfuscation [BGI+01] via the virtual
black-box property. It states that any predicate that can be computed in polyno-
mial time from the obfuscated circuit can also be determined by an input-output
analysis of the original circuit (i.e., given black-box access to the circuit). Barak
et al. showed that for specific classes of functions there cannot exist an obfus-
cating compiler that works as a black box (such as mentioned in the approach
of Hohl). In 2005, Wee [Wee05] shows under various complexity assumptions
that for the class of point functions, which consists of all Boolean functions of
the form Ix(y) = 1 if and only if x = y an obfuscator exists. In the same year,
a more negative result was published by Goldwasser and Kalai [GK05] proving
that wide and natural classes of functions (filter functions, pseudo random func-
tions [GMR86], secure encryption algorithms [GM84])are not obfuscatable with
respect to auxiliary input. Their impossibility results are unconditional and do
not require any intractability assumptions (such as the existence of one-way
hash functions).

Function Hiding

In some cases it might be possible for a user A to send its input x to another
server in order to run a secret algorithm applied to x and to get the result
returned. This is not possible if x contains data that is legally forbidden to
be given to an unauthorised party, for example in case of medical data. This
problem can be solved by having methods at hand to “change” code in a way
that an analysis of its functionality (for instance by performing an input-/output
analysis) is fruitless.
In contrast to code obfuscation, Function Hiding is based on an encryption
function E which is used to obfuscate a function f that is to be evaluated.
Finding such methods is challenging since the result of Ek(f)(x) for an input x
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must be reconstructable in polynomial time using the secret key k. in addition,
it must be computationally impossible to gain information on k when knowing
Ek(f)(x).
Function hiding allows two parties, Alice and Bob, to execute a protocol in
which Alice gets to know her function f as well as the result f(x), while Bob
only knows his input x. The protocol is illustrated in figure 2.7.
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Figure 2.7: General approach to function hiding

Alice encrypts the function F and creates a program P (Ek(f)) that implements
Ek(f). This program is sent to Bob in order to be executed on Bobs local input
x. Bob sends P (Ek(f))(x) to Alice, who decrypts it and obtains f(x). Bob can
neither understand nor manipulate the computation as it is encrypted. Function
hiding does not primarily aim at mobile agents, an thus it only covers one migra-
tion. A generalisation to multi-hop agents is possible [ACCK01, CCKM00]. Let
H1, . . . , Hn be the hosts on the route of the agent. Then, the originator creates
an encrypted program Pi for each host Hi having the current computational
state xi and the host’s data yi as input and computing the computational state
Xi+1 as output.
As mentioned before, the design of suitable encryption functions E is chal-
lenging. One of the major obstacles is the necessity of being homomorphic.
Otherwise, Alice could not reconstruct f(x) out of P (Ek(f))(x).
There are only few approaches on function hiding. They can be categorised
into encrypted functions and encrypted circuits. For both classes, exemplary
publications are discussed.

Computing with Encrypted Functions (CEF) The problem that is dealt
with in this section was was first introduced by Abadi et al. in [AFK89]. It
focuses on hiding data from an oracle, which means computing with encrypted
data. Based on this, Abadi and Feigenbaum presented in [AF90] a first two-
party protocol to secure circuit evaluation, which offers circuit encryption as
well as confidentiality of data. The drawback of this protocol is the large number
of interactions between the parties. In [Baz98] Bazzi formulates the first non-
interactive protocol. It produces clear-text results and is based on the evaluation
of a binary decomposition of all possible terms of a polynomial. The result of
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the function can be computed by selecting the results corresponding to the
components of the function.
Another non-interactive protocol is described in [ST98c, ST98b, ST98a] by
Sander et al. using a homomorphic encryption function based on the encryption
scheme of Goldwasser and Micali [GM84] to encrypt polynomials.

1. Alice encrypts f and sends the resulting Program P (E(f)) to Bob.

2. Bob executes P (E(f))(x) on his private input x and sends the result y to
Alice.

3. Alice decrypts y with E−1 and gets f(x)

The system could also be used for software distribution which would imply that
Alice returns f(x) to Bob in step 3.
It is easy to see that this approach requires a homomorphic encryption func-
tion E as Alice must be able to apply E−1 to the encrypted output. There
are cryptographic functions such as RSA [RSA79] that are either additively or
multiplicatively homomorphic, but it is unknown whether a strong cipher exits
that is both. In fact, the property of a homomorphic function is to preserve the
structure of the underlying mathematical object (ring, field, etc.). A function
being a homomorphism of rings, which means, it is additively and multiplica-
tively homomorphic, would probably preserve too much information to be a
good cipher. Until now, no-one has found such a cryptographic function.
Sander and Tschudin try to improve the situation by substituting multiplicative
homomorphy by mixed multiplicatively homomorphy:

Definition 2.2. Let R and S be rings. An encryption function E : R → S
is called mixed multiplicatively homomorphic if there is an efficient algorithm
MIXED-MULT that computes E(xy) from E(x) and y without revealing x.

This limitation enabled Sander and Tschudin to propose encryption schemes
using encryption functions E : R → S for the class of polynomials in n inde-
terminates over a ring R. Let p =

∑

ai1...is
X i1

1 · · ·X is
s ∈ R[X1, . . . , Xs]. Then

Alice creates a program P for p as follows:

1. Each coefficient ai1...is
is replaced by E(ai1...is

).

2. The monomials of p are evaluated on the input (x1, . . . , xs) and stored in
a list L := [. . . , (xi1

1 , . . . , xis
s ), . . .].

3. The list M := [. . . , E(ai1...is
xi1

1 , . . . , xis
s ), . . .] is produced by MIXED-MULT

for the elements of L and the coefficients E(ai1...is
).

4. The elements of M are added up by calling PLUS (as it is known from the
ring S).

Unfortunately, there is an information leakage since only the coefficients of the
polynomial are encrypted. The skeleton remains the original one. There are
applications that allow to recover the whole polynomial, for example when using
the RSA function m 7→ md that has only one non-zero coefficient. A known-
plaintext attack is then feasible.
As a last example for non-interactive function hiding, the approach of Loureiro
et al. [LM99] which uses a public key cryptosystem based on error correcting
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codes be mentioned. The security of such a cryptosystem relies on the difficulty
of decoding or finding a minimum weight codeword in a large linear code with no
visible structure. It is proven in [AM88, Gib91, Gib95] that using Goppa codes
for a public-key cryptosystem results in computational security. Since encryption
and decryption are less complex as for example [ST98a] the protocol is briefly
presented here and illustrated in figure 2.8. Let G be a generating matrix for
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Figure 2.8: Function hiding with error correcting codes

an [n, k, d] Goppa code C and P a random n×n permutation matrix. Let E be
a random k × n matrix, where at least n − t columns exist of the null vector.
G, P, E are kept secret by Alice. Let F ∈ F

k×k
2 be the matrix representing the

function f . Then, the protocol is as follows:

1. Alice encrypts f by computing F ′ = FGP + E and sends it to Bob.

2. Bob evaluates F ′ at x ∈ F
k
2 by y′ = xF ′ and sends the result to Alice.

3. Alice decrypts y1 = y′P−1, and uses the secret decoding algorithm C to
retrieve the clear-text y = xF from y1 = xFG + xEP−1 (where xEP−1

is a correctable error vector).

Encrypted Circuits Encrypted circuits offer the possibility the secure eval-
uation of functions that can be represented as an arithmetic circuit on an un-
trusted host. Yao [Yao86] has first presented a technique for circuit encryption.
The method is complex but may be useful for sensitive applications that have
a small circuit representation. Therefore, Algesheimer et al. [ACCK01] make
use of this technique in their security model. The approach is based on a min-
imally trustworthy service provider T , a third party that is constantly online
and guarantees the secure execution of the agent’s code. The protocol requires
that T cannot gain any information on the computations and the computations
should cause as little interaction between the parties as possible. The expression
minimally trustworthy results from the necessity that T could be an arbitrary
service provider with the only restriction that it is not allowed to have com-
mon interests with either the originator or the hosts. In general this is a strong
assumption and cannot be guaranteed. Thus, beyond the high complexity re-
quired to generate an encrypted circuit, the applicability must be considered as
limited.
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Computing with encrypted data – CED

The problem of computing with encrypted data (CED) can be described as fol-
lows: Alice has a private input x and would like to remotely compute a function
f on her input without revealing it. Bob has an algorithm that computes f .
Alice should not be able to learn anything substantial about the algorithm by
the result f(x).
Brassard and Crépeau presented in [BC87] a protocol where Alice could convince
Bob of good results achieved by a Boolean circuit simulation, without revealing
her inputs. The approach uses zero-knowledge interactive proofs and provides
unconditional security for Alice’s input. This protocol does not provide circuit
hiding.
Abadi and Feigenbaum [AF90] presented a protocol for secure circuit evalua-
tion which allows a party to evaluate its data on another party’s boolean circuit,
while preserving the confidentiality of its data. Although it was originally in-
tended for data confidentiality, it also deals with the problem of function hiding.
In fact, Abadi and Feigenbaum have pointed out the following relationship be-
tween computing with encrypted data and computing with encrypted functions:

“It is also clear from this description that the distinction between
’data’ and ’circuits’ is unnecessary. If [Alice] has the ability to
hide a circuit, then [she] can also hide some private data, simply
by hardwriting it into the circuit. Conversely, in protocols in which
[Alice] has the ability to hide data, [she] can also hide a circuit
through a detour: [Alice] can run the protocol, take the circuit for
f to be a universal circuit, and use an encoding of the circuit [she]
wants to hide as an input.”

one drawback of the protocol in [AF90] is a large number of interactions between
the two players, since it requires several round of message exchanges between
Alice and Bob.
In fact, this is a problem of both approaches discussed here. This is a contradic-
tion to the agent methodology, even more so as both have a high computational
complexity.
Sander and Tschudin state in [ST98c] that while the statement of Abadi et al. is
theoretically true, it is computationally infeasible to reduce CEF to CED. This
suggests that CEF may be a much harder problem than CED.

2.2.4 Security through Co-Operation

As shown in sections 2.2.2 and 2.2.3, there is a variety of approaches in the
domain of agent security. But they suffer from one or more of the following
disadvantages:

• They protect only against single attacks.

• They are too inefficient.

• They require a trusted party.

Although approaches to fault-tolerance seem to be the right direction, they
are not really satisfactory because of their inefficiency. It must be considered a
big plus that they offer robustness and thus can handle malicious environments.
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Therefore, it seems promising to follow this line of research while aiming at more
efficient methods. It is obvious that the degree of redundancy can be lowered
in case the agents co-operate with and control each other. Co-operation allows
regular security checks during the agent’s journey and helps to avoid follow-
up faults. This increases the efficiency of the agent’s computations but, at the
same time, increases the communication complexity, too. This is contradicting
the mobile agent paradigm which demands a reduction of network traffic. But on
the other hand, as long as no trusted authority is required, the merits countervail
this disadvantage.
Making agent computations more robust is a relatively new research area and
Roth [Rot99] was in 1999 one of the first (and is still one of the few) researchers
going in this direction. His approach aims at the protection of the agent route.
He proposes to send two agents provided with redundant information on their
routes. As soon as one of the agents detects a deviation of its data from the other
agent’s data, it informs the originator and terminates itself. It is also possible to
hide data when using a threshold scheme, if it is possible to publish the data on
demand (cd. electronic money). A negative side-effect is the liability for Denial-
of-Service attacks that can easily terminate the computations of the agents. It
is likely that Roth also saw this problem, as he states that an extension to more
than two agents would be possible. But he did not implement this suggestion.
Repeatedly, the idea of implementing protocols for secure multi-party computa-
tion for robust and distributed computations between n parties has been men-
tioned [ST98c, ACCK01, Yee99] as a possible solutions to mobile agents com-
puting with hidden data. No-one did ever realise this idea. Protocols for secure
multi-party computation are cryptographic protocols providing strong security
guarantees. It is a quite young research field and the approaches published in
the 1990s suffered from a complexity between O(n4) and O(n6), depending on
the assumed network. Eventually, in 2001 the first protocol [HM01] was pub-
lished offering a communication complexity of O(mn2) for an n-party circuit
evaluation with m multiplication gates. This was the first one worthy to be con-
sidered for implementation. Until now, no-one has accomplished this task. So,
this thesis is the first publication discussing it in detail, focussing on a detailed
discussion of a synchronous multi-party protocol.
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Chapter 3

SMAC in a Nutshell

Chapter 2 gave a broad survey on security measures which can be used to pro-
tect mobile agents in a multi-agent system. At the same time, it made clear
that all these approaches are not satisfactory. The simple approaches for single
agents merely allow to detect manipulations. Although some approaches might
be suitable to avoid meaningful manipulations of code or data, a random ma-
nipulation can neither be avoided nor repaired. The situation is difficult as the
mobile agent is actually located on a malicious host which could simply de-
lay its execution in order to have more time for an analysis or manipulation.
Heuristic approaches seem useful from the complexity point of view but do not
offer any security guarantee. The latter is indeed provided by the cryptographic
approaches which have an inacceptable complexity, the necessity of a trusted
party or they are only designed for limited classes of functions. Regarding this
situation, it seems promising to proceed with research on an approach achiev-
ing security by co-operation. Co-operation of mobile agents is not limited to
information exchange but can also be used to achieve distributed and robust
computations. Such an approach does not aim to prevent from attacks but can
tolerate a specific number of corrupted agents. This is much more realistic than
trying to protect single autonomous agents against all possible attacks. The costs
resulting from the redundancy involved in this approach are justified, even more
so as costly encryption mechanisms become obsolete.
In this thesis, a security model using secure multi-agent computations (SMAC)
is presented which makes use of groups of co-operating agents. In detail, this
means,

1. A user-defined function F is jointly evaluated by a group of n agents.

2. As long as no more than a specific number t(n) of agents provide malicious
input to the function, an output is produced which is guaranteed to be
correct.

3. At any time during the evaluation, input provided by the agents and in-
termediate results remain private. Also, the output cannot be understood
by an attacker which is controlling not more than t(n) agents.
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3.1 Introduction

Multi-agent systems are distributed systems. Why not use this property for the
design of a group of co-operating agents? The main idea is to generate n agents
which are sent over the Internet and are hosted on different servers. These agents
execute an n-party protocol, called protocol for secure multi-agent computation.
This protocol offers the agents to securely share their computational state and
to perform robust and private computations. This group of co-operating agents
is called an Agent Alliance.

3.1.1 Alliance Generation

For a given functionality F , the originator of an Alliance generates an agent
offering F as she is used to do (for example as a Java program). This agent is
called a virtual agent as it is never sent into the Internet. Instead, an interface,
called the protocol compiler transforms the virtual agent into an Alliance of
n agents that implements the same functionality as the single agent did. Each
member of the Alliance has the same program, that is represented an arithmetic
circuit. The original knowledge of the virtual agent is divided into n so-called
data shares. This is done by using suitable methods like secret sharing (see
section 4.2), in order to generate data pieces which reveal the original informa-
tion if and only if a specific minimum number of shares are available. The data
shares are distributed among the Alliance members so that only a majority of
agents is able to reconstruct the data. At the same time, up to t(n) co-operating
corrupted agents cannot gain any information on this data. Each agent owns
a small operating system that allows it to coordinate the distributed computa-
tions, an arithmetic circuit representing the user-defined functionality F , and
one data share.
Figure 3.1 illustrates the generation of an Alliance, using the protocol compiler.
As a consequence of this definition, the members of an Alliance do not act
independently of each other, but follow a shared agenda which is the robust,
private and fair computation of the functionality of the virtual agent from Figure
3.1. This means:

1. Robustness: Even if some of the Alliance members get corrupted and are
controlled by an adversary, the result of the Alliance computation remains
correct.

2. Privacy: Input and output data as well as intermediate results are private
in the sense that only a minimum number of co-operating Alliance mem-
bers is able to reconstruct data. Single hosts or other parties cannot gain
any information.

3. Fairness: Corrupted agents which prematurely leave the protocol cannot
gain any information on intermediate results or the final result.

As the adversary has full control over corrupted agents and knows everything
they know, the data distribution must be done with suitable methods. In detail,
this means that it is necessary that an adversary controling up to t(n) < n agents
cannot gain any information. At the same time, the data must be transformed
in a way that still allows to evaluate the function on the resulting distributed
input.
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Figure 3.1: From agents to agent Alliances

All requirements mentioned above can be met when using a protocol for se-
cure multi-party computation (SMPC). Protocols for SMPC are cryptographic
protocols which allow a group of n untrusted parties to correctly and privately
compute a function on n inputs. In order to give a proof of security, each pro-
tocol must assume that some predefined assumptions are met during protocol
execution. These assumptions vary (network type, strength of the adversary,
etc.) but all of them have in common that they guarantee correct computation
results if an adversary corrupts at most t(n) parties. The value t(n) is from the
set {⌈n/5⌉ − 1, ⌈n/3⌉ − 1, ⌈n/2⌉ − 1}, depending on the level of security that
should be provided. Usually, protocols offering cryptographic security provide a
redundancy of ⌊n/2⌋, while unconditional security requires not more than ⌊n/3⌋
to be malicious.
Protocols for SMPC lack one property which is necessary for their use in multi-
agent systems: They do not provide mobility to the parties. In an agent system
the behaviour of an agent must be identified with that of its host. This is because
the host has control over the agent. As soon as a host is malicious, the agent
must be considered corrupted. Regarding a phase during which all agents are
hosted on different hosts and no migration takes place, the hosts are therefore
regarded as the parties involved in the SMPC protocol. The introduction of
migration poses new threats:

• Once an agent is corrupted and no additional means are taken, we have to
assume a corrupted agent to stay in this condition for the rest of its life.
In a naive approach, corrupted agents migrate to other hosts and cause
their infection. Thus, the number of corrupted hosts in the network as well
as the number of corrupted agents increases over time. Consequently, the
probabilities that honest agents migrate to malicious hosts and that the
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upper bound t is exceeded increases over the time.

• If different members of the same Alliance visit the same host, the adversary
must be modelled as a mobile one that could gather information about
more than t(n) shares although it controls at most t(n) hosts at any point
in time. In this case, the security of the protocol would be broken although
the assumptions of the SMPC protocol are kept. The model for secure
multi-agent computation is built upon secure multi-party computation
and should be secure under the same assumptions. Therefore, there must
be adequate mechanism like a regular data re-sharing to prevent from this
problem.

• The migration process cannot be realised within the SMPC protocol as
such protocols are designed for n fixed parties. Agent migration thus re-
quires to invoke a new protocol instance for the n new hosts. This opens
up two security problems: On the one hand it must be guaranteed that
the former host is somehow forced to leave the protocol or at least to have
its knowledge about the agent data invalidated. If this is not the case, a
host could collect more than t(n) data pieces over time (by hosting differ-
ent Alliance members) and reconstruct intermediate results. On the other
hand, it has to be ensured that the new host really gets the agent and
data it is supposed to get.

Because of these reasons a protocol for SMPC alone is not suitable for an agent
Alliance. Additional (cryptographic) methods must be introduced. The resulting
protocol which is presented in chapter 5 is then called a protocol for secure
multi-agent computation (SMAC).
Independent of the SMPC protocol that is ultimately used, the following mea-
sures must be taken when implementing SMAC:

• One assumption that is not one of all SMPC protocols is the availability
of an authenticated network. On the one hand, this allows a reliable au-
thentication of the hosts and prevents from spoofing attacks. On the other
hand, it allows us to use very efficient protocols.

• The degree of redundancy is depending on the sensitivity of the application
as well as on the hostility of the network. This implies that the user should
choose the size n of his Alliance accordingly. He should also keep in mind
that there is a dependency between protocol complexity and n that is
at least quadratic. Consequently, the user needs to fix a trade-off point
between complexity and security.

• To prevent from malicious routing, the Alliance makes a common decision
on where an agent is supposed to migrate. In order to maintain the same
security guarantees as the underlying SMPC protocol, this decision should
also be t(n)-robust.

• It is desirable to protect honest hosts by having means at hand to de-
tect and eliminate corrupted agents before they migrate to another host.
Detection will not be possible in general, but the nature of SMPC allows
an Alliance to securely generate new agents in a distributed computation.
This results in an ability to self-repair and has a major impact on keeping
the number of corrupted agents below t(n).
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• Similar to the last point, the Alliance computations should be protected
by ensuring the integrity of a migrating agent data. This can be done by
using SMPC to generate new distributed data at a migration.

• There should be a maximum time for which an Alliance member can be ex-
ecuted on one specific host. Otherwise, an agent could be maliciously hin-
dered from migration, while the host waits for the moment, that more than
t(n) agents are hosted by co-operating malicious hosts. Suitable methods
are required to ensure that a migration can be enforced and a host can be
removed from the distributed Alliance computation.

In general, it will be difficult for a user to determine the degree of hostility of
the network, especially when assuming the Internet. The authentication require-
ment may prevent some people from fraud. But although being able to detect
incorrect data, the parties of an n-party protocol cannot determine which party
was responsible. In the best case, they can determine a subset of two parties in
which at least one party behaved maliciously. This is not sufficient for a legal
prosecution. Most probably, this measure will rather keep those parties from
fraud that are already tending to honesty than those having serious malicious
intentions. Nevertheless, an authenticated network can be considered an advan-
tage for secure multi-agent computations. For most applications the residual
risk is tolerable, the more so as some of those applications significantly profit of
the autonomous computations of an Alliance.
For the presentation of the protocol for secure multi-agent computation as well
as its sub-protocols in chapter 5, it is therefore assumed, that t(n) as a maximum
for the number of corrupted agents is guaranteed as long as each server hosts
at most one member of the same Alliance.

3.2 Lifetime of an Alliance

It has been mentioned in the introduction of agent Alliances that protocols
for SMPC, as they assume n fixed parties, cannot handle mobility when being
applied to multi-agent systems. Fortunately, one can divide the lifetime of an
Alliance member into two kinds of phases: static and dynamic ones.
Dynamic phases consist of the actual data transfer of an agent migration. Static
phases are defined by the absence of migrations. There are three types of static
phases: Initialisation, task fulfilment and result return. The initialisation phase
includes not only the generation of the Alliance but also the originators decision
about where to send the agents initially. It can be considered as the “birth” of
the Alliance. Result return consists of the agent to return to its originator and
the reconstruction of the computation result. Most part of its lifetime the agent
is in task fulfilment phases. Such a phase consists of three sub-phases, namely
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1. migration post-processing phase

2. computation phase

3. migration pre-processing phase

Figure 3.2 illustrates the lifetime of an Alliance member structured by the single
phases.
During a computation phase, the agent follows its agenda and takes part in the
distributed computations of the Alliance, necessary to fulfil its task. This phase
is completely secured by a protocol for SMPC.
The situation is different for the migration pre-processing phases. This phase is a
mixed phase with respect to multi-party computations, as distributed computa-
tions take place as well as others. New hosts must be determined and potentially
negotiated with. The latter requires the interaction of more than n parties and
is thus not possible without leaving the current instance of the SMPC protocol.
Other measures must be taken to protect this kind of computation. I will use
majority decisions which are in the same complexity class as the SMPC pro-
tocol and, at the same time, do not require stronger assumptions on t(n). The
computation of new hosts can be done using SMPC. When having determined
the set of new hosts, the Alliance distributedly computes a certificate stating
the identities of the current as well as the future hosts. Distributed computa-
tions are also used for a necessary re-sharing, in which new data shares for each
Alliance member are computed. The old shares are disabled automatically and
cannot cause any harm if misused later-on. As a final step, the certificate, the
agent and the shared data are sent to the new host. The end of the migration
pre-processing phase means the end of the host’s involvement in the SMAC. It
is supposed to delete all knowledge (agent and data) connected to the Alliance
and to have no further interaction with the remaining hosts in matters of the
Alliance. Thereby, the static phase is completed.
The migration post-processing phase is for the agent initialisation on the new
host. This requires the host to accept incoming data on the agent and its knowl-
edge from hosts that are mentioned on the certificate, to reassemble that data
and to start a new instance of the SMPC protocol.
Migration post-processing and migration pre-processing are phases requiring a
lot of communication between the Alliance members and other servers. In order
to maximise the efficiency of secure multi-agent computations, these phases
should be minimised. This can be achieved by a suitable migration policy. In
[EM03] we allowed the migration of single agents. In his diploma thesis [Mie03]
Mie improves this, demanding several agents, may be even all of them, to migrate
at once. As this significantly reduces the overhead costs, this measure should be
taken, choosing a reasonable maximum for the allowed execution time on each
host.
The life cycles of an Alliance member represented as a finite state machine is
presented in figure 3.3.

3.3 Summary

Protocols for secure multi-party computation offer an opportunity to define a
protocol for secure multi-agent computation which offers strong security guar-
antees. The advantage of this approach is the robustness of the distributed
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computations. It is not necessary to know in advance which kind of attack one
must protect against. In fact, attacks do not pose any problem as long as a
specific majority of the agents is uncorrupted. As SMPC protocols are cryp-
tographic protocols they provide security properties which are guaranteed as
long as the specific protocol assumptions are met. This is fortunate, but aiming
at a implementation in real-world systems, this must be investigated carefully.
Some protocols require unrealistic assumptions a real network could not provide.
Thus, it is not only of importance to take a close look at the overall complexity,
but also at the protocol assumptions.
Mobility of agents is not covered by SMPC protocols. Therefore, it is essential to
find suitable methods supporting this important ability. As in SMPC protocols,
these methods should not require too strong assumptions. In the best case they
work under the same assumptions as the chosen SMPC protocol. In addition,
their complexity should lie in the same class as that of the SMPC protocol, with
the constant factor as small as possible.
The methods I decided to use as well as the protocol I selected to implement
secure multi-agent computation are presented in chapter 5, which is dedicated
to the realisation of agent Alliances. But first, secure multi-party computation,
along with its properties, potential and limitations will be presented in depth.
This is the topic of the following chapter.
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Chapter 4

Secure Multi-Party
Computation

Secure multi-party computations allow a set of n fixed parties to evaluate a
function with n inputs and n local outputs in a secure manner. The input is
provided by n parties as they compute the n outputs. If those parties were to
trust each other they could sent their inputs to one of the trusted parties in
order to evaluate the function and finally send the outputs to the other parties.
Secure multi-party computation aims on the emulation of the trusted party
by the untrusted n parties themselves. Although indeterministic functions are
possible, this presentation is limited to deterministic ones.
This research field is relatively young. Yao [Yao82] first mentioned a proto-
col for secure two-party computation in 1982. Since then, numerous protocols
have been proposed, meanwhile being designed for n-party computations. For
several years, all protocols assumed synchronous networks as they provide guar-
anteed message delivery within a certain time bound. Then, in the 1990s the
first asynchronous protocols were published. While synchronous protocols are
always based on secret sharing schemes [Sha79], asynchronous ones rely on sev-
eral cryptographic primitives like homomorphic encryption, trapdoor functions
etc. What all protocols have in common is the requirement to represent the
function as an arithmetic circuit which is then somehow “commonly”1 evalu-
ated. The protocol execution itself always follows the Commit-Compute-Reveal
(CCR) paradigm. This means

1. Each party commits itself to its input for the circuit.

2. The circuit is evaluated via distributed computations.

3. After circuit evaluation, the parties reveal their local results to each other
or another pre-defined instance.

Circuit evaluation follows a specific protocol and demands the parties to per-
form local computations and to interact with the other parties by exchanging
messages over the network.

