
Mobile Networks and Applications (2006) 11: 813–824
DOI 10.1007/s11036-006-0051-4

Multi-Agent Radio Resource Allocation

Clemens Kloeck · Holger Jaekel · Friedrich Jondral

© Springer Science + Business Media, LLC 2006

Abstract This paper presents a spatially distributed
and dynamic billing, pricing and allocation mechanism
for which a user terminal requires Cognitive Radio
abilities. That is, the Cognitive Radio abilities will be
applied to the economical environment. The radio re-
source goods are allocated to the users by a multi-unit
sealed-bid auction. Intelligent entities like the bidding
strategy have to represent operator’s and users’ behav-
ior and to make decisions for them in order to fulfill the
preferences and QoS. The main functionalities, used to
execute the dynamic auction sequence and located in
the MAC are described, assuming the entities possess
Cognitive Radio abilities.

Keywords auction · cognitive radio · multi agent
systems · radio resource management

1 Introduction

In communication systems the radio functionalities
tend toward more and more intelligent algorithms.
Their ability to react on different influences in an ap-
propriate and sophisticated manner will increase. In
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future, these radios will recognize and observe their
environment and learn about it. The learning process
results in modified actions and adaption to the environ-
ment. This cognition and the following execution can
be realized in a Cognitive Radio [1]. One of the first
steps towards a cognitive radio will be introduced in
this paper by simultaneously allocating spectrum and
determining the price per bandwidth in periodically
repeated auctions.

In established billing systems the prices are fixed
and the customers who demand first will be served
first. Auctions allow the customers to incorporate their
needs and demands instantaneously into the good al-
location at the current market situation. Therefore,
the price depends on the willingness of a customer to
pay for goods currently offered. Clearly, the auctioneer
has the possibility to influence the market situation by
announcing a reserved price. Each bid has to exceed
this limitation in order to be accepted to the auction.
Both sides, thus, have the opportunity to influence the
market progress in real time.

Medium access control mechanisms can be divided
in deterministic and statistical. One well-known rep-
resentation of the last mechanism is ALOHA and
its modified kind slotted-ALOHA [2]. On the other
hand, several deterministic access mechanisms are pro-
posed in order to avoid access interference. Besides
the CSMA/CD [3] and CSMA/CA [4], mechanisms
were proposed based on periodically repeated auc-
tions. The so-called Resource Auction Multiple Access
(RAMA) [5–7] is based on sequential sealed-bid single-
unit auction which can be improved by using a multi-
unit sealed-bid auction. In contrast to RAMA for which
the bids have no intention because of being randomly
chosen, D-RAMA [8] allows to weigh the bids based
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on the buffer size of the proper service class. The aim
is to reach a better quality of service. These protocols
do not allow users to incorporate their purchase power,
the experience of the past and additional information
of the future.

The access and assignment mechanism proposed in
this paper, allows users to express their needs, urgency
to send, preferences, purchase power combined with a
QoS-aware buffer management which categorized the
data according to their urgency to send in order to fulfill
the QoS criteria. The auction mechanism will be ap-
plied to offer Radio Resource Goods (RRGs) to users
and allocate it after the auction. A multi-unit auction
[9] assigns these spectrum parts to users according to
their bids and at the same time determines the price
depending on the bids and the auctioneer’s reserved
price. Hence, the auction mechanism incorporates both
spectrum allocation and billing.

Since the repetition duration should be very small
like seconds or even milliseconds, signaling effort rep-
resents a very important constraint concerning the type
of auctions used for the resource allocation in wire-
less communication systems. Auction types like open
auctions and sequential auctions [9] are not suitable,
because the undetermined number of iterations leads
to an unpredictable auction duration. On the other
hand, the sealed-bid auctions are very fast. The auction
duration is only a linear function of the number of
bidders. The signaling commands are short and can
be piggybacked into some free space of the header
or the data packets. Therefore, the sealed-bid auction
can be implemented under heavy time and signaling
constraints.

This paper will be organized as follows: Section 2
gives an overview of the MAC using auctions. The
proposed system and especially the bidding strategy,
reserve price calculation and the auction mechanism
are described in Sections 3–6. Finally, simulation results
will illustrate the behavior of this system in Section 7.

2 Auctions as MAC entities

In communication systems, the operator represents the
auctioneer’s side and the users are the bidders. The
Economic Manager (EM) responsible for the auction
is logically located in the Medium Access Control layer
(MAC) of a Radio Access Technology (RAT) in each
cell and controls the bandwidth allocation by auctions.
Its counterpart is located in the MAC-layer of the user
terminal. The Radio Resource Goods (RRGs) offered
which can be bandwidths � f leased for a certain time
duration �T. Every duration �T an auction takes place

in which the free RRGs are offered. In this auction both
the currently served users and the new yet unserved
users participate.

In such a highly dynamical process the user cannot
bid by himself. An RRG Auction Agent (RAA) lo-
cated in the MAC-layer should represent the bidder’s
behavior. This behavior has to be expressed in a form,
which an algorithm can handle. Therefore, users wishes,
demands and behaviors should be represented by a set
of parameters or functions, see Section 4.3. Not only
private information can influence the bidding strategy,
but also the experience of past auctions. Since a user
participates in several auctions, the information of past
allocation and price development may be the input to
a prediction algorithm in order to improve the bidding
strategy, see Section 4.

