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Conductance histograms are a valuable tool to study the intrinsic conduction properties of metallic
atomic-sized contacts. These histograms show a peak structure, which is characteristic of the type
of metal under investigation. Despite the enormous progress in the understanding of the electronic
transport in metallic nanowires, the origin of this peak structure is still a basic open problem.
In the present work we tackle this issue, extending our theoretical analysis of Au conductance
histograms [Dreher et al., PRB 72, 075435 (2005)] to different types of metals, namely, Ag, Pt
and ferromagnetic Ni. We combine classical molecular dynamics simulations of the breaking of
nanocontacts with conductance calculations based on a tight-binding model. This combination
gives us access to crucial information such as contact geometries, strain forces, minimum cross-
sections, the conductance, transmissions of the individual conduction channels and, in the case of
Ni, the spin polarization of the current. We shall also briefly discuss investigations of Al atomic-sized
contacts. From our analysis we conclude that the differences in the histograms of these metals are
due to (i) the very different electronic structures, which means different atomic orbitals contributing
to the transport, and (ii) the different mechanical properties, which in a case like Pt lead to the
formation of special structures, namely monoatomic chains. Of particular interest are results for Ni
that indicate the absence of any conductance quantization, and show how the current polarization
evolves (including large fluctuations) from negative values in thick contacts to even positive values
in the tunneling regime after rupture of the contact. Finally, we also present a detailed analysis of
the breaking forces of these metallic contacts, which are compared to the forces predicted from bulk
considerations.

PACS numbers: 73.63.-b, 73.63.Rt, 73.23.-b, 73.40.Jn

I. INTRODUCTION

of channels in a one-atom contact is determined by the

The transport properties and mechanical characteris-
tics of metallic atomic-scale wires have been the sub-
ject of numerous studies over the past yearsX The anal-
ysis of these nanocontacts is nowadays possible due
to experimental techniques like the scanning tunnel-
ing microscope?2 and mechanically controlled break
junctions In both cases a metallic contact is stretched
with a precision of a few picometers by the use of piezo-
electric elements, providing very detailed information
about the formation and breaking of metallic systems
at the nanoscale.

The relative simplicity of these nanowires makes them
ideal systems to perform extensive comparisons with mi-
croscopic theories. Such comparisons have allowed, in
particular, to elucidate the nature of electrical conduc-
tion. The conduction in such systems is usually described
in terms of the Landauer formula, according to which the
low-temperature linear conductance of nonmagnetic con-
tacts can be written as G = Go ), Tp, where the sum
runs over all the available conduction channels, T3, is the
transmission for the nth channel and Gy = 2¢2/h is the
quantum of conductance. As was shown in Ref. i, the
set of transmission coefficients is amenable to measure-
ment in the case of superconducting materials. Using
this possibility it has been established that the number

number of valence orbitals of the central atom, and the
transmission of each channel is fixed by the local atomic

environment5.7:8

The experiments show that in the stretching processes
in which these metallic wires are formed, the conductance
evolves in a step-like manner which changes from real-
ization to realization. In order to investigate the typical
values of the conductance, different authors introduced
conductance histograms, constructed from a large num-
ber of individual conductance curves.210:1l These his-
tograms often show a peak structure, which is specific
to the corresponding metal. Thus for instance, for noble
metals like Au and Ag and for alkali metals like sodium,
the conductance has a certain preference to adopt mul-
tiples of Gy. However, for a large variety of metals, the
peaks do not appear at multiples of G (for a detailed dis-
cussion of the conductance histograms, see section V.D
in Ref. [1). It has become clear that the peak structure
in the conductance histograms must be related to the
interplay between electronic and mechanical properties.
This interplay was nicely illustrated in the first simul-
taneous measurement of the conductance and breaking
force22 but the precise origin of the differences between
the various classes of metals remains to be understood.
The solution of this basic open problem is precisely the
central goal of the present work.
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The analysis of the characteristic peaks of the con-
ductance histograms of alkali and noble metals at rel-
atively high temperatures has revealed the existence of
exceptionally stable radii arising from electronic shell ef-
fects for thin wires and atomic shell effects for thicker
wires A3:14:15.16.17 Gtable nanowires with thicknesses of
several atoms could also be observed in transmission elec-
tron images 181220 Commonly, the connection between
the peaks in the conductance histograms and the radius
of the contacts is established using semiclassical argu-
ments based on the Sharvin formula or slight variations
of it2!