1Depending on the protocol, it is for example possible that all parties evaluate the same
circuit in a synchronous fashion. An efficient asynchronous method is to divide the circuit in
several parts that are evaluated by subsets of the parties.
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Multi-party computation uses a lot of cryptographic sub-protocols. Besides zero-
knowledge proofs [GMR89, GMW86], probabilistic encryption [GM84], data rep-
resentation with error correcting codes [BGW88] and oblivious transfer [Rab81,
Kil88, CK88], secret sharing schemes and computing with suchlike shared data
are fundamental in order to achieve SMPC (also discussed in [Gol97]). To de-
scribe all these cryptographic primitives goes beyond the scope of this thesis. For
the implementation of agent Alliance, one specific protocol for SMPC [HM01]
has been selected, providing the lowest communication complexity of all proto-
cols currently known. Protocols with high communication complexity are con-
tradicting with the autonomous agent paradigm. Therefore, the protocol of Hirt
and Maurer is a good choice for an implementation in such a scenario. It is a
synchronous protocol which causes the presentation in this chapter to focus on
a detailed introduction of the (verifiable) secret sharing primitive.
This chapter is organised as follows: First, possible protocol assumptions are in-
troduced and explained. These are for example, the adversary and the network
models, the underlying security model and the type of security that is finally
reached. After these general remarks, section 4.2 provides an introduction into
early secret sharing approaches, that finally led to modern verifiable secret shar-
ing (VSS) schemes. The chapter ends with the presentation of the protocol for
secure multi-party computation from Hirt and Maurer [HM01] which is then
used for the protocol for secure multi-agent computation presented in chapter
5.

4.1 How to Define a Security Model

The security of cryptographic protocols is always proved with respect to some
protocol assumptions as well as the properties the protocol should provide. A
proof of security does only provide the guarantee that in case the protocol
assumptions are kept during the protocol execution, the functionality of the
protocol (and with it, the protocol properties) is given. Therefore, a protocol
that has been proven to be secure under specific assumptions, may suddenly
became a threat when making the slightest change in these assumptions. This if
an important aspect for the secure implementation of cryptographic protocols.
Therefore, this section provides an overview on the most important definitions
that come into play as soon as on speaks about protocol security.
Security proofs are not discussed in this thesis. It shall only be mentioned here,
that the most important approach uses a simulator using a so-called ideal func-
tionality that works within an environment. This ideal functionality represents
a trusted authority receiving the input of all parties, executing the protocol, and
finally delivering the output. The environment represents the adversarial entity.
It is responsible for the message exchange between the parties of the protocol.
As such it can delay or even delete messages. But it cannot gain information
about the contents of the messages, neither does it know which input the parties
provide to the protocol, nor the protocol output. If one can show that a protocol
run in the real-life model cannot be differentiated from a protocol run within
the simulator, the protocol is proven to be secure. This field of security proofs
requires very deep theoretical knowledge on the different security models and
goes beyond the scope of this thesis.
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4.1.1 Protocol Properties

As mentioned above, the definition of a protocol requires to fix the properties,
the protocol should achieve. These properties allow to introduce the notion of
security as presented in section 4.1.5. The presentation here is limited to the
most important possible properties, especially those, that are finally provided
by the protocol for secure multi-agent computation in chapter 5.

• Robustness: A protocol is called t-robust if it guarantees correct results
even if an adversary has corrupted up to t parties.

• Fairness: A protocol is called fair, if a malicious party leaving the protocol
prematurely cannot gain any information on the computation result. In
addition, it must be guaranteed, that the remaining parties are able to
complete the protocol and to reconstruct the correct result.

• Privacy: Given an adversary, that corrupted at most t parties, the com-
putations and intermediate results remain secret at any time during the
computation phase.

4.1.2 Attacker Models

As already mentioned, secure multi-party computation aim at the robust evalua-
tion of a function through n parties which are not trusted. This implies, that the
correctness of the distributed computations must still be guaranteed if some of
the parties behave arbitrarily instead of following the protocol. In more abstract
terms, this means that the computations must be robust against an adversary
controling up to t(n) parties. This adversary is called the super-adversary. It is
illustrated in figure 4.1.
This abstraction causes no loss of generality as:

• In worst case, all malicious hosts co-operate and can thus be understood
as one adversary.

• Any set of separately working adversaries cannot cause more damage to
or gain more information about the Alliance as a whole than the super-
adversary.

Once the adversary has corrupted a party, it gets to know all input and output as
well a the whole history of the party. In case messages were sent encrypted, the
adversary gets to know the clear-text. In addition, the adversary fully controls
the behaviour of the corrupted party. It can read all messages which will be sent
to the party in the future and send messages in the party’s name. The situation
is similar to a complete brainwashing of the party.
Now, we discuss the different properties an attacker may have. The presentation
is limited to the most important attacker types, but it be explicitly pointed out
that there are many other facets an attacker. A more precise notation is given
in [Gol97].
An adversary is called passive if it looks honest to others. This requires it to
follow the protocol. However, a passive adversary can spy out data and do
computations beneath the actual protocol. It is also possible that it does not
use real random when necessary, hoping to gain an advantage. Because of this,
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Figure 4.1: Model of the super-adversary

such an adversary is also called malicious-but-honest-looking. Passive adversaries
are relatively simple to deal with as they usually cannot influence the protocol
significantly. In contrast, an active adversary is openly malicious and acts as it
thinks is beneficial for it. The behaviour of such an attacker must be regarded
as arbitrarily or, in other words, Byzantine. The output of parties that are
corrupted by such an adversary, is not reliable in any way. Because of the variety
of possible fraud, an active adversary is difficult to prevent from.
The strength the attacker is provided with determines whether and how fast
it can corrupt any party. There are mainly two different types: an attacker
can be computationally unbounded or polynomially bounded. The first attacker
model is mainly of interest for theoretical considerations as any real attacker
will not have indefinite resources and capabilities. In case a protocol is secure
against an unbounded adversary, it provides information theoretic security. A
polynomially bounded attacker has limited computational power. This means,
by doing polynomially bounded computations during the protocol execution
it does not get more information than it does through the protocol execution
itself. This type of adversary is the realistic one. In the field of secure multi-party
computation both attacker types are known and used.
Not only the computational power of an adversary can be used for a classifi-
cation, but also at which time the adversary has to decide, which party it will
attack. There are three types:

1. A static adversary has to determine its victims before the protocol execu-
tion starts. This does not mean that each of these parties are corrupted
from the beginning. The time of the attack is not fixed. But sometime dur-
ing the protocol execution it will take place. The static adversary must
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make its decision without further knowledge which it might get during
and, especially, through the protocol execution. This type of adversary is
the one that is the easiest to fight against2.

2. In contrast to the static adversary, an adaptive one may use information it
collected during protocol execution, before to decide which parties it will
attack. This kind of adversary is mostly assumed in protocols for SMPC.

3. The most dangerous adversary is a mobile one. It can corrupt parties at
any time it wishes. So much the worse as this adversary can release parties
and corrupt others. The only restriction is, that the number of corrupted
parties is limited by t(n) at any point in time. Such an attacker is able to
collect data of more than t(n) parties, although controlling the behaviour
of at most t(n).

Protocols for secure multi-party computation get by with modelling an adaptive
adversary. The concept of mobile adversaries is quite new and became neces-
sary with the propagation of mobile systems like mobile phones and PDAs.
These adversaries can only be circumvented by re-sharing techniques, like the
one presented in [OY91], which disable old data shares and generate new ones.
Re-sharing again, is a t(n)-robust distributed computation. Although secure
multi-agent computation will be based on secure multi-party computation, the
adversary could be able to collect information from more than t(n) agents of
one Alliance just by “hopping” from one set of up to t(n) corrupted parties to
another by means of migration. This is where the mobile adversary comes into
play. Consequently, re-sharing is inevitable in SMAC and must be part of the
migration pre-processing phases. A concrete protocol is presented in depth in
chapter 5.

4.1.3 Error Behaviour

Abstractly spoken, error behaviour is one aspect of the adversary behaviour
as errors can be assigned to the adversary. It defines the way an adversary
influences a protocol, the methods it can use. A categorisation is done by
[HH91], where crash failures, sending omission, receiving omission, general omis-
sion failures, and, finally, arbitrary failures are differentiated. In case errors
occur arbitrarily, the literature speaks of Byzantine errors (see for example
[PBG89, CR93]. The SMAC model in chapter 5 uses a Byzantine error model
as most of today’s cryptographic protocols do.

4.1.4 Network Type

All cryptographic protocols are based on specific network assumptions. These
assumptions are mostly idealistic and not available in practice. If the latter is the
case, a suitable protocol must be used to simulate the wished network behaviour.
In this paragraph, first the physical properties are introduced, before a short
discussion about the most important cryptographic network primitives is given.

2Which does not mean that it is simple!
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Synchronous/Asynchronous

One possibility to categorise networks is depending on whether and when mes-
sages are delivered. There, two networks can be differentiated: asynchronous
and synchronous ones. Synchronous networks are networks in which all system
clocks are synchronised, i.e. run at identical rates. In addition, there is a guar-
antee, that messages are delivered within a certain time bound. With respect to
distributed computations, this is the most prefered network model, as it signif-
icantly eases the message exchange involved in these protocols. Also the design
of cryptographic multi-party protocols is much simpler if one can assume that
messages of honest parties really arrive. As often, this idealised model cannot be
used in practice. Although there are efforts underway to create real synchronous
networks, all existing open networks that are of interest for practice (like e.g. the
Internet) are truly asynchronous. In an asynchronous network, the single parties
cannot assume when and even whether at all their messages are delivered. As
a consequence, in multi-party computations it cannot be differentiated whether
the input of a party is just delayed or if the party got corrupted and did not send
anything at all. Also the system clocks deviate from each other which makes
it difficult to determine whether a message is already delayed or not. Security
proofs of cryptographic protocols which are based on asynchronous networks
are feasible but require strong additional assumptions as for example a weaker
definition of security.

Connectivity

Another way to look at a network is given by the way, the users are connected
to each other. Here, too, ideal models are given, which have to be simulated in
practice. Although other types are possible, the presentation is limited to the
ones, necessary for secure multi-party computation: point-to-point connections
and broadcast channels. The first assumes each pair of parties to be directly
connected. In order to send identical messages to n receivers, n channels are
used. In contrast to this, a broadcast channel allows parties to send a message
to all other parties at once. Such a channel guarantees that each receiver re-
ceives the same message. This guarantee is not given if multiple point-to-point
connections are used. Somewhere, all protocols for general secure multi-party
computation make use of a broadcast channel. In practice, such channels are
mostly not available and must therefore be simulated.

Cryptographic Network Primitives

It is mentioned above, that the categorisation of network types is done using
theoretical models. The technical equipment necessary to physically implement
these models is mostly not available. This is why one part of the wide field
of cryptography is devoted to the simulation of these models, for example by
developing cryptographic protocols for broadcast simulation. These protocols
can be collectively refered to as cryptographic network primitives. I will shortly
explain three of them, all of them important for the security of the Alliance
model.

• Authenticated channels: In the authenticated channel model, a unique
identifier is assigned to each party (i.e. user or server). This identifier
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is generated and certified by a trusted authority. Before starting to com-
municate, the respective parties exchange their certificates in order to
determine the identity of the communication partner. All messages sent
by a party are signed3 with its identifier.

Authenticated channels provide a level of security that is often sufficient
for the prevention from message manipulations or spoofing. In real appli-
cations, the loss of anonymity alone in suchlike protected networks makes
many users to behave in compliance with the protocol. As such, in prac-
tice this model oftenly offers more security as one could expect from the
theoretical point of view.

• Secure channels: The secure channel model is not clearly defined. Some
sources do not differentiate authenticated channels and secure channels,
which means, that there is only authentication. In contrast to this, it is
most common to add another property, namely data privacy, when talking
about secure channels. This means, that after the mutual authentication
via certificate, a so-called session key is generated4 and used to encrypt
all data sent from one party to the other.

• Broadcast channels: Primitives for broadcast channels aim at the simula-
tion of physical broadcast channels. Although the problem is very old and
related to so-called Byzantine agreements (see e.g. [LSP82]) it is still chal-
lenging. Research provided us with several cryptographic protocols that
are more or less (mostly less) efficient. The best ones lie in O(n2) (for n
the number of parties) and it seems as if this a lower bound. However,
this primitive is very important for secure multi-party computation and
agent Alliances as well. In fact, the complexity of these protocols currently
represents a lower bound for all SMPC protocols. The interested reader
may take a look at our current work from [Fre07] presenting an efficient
asynchronous protocol for Byzantine Agreement.

4.1.5 The Notion of Security

After having fixed all assumptions, a cryptographic protocol must provide a
reliable statement on how secure it is if all assumptions are kept at any time.
Cryptographers speak of perfect, statistical and computational security. The
differences between perfect and statistical security is not of interest when looking
at the respective adversary model. The difference between both concepts is that
there is a small probability of error in case of statistically secure protocols
while perfectly secure protocols do not have an error probability. The term
unconditional security contains both, perfect and statistical security, and is used
from now-on.
A protocol provides unconditional security, when under the given protocol as-
sumptions and in presence of a computationally unbounded adversary all pro-
tocol properties are guaranteed. This is the strongest type of security, similar
to information-theoretical secure encryption. As soon as cryptographic prim-
itives are used, a protocol cannot be unconditionally secure. These primitives
are based on the difficulty of specific mathematical problems like factorisation of

3For details on digital signatures, the interested reader be refered to appendix A.3
4This is done with a protocol for secure key exchange, like the one of Diffie and Hellman.
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large integer numbers. Choosing suitable instances of these mathematical prob-
lems, an attacker is confronted with a large key space. The only possibility to
gain information, is to use the most efficient existing algorithms which compute
solutions to the given problem. Although these algorithms have at least sub-
exponential complexity, an unbounded adversary would be able to find the key
within short time. Therefore, the strength of the attacker in a cryptographic
setting must be limited to a polynomial bound. The resulting security is called
to be computationally. This type of security is, although much weaker than un-
conditional security, absolutely sufficient for practice. Computationally secure
protocols depend on a so-called security parameter, mostly called κ, that is
normally determined by the size of cryptographic keys which are used in the
protocol.
Protocols for secure multi-party computation exist for both types of security.
And, while secure multi-agent computation as presented in chapter 5 is based
on an unconditionally secure protocol for SMPC [HM01], it makes heavy use of
additional cryptographic primitives and thus provides cryptographic security.

4.2 Secret Sharing

Secure multi-party computation offers the possibility to compute with private
data. Consequently, the method used to distribute data must not only guarantee
privacy but also allow to perform computations on these shared data. To be able
to prove that such computations are secure, requires the term “computation” to
be defined more clearly. As such, all protocols for SMPC presume the function
that is to be evaluated is given as an arithmetic circuit over a finite field F. This
implies, that the possible operations are limited to addition and multiplication
of shares as well as scalar multiplication of a share with a public value over F.
In synchronous protocols for SMPC data distribution is done with so-called
secret sharing schemes, namely the one of Shamir from [Sha79]. This section
continues with a bottom-up presentation of the evolution of secret sharing. It
starts with Shamir’s approach which provides no robustness as it only presumes
a passive adversary. Then, successively the definition is extended, finally leading
to verifiable secret sharing schemes.

4.2.1 Unverified Secret Sharing

Definition 4.1. (t, n)-Secret Sharing
A (t, n)-secret sharing protocol is a sequence (P1,P2) of two n-party protocols.
In P1 a party p0, called the dealer, distributes shares of his private input s in a
way that during the execution of P1 no subset of up to t parties (not including
p0) learns any information about s. P2 is a protocol for reconstruction s from
at least t + 1 shares. In case p0 has not been malicious during P1 and all inputs
for P2 are correct, the value obtained in P2 is the same as the original input s.

Independently, Shamir [Sha79] and Blakely [Bla79] proposed in 1979 the first
secret-sharing schemes as threshold access structures. Both approaches assume
the passive adversary model. The one of Shamir is very intuitive and efficient,
and as such the most popular one. The scheme is based on the interpolation of
univariate polynomials and is a corner stone in secure multi-party computation.
Therefore, Shamir’s secret sharing scheme is now presented in detail.

56



Shamir’s Secret Sharing Scheme The secret sharing scheme proposed by
Shamir makes use of the following proposition:

Proposition 4.2. For a given set of t + 1 arbitrary data points

(xi, yi) ∈ F
2, i = 0, . . . , t

with xi 6= xk for i 6= k, exists a unique polynomial f(X) ∈ F[X ] of degree t such
that

f(xi) = yi for i = 0, . . . , t.

Proof. 1. Uniqueness:

Suppose two polynomials f1, f2 ∈ F[X ] of degree t with

f1[xi] = f2[xi] = yi, i = 0, . . . , t.

The difference f := f1 − f2 ∈ F[X ] is a polynomial of degree less or equal
to t and at with at least t + 1 different zeros, namely x0, . . . , xt. This is a
contradiction.

2. Existence:

Construction with Lagrange polynomials Li ∈ F[X ], i = 0, . . . , t:

Li(X) =
(X − x0) · · · (X − xi−1(X − xi=1) · · · (X − xt)

(xi − x0) · · · (xi − xi−1)(xi − xi+1 · · · (xi − xt)
(4.1)

obviously fulfils the equation

Li(xk) = δik (Kronecker symbol).

Via the Li a solution f for the interpolation problem is directly given by
the so-called Lagrange interpolation formula:

f(X) =

t
∑

i=0

yiLi(X) (4.2)

Although interpolating a polynomial with the Lagrange formula generally causes
O(t2) multiplications and O(n) divisions, this scheme offers an advantage in
the field of secret sharing: In case the parties reuse their public value αi the
denominator of the Lagrange polynomial can be pre-computed once and reused
for different secret sharing polynomials. In addition, if only an interpolation of
one specific point f(α) is required, the nominator can be pre-computed, too.
In the following protocol we will see that Shamir’s secret sharing approach
always uses the constant term f(0) to encode a secret, and thus the interpolation
complexity can be decreased to O(n) multiplications (with one-time costs for
the pre-computations in O(n2)).

P1: Secret Sharing
Let p1, . . . , pn be the n parties that are supposed to share a secret s ∈ F and F

be a finite field with |F| > n. A public value αi ∈ F is assigned to each party

57



Pi. The dealer p0 (depending on the application the dealer can be one of the
parties) encodes s by generating a random polynomial f [X ] ∈ F[X ] of degree t
with f(0) = s. In order to t-share the secret s among all parties he sends the
share yi := f(αi) to Pi for all i.
If less than k+1 data points are available, no information about f can be gained.
In fact, the missing nodes can be arbitrary elements of F. A brute force attack
would have to check |F|i combinations of field elements if i nodes are missing.
This estimation also shows that the size of F should be large enough to prevent
from brute force attacks. The size of the secret s provides a lower bound for |F|
as it is one of its elements and, in general, one can expect s to be sufficiently
large. However, depending on the application, s may be binary. In any case, the
dealer must take care of selecting a field with suitable size allowing to hide the
secret.

P2: Secret Reconstruction:
In order to reconstruct s, the use of formula 4.2.1 with the above discussed
pre-computation seems to be the most efficient approach.

s = f(0) =

t
∑

i=0

yiLi(0) (4.3)

In case p0 has not been malicious during P1, the value obtained in P2 is the
same as the original input s. It should be mentioned here, that Shamir’s secret
sharing does not allow t-private computations on shares. Ben-Or et al. pre-
sented in [BGW88] a method using [Sha79] as building block and allowing n
parties to perform t-private computations on shares. A simplification can be
found in [GRR98]. Although this is an important step in the direction of secure
multi-party computation, the approaches are meant for passive adversaries only.
Considering parties that are spread over the Internet Byzantine faults should
be considered. Therefore, an improvement of the non-robust secret sharing has
been defined (see e.g. [DDWY93]) offering not only privacy but also robustness.

Definition 4.3. (t, σ, n)-Secret Sharing
A (t, σ, n)-Secret Sharing scheme is similar to the (t, n)-Secret Sharing from
definition 4.1. But in this case the two protocols P1,P2 are able to tolerate up
to σ Byzantine faults.

A (t, σ, n)-secret sharing offers an n-party reconstruction protocol P2 which is
robust against up to σ malicious inputs. As long as this limit is kept throughout
its execution and the dealer p0 remains non-faulty during P1, applying P2 results
in the reconstruction of the original input s.
In order to introduce the definition of a verifiable secret sharing which is used
for the secure multi-agent computation presented in chapter 5, we first have to
include an attacker model. Assume AL a passive adversary compromising a set
L of listening parties. AL knows the complete history of all parties in L. AD be
an active adversary corrupting a set D of disrupting parties.

Definition 4.4. (t, σ, n)-Unverified Secret Sharing
Assume L to be the set of t listening parties (out of n − 1) and D the subset
of L of size σ that is disrupting the computation. If p0 has an arbitrary input
s ∈ F and remains non-faulty throughout P1 we require
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1. ∀s′ ∈ F: If p0 6∈ L then the probability distribution on the views of AL,
given that p0 has input s, is identical to the probability distribution on the
views of AL, given that p0 has input s′.

2. At the end of P2 every honest party outputs s.

Property 1 provides the secrecy of input s against t listening parties, while prop-
erty 2 offers resilience against σ disrupting parties. The problem of inconsistent
input in P2 can be solved by aid of an error-correcting code as for example
presented in [BW86]. Definition 4.4 does not handle the case of p0 being faulty
during the execution of P1. There is no possibility for the parties to check the
consistency of the shares they are receiving. Consequently, in a t-unverified se-
cret sharing scheme P2 will fail if p0 behaves maliciously in P1. This is most
unwanted for multi-party computation, where, first, the n parties are untrusted
Internet users, and second, the dealer generally is one of them. Thus, there is
a considerable probability of being concerned with a malicious dealer. This is
why the concept of a t-verified secret sharing has been introduced. For simpli-
fication, most oftenly the secrecy and the resilience parameter are set to the
same value and one simply writes t-verified secret sharing. The main improve-
ment of t-verified secret sharing schemes is, that they offer additional correctness
constraints for the case p0 is faulty during execution of P1.

4.2.2 Verifiable Secret Sharing

As mentioned before, verifiable secret sharing is an essential component of any
secure multi-party protocol. So far, the definitions do not include two significant
properties, that should be available for SMPC: The possibility

1. to detect a faulty dealer and

2. to perform t-private and t-robust computations on shares.

The first is covered by the following definition 4.5 while the latter is an additional
property, not all verifiable secret sharing (VSS) schemes offer.

Definition 4.5. t-Verifiable Secret Sharing
A secret sharing as given in definition 4.4 is called a t-verified secret sharing if
the outcome of P2 is uniquely determined by any subset of n− t parties that are
honest at the end of P1 and as long as at most t parties become corrupted while
executing P2.

Similar to Shamir’s secret sharing in the presence of passive adversaries, Chor et
al. [CGMA85] can be considered as a milestone for the active adversary model.
Since then lots of approaches have been published, which can be categorised
by two different criteria: by the kind of security they provide (unconditional
or computational), by the assumptions they require (broadcast channel, secure
channels etc.) and last but not least by the type of the underlying network
(synchronous, asynchronous).
When this research field started to become popular in the late 1980th, most
approaches assumed synchronous networks in order to have guaranteed message
delivery. Alternatives like using perfectly secure message transmission [DW02,
BM03, DDWY93] in asynchronous networks was and still is not practical. And,

59



in addition, protocol design in synchronous networks is much easier. Meanwhile,
there are asynchronous (e.g [HNP05]) solutions, but their complexity exceeds
that of synchronous solutions by a factor of at least n (if n parties are involved)
in the best case.
The remainder of this section is devoted to an overview on existing VSS proto-
cols. Since asynchronous approaches are not practical, the exemplary protocols
below are without exception synchronous protocols. They are classified after the
type of security they provide.

Protocols with Unconditional Security:

Protocols providing unconditional security do not require any limitation of the
computational power of the parties and the adversary. Under this assumption,
for a piece of data unknown to a set of parties unconditional security means
not only that they cannot compute it within a certain time bound from what
they know, but simply that it cannot be computed at all. Protocols offering un-
conditional security are secure in the information theoretic sense. They do not
depend on any assumption about computational intractability. As such they are
stronger, but at the same time they offer resilience against less malicious parties
(normally n/3) than synchronous ones (normally n/2). VSS protocols with un-
conditional security can be classified into perfect and statistical ones. Statistical
security means that there is a (normally very small) probability of error. If such
an error occurs, the protocol fails. An example is the protocol of Rabin and
Ben-Or [RBO89] which allows to share secrets as long as a majority of n/2 + 1
parties are honest. This is achieved by requiring broadcast channels and secure
channels between every two parties. The probability of error is exponentially
small. In [CCD88] Chaum et al. present an unconditional but statistical proto-
col. It uses authenticated channels and the Byzantine agreement from [DS82].
Error-correction is achieved by a scheme of zero-knowledge proofs which causes
a round complexity of O(log n) for the multiplication of two n bit numbers.
In contrast the approach of [BGW88] relies on arithmetic operations in large
finite fields and provides perfect security, which means that no probability of
error is allowed. In addition, multiplication of two n bit numbers requires O(1)
rounds. The round complexity of interactive protocols is one of the most im-
portant complexity measures. Therefore, not only the specific protocols take a
look at this number, but there are also publications that investigate the round
complexity protocol-independent but security model-depended. As such, Gen-
naro et al. [GIKR01] have proven some limitations in the unconditional setting.
Here, it be only mentioned that a 3-round VSS is possible iff n > 3t, where the
“if” direction is realised by an inefficient protocol. Whereas, for the same t an
efficient VSS is possible with 4 rounds.

Protocols with Computational Security:

Cryptographic results are stronger than unconditional ones in terms of resilience.
VSS based on cryptographic assumptions offers resistance against t < n/2 un-
reliable parties. Adversaries in this model are considered to be computationally
bounded. Diffie and Hellman first introduced this security model in [DH76] and
their approach can still be considered as a building block for VSS. Till 1988 all
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published protocols provided computational security. Similar to the reasons of
designing synchronous protocols, it is intuitive that cryptographic approaches
are easier to achieve than unconditional ones. And, since the security level of
cryptographic protocols is in general more than sufficient, the existence of such
approaches is justified. Problems that are based on [DH76] rely on the difficulty
of computing discrete logarithms. Other approaches like e.g. the one of Goldre-
ich, Micali and Wigderson in [GMW87] prove the existence of secure trapdoor
functions and show that every function with n inputs can be computed such
that in case Byzantine faults occur, no set of parties of size t < n/2 can either
disrupt the computation or compute additional information. This group has
also proven the existence of zero-knowledge proofs for NP-complete problems,
which is used in [GMR89]. In the cryptographic model the protocol of Cramer
et al. from [CDN01] is the most efficient one with a communication complexity
of O(n3), but O(n) rounds per multiplication. This results from the fact that
the evaluation of each multiplication gate requires the invocation of a broadcast
sub-protocol. For the cryptographic setting, too, Gennaro et al. [GIKR01] have
given an upper limit for the round complexity: With a linear threshold of cryp-
tographic security, any function can be computed efficiently in its circuit size,
requiring 3 rounds per multiplication gate.

4.2.3 Error Correction on Shares

A verifiable secret sharing scheme must provide specific methods to detect and
correct a specific number k of incorrect shares. In [BGW88] a generalised Reed-
Miller code (see [PW72]) code is used. Unfortunately, this implies the necessity
of choosing the interpolation points as powers of a primitive n-th root of unity in
the underlying finite field F. Although the protocol of Ben-Or et al. will play an
important role later-on in section 4.3.2 for the secure multi-party computation
protocol, the method from Berlekamp and Welch [BW86] is proposed as substi-
tute for the Reed-Miller code. The approach from [BW86] does not require the
use of roots of unity, causes a computational complexity of O(t ·n) and corrects
up to k < (n− t)/2 errors.

4.3 Secure Multi-Party Computation

4.3.1 Overview

Secure multi-party computations is nothing else than computing on shared data.
As mentioned in the beginning of this chapter, all SMPC protocols consist of
three phases: Commit, compute and reveal. In the commitment phase every
party commits to its input in a way that the other parties do not gain any
information about this input. In synchronous SMPC protocols this is done with
a verifiable secret sharing scheme. These schemes handle the problems arising
with inconsistent shares and missing inputs. Such data are substituted by de-
fault shares and do not cause harm to the SMPC protocol as long as not more
than t(n) inputs are faulty. As such, the commitment phase is along the lines
of a verifiable secret sharing protocol. However, the computation phase requires
arithmetic operations on shared data, particularly addition and multiplication.
Multiplication of t-shared data using the homomorphic properties of polynomi-
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als, results in 2t-shared output. Consequently, the degree of the sharings must
be securely decreased afterwards. Till now, all approaches to SMPC require in-
teraction between the parties to solve this problem. Unfortunately, interaction
means communication, which is not only costly and due to network delays inef-
ficient, but also causes a strong dependency between the capabilities to defend
against attackers and the properties of the underlying network. Therefore, the
further survey on protocols for secure multi-party protocols will be structured
after the different network types.
In synchronous networks with public channels it is possible to defend against
static and polynomially bounded adversaries corrupting at most t < n/2 par-
ties. This has been shown in the original paper of Yao [Yao82] as well as by
Goldreich et al. [GMW87, Gol04] under the assumption that there are trapdoor
permutations. Softening the notion of security by assuming that an abortion
of the protocol does not hurt security, even allows an adversary to corrupt an
unbounded number of parties while guaranteeing the correctness of the output,
if produced. This result is presented in [Gol04].
In contrast, secure point-to-point connections in a synchronous network only
allow to defend against arbitrary adaptive adversaries corrupting at most n/3
of the parties. I have already mentioned this result when discussing the protocol
of Ben-Or et al. [BGW88], but it is also given in [CCD88]. Both protocols rely
on broadcast simulation. If one can additionally assume that global physical and
authenticated broadcast channels are available, Rabin et al. [RBO89], Beaver
[Bea91b] as well as Chaum et al. [CCD88] have presented protocols that are
secure against computationally unbounded adaptive t-adversaries with t < n/2.
This result has been improved in [FM00] where it is shown that a broadcast
channel between each subset of three parties is sufficient to reach these proper-
ties.
The situation is more difficult in networks with point-to-point connections in
which the adversary can delete messages (asynchronous networks). While in case
of finite time message delays the parties could wait for input, in case of deleted
messages the parties cannot determine whether the sending party got corrupted
or is just delayed. This implies, that it is unclear how many honest parties still
have to send their input before the computations can be continued. As it is
necessary to have at least 3t + 1 inputs available if t parties got corrupted, the
input of all honest parties must arrive. Otherwise, the protocol fails. Ben-Or
et al. [BOCW93] limited the adversary to corrupt at most t(n) < n/4 parties
to be able to additionally face a certain amount of network errors. If one does
not require error-free protocols but allows an exponentially small probability of
error, Ben-Or et al. show in [BOKR94] that also t < n/3 is possible.
The practicability of SMPC protocols strongly depends on the given compu-
tation and communication complexity. Nowadays, mostly the later is the most
limiting factor. After the publication of the first protocols in the 1980s, which
focused on the presentation of the feasibility of SMPC and did not look at effi-
ciency, subsequent protocols tried to reduce the number of rounds as well as size
and number of message exchanges. In the 1990th these efforts focused on syn-
chronous networks only [BBB89, BFKR90, FKN94, FY92, GRR98], as the guar-
anteed message delivery in such networks simplified the design and correctness
proofs of the protocols. The approaches from [BBB89, BFKR90, GRR98] aimed
on a reduction of the round complexity but had to deal with a high communica-
tion complexity and a small robustness parameter t(n). In [FY92, GRR98] the
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authors show that the situation can be improved if the computations are firstly
done in a non-robust but private manner. Only in case of faults the computa-
tions are repeated using an inefficient but robust protocol. Although, at first
look, this seems to be a promising idea, one must finally recognise that such an
approach opens the door for an adversary to constantly slow down the protocol
by manipulating just a single party. We will see later-on in this section, that Hirt
and Maurer used this idea in [HM01], too, but limited to the preparation phase
of the protocol. Additionally, it is possible to detect and eliminate players that
have behaved maliciously. Over the time, this decreases the probability of need-
ing the more costly protocol. As such, this protocol, although already published
in 2001, is still the most efficient one. It causes a communication complexity of
O(mn2) for the common evaluation of a circuit with m multiplication gates by
n parties.
This protocol is used as a sub-protocol for the distributed computations of an
agent Alliance (as introduced in chapter 3). It is presented in the remainder of
this chapter.

4.3.2 The Protocol of Hirt and Maurer

Although originating in 2001, the protocol of Hirt and Maurer [HM01] is still the
only practical SMPC protocol that has been published till now. Therefore, the
agent Alliances are currently designed using this protocol. But, by their design,
Alliances could use other SMPC protocols as well. Since the understanding of
an Alliance requires detailed information about how it performs its distributed
computations, this section is dedicated to a survey of the protocol.

Assumptions Let P = {P1, . . . , Pn} be the set of n players connected by bi-
lateral synchronous reliable secure channels. The members of P wish to correctly
compute an agreed function without demanding each player to be honest. The
function is specified as an algebraic circuit over a finite field F (|F| > n) with
m multiplication gates. To each player Pi a unique public value αi is assigned
(his zero for the secret sharing scheme of Shamir [Sha79] which the protocol is
based on). The protocol allows a secure function evaluation although an active
and computationally unbounded adversary may corrupt up to t < n/3 play-
ers, which means that the computed result is correct although t players can
(mis)behave arbitrarily. The security of the protocol is unconditional with an
arbitrarily small probability of error. Later-on, we will see that in practical use,
the main problem is to keep the number of corrupted players within the upper
limit t. As long as this upper bound is not exceeded, the security of the protocol
is perfect.
The protocol is divided into two phases. Initially, a preparation phase takes
place, in which m random triples (a, b, c) with c = a · b are t-shared among
the players. In this phase, the players generate and distribute random numbers
a, b ∈ Fp. Then, a t-shared product is computed. This is done along the lines of
[BGW88] (see section C) and [GRR98]. These protocols are non-robust which
is why after the triple generation, a fault detection and localisation takes place.
Malicious parties get excluded from the preparation phase as soon as they are
detected. The second phase of the protocol is the computation phase in which
the players provide their shared input to the circuit, which is then evaluated
gate by gate, where for each multiplication gate one random triple is used for
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Preparation Phase
1 triple generation
1.1 computation of t′-shared random numbers a, b ∈ F

1.2 computation of t′-shared c = a · b
1.3 increase degree t′ to t
2 verification of the degree
2.1 fault detection I
2.2 fault localisation I
3. verification of sharing
3.1 fault detection II
3.2 fault localisation II
Computation Phase
1 input sharing
2 computation phase
3 output reconstruction

Table 4.1: Protocol phases

means of blinding. The phase ends with the output reconstruction. Table 4.1
offers a detailed survey on the contents of each phase.
In a mobile agent scenario the preparation phase is not required since the origi-
nator of an agent Alliance could securely produce and distribute random triples
before sending his Alliance in an un-trusted environment. Nevertheless, for some
tasks it may be complicated or impossible to know an upper bound of multi-
plications in advance so that it could be useful to provide an Alliance with the
property to produce new triples when necessary.

The Preparation Phase

As for each multiplication gate of the arithmetic circuit one random triple is
spend in order to preserve the privacy of the input and output of the gate, the
generation phase must produce at least m random triples. During the generation,
each party Pi ∈ P receives shares of each component of the triples (a(i), b(i), c(i))
of the ith block, i = 1, . . . , n. The generation itself follows the protocol of
[BGW88] and is non-robust. It is divided into blocks of length l = ⌈m/n⌉. At
the end of each block the consistency of the triples of one block is verified. This
verification consists of two phases of fault-detection and fault-localisation, where
in each phase n random triples are spend to provide privacy of the first l triples
during the verification process. Thus, an overall amount of l + 2n triples must
be available. If a block contains inconsistent triples this will be detected with
an overwhelming probability as we will see later-on in this section. In this case,
the whole block is discarded and two players accusing each other of cheating are
identified and excluded from the further preparation phase. This is done using
the player elimination framework from [HMP00]. It is necessary to eliminate two
parties as the origin of a fault cannot be localised uniquely. Consequently, in
one player elimination process, the number n′ of parties currently participating
in the preparation phase is reduced by one, while the number t′ of currently
malicious parties is reduced by at least 1. Thus, it is guaranteed that at most t
blocks fail and at most n + t blocks have to be generated (initially given t = t′
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and n = n′). The player elimination provides the inequality

t′ < ⌊n
′

3
⌋

as an invariant of this phase. This is a necessary assumption for the correct
execution of all sub-protocols of the preparation phase5.

0. Set P ′ := P , n′ := n and t′ := t

1. Repeat until n blocks succeed:

1.1 Generate l + 2n′ triples as presented in subsection 4.3.2.

1.2 Verify the consistency of the first l+n′ triples, using the last n′ triples.
This is to be done with the fault detection algorithm from subsection
4.3.2. If a fault is detected identify and eliminate a set D ⊆ P ′ of two
players with the fault localisation from subsection 4.3.2. At least one
player in D is cheating. Set P ′ := P ′\D, n′ := n′− 2 and t′ := t′ − 1.
Remove the used triples from the block.

1.3 If the triples have been successfully checked, use the last n′ triples
to verify that every player shares the correct values of the first l
triples (fault detection from subsection 4.3.2). In case of a fault, use
the fault localisation algorithm from subsection 4.3.2 to eliminate
a subset D ⊆ P ′ of two players such that at least one of them is
cheating. Set P ′ := P ′\D, n′ := n′ − 2 and t′ := t′ − 1 and remove
the last n′ triples.

1.4 If either step 1.2 or 1.3 failed the actual block is discarded.

Triple Generation As mentioned in the beginning of this section, t-shared
random triples are generated within the preparation phase. The generation of
the triples of one block can be done in parallel. In a first step, t-shared random
number a, b must be computed by the players. This is done intuitively. For the
ith block, the players generate local random numbers a(i), b(i) and t′-share these
values among the players of P ′ which have not yet been eliminated. This requires
the parties to choose random polynomials ∼ fi(X),∼ gi(X) ∈ F[X ] with degree
t′ which serve for the interpolation polynomials hiding the random numbers.
The parties together then generate t′-shares of the sum of all polynomials which
represent sharings of the sum of the random number generated by the single
parties. The exact procedure is given in sub-protocol 4.1.
Now, the players have to compute t′-sharings of c = a · b. Doing so, each player

Pi locally computes the product if his shares
∼
ai,

∼

b i as

ei =
∼
ai ·

∼

b i .

The result must then be t′-shared among the players. This requires to set up a
t′-sharing of ei as this value is actually 2t′-shared after the local multiplication.
Using Lagrange interpolation as presented in 4.2.1, each player reconstructs his
own t′-shares of c. See protocol 4.2 for an algorithmic presentation. Because of
the player elimination framework, it is possible that for some protocol instances

5For example, the invariant is needed for the robust broadcast simulation
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The functionality of sub-protocol Generate ab

Generation of t′-sharings of random numbers a, b ∈ F by n′ parties
Pj ∈ P :

1. Every player Pi generates two random polynomials ∼
fi(X),∼ gi(X) ∈ F[X ] of degree t′ and shares the random
constant terms a(i), b(i) with the other players by sending
the shares

∼ aij =∼ fi(αj), ∼ bij =∼ gi(αj)

to player Pj , 1 ≤ j ≤ n′.

2. Each player Pj computes his shares of a, b as

∼ aj =

n′

∑

i=1

∼ aij , ∼ bj =

n′

∑

i=1

∼ bij .

Consequently, the sharing polynomials are defined as

∼ f(X) =

n′

∑

i=1

∼ fi(X), ∼ g(X) =

n′

∑

i=1

∼ gi(X)

with ∼ f(0) = a,∼ g(0) = b.

Protocol 4.1: Part 1 of the Triple Generation Phase

of random ab and share c the current robustness valuet′ is smaller than t. In
this case, the players have to lift the degree of the sharings of a, b, c to t. This is
done by generating three random polynomials of degree t with constant terms

zero. Adding sharings of these polynomials to the shares
∼
aj ,

∼

b j,
∼
cj causes a

randomised increase of the degree of the resulting sharing polynomial. The whole
procedure is given in protocol 4.3. It is easy to check that aj , bj , cj are indeed
t-shared now. The polynomial f(X) =∼ f(X) + X · f̄(X) provides

f(0) =∼ f(0) + 0 ·
n′

∑

i=1

f̄i(0) = aj

and

f(αj) =∼ αj + αj ·
n′

∑

i=1

f̄(αj) =∼ αj + αh ·
∑

i=1

n′āij .

The analogous argumentation is valid for g(X) =∼ g(X)+X ·ḡ(X) and h(X) =∼
h(X) + X · h̄(X)
As the triple generation is private but non-robust, each generation of a block of
l + 2n′ triples is followed by a verification phase. It includes the verification of
the degree of the shared triples as well as the verification that for k = 1, . . . , l

all players Pi share the correct products ẽ
(k)
i = ã

(k)
i · b̃(k)

i (from sub-protocol
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The functionality of sub-protocol Share c

Generation of t′-sharings of the product c = a · b ∈ F by n′ parties
Pj ∈ P :

1. Every player Pi computes his product share ei =∼ ai· ∼ bi.
Then he generates a random polynomial hi(X) ∈ F[X ] of
degree t′ with hi(0) = ei and shares his ei by sending eij =
hi(αj) to Pj , 1 ≤ j ≤ n′.

2. Having received the values e1j, . . . , en′j , each player Pj re-
constructs his t′-share of c as

cj =

n′

∑

i=1

ωieij , with ωi =

n′

∏

j=1,j 6=i

αj

αj − αi

.

Protocol 4.2: Part 2 of the Triple Generation Phase

The functionality of sub-protocol Lift
Lifting the t′-sharings of the product a, b, c ∈ F to t-sharings:

1. Every player Pi generates random polynomials
f̄(X), ḡ(X), h̄(X) of degree t− 1 and sends the shares

āij = f̄(αj), b̄ij = ḡ(αj), c̄ij = h̄(αj)

to player Pj , 1 ≤ j ≤ n′.

2. Each player Pj reconstructs his t-shares aj , bj, cj of a, b, c as

aj = ãj +αj

n′

∑

i=1

āij , bj = b̃j +αj

n′

∑

i=1

b̄ij , cj = c̃j +αj

n′

∑

i=1

c̄ij .

Protocol 4.3: Part 3 of the Triple Generation Phase

share c). In case, faults are detected, a fault localisation and subsequent player
elimination is performed. The sub-protocols which implement these functional-
ities are presented now.

Fault Detection and Localisation I After having generated a block of
l + 2n′ random triples, it has first to be verified that the degree of all sharings
it t. By construction, the degree it at least t, which means, by cheating, a
player could have caused t′ to be larger than t. The basic idea is to use (and
finally discard) n′ triples for the verification of the remaining l + n′ triples. The
verification must not leak information about the sharings, which is achieved by
verifying the degree of a blinded linear combination of the sharing polynomials
of each share of a(k), b(k), c(k), k = 1, . . . , l + n′. Obviously, the degree of a
linear combination of polynomials is the same as the maximum degree of the
single polynomials. Consequently, a sharing with degree t′ > t would cause the
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linear combination to have degree t′ > t. For the computation of the random
linear combination each player Pi sends a random challenge vector r(i) ∈ F

l+n′

to the other players. The corresponding linear combinations of each involved
polynomial is then reconstructed towards the challenging player who checks that
the resulting polynomial is of appropriate degree. To preserve the privacy of the
involved polynomials, for each verifier Pv one additional blinding polynomial is
added to the linear combination. The sub-protocol is given in protocol 4.4.

The functionality of sub-protocol Fault-detection I

Verify the degree of all sharings in one block:

1. The verifier selects a random vector [r1, . . . rl+n′ ] ∈ F
l+n′

and sends it to each player Pj ∈ P ′.

2. Every player Pj computes and sends to Pv the following cor-
responding linear combinations and the share of the blinding
polynomial for 1 ≤ i ≤ n′:

ã
(
P

)
ij =

∑l+n′

k=1 rk + ã
(
ijk) + ã

(
ij l + n′ + v),

ā
(
P

)
ij =

∑l+n′

k=1 rk + ā
(
ijk) + ā

(
ij l + n′ + v),

b̃
(
P

)
ij =

∑l+n′

k=1 rk + b̃
(
ijk) + b̃

(
ij l + n′ + v),

b̄
(
P

)
ij =

∑l+n′

k=1 rk + b̄
(
ijk) + b̄

(
ij l + n′ + v),

c̃
(
P

)
ij =

∑l+n′

k=1 rk + c̃
(
ijk) + c̃

(
ij l + n′ + v),

c̄
(
P

)
ij =

∑l+n′

k=1 rk + c̄
(
ijk) + c̄

(
ij l + n′ + v).

3. Pv verifies whether for each 1 ≤ i ≤ n′ the shares
ã
(
P

)
i1 , . . . , ã

(
P

)
in′ lie on a polynomial of degree at most

t′. The same is done for the shares b̃
(
P

)
i1 , . . . , b̃

(
P

)
in′ and

c̃
(
P

)
i1 , . . . , c̃

(
P

)
in′ , 1 ≤ i ≤ n′. Also Pv verifies whether for

each 1 ≤ i ≤ n′, the shares āi1, . . . , āi1 as well as b̄i1, . . . , b̄i1

and c̄i1, . . . , c̄i1 lie on a polynomial of degree at most t− 1.

4. Pv broadcastsa one bit according to whether all the 6n′ ver-
ified polynomials have degree at most t′, respectively t− 1,
or at least one polynomial has too high degree.

aWith a suitable broadcast simulation sub-protocol

Protocol 4.4: Fault detection I

If one verifier detects that the degree of at least one of the linearly combined
polynomials is too high, he broadcasts this information to the other play-
ers and all triples of the actual block are discarded. Also, the sub-protocol
Fault-localisation I from protocol 4.5 is run to determine and eliminate a
set D ⊆ P ′ of two players, from whom at least one is corrupted. Although it
is possible, that only one of the players in D is actually corrupted, he is also
eliminated as his innocence cannot be proven. Obviously, the sub-protocol is run
if and only if one verifier has broadcast a complaint in step 4 of sub-protocol
fault-detection I. This verifier is denoted with Pv in the fault-localisation
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protocol. In case, there were several verifiers sending a complaint, the one with
smallest v is selected to be the verifier in protocol Fault-localisation I, pro-
tocol 4.5.

The functionality of sub-protocol Fault-localisation I

Elimination of a subset D ⊆ P ′ of two players of whom at least one is
corrupted:

1. The verifier Pv selects one of the polynomials of too high degree
and broadcastsa the location of the fault, consisting of the index
i and the information which sharing is concerned (ã, b̃, c̃, ā, b̄, c̄).
Without loss of generality, it is assumed now, that the fault was

observed in the sharing ã
(
P

)
i1 , . . . , ã

(
P

)
in′ .

2. The owner Pi of this sharing (i.e., the player who acted as dealer for
this sharing) sends to the verifier Pv the correct linearly combined

polynomial f̃
(
P

)
i =

∑

k = 1l+n′

rk f̃
(
P

)
i (X) + f̃ l+n′+v

i (X).

3. Pv finds the smallest index j such that ã
(
P

)
ij , received from player

Pj in step 2 of the fault-detection, does not lie on the polynomial

f̃
(
P

)
i (X) (received from the owner Pi from step 2 of this protocol),

and broadcasts j among the players in P ′.

4. Both Pi and Pj send the list [ã
(1)
ij , . . . , ã

(l+n′)
ij , ã

(l+n′+v)
ij ] to Pv.

5. Pv verifies that the linear combination [r1, . . . , rl+n′ ] applied to

the values received from Pi is equal to f̃
(
P

)
i (αj). Otherwise, Pv

broadcasts the index i, and the set of players to be eliminated is
D = {Pi, Pv}. Analogously, Pv verifies the values received from Pj

to be consistent with ã
(
P

)
ij received in step 2 of the fault-detection,

and in case of failure broadcasts the index j. In this case the subset
D = {Pj, Pv} is eliminated.

6. Pv finds the smallest index k such that the values ã
(k)
ij received

from Pi and Pj differ, and broadcasts k and both values ã
(k)
ij from

Pi and ã
(k)
ij from Pj .

7. Both Pi and Pj broadcast their value of ã
(k)
ij .

8. If the values broadcast by Pi and Pj differ, the the localised set is
D = {Pi, Pj}. If the value broadcast by Pi differs from the value
broadcast by Pv, then D = {Pi, Pv}. Else, D = {Pj , Pv}.

aUsing a sub-protocol for broadcast simulation

Protocol 4.5: Fault localisation I

If at least one of the involved sharings in any of the l + n′ triples has too high
degree, this is detected by any honest verifier with probability at least 1−1/|F|.
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Fault Detection and Localisation II Now, it must be verified that in each
triple (a(k), b(k), c(k), k = 1, . . . , l, of a block every player Pi shared the correct

product share ẽ
(k)
i = ã

(k)
i · b̃(k)

i . It is already verified that the sharings of all
factor shares are of degree t′. Therefore, it is sufficient to verify that the shares

of ẽ
(k)
1 , . . . , ẽ

(k)
n′ lie on a polynomial of degree at most 2t′. This polynomial is

uniquely defined by the shares of the at least n′ − t′ > 2t′ honest players. In
analogy to the fault-detection I, fault-detection II (as presented in protocol 4.6)
again uses n′ of the remaining l+n′ triples of the current block in order to verify
l triples. Those triples are then discarded. Every player Pv distributes a random
challenge vector, and the corresponding linear combination of the polynomials
plus one blinding polynomial is reconstructed towards Pv. The protocol can be
invoked concurrently for each verifier Pv ∈ P .

The functionality of sub-protocol Fault-detection II

Verify that all players share the correct product shares:

1. The verifier Pv selects a random vector [r1, . . . rl] ∈ F
l and

sends it to each player Pj ∈ P ′.

2. Every player Pj computes and sends to Pv the following cor-
responding linear combinations and the share of the blinding
polynomial for 1 ≤ i ≤ n′:

ẽ
(
P

)
ij =

∑

k = 1lrkẽ
(k)
ij + ẽ

(l+v)
ij .

3. Pv verifies whether for each 1 ≤ i ≤ n′ the shares
ẽ
(
P

)
i1 , . . . , ẽ

(
P

)
in′ lie on a polynomial of degree at most t′. If so,

he verifies, whether the secrets ẽ
(
P

)
1 , . . . , ẽ

(
P

)
n′ of the above

sharings lie on a polynomial of degree at most 2t′. Pv broad-
casts one bit, to whether all polynomials have appropriate
degree.

Protocol 4.6: Fault detection I

As in Fault-localisation I, Fault-localisation II, too, is executed if and
only if one verifier has reported a fault in Step 3 of the above protocol. Again,
if there are several such verifiers, the one with smallest v is selected for the
protocol Fault-location II in protocol 4.7.
Every honest verifier will detect the fault with probability at least 1− 1/|F|, if
at least one of the involved shares has degree higher than 2t′.

Analysis As mentioned before, the protocol of Hirt and Maurer assumes an
unbounded active adversary. I have presented in section 4.1.2 the different at-
tacker models. There it is also mentioned that an active adversary may be static
or adaptive. The difference of both models lies in the point of time the attacker
has to decide which party she wants to attack. Now, an analysis of the error
probability of the preparation phase is given with respect to the two models.
First, I discuss the case of a static adversary. We are interested in the probability
that a bad triple is inserted into a block and this is not detected by the honest
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The functionality of sub-protocol Fault-localisation II

Elimination of a subset D ⊆ P ′ of two players of whom at least one is
corrupted:

1. If in Step 3 of Fault-detection II the degree of one of the second-

level sharings ẽ
(
P

)
i1 , . . . , ẽ

(
P

)
in′ was too high, then Pv applies the

error correction to find the smallest index j such that ẽ
(
P

)
ij must

be corrected. Since the sharings have been verified to have correct

degree, Pv can conclude, that Pj has sent the wrong value ẽ
(
P

)
ij .

Pv broadcasts j and the set D = {Pj, Pv} has to be eliminated. In
this case, the protocol stops here.

2. Every player Pi sends to Pv all his factor shares ã
(1)
i , . . . , ã

(l)
i , ã(l+v)

and b̃
(1)
i , . . . , b̃

(l)
i , b̃(l+v)

3. Pv verifies for every k = 1, . . . , l, l + v whether the shares

ã
(k)
1 , . . . , ã

(k)
n′ lie on a polynomial of degree t′. If not, Pv applies

error-correction and finds and broadcasts the smallest index j such

that ã
(k)
j must be corrected. The set of players to be eliminated is

D = {Pj , Pv}. The same verification is performed for the shares

b̃
(k)
1 , . . . , b̃

(k)
n′ for k = 1, . . . , l, l + v.

4. Pv verifies for every i = 1, . . . , n′ whether the value ẽ
(
P

)
i computed

in Step 1 is correct, i.e., whether

ẽ
(
P

)
i

?
=

l
∑

k=1

rkã
(k)
i b̃

(k)
i + ã

(l+v)
i b̃

(l+v)
i .

This test will fail for at least one i, and Pv broadcasts this index.
The players in D = {Pi, Pv} are eliminated.

Protocol 4.7: Fault localisation II

players. Consequently, we must assume that in a block at least one triple is
faulty. Every honest player will detect this with probability at least 1 − 1/|F|.
This implies that the probability that no honest player detects the inconsistency
is at most

1− (1 − 1/|F|)n′−t′ = |F|)−n′+t′ .

Once a bad block is detected, at least one corrupted player is eliminated. Con-
sequently, the attacker can try at most t times to insert a bad triple. The
probability that at least one of these trials is not detected is at most

∑

i = 0t−1|F|−(n−t−i) ≤
(

1

|F|

)n−2t

.

In the adaptive case, the corruption could happen after the challenge vector
is known. Thus, a bad block passes the verification, if at least n′ − t′ of the
challenge vectors cannot discover the fault. The probability for this event is at
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most
t′
∑

i=0

(

n′

i

)

(1 − 1

|F|)
i(

1

|F|
n′−i

≤ (
3

|F| )
n′−t′ .

As in the static case, the adversary can try t times to introduce a bad block.
The overall error probability is then

t−1
∑

i=0

(
3

|F| )
n−t−i ≤ (

3

|F| )
n−2t.

This probability can be decreased by repeating the fault-detection with new
blinding triples. Unfortunately, this implies the costly broadcast primitive to be
heavily used. Consequently, in practice, the security gain will most oftenly not
justify the additional expenses.

Computation Phase

The actual computation consists of two phases. First, the input provided by
the players to the circuit is t-shared. Second, the actual circuit evaluation takes
place. The evaluation goes along the lines of [Bea91a] with slight modifications,
which are necessary because the upper limit t′ on the number of corrupted
players does not need to be the same as the degree t of the sharings. The
protocol of Hirt and Maurer requires t-sharings as all players, independent from
having been eliminated or not, are allowed to provide input to the circuit and
to take part in the evaluation. In the end, all players must receive output from
the computation.
From the preparation phase, the players in P ′ have m t-shared random triples
(a(i), b(i), c(i)) with c(i) = a(i) ·b(i). As mentioned before, eliminated players may
provide input and take part in the evaluation, but they act outside the protocol
and are ignored by the players in P ′. Since the player elimination framework
guarantees the inequality

2t′ < n′ − t,

the circuit can be efficiently and correctly evaluated by the n′−t′ honest players
in P ′.

Input Sharing

In the input sharing phase, every player t-shares his input with the remaining
players in the subset P ′ ⊆ P . The sharing itself is performed with the verifiable
secret sharing protocol from [BGW88]6, which provides perfect security. The
protocol is slightly modified to face t 6= t′.
Now, let us denote a dealer by P , and the secret to be shared by s. The dealer
can be any party, not necessarily in P ′ or P , that shows itself responsible to share
the secret s. Normally, it will be a player in the set P . The input sharing is done
by hiding the secret in the constant term of a random polynomial f(X, Y ) ∈
F[X, Y ], i.e., f(0, 0) = s. If we represent the values f(αi, αj) as a n′×n′ matrix
over F, the dealer then shares s by providing each party Pi, i = 1, . . . , n′ with
the ith column and the ith row. Then, the players Pi send to all players Pj

6The protocol is presented it section C
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the value f(αi, αj). This way every player Pj can check, whether these values
lie on the polynomial f(αj , Y ) and f(X, αj). In case, complaints occur, the
dealer broadcasts the correct points f(αi, αj) and f(αj , αi). This enables all
players Pk to check with their polynomial f(αk, X). If at most t′ complaints are
broadcasted every player Pk takes f(αk, 0) as his share. Otherwise, the dealer
must be faulty (as in this case at least one honest player sent an accusation,
which must be true). In this case, the players take a default sharing. In practice,
the dealer will most often be either a trusted party or one of the players, sharing
his own input among the players. Then, a default sharing has no influence on
the correctness of the evaluation, as there are at most t′ malicious players and
consequently at most t′ default shares. The polynomials of at least n′ − 2t′ > t
honest players are consistent and uniquely define the polynomial f(X, Y ) with
degree t. The whole input sharing is presented in protocol 4.8.

The functionality of sub-protocol Input Sharing

t-Sharing of a secret s among the players in P ′.

1. The dealer P selects a random polynomial f(X, Y ) ∈ F[X, Y ] of
degree t, with f(0, 0) = s. Then, he sends the polynomials fi(Y ) =
f(αi, Y ) and gi(X) = f(X, αi) to player Pi, i = 1, . . . , n′.

2. Every Pi ∈ P ′ sends the values fi(αj) and gi(αj) to each Pj , 1 ≤
, j ≤ n′.

3. Every player Pj broadcasts one bit according to whether all re-
ceived values are consistent with the polynomials fj(Y ) and gj(X).

4. The secret sharing is finished if no player broadcasts a complaint.
In this case, the share of player Pj is fj(0) = f(αj , 0). Otherwise,
every complaining player Pj broadcasts a bit vector of length n′,
where a 1-bit in position i means, that one of the values received
from Pi was not consistent with fj(Y ) or gj(X). The dealer answers
all complaints by broadcasting the correct values f(αi, αj) and
f(αj , αi).

5. Every player Pi checks whether the values broadcast in step 4 are
consistent with his polynomials, and broadcasts either confirma-
tion or accusation. The dealer answers every accusation by broad-
casting both polynomials fi(Y ), gi(X) of Pi, and Pi replaces his
polynomials by the broadcast ones.

6. Every player Pi checks whether the polynomials broadcast by the
dealer are consistent with his polynomials, and broadcasts either
a confirmation or accusation.

7. If in Steps 5 and 6, there are at most t′ accusation, every Pi takes
fi(0) as his share of s. Otherwise, the dealer is faulty and the
parties take default sharings.

Protocol 4.8: Input Sharing
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Circuit Evaluation

In an arithmetic circuit 3 kinds of gates may be differentiated:

1. addition

2. scalar multiplication

3. multiplication

In the following subsections we define u, v ∈ F as t-shared values and

p(X) =
t
∑

i=1

ciX
i + u, q(X) =

t
∑

i=1

c′iX
i + v

the secret polynomials. The value c ∈ F be publicly known. The following para-
graphs clarify, that both addition and scalar multiplication on shares are local
operations while multiplication requires communication.

Addition:
Obviously, p + q(0) = u + v and deg(p + q) = t. Furthermore, p(αi) + q(αi) =
p + q(αi) (linearity of p). This implies that each party pi can compute its share
of u + v locally.

Scalar Multiplication:
The value c · u can be shared by the polynomial cp(X) =

∑t

i=1 c · u + c · ciX
i.

Furthermore, each party pi can compute its share of c · u locally because of
p(c · αi) = c · p(αi)) (linearity of p).

Multiplication:
Multiplication of two t-shared values u, v cannot be done locally because

deg(p(X) · q(X)) = 2t

which implies that the product u · v would be 2t-shared and a reconstruction
would be impossible as soon as more than ⌈n/6⌉ − 1 malicious parties are in-
volved into the computation.

Therefore, a multiplication gate is evaluated according to the circuit randomi-
sation of [Bea91a] using one t-shared triple (a, b, c) with c := a · b as generated
in the preparation phase. The product u · v can be written as follows:

u · v = ((u− a) + a)((v − b) + b) = ((u − a)(v − b)) + (u− a)b + (v − b)a + c

It is computed in the following steps:

1. Local computation of the differences du = u− a and dv = v − b. This can
be done since u, v, a, b are t-shared.

2. Reconstruction of du and dv. No information about u and v is lacking in
this process as a and b are random numbers.

3. Now, du ∗ dv are publicly known and shares of the product u · v = dudv +
dub ∗ dva ∗ c can be computed by each party through scalar multiplication
and addition, respectively.
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The multiplication protocol requires two secret reconstructions. This implies
all parties to send the respective shares to the other parties. Consequently, the
communication costs per multiplication gate are 2n2.

Secret Reconstruction

In order to enable a party Pi to reconstruct a secret, each party sends its share
to Pi. In a first step Pi runs the error-correction from section 4.2.3 to correct up
to t incorrect or missing shares. Then, it uses the interpolation algorithm from
section 4.2.1 to reconstruct the secret. The reconstruction towards one player
requires n shares to be sent to this player.
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Chapter 5

Secure Multi-Agent
Computation

In chapter 4 the protocol for synchronous secure multi-party computation from
Hirt and Maurer [HM01] has been presented. This protocol enables us to design
a protocol for secure mobile multi-agent computation which does not rely on a
trusted third party. As already mentioned in the context of general secure multi-
party computation in the introduction of chapter 4, an Alliance of co-operating
agents simulates and substitutes a trusted authority. This approach is the first
of its kind in the field of mobile agents. We have firstly introduced it in [EM03],
based on the protocol for SMPC from Ben-Or et al. [BGW88] which is secure
in the UC framework1 of Canetti [Can00]. The resulting SMAC protocol was
mostly of theoretical interest as the protocol from [BGW88] must be regarded as
impractical. We made several refinements of protocol components aiming on a
complexity reduction of the SMAC protocol, including the incorporation of the
efficient Hirt-Maurer protocol. These results are presented in the Diploma thesis
of Mie [Mie03]. After all, our protocol achieves a complexity that is quadratic
in the number of parties. As SMPC protocols require broadcast channels which
is in general achieved by broadcast simulations which cannot be done below a
quadratic complexity, this result must be considered optimal. The basic ideas of
SMAC as well as the connection between SMPC and SMAC have been described
in chapter 3. This chapter describes SMAC in depth.
In order to enable an Alliance of co-operating agents to securely fulfil its task,
it must be provided with mechanisms allowing it to

1. manage data in a way that its privacy is protected against an adversary,
and

2. securely perform its computations.

We have seen in chapter 3 that using a protocol for secure multi-party computa-
tions allows to protect the computation phases of an Alliance. As no migration
takes place in those phases, the parties of the SMPC protocol can be identi-
fied with the hosting servers of the Alliance. This identification requires as an

1The UC framework is a security model that provides unconditional security for protocols.
For more information see Appendix B
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assumption for the SMAC protocol, that all Alliance members are hosted on
different servers at any time. I have already discussed the reasons for this as-
sumption in chapter 3. Then, using the protocol of Hirt and Maurer [HM01],
all computations remain secure as long as at most t(n) = ⌈n/3⌉ − 1 Alliance
members are located on malicious hosts. Since this protocol assumes a syn-
chronous network, additional synchronisation techniques (e.g. that of Awerbuch
from [Awe85]) are necessary when using the protocol in an asynchronous setting.
As a consequence, an attacker could stop the computations but it is not capable
of hurting the correctness and privacy. We have seen in section 4.1.4 that in
general, this situation is similar to the one in an asynchronous protocol. At the
same time, in comparison to asynchronous protocols, the efficient Hirt-Maurer
protocol offers the possibility of a practical implementation.
Migration requires special handling. While one protocol instance has to be ter-
minated on the current hosts, a new one has to be started on the new hosts. This
requires interaction between 2n hosts. Consequently, the computations cannot
be part of the running instance of the n-party SMPC protocol. Other means
must be taken. The transition from one instance to the next must not leak any
information to the adversary. Therefore, the final step of the SMAC protocol
requires the old hosts to delete all knowledge about the Alliance. In case of
malicious hosts, one can assume that they do not follow this step of the pro-
tocol, hoping to be able to exploit their knowledge at some future time. Data
shares represent a part of this knowledge which is of particular sensitivity as
their manipulation can cause the computations to become incorrect. Therefore,
it is part of the protocol that the shares are reliably disabled in each migration
pre-processing phase, before starting the migration post-processing phase which
is the new protocol instance. This is done by using a randomised re-sharing tech-
nique, like the one from Ostrovsky and Yung [OY91], which allows to compute
shares of new shares by means of n-party computations on the old hosts. These
shares are then sent to the new hosts and reconstructed there. The re-sharing
protocol is described in depth in section 5.2.5.
The remainder of this chapter is organised as follows: First, in section 5.1, the
security model for the SMAC protocol is introduced. Then, the structure of an
Alliance and its members is presented. After this preparatory part, section 5.2
describes the functionality of the SMAC protocol in an informal way, focussing
on the initialisation phase and the migration pre- and post-processing phases.
Section 5.3 presents the protocol from the point of view of the host. This is
necessary because in contrast to SMPC the protocol for SMAC cannot identify
the host with the agent at all times. There are specific tasks within the dynamic
phases that have to be fulfilled by the host, independent from its hosted agent
instance. Last but not least, section 5.4 finally presents the protocol for secure
multi-agent computation.

5.1 The Security Model

Before presenting the protocol for secure multi-agent computation it is necessary
to define the security model that is assumed. This includes for example the
definition of the protocol components, error types and network type. As long as
these presumptions are kept, the protocol provides unconditional security (with
a small error probability).
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5.1.1 The Attacker Model

While the Hirt-Maurer protocol is secure against an adaptive adversary which
is computationally unbounded, the model for secure multi-agent computation
requires a different attacker model. SMAC makes use of cryptographic primitives
like authentication and encryption. As discussed in section 4.1.2, this makes
it necessary to limit the adversary’s computational strength and to assume a
polynomially bounded one. I have also discussed the consequences of migration
and the possibility to collect shares over time resulting from it. Therefore, the
SMAC model has to assume a mobile adversary that is able to hop from one set
of corrupted agents to another. This can only be prevented by using randomised
re-sharing techniques as presented in section 5.2.5.
Caused by the necessity of a broadcast simulation, SMPC as in [HM01] limits
the number of parties the adversary is capable to corrupt simultaneously to
t(n) = ⌈n/3⌉ − 1. SMAC additionally makes use of majority decisions, which
would allow an adversary to corrupt up to t(n) = ⌈n/2⌉ − 1 agents without
loosing security. However, as SMAC partially consist of SMPC, we have to
demand the more restrictive limit of t(n) = ⌈n/3⌉ − 1 for the overall SMAC
model.

5.1.2 Error Behaviour

For now, we identify the error behaviour of the model with the behaviour of
the adversary. As a Byzantine adversary is the usual model today and mirrors
the reality best, it is also assumed for the SMAC model. In section 4.1.3 a more
detailed classification of errors is given, which mainly aims at network errors. In
theory, these can be also be assigned to the adversary. For matters of simplicity,
I do not integrate those errors in the security model. Nonetheless, aiming at a
practical implementation, it is important to take a close look on the underlying
network and existing network attacks, because these could cause the SMAC
to fail (but not to be incorrect) although the condition of less than ⌈n/3⌉ − 1
corrupted agents is kept at any time. Therefore, an analysis of the SMAC model
under real network assumptions is given in chapter 6.

5.1.3 Network Type

I assume an asynchronous network since this thesis aims not only at the presen-
tation of a theoretical security model, but also on an analysis of the practicability
of it. This requires the model to assume open and asynchronous networks like
the Internet. The adversary controls the network and the message delivery with
it. Although in principle the secure channel model (encrypted and authenticated
channels) is not required, the protocol uses encryption and authentication in or-
der to increase the tolerance against network attacks. This is discussed in depth
in chapter 6.
The SMPC protocol from [HM01] assumes synchronous networks. Nevertheless,
in this thesis, it is used in an asynchronous setting. This poses the problem of
having no guaranteed message delivery. In order to get a satisfactory solution to
this problem, I will introduce an artificial synchronisation, using timers. As one
cannot differentiate network errors from message delays caused by a corrupted
agent, it is necessary to classify an agent whose messages do to arrive in time
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as corrupted. The problems arising from the absence of guaranteed message
delivery and synchronism of the parties are handled in the given model and
discussed in chapter 6.

5.1.4 Overall Security

The protocol of [HM01] provides unconditional security with a small probabil-
ity of error. This is not kept for the SMAC model. For matters of efficiency,
some sub-protocol providing only cryptographic security are used. In addition,
cryptographic measures are inevitable when it comes to the security of agent
migration which is not covered by [HM01]. Consequently, the overall security
is cryptographic which is absolutely satisfactory for real applications where all
attackers are computationally bounded.

5.2 How Alliances Work

We have seen before that the advantage of an agent Alliance lies in its ability to
securely evaluate a user-defined function in a possibly malicious environment.
The robust nature of the computations can tolerate up to t(n) = ⌈n/3⌉−1 wrong
or missing inputs without loosing correctness or fairness. Thereby, it does not
matter in which way the agents got corrupted and how this corruption manifests
itself. The only thing that really matters is to keep t(n) at any time. This
property is influenced by diverse network factors, but also by the distribution of
the agents. Locating several agents of the same Alliance on one server is in this
context not reasonable. The identification of the parties in SMPC with the actual
hosts of an Alliance is not meaningful anymore. In principle one could do so,
but having n agents hosted on k < n hosts implies t(n) = ⌈k/3⌉−1 < ⌈n/3⌉−1
which is no better than running a k-party protocol. The latter provides the same
redundancy with lower complexity. Consequently, the SMAC model expects all
agents of one Alliance to be hosted on different servers.
Nonetheless, a server is allowed to host members of several Alliances. In this case,
it must be ensured that the single agent instances are sufficiently encapsulated.
In section 2.1 I have discussed the security measures of operating systems and
programming languages, especially of Java. We have seen that encapsulation of
processes can be considered standard, today. For agent Alliances this is a prime
requisite and should be checked carefully before running a protocol instance.
If not guaranteed, an attacker could send its own Alliance to other hosts in
order to spy out another Alliance. Consequently, the privacy of computations
would get lost even though t(n) is not exceeded. The correctness would still
be given. However, there is another threat: By such an espionage, the attacker
could get the private key of the Alliance and abuse it. For example, it could
trick the Alliance’s originator by generating a substitute Alliance that cannot
be differentiated from the original one as is able to authenticate itself correctly,
but returns arbitrary results.
The hosting servers have to provide an Alliance with an interface allowing the
Alliance members to communicate with each other (and possibly with other
Alliances). This is necessary to perform distributed computations. I assume an
authenticated network to increase security. This requires users to authenticate
at a trusted authority (not necessarily a Certification Authority). The private
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keys of the servers are then used for the communication between the Alliance
members. I find this requirement necessary, even if uncomfortable for the users,
because of two reasons:

1. Users that have been somehow authenticated will tend to honest be-
haviour.

2. Spoofing or misleading Alliance messages can corrupt an Alliance even
though less than t(n) members are corrupted. This point will be subject
of further discussion in chapter 6, where network attacks are analysed.

The major goal of this thesis is the design of a completely secured agent Alliance.
This means, the whole functionality defined by its originator has to be preserved
as long as no more than t(n) agents are corrupted at the same time. For reasons
of efficiency, one can demand this property for some sensitive sub-functionalities
only. This is discussed in chapter 8 for some exemplary sub-functions. However,
the general model which is presented in this chapter aims at the protection of
the whole functionality and all data.

5.2.1 Protocol Components

At any point in time, distributed computations are performed by a fixed number
of n parties P1, . . . , Pn. But there are some more parties involved in the protocol.
First, the trusted originator O, which is the owner of the agent Alliance and
as such responsible for its correct initialisation and the reconstruction of the
shared computation result. Consequently, the originator appears only twice: At
the start of the protocol and at result return, when the agents return home with
the shared results of their common computation. The other parties are the so-
called migration targets, which represent the servers that have been determined
via a distributed computation to be the new hosts of the Alliance. While in
the role of being the migration target, these parties are never involved into
distributed computations. But, if everything goes all right, the old host leaves
the protocol and the migration target becomes one of the regular n parties.
The n parties, again, are separated into

• non-corrupted parties which can be trusted, and

• the adversary, consisting of up to t(n) corrupted parties, attacking the
protocol execution.

The adversary is an important entity in the model. It controls the behaviour of
the corrupted parties and possesses their knowledge. Therefore, it is necessary
to know its exact power and behaviour. In the Alliance model, we have a mobile
adversary that is computationally bounded.

5.2.2 Errors and Corruption

A host is supposed to execute an agent, so it must have full control over the
code and potentially over the agent data. Thus, an agent must be considered
to be corrupted as soon as its host behaves actively maliciously. This means
that it somehow deviates from the protocol. These deviations are not always
detectable. At the same time, it may be that it only seems as if the agent or its
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host behaves maliciously. This could happen in case of network errors causing
a delay of messages. In general, the Alliance cannot differentiate between those
error classes. Therefore, as soon as it seems as if an agent does not follow the
protocol, it is assumed to be corrupted. As the agent’s state (corrupted, un-
corrupted) is most probably a consequence of a manipulation done by its host,
the host is considered as malicious if and only if the agent behaves strangely.
Consequently, we amalgamate the agent and its host to one entity during a com-
putation phase. Thus, although the agent is an active and autonomous identity
with a functionality that is independent from its hosts, it is not considered as
a party in the SMPC protocol. Instead, the host is. So, from now on, the hosts
are called the parties while the agents participating in the common computation
are called members of an agent Alliance.

5.2.3 Structure of an Alliance Member

Let Ai be a member of an Alliance A consisting of n mobile agents, which has
been designed for the joint fulfilment of a task T . The agent program is divided
into two parts: a public part and a private one. Without loss of generality, the
public parts of the agents are assumed to be identical. The public part con-
sists of a program and some public data. We can divide the program into an
application-related part which realises the user-defined functionality T and a
part that acts like an operating system. The first is given by an arithmetic cir-
cuit which is evaluated gate by gate as defined in the SMPC protocol. We can
assume this part to be identical for each Alliance member. As we use a syn-
chronous protocol for SMPC, we have to introduce synchronisation techniques
which must be organised and controlled outside the SMPC protocol. Further-
more, communication primitives and the organisation of majority decisions and
migration are required. All this is part of the agent’s operating system.
Public data, although seemingly unsecured and even unknown in the SMPC
protocol, is necessary in the Alliance model. An Alliance member must be able
to provide its host with information that is needed for synchronisation, migra-
tion and communication. This cannot be avoided, as on the one hand, the agent
depends on information like that from a system clock, and on the other hand
the host requires knowledge about for example the locations of the other Al-
liance members. This public data poses no new threats as it is either secured
by regular majority decisions (see section 5.2.6) or, if static, digitally signed by
the originator. The following list gives a survey on the public data components
of an Alliance member:

• IDA: Each Alliance needs a unique Alliance identifier IDA for situations
requiring the agent to prove to be a member of a specific Alliance. In par-
ticular, on result return the originator must be able to determine to which
set of shares the results of one specific agent belong. But also the hosts
must be able to determine to which Alliance an agent belongs. As the code
and thus its signature may be the same for different Alliances, the hash
value is not suitable to differentiate different Alliances of the same origi-
nator. Another identifier is necessary. As we want to provide an Alliance
with a private key, the identifier can be chosen as the corresponding public
key pubA.

• IDAi
: The agent identity IDAi

allows to authenticate single agents. It is
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used for example when an Alliance performs a majority vote.

• We have seen in chapter 4 on SMPC that the underlying secret sharing
scheme assigns a point αi to each party Pi. This value remains the same
during the whole execution of the SMPC protocol. The situation is the
same for the SMAC protocol. But here, each Alliance member must know
all points. Otherwise, it would not be able to share new knowledge with
its co-operating agents.

• n: The size n of A is primarily required for majority votes which again are
used for the migration process.

• O: The originator’s identity O is of interest for two reasons:

1. Thanks to the authentication, a black list containing misbehaving
servers can be used on the agent platform. Also, if an originator is
found guilty of having sent malicious code, it may be put on this list.

2. On result return, the Alliance can authenticate the receiving server.
No spoofing attack is possible.

As we assume authenticated networks, the identity O is just the public
key pubO of the originator.

• Loccm : A location list Loccm is used to identify those servers currently
hosting the Alliance. This is necessary to determine who is authorised
to contact an Alliance member and to provide it with (shared) input.
The location list is implemented as an array with n entries, storing the
location of agent Ai in the ith entry. For reasons of security the location
list is depending on the migration counter cm which is explained below.

• tex: A maximum execution time tex for one agent per host. This allows the
Alliance members to decide whether an agent has been corrupted. Here,
the corruption can consist of not executing an agent, keeping it forever
etc. As soon as tex is exceeded, the agent has to start its migration phase
together with its co-operating Alliance members. If the migration phase
is not initiated in time, the agent is assumed to be corrupted.

• trep: A maximum reply time trep. This is essential if the SMPC protocol is
a synchronous one such as [HM01]. The Internet is highly asynchronous.
Therefore, it is not guaranteed that messages are delivered within a spe-
cific time interval. It is even possible that they get lost. This is why a
synchronisation is done within the SMAC protocol. An agent, regardless
of whether it really is, is assumed to be corrupted as soon as it does not
send its messages in time.

• texp: The expiration date texp defines when the Alliance is supposed to
return home at the latest. After the expiration date, the originator assumes
the Alliance as compromised.

In addition to the public parameters, an agent carries the following shared pa-
rameters:
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• crep(serv): Counters crep(serv) for the number of agents which witness the
reply time of a host serv or, during the migration pre-processing phase,
that of a candidate server which has been sent an execution request to be
exceeded.

• cm: A migration counter cm that counts the number of migrations of the
agent.

• cex: Each agent must be provided with a counter cex which counts the
number of agents which witness the expiration of the permitted execution
time tex.

These counters are kept shared because it is a local operation to increment
a counter. This means, it is an efficient operation and, at the same time, the
counters cannot be manipulated by an attacker.
To enable an Alliance to determine whether the counter crep(servl) exceeded the
maximum, it starts a timer trep after sending an execution request and at the
beginning of a computation phase. As soon as this timer signals a timeout, the
agent broadcasts this information to the other Alliance members. After receiving
such a message, the agent checks whether it has previously received an identical
message from this agent and, if not, increments the respective counter by one.
As the agents rely on their hosts to be able to run the clocks, manipulations
are possible. Assuming at most t(n) messages concerning the same counter as
being manipulated (which is conform to our assumption that at most t(n) hosts
are malicious), an agent reliably knows about the expiration of the respective
counter after at least t(n) + 1 identical messages. This is given at the latest as
soon as at least 2t(n) + 1 messages have arrived. Thus, an Alliance does not
have to wait for delayed or even missing inputs of all members before being
able to react. Having successfully determined that crep(servl) exceeded trep the
Alliance starts to determine a new migration target. In case cex exceeded tex,
a migration pre-processing phase is induced. In the model presented here, a
migration is always a consequence of exceeding tex. Other solutions are possible
but require a complex organisation of the migration requests of single Alliance
members. We have presented this approach in [EM03].
As mentioned above, the location list Loccm contains very sensitive knowledge
and manipulations could endanger the whole Alliance. Unfortunately, the list is
dynamic and cannot be protected by the originator’s signature. This problem
could be solved by a distributed signature through the Alliance itself at each
migration. This has been proposed in [Mie03]. Meanwhile, we did an exact
analysis on the complexity of such a signature. The results were disillusioning.
The analysis is given in [Amm07]. For practical purposes it makes more sense to
use the means of majority decision for this data, too. This requires each party
to send its version of the latest location list to each of the new servers before
stopping the current instance of the protocol. Then, the new hosts can determine
a correct location list in analogy to the checking of counters as explained above.
In the beginning of this section, I have introduced an Alliance member as con-
sisting of public and private parts. The public part has been discussed in depth
above. Now, I turn to the private one. This part consists entirely of shared data.
Shared data originates from two sources: Either it has been initially produced
by the protocol compiler, or an agent shared its new knowledge during on-going
computations. However, all shared data is generated by using Shamir’s secret
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sharing scheme from [Sha79]. This means, that single shares do not provide any
information on the original data to an adversary. If and only if at least t(n) + 1
correct shares are available, the information can be reconstructed. Each Alliance
member Ai shares the Alliance knowledge and organises it in a list Si. Examples
for shared knowledge are user-preferences or the private key of the Alliance.

r r r

- migration mechanism

- synchronisation techniques

- communication primitives

Operating system provides e.g:

- private key privA of Alliance A

Private data (shares), e.g.:

- further private knowledge of A

(e.g. collected offers)

Code (simulation of arithm. circuit)

Static data:

- originator’s public key pubO

- public key pubA of Alliance A

- agent identifier IDAi

�����)

�

- Code

OS

Figure 5.1: Structure of an Alliance member

Figure 5.1 illustrates the structure of Alliance member Ai. The list Si is located
under the code/operating system part of the agent. It is organised as a linearly
addressed memory, in which the position Si[j] is used to store the jth t(n)-shared
value sij . Thus, the lists S1, . . . , Sn represent the distribution of the Alliance’s
state SA, consisting of the data sj for j ≥ 1.

5.2.4 The Initialisation Phase

One goal of the security model presented in this thesis is to bother the originator
of an agent as little as possible with the underlying protocol. The originator
should be able to create his agent with the tools he is used to. The only decision
he must make is to fix the grade of redundancy. The choice of t(n) depends on
three factors, mainly:

1. The sensitivity of the application: The higher it is, the higher the redun-
dancy should be chosen.

2. The network hostility: One has to estimate the number or agents that
could get corrupted at the same time. This leads to results which strongly
deviate, depending on the type of network (open, closed, authenticated,
trusted, untrusted).

3. The costs of communication: Redundancy is expensive2. So, the price of
communication significantly influences the choice of t(n).

2Here: in terms of communication overhead.
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The number of distributed multiplications necessary to fulfil the task T is also
important, as multiplications require communication (see chapter 4). But this
should not influence the decision as much as the other factors.
Having fixed the redundancy parameter t(n), the originator is supposed to sim-
ulate the preparation phase. In the preparation phase the random triples, which
are necessary for the distributed multiplications, are generated. In the protocol
for SMPC from [HM01] this is part of the distributed computations. The gen-
eration itself is relatively efficient, but in case of wrong triples, a complex fault
detection takes place. As we can assume the originator as trusted with respect
to his own Alliance, he can simulate this phase by securely generating the nec-
essary triples through local computations only. This requires a random number
generator and a good estimate on the number of required distributed multi-
plications. In principle, an Alliance can be designed to generate new random
triples during the computation phases, too.3 This feature could be of interest
if the user-defined functionality does not allow to reliably rate the number of
multiplications. As such, this ability can be regarded as a necessary measure
with respect to the practicability of an Alliance.
After the triple generation, the originator feeds the function that the Alliance
should evaluate into a protocol compiler which creates an arithmetic circuit with
the same functionality. In other words, the compiler creates a circuit which
simulates the originator’s program. This simulation is not trivial and will be
discussed in chapter 7. Not only the originators program has to be simulated, it
must be extended by the operating system mentioned in section 5.2.3. The agent
database must be transformed into (n, t(n))-shared data. This can be easily done
with Shamir’s secret sharing scheme. For reasons of efficiency, n should always
be chosen equal to 3t(n) + 1. Other choices do not increase redundancy but
increase communication and computation complexity. In a final step, 3t(n) + 1
Alliance members are generated, each of them with unique shared data packages
stored in the list Si.
After generation of n = 3t+1 agents, the originator determines n different hosts.
It is necessary to select different hosts for two reasons:

1. As all agents run the same code, no additional information can be gained
from the host databases if more than one agent is located on the same
hosts. In contrary, they would compete for the same resources.

2. If the protocol does not forbid servers to host more than one agent of the
same Alliance, there could be an information leakage. By chance, a host
could collect enough different shares, namely t+1, and so reconstruct sen-
sitive information like a private key. Computations, too, are compromised
in case t + 1 agents are hosted simultaneously by the same host.

This is a real threat and therefore it is among the model assumptions, that each
migration of an Alliance results in a set of n different hosts. After having deter-
mined n suitable migration targets, the originator sends a request for execution
to the servers. If a server does not respond to the request in time (within trep)
or a server does not agree, the originator determines an alternative server. Only
if n servers agreed, O provides the Alliance with a signed location list and sends
it out. This is the last interaction between him and his Alliance before it will
finally return with the computation result.

3This is mentioned in [HM01]
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5.2.5 Migration Pre-Processing Phase

The migration preparation phase mainly consists of two tasks:

1. Fixing a location list, containing the identities of all new hosts.

2. Computing of new shares for the new hosts (re-sharing).

Both can be done securely, as the Alliance is still hosted on the current n
hosts. All necessary computations can be done either distributedly or secured
by majority decisions.
The migration pre-processing phase starts for two reasons only. First: if the
agent got informed about the expiration of tex, it forwards this message to
the other Alliance members in order to invoke a migration sub-protocol. Until
the new hosts are determined and the actual migration takes place, the Alliance
could continue concurrently with the circuit evaluation. Second: if the expiration
date texp of the Alliance expires, the host informs its agent about this. The
agent forwards the information to the other Alliance members. The distributed
computations are stopped and the hosts return their agents to the originator.

Fixing the Location List

The process of computing a new location list includes two steps that may be
executed repeatedly. First, n candidates have to be determined. The Alliance
can do this securely, using an arbitrary selection function. This function could
determine the servers randomly or depending on the application. It has been
mentioned before that thanks to the authentication of the servers, a black list
could be made available to the selection function. It could contain hosts which
have been proven to behave maliciously, but also application dependent informa-
tion. It makes no sense to send agents to hosts that cannot provide information
that is necessary to fulfil their task. Thus, such hosts could be explicitly ex-
cluded. One could also separate the list into two parts, one containing servers
that are to be excluded from the selection function, the other containing a set
of prefered servers. This short discussion already makes clear that a black list
depends on many preferences of the originator. It is therefore not part of the
default agent structure as introduced in section 5.2.3. However, it can be easily
added if desired. The black list should be in clear-text and signed by the origi-
nator O of the Alliance. Although this implies the list is static, it is a reasonable
decision. The advantages of distributed storage and possibly regular updates is
disproportionate to the communication and computation complexity this would
cause.
After having determined a candidate, each Alliance member sends an execution
request to it. This request must be answered withing the predefined time interval
trep. If there is no answer withing trep or a negative answer arrives at a majority
of the Alliance, the selection function determines a new candidate. Although it
seems reasonable to design the selection function as a function which outputs
one candidate only, one should keep in mind that it is computed distributedly.
This means, that it causes communication and should therefore be called as
seldom as possible. This is why the selection function is assumed here to output
i candidate servers at once. To speed up the process of host determination, an
Alliance could send requests to more than n candidate servers in parallel. In
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case too many agree, the Alliance could select the most prefered n ones and
reject the remaining.
An execution request contains the public parts of an Alliance, namely code,
static data, and operating system (see figure 5.1 from section 5.2.3) and the
current location list Loccm . Sending the remaining public data has two reasons:

1. It allows the receiving server to check the integrity of the agent before it
agrees to the execution.

2. In case the candidate server agrees on the execution only the private data
of the agent remains to be transmitted.

It has been mentioned before, that each Alliance member sends an execution
request to the candidate. The data it contains is signed by the originator of the
Alliance and can be checked easily. As soon as the public data of a request is
verified, the candidate can store this data. Nonetheless, it is required that at
least t(n)+1 Alliance members send the request, as a subset of up to t(n) agents
could mislead the candidate to believe in a non-existent migration.
If it is honest, the candidate replies to each and every execution request con-
cerning one Alliance. At this stage, it does not have to differentiate, whether
a former host maliciously sent the request4 or whether the request was sent
by an authorised host. Later-on, when it comes to the transmission of the new
shares and the location list, an authentication of the current hosts, proving that
they really are hosts of the same Alliance, is indispensable. This is part of the
second step of the migration pre-processing phase and will be discussed next.
As soon as the candidate server agrees on the execution of the Alliance, and the
Alliance has verified this by a majority decision, the candidate is stored in the
new location list Loccm+1.

Re-sharing

Having fixed the location list Loccm+1, the second step of the migration pre-
processing phase starts. The Alliance has to securely inform the new servers
about the future locations of the Alliance members by sending the new location
list. As the new servers do not know the identity of the current servers, they
cannot distinguish messages sent by authorised from those sent by unauthorised
servers. Therefore, it is not sufficient to just let each agent send its new location
list to each new server, which in turn performs a local majority decision on the
arriving messages. At the same time, the correctness of the location list is of
major importance as it is used to authenticate messages of the hosts of one Al-
liance. This implies that additional means must be taken to protect it. Although
the Alliance could use the protocol of Hirt and Maurer to distributedly compute
a signature of the list, this is not advised here. The data volume necessary to
transfer over the network for such a signature is outrageous (see our analysis in
[Amm07] and a cross-reference in section 8.2 on page 123). Fortunately, there
are protocols especially for threshold signatures which are much more efficient
than general multi-party computations. One current example is given by Fis-
chlin in [Fis03]. But a distributed signature by [HM01] could also be considered
when limiting the underlying circuit to a finite ring. It is shown in section 8.2

4This is possible, since the public part of the Alliance members does not change and a
malicious host could just store and re-use it

88



that with this restriction [HM01] allows for a very efficient signature. Signing
the location list is not only advantageous for authenticating the current hosts
to the future ones. It also allows the future hosts to check whether they have
really been selected as new hosts, and that the shares they receive are correct.
After having secured the new location list, the next task is to compute shares for
the new servers and to disable the current ones. Ostrovsky and Yung have faced
a similar problem in [OY91]. There, not a mobile agent scenario was assumed
but a virus infecting server after server, thereby collecting information. This
is the original setting for the definition of a mobile adversary as introduced
in section 4.1.2. Ostrovsky and Yung already assumed data that is secured by
the use of a secret sharing scheme. Thus, their task was to re-share that data
from time to time to prevent the virus from collecting more than t(n) shares.
Obviously, such a re-sharing requires not only to generate new shares, but also
to make the old ones useless. The protocol is presented now.

The Protocol of Ostrovsky and Yung
Let f(X) ∈ Fp[X ] be the polynomial of degree t(n) used to hide the information
s, and si = (αi, f(αi)), 1 ≤ i ≤ n, the interpolation points of the respective
parties P1, . . . , Pn. Be f ′(X) ∈ Fp[X ] a random polynomial of degree t(n) with
f ′(0) = 0. Then, the sum

g(X) = f(x) + f ′(x)

allows a randomised re-sharing of s. This the case, because the resulting poly-
nomial g(X) has t(n) random coefficients and the secret s is determined by
g(0) = s. As polynomials over Fp[X ] are additively homomorphic, the interpo-
lation point of g(X) can be locally computed by ŝi = (αi, f(αi) + f ′(αi)).
The actual computation of the new shares requires the randomising polynomial
f ′(X) to remain secret. Otherwise, a mobile adversary that collected k < t + 1
old shares could simply continue collecting re-shared data. By a local subtraction
of f(αi), 1 ≤ i ≤ n, it could produce enough old shares to be able to reconstruct
the secret s. Therefore, the sum must be computed distributedly, which actually
means to compute shares of the old shares and f ′. The whole re-sharing process
consists of four steps. It is presented in protocol 5.1.

5.2.6 Migration

During the determination of the new location list, the candidate hosts already
received code, static data and the operating system of the Alliance. Because of
the certificate they were able to check the integrity of this data. As they were
provided with the old location list Loccm during the migration pre-processing
phase, it is guaranteed that they only accept messages from the former hosts
and no attacker is able to infiltrate the data exchange that takes part in the
actual migration.
What is still missing for the execution of the new protocol instance is the result
of the re-sharing as well as the new location list. Without this information, the
new protocol instance cannot be invoked. The transfer of this data defines the
migration phase.
In order to provide the new hosts with the re-shared data, the former hosts
send the shares of shares that have been produced in step 3 of the re-sharing
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Sub-protocol re-share
Implements a randomised re-sharing of the Alliance state.

1. Generating and sharing of randomising polynomial f ′:

All parties exchange random bits in order to generate
randomising polynomials f ′

1, . . . , f
′
n with f ′

i(0) = f ′(αi).
That means, the f ′

i interpolate a random polynomial f ′.
Each party Pj receives one interpolation point (share) of
f ′
1, . . . , f

′
n:

r1j = f ′
1(αj), . . . , rnj = f ′

n(αj).

2. Sharing of current shares:

In order not to leak information on the current shares, they
have to be shared before being added to the random poly-
nomial. Doing so, the parties generate, in analogy to the
first step, n shared random polynomials f1, . . . , f

′
n with de-

gree t(n) and fi(0) = si = f(αi), 1 ≤ i ≤ n. Each party Pj

receives one interpolation point (share) of f1, . . . , fn:

s1j = f1(αj), . . . , snj = fn(αj).

3. Computing of shares of new shares:

After having received all shares from step 1 and 2, each party
Pj computes shares of the new shares by

ŝ1j = s1j + r1j , . . . , ŝnj = snj + rnj .

Each Pj then sends the share ŝij , 1 ≤ i ≤ n, to party Pi.

4. Reconstructing of new shares:

Each party Pi has received n shares ŝij , 1 ≤ i ≤ n, and is
able to interpolate its new share si.

Protocol 5.1: Sub-protocol re-share

protocol to the new hosts. Those then perform step 4 of the protocol in order
to reconstruct their relevant data shares. The correctness and secrecy of this
process is ensured as long as less than t(n) = ⌈n/3⌉ Alliance members send
manipulated data. This is given by the SMAC protocol assumptions. For the
secure transfer of the location list, other means must be taken. As mentioned
before, it would be too costly to secure this list by a distributed signature of
the Alliance itself. On the other hand, the security of the protocol execution
heavily depends on the security of the location list. Therefore, the Alliance uses
a majority decision as security measure. This implies that all Alliance members
send their local copy of Loccm+1 to all new hosts, which in turn count the same
versions until there is one version with a majority of at least n/2 + 1. This
procedure guarantees that a correct list is computed, as long as less than n/2
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corrupted agents sent manipulated data. As the general protocol assumption is
that at least 2n/3 + 1 agents are honest, this is always the case.

5.2.7 The Migration Post-Processing Phase

Now that the Alliance has been securely transfered, the old instance of the
SMAC protocol has to be stopped and a new instance has to be started. Stopping
an instance requires the former hosts to stop all processes and communication
that are related to the Alliance. Furthermore, all knowledge, namely data shares
and static data, must be deleted.
At the same time, the new hosts reconstruct their data shares and thus share the
current state of the Alliance. All shares used for reconstruction must originate
from a server that is listed in Loccm . After reconstruction and start of the agent
execution, the hosts immediately start the local timer tex. This action is the
first asked by the agent and defines the start of the new protocol instance. In
a last step, the operating system of the agent starts the application specific
multi-party protocol.

5.2.8 The Computation Phase

After migration and initialisation on the new hosts, the Alliance continues work,
which means the evaluation of the arithmetic circuit can be resumed. At this
point, an arbitrary protocol for secure multi-party computation can be used.
Later-on, for the analysis of program simulation and the complexity of spe-
cific applications (see chapters 7 and 8) the Hirt-Maurer protocol, presented in
chapter 4, is used.

5.2.9 Result Return

After the circuit has been evaluated, the Alliance returns to its originator. This
requires the hosts to send all Alliance members back to the server of the origi-
nator that is part of the signed public part of the agents. The originator then
applies the reconstruction from [HM01] (see chapter 4, page 75). to reconstruct
the computation result.

5.3 Host View on a Protocol Execution

An execution request for an Alliance member reaches a server S in form of
up to n single requests from the hosts of the Alliance. The request contains
the public (signed) part of the agent (i.e. IDA, IDAi

, texp), the current public
local location lists Loccm , and the shared migration counter cm. As up to t(n)
requests could originate from corrupted Alliance members, the server has to
determine a correct version of the location list by counting consistent lists. If
there is a majority of at least n/2+1 consistent lists, it must be the correct one
(as t(n) < n/3). The migration counter can be and is reconstructed, as soon
as all requests have arrived so that all shares are available. Then, the server
performs the following checks:

1. Do the requests concern the same Alliance identifier IDA and agent iden-
tifier IDAi

?
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2. Is the integrity of the signed public data given?

3. Did the messages originate from different servers in Loccm?

4. Has there already been an execution request concerning this Alliance and
agent with the same value of the migration counter cm, although texp is
not yet reached?

Each request failing at least one of these checks is considered corrupted. If
at most n/2 requests exist that have passed the tests, the server refuses the
execution of the respective agent and informs all hosts in Loccm that have passed
the test about its decision. It then deletes the request and refuses any further
communication requests related to this Alliance as the Alliance has obviously
been compromised.
If at least n/2 + 1 requests have passed the tests, the server may (after some
additional considerations) agree to the execution. In a first step it stores the
migration counter cm and the Alliance identifier IDA until the expiration date
is reached. This is necessary to allow the detection of replay attacks as done in
step 4 of the test series. Then, S sends its positive decision to all hosts in Loccm

that have sent correct requests. At the same time, it allocates an encapsulated
address space and stores the public part of the agent there. Thenceforward, S
accepts messages concerning this agent if and only if they originate from a host
in Loccm . Initially, it will receive its new shares of the Alliance’s state and the
new location list Loccm+1. After checking whether it is mentioned in Loccm+1,
S proceeds with the reconstruction of its shares. It then starts the actual agent
execution.
In a first step, the agent asks S to start the counter tex and to inform it as soon
as it expires. If so, S sends a broadcast message to the hosts of Loccm+1. The
receiving hosts inform their agents about it, which causes the agents to invoke a
sub-protocol that counts respective messages and increments the local counter
cex. If this counter reaches the value 2t(n) + 1, the application-specific part of
the protocol is continued concurrently to the determination of new hosts by
the migration sub-protocol. The phase is synchronously started by the Alliance
members, as all honest hosts have the same value of cex. S supports these
preparations by offering a secure re-sharing sub-protocol for the Alliance’s state
and sending the resulting shares of shares to the respective new hosts. This is
the last action server S performs for the Alliance. Afterwards, it deletes all data
that is related to the Alliance, except IDA, cm and tex.

5.4 The Protocol for SMAC

In this section the protocol for secure mobile multi-agent computation is pre-
sented in depth. The SMAC protocol offers the possibility to design the whole
functionality of the Alliance as a t(n)-robust function. It is built upon two main
blocks: First, the protocol for secure multi-party computation from [HM01] han-
dling the computation phases. Second the sub-protocols involved in the migra-
tion pre-processing phases. The latter make use of majority votes and addi-
tional cryptographic primitives like digital signatures, and encryption. As the
computation phases do not require special handling, the description focusses
on the transition from one computation phase to another, which means the
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sub-protocols of the migration process. For efficiency the current version of the
SMAC protocol, which is presented here, does not allow single agents to mi-
grate. A migration process is very costly in terms of communication complexity,
as it requires the execution of a re-sharing protocol. Our original framework
[EM03] offers more flexibility by using a semaphore to serialise migration re-
quests of single Alliance members. Besides the high complexity, a migration is
a time consuming distributed procedure, which in the worst case could result
in spending most of the execution time for computations related to migration
instead of evaluating the user-defined function.

5.4.1 Sub-Protocols and Sub-Routines

Before going into the details of the protocol, it is necessary to review the nomen-
clature and variable identifiers.

Abb. definition type of data
A: an Alliance public, signed
Aj : member of A, 1 ≤ j ≤ n public, signed
O: originator of the Alliance public, signed
cm: migration counter shared
Loccm : locations of A1, . . . , An public
tex: execution time on each host public, signed
trep: maximum time for servers to reply public, signed
texp: expiration date of A public, signed
crep(serv): counts witnesses for exp. of trep for server shared
cex: counts witnesses for expiration of tex shared
H0: initial host; trustworthy
Hjcm

: cmth host visited by agent Aj

The protocol consists of several sub-protocols. They are presented in this sec-
tion using pseudo code notation. But first, two interfaces, necessary for the
interaction between the agents and for invoking sub-protocols, are introduced.

1. deliver:

As distributed computations require communication between the parties,
it is necessary to provide a function which sends messages to specific sub-
sets of A defined in a subset Loc′cm of the location list Loccm . The signa-
ture of this interface is

deliver(Loc′cm, m).

Since all agents migrate at once, deliver can consider the locations in
Loc′cm as valid. In case single agents were allowed to migrate (see [EM03]),
the routine would have to check, whether the target agents have already
asked for migration and stopped working. In this case, the messages had
to be buffered until new hosts are determined for these agents. Given
a parallel migration of all agents, this sub-routine is only called within
computation phases, where no migration takes place.

2. run:

The SMAC protocol consists of several cryptographic sub-protocols. As
soon as such a sub-protocol has to be invoked, the routine run is called.
It invokes a local instance of the n-party protocol X providing a random
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input parameter r to this instance. The random parameter is necessary in
order to distinguish concurrent protocol executions and to increase secu-
rity. The signature of run is

run(Loccm , X, r)

Since migration is the most challenging part of the SMAC protocol, we start with
a description of the migration process and the sub-protocols involved. Consider
an agent Aj that is currently executed on a host Hjcm

being informed by Hjcm

about the expiration of its maximum execution time tex. It immediately calls
the function

deliver(Loccm,”tex has expired at Aj”)

to inform the Alliance of its state. This information causes the Alliance members
to invoke the sub-protocol count by calling

run(Loccm,count,r)

that allows the agents to count the number of Alliance members have been
informed that their tex has expired. The protocol is presented in protocol 5.2.

Sub-protocol count
Implements a majority decision about the expiration of the Al-
liance execution time during a computation phase.

1. Increase the distributed counter cex by 1

2. If cex > 2t(n), then
execution of sub-protocol

run(Loccm,migrate(A),r)

Protocol 5.2: Sub-protocol count

Protocol count invokes sub-protocol migrate which handles the actual migra-
tion pre-processing phase. It is presented in protocol 5.3.As explained in depth
in section 5.2, two sub-protocols are used. First, new hosts must be determined.
This is done with sub-protocol new hosts that computes n new hosts for the
Alliance. The protocol is not specified here, as there is an uncountable number
of possibilities for its design, strongly depending on the given network properties
and user preferences. One possibility is to simply select candidates at random.
More advanced approaches could use blacklists, reputation, etc. However, the
output of new hosts is the location list Loccm+1. The second sub-protocol is
re-share, a randomised re-sharing protocol that computes shares of the shares
of the Alliance state. In section 5.2.5 the protocol from Ostrovsky and Yung
[OY91] has already been introduced as one option. Therefore, protocol re-share
is not further discussed here. Now, all sub-routines and sub-protocols necessary
for the protocol for secure multi-agent computation are available and the pre-
sentation can continue with the SMAC protocol itself.

5.4.2 The Protocol Secure Multi-Agent Computation

Initialisation Phase
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Sub-protocol migrate
Implements the migration of Alliance A in case of an execution
expiration.

1. Invoke run(Loccm ,new hosts,r)

2. Invoke run(Loccm ,re-share,r)

3. For each Hji+1 ∈ Loccm+1 call
deliver(Hjcm + 1, sjcm + 1)

Protocol 5.3: Sub-protocol migrate

1. The originator O, located on host H0, generates n agents A1, . . . , An be-
longing to an Alliance A with identifier IDA. This is done with the pro-
tocol compiler that has been introduced in chapter 3. Consequently, the
resulting Alliance members are provided with some signed public data,
some shared knowledge, the same code and a small operating system.

2. H0 computes an initial list Loc1 = [H11, . . . , Hn1] containing the hosts of
the first protocol instance.

3. For all 1 ≤ j ≤ n, the host H0 sends the message

(IDAj
, IDA,Aj ,cm,texp, Loccm−1,“Agree?”,O)

to Host Hj1, whereby Aj only contains the public parts of the agent. In
parallel the originator starts timers tresp(Hj1) for 1 ≤ j ≤ n.

4. As long as there is any j, 1 ≤ j ≤ n, with outstanding positive response:

If any timer tresp(Hj1) runs out or any Hj1 sends a negative response:
compute a new host Hj1 for Aj , send
(IDAj

, IDA,Aj ,cm,texp, Loccm−1,“Agree?”,O)
to Hj1 and restart timer tresp(Hj1).

Else
If Hj1, 1 ≤ j ≤ n, sends “yes” then tresp(Hj1) is stopped and H0

makes an endorsement about j in Loc1.

5. H0 signs Loc1 and sends it along with the shares sj1 to the members Hj1

of Loc1.

Life phase of Aj on host Hjcm
(cm ≥ 1) Starts with receipt of execution

request reqex = (IDAj
, IDA, Aj , cm, texp, Loccm−1,“Agree?”,Hi(cm−1))

1. If Hi(cm−1) = H0

- store request;
- check the integrity of the data;
- check expiration date and migration counter;
If integrity is corrupted or same request occured before

- call deliver(H0,”no, Alliance IDA corrupted”);
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- delete request (store IDA, texp, cm till texp expires);
set dec=”yes”;

Else
Whileless than n/2 + 1 equal execution requests reqex have arrived

- store incoming requests;
- check the integrity of the data;
- check whether the expiration date has expired;
If tex has not yet expired

check whether there was a previous
request for the same Alliance identifier and cm;
If “yes”

- delete request and ignore further messages originating
from the responsible server.
- exit loop;

If any of the integrity tests fails
set dec=”no”;

Else dec=”yes”;

2. Determine Loccm−1 by a majority decision on all received lists or set
Loccm−1 = H0, respectively.

3. Call deliver(Loccm−1,”yes”);

4. Store up to n incoming data shares originating from hosts in Loccm−1. As
soon as there is a sufficient number of shares available, reconstruct the
share sjcm

.

5. Start the execution of Aj (as a first action start the timer tex.

6. During the circuit evaluation, the following events may occur at Hjcm
:

• calls of deliver(Hicm
, m), where m contains data necessary to eval-

uate a multiplication gate (cf. section 4.3.2 on page 72)

• incoming messages necessary for circuit evaluation; forwarding to
agent Aj

• expiration of tex; forward information to Aj

• expiration of texpt; forward information to Aj

• Invocation of sub-routines run(Loc′cm , X, r)
for distributed computations (e.g. count, migrate)

• Sharing new data with the other Alliance members (data collection)

• Delivery of expiration messages to the Alliance with subroutine

deliver(L, m)

7. As soon as step 1 of the sub-protocol migrate is finished (i.e. protocol
new hosts has determined a set of n new hosts), Hjcm

exits the event
loop. Now, the remaining steps of sub-protocol migrate are executed.

8. Delete all knowledge connected to Aj , besides the identifier IDA, expira-
tion date texp and migration counter cm.
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Chapter 6

Alliance Computations in
Real Networks

6.1 Bad Things to do to an Alliance

As mentioned before, Alliance compromise always requires the compromise of at
least tmax + 1 of the agents at any one time. In practical deployment there also
exists the possibility of Denial-of-Service (DoS) attacks, with various purposes.
DoS attacks can aim at or support the violation of the t(n)–limit. They can also
be targeted directly at Alliance sabotage. DoS Attacks are discussed in more
detail in Section 6.3.

Attack trees Attack trees [Sch99] are a specialised version of general decision
trees. They are used to organise complex reasoning that starts with abstract con-
cepts and subsequently divides these concepts into more concrete sub-concepts.
The variant of attack trees used here represents a more abstract attack by the
incoming edge of a node and the more concrete sub-cases by the outgoing edges.
Hidden assumptions and additional reasoning determining the number and na-
ture of the outgoing edges is attached to the nodes. This additional information
is given in textual form. Node numbers are used as reference. A leaf node in-
dicates that the specific sub-attack it corresponds to is deemed unsuitable for
further graphical subdivision and is discussed in textual form instead.
It is important to note that attack trees are not a method for formal reasoning
in the mathematical sense. They are a very useful tool to organise informal
argumentation, make it more transparent and facilitate identification of special
cases. However, the analysis itself still relies on human ingenuity and is contained
in the text and not in the tree. The tree just binds the argumentation together.

Analysis

The attack tree for secure mobile agent Alliances is shown in Figure 6.1. The fol-
lowing list gives hidden assumptions and possible attacks and countermeasures
on a node-by-node basis. Many node-comments will contain forward-references
to later parts of the paper.

97



1

2 4

1098765

3

11

computation
compromised selcection

random choice
bad

12 13

14 15 16

violate n/3 requirement 

impersonation
Alliance

impersonation
orginator

distributed
operation

Alliance creation result return

migration
actual

migration
post−computation phase target

selection
problems

hosts
honest
DoS on compromise

honest 
hosts

create
malicious
hosts

with attacker
bad choice

Figure 6.1: Attack tree

1. Attacks can only happen during the lifetime of an Alliance. The originator
is trusted, therefore the initial migration can be treated like any later
migration.

2. The originator is trusted, so no attack is possible.

3. The Alliance is required to follow the life-cycle of Figure 3.2 from chap-
ter 3. The subdivisions are named a little differently, but represent the
same steps. From a security point of view, the possible vulnerabilities in
migration preparation are centred on migration target selection. Other
preparation steps are just distributed computations.

4. Basically two attacks are possible in result return: To send fake data to
the originator or to impersonate the originator to obtain the result the
Alliance is reporting. (If both takes place simultaneously, no harm might
be done.)

5. Since the distributed computation method used is believed to be secure,
no compromise is possible during the computation phase, as long as there
are no more than t(n) malicious agents in the Alliance. However there is
not only one computation phase, but one after each migration. See section
6.5 for a discussion of the security implications.

A second concern during the computation phase is Denial of Service. See
Section 6.3 for a detailed discussion.
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6. The target selection can either be bad because the computation was com-
promised, because of random factors or because an attacker changed the
degree of the network hostility.

7. Possible attack here: Migration target impersonation. Whether this is pos-
sible depends on the host authentication mechanism used. See Section 6.4
for a detailed discussion. If enough malicious hosts can impersonate non-
malicious hosts, this attack succeeds.

Migration source impersonation is not possible. It would just create a
new Alliance. Message manipulation in transit is not possible, since the
transmissions are secured end-to-end. As long as both end hosts are not
impersonated and not malicious, no undetected message corruption is pos-
sible. If too many hosts are malicious the scheme breaks down in other
places anyway.

8. The computations done here are mainly triple generation for the dis-
tributed computations and re-sharing. The same discussion as for tree
node 5 applies. See sections 6.5 and 6.3.

9. The originator can be impersonated. However, if the Alliance encrypts the
result data in such a way that only the originator can decrypt it, originator
impersonation degenerates to conventional DoS and does not compromise
confidentiality.

10. Alliance impersonation is feasible. A possible effective countermeasure is
to embed a unique, random ID in the shared (secret, dynamic) data of the
Alliance. An impersonator cannot get this ID and hence Alliance imper-
sonation fails.

11. The aim is to increase the relative number of malicious hosts in order to
make a bad choice more likely. By bad choice it is meant that more than
t(n) malicious migration targets are selected. The possibilities are to have
more malicious hosts, less honest hosts (general DoS) or convert honest
hosts into malicious ones.

12. Bad random selection of the migration targets is a problem, see Section
6.5.

13. Since the distributed computations are secure, this attack is not possible.

14. This attack is possible, depending on the host authentication scheme used,
i.e. the condition a host has to fulfil in order to be a valid migration target.
See Section 6.4 for a detailed discussion of some options.

15. This type of attack is similar to a general DoS attack. It can succeed, yet
it can be made harder, as explained in Section 6.3.

16. The possibility of host compromise depends on host security and is out
of the scope of this thesis. Note however that host compromise can lead
to a retroactive bad choice where a host was honest before and during
migration and only became malicious after an agent had been migrated
to it or possibly even later when agent data is not deleted securely on the
old hosts after migration.
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We have seen that there are several types of specific security problems that can
cause Alliance compromise. Most are caused by agent and Alliance migration
and are discussed in the following sections. In addition, there are some not-quite
obvious ways to use DoS attacks as part in an Alliance compromise attempt.

6.2 Replay Attacks

In a replay attack, the attacker re-uses a copy of an Alliance member it hosted
before or got by a man-in-the-middle attack. She then fakes an execution request
(or even lots of them) and sends it to candidate servers. This attack could be
used to bind the resources of the target server(s). In addition, it could aim at
obfuscating the Alliance.
In the version of the SMAC protocol presented in this thesis, this attack is made
impossible by providing each Alliance member with some additional signed data,
namely an agent identifier, a migration counter and an expiration date. This data
allows a candidate host to check whether this specific agent has already been
hosted at the same migration cycle of the Alliance. In case the expiration date
has not yet been reached, the execution request is a replay attack. Otherwise,
the identicalness of agent identifier and migration counter happened by chance.
The agent is obviously a member of another Alliance. So, the candidate host
can reject malicious execution requests and avoid to be flooded with copies of
such an agent.

6.3 Denial of Service

DoS attacks can be used to facilitate Alliance compromise. Of course, DoS can
also be used as a direct sabotage-type attack on an Alliance. DoS attacks on one
particular Alliance could be used to prevent it from obtaining a specific piece of
information, from reporting something back to the originator or from executing
some action. As an application of this type of DoS, consider for example a vendor
that does not want to honour an offer made to an Alliance earlier.
Generally DoS attacks are very hard to defend against. Still, in many cases
something can be done to make them harder or less worthwhile. In the case of
mobile Alliances, one option is to detect DoS-like conditions and report them
back to the originator of the Alliance. Care needs to be taken to distinguish
network problems from attacks. A second option is to increase the effort needed
for DoS attacks.

6.3.1 Detect and Report

Detection of network problems or insufficient local resources is easy. Timeouts
on computations and communication attempts are sufficient in most cases. Re-
source exhaustion attacks on hosts executing the agents can also be detected in
this way. An agent can assume that the environment is too hostile for further op-
eration when the number of accumulated timeouts exceeds a certain threshold.
In this case the agent could notify the originator. When the originator gets this
type of notification from at least t(n) + 1 honest agents, the originator knows
that the Alliance has stopped to be functional. Since the number of malicious
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agents in an Alliance is not larger than t(n), DoS attacks where the agents run-
ning on malicious hosts claim an error condition are only possible when Alliance
compromise is feasible anyway.

6.3.2 Increase DoS Tolerance

If a DoS attack directly targets individual hosts with agents on them, these
hosts are rendered unusable and unreachable in many cases. In the strict model,
DoS on even a single honest host allows Alliance compromise, if the maximum
permitted number of hosts is already malicious. This is due to the fact that non-
responding agents need to be treated as malicious, since they cannot contribute
any correct data to computations and majority votes. One way to deal with
this problem is to decrease the number of responding (and thereby not readily
identifiable) malicious host that are allowed in an Alliance. If, for example,
the number of allowed responding malicious hosts is decreased to n

6 , then DoS
attacks on up to n

6 of the hosts executing an Alliance can be tolerated. See
Section 6.5 for more details.
A connectivity disruption DoS attack can be made more difficult. There are two
variants of this attack: Disrupt connectivity between the agents in a computation
phase and disrupt connectivity to target hosts in agent migration. In the simple
model every agent has to have direct connectivity to every other agent and
migration target. An Alliance can employ internal dynamic routing of messages
that is hard to understand from the outside. It then forms a dark net [BEPW02].
Cutting off an agent’s connectivity to the Alliance now requires cutting off its
connectivity to all other agents. For the case of migration it requires cutting
off the connectivity from all agents to a migration target. Depending on the
concrete network infrastructure this may or may not be harder to do than just
cutting of some connections.
Alliance-internal routing does not cause additional security problems. Messages
are routed over an untrusted network anyway. Adding some possible untrusted
members of the alliance in the chain of routers causes no new risks. An added
benefit of Alliance-internal routing is that it increases the robustness against
unreliable networks.

6.4 Certificates

Agents of an Alliance are executed on hosts that supply a special execution
environment with standardised functionality. An important degree of freedom
in the design of such frameworks is the question of certificates, i.e. how hosts
running an agent framework can demonstrate their identity. Several alternatives
exist. Each has a different impact on practicability of the overall system, effort
needed and security level achieved.
The main use for host identification is the prevention of an attack where the
attacker creates a massive number of (possibly virtual) malicious hosts that run
the agent framework. Identity is also beneficial in the creation of secure channels
between hosts.
The main possibilities are the following:

1. Use Certificates. Each participating host gets a certificate from one of pos-
sibly several well known authorities that allow the host to prove its identity
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and also allows to prevent impersonation attacks when establishing secure
connections to other hosts running the framework.

In addition, this option gives some possibility to detect the malicious host
creation-attack in the certification authorities. Still, if one or more of the
certification authorities are malicious, this scheme breaks completely.

The most serious drawback of this option is the need for non-distributed,
trusted infrastructure. The cost and effort needed to establish and operate
this infrastructure may well be prohibitive.

2. Web-of-trust. A PGP-like web-of-trust (see e.g. [Fei02]) can be used. This
could be done by having certificates that are signed by other hosts run-
ning the framework. Whether this will prevent the creation of significant
numbers of malicious hosts depends strongly on the concrete details of the
scheme used.

3. Do not use certificates. This is a least-effort least-security solution. There
may still be some weak authentication, namely by IP address, i.e. by reach-
ability. If an attacker cannot intercept most/all packets sent between two
specific IP addresses, there is the possibility to establish secure end-to-end
communication between two specific IP addresses.

While this alternative offers little protection against the creation of large
numbers of (possibly virtual) malicious hosts, such an attack can be made
more difficult. One possibility is to disallow the selection of migration
targets with IP addresses that are close to each other or from the same
subnet. In [RP02] Rennhard and Plattner describe a collusion detection
mechanism along these lines. The reason this is effective to some degree
is that physical subnets on the Internet can only be allocated in larger
portions. The underlying reason is that routing in the Internet is not done
on individual addresses but on target address prefixes which correspond
to subnets of groups of subnets that are physically close to each other.

With the IP address based countermeasures, an attacker can not simply
take a class B subnet [Pos81] and install 65,534 malicious hosts1. Instead,
a large number of smaller subnets has to be obtained or addresses in many
subnets have to be connected to malicious hosts. This is very expensive,
since either hosts physically connected to the individual subnets are needed
or virtual channels have to be created from the individual IP addresses to
a central pool of (virtual) malicious hosts.

Still, attacks that create large numbers of malicious hosts are feasible if
the attacker does not care about legality or about doing a huge amount of
collateral damage. A worm could be used to compromise a large number
of well distributed hosts that could then serve as malicious hosts within an
agent framework. 100,000 and more compromised hosts in worm attacks
are feasible today.

Whether this type of attack is visible enough to be detected remains to be
seen. The first attempts at ’stealth worms’ that do not significantly impact
host functionality or performance, and thereby limit the motivation of host
operators to deal with them, have already been observed.

1At least two addresses are needed for network purposes and cannot be used as host
addresses.
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6.5 Numbers Matter

In the absence of agent migration, a secure distributed computation needs only
be concerned with the number of malicious hosts in the set of hosts performing
the computation. A limit on the number of malicious hosts is sufficient to model
the requirement for a secure computation.
With agent migration the problem becomes more difficult. If there are enough
malicious hosts in the set of migration target hosts to choose from, a bad choice
can happen that selects more malicious targets than the scheme for secure dis-
tributed computation can tolerate. The question of Alliance compromise by
malicious hosts becomes a matter of the target selection process and if it is
random or has random components, a question of probability.

Bad Choice

Now, an analysis of the chances of alliance compromise by bad random selection
of migration targets is presented. The problem exists in a scenario where the
number of malicious hosts is constant (“attacker-less bad choice”) as well as
in the cases where the relative number of malicious hosts has been increased
by an attacker (“bad choice with attacker”). For the analysis there is no real
difference. It is just important to keep in mind that the number of malicious
hosts does not need to be stable during the Alliance lifetime.
The following analysis assumes a static number of malicious hosts. In a scenario
with dynamically changing malicious host numbers, the following limits can still
be used as upper bounds. Special scenarios might need more specialised models.
To solve the problem for random selection, the overall fraction of malicious hosts
needs to be lower than the fraction of malicious hosts permitted in the Alliance.
In addition, the number of migrations m has to be limited, since the risk of
selecting too many malicious hosts exists in each migration.
Let now km be the number of malicious hosts in the set of k participating hosts
(i.e. hosts that operate an agent framework) and n the size of the Alliances as
before. Then, the probability of sending exactly i agents to malicious hosts and
n− i agents to honest hosts is (for i ≤ n, k − km ≥ n):

P (i mal. hosts selected) =

(

km

i

)

·
(

k−km

n−i

)

(

k
n

)

With the selected protocols the number of malicious hosts needs to be smaller
than t(n) = ⌈n

3 ⌉−1. Hence the probability of having selected up to the maximum
number of allowed malicious hosts is now:

P (max. t(n) mal. hosts selected) =

∑t(n)
i=0

(

km

i

)

·
(
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n−i

)

(

k
n

)

For m migrations we get the probability Pt of having no more than t(n) cor-
rupted agents in the Alliance after each migration step as follows:

Pt =

(

∑t(n)
i=0

(

km

i

)

·
(

k−km

n−i

)

(

k
n

)

)m
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This means Pt is the overall probability that the Alliance is not compromised
because of bad host choices in migration. In each migration the agents are
securely re-created and consequentially corrupted agents can not move from
one host to the other, hence the argument is valid. For the case km ≤ t(n) we
get Pt = 1 because there are not enough malicious hosts available to break the
system.

Bad Choice Examples

Bad choice is a real problem, as will be illustrated now with some concrete
examples. In the following figures Maple [Inc] is used to plot Pt for k = 100 and
k = 10, 000 participating hosts and Alliances of sizes of n = 10 (Figures 6.2,
6.4) and n = 50 (Figures 6.3, 6.5). The number of malicious hosts km was set to
k
2 , since for more malicious hosts, Pt is always very close to 0 in our examples.
Choosing k = 100 and n = 10 we get Pt ≈ 0.921 for having a non-compromised
Alliance after 10 migrations if up to 10 hosts (10%) are malicious. For n = 50
we improve the result to Pt ≈ 0.996 for km ≤ 20 (20% malicious hosts). Even
with 25% malicious hosts we still have Pt ≈ 0.7245.
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Figure 6.2: Alliance compromise with k = 100 and n = 10
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Figure 6.3: Alliance compromise with k = 100 and n = 50

As one can see in Figures 6.4 and 6.5, the results for k = 10, 000 are a bit worse.
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For instance in case of n = 10, km = 1000 and 10 migrations we get Pt ≈ 0.8796.
And, as expected for n = 50 and km = 2000 we have Pt ≈ 0.8665. If we reduce
km to 15% we get Pt ≈ 0.9936.
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Figure 6.4: Alliance compromise with k = 10, 000 and n = 10
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Figure 6.5: Alliance compromise with k = 10, 000 and n = 50

The following tables 6.1, 6.2 and 6.3 demonstrate the necessity of choosing n
big enough. Since Maple has precision issues when the values approach 0 or 1,
the tables where calculated using the GNU MP [Gnu] library with a floating
point precision of 1024 bits. Entries are rounded in the last digit.
As a general observation, larger Alliances are more secure, which is not sur-
prising. It can also be seen that pretty large numbers of malicious hosts can
be tolerated. These results demonstrate the practical feasibility of the Alliance
approach. Random choice is the simplest method to select new hosts. If one
takes into account to import a more sophisticated algorithm into the model, the
results could improve considerably.
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k = 100

n = 10 (t(n) = 3)

m\km 10 20 30

10 0.9207 0.3133 0.0143

30 0.7805 0.0308 ≈ 0

100 0.4378 ≈ 0 ≈ 0

n = 30 (t(n) = 9)

10 1−2·10−5 0.7322 0.006

30 1−5·10−5 0.3925 ≈ 0

100 0.9998 0.0443 ≈ 0

Table 6.1: k = 100

k = 1, 000

m\km 10 30 100 300

n = 10 (t(n) = 3)

10 1−1·10−5 0.9988 0.8833 0.0135

30 1−3·10−5 0.9963 0.6893 ≈ 0

100 1−1·10−4 0.9878 0.2893 ≈ 0

n = 30 (t(n) = 9)

10 1−1·10−15 1−2·10−8 0.9965 0.005

30 1−3·10−15 1−7·10−8 0.9895 ≈ 0

100 1−1·10−14 1−2·10−7 0.9655 ≈ 0

n = 100 (t(n) = 33)

10 ≈ 1 ≈ 1 1−2·10−11 0.0957

30 ≈ 1 ≈ 1 1−5·10−11 0.0009

100 ≈ 1 ≈ 1 1−2·10−10 ≈ 0

Table 6.2: k = 1, 000

k = 10, 000

m\km 30 100 300

n = 10 (t(n) = 3)

10 1−1·10−7 1−2·10−5 0.9986

30 1−4·10−7 1−6·10−5 0.9957

100 1−1·10−6 0.9998 0.9857

n = 30 (t(n) = 9)

10 1−3·10−18 1−2·10−12 1−9·10−8

30 1−1·10−17 1−5·10−12 1−3·10−7

100 1−3·10−17 1−2·10−11 1−9·10−7

Table 6.3: k = 10, 000
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Chapter 7

From Theory to Practice

7.1 Introductory Remarks

Secure multi-agent computations live within an arithmetic circuit over a finite
field F, knowing only addition, multiplication and multiplication with a public
scalar as described in section 4.3.2. In [Gál95] it is shown that a polynomial
size semi-unbounded fan-in Boolean circuit of depth d over an arbitrary finite
field can be simulated by a polynomial size semi-unbounded fan-in arithmetic
circuit of depth O(d+ log n) (where n is the number of variables of the Boolean
function f that is implemented by the Boolean circuit).

Definition 7.1. Semi-unbounded boolean circuits A Boolean circuit is defined
as a circuit with gates from the Boolean basis {∧,∨,¬}. A semi-unbounded
boolean circuit is a boolean circuit with constant fan-in ∧ gates and unbounded
fan-in ∨ gates.

For practical algorithms this is no restriction since both computational power
is finite and the implemented functions should terminate and thus not have
an infinite number of input variables. This implies the theoretical possibility of
implementing all functions that one could think of in an agent scenario. I call
it a theoretical possibility as secure multi-agent computations are on the one
hand very secure but on the other hand also very expensive (concerning both
computation and communication costs). This will be shown in detail in this
section when a digital signature is realized through SMAC. So, no-one would
propose to use secure multi-agent computation for each and every application.
Instead, this kind of computation should be used in the following cases:

1. In a scenario that requires a very high security and confidentiality level all
computations should be done distributed and all data should be shared.
In such a scenario the gain is worth the expenses.

2. SMAC can be used without restriction for functions that require only a
small number of multiplications since those operations cause the most
communication and computation costs.

3. While designing an agent it is wise to decide which sub-tasks are the most
sensitive and to implement those together with the data connected to them
using SMAC. Other functions can be implemented as usual.
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7.2 What Language do Alliances understand?

Secure multi-agent computation should guarantee not only robustness but also
data privacy. Arithmetic circuits do not speak Javanese. Besides complex op-
erations defined in libraries, Java also offers the usual control structures such
as if-then-else or while. If a designer would simply substitute additions and
multiplications by distributed ones, data privacy would be terribly hurt. Control
structures can leak a considerable amount of information on shares that can be
used by side channel attacks. In [SGE02] we have shown that a binary secret
key k can be completely uncovered when evaluating a multi-variate polynomial
at point k just by measuring the time necessary for evaluation. Recently, such
attacks are well-known and popular and are caused by the possibility of mea-
suring the execution time of loops and if-then-else structures. This allows
inference on the expressions used as Boolean control mechanisms for the control
structures. Consequently, this implies for secure multi-agent computations that
such structures may not be used as usual. All computations and evaluations
must be lift from the single-agent level to the Alliance level as illustrated in
figure 7.1. On the single-agent level an Agent A makes its computations i.e.
executing function f on an input x in an unsecured way. The input x can be
read and manipulated by H . Instead, a functor lifts x on the Alliance level by
splitting it into shares using the function “share”. On the Alliance level f is
turned into a distributed function Mf using only shared input xs. Once an
input is shared and processed on this level, no return is possible (from point
of view of one agent). The resulting commutating diagram describes a monad
from category theory. It also shows the main task arising in building Alliances:
lifting arbitrary functions f to Mf . I have firstly introduced this problem in
chapter 5 in figure 3.1 where the so-called protocol compiler takes care of this
task. Actually, the design of this compiler requires to develop a new machine
model, that can handle control structures using for example comparisons of
variables in an efficient manner without lacking any information on the input
variables. A native approach requires to break all input down into bits and to
perform a bitwise comparison. This is a very inefficient approach and not suit-
able for practice. Besides lifting computations on the Alliance level one still has

MA MA

A A

Mf(xs)

f(x)

share(x)=xs share(f(x))

Figure 7.1: The SMAC monad

to prevent from information leakage and side-channel attacks. Additional meth-
ods must be introduced in order to simulate a normal computer program, as
to say always executing all branches of an if-then-else structure or passing
through all loops as often as a predefined upper limit requires. This, too, raises
the computation and communication costs on the Alliance level in a significant
manner.
Developing an (hopefully) efficient and secure machine model for all functions
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that could be computed by arithmetic circuits requires methods from circuit
optimisation, a field that is heavily worked on but still does not provide generic
methods that would allow to simulate a program written in a higher program-
ming language in a way suitable for the Alliance approach. Exemplary solutions
will be given in chapter 8 in which I present some implementation details and a
detailed complexity analysis of an RSA digital signature and of the symmetric
cipher AES.
In the following sections I present a secure simulation of conditional statements
and loops which are the control structures that are heavily used by higher pro-
gramming languages. Furthermore, long numbers on an arithmetic circuit to-
gether with the necessary functions are defined. For all operations the number
of distributed multiplications serves as complexity measure and is given as exact
number.
The terminology is as follows. Arithmetic expressions that are not yet lifted
to the monad and evaluated are denoted with capital letters Ai. Small letters
like a, b stands for evaluated arithmetic expressions which are not distributed.
A leading “M” lifts an expression to the monad. Finally, the function “Meval”
evaluates distributed arithmetic expression within the monad, i.e. privately and
robustly.

7.3 Simulation of Conditional Branches

There is no possibility to implement a conditional branch in an arithmetic circuit
as in any evaluation process all gates are evaluated. Each gate gets input and
produces output. This cannot be suppressed. In normal programming languages
there are control structures which use control variables. Thus, by analysing the
control flow of a program, information, e.g. about the control variables, gets
lost. This must be prevented.
As an example, take a look at the following simple example:

if b then x← A1

By analysing the control flow one can determine whether the statement x← A1

has been executed or not. Thus, the condition b is revealed. In case of a modu-
lar exponentiation using the square-and-multiply algorithm from section 9 the
consequences are crucial. Computing an RSA digital signature, a binary repre-
sentation of the private key serves as exponent for a modular exponentiation.
Each bit of the private key serves as condition for an if-then-else statement.
Thus, by an analysis of the control flow, the whole private key is revealed.
To prevent from this, it is necessary to complete conditional statements, which
means that missing branches are anyhow created.
But how can this be done? A completion is reached by statements that do not
change the state of the variables. In the example above, the solution is to intro-
duce an else branch with the command x← x. Thinking of a normal program,
this still allows a side-channel attack as the computation of a regular command
will take much more time as the assignment x ← x. A modern compiler will
even recognise and delete such meaningless statements. However, simulating the
branching and having distributed variables the situation is different as one can
see in example 7.2.
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Example 7.2. The conditional statement

if b then x← A1

is completed and lifted to

Mx = Meval(Mb ·MA1 + (1−Mb) ·Mx).

As x and b are distributed, the shares Mx and Mb are arbitrary field elements.
Thus, the product (1−Mb) ·Mx) to be computed in the simulation of the else

branch, is not trivial.
In general, the simulation of a conditional branch is done as in definition 7.3.

Definition 7.3. Let b be a Boolean value and A1, A2 arithmetic instructions.
Then, the branching

if b then x← A1 else x← A2

can be lifted to the SMAC monad as follows:

Mx = Mb ·MA1 + (1 −Mb) ·MA2

The multiplicative complexity of such a branching is

M(ifA1,A2
) =M(A1) +M(A2) + 2.

Thereby,M(A1), M(A2) defines the number of distributed multiplications nec-
essary to evaluate the arithmetic expressions A1, A2 in the monad. The analysis
and optimisation of general branching structures of larger depth is out of scope
of this thesis. Solutions can be found in standard works as [GW84] in the field
of compiler construction.

7.4 Simulation of Loops

A loop construct consists of a block of code and a condition. Again, the latter
does not exist in an arithmetic circuit. Therefore, the simulation requires a trick.
The while loop can be thought of as a repeating if statement without an else

branch. If one knows an upper bound k of the number of executions a simulation
of

while b do1

x← A12

is given by the sequence

Mx = Mb1MA1 + (1−Mb1)Mx,

Mx = Mb2MA2 + (1−Mb2)Mx,

...

Mx = MbkMAk + (1−Mbk)Mx.
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The condition bi contains the result of the evaluation of B in the ith iteration.
A purely arithmetic representation of the resulting (reconstructed) x is

bkAk+(1−bk)(bk−1Ak−1+(1−bk−1)(· · · (b2A2+(1−b2)(b1A1+(1−b1)A1)) · · · ))

Obviously, the number of distributed multiplications is

M(whilek) ≤ 2k + k · M(B) +

n
∑

i=1

M(Ai).

7.5 Long Numbers

As public key (PK) cryptography is always based on mathematical problems,
which are (hopefully) difficult to solve. One category of cryptographic algo-
rithms for instance is characterised by the so-called Diffie-Hellman assumption.
All algorithms in this category can be broken as soon as there is an efficient
algorithm to compute the discrete algorithm in large finite fields. Another cat-
egory contains algorithms that are based on the difficulty to factorise large
numbers. There are other categories as for example algorithms based on solving
non-linear equations over Fq[X1, . . . , Xn], but there is one common property:
all PK-algorithms require large finite rings or fields to provide a satisfactory
security level.
For mobile agents it is of mayor concern to have some cryptographic functions
(as e.g. a digital signature) at hand that can be securely evaluated. Therefore,
chapter 8 provides a complexity analysis of RSA and AES. The first requires a
definition of long numbers on the arithmetic circuit over the field Fp.
Each n-digit long number a is represented in a B-adic form, i.e.

a =

n−1
∑

i=0

aiB
i, 0 ≤ ai ≤ B − 1.

The results of all basic operations (addition, multiplication and its inverses)
applied on two digits is smaller than or equal to B2−1. For reasons of uniqueness
of the results, it must be ensured, that during the computation no modulo
reduction in the field Fp is necessary. Therefore, we have the following inequality
for the size of B:

B2 − 1 < p⇔ B2 < p + 1⇔ B < ⌊
√

p + 1⌋

The largest possible basis B for a long number representation in the field Fp is
thus B = ⌊√p + 1⌋ − 1.
Implementing a long number arithmetics on an arithmetic circuit requires the
following operations:

1. Division with remainder on short numbers:

div: B × B → B × B
(a, b) 7→ (q, r) (with a = b · q + r, r < q)

2. Addition and multiplication of two short numbers with carry digit.
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3. Comparison of two short numbers (<, >, =).

4. Division of a 2-digit number by a 1-digit number:

div: B × B × B → B × B
(a1, a0, b) 7→ c1co (with c1c0 = ⌊(a1 ·B + a0)/b⌋, c0, c1 < B)

This operation is required to determine the carry digit and remainder after
multiplication of two digits.

The following sections present several operations. First, operations on the single
digits, the so-called short numbers, are introduced and used as a basis for the
definition of the long number operations in later sections. The notion is as
follows: All operations are written in teletype font (e.g. op). The number of
distributed arguments is attached to the end of the functions name (e.g. op1).
If it is a long number operation there is a leading l (e.g. lop1).

7.5.1 Basic Arithmetics with Short Numbers

Any operation on long numbers requires to have methods at hand to reduce
intermediate results coming from operations on each digit with respect to basis
B. These are div, mod, addition and multiplication of short numbers which have
to be defined with respect to the underlying field Fp. As these operations are a
building block for the actual long number operations they are called very oftenly
and should cause as few distributed multiplications as possible. This implies
that a straight-forward implementation is out of the question. An approach
using linear shift registers has also turned out to be not general enough, as
they require a very specific modulus. The method which is finally used, is a
function interpolation. The computations are done over a finite field and thus
all functions can be interpolated by a polynomial.
These polynomials can be pre-computed by the originator of an agent Alliance.
The interpolation polynomial of an arbitrary n-ary function requires the pre-
computation of all possible points (as to say pn many). Then, proposition 4.2
gives us an interpolation polynomial q of degree d ≤ pn − 1. Represented in
Horner form and given to the agents, the evaluation of q causes pn−2 distributed
multiplications.
For the implementation of long numbers, addition and multiplication are defined
digit wise, so-called short number operations. In order to store eventual carry
digits, one requires the functions div and mod to transform the computation
results in B-ary form. Thus, for a, b < B one requires c1, c2, c

′
1, c

′
2 < B with:

a + b = c1B + c0, a ∗ b = c′1B + c′2

It is obvious, that c1 ∈ {0, 1} while c′1 ∈ {0, . . . , B − 2}. This difference in the
domain size drastically influences the multiplication complexity of the interpo-
lation polynomial of div and mod. Therefore, it is reasonable to define functions
on different domains:

div1 : {0, . . . , B2 − 2} → {0, . . . , B − 1}
x 7→ x div c1

and
mod1 : {0, . . . , B2 − 1} → {0, . . . , B − 1}

x 7→ x mod B = c2
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for reductions after a short number multiplication, and

rediv1 : {0, . . . , 2B − 1} → {0, 1}
x 7→ ⌊x/B⌋

and
remod1 : {0, . . . , 2B − 1} → {0, . . . , B − 1}

x 7→ x mod B = c′2

for reductions after a short number addition. The argument of the remod1 is
smaller or equal to 2B − 1 as the long number addition is a cascading addition
and thus has not only to consider a and b but also a carry from the addition
step before. All operations are defined for one distributed argument only, as one
can assume the basis B to be public. This is just for cases of consistency, as the
number of distributed arguments does not influence the degree of the resulting
interpolation polynomial.
Unfortunately, all these functions are specific in the sense that they are not
differentiable. The function mod n for example is linear and then suddenly falls
to zero. In order to interpolate such functions the interpolating polynomial has a
high degree. Most probably, is has the maximum degree pn−1 when computing
over the field Fp.
Consequently, we get the following complexities as upper bounds:

M(div1) =M(mod1) = B2 − 2

M(rediv1) =M(remod1) = 2B − 2

Oftenly, the computation of the quotient as well as the remainder are required.
If the quotient q of a/b has already been computed, the remainder can be de-
termined locally by a mod b = a− q · b. The function computing both quotient
and remainder on the domain {0, . . . , B2− 1} is called divmod1, the one on the
reduced domain redivmod1. The number of distributed multiplication is then1

M(divmod1) =M(div1) = B2 − 2

M(redivmod1) =M(rediv1) = 2B − 2

Addition and Multiplication

Addition of two short numbers is a local operation but requires one reduction
modulo B to determine the quotient (carry) and the remainder (redivmod1).
Multiplication, if not with public argument, is itself a distributed multiplica-
tion. The result, too, requires to be reduced modulo B. This can be done with
divmod1. Consequently, the complexity is

M(add2) =M(redivmod) = 2B − 2

M(mul2) =M(divmod1) + 1 = B2 − 1

M(mul1) =M(divmod1) = B2 − 2

Comparison

The operators <, >,≤,≥ can be computed distributedly by means of a division
by B. The corresponding arithmetic expressions are given in table 7.5.1. With

1For a more detailed analysis see [Amm07].
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Operation Arithmetic expression
a > b rediv1(B − 1 + a− b)
a ≥ b rediv1(B + a− b)
a < b rediv1(1− ((B + a− b))
a ≤ b rediv1(1− ((B − 1 + a− b))

Table 7.1: Arithmetic expressions for short number comparisons

a, b < B the arithmetic expressions for a > b and a ≤ b lie in the interval
{0, . . . , 2B − 2}, and those for a ≥ b and a < b in {1, . . . , 2B − 1}. So, the
reduced div operation redivmod1 can be used.
The operators =, 6= can be computed by the equivalence

a = b⇔ a ≤ b ∧ a ≥ b.

The costs are then

M(=, 6=) = 4(B − 1) = 2 ·M(>, <,≥,≤)

It can also be computed by an interpolation polynomial of degree 2B − 2, re-
quiring 2B − 3 multiplications.
These results allow to assign the generic term cmp to the operations in the set
{<, >,≤,≥, 6=, =} and

M(cmp) = 2B − 2.

7.5.2 Basic Arithmetics with Long Numbers

This section introduces the implementation of basic arithmetics on an arithmetic
circuit with long numbers as well as a complexity analysis. The methods are
mainly based on the standard algorithms from [Knu98, Wel05, CLRS01], with
modifications to handle the information leakage problem. From now-on, a, b be
long numbers in an B-ary representation.

If-Then-Else

The method from section 7.3 could also be applied to long numbers. But there is
a more efficient way. For a long number a = (an−1, . . . , a0), a condition b ∈ {0, 1}
and arithmetic expressions A1, A2 the branching

if b then1

a← A12

a← A23

can be simulated by

(an−1...a0) = b · (rn−1...r0) + (1− b)(sn−1...s0) .

In this equation, the long numbers r = (rn−1, . . . , r0) and s = (sn−1, . . . , s0)
are the results of evaluation A1, A2. The multiplications in this equation do not
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cause carry digits. So, one can multiply the factors b and 1− b with each digit.
Thus, the equation can be rewritten in the form

(an−1...a0) = (b · rn−1...b · r0) + ((1− b)sn−1...(1 − b)s0).

Therefore, the complexity is

M(lif) = 2n.

Comparison

Algorithm 1 lcomp2 computes for two long numbers a, b the distributed value
(1 or 0) for a < b. Normally, one would start with the highest valued digit
and stop as soon as there is a difference. As discussed in section 7.4 this is not
possible in the SMAC monad. There, one has to start with the lowest-valued
digit using using a short number comparison for each digit. Line 3 and 5 cause
M(cmp) multiplications. The branching costs two additional multiplications.
Consequently, for n executions, the complexity is

M(lcmpn) = n(2M(cmp) + 2) = n(4B − 2) = 4Bn− 2n.

Input: a = (an−1...a0), b = (bn−1...b0)
Output: r = 1 if a < b, else r = 0
r ← 0;1

for i← 0 to n− 1 do2

if ai < bi then3

r ← 1;4

if ai > bi then5

r ← 0;6

Algorithm 1: lcomp2

Addition

The method presented here is addition known from school. It is based on the
operations rediv1 and remod1 from section 7.5.1 are used. It is presented in Al-
gorithm 2. Obviously, one division per coefficient and one scalar multiplication

Input: a = (an−1 . . . a0), b = (bn−1 . . . b0), ai, bi ∈ {0, . . . , B − 1}
Output: s = (sn . . . s0) = a + b
c← 0;1

for i← 0 to n− 1 do2

si ← (ai + bi + c) mod B;3

c← (ai + bi + c) div B;4

sn ← c;5

Algorithm 2: ladd
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for the modulo operation is necessary. The overall multiplication complexity for
two n-digit numbers is then

M(ladd) = n ·M(redivmod) = 2Bn− 2n = 2n(B − 1).

Subtraction

Algorithm 3 computes the difference s of two long numbers a and b. The value
c is the leading sign and defined as c = 0 if a ≥ b, and c = 1 if a < b. Line
4 computes the actual borrow. In both lines 3 and 4 it is necessary to add
the value B in order to guarantee the results to lie in the interval [0, B − 1].
Otherwise, an underflow in the field Fp could occur and cause the div and
mod operation to deliver wrong results. For the actual implementation of the
subtraction algorithm it suffices to use the operations rediv and remod as we
have

0 ≤ B + ai − bi − c < 2B.

Thus, the complexity of subtracting two n-digit long numbers with basis B is

M(lsub) = n ·M(redivmod) = 2Bn− 2n = 2n(B − 1).

Input: a = (an−1...a0), b = (bn−1...b0), ai, bi ∈ {0, . . . , B − 1}
Output: s = (csn−1...s0) = a− b
c← 0;1

for i← 0 to n− 1 do2

si ← B + ai − bi − c mod B;3

c← 1− (B + ai − bi − c div B);4

Algorithm 3: lsub

Multiplication

Algorithm 4 presents a method for multiplying long numbers which is similar
to the method known from school. The school method consists of two steps.
In the first step, all multiplications are done for each digit of one of the num-
bers. Then, the resulting numbers are added. In contrast to this, lmul does the
multiplications and additions for each digit in parallel.
The body of the loop requires M(divmod1) + 1 distributed multiplications.
Having n and m the number of digits of the arguments, the body is executed
n ·m times. So, we get two cases:

1. Private multiplication of a distributed long number with a public one
causes

M(lmul1) = mnM(divmod1) = mn(B2 − 2) = mnB2 − 2mn

distributed multiplications.

2. Private multiplication of two distributed long numbers costs

M(lmul2) = mn(M(divmod1) + 1) = mn(B2 − 2) = mnB2 −mn

distributed multiplications.
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Input: a = (am−1...a0), b = (bn−1...b0), ai, bi ∈ {0, . . . , B − 1}
Output: w = a · b = (wm+n−1...w0)
w ← 0;1

for i← 0 to m− 1 do2

c← 0;3

for j ← 0 to n− 1 do4

t← ai · bj + wi+j + c;5

c← t div1 B;6

wi+j ← t mod1 B;7

wj+m ← c;8

Algorithm 4: lmul

Short Division with Remainder

In the beginning of section 7.5 it is mentioned that it is necessary for an imple-
mentation of a division of long numbers to define a division of a two-digit by a
one-digit number. This operation be called shdiv (short division). In a general
long number division it is quite complex to determine how often the divisor fits
into the leading one or two digits of the dividend. A short division allows to do
this by a simple div operation. Algorithm 5 computes the quotient q and the
remainder. The method equals the one known from school. The body of the

Input: a = (am−1...a0), b, ai ∈ {0, . . . , B − 1}
Output: q = (qm−1...q0), r with a = q · b + r
r ← 0;1

q ← 0;2

for i← m− 1 to 0 do3

qi ← (ai + rB) div b;4

r ← (ai + rB) mod b;5

Algorithm 5: shdiv

loop is executed m times and requiresM(divmod1) multiplications. The overall
complexity is thus

M(shdiv1) = mM(divmod1) = B2m− 2m.

Since in this thesis only a reduction by the public basis B is required, the
complexity analysis is limited to this case.
Now, a general long number division can be defined.

Long Number Division with Remainder

As mentioned before, the difficulty of a long number division is the necessity of
estimating how often the divisor fits into a specific number.

Example 7.4. In order to divide 355,938 by 427 the following steps are per-
formed:

1. division of 3,559 by 427 → q = 8 and r = 133,
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2. add one digit to r and divide 13333 by 427 → q = 3, r = 52

3. add one digit to r and divide 528 by 427 → q = 1, r = 101.

Example 7.4 illustrates that a long number division can be reduced to a division
of a n + 1 digit number by an n digit number. While a human being is able to
estimate the quotient q of such numbers efficiently, a computer needs help.

Proposition 7.5. Be u = (un . . . u0), v = (vn−1 . . . v0) long numbers with u/v <
B. Then, the quotient q with q = ⌊u/v⌋ can be estimated by

q̂ = min

(⌊

unB + un−1

vn − 1

⌋

, B − 1

)

,

and for vn−1 ≥ ⌊B/2⌋ we have the inequality

q̂ − 2 ≤ q ≤ q̂.

Proof. [Knu98]

In order to guarantee vn−1 ≥ ⌊B/2⌋, [Knu98] proposes a normalisation by mul-
tiplying both u, v by ⌊B/(vn−1 + 1)⌋. This does not change the quotient of u/v
and does not increase the number of digits of v. Now, a long number division
can be defined. It is shown in Algorithm 6.
The complexity analysis is limited to the case of a public divisor. First, the
specialities of the single steps are discussed. The number of multiplications in
each line of algorithm 6 are then given in table 7.5.2.

1. “Normalise”: line 1 is a local division of public values, lines 2,3 are multi-
plications with a public scalar.

2. “Computation of the next digit of q”: the expression Bc + aj+n−2 in lines
9,12 lies in the interval [0, . . . , B2). They are first brought into B-ary
presentation and then compared.

3. “Multiplication and Subtraction”: line 17 contains the assignment of a
long number. This is handled as shown in section 7.5.2.

4. “Denormalise”: requires shdiv.

Thus, the long number division results in a total of

M(ldivm,n) = mnB2 + 3nB2 + 7mB2 + 6B2 + 6mnB + 6nB

+28mB + 26B − 6mn− 6n− 20m− 18.

Summary

Table 7.5.2 gives an overview on all operations needed in the context of a long
number arithmetics. The complexity is measured in the number of distributed
multiplications, whereby the parameters n, m define the number of digits of the
long numbers a and b. The term “mult.” in the second column stands for a
distributed multiplication of two field elements.
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Input: a = (am+n−1...a0), b = (bn−1...b0), ai, bi ∈ {0, . . . , B − 1}
Output: q = (qm...q0), r = (rn−1...r0) with a = q · b + r
/* Normalise */

d← B div (bn−1 + 1);1

a← d · a;2

b← d · b;3

for j ← m to 0 do4

/* Computation of the next digit of q */

qj ← (aj+nB + aj+n−1) div bn−1;5

if qj ≥ B then6

qj ← B − 1;7

c← aj+nB + aj+n−1 − qjbn−1;8

if qjbn−2 > Bc + aj+n−2 then9

qj ← qj − 1;10

c← c + bn−1;11

if qjbn−2 > Bc + aj+n−2 then12

qj ← qj − 1;13

/* Multiply and subtract */

(aj+n+1...aj) = (aj+n...aj)− qj(0bn−1...b0);14

if aj+n+1 = 1 then15

qj ← qj − 1;16

(aj+n...aj) = (aj+n...aj) + (0bn−1...b0);17

/* Denormalise */

(an−1...a0) = (an−1...a0) div d;18

r ← (an−1...a0);19

Algorithm 6: ldivm,n
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1 0 0
2 M(lmul1m+n,1) B2(m + n)− 2m− 2n
3 0 0
4 m + 1 times row 5 - 17
5 M(shdiv12) 2B2 − 4
6 M(cmp) 2B − 2
7 2 2
8 0 0
9 2M(divmod1) +M(lcmp2) 2B2 + 8B − 8

10 0 0
11 2 2
12 2M(divmod1) +M(lcmp2) 2B2 + 8B − 8
13 4 4
14 M(lsubn+1) +M(lmul11,n) B2n + 2Bn + 2B − 4n− 2
15 M(cmp) 2B − 2
16 2 2
17 M(laddn+1) +M(lifn+1) 2Bn + 2B
18 M(shdiv1n) B2n− 2n

Table 7.2: Complexity of long number divisions given by the number of
distributed multiplications in each line of algorithm 6.

Function # short number operations # multiplications
logical not 0
logical and/or 1
if 2
ifA1,A2

M(A1) +M(A2) + 2
div1, mod1 B2 − 2
rediv, remod 2B − 2
divmod1 div1 B2 − 2
redivmod rediv 2B − 2
add redivmod 2B − 2
mul divmod1, 1 mult. B2 − 1
cmp 2B − 2
lcmpn 2n× (cmp+ 1 mult.) 4Bn− 2n
lifn 2n
laddn n× redivmod 2Bn− 2n
lsubn n× redivmod 2Bn− 2n
lmul1m,n mn× divmod1 B2mn− 2mn
lmul2m,n mn× divmod1+ mn mult. B2mn−mn
shdiv1n n× divmod1 B2n− 2n
ldivm,n mnB2 + 3nB2 + 7mB2 + 6B2

+ 6mnB + 6nB + 26mB + 26B
− 6mn− 10n− 20m− 18

Table 7.3: Complexity of short/long number operations (in # distr. mult.)
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Chapter 8

Applications

Obviously, secure multi-agent computations cause too much communication
overhead to allow a practical implementation of a complete user-defined agent
functionality. This will change with the development of new technologies pro-
viding more bandwidth to Internet users. Nonetheless, even today SMAC can
be used.

1. A typical information collecting agent can be be substituted by an Alliance
using a verifiable secret sharing scheme (VSS) as described in section 4.2.2
in order to keep important information secret and protected. The commu-
nication costs in this case are limited to a one-time information exchange
between one agent and the rest of the Alliance. The program of such an
Alliance would be written in a normal programming language, as for in-
stance Java. If one agent wishes to distribute sensitive information among
the Alliance it applies a VSS scheme and sends one share to each Alliance
member. No computation on these shares is necessary, they are only a
method to store data distributedly, redundantly and secretly.

2. It is also possible to design an Alliance member, that mainly consists of a
program written in a conventional programming language. Additionally,
they could be provided with arithmetic circuits for specific critical tasks.
For instance, the agents could store distributed secret keys (private as well
as symmetric ones) and use SMAC in order to sign contracts or to encrypt
data in a robust way, without revealing information on the used key.

The first has been proposed by us in [EM06] for the field of file sharing in peer-
to-peer systems. Along with supplementary measures this method provides a
strong protection against censorship and legal prosecution. This is given by
the guaranteed anonymity of clients and servers as well by distributing files
over several servers in a way that makes the data of single servers looking like
random data. Another application domain is given by Grid computing as we
have shown in [EC04].
The second possibility mainly aims at the secure integration of cryptographic
primitives into an agent Alliance. This represents a crucial step towards the
practicability of fully autonomous mobile agents. This is why the following sec-
tions focus on a detailed complexity analysis of two important cryptographic
primitives, namely the public-key algorithm RSA and the symmetric block ci-
pher AES.
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8.1 RSA

RSA [RSA79] is a public-key cryptosystem that can be used for data encryp-
tion as well as digital signatures. It can be considered the most popular and
widespread system in use (for details see appendix A.1 and A.3). In order to
have autonomous agents acting in their user’s name, the possibility to carry
private keys and thus to sign contracts is of great interest. At the same time,
these keys can be read and possibly misused by each host, causing terrible conse-
quences for the agent’s originator one could imagine. SMAC is a solution to this
problem. But what about the communication complexity of a digital signature
performed via SMAC?

Modular Exponentiation with Square-and-Multiply An RSA signature
requires the computation of hd mod n for a given hash value h of a message. Be-
sides its efficiency,1 the so-called Square-and-Multiply Algorithm (see Algorithm
9) is a natural solution to the exponentiation problem using SMAC. We will see
this after a short review of the algorithm. Square-and-Multiply uses the unique
representation

hd mod n = h1·d0 · h2·d1 · h4·d2 · · · · · h2k·dk mod n

of hd with d =
∑k

i=0 di2
i, di ∈ {0, 1}:

Input: n ∈ N, d, m ∈ Zn

Output: res = md mod n

res := 1;1

for i← k to 0 do2

res = res2 mod n;3

if di = 1 then4

res = (res ∗m) mod n5

Algorithm 7: Modular Exponentiation with Square-and-Multiply

As discussed in section 7 an implementation in traditional programming lan-
guages could open the possibility of side-channel attacks by analysing the ex-
ecution of the program. Especially in case a private key is used as conditional
argument for a control structure, important information could leak. Here, we
have two problems:

1. By using if depending on the key bits, the whole key is revealed.

2. By the for loop the number of bits of the private key d is revealed.

As explained in section 7.3 we solve the first problem by computing both
branches using the following construction: Be resi the result after the ith loop.
Then, resi+1 is computed by

resi+1 := res2
i (di · h + (1− di)).

1The number of multiplications needed to raise a number h to the power of d lies in O(log d).
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The multiplication of di and h is a local scalar multiplication as the hash value
is publicly known. The resulting product is a shared value. Thus, there are two
shared multiplications, namely the computation of res2

i and multiplying the
result with the result of the shared scalar multiplication. The resulting number of
multiplication steps is in Θ(2k) = Θ(2 log2 d). As the di are binary, they can be
directly used as conditional statements for the computation of both branches. No
further evaluation of arithmetic expressions is necessary. This is why the Square-
and-Multiply algorithm is a natural choice for the exponentiation problem with
SMAC.
Additional measures are necessary in order to hide the actual key size. For
smaller d a padding is difficult as Square-and-Multiply would deliver wrong
results. It is much easier to demand the private key to be of a specific binary
length, as for example 1024 bit. Doing so, an attacker knows the exact length
of the key and thus the highest valued bit to be 1. Consequently, the key space
an attacker had to search through is reduced to 21024−1 possible keys. This
is one half of the original search space. For practice this is not relevant, but
the problem could easily be circumvented by enlarging the key to 1025 bit. A
last point to discuss in this context is the creation of the private key. Is there
any problem to find an invertible number of exactly k bits in a given residue
class ring Zn with n = pq, with p, q prime numbers, and is there a serious
reduction of the key space? The answer is “no”, as the multiplicative group Z

×
n

has (p − 1)(q − 1) = pq − p − q + 1 elements. This means, the number of zero
divisors is only p + q − 1. As all zero divisors are multiples of either p or q, the
invertible elements are uniformly distributed over the whole ring. Consequently,
there are as many k-bit invertible numbers in Zn as smaller ones, and thus only
one bit of the search space gets lost.

8.2 SMAC Digital Signature

In this section a complexity analysis for a digital RSA signature is given. We
have shown in [Amm07] that an implementation of long numbers and perform-
ing a signature over an arithmetic circuit over Fp is impractical. For instance, an
n-party RSA signature causes 21n2 GB data traffic! But, how could one avoid
long numbers if one wants to apply public key cryptography? An intuitive but
effective solution is to abandon the field property and to work in the residue class
ring Zn instead. This way, the modulo operations in the Square-and-Multiply
algorithm are done automatically by the circuit gates and do not require com-
munication nor processor time. Unfortunately, substituting a field with a ring
is problematic as there are zero divisors in a ring that do not exist in a field.
Therefore, one has to analyse the SMAC protocol as well as the application
carefully to determine those parts in which divisions are necessary and whether
zero divisors are a threat to the protocol.
There are two situations in which the inversion of numbers is required.

1. As shown in section 4.3.2 each multiplication requires a random triple. The
triple generation phase in the beginning of the underlying SMPC protocol
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from [HM01] uses Lagrange polynomials (see also section 4.2.1):

Li(X) =
(X − x0) · · · (X − xi−1(X − xi=1) · · · (X − xt)

(xi − x0) · · · (xi − xi−1)(xi − xi+1 · · · (xi − xt)
fr i = 1, ..n,

(8.1)
where xi is the value that is uniquely assigned to agent Ai.

Those values x1, . . . , xn are assigned only once and can be arbitrarily
chosen before the protocol starts. Thus, it is no problem to check whether
the differences (xi−xj) for i 6= j are invertible in Zn. There is no limitation
for the security parameters by doing so.

2. Secret reconstruction uses the method from Berlekamp and Welch [BW86].
This entails the necessity of solving a linear equation system using the
algorithm of Gauss (for a detailed description see section 4.3.2). Here, one
cannot eliminate the risk of having to invert a zero divisor a. In this case,
the protocol would terminate with an error and by computing gcd(a, n)
either p or q would be revealed. But, there are two arguments saying that
this risk can be accepted:

(a) Breaking RSA is equivalent to factorising the modulus n. Still, the
problem of factorising long numbers is assumed to be hard enough to
be used for cryptographic purposes. Consequently, it is very unlikely
that a factorisation appears from nowhere just using SMAC.

(b) Looking at probabilities, we get

P (x 6∈ Z
×
n ) =

p + q − 1

pq
=

1

q
+

1

p
− 1

pq
≈ 1√

n
.

This is exactly the same probability as for breaking RSA by chance
when guessing possible factorisations.

From the security point of view there is no reason not to use an arithmetic
circuit over the ring Zn for a digital signature. But what about the complexity
of such a signature?

Communication Complexity Let d be a 1024 bit private key and n a 1024
bit modulus. The message m that is to be signed is initially a hash value that
has 160 bit.2 But its length changes during the Square-and-Multiply algorithm
by squaring and modulo reductions. So, we assume the worst case which is 1024
bit. We know from chapter 4.3 that each distributed multiplication requires two
messages exchanges between all agents.