On the operator’s side an auctioneer’s agent located
in the proper MAC-layer represents the operator’s
behavior. Its tasks include the announcement of an
auction every �T time units, calculating and predicting
the reserved price based on fixed costs and executing
the auction mechanism.

EM and RAA act and react in a periodic auction
sequence. In the past the focus in auction theory was
mainly on auctions which occur once. This spectrum
allocation approach needs a more sophisticated con-
sideration of auctions. The auction sequence has to
be considered as a dynamic process. The intention of
maximizing expectations can be directly applied in this
process, because a user takes part as often as his gain
and his good allocation can be approximated by the ex-
pectations. Therefore, optimizing the bidding strategy
with respect to the expectations makes sense.

From the economical point of view, this auction
process is more suitable than established billing strate-
gies concerning the operator’s revenue in a frequently
visited cell.

3 System description

3.1 Overview

A resource allocation method based on auctions will
take place beyond 3G. The auction is located in the
EM and will be executed by the subentity Auction
Mechanism (AM), see Fig. 1. The EM is logical located
next to the Base Station (BS) within the MAC and is
responsible for the RRGs allocation under economical
aspects. The RRGs will be auctioned and the user
who wins RRGs will get General Resource Elementary
Credits (GRECs). Besides the EM at the operator’s
side, the RAA at the users’ side comprises the three
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Figure 1 System model

main entities DATA-GREC-Mapping (DGM), Bid-
ding Strategy (BIS) and User Profile Manager (UPM)
which handles the bidding process. Both in the UpLink
(UL) and the DownLink (DL) the entity DGM maps
the MAC data of the QoS-classes and their parameters
into GREC categories. These categories can mainly
be distinguished between critical data which should be
urgently sent within this auction period in order to meet
the QoS and uncritical data which could be transmitted.
This information are input to the entity BIS which is
located in the User Terminal (UT). The BIS also needs
user specific information about his preferences and
purchase power provided by the entity UPM. Further-
more, BIS gets additional information to be executed
the auction like the reserve price r from the Reserve
Price Calculator (RPC) and may predict the auction
process like the behavior of the other bidders. The
last information will provided by the allocation vector
which is broadcasted to all participants.

This allocation method has both an operator’s and
a user’s leverage. The RPC aims at maximizing the
operator’s monetary gain, whereas the RAA wants to
satisfy the user’s utility by minimizing costs. The auc-
tion mechanism has to be common knowledge to cal-
culate both the reserve price r and the bid vector bidk.
Section 3.2 describes the auction schedule. Sections 4–6
explain the functionalities of the BIS, the RPC and the
AM, respectively.

3.2 Auction schedule

At first, the RPC calculates the reserve price r. The EM
announces the auction at time nT by broadcasting the
number of GRECs Nmax to be offered and the reserve
price r each bid has to exceed. The RAA receives this
announcement and calculates the bid vector bidk based
on the aforementioned information and on the knowl-

edge of previous auctions. The EM collects all bid of the
users who want to participate and allocates the GRECs
according to the specific auction mechanism. The result
will be transmitted by the allocation vector to each UT
which can gain the information about the GRECs won
and instruct the MAC scheduler and the PHY to send
the data accordingly. Contemporarily, the information
especially for the DL will be conveyed to the entities
at the DL-side which are responsible for transmitting
the data. After the data transmission, another auction
starts at time (n + 1)T.

3.2.1 Signaling quantization

Clearly real values and their corresponding floating
point format go beyond the scope of a reduced signaling
approach. An encoding protocol has to be defined to
reduce the needed bits per message. The reserve price
as well as the bids can be transmitted in a differential or
absolute form.

In this paper the overall concept is considered. As
the basestation admits the user, the same message
will contain the absolute value of the minimum and
maximum reserve price rmin, rmax and the number of
quantization steps Nbit of the interval [rmin, rmax]. In the
following auction announcement only the quantized
reserve price rq need to be broadcasted. The reserve
price is the leverage of the operator to influence the
market, resulting in an approximately similar variation
of the reserve price rq. The limits rmin, rmax may change
if most of the bids take the value of the maximum
or minimum reserve prices. There are two reasons to
change the two limits: first, the bids can be distinguished
in a better manner leading to higher overall utility and
second the price can be better adapted to the market
resulting in a higher operator’s gain. The EM transmits
these borders during the auction seldomly, therefore
the system can cope with an integer or even double
value transmission.

The bids are quantized and the interval of the ab-
solute bid has to be defined (see Fig. 2). The absolute
bid has to be between the reserve price r and the max-
imum reserve price rmax. A bid is represented by Nbit

bits. They are equidistantly spaced through [r, rmax],
e.g., with Nbit = 4, the bid which is equal to the re-
serve price is represented by “0000,” whereas the bid
b = rmax is mapped to “1111.” The higher the reserve
price is, the more the bid quantization steps shrink.
That is reasonable to better distinguish the bids in a
shorter and simultaneously relatively higher interval.
Based on the given maximum costs, a bid has not to
be exceeded, the bid region for high bids has to be fine
enough to be able to approximate as good as possible
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Figure 2 Quantization and
storage of the histogram h,
bid values b and reserve
price r

the maximum costs, resulting besides the fairness in a
higher operator’s gain.

4 Bidding strategy

The bidding strategy possesses an integral and a differ-
ential part. The integral part incorporates past auctions
and thus the past users’ behaviors in order to predict
his number of GRECs won Nw,x,y

l for QoS-buffer l of
link y ∈ {U L, DL} and data category x ∈ {cri, uncri}
depending on the proposed bidding vector bid. On the
other hand, the differential part changes the bid value
b afterwards if the auction conditions like reserve price
r and number of demand Ndem have been kept stable,
but the goals are not fulfilled.

4.1 Strategy policy

The design of the bidding strategy aims at satisfying the
user’s wishes, that is this algorithm tries to act as similar
as the user would do. The actions goals can be sorted
according to the following decreased-ordered priority
list:

1) Keeping the budget constraint
2) Fulfillment of the QoS
3) Maximization of the utility
4) Minimization of the costs

As in normal live the bidding strategy will get a bud-
get the costs must not exceed. The user adjusts this
budget constraint with the UPM. This item is the most
important restriction to the bidding strategy to keep
the confidence to the user and to be allowed to act
instead the users without permanent supervision. The
budget constraint can be differential or cumulative. A

differential budget constraint means that the maximum
costs per QoS class, data category and link are given
for one auction. On the other hand, a cumulative bud-
get constraint summarizes all other opportunities like
cumulative costs per auction, whereas the sum of the
bid per auction must not exceed this limit. Additionally,
the accumulation over time can be envisaged, that is
cumulative costs over several auctions have to be below
a proper threshold.

Within this economical framework the requested
service should be executed as good as possible. A ser-
vice is defined by a set of parameters. These parameters
are determined fixed or tolerated within an interval
to execute the service satisfactorily. In this case the
second layer offers the third layer several different
services. The convergence layer inbetween has to as-
sign the incoming data to the proper Service Classes
(SC). The data in a service classes can be categorized
according to the urgency to send them with respect
to the parameter specification fulfillment. If some or
even all parameter specifications are injured the qual-
ity of service (QoS) suffers. Summarizing, the bidding
strategy is responsible for awarding as much RRGs
as necessary to transmit the data according to their
urgency to fulfill the QoS. The bidding strategy will thus
at first bid for the critical data and afterwards for the
uncritical.

After this Preselection of the bids which optimally
fulfill the QoS, the utility of transmitting the proper
data will be determined und maximized. In other words,
these data within each category but over the service
classes will be selected for transmission which maximize
the QoS. For this data the bidding strategy will submit
bids bid.

Rationally, keeping in mind the leeway of the budget
constraint for the bids in order to reach the goals of 1)
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and 2), the bidding strategy must be anxious to mini-
mize the costs in line with the common users wishes.

4.2 Input

The bidding strategy gets its input from the QoS Buffer
Management (QoS-BM) and the UPM. The QoS-BM
determines the critical data Dcri which should be ur-
gently sent and the correspondingly uncritical data
Ducri within this auction period T and maps these data
to the number of GRECs Nw,x,y

l which are the goods to
be auctioned per link and QoS and data category.

The UPM provides the bidding strategy with the
user relevant data concerning his purchase power and
preferences. The user can adjust for each QoS class in
uplink/downlink a maximum value cx,y

l that the cost per
GREC must not to exceed. Thus, he is able to influence
the price of the data of different QoS classes mainly
representing different applications like realtime audio
data for a phone call or best effort data for an email
download.

Second, the user can express his preferences by a
preference vector α. Its components α

x,y
l indicate the

relative personal evaluation of the QoS classes, e.g.,
if a user is more sensitive to a noisy phone call than
to a disturbed FTP download, the QoS class mainly
containing phone data will get an higher α

x,y
l than the

one representing FTP.
The input to the BIS is represented as a set of

quintuples I:

I =
{(

α
x,y
l , Nb ,x,y

l , l, x, y
)

|l

= 1 . . . L, x ∈ {cri, ucri}, y ∈ {ul, dl}
}

(1)

in which L is the number of QoS classes of only one
link. The vector n which components are elements of I
possesses the property:

ni =
(
α

x,y
l,i , Nb ,x,y

l,i , li, xi, yi

)
∧n j =

(
α

x,y
l, j , Nb ,x,y

l, j , l j, x j, y j

)

⇒
(

i< j)⇔α
x,y
l,i >α

x,y
l, j

)
, (2)

i.e., the components are sorted in a decreasing order
with respect to the preference α

x,y
l .