G =Gy , (1)
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where kp is the Fermi wave vector and R is the radius of
the wire.22 Using this type of formula, it was suggested
in Ref. 23 that peaks found in the histogram of the min-
imum cross-section (MCS) of Al contacts would immedi-
ately translate into peaks in the conductance histograms.
In other words, it was suggested that the conductance
peaks would just be a manifestation of the existence of
certain particularly stable contacts.

From the theory side, the analyses of the conduc-
tance histograms are scarce in the literature. Mostly sin-
gle stretching events have been investigated at various
levels of sophistication 24:22:26,27,28,29,30,31,32,33,34,35 The
analysis of conductance histograms, however, involves
the statistical exploration of many different stretching
events. Most such research is based on free-electron mod-
els, where particular nanowire dynamics are chosen 28
but there are practically no fully atomistic investigations
of the conductance histograms. Two such studies have
just recently appeared, where Dreher et al3” investigated
atomic Au contacts and Hasmy et al-38 studied Al con-
tacts. In particular, in our work (Ref.31) we showed that,
at least at low temperatures (4.2 K), there is no simple
correspondence between the first peaks in the MCS and
the conductance histograms.

In order to elucidate the origin of the peak structure
in the conductance histograms of metallic atomic-sized
contacts, we have extended our theoretical analysis of
the Au conductance histogram3? to several new metals
with varying electronic structures in the present work.
In particular, we have studied the cases of Ag, a noble
metal, Pt, a transition metal, and Ni, a ferromagnetic
metal. We shall also briefly comment on our study of
Al (an sp-like metal). Our theoretical approach is based
on a combination of classical molecular dynamics (MD)
simulations to describe the contact formation and a tight-
binding (TB) model supplemented with a local charge
neutrality condition for the atomistic computation of the
conductance. This combination allows us to obtain de-
tailed information on the mechanical and transport prop-
erties such as contact geometries, strain forces, the MCS,
the conductance, the number and evolution of individual
conductance channels and, in the case of ferromagnetic
contacts, the spin polarization of the current.

Concerning Ag, we find a sharp peak in the conduc-
tance histogram at 1Gy. This peak is due to the for-
mation of single-atom contacts and dimers in the last
stages of the breaking of the wires in combination with
the fact that the transport in the noble metal is domi-
nated by the s orbitals around the Fermi energy. With
single-atom contacts we will refer throughout this article
to junctions with a single atom in the narrowest con-
striction, in short a one-atom chain, while dimer means
an atomic chain consisting of two atoms. In the case of
Pt, the first peak is broadened and shifted to a higher
conductance value (above 1Gyp). This is due to the fact
that in this transition metal the d orbitals play a funda-
mental role in the transport, providing extra conduction
channels, as compared to Ag. For Ni wires, we see that
the d orbitals contribute decisively to the electrical con-
duction for the minority-spin component, providing sev-
eral partially open channels even in the last stages of the
stretching process. As a consequence, we do not observe
any type of conductance quantization. With respect to
the polarization of the current, we see that there is a
crossover from large negative values for thick contacts
contacts to positive values in the tunneling regime, right
after the rupture of the contact.

From a more general point of view, the ensemble of our
results allows us to conclude that the differences in the
peak structure of the conductance histograms of metallic
nanocontacts can be traced back to the following two in-
gredients. First, due to the different electronic structure
of the various classes of metals different atomic orbitals
contribute to the transport. These orbitals determine
in turn the number of conducting channels and there-
fore the conductance values. Thus, for similar structures
a contact of a multivalent metal will have in general a
higher conductance than one of a noble metal. Second,
the different mechanical properties give rise to the forma-
tion of certain characteristic structures, which are finally
reflected in the histograms. For instance, the formation
of monoatomic chains in Au or Pt is responsible for the
pronounced last conductance peak.

The rest of this paper is organized as follows. In Sec. [l
we present the details of our method for simulating the
stretching of atomic wires and show how the conductance
is subsequently computed. Studies of Ag, Pt, Al and Ni
contacts follow in Secs. [Tl V] [Vl and [Vl respectively. In
each of these sections we first discuss representative ex-
amples of the stretching processes of the nanocontacts.
We then turn to the statistical analysis of the whole set
of simulations for the different metals. This includes a
discussion of the histograms of both the MCS and the
conductance as well as an analysis of the mean channel
transmission. Section [VTIl is devoted to the discussion
of the mechanical properties of the different metals. Fi-
nally, we summarize the main conclusion of this work in

Sec. V1111



II. THE THEORETICAL APPROACH

The goal of this study is the theoretical description of
the mechanical and electrical properties of metallic nano-
junctions. For this purpose, we make use of the approach
introduced in our previous work on the conductance his-
togram of Au atomic contacts.2” In order to analyze fer-
romagnetic Ni contacts, we need to extend our method
to study also spin-dependent metals. Such an extension
is presented below, but we refer the reader also to Ref. 131
for supplementary information.

Our theoretical method is based on a combination of
classical MD simulations for the determination of the
structure and mechanical properties of the nanowires and
conductance calculations based on a TB model. We pro-
ceed to explain these two types of calculations in the next
subsections.

A. Structure calculations

The breaking of metallic nanocontacts is simulated
by means of classical MD simulations. In all our cal-
culations we assume an average temperature of 4.2 K,
which is maintained in the simulations by means of a
Nosé-Hoover thermostat. The forces are calculated using
semiempirical potentials derived from effective-medium
theory (EMT).22:40 This theory has already been suc-
cessfully used for simulating nanowires22:41:42 For the
starting configuration of the contacts we choose a per-
fect fcc-lattice of 112 atoms of length 2.65 nm (Ag), 2.55

m (Pt), 2.64 nm (Al) and 2.29 nm (Ni) oriented along
the [001] direction (z direction) with a cross-section of 8
atoms. This wire is attached at both ends to two slabs
that are kept fixed, each consisting of 288 atoms. Af-
ter equilibration, the stretching process is simulated by
separating both slabs symmetrically by a fixed distance
in every time step (1.4 fs). Different time evolutions of
the nanocontacts are obtained by providing the 112 wire
atoms with random starting velocities. The stretching ve-
locity of 2 m/s is much bigger than in the experiment, but
it is small compared with the speed of sound in the inves-
tigated materials (of more than 2790 m/s). Thus the wire
can re-equilibrate between successive instabilities, while
collective relaxation processes may be suppressed.26:28

In order to test whether the conductance changes are
correlated with atomic rearrangements in the nanocon-
tact, we calculate the radius of the MCS perpendicular
to the stretching direction as defined by Bratkovsky et
al2?

Finally, during the stretching process, every 1.4 ps
a configuration is recorded and the strain force of the
nanocontact is computed following Finbow et al42 Ev-
ery 5.6 ps the corresponding conductance is calculated
using the method described below.

B. Conductance calculations

We compute the conductance within the Landauer
approach. To calculate the electronic structure of
our atomic contacts a TB model is employed, which
has been successful in describing the important qual-
itative features in the transport through metallic
nanojunctions.®8:37 This model is based on the follow-
ing Hamiltonian written in a nonorthogonal local basis

ﬁ: Z HiO‘»jﬁvUé'ira,a'éjB,G'? (2)
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where ¢ and j run over the atomic sites, « and 3 de-
note different atomic orbitals and Hj,, j3,» are the on-
site (¢ = j) or hopping (i # j) elements, which are spin-
dependent (o =1, ]) in the case of ferromagnetic metals
like Ni. Additionally, we need the overlap integrals S;, ;3
of orbitals at different atomic positions.# We obtain the
quantities Hio j3,0 and Siq ;3 from a parameterization
that is designed to accurately reproduce the band struc-
ture of bulk materