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Abstract— In established communication systems prices
are determined in a quasi-static way and for a large area
according to a fixed price model. Additionally, the main
decision criteria of resource allocation is the arrival time
of resource requests. This system approach is not able to
respond to the spatially distributed and dynamic users’
demand and willingness-to-pay. In this paper a system
will be proposed to combine pricing, allocation and billing
in order to react dynamically and locally to the market
assuming that the user terminal has cognitive radio abilities
and multiple interfaces.

Index Terms— Dynamic and Distributed Resource Al-
location, Auction Theory, Cognitive Radio, Multi-homing,
Artificial Intelligence, Multi-Agent System, Communication
System

I. I NTRODUCTION

In established communications systems with an un-
derlying provider infrastructure the market is designed
according to theFixed Price Model (FPM). A user
can get access to the network only if there are free
resources controlled by theBase Station(BS) within a
cell. Furthermore, he has to accept the fixed price for a
wide area and quasi-static in time. The user has to pay
the same price whether there is a high or a low demand
in the cell. Thus, if his preferences and purchase power
allow him to spend more money for usingRadio Resource
Goods(RRG), he is not able to influence the allocation.
For the same reason the operator misses the chance to
increase his monetary gain by adapting the price for RRG
to the users’ RRG evaluation.

To overcome these problems, this paper will introduce
a distributed, dynamical and combined pricing, allocation
and billing system [1], suitable for wireless infrastructure
communications systems which are capable to manage
multi-homing. By applyingCognitive Radio(CR) abili-
ties not only to the allocation but also to this combined
architecture, it is mandatory to dynamically allocate RRG
by anAuction Sequence(AS) to exploit the CR abilities
[2]. The repetition of auctions should happen very fast
up to milliseconds to react on the load dynamic. A class
of auctions, the multi-unit sealed-bid auction, is suitable
to execute the auction within specified time and with an
acceptable signaling effort in comparison to sequential
auctions [3].

Based on ”Dynamic and Local Combined Pricing, Allocation and
Billing System with Cognitive Radios”, by Kloeck C., Jaekel H. and
Jondral F. K. which appeared in the Proceedings of the IEEE DySPAN
2005, Baltimore, USA, September 2005.c©2005 IEEE

After refering to related work in Section II, in Section
III it will be proven that the extension of CR abilities
to the combined functionality of pricing, allocation and
billing and its exploitation requires AS for allocation.
The application of the CR is extended to several different
environments, whereas its abstraction is discussed in Sec-
tion IV. In Section V the RRG properties are determined
assuming multi-homing. Afterwards, a system which is
capable to execute the AS under the CR assumption
is described in Section VI and simulation results are
discussed in Section VII.

II. RELATED WORK

In communication networks, the access and allocation
mechanisms can be divided into deterministic and statis-
tical procedures. ALOHA and the time discrete version
slotted ALOHA represent the latter case. Deterministic
mechanisms possess the advantage, that both access and
allocation are determined and thus the interference is
reduced. Besides CSMA/CA and CSMA/CD [4], mech-
anisms were proposed based on repeated auctions. The
so-called Resource Auction Multiple Access(RAMA)
[3],[5],[6] periodically auctions access credits. This pro-
tocol is based on sequential single-unit auctions and bids
that are randomly chosen. In this context the user cannot
use the bids to express his needs or convey any infor-
mation. Furthermore, the auction procedure can be more
efficient in terms of time and signaling by applying multi-
unit sealed-bid auction as proposed in [2]. D-RAMA [7]
removes the randomness of the bids and allows the UT
to express the buffer sizes by the bid values. The main
idea is to improve theQuality of Service(QoS), to divide
the resources depending on the buffer sizes and the QoS
parameters.

The aforementioned protocols do not allow the users
to incorporate the purchase power and the preferences for
the different QoS classes, the experience of past auctions
and future events. In this paper, an auction sequence
mechanism and a system will be presented which extends
the past work by allowing the users to express their ur-
gency, needs, purchase power and preferences combined
with a QoS-aware buffer management.

Besides the access and allocation mechanism, the ex-
ploitation of CR abilities enhance the system dynamic,
because a communication cell converges to aMulti Agent
System(MAS). Especially, in the fields of resource allo-
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cation, utility functions, language efficiency and envy-
freeness have to be considered.

The economical field auction theory mainly deals with
single shot auction, but not with auction repetition. The
framework of the optimal multi-unit auction is proposed
in [8], but does not deal with repetitions and does not
include learning facilities of the UTs. Gaining experience
of the past and applying it in the current auction destroy
the independence of the single shot auctions.

III. A UCTION SEQUENCES FORRESOURCE

ALLOCATION

The system presented in Section VI will offer the
RRG locally and dynamically in time to respond to the
demand changes in space and time. Considering hotspots
like congresses or soccer events, which occur only for a
certain time and in a certain area covered by at most a
few BSs, the RRG of these BS will be highly demanded,
whereas, if users move away, the RRG of the other BSs
will then be wanted. This moving hotspots show a highly
dynamical demand graph in space and in time. Therefore,
the RRG of each BS should be offered to the users
attended in the cell and the price depends on the demand
of the proper cell.

If the operator wants to maximize his gain, he has to
charge each user by the maximum price the user is willing
to pay. In order to find this upper border, a negotiation has
to take place. On the other hand, the user can incorporate
his preferences and purchase power into the negotiation
to get access to the network, in comparison to FPM.

Because the demand changes very fast, agents located
in the MAC of the BS and theUser Terminal (UT)
side will negotiate among each other. These agents are
algorithms which need a proper protocol and rules to
negotiate. A negotiation following proper instructions,
which can be implemented in a predefined algorithm, is
referred to as the auction.

Considering FPM, the UT needs not to be intelligent
with respect to pricing, allocation and billing, because
the price is fixed and the BS assigns RRG to the UT,
if available, regardless of the other users. On the other
hand, by an underlying auction sequence, the UT can use
experiences gained in past auctions in order to estimate
the behavior of the other UTs and to modify its bidding
strategy. This requires the ability to learn about the
EnVironment(EV) and to modify the action in order to
optimize its utility. Both, gaining cognition and acting
accordingly, are part of the definition of a CR. Therefore,
maximizing of user’s utility mandatorily requires CR
abilities in a distributed pricing, allocation and billing
system.

IV. COGNITIVE RADIO IN A

TECHNOLOGICAL-ECONOMICAL ENVIRONMENT

A CR is basically defined as an intelligent entity which
is sophistically seeking for bandwidth in order to set up
a communication connection [9]. In this section, the CR
definition will be extended to a general usage in arbitrary
SUBEnVironments(SUBEVs).

Gaining
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Subenvironment

Environment

Input Output
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Fig. 1. Cognitive Radio in subenvironments

A. Definition of Subenvironments

The awareness of a CR can be abstracted in a way
that the CR acts in a specific SUBEV. A SUBEV is a
subset of the whole EV. Examples can be a technical
EV to detect occupied spectrum as defined by the FCC
[9]. For example, this SUBEV could consist of the FFT
information of the spectrum, the SNR and information of
possible spectrum occupation duration and shapes of dif-
ferentRadio Access Technologies(RATs). The SUBEVs
need not to be disjoint, i.e., they can overlap. The SUBEV
which is tackled by the AS consists of 1) operator’s
and 2) user’s behavior, 3) technical, 4) physical and 5)
economical SUBEVs:

1) Operator’s behavior is mainly focused on optimizing
his monetary gain, offering and charging services.

2) User’s behavior can be represented by his prefer-
ences, purchase power and the action characteristics
which can be categorized in risk-neutral, risk-averse
and risk-encouraged depending on the other suben-
vironments.

3) The technical environment includes the demand oc-
curring from the data a user wants to sent and the
characteristics of the RATs available.

4) The channel influences the data transmission and can
be described by SNR and SNIR, respectively.

5) The economical aspects include the purchase power,
reaction, number and demand of the competitors,
the outcomes of the auctions, the reserve prices, the
offered RRG, etc.

B. Cognitive Radio within a Subenvironment

The abilities of a CR can be mainly categorized in three
functions: Gaining Information(GI), Learning Process
(LP) andActing Function(AF) as depicted in Figure 1.
The GI extracts information out of the incoming SUBEVs
parameters and provides the information to LP. Based on
past and current information the LP makes specific con-
clusions with respect to preferences and utility functions.
The AF receives the conclusions of the LP and does not
necessarily act in the same SUBEV. AF can also influence
more than one SUBEV, e.g., the CR does not act in the
technical EV mainly limited to the spectrum, but also
influences the economical EV with its decision to use a
proper bandwidth.
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C. Cognitive Radio applying to Auction Sequence

The CR abilities in theAuction Sequence EnVironment
(ASEV) have to be divided into the network side, that is
the BS, and the user side, that is the UT. TheEconomic
Manager(EM) including the CR functions is responsible
for the auction process in the MAC of the BS. On the
other hand theRRG Auction Agent(RAA) represents the
user’s demand and interests within the auction and is also
equipped with CR abilities.

The ASEV comprises the interests of the operator and
users, the physical conditions of the data transmission
and the technical and economical aspects. The ASEV
can be further divided into SUBEVs:Neither the users
nor the operators can detect the whole ASEV, since they
do not have access to the complete information data.
Furthermore, assuming an identical ASEV for different
users [10], the different GIs do not necessarily extract the
same information. Moreover, some data and parameters
of the ASEV are only known to one RAT and thus are
private information. This leads to different information
provided to the different GIs, whereas there is also
common information like the reserve pricer and the
maximum RRGNmax offered per RAT. One major task
of the LP is to estimate the behavior of the other users
in order to conclude the most opportune action following
game theory [10]. The AF transforms the conclusion into
an action and, especially in the sense of the aforemen-
tioned ASEV, these actions will afterwards affect the
same SUBEV, thus creating a recursive behavior.

V. I NFLUENCE OF THERRG TO THE MULTI -HOMING

SYSTEM STRUCTURE

The auction repetition can be both periodically and
spontaneously. Based on the underlying periodical rep-
etition of logical control protocols in communication
systems, like TDMA systems, the implementation of fast
auction repetitions up to frame-based auctioning is more
suitable than undetermined auction sequences. Moreover,
the probability of a certain number of participants at-
tending the spontaneous auction is lower than the one
of periodical auctions. In the following only periodical
auction repetition is considered.

Generally, a seller can only offer a good if he can sell
it for sure. Applying this to the auction mechanism and
first assuming the user cannot perform multi-homing, this
mechanism can only offer goods which are not depending
on the user’s environment. E.g., if the EM offers data
or data rate and the user enters a radio shadow, the
offered good cannot be provided by the operator due to
bad SNR. Thus, the RRG can be frequency time bits in
an FDMA/TDMA system, code time bits in an CDMA
system like UMTS or time bits in a TDMA system like
WLAN IEEE 802.11a.

As a second possibility, the user is able to send the
data over more than one RAT simultaneously, that is
its UT can get data by multi-homing. For the sake of
simplicity, assuming that multi-homing occurs only by
RATs of one operator, it seems a UT can bid for data or

data rate no matter over which RATs the operator will
transmit the data. But, following the same argumentation
as before, even in this case, the operator can only offer
RRG. The RRG of different RATs need not mandatory
to be the same and keeping in mind that each RAT
is only specialized for a few services and not all UTs
are able to transmit over all RATs, the demand per
specific service and resources available can only result
in a competition, if the UTs bid for the RRG of each
RAT solely. Nevertheless, the traffic splitting over the
RRG of the RATs, accessible to the user, data traffic
can be optimized by aJoint Radio Resource Management
(JRRM) [11]. It can also be envisaged that if a user won
RRG of a RAT and the connection becomes worse, the
JRRM exchanges parts or the whole RRG of another RAT
if available and UT possesses an interface in order to
increase the QoS. Therefore, the UT bids for RRG of
each RAT available and gets a certain number ofGeneral
Resource Elementary Credits(GRECs) per RAT, kind of
vouchers, which are exchangeable if increasing the QoS
of the UT and not decreasing the revenue of the operator.

VI. SYSTEM DESCRIPTION

A. Overview

The system proposal describes a spatially distributed
and dynamical RRG pricing, allocation and billing
thereby applying CR abilities to a UT which is capable
to communicate over more than one RAT simultaneously
(see Figure 2).

The UT attends toN cells ofN different BS. Without
loss of generality, it could also envisaged that both the
RATs are not necessarily need to be different and the
UT only attends to a subset of RATs available. The
RAA is distributed within the MAC of the UT. Based on
the multi-homing ability the RAA needs a convergence
entity called Inter MAC (IMAC) which manages the
coordination between the single MACs of the RATs in
order to provide a common interface for the3rd layer of
the OSI model. The IMAC comprises of aUser Profile
Manager (UPM) and an Inter Data GREC Mapping
(IDGM). The user can adjust his preferences, behavior
and purchase power for each QoS class through an GUI
of the UPM. This data will be mapped in a set of suitable
parameters and if necessary transformed for eachBIdding
Strategy (BIS) by the UPM. The IDGM manages the
L QoS buffers. Based on the parameters of each QoS
class QoSl, IDGM categorizes the data in each buffer
in two main categories: the critical data which should
be mandatorily sent within the auction period in order
to fulfill the QoS requirements and the uncritical data
which can remain in the buffer a little longer without
violating the QoS requirements. The IDGM maps the
categorized data into RRG for each BIS of a specific
RAT regarding the current reserve pricer of each RAT,
the proper demand and the success of the proper BIS. The
BIS gets the preference, behavior and purchase power
parameters from the UPM, the part of GRECs needed
from the IDGM as input and reserve pricer from the
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Fig. 2. Distributed allocation and pricing system

Reserve Price Calculator(RPC) as input. Furthermore,
the results of past auctions may be used to calculate the
bidding vector in order to minimize the difference of the
utility expected to the one wanted.

Each BS possesses an EM which is responsible for the
auction process. Its main two functionalities are included
in the two subentities RPC andAuction Mechanism(AM)
in which the CR abilities are spread. The RPC is the
leverage of the operator in the auction process, because
each bid has to exceed the reserve pricer. Thus, the
RPC adaptsr dynamically to the market in order to
increase the operator’s gain. The AM must be known
to all participants in order to calculate the proper bids.
All the RAAs which want to participate at the auction
submit their bid vector to the AM. The AM chooses its
bids and assigns them GRECs in order to maximize the
operator’s gain regarding the technical characteristic of
the underlying RAT. In the allocation vector, the number
of GRECs won, the proper price, link, QoS class andUT
IDentification(UTID) are transmitted. Depending on the
AM, the information of other UTs are partially or not
at all available for a UT. The more information an RAA
gets of the others, the better it can estimate the behavior
of the competitors. The allocation vector is also conveyed
to the MAC scheduler and the PHY, both in the UL and
the DL to read out the data of the buffers and adjust the
transmission modules.

B. RRG Auction Agent

The aim of the RAA is to satisfy the user’s needs,
because in this system the user can mainly influence
and is responsible for the fulfillment of the QoS de-
pending on his purchase power and preferences. This
responsibility has been shifted from the network side in
past and current system to the user side in this system
description regarding the auction mechanism and the CR
awareness. Nevertheless, the network side can also offer
functionalities which improve the QoS as the JRRM [11],
but this can be seen as an additional service.

Normally, the bidding strategy should be an overall
function in which a common optimization of all bid
vectors for all RATs available should take place. But

this would increase the computational power and duration
enormously, therefore a modular approach is presented
in which the RAA functionalities are divided in the
inter MAC layer and the MAC of each RAT. The inter
MAC layer comprises the UPM, IDGM, QoS buffers and
scheduler, whereas the BIS for each RAT is located in
the proper MAC. This functionalities and their interfaces
will be described below.

C. User Profile Manager

The UPM is the interface between the user and the
RAA. The parameters a user has to adjust should not be
too much regarding simplicity of service, but sufficient
to characterize the user’s behavior with respect to the
auction. The user properties can be categorized in three
main topics:

1) Preferences: For example, a user may prioritize the
QoS class mainly used for phone calls. Whereas,
maybe due to his bad eyes, it does not matter if the
video conference images are disturbed. Therefore,
the preference for the video QoS class will be lower
than for the voice class. It could be envisaged only to
set one preference parameterαx,y

l per data category
x, QoS class QoSl and link y of the IDGM as
suggested in [2].

2) Purchase Power: The purchase power can be both, an
averaged value of certain number of auctions to al-
low purchase peaks or a strong budget border which
must be exceeded in any auction. Furthermore, both
approaches can be applied for all or for each QoSl.
The second possibility has the advantage to be able
to differentiate between QoS classes, e.g., the user
can differentiate how to spent money for a real-time
QoS class for calls and for a best effort class whose
budget constraint hence is lower based on the relaxed
time constraints.

3) Utility for UL and DL: The utility is expressed
by the utility function η (αx,y

l , ·) and states the
utility a user gets if data of a certain categoryx
will be transmitted with respect to the preference
αx,y

l . The function clearly depends on the preference
parameters [10]. The user can select between a
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risk averse, risk neutral and risk encouraging be-
havior. Normally, the behavior regarding the critical
data will be risk-neutral, because each data will be
equally important to fulfill the QoS. Additionally,
the function for uncritical data will generally be risk
neutral or risk averse, but the different utility will be
clearly less for each uncritical data than for a critical
data of the same QoS classes, because of the QoS
fulfillment. Thus the utilityη is a concave function
over the data of the QoS buffer QoSl.

D. Inter Data GREC Mapping

Generally, all bid vectorsbidi for each RATi can be
commonly calculated to optimize the data transfer with
respect to the utilityη, the preferenceα, cost constraintc,
dataDl in the QoS-buffersQoSl and the EV properties.
This function inherently includes the IDGM and all BISi.
The computational effort would be tremendous to solve
such a nonlinear optimization problem. Therefore, the
tasks are separated into a global part realized in IDGM
and local parts BISi for each RATi including the bidding
strategy. The bidding strategy is independent of the RAT.
The IDGM instructs the BISi to bid for a certain number
Ni of RRGi. Thus, the BIS can simply be instances of
one algorithm.

The IDGM is designed to solve three main tasks which
will be described in Sections VI-D.1, VI-D.2 and VI-D.3:

• The dataDl in the QoS-bufferQoSl has to be
categorized depending on the user’s needs and QoS
criteria.

• The dataDl in the QoS-bufferQoSl has to be
mapped to the numberNl,i of RRGi needed for
each RATi. In turn, the inverse function assists
in assigning data which will be transmitted to the
RATs.

• The IDGM is responsible for allocating the data
Dl in the QoS-bufferQoSl as good as possible to
satisfy the user’s needs resulting in an non-linear
optimization problem in general.

1) Data Categorization (DC):One of the main tasks
of IDGM is to categorize the data which are in the
QoS buffer QoSl in order to decide the numberNx

l,i

of RRGi needed per RATi and per data categoryx ∈
{cri, ucri1, . . . , ucriJ}. The data is distinguished be-
tween critical dataDcri which should be urgently sent in
this auction periodT in order to fulfill the QoS criteria
and uncritical dataDucri. If Ducri is not sent, the QoS
is not injured duringT . The uncritical classes can be
subdivided into prioritized subclassesDucrij depending
on the urgency to send them in advance to fulfill the
QoSl and avoid high traffic time. ThisData Categorizing
Function (DCF) is situated in the Inter-MAC in order to
categorize the UL dataDx,UL

l and also in the RNC to
classify the DL dataDx,DL

l . The information about the
number of dataDx,y

l for each categoryx, QoS classl
and each linky is conveyed to theInter RRG Allocation
(IRA).

In principle, the user is self-responsible for the QoS,
thus he can individually adjust the QoS criteria and
parameters, even different for UL and DL. Originally, the
operator has designed the network regarding the services
to be offered with a certain QoS. The system should
clearly be capable to transport at least the critical data
Dcri. If the network is not overloaded and the user has
stronger/weaker QoS criteria resulting in higher/lower
number of critical RRG, the BIS will bid higher/lower
leading to higher cost/data loss. For this reason the
user should accept the QoS parameter the network was
designed for, because he can also express its preferences
through the UPM by choosing the proper QoS class.

2) Data GREC Mapping:The Data GREC Mapping
(DGM) converts an amount of dataDi to the RRGi

needed to send this data with the RATi. The transfor-
mation functionf(·) depends on the RAT properties and
channel characteristics which represent the EV. The RAT
properties are mainlyChannel Coding(CC), Modulation
(MOD) and MAC/PHY Control Overhead(CO). Further
attributes can specify the QoS classes and their mandatory
RRG needs. Some RAT properties can also be dependent
on the EV, like CC and MOD which can be adjusted
with respect to theSignal to Noise and Interference
Ratio (SNIR). The EV can adequately be described by
the SNIR. Thus, the transformation forRATi can be
described as follows:

Ni = fi (RAT properties, EV properties,D) (1)

≈ fi (CC, MOD, CO, SNIR, D)

f(·) can be approximated based on past observations
of the data transmission. Considering simple RATs it
can also be envisaged that there exists an analytical
expression, e.g., calculating BER from SNR, CO and
MOD. The numberNi of RRGi is an estimation because
of the unknown and random EV.

For the computation of the RRG allocation to the RATs
in the IRA and the allocation of data to the RATs after
having gained GRECs for the specific RAT the inverse
transformationf−1 is necessary:

D = f−1

i (RAT properties, EV properties,Ni) (2)

≈ f−1

i (CC, MOD, CO, SNIR, Ni)

The inverse transformation describes the estimated
amount of data which may be transmitted assumingNi

RRG.
3) Inter RRG Allocation:The Inter RRG Allocation

(IRA) has to assign the BISs the numberNx,y
l,i of RRG

in order to fulfill the user’s needs which can be separated
into two different goals:

G1) Favoring the QoS, the QoS measureµ(QoSl) should
be maximized and ideally the QoS should always
be fulfilled. Thus, the critical dataDcri

l will be
prioritized. The allocation algorithm can be logically
separated into two parts: first the allocation of the
critical data and then the uncritical data, because it is
mandatory to send critical data instead of uncritical
data in order to maximizeµ(QoSl). Regardless, if
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the utility of uncritical data would be higher than
the one of critical data, the allocation algorithm will
firstly assign the critical data to the RATs and the
IGM transforms it to RRGi in order to maximize the
user’s needs with respect to minimal costs. Data in
a category which has no preferences at all(α = 0)
will be neglected. In the second part, the same
instance of the algorithm used for the critical data
can be applied to the uncritical data. The algorithm
also aims at maximizing the utility and chooses the
economically best solution.

G2) In a different approach only the utility will be maxi-
mized regardless of the QoS. There is no preference
for critical data. The algorithm does not distinguish
between critical and uncritical data. Therefore the
algorithm is not separated into different parts and
the main parameters are the utility functionηx,y

l and
the preference parametersαx,y

l .

To decide which BISi should bid for how many RRGi,
the IRA need information from each BISi about the
techno-economical environment, specifically:

i) the efficiencyρx,y
l,i of the BISi which is defined as

the ratio of the numberNx,y,w
l,i of RRG won to the

numberNx,y,b
l,i of RRG bidden:

ρx,y
l,i =

Nx,y,w
l,i

Nx,y,b
l,i

. (3)

ρx,y
l,i is a measure of how good the BIS works in the

current EV and serves as a main parameter to decide
whether this BISi could be bid for more/less RRGi
depending on high/low efficiency.

ii) the pricepx,y
l,i payed for theNx,y,w

l,i RRG won. The
IRA divides this price by the actual dataDx,y,s

l,i sent
in order to get a measureδx,y

l,i of the cost per bit:

δx,y
l,i =

px,y
l,i

Dx,y,s
l,i

(4)

iii) the maximal numberNy
i , the numberNy,w

i won
and the cumulative numberNy,cw

i won of RRGi.
The relationships between these figures are useful
to predict the load of the celli and to determine the
increment/decrement of theNx,y,p

l,i RRG proposed to
the BISi by the IRA. For example, ifNy

i −Ny,cw
i >

0, i.e., in case of more supply than demand, the IRA
will clearly prefer this RAT in comparison to another
one assuming the other conditions are the same.

iv) the QoS classes supported by this RAT.

Moreover, the UPM provides the IRA with the prefer-
ence parametersαx,y

l,i which serve as parameters of the

specific utility functionηx,y
l,i

(

αx,y
l,i , ·

)

. The DCs of both

the UL and DL side convey the categorized dataDx,y
l,i .

Following the aforementioned two goals, the satisfaction
of the user’s needs has to be quantized in order that the
algorithm can optimize it. A measure of this satisfaction
is defined as the quadratic utility error function∆η

that is the quadratic difference of the utility expected

ηx,y
l

(

αx,y
l , Dx,y,p

l,i

)

resulting from the dataDx,y,p
l,i pro-

posed to the utility wantedηx,y
l

(

αx,y
l , Dx,y,q

l,i

)

[2] of the

dataDx,y,q
l,i in the QoS buffer QoSl:

∆η(Dp, Dq) =
∑

x,y,l

(ηx,y
l (αx,y

l , Dx,y,p
l ) (5)

− ηx,y
l (αx,y

l , Dx,y,q
l ))

2
.

The minimization of eq. (5) leads to the highest satis-
faction of the user’s needs with respect to cost and to
other users’ needs as well. If a user can send more data
Dx,y

l than wanted regarding a specific QoS class, this
additional purchase power could be saved. Moreover, if
every user takes more RRG than wanted, the price will
increase, thus an equilibrium exists when all users aspire
to the utility wanted and not maximize the utility.

To write the algorithm in a more overall compact
manner an additional description is needed. The function
g maps all the input to the proposed RRG allocation
Nx,y,p

l,i :

g (x, y, l, i, Dx,y
l , BISPR) =

(

Nx,y,p
l,i

)

, (6)

whereas the BISi properties are described by the 5-tuple:

BISPR =
(

ρx,y
l,i , δx,y

l,i , Ny
i , Ny,w

i , Ny,cw
i

)

. (7)

Generally, there does not exist a closed analytical rep-
resentation ofg. In fact, g has to be estimated and
approximated.

Coming back to the goal opportunities G1 and G2,
the algorithms can be written as an optimization problem
with some side constraints (s.c.):

A1 costcri → min
s.c. ∆η(Dcri,p, Dcri,q) → min

s.c. Dcri,y,p
l,i =

∑

i f−1

i

(

·, N cri,y,p
l,i

)

s.c. g
(

Dcri,y
l , BISPRi

)

=
(

N cri,y,p
l,i

)

⇓
costucri → min
s.c. ∆η(Ducri,p, Ducri,q) → min

s.c. Ducri,y,p
l,i =

∑

i f−1

i

(

·, Nucri,y,p
l,i

)

s.c. g
(

Ducri,y
l , BISPRi

)

=
(

Nucri,y,p
l,i

)

.

At first, the algorithm will minimize∆η which is the side
condition (s.c.) to the cost minimization with respect to
the critical data, that is, the minimization of∆η constricts
the solution set of the cost minimization. The second part
is the same algorithm for the uncritical data regarding the
solution of the first part as side constraint.

Dropping the aspiration to fulfill the QoS and act
purely to satisfy the user’s needs, there is no preference
for the data categorized based on the QoS parameters:

A2 cost→ min
s.c. ∆η(Dx,p, Dx,q) → min

s.c. Dcri,y,p
l,i =

∑

i f−1

i

(

·, Nx,y,p
l,i

)

s.c. g (Dx,y
l , BISPRi) =

(

Nx,y,p
l,i

)
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The optimal functiongopt can be approximated by sev-
eral Artificial Intelligences(AIs), like Bayesian learning
based on experience or knowledge based complex differ-
ential controller. For the last item, a possible realization
of IRA is shown in the following.

The differential strategy looks only 2 steps back into
the past, in order to exploit the tendency of the situation.
The aim of this algorithm is to decide the data allocation
per RAT based on his own information without using any
information about the other users behavior, because their
behavior are implicitly included in the own goods won
depending on the bids. Moreover, based on the very short-
time repetition a strategy is proposed whose execution is
very fast and linear in the number of bid strategies. The
difficulties are to predict the market behavior, to evaluate
the bidding strategy performance and finally to make a
decision. Therefore, the algorithm can be divided into
three steps:

S1 Based on the feedback of the bidding strategy, a
recommendation will be given wether the bidding
strategy is able to gain more data or not. The algo-
rithm recommends for each QoS classl, link y and
categoryx. For the sake of simplicity these indices
will be neglected in the following. The criteria are
the tendencies of the efficienciesρT ,ρT−1 and data
won Di,T , Di,T−1 for the past two auctions before
T andT − 1. At first the difference of the data has
to be computed

∆Di,T = Di,T − Di,T−1. (8)

A preliminary predecision which recommends the
data allocation tendency∆D will be calculated
according to the following rules which can be seen
as a defuzzying approach:

– ρT ≥ ρT−1 ∧ ∆Di,T ≥ 0 ⇒ ∆Di > 0
– ρT < ρT−1 ∧ ∆Di,T ≥ 0 ⇒ ∆Di < 0
– ρT ≥ ρT−1 ∧ ∆Di,T < 0 ⇒ ∆Di < 0
– ρT < ρT−1 ∧ ∆Di,T < 0 ⇒ ∆Di > 0
– ρT > 0 ∧ ρT−1 = nan⇒ ∆Di > 0

That is if there is no intention possible because
the last but one efficiency is not available, but
the bidding strategy gains RRGs, the bidding
strategy will be awarded with a positive ten-
dency, otherwise not.

– ρT = 0 ∧ ρT−1 = nan⇒ ∆Di < 0
– ρT = nan⇒ ∆Di > 0

If there is no information about the last bidding
strategy behavior, the algorithm assigns a posi-
tive tendency.

S2 After making this hard decision the second part
will quantize the tendencies in a data incremen-
tation/decrementation resulting in a data proposal
Dprop,i. This can be seen as a consecutive soft deci-
sion. Taking into account a less computational, but
efficient decision, the proposals will be determined
without any loops.

– If a bidding strategy for RATi got a positive
tendency∆Di > 0, the positive recommended

amount of dataDprop,i is a proportionδpos
prop

of the difference between the maximum data
Dmax,i available for this RATi and the amount
of data neededDi,T assigned in the last auction:

Dprop,i = (Dmax,i −Di,T ) · δpos
prop +Di,T . (9)

This is chosen, because the difference is a mea-
sure of the capacity which could be occupied
by the user terminal. To explore this capacity, a
fraction of this difference is added with respect
of the unknowledge of the other bidders’ market
behaviors. Moreover, this expression converges
to Dmax,i assuming always gaining the pro-
posed dataDi,T .

– If the recommended tendency is negativeDi <
0 the proposed amount of dataDprop,i is the
data needed in the last auction reduced by a
fractional amount described by the parameter
δneg
prop:

Dprop,i = (1 − δneg
prop)Di,T . (10)

S3 The proposed amounts of data based on the soft
decision reflect the relative weights to allocate the
real amounts of data in order to avoid redundancy
and consequently less utility and higher costs. Con-
cludingly, the amounts of data the IRA assigns to the
bidding strategies are, recalling that this is executed
for all QoS classesl, links y and categoriesx
categoriesx:

Di =
Dprop,i

∑

i Dprop,i

D. (11)

E. Bidding Strategy

The BISi bids periodically for RRGi of RATi in only
one celli based on the argumentation in Section V. The
bidding strategy is independent of the RAT, thus for each
RATi instances of the same bidding algorithm can be
applied. Nevertheless, the bidding strategy can clearly be
different and could be modified or exchanged in order to
improve the allocation if the performance is worse.

Normally, BISs of different RATs need not to exchange
data, because based on the application diversity of the
different RATs the ASEV will differ. But, if a UT is
connected to more cells of the same RAT simultaneously,
the ASEV can be quiet similar. Considering a soft han-
dover scenario, the user will enter the new cell and the
new BIS instance can use the past experience of the old
neighborhood cell because of the continuous change.

1) Input: The bidding strategy needs informationI
about the user’s preferencesαx,y

l , behavior ηx,y
l and

purchase powercx,y
l provided by the UPM and the

number Nn of RRGn
i needed and calculated by the

IDGM. To incorporate the user’s behavior into the BIS,
the information should be available for all necessary QoS
classes QoSl and categoriesx and can be expressed by
the setI:

I = {(αx,y
l , ηx,y

l , cx,y
l , Nx,y

l , l, x, y) |∀l, x, y} (12)
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Besides this user-based information, the BIS also receives
information about past auctions as long as the UT attends
to a proper cell. Depending on the AM implementation
the BIS only gets information about the outcome of the
auction if it actively participates and not only listen.
Furthermore, the allocation vectora broadcasted by the
EM offers information about the auction result and trans-
mission. In turn, the EM decides about the degree of
information a UT gets from the other users, to calculate
the bid vectorbidi.

After the computation, the BIS conveys the bid vector
bidi to the AM. The AM gets the information for which
link y and QoS-classl the user wants to bidbj per RRGi

for the numberNx,y
l,j,i:

bidi = ×j

(

Nx,y
l,j,i, bj,i, xj,i, lj,i

)

(13)

2) Goals: The bidding strategy can be designed to
fulfill two distinct goals, that is, A1) with and A2)
without respect to the QoS similar to the IDGM goal
opportunities:
A1)
bid

p,cri ∈ S
cri
1

= {bid| argminbid∈Scri
2

cost}
s.c. S

cri
2

= {bid| argminbid ∆η(N cri,w, Nn)}
s.c. budget constraint

⇓
bid

p,ucri ∈ S
ucri
1

= {bid| argminbid∈Sucri
2

cost}
s.c. S

ucri
2

= {bid| argminbid∈Scri
1

∆η(Nucri,w, Nn)}
s.c. budget constraint

⇒ bid = bid
ucri,p

Ideally, this first opportunity chooses the bid which
minimizes the cost with respect to maximize the user’s
needs measured by∆η under the side constraint of QoS
fulfillment and the budget constraint. The algorithm is
divided in two parts. First the bid vector proposalbid

cri,p

will be calculated for the critical RRG, then the proposed
bid vectorbid

ucri,p regarding the uncritical RRG will be
determined depending on the result of the first part, e.g.
budget constraint. The bid vectorbid

ucri,p is the final
bid vector. For each part the bid will be computed which
minimizes the cost with respect to maximize the user’s
needs under the side constraint of the budget constraint.

Without respect to the QoS, a bidding strategy does
not need to prioritize the RRG which should carry the
critical data. Thus, the algorithm is:
A2)
bid ∈ S1 = {bid| argminbid∈S2

cost}
s.c. S2 = {bid| argminbid ∆η(Nw, N b)}

s.c. budget constraint
The budget constraintcan be both an integral limit over
time to combat price peaks and an upper bound for each
bid depending on the QoS class QoSl and categoryx.
The last proposal is simpler to implement, but cannot
react flexibly if temporarily the prices are higher than
these bounds resulting in a worse QoS fulfillment.

The minimization of the quadratic utility error∆η of
the Nw RRG won (ideal) andNe estimated (real) and
theNn RRG needed is the quantized maximization of the
user’s needs. ButNw is a future information which is not

available during the calculation, because the other bids
bid−j are not known to bidderj. The auction algorithm
A has to be known to adjust and choose the most suitable
BIS. Thus, ifbid−j are known,Nw = Aj (bidj ,bid−j)
is a determined function of all bids and the minimum of
∆η can be calculated. Focusing on the multi-unit sealed-
bid auction only statistical parameters and functions of
the other bidsbid−j like histograms can be used to
predictNw by Ne. Therefore, the minimization can only
be reached by a bid vector with a certain probability.

Additionally, the bidbidj which minimizes the cost
can only be determined if all bids are known. Facing the
same problem as mentioned above, the ideal expression
has to be modified to work with the uncertainty of the
other bids. One opportunity is to choose this bid for which
the maximum expected costs are minimal.

3) Algorithm Concepts:The optimization can fall
back on history, experience and current data. Different
AI methods can be applied like neuronal networks,
fuzzy logic, Bayesian networks, generic algorithms or a
combination of them [2]. To implement the right AI is
the questions of computational power, memory and data
available. In the following two concepts of possible bid
strategies will be presented.

Bayes Optimal Classifier:The Bayes optimal classifier
states, which classificationbid of the new instance, i.e.,
auction, is most probable, given the dataD of past
auctions [12]:

bid
opt = arg max

bid∈B

∑

hj

P (bid|hj) P (hj|D) (14)

whereashj is a hypothesis of the targetbid
opt ∈ S1.

An instanceξ can be described by the 5-tuple:

ξ =
(

bid−j, N
w
−j , N

w
j , r, DS

)

, (15)

including the other bidsbid−j , theNw
−j RRG won by the

others, theNw
j RRG won by itself, the reserve pricer and

the demand/supply informationDS. If ξ is completely
known thebid

opt = c(ξ) can be determined whereas
c(ξ) is the mapping of the ideal algorithm of the bidding
strategy. The unawareness of the current bid and the
corresponding RRG numbers, leads to an approximation
of c(ξ) by the hypothesish

(

Nw
j , r, DS

)

= bid
p which

is bid
opt for a certain probability

P
(

bid
p|h

(

Nw
j , r, DS

))

(16)

assumingh
(

Nw
j , r, DS

)

the valid hypothesis. In order
to get a measure of the correctness ofh

(

Nw
j , r, DS

)

,
the probabilityP (h (·, r, DS) |D) that the hypothesis is
correct givenD has to be determined, e.g., ifh uses
histograms based on D, the accuracy has to be determined
regarding the use as probability likeP (bid−j).

The set of instancesξ could be very large and sparse
during the auction sequence. Thus, if there are new
instances for which there is no experience, the infor-
mation of the others should be weighted and applied
to the new instances if possible. One example could
be the interpolation or extrapolation of the histogram
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H (bid−j |r, DS). Therefore, an additional condition will
be included in eq. (16):

Pm,c = P
(

bid
p|h

(

Nw,c
j , rm, DSm

)

,
(

Nw,c
j , rc, DSc

))

(17)
with Nw,c

j , rc and DSc as the current parameters. Eq.
(17) describes the probability, thatbid

p is the optimal
bid using the hypothesish

(

Nw
j , rm, DSm

)

, whereas the
actually current parameters

(

Nw,c
j , rc, DSc

)

differ from
the hypothesis ones

(

Nw
j , rm, DSm

)

.
Finally, the Bayes Optimal Classifier in eq. (14) can

be written as:

bid
opt = arg max

bid∈B

∑

rm,DSm

Pm,cP (h (·, rm, DSm) |D)

(18)
Expectation Classifier:The Expectation Classifier [2]

replaces theNw by its expectationNe = E{Nw}.
Additionally the minimum of the cost in the worst case
will lead to thebid

p proposed:
bid

p,cri ∈ S
cri
1

= {bid| argminbid∈Scri
2

max cost}
s.c. S

cri
2

= {bid| argminbid ∆η(Ne,cri, Nn)}
s.c. budget constraint

⇓
bid

p,ucri ∈ S
ucri
1

= {bid| argminbid∈Sucri
2

max cost}
s.c. S

ucri
2

= {bid| argminbid∈Scri
1

∆η(Ne,ucri, Nn)}
s.c. budget constraint

⇒ bid = bid
ucri,p

The hypothesis as defined include histograms which build
uponD. If there is no value of the histogram available,
a weighted extrapolation/interpolation will provide expe-
rience of other instancesξ occurred.

The main difference between these two methods is
either the decision according to the probability or the
expectation.

F. Economic Manager

The EM is logically located in the MAC of each
BS. Its functionalities should represent the operator’s
behavior. The main goal of an operator is to maximize
his revenue which is reflected in the EM subentities
RPC and AM. Based on the EM’s location this system
is spatially distributed. Normally, the EMs of different
operators are not connected and work independently of
each other, but it can also be imagined that EMs of the
same operator collaborate which increases the revenue
according to game theory [10]. The output of the EM,
i.e., the allocation vector, is used to assign the users the
resources and the transmission conditions, e.g., when to
send at which channel.

The RPC is the leverage of the operator to influence
the auction and the AM is the common known auction
mechanism.

1) Reserve Price Calculator:The RPC is the same
important entity comparable in AI, computational power
and decision emphasize as the BIS. In comparison to the
BIS, the RPC can elaborate on more historical informa-
tion, because all bid vectorsbidj and allocation vectors
are accessible.

Its aim is to find this reserve pricer which maximizes
the operators gainG. Ideally, this can be mathematically
expressed by:

ropt ∈ S = {r| argmax
r

G (j, BISj (Ij , r, DS) , A)},

(19)
whereasG depends on the action of the bidding strategies
BISj including the numberNn of RRG wanted and
the auction mechanism. Parts of this information are
not available for the EM, because it is in future or
not accessible for the EM. Thus the optimal solution in
eq. (19) can only be approximated by exploiting past
information. The approximation results in choosing the
most appropriate hypothesesh in the hypotheses space:

rp = h (t < t0 : IRPC,t, A) . (20)

The inputs of the hypotheses are the kind of auction
mechanismA and the information tripleIRPC,t at the
time point t including all bid vectors×jbidj of each
bidder j, the reserve pricer, and the outcome of the
auction mechanismA (×jbidj , r):

IRPC,t = (×jbidj , r, A (×jbidj , r)) . (21)

In contrast to the BIS the RPC knows allbid, thus the
prediction of the future bidding behavior can be better
estimated.

Based on the approximation ofG from h the out-
come rp only belongs to the solution setS with a
certain probabilityP (h|t < t0 : IRPC,t, A) that h is cor-
rect based on the experience of past auctions. There-
fore, rp belongs to the fuzzy setF described by
(S, P (h|t < t0 : IRPC,t, A)). This rp has to be chosen
for which P is maximal:

rp = {r ∈ F |P (h|∀t < t0 : IRPC,t, A) ⇒ max} (22)

In [2] is a RPC proposed which possesses an integral
and a differential part. The integral part is responsible
for incorporating and for evaluating the importance of the
experience. On the other hand, the differential part reacts
on shortterm actions on the market. In this algorithm the
hypothesis will be implicitly evaluated and selected from
the proper hypothesis spaces.

2) Auction Mechanism:The AM should be designed
to fulfill the high dynamic, repetition and minimum of
signaling effort. As discussed in [13], the multi-unit
sealed-bid auction is the most suitable regarding the
open and sequential multi-unit sealed-bid auctions. These
auctions belonging to the standard auctions can only be
completely implemented into the system if the allocation
is ideal, that is each RRG can be assigned to DL or
UL independently of technical constraints. Otherwise,
the allocation mechanism has to be adapted to these
technical constraints in order to optimize the operator’s
gain leading to a no-standard, but RAT standard specific
auction.

The EM offers multiple RRG which are auctioned
simultaneously. These RRG can be identical or may have
different evaluations, e.g., code auctioning in a CDMA
system. For the sake of simplicity, the first method is
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valid in the following if nothing else is stated otherwise.
The EM broadcasts the announcement of the auction and
sends the reserve pricer and the number of RRG offered.
The RAAs calculate the bid vectors and submit them to
the EM. After collecting all bids, the AM calculates the
RRG allocation and assigns the RAAs won the proper
number of GRECs. First, assuming no joint radio resource
optimization tool, the BS can only assign the UT RRG
from its RRG whether the channel is disturbed or not.
Second, if there is a joint radio resource optimization
entity like JRRM in [11], GRECs interchanges between
BS are possible under the premise that the operator does
not reduce his revenue and the user gets an enhanced
QoS. The allocation vector conveys to both the PHY and
scheduler in UL and DL to adjust the transmission entities
and to read out the data of the QoS buffers in UL and
DL regarding the minimum utility error function.

VII. S IMULATION

The whole system is implemented in a discrete event
simulation tool. The environment consists of two different
base stationsBS1, BS2 and radio access technologies.
For each cell an economical managerEM1 and EM2

is responsible for pricing, allocation and billing the cell
capacity Cmax,1 and Cmax,2. The capacities are auc-
tioned by multi-unit sealed-bid discriminatory auctions.
The capacity ofBS1 is two times the capacity ofBS2.
Both are clustered in RRGs, whereas each RRG can carry
the same amount of data. For the sake of simplicity, but
without loss of generality, the channels are ideal.

A certain number of clientsNc attended both cells
and all clients are capable for multi-homing, that is they
are simultaneously connected to both base stations and
participate in both auctions. The auctions within both
cells occurs contemporarely and the auction repetition
is the same timeTA. Each Radio Auction Agent pos-
sesses one instance of the same bidding strategy for
each auction. This bidding strategy as proposed in [2]
learns about the past by maintaining an histogram and
approximately calculates statistical measure to determine
a suitable bid vector which maximizes the fulfillment
of the criteria. The utility functions are assumed to be
linear resulting in a risk-averse user behavior by account
both the critical and uncritical data. This involves that the
scheduling algorithm and the DATA-GREC Mapping can
be executed in linear time to gain an optimal assignment.
The scheduler is responsible for reading out the data of
the QoS buffers and send it down to the PHY, whereas
the DGM maps the data of the QoS buffer into an optimal
RRG constellation satisfying the bid protocol policy.

The QoS is characterized by two parameters, a min-
imum data ratedmin and a minimum delayτmin. Two
cases of traffic has been considered: real-time and packet
traffic. There are two scenarios in which for each of them
there are two QoS classesQoS1 and QoS2. In the first
scenario both classes are real time traffic classes with
incoming traffic data ratedc,1 and dc,2. In the second
scenario theQoS1 traffic is realtime and the input of
the QoS2 buffer are packets arriving according to a
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Fig. 3. Scenario 1: Comparison of the equal IRA (dashed line)and
the proposed IRA (solid line)

POISSON process characterized by the averaged arrival
time τa after sending a packet.

The proposed IRA algorithm which is responsible for
the assignment of the resources to the bidding strategies
is compared with the so-called equal IRA. The equal
IRA divides the categorized data equiportional to the
bidding strategies. This is the algorithm which does not
exploit any information. In contrast to this, the proposed
IRA tries to balance the load for the bidding strategy
with respect of the maximum available capcity and the
bidding startegy performance. It does not exploit explicit
information of the other UTs market behavior.

For the following two scenarios, it is assumed that
EM1 offers Nmax,1 = 8RRG clusters ofCmax,1 and
correspondinglyEM2 Nmax,2 = 16RRG. Each cluster
can carryDRRG = 200bit resulting in a relative capacity
Cmax,1 andCmax,2 depending on the auction periodTA:

Cmax,i =
Nmax,i · DRRG

TA

(23)

That isBS1 can transmit at most1600bit per auction and
BS2 at most3200bit.

A. Scenario 1

In this scenario there are certain number of clientsNc.
The traffic into their QoS buffers is equal and the same as
the minimum data rate of the QoS (dc,1 = dc,2 = dmin).
The minimum delay is1.75TA. Consequently, after 2
auctions without sending the data the QoS is injured
and the data will be removed from the buffers. The
preferencesα and the maximum costscmax,bit per bit
are randomly choosen. The relation of the preferences
α and maximum costscmax,bit are equivalent. Figure 3
shows the overall throughputµ defined as the cumulative
data sentDs in relation to the cumulative data needed
Dn from the upper layer depending on the data needed
DTA

per UT and per auction periodTA for 3 to 6 clients
attending the cells. For smallDTA

the two allgorithms
perform equal, because the load is as small as by equally
dividing data to theEMi and the cells are not overloaded.
The graph of the equal IRA starts to decrease faster
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Fig. 4. Scenario 2: System behavior by mixed traffic

than the proposed IRA if the load is now more than
2·Cmax,1 and thus losses occur. In this state the balancing
functionality of the proposed IRA takes effect resulting
in an overall better capacity. Towards largeDTA

the sum
of the capacities of all UTs exceed the sum ofCmax,1

andCmax,2, therefore the performance of both algorithm
converges. For example, consider4 user, then the equal
IRA gets worse at800bit/TA and it approaches the graph
of the proposed IRA at1200bit/TA.

B. Scenario 2

4 users will attend the cells and the QoS buffers
have different traffic.QoS1 gets real time traffic with
DTA,1 = 400bit and data packtes arrive atQoS2 with the
durationTp = 5TA and the length ofDp = 400bit · Tp.
The average arriving duration is exactly chosen to get
in averageDTA,2 = 400bit. That is the same averaged
load as for the constant rate case for which there is
no performance difference of the algorithms. The mixed
traffic as occuring for multi-service entities does not
possess a smooth data rate over time, in fact it is bursty.
This load variation lowers the performance of the equal
IRA to the proposed IRA. Figure 4 shows again the
overall throughputµ depending on the data neededDTA,2

per UT, per auction duration and perQoS2. Besides the
performance difference, the graphs decrease for larger
DTA,2 because if users send contemporarely, greater
losses occur loss than for smallerDTA,2 recalling the
storing of uncritical data.

VIII. CONCLUSION

The awareness and cognition of a CR allows to give
intelligent terminals responsibility to express the users
needs, to fulfill the QoS and finally to satisfy the needs
by evaluating the urgency to send the data. The multi-unit
sealed-bid auction is suitable for short-term auctioning in
communication systems and combines dynamic and local
RRG pricing, allocation and billing allowing to apply the
CR abilities.

A system proposal is described in which the RRG
are priced, allocated and billed by a periodic auction
sequence and CR abilities are applied. The UT possesses
the opportunity to split the traffic over more than one
RAT, thus services can be used by multi-homing.

APPENDIX I
ABBREVIATIONS

Abb. Definition

α Preference parameter
AI Artificial Intelligence
AM Auction Mechanism
AS Auction Sequence
ASEV Auction Sequence EnVironment
bid Bid vector
BIS BIdding Strategy
BISPR BIS PRoperties
BS Base Station
CC Channel Coding
CO MAC/PHY Control Overhead
CR Cognitive Radio
δ Price per bit
D Amount of data
DCF Data Categorizing Function
DGM Data GREC Mapping
η utility
AF Acting Function
EM Economic Manager
EV EnVironment
FPM Fixed Price Model
GI Gaining Information
GREC General Resource Elementary Credit
i Index of RAT
IDGM Inter Data GREC Mapping
IMAC Inter MAC
IRA Inter RRG Allocation
j Index of user
JRRM Joint Radio Resource Management
l Index of thelth QoS class
LP Learning Process
MAC Medium Access Control
MOD MODulation
N Number of RRG
p Price
ρ BIS efficiency
r Reserve price
RAA RRG Auction Agent
RAT Radio Access Technology
RPC Reserve Price Calculator
RRG Radio Resource Goods
SNIR Signal to Noise and Interference Ratio
SUBEV SUBEnVironment
UPM User Profile Manager
UT User Terminal
UTID UT IDentification
x Index of data category
y Index of link {UL, DL}
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