4.3 Utility function

The bidding strategy aims at satisfying the user’s utility
function as good as possible and contemporarily saving

money. The utility function η
x,y
l

(
α

x,y
l , Nb ,x,y

l , R
)

com-

bines the use of resources expressed by the number
of GRECs Nb ,x,y

l needed to satisfy the QoS require-
ments of each class in uplink/downlink and the user
preferences represented by a preference vector α. The
variable R serves as a limiter of the utility. That is, the
utility of Nb ,x,y

l > R remains the same regardless of any
additional goods:

η
(
α

x,y
l , Nb ,x,y

l , R
)

=

⎧⎪⎨
⎪⎩

η
(
α

x,y
l , R, R

)
Nb ,x,y

l > R

η
(
α

x,y
l , Nb ,x,y

l , R
)

Nb ,x,y
l < R

(3)
The limitation property can be switched off by converg-
ing R to infinity:

η
(
α

x,y
l , Nb ,x,y

l

)
= lim

R→∞
η

(
α

x,y
l , Nb ,x,y

l , R
)

. (4)

The user can also choose his basic utility behavior for
each QoS-class categorized by the well-known eco-
nomic expressions: risk-averse, risk-neutral and risk-
encouraged.

If the utility function η
x,y
l

(
., Nb ,x,y

l , R
)

is risk averse

in Nb ,x,y
l , the differential utility dη

x,y
l and in this sense

the additional utility of more goods will decrease if
Nb ,x,y

l increases. Considering a risk-neutral function,
the differential utility dη

x,y
l is equal for each additional

differential good dNb ,x,y
l . If there exits a QoS class for

which the QoS is only fulfilled sending complete data-
grams, the user will choose a risk-encouraged function
whose differential utility increases in Nb ,x,y

l . All the
utility functions have the following two properties in
common:

1) η
x,y
l

(
α

x,y
l , 0, R

)
= 0

2) η(α1, n0, R) > η(α2, n0, R) ⇔ α1 > α2

The first expression means there is no utility if no goods
are available. The second item states the increased util-
ity by an underlying higher preference assuming utility
functions of the same category. Especially, for the risk
neutral class another property holds with respect to the
derivative η′:

3) η′(α1, ·, R) > η′(α2, ·, R) ⇔ α1 > α2

This property mainly reduces the computer effort of
finding the optimized bid vector.

4.4 Risk-averse utility

The differential utility of the critical data is constant
in the most cases, because a lost critical datum is
indistinguishable of its buffer location and temporal
position. Consequently, the respective utility function
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is linear. The critical data of a QoS buffer does have
to produce a higher utility than the uncritical. The
importance and the additional characteristic of the crit-
ical data, e.g., to transmit, is apparent in comparison
to the uncritical data. All the other characteristics are
the same. The data in the QoS buffer can always
be sorted to get a concave utility graph, if the order
relation is the urgency to keep the QoS parameter
limits and the differential utility is monotonically de-
creasing in the urgency. The data will be sorted in a
descending order. Thus, the first data are the critical
ones, followed by the uncritical. Last but not least to
save computation power, this concave function can be
approximated by two linear functions, a linear utility
for each the critical and uncritical data. This is an
approximation of the well-known risk-averse behav-
ior observed in economic studies. The critical as well
as the uncritical utility function η

(
α

cri,y
l , Ncri,y

l , Lcri,y
l

)

and η
(
α

ucri,y
l , Nucri,y

l , Lucri,y
l

)
can be described by the

preference-limiter tuple (α
x,y
l , Lx,y

l ).

4.5 Utility criterion

The main goal of the bidding strategy is to approach the
utility function of the GRECs needed and the GRECs
won. Therefore, the criterion of the difference function
�η(x, y) is defined as:

�η(x, L) =
∑

i

(
η

x,y
l

(
α

x,y
l,i , xi, Li

) − η
x,y
l

(
α

x,y
l,i , Li, Li

))
.

(5)
The difference utility function is always non-positive
and the value indicates the utility missed. The quadratic
error utility is not chosen, because based on its min-
imization result, you cannot conclude to the utility
maximization result. For example, considering two dif-
ferent x1 and x2, whereas both of them affect the same
quadratic utility error, but the gained utility is different.
Thus the x has to be chosen with the highest utility
to reach utility maximization and not the one with the
minimum quadratic utility error. Summarizing, mini-
mizing the quadratic error utility there is no incentive
to favor utility functions to get very close to their util-
ity wanted, but gain less additional utility, over utility
functions for which the difference to the utility wanted
is higher, but gain more additional utility. Thus, the
absolute utility maximization suffers from the quadratic
error functions.

4.6 Bid representation

The bid vector bidk of user k is a vector consisting of
quadruple elements:

bidk = ×i

(
Nb ,x,y

l,i , bi, y, l
)

. (6)

The information of one quadruple includes the number
of RRGs Nb ,x,y

l,i needed for link y and SC l. For each

RRG of Nb ,x,y
l,i the RAA bids bi. Depending on the

RAT, DGM and auction protocol, the bid vector sized
can be limited and information can be rejected.

4.7 Ideal strategy

Ideally, the bidding strategy possesses complete infor-
mation of the other users inter alia their bids. The goods
a bidder wins is a deterministic function of his own bids
bid and the bids of the other users bid−k:

Nw = AM(bidk, bid−k) (7)

Besides this, the strategy philosophy has to be ex-
pressed in a formal statement and measure in order to
design algorithms. The aim of the bidding strategy is to
maximize the utility difference of the utility won and
the actual utility wanted under condition of a certain
bid constellation for the critical data:

S3 =
{

bid|arg max
bid

�η(Nw,cri, Nb ,cri)

}
(8)

The set S3 includes all bids bid which maximize the
utility difference function for the critical data. The same
procedure will be applied for the uncritical data with
respect to S3:

S2 =
{

bid|arg max
bid∈S3

�η(Nw,ucri, Nb ,ucri)

}
(9)

Up to now, this set of bids maximize the utility differ-
ence of the uncritical data subject to the maximization
of the utility difference of the critical data. After having
calculated the set S2, the bid vector bid ∈ S2 will be
chosen which minimizes the costs:

bidk ∈ S1 =
{

bid|arg min
bid∈S2

c
}

(10)

Especially, in a discriminatory auction the cost cdis de-
pending on the bidi and the number of GRECs Nb ,y

l,i
can be expressed by:

cdis =
∑

Nw,x,y
l,i bi (11)
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4.8 Strategy for incomplete information

The bidding vectors which are intended to be submitted
have to be covered by the bidding strategy not assuming
a cooperation among the agent. Thus, the bidding vec-
tors bid−k are unknown information resulting in using
stochastic methods and the method only approaches
the ideal bidding strategy. The number of goods won
are no longer deterministic. The bid−k are character-
ized by a probability density h(b−k). The conditional
probability P{Nw|bidk} of the goods won Nw is subject
to the own bid vector bidk.

4.9 Integral part-I

The bidding strategy approaches the ideal strategy, by
maximizing the expectation of the utility difference
subject to the bid. Eqs. (8) and (9) are modified to:

S3 =
{

bid|arg max
bid

E{�η(Nw,ucri, Nb ,cri)|bid}
}

(12)

S2 =
{

bid|arg max
bid∈S3

E{�η(Nw,ucri, Nb ,ucri)|bid}
}

. (13)

The minimization of the cost is transformed into a worst
case estimation resulting in the minimization of the
maximum expected costs Eq. (10):

bidk ∈ S1 =
{

bid|arg min
bid∈S2

max c
}

(14)

specifically for a discriminatory multi-unit sealed-bid
auction:

max cdis =
∑

Nb ,x,y
l,i bi (15)

The selection of the expectation instead of a probability
optimization is based on the right balance of a priori
calculated losses and the probability that this utility will
occur. For instance, choosing a maximum a posteriori
or a maximum likelihood estimator, both maximizes
probabilities of either the value of the utility differ-
ence subject to the bids or vice versa. Consequently,
in latter cases the measure of both the utility and the
corresponding occurring probability is missed.

4.10 Histogram representation

Based on the histogram h̃(x|r, Ndem, won) which col-
lects the bids won under the additional conditions re-
serve price r and number of bids won Ndem reflecting

the influence of the demand, the expected GRECs won
under a certain bid vector constellation will be deter-
mined. Clearly, the histogram mainly changes its shape
by choosing a different r because of the fixed maximum
users’ purchase power and by getting a demand higher
equal than or less than the number of GRECs Nmax of-
fered. If Ndem ≥ Nmax in the past auction, the histogram
graph normally possesses a shape between r and the
maximum purchase power. Whereas, if Ndem < Nmax,
the bids will be concentrate close to r.

The histogram can be stored efficiently in a 2Nbit+1 ×
2Nbit+1 matrix (see Fig. 2). The first 2Nbit rows are re-
served for Ndem < Nmax and the second 2Nbit for the
complementary statement. Each row of the two subma-
trices is devoted to a quantized reserve price in ascend-
ing order. Choosing a specific row for a proper reserve
price and demand/supply ratio, the elements within the
row are the number of the occurrence of the proper
quantized bid. The bids are ordered equal to the matrix
indices. In the last column the cumulative sums of the
rest elements of the proper rows are stored in order
to compute the relative frequency. The separation is
done to keep the storage small and contemporarily
provide enough accuracy for the proposed optimization
algorithm.

4.11 GRECs estimation

Assuming that the bids bid−k of the other users are
independent and identically distributed according to
the relative frequencies of the histogram h̃X(x|r, Ndem),
the probability P{x < bi} = Hk0

κ (bi), that given k0 other
bids at most κ bids are higher than bidi, can be
calculated:

Hk0
κ (bi) =

κ−1∑
l=0

(
k0

l

)
(HX (bi))

k0−l · (1− HX (bi))
l , (16)

whereas κ = min{Nmax, Ndem}. If κ > k0, Eq. (16) con-
verges to a binomial progression and thus Hk0

κ (bi) = 1.
That is, if the demand Ndem is smaller than the supply,
the user will get κ − k0 − 1 GRECs with probability
1. The corresponding probability density hk0

κ (bi) to
Eq. (16) which will be used in the proposed algorithm
is:

hk0
κ (bi) = k0hX(bi)

(
k0 − 1

κ − 1

)

(HX(bi))
k0−κ

(1 − HX(bi))
κ−1 (17)
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The expected number of goods Ne won given a
proper bid constellation bid can be determined apply-
ing Eq. (16):

Ne = E{Nw|bid} =
2L∑
i=1

Ne,x,y
l,i (18)

Ne,x,y
l,i =

sNb ,x,y
l,i∑

j=sNy
l−1,i

Hk0
Nmax− j (bi) (19)

sNb ,x,y
l =

∑
u<l

Nb ,y
u (20)

The GRECs estimated and the according bids are com-
prised in a tuple

(
Ne,x,y

l,i , bi
)
.

4.12 Derivation of the algorithm

In the following it is assumed that the DATA-GREC
mapping works optimally. That is for a given number
of goods won Nw the division to the link, QoS classes
and categories maximizes the utility. Moreover the bids
of the others are assumed to be independent and iden-
tically distributed. The own bids underly a differential
budget constraint:

0 ≤ bi ≤ ci (21)

The goal of the algorithm is to compute the solution
of the strategy with incomplete information Eqs. (12)–
(14). The expectation of the utility difference subject to
bid vector bidk can be written using order statistics:

E{�η|bidk} =
Nmax∑
n=0

E{�η|Nw = n}

·
(

HNmax
Nmax−n

(
bin

) − HNmax
Nmax−n+1

(
bi(n−1)

))

=
Nmax∑
n=1

∑
z

η(αz, Nw
z , Nb

z )

·
(

HNmax
Nmax−n

(
bin

) − HNmax
Nmax−n+1

(
bi(n−1)

))

−
∑

z

η(αz, Nb
z , Nb

z ) (22)

∑
z

Nw
z = Nw (23)

The maximization of Eq. (22) is equivalent to max-
imize the first sum in Eq. (23) with respect to the
bid vector. Thanks to the conditional expectation no-
tation, only the order statistics terms are depended

on the bid vector. The cumulative probability function
HNmax

y (x < w) is both monotonically increasing in y and
w, therefore all summands are positive keeping in mind
the nonnegative utility difference η. Taking now the
assumption of the optimal allocation and that a bidding
strategy bids at most for Nb RRGs in the whole, the
difference of two adjacent utility functions is always
nonnegative:

∑
z

η(αz, Nw
z , Nb

z )|Nb −
∑

z

η(αz, Nw
z , Nb

z )Nb −1 ≥0 (24)

∑
z

Nb
z = Nb (25)

Reordering Eq. (23) with respect to the cumulative
distribution function gives a sum with nonnegative sum-
mands each of it increases in the bid value bin :

E{�η|bidk} =
Nmax∑
n=1

∑
z

(
η(αz, Nw

z , Nb
z )|Nw=n

−η(αz, Nw
z , Nb

z )|Nw=n−1
) · HNmax

Nmax−n

(
bin

)

−
∑

z

η(αz, Nb
z , Nb

z ) (26)

Thus, the maxima of Eq. (26) can be found by only
considering the probability density function (17). This
equation is zero if the single density function hX(bi) is
zero or the according cumulative distribution function
is 0 or 1. The latter two cases are included in the first
one. The global maximum of Eq. 26 for bin ∈ [0, cin ] is
cin , if hNmax

n

(
cin

)
is unequal zero. Otherwise there exists

one single interval, in which the cumulative distribution
function is globally maximum. To simplify matters, the
kernel equivalence relation π f of a function f (x), x ∈
[a, b ] is introduced:

(x, y) ∈ π f ⇔ f (x) = f (y) (27)

For this equivalence relation the equivalence classes
[x]π f are one-to-one.

4.13 Algorithm

The maximum costs cin are descending ordered. That
is the definition interval of bid bi(n+1)

is a subset of the
interval of bin . The maximum reached by bin is at least
as high than the one gained by bi(n+1)

. Thus, bids are also
descending ordered and this order relation are equiv-
alent to the cin order relation. Therefore, the expec-
tation of the utility difference E{�η} is maximized by
choosing the bids bin of [cin ]πHX

and from this selecting
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Figure 3 Algorithm concept

the minimum bid to minimize the maximum expected
costs. Consequently the algorithm starts for the least
significant bid biNmax

and steps down from ciNmax
to the

reserve price until hX is unequal zero. That is, given
hX(x) with x ∈ [r, ciNmax

], the first step can be expressed
formally as:

biNmax
= min[ciNmax

]πHX
(28)

For the second least significant bid the procedure is
the same, but the searching space is at least reduced to
ciNmax

, ciNmax −1. If the down stepping search has reached
ciNmax

without finding hX is unequal to zero, biNmax−1 is
automatically equal to biNmax

:

biNmax−1 = min
x

{[ciNmax−1 ]πHX

} − {x|x < bi−(Nmax+1)} (29)

The following steps are similar to the second one in
finding the corresponding bids. The searching space for
the kth bid bik is at least to the last maximum cost limit
cik+1 , hence Eq. (29) can be generalized to:

bik = min
x

{[cik ]πHX

} − {x|x < bi(k+1)
} (30)

Figure 3 shows an example for the algorithm proce-
dure. It is assumed that there are four cost constraints
ci which are sorted in descending order. The algorithm
starts with the lowest cost constraint c4 and searches
in the negative abscissa direction until the probability
density hX(x) is unequal zero. This abscissa value is
b4. Thereafter the search starts from c3. The complete
interval [c4, c3] does not possess an hX(x) value unequal
zero, thus b3 is set to b4. For b2, the same procedure as
for b4 occurs. The search for a non-zero hX(x) within
x ∈ [c2, c1] stops immediately, because of hX(c4) being
unequal to zero.

4.14 Computational effort

The computation time of the algorithm is independent
of the number of users and goods, but at most linear to
the number of quantization steps of the bids assuming
bids with the same maximum costs are bundled. This
can be seen, because this algorithm scans partly distin-
guished intervals of the bid space and searches there for
maxima of HX .

4.15 Differential part-II

The bid vector which is chosen out of the set S1 is
the result of the integral part taking long history into
account. If the main auction parameter r and Ndem

remain stable and thus the same history information
will be used, the differential part is activated in order to
decrease or increase the bid by ±bidunit. The algorithm
can be roughly described in two cases:

• If Nw,y
l =Nb ,y

l in the past auction ∧ ∃b−k < bi in ⇒
bi = bi − bidunit

• If Nw,y
l < Nb ,y

l in at−T ⇒ bi = bi + bidunit

The first case reduces bids if there are lower bids of the
other users. On the other hand in the second case, if
the user gets less GRECs than expected, the differential
part increases the bids in order to improve the alloca-
tion. Additional constraints like cy

l etc. are included in
the algorithm.

4.16 Output

The bid vector bid will be sent to the auctioning mech-
anism. A bid bidk must include the proper link and, es-
pecially for the downlink, the proper QoS-class must be
highlighted. This information is needed afterwards to
allocate the resource. If this information is missing, the
auction mechanism is not able to allocate the resources
concerning technical constraint.

5 Reserve price calculator

Besides the BIS a UT can influence the auction process,
the RPC is the operator’s leverage. The RPC aims at
maximizing the Operator’s monetary gain. Its function-
alities must be adapted to the proper AM of the specific
RAT. Generally, the RPC gets information of future
events to determine r, but there are also information of
the past bidding behaviors expressed by bidk and the
past auction conditions.
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The RPC functionalities can possess both a differ-
ential and an integral part which is described in the
following.

The memory of the RPC is a vector RPC whose com-
ponents are triples of the form

(
r j, g j, t j

)
. The number

of components is equal to the number of reserve price
steps. Each component incorporates the gain gj which
was reached tj auction periods ago by an announced
reserve price rj. The entry RPCj will be modified, either
if the auctioneer currently proclaims rj or if the maxi-
mum memory time to life is reached, that is t j = TRPC.
In the first case, the gain gj is set to the actual gain of
the auction and t j = 0. Otherwise, the gain gj is set to
−1 which indicates no value available. If these cases do
not occur, all timers counter of the other components
RPC− j will be increase by T.

The RPC determines the reserve price regarding the
RPC, the gain g(t − T) reached in the past auction, the
current gain g(t) and the Worse Timer (WT).

The function can be distinguished in two decisions at
first glance:

First, if g(t) > g(t − T), that is if the gain increases,
the reserve price won’t be changed and the WT is
set to zero. Second, if g(t − T) ≥ g(t), three cases are
possible:

1) If the nearest upper and lower rj neighbor rj+
and rj− exist and their proper gains gj+ and gj−
are smaller than gj, then rj won’t immediately be
changed, but the WT will be decreased by 1. If the
WT is zero, based on the decreasing tendency, the
reserve price is changed by one step in direction of
the higher derivation ∂g

∂r , afterwards the WT is set
to zero.

2) If both rj+ and rj− exist and one’s gain is higher, the
other is smaller than rj, the reserve price will instan-
taneously be changed in direction of the derivation
and the WT is set to zero.

3) If neither rj+ or rj− exists, the reserve price will be
changed in direction of the derivative and the WT
is set to zero.

After this calculation the reserve price r(t) and Nmax

will be sent to the auction participants.
A reserve price will be considered as the border of

the definition set for a duration TRPC, if it was taken,
but the sum of Nw was zero. RPC takes the history into
account by RPC . This history is used to determine the
derivation ∂g

∂r being responsible for a change of the re-
serve price. This differential part will again be stabilized
by the delay of WT. All this functions need less buffer
and computation power what was one constraint of the
RPC design.

6 Auction mechanism

The Auction Mechanism aims at allocating the GRECs
according to a proper auction method and with re-
spect of the technical constraints given by the RAT. In
the following it is always referred to a Discriminatory
Multi-unit Sealed-bid Auction (DMSA), if not stated
otherwise. The main characteristic of the DMSA is, that
the bidders have to pay their bids for the goods won.

This system can dynamically allocate the UL and
DL resources within an auction period. Assuming that
each GREC can be individually taken for either UL
or DL regardless of the other GRECs, the DSMA
is optimal and efficient according the corresponding
terms in auction theory, if the highest bids win the
goods. Otherwise, if this is not fulfilled based on tech-
nical constraints, modified allocation mechanisms are
needed in order to optimize the operator’s gain.

1) Input: The RPC conveys r and the UTs transmits
their bids. The bids are mapped to a set of 5-tuple

A =
{(

Nb ,x,y
l,i , bi, y, l, m

)
|m = UT − I D

}
(31)

whose four first components are the bidk of the user
possessing the User Terminal IDentification UT −
I D = m.

2) Allocation: Assuming independent GRECs, the
AM sorts the elements of A with respect to bi >

r in a decreasing manner. The highest bids win
GRECs while the sum of GRECs won is at most
Nmax .

3) Output: The AM informs all participants of the
outcome by broadcasting the allocation vector ×
j

(
Nw,x,y

l, j , bj, y j, l j, m j

)
. This information is the in-

put to the BIS, the MAC scheduler and the PHY in
UL/DL.

7 Simulations

The environment simulated is one cell. A BS controlls
the RRGs of proper numbers of UTs, whereas the EM
manages the GRECs. The BIS gets the critical number
of GRECs Nq,y

l which should be sent within this auction
period to fulfill the QoS and the uncritical data as
an input from the DGM. The DGM divides the data
optimally into the RRGs. The traffic is assumed to have
a constant data rate which needs for service class SC1

3.5 GRECs and for SC2 3 GRECs per auction. The
same simulation was done by replacing the constant
data rate with a Poisson arrival process of the data
and an average data rate of both SCs as the same as
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for the constant data rate. For the sake of simplicity
the DL is not considered. This results in a 65% GREC
need per user. That is, this cell is designed to transport
the critical data of approximately two users. The QoS
is characterized by a maximum delay for the QoS. To
fulfill the QoS the data has to transmit within 1.5 times
the auction period duration after arriving in the SC
buffer.

Both the preferences parameter α
y
l and the max.

costs cy
l are independently distributed parameters in

[0, 1]. It is assumed that the bidders choose for all QoS
classes a risk-neutral behavior, i.e.,

η
x,y
l

(
α

x,y
l , N

) = α
x,y
l N. (32)

Furthermore, the RPC calculates the reserve price
r according to the algorithm described in Section 5.
These inputs of the BIS lead to bidding vectors which
are sent to the DSMA.

To measure the performance of the bidding strategy
the marginal QoS μ

x,y
l is considered. The marginal QoS

is the quotient between the data sent and the critical
data in the buffer, what can be expressed by the number
of GRECs:

μ
x,y
l = Nw,x,y

l

Nb ,x,y
l

. (33)

The proposed bidding algorithm is compared with
the ideal bidding strategy in terms of maximum QoS
and maximum utility difference. Figure 4 shows the
marginal QoS of SC1 and SC2 depending on the num-
ber of users. The SC1 possesses higher preferences than
SC2, therefore the bidding strategy cares more about
SC1 and thus the QoS1 fulfillment is better than for
QoS2. The dashed lines indicates the performance of
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Figure 4 Marginal QoS μl depending on the number of users x

Figure 5 Histograms h(rq) and h(rq, bq) depending of the quan-
tized reserve price rq and bid bq

the ideal bidding strategy. The proposed bidding strat-
egy possesses approximately the same performance.
The performance for the constant traffic and the bursty
traffic is the same. The QoS decreases if the number of
users increases, because the demand increases.

To get a feeling about the dynamic, Fig. 5 shows
the relative frequency h(rq, bq) of the quantized reserve
price rq and the bids bq for the case of four users, Nbit =
4 and Ndem ≥ Nmax. This relative frequency is the upper
submatrix in Fig. 2. The numbers of quantization steps
for r and b are the same. The reserve price is the
minimum reserve price rmin for rq = 0 and oppositely
the maximum reserve price is reached by rq = 15. That
is, the higher rq is, the less is the probability that the
bids will exceed it as shown in Fig. 5. Furthermore, the
higher rq is, the smaller the absolute bid interval will
be. Recalling from Section 3.2.1, the absolute bid value
for the same bq, but a higher rq, is higher. That is, for
absolute value consideration the relative frequency in
Fig. 5 has to be compressed an shifted towards higher
bids. Resulting in higher and less bids as mentioned
above.

In the back of the Fig. 5 at bq = 16 the relative
frequency h(rq) of rq is shown separately. The relative
frequency h(rq, bq) decreases to lower bids because the
demand is higher than the supply. Otherwise, the rela-
tive frequency is concentrated at rq = 0. Furthermore,
the RPC tries to increase the reserve price as high as
possible to increase the bids, but simultaneously the
number of bids which can exceed the reserve price
decrease and thus the monetary gain decreases. The
controlling of this trade-off results in a high relative
frequency h(rq) for lower rq.
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8 Conclusion

The proposed allocation and pricing mechanism aims at
terminals which have Cognitive Radio abilities, that is
which learn about the environment and act accordingly
to optimize its position in a dynamic environment.
The multi-unit sealed-bid auctions provides a proper
allocation mechanism which can be implemented in
algorithms within the MAC to execute fast repeated
auctions. Therefore, the RAT can fast adapt to market
in a very much local area like a cell. Intelligent
algorithms take care to observe the environment
and act to optimize the utility of the proper person
represented. The proposed bidding algorithm based on
order statistics is independent in the number of RRGs
and users and linear in the number of quantization
steps. This algorithm possesses a similar performance
as the ideal bidding strategy in terms of QoS fulfillment
and utility difference maximum.
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