1024 Square-and-Multiply steps × 2 distr. multiplications = 2048 message
exchanges per agent

The data volume to be transfered by one agent is

2048 message exchanges × 1024 bit = 0.25 MB = 2.1 MBit

2This length depends on the used hash function.
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Type T1 ADSL SDSL Cable Cable
Users prof. private business business private
Downstream/s 1 GBit 16 MBit 2 MBit 20 MBit 6 MBit
Upstream/s 1 GBit 1 MBit 2 MBit 10 MBit 600 KBit
s/signature 0.0021 2.1 1.04 0.21 3.5

Table 8.1: Time required for one signature

With a realistic number of 10 agents in an Alliance (which gives us a redundancy
of t = 3) the data volume that is to be communicated for one signature is 25
MB. Table 8.1 shows the time needed to perform one signature for different
bandwidths currently in use. It is assumed that the communication of the single
agents is parallel which means the total time is assessed by the time needed to
transfer 2.1 MBit. As most private Internet connections are asynchronous, the
upload rate (which is lower than the download rate) is used. One can easily see
that all results are practical. To compute realistic time periods, the results
from the tabular have to be multiplied by the network delay (ping) which
usually takes some milliseconds. Nonetheless, the overall time required for a
signature remains practical. Thus, the evaluation of this approach to a threshold
signature is very positive. There are other theoretical approaches as for example
[FMY98, DF92, CS00, Cac03, Fis03] which offer similar security properties, but
those methods have been designed for signatures only. In contrary, SMAC can
be used for every boolean function with finite fan-in gates. Concerning the time
complexity of a signature, an SMAC signature can compete with those from
above.

8.3 AES

The Advanced Encryption Standard (AES) [DR01] is a very efficient iterative
block cipher used to encrypt communication channels. The algorithm is designed
for different block and key sizes (128, 192 and 256 Bit). For the complexity
analysis presented in this section, AES-256 is used. In this case, 14 iterations
are performed. AES is defined over the field F 28 which means that a field
element can be represented by one Byte. A data block is divided into 8 blocks
of 4 field elements and stored in the following matrix:

A :=









a00 a01 .. a07

a10 a11 .. a17

a20 a21 .. a27

a30 a31 .. a37









(8.2)

For each iteration, matrix A passes 4 transformational steps, Bit Pattern Trans-
formation, Row Transformation, Column Transformation and Key Addition.

Bit Pattern Transformation: Each entry of matrix A is transformed by
substituting each Byte by its multiplicative inverse element:

bij := a−1
ij .
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Then, a linear transformation over F3 takes place:











b0

b1

...
b7











=

























1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

























·











c0

c1

...
c7











+

























1
1
0
0
0
1
1
0

























(8.3)

The two transformation steps can be summarised into a so-called S-Box with
256 entries. Doing so, the overall Bit-transformation specified as follows:

TB : F28 → F28 .

Row Transformation: The rows of the matrix from equation 8.3 are rotated
by use of circular rotates by a row-specific offset. Each byte of the second row is
shifted one to the left. In the case of the 256 bit block, the first row is unchanged
and the shifting for second, third and fourth row is 1 byte, 2 byte and 4 byte
respectively.

Column Transformation: Each column is mapped by an invertible linear
transformation:









b0

b1

b2

b3









=









2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2









·









a0

a1

a2

a3









(8.4)

Key Expansion: The original key is expanded to a length of 256 · (14 + 1)
Bits and subsequently divided into blocks of 256 Bits. These blocks are the keys
for the individual interactions. As there is an initial key addition, one more key
is required. The expansion is given in algorithm 8.

Input: Key[nk] (column vectors of the key)
Output: ExKey[nb(nr + 1)] (column vectors of the expanded key)
for i← 0 to nk − 1 do1

ExKey[i]← Key[i];2

for i← nk to nb(nr + 1)− 1 do3

temp← ExKey[i− 1]; if i mod nk = 0 then4

temp← TB(TR(temp) + c(i/nk);5

if i mod nk = 4 then6

temp← TB(temp);7

ExKey[i] = ExKey[i− nk] + temp;8

Algorithm 8: Key Expansion

The value nk represents the number of column vectors of a key block, nb the
number of column vectors of a data block, and nr the number of iterations. In
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case of AES-256 it is nk = nb = 8 and nr = 14. The function c(x) outputs
a constant value. Finally, the transformation TR is a permutation of the form
(a, b, c, d)→ (b, c, d, a) (rotate left).
AES could be implemented with an arithmetic circuit over the field F28 as well
as over the field F2. Both possibilities are analysed now.

8.3.1 Complexity Analysis Using the Field F28

Over the field F28 the first transformation, namely the Bit Transformation can-
not be computed over shares, as the single bits cannot be accessed. Furthermore,
the computation of multiplicative inverse elements is impossible. As for example
shown in chapter 7, page 113, an interpolation can be used to interpolate the
whole transformation function. This requires 2543 multiplications for each of
the 32 Bytes. The Row Transformation does not require multiplications as it is
only a rotation of field elements. In contrast, the Column Transformation costs 4
multiplications per Byte, which sums up to 16 multiplications. The permutation
TR and the simulation of the conditions and branches for c(x) can be computed
locally. The only operation requiring multiplications in the Key Expansion, is
the Bit-transformation TB. First, one has to determine the number of calls of
TB in the loop: The loop is executed 112 times. Each condition in the branch
becomes exactly 112/8 = 4 times true. This results in 28 Bit-transformations.
The overall number of multiplications of AES-256 is then

14(32 · 254 + 4 · 32) + 28 · 254 = 122696.

Thereby, the data volume that has to be communicated is

245392 · n2 Byte.

Considering an agent Alliance with 10 members, each member communicates
2.45MB, which amounts to a total of 24.5 MB for the whole Alliance.

8.3.2 Complexity Analysis Using the Field F2

In an arithmetic circuit over F2 the inverse elements have to be interpolated,
too. The costs for the other operations is higher than in F28 . Although equation
8.3 could be computed locally, there is no advantage as the interpolation is still
necessary. Consequently, AES implemented with an arithmetic circuit over F2

does not offer a better complexity.

3as there are 256 possible input values
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Chapter 9

Conclusion

This thesis presents a security framework for groups of co-operating mobile
agents, the so-called agent Alliances which spends its life in an open and un-
trusted environment. Security in this context means that the functionality of
the agents can be guaranteed as long as no more than an upper limit t(n) of
the Alliance members get corrupted at the same time. No trusted authority is
required to provide this guarantee. This is a very potent result, the more so as
the Alliance model is the only security model know up to day offering this secu-
rity in the context of mobile agents. A friend of mine illustrated this situation
by the following picture of James Bond using a safety belt.

9.1 The Alliance Model

The Alliance framework defines a protocol for secure multi-agent computations
which defines several phases in the life of an Alliance. The functionality of the
Alliance is implemented in an arithmetic circuit over a finite field F. Its evalu-
ation is one of the phases, namely the computation phase. For the evaluation,
a cryptographic protocol for secure multi-party computation (SMPC) is used.
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This means, all computations are done on input that is shared via a verifiable
secret sharing scheme. The computations themselves are distributed and fault-
tolerant against up to t(n) corrupted inputs. As the Alliance functionality can
require the agents to migrate to other hosts, the evaluation of the circuit on
one host is only partial. Consequently, a new instance of the protocol for SMPC
must be invoked. This brings up a new security problem: Because of the migra-
tion, the attacker model assumed in the SMPC, an adaptive adversary, is not
suitable anymore. Without migration, an adversary can corrupt at most t(n)
agents and cannot disturb the distributed computation. With migration, it is
possible to store the knowledge from one protocol instance and combine it with
knowledge from a later instance, obtained by another Alliance member. Thus
the adversary could collect enough data, to compromise the Alliance, although
there is no protocol instance in which she corrupted more than t(n) agents. This
adversarial power equals the one of a mobile adversary. The model of mobile
adversaries is a young research field. A mobile adversary is the most powerful
known and there is only one means available that can be used to protect against
her: randomised re-sharing techniques. Re-sharing protocols are cryptographic
multi-party protocols that re-share the computational state of the parties (here:
the Alliance). In detail this means that old shares are invalidated and new shares
generated and distributed among the parties.
Consequently, the lifetime of an Alliance consists of invoking the SMPC protocol
after having arrived on a new host, and invoking the re-sharing protocol before
migration takes place. As both protocol types offer distributed and fault-tolerant
computations, the functionality in these phases of the Alliance lifetime can be
regarded as secured. The actual migration cannot be done with an existing
multi-party protocol. This is unfortunate as the migration of data from one
set of hosts to another is sensitive to network attacks, like spoofing, replay
Denial-of-Service, etc. This gap is filled by the protocol for secure multi-agent
computation, which is presented in chapter 5. Cryptographic primitives like
authentication of hosts and digital signatures prevent from fraud. Also majority
votes are used to secure the sensitive migration phase.
The Alliance model offers cryptographic security for mobile agent computations
against a mobile and computationally bounded adversary. Consequently, a chal-
lenging task is finally solved, the feasibility is shown is shown by a theoretical
model.

9.2 On the Implementation of Alliances

As the Alliance model offers a theoretical framework, some concrete protocols
have been proposed in order to fill the model with life. Two tasks had to be solved
in this context: First, suitable protocols for secure multi-party computation
and re-sharing had to be selected. Second, new sub-protocols necessary for the
migration process had to be designed. The main objective was to find an efficient
solution for all protocols to achieve a practical security model.
Most of the published SMPC protocols only aim at feasibility results, not at
practicability. Consequently, the complexity of these protocols is outrageous.
Finally, in the beginning of this decade, the attention of the researchers turned
from feasibility to practicability. In 2001, Hirt and Maurer [HM01] published the
first protocol that had a communication complexity of O(mn2), where n is the
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number of parties and m the number of multiplication gates in the circuit. The
security model of this protocol makes assumptions that can be met by a realistic
network. Since then, alternative protocols have been published, either offering
a better complexity, but making unrealistic assumptions, or offering a higher
fault-tolerance at the cost of complexity. Therefore, the protocol from Hirt and
Maurer is still the one best suited for the Alliance model. It is described in detail
in section 4.3.2 on page 63.
For re-sharing the protocol of Ostrovsky and Young [OY91] has been selected,
as it is proven to be secure in the UC framework of Canetti (see appendix B),
in which also the protocol from [HM01] is secure. The protocol is described in
section 5.2.5 on page 88.
The new protocols necessary for migration are count and migrate. Both are
distributed protocols in the sense that the input of a majority of honest Alliance
members is necessary to compute an output. The protocol count is responsible
to determine, whether there is already a majority of agents available. If so,
it invokes migrate which handles the data transfer involved in migration and
invokes the re-sharing protocol.
The overall complexity of the resulting protocol for secure multi-agent compu-
tation is in O(mn2) (with m, n as above).

9.3 Network Attacks

The protocol for secure multi-agent computation is based on the assumption
that at no point in time the adversary controls more than t(n) members of the
same Alliance. In the theoretical framework, network errors causing that an
agent cannot follow the protocol, are considered as corruption by the adversary.
In practical deployment, it makes sense to distinguish between the probability of
network errors and the probability of corruption of agents through the adversary.
Chapter 6 therefore analyses which kind of attacks could raise the probability
that t(n) is exceeded although the adversary does not host more than t(n)
agents. The analysis is given using an attack tree, which starts with an abstract
attack in the root and subsequently makes the respective attacks more concrete
in the outgoing edges. The attacks involved are discussed and solutions to these
security problems are proposed.
Chapter 6 also gives some concrete examples for the probability of Alliance
compromise assuming a random target selection in the migration process. It
is shown, that the probability for a compromise increases with the number of
migrations. An Alliance generally tolerates a network hostility of approximately
20%. Exceeding 25%, the risk of Alliance compromise increases significantly.
This is similar to current results of investigations on the consequences of reduced
network connectivity.

9.4 Feasibility Results

As mentioned above, the protocol for secure multi-agent computation has a
complexity that is quadratic in the number of Alliance members. At the first
glance this seems to be practical. But what about the constant factor that is
invisible when only looking at the complexity class? The exact factor involved
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in the implementation of individual functionalities, can only be determined by
investigating the structure of the arithmetic circuit that implements this func-
tionality. In order to do so, it must be analysed, how the respective function
can be simulated by an arithmetic circuit without leaking information on the
input shares. This problem is not trivial as for example conditional branches
obviously leak information in case a data share is compared to a public value.
This is why chapter 7 is dedicated to the secure simulation of programs.
It is shown that in general the communication complexity of a simulated pro-
gram is too high for the bandwidth of today’s networks. However, it is possible to
limit the secure multi-agent computations to specific sub-functionalities that are
of particular sensitivity, like for example a digital signature. Therefore, chapter
8 investigates two cryptographic primitives, namely an RSA signature and the
symmetric block cipher AES. It turned out, that using the square-and-multiply
algorithm, a digital signature using SMAC is efficient and can even compete
with current protocols for threshold signatures. On the other hand, it is not
advisable to use a distributed AES to encrypt communication channels. It is
more likely to make use of the encryption primitive the host makes available to
its agents.

9.5 Future Work

The current approach for an implementation of the Alliance framework contains
synchronous sub-protocols for secure multi-party computation and re-sharing.
This has two reasons. At the time of doing research on this topic there were
no efficient asynchronous protocols available. Using synchronous protocols is
unproblematic as there are synchronisation techniques such as from Awerbuch
[Awe85] allowing to use a synchronous protocol in an asynchronous network.
Unfortunately, these techniques require to introduce times to synchronise the
communication and consequently slow down the Alliance computation. Mean-
while, the situation has changed a bit. There is for example the protocol of
Hirt et al. [HNP05] offering robustness against up to t < n/3 corrupted parties
and a communication complexity of O(mκn3), where m is the number of mul-
tiplication gates and κ a security parameter.1 As we have seen in this thesis,
even quadratic complexity is too high for arbitrary functionalities. Therefore,
asynchronous solutions are not yet suitable for practice. Moreover, the secu-
rity model of these protocols only guarantees the security of the computations
if the necessary messages are delivered to the parties. They do not solve the
possible problem of delayed message delivery in an asynchronous network. Con-
sequently, they offer no security advantage when compared with synchronous
protocols. However, it is worth to take a closer look at an asynchronous solution
for agent Alliances.
A second aspect of the framework that could be analysed further is the pro-
tocol compiler mentioned in chapter 3. The simulation of arbitrary programs
requires to design a compiler that transforms for example a Java program into
an arithmetic circuit. Thereby, two aspects have to be considered:

1. possible information leakage

1Asynchronous protocols are based on threshold cryptographic primitives which offer com-
putational security. Usually the parameter equals the length of a cryptographic key.
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2. size of the circuit (especially the number of multiplication gates)

This is a challenging task, worth another PhD thesis.
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Appendix A

Cryptographic
Requirements

A.1 RSA

RSA is called after its designers Rivest, Shamir and Adleman [RSA78, RSA79]
and is the most popular public-key algorithm. Its security is based on the diffi-
culty to factorise large numbers. Until now, it has not been proven or disproven
that the latter is an NP-hard problem, but, nonetheless there is a lot of trust
in this algorithm.

Algorithm

Public Key:
(n, e) with n = p · q, with p, q secret prime numbers, and
e ∈ Z

×
n

a.

Private Key:
d ≡(p−1)(q−1) e−1

Encryption of clear-text block m:
c ≡n me

Decryption of cipher-text block c:
m ≡n cd, since

cd ≡n (me)d ≡n med ≡n med mod (p−1)(q−1) ≡n m1 ≡n m.

a
Z
×
n is the multiplicative group of the ring Zn. Nowadays, n is

mostly chosen of size ≥ 2048 bit.

A.2 Cryptographic hash functions

Hash functions are a valuable tool for numerous cryptographic applications,
such as integrity checks, digital signatures (see section A.3) and random number
generation. Although it is quite simple to design a general hash function, this
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is not as easy for cryptographic hash functions. Those must have the following
properties.

Definition A.1. (Cryptographic hash functions)
A function h is called a cryptographic hash function, if:

1. The function h maps texts of arbitrary length over an alphabet A to texts
of fixed length over an alphabet B. More formally, this means

h : A+ → Bn.

A and B are not necessarily different.

2. The set of hash values h(A+) must be large to keep the probability for a
collision to occur small.

3. Computation of the function must be fast.

4. The function must react sensitively to local changes in the text. This im-
plies changing a Bit in the source causes a significant difference in the
resulting hash values.

5. For l → ∞ the set of all texts of length l must have an equal distribution
on the set of hash values.

6. It must be computationally infeasible to compute collisions for a given text.

Examples for cryptographic hash functions are MD5 and its successor SHA
[Sch96].

A.3 Digital Signatures

A digital signature is thought to replace a manual signature in the digitalised
world (for example in e-business transactions). A hand-written signature pro-
vides the following properties (see also [Sch96]):

• Authenticity of the signature: The signature convinces the receiver that
the signer deliberately signed the document.

• Unforgeability: The signature proves that the signer and no other party
signed the document.

• Inseparability: The signature is not re-usable as it is part of the document
and cannot be detached and used for another document.

• Immutability: A document cannot be changed after it has been signed.

• Non-repudiation: Document and signature are physically available. The
signer cannot subsequently assert not having signed the document.

In reality, none of these properties is really valid. But there is a high probability
that fraud will be detected and the potential damage is in general relatively
small. In the field of e-business on the other hand, computers enable attackers
to attack numerous people in parallel. Therefore, legislation and user ask for
signature schemes which make it computationally infeasible to hurt the above
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properties. Most common for such schemes is the use of a public key crypto-
graphic primitive, for example the RSA public key system. The algorithm is
similar to the RSA encryption scheme, but uses the keys in a different order.

Algorithm

Public key:
An RSA public key e.

Private key:
An RSA private key d.

One-way function:
f : K ×M →M applies a private key from key space K to
a message m ∈M .
Signing:
msig: (m, c) := (m, f(d, m))
Integrity/Authenticity Check:

m
?
= f(e, c)

Problem: Since the messages are of arbitrary size and d, e are large numbers,
f cannot be computed efficiently (this problem is typical for public-key algo-
rithms).
Solution: Generate a small unique fingerprint of the message m. This can be done
by means of a cryptographic hash function h. Then, the fingerprint instead of
the whole message is signed.

Algorithm

Signing:
(m, c) := (m, f(d, h(m)))
Integrity/Authenticity Check:

h(m)
?
= f(e, f(d, h(m))
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Appendix B

The UC Framework of
Canetti

It has been mentioned that the Hirt-Maurer protocol offers unconditional secu-
rity in the UC framework of Canetti [Can00]. As a detailed discussion on this
framework is beyond the scope of this thesis, only a summary originating from
one of our papers [EM03] is given here.
Canetti’s model provides security guarantees for arbitrary (even a priori un-
known) concurrent environments with an asynchronous communication network
that delivers messages publicly, unauthenticated and without guaranteed mes-
sage delivery. This is exactly the environment mobile agents are supposed to
live in.
Assume n servers jointly computing a functionality F which is realized by an
n-party-protocol π. These servers are capable to participate concurrently in
several protocol runs. Each of those executed programs is denoted as party.
Furthermore, there is an adversary A in Canetti’s model that is able to corrupt
a limited number t of servers. In this case, it can read the entire state (including
its history) and control the behaviour of these parties. Additionally, A has the
power to read, modify, delay, and even delete outgoing messages of all n parties.
Each entity is modelled as a Turing machine with two pairs of communication
tapes. One for incoming/outgoing messages of the parties, the other one for
local protocol input/output. Another adversarial entity Z, which is called the
environment, represents everything outside the current protocol execution. Z
is responsible of delivering inputs to the parties since their origin is considered
as external. Notice that both adversarial entities are distinguishable by their
knowledge and control. A knows and controls everything concerning messages
between the parties, but is unaware of the inputs/outputs of the protocol, and
for Z it is vice versa. Both are allowed to communicate with each other freely.
This model is called real-life-model.
For the definition of a secure protocol, one has to suppose an ideal setting.
Obviously, no protocol execution can achieve more reliability than a protocol
using a trusted entity which gets the inputs from all parties and returns (correct)
outputs. A real-life-model supplemented with an unbounded number of such
trusted entities for computing any functionality F , is called F -hybrid-model. A
protocol π in the real-life-model is called secure, if
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1. for any adversary attacking π there is one adversary in the F -hybrid-model
and

2. no possible environment is able to decide whether it acts in a protocol
execution within the F -hybrid or the real-life model.

Therefore, the most interesting cases are those in which the interactive distin-
guisher Z holds back some knowledge from A. This enables Z to check whether
the protocol outputs are correlated to this secret knowledge and, thus, it might
be able to differentiate the models.
Since our agent communities are supposed to work in the Internet, we cannot
presume the existence of a broadcast channel. On account of this, we need
Byzantine Agreements (see [BGW88]) which limit the maximum number t of
corrupted parties to n/3 to obtain a protocol that is secure in the sense of
Canetti’s definition. For our agent setting, this implies that more than 2n/3 of
the hosts must be honest during each time interval in which no migration takes
place.

Distributed Computations Since the goal of this thesis is to secure the
execution of arbitrary functions, those have to be translated into a t-robust
protocol. This has to be done because an adversary in the Alliance model is
limited to influence less than t inputs. Several protocol compilers have been
developed. See for example [GMW87], [BGW88] and [CCD88]. In [GMW87] the
resulting protocol is divided in two steps. At first, each party commits to its local
input. To be able to detect a party that deviates from the protocol the other
parties possess shares of everyone’s randomness. The second part, the execution,
is organised in several rounds. In each of them, every party is activated at least
once to perform computations and to send messages. The correctness (in the
sense of the protocol) of one party’s activities are checked by the others through
a zero-knowledge proof. Messages of one round must have been delivered until
the beginning of the next round.
Canetti states in [Can00] that he does not know if [GMW87] is secure in his
model. He proposes the use of [BGW88] which provides an information-theoretic
secure synchronous protocol that stays secure in his setting. In [BGW88], the
authors use a verifiable secret sharing scheme (VSS) to enable the community to
detect improper or missing commitments in the first step. The actual evaluation
of the function is done in the second phase. As the protocol of Hirt and Maurer
uses a slightly modified version of [BGW88], it can be assumed, that [HM01] is
also secure in this framework. Also asynchronous networks can be handled by
using the techniques of [BOCW93] and [BOKR94].
The advantages of distributed computations are the guaranteed confidentiality
of data and the correct execution of an user-defined functionality as long as less
than n/3 of the agents are corrupted or spied out. This is a direct result given
by [Can00]. For a hostile environment like the one autonomous mobile agents
are living in, this is already a quite strong guarantee.
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Appendix C

VSS of Ben-Or, Goldwasser
and Wigderson

The model for secure multi-agent computation which is presented in this thesis
is based on the protocol for secure multi-party computation from [HM01]. The
underlying VSS scheme of this protocol is the (slightly modified) one of Ben-
Or, Goldreich and Wigderson from [BGW88]. It is introduced now. Although
[BGW88] presents two protocols, the presentation is limited to the one providing
unconditional security against up to t cheaters.
In contrast to some other VSS protocols the one from [BGW88] allows com-
putations on shares. As such it can be used to store data in a secure way, but
it also enables a set of parties to perform secure multi-party computations. As
mentioned before, the security of these computations is unconditional and per-
fect. The approach is based on Shamir’s secret sharing from [Sha79] using a
generalised Reed-Miller code for error correction.

C.1 Assumptions

Let n be the number of parties participating in the computation and n = 3t = 1.
Another choice is also possible but does not improve the level of robustness
while, on the other hand, it causes a higher complexity. Thus, the protocol has
the following two properties:

1. It is possible to detect a faulty dealer as long a not more than t parties
misbehave.

2. When co-operating, an arbitrary set of up to t parties does not gain any
information about s.

3. It is easy to reconstruct s from its shares if not more than t shares are
wrong or missing at the end of the computations

C.2 Secret Sharing

For the rest of section C F denotes a finite field, s ∈ F be the secret that ought
to be shared and ω ∈ F be a n-th root of unity (i.e. ωn = 1 and ωi 6= 1 for
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1 ≤ i < n).
Sharing a secret goes along the lines of [Sha79] with a slight restriction for the
data points: For i = 0, . . . , n− 1 party Pi gets the share si = (ωi, f(ωi).

C.3 Verification of Shares

As discussed before, it is possible that the dealer who is generating and dis-
tributing the input shares to the parties is faulty. Ben-Or et al. provide two
alternative methods which allow the parties to verify the input they have re-
ceive. Namely, an error-free one and one that has a small probability of error.
The presentation in this section is limited to the first one:

1. The dealer of the secret s selects a random polynomial f(X, Y ) with
f(0, 0) = s. Then, he sends to each party Pi the polynomials fi(X) =
f(X, ωi) and gi(Y ) = f(ωi, Y ). The i-th share is defined as si = fi(0)
while fi(X) and gi(Y ) are used for verification purposes.

2. The parties Pi send to each party Pj the value

si,j = fi(ω
j) = f(ωj , ωi) = gj(ω

i).

3. Each party Pj checks whether for all 0 ≤ i ≤ n− 1 the points (ωi, si,j) lie
on their polynomial gj(Y ).

4. If any party Pj detects an i with incorrect si,j it broadcasts the coordinates
a request to make (i, j) public.

5. If more than t points were incorrect, the player could be faulty (the as-
sumption requires the number of malicious parties to be t at maximum).
But it is also possible that Pj is lying and wrongly accuses the dealer.
Pj broadcasts the request to make both fj(X) and gj(Y ) public which is
then done by the dealer together with a publication of all wrong points si,j .
This makes all sk,j for 0 ≤ k ≤ n− 1 public. All players check the public
values with their polynomials and as soon as one player finds any incon-
sistencies he broadcasts a complaint by requesting his private information
to be published.

6. If more than t players have asked to publish their private information or
the dealer did not satisfy all requests, he must be faulty and the protocol
is stopped.

7. If less than t + 1 players have found inconsistencies there are at least
t + 1 honest parties which can uniquely reconstruct the secret polynomial
f(X, Y ). In this case the other parties take the public information as their
share.

In case of a non-faulty dealer no information on the secrets of all honest parties
are revealed.
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C.4 Error Correction and Reconstruction

By using an n-th root of unity, the shares define a discrete Fourier Transform
of the sequence (a0, a1, . . . , at) which defines the secret polynomial

f(X) = a0 + a1X + . . . + atX
t.

Let
f̂(X) = s0 + s1X + . . . + sn−1X

n−1

be the Fourier Transform of (a0, a1, . . . , at). Then, the inverse transform is de-
fined as

ai =
1

n
f̂(ω−i)

and f̂(ω−i) = 0 for i = t + 1, . . . , n − 1. The coefficients of f̂ satisfy the linear
equations

n−1
∑

i=0

ωr·i · si = 0 for r = 1, . . . , 2t.

The polynomial

g(X) =

n−1
∑

i=t+1

(x− ω−i)

divides f̂ and can be considered as the generating polynomial of a Generalised
Reed-Miller code [PW72] of length n. The sequence of shares (s0, s1, . . . , sn−1)
is a code word and thus allows a correction of up to 1

2deg(g(X)) errors. By def-
inition of n = 3t + 1 it follows that t errors can be corrected. Consequently, the
protocol allows to handle a maximum of t corrupted or missing inputs shares
when reconstructing the secret s. Reconstruction itself is a polynomial interpo-
lation as presented in section 4.2.1.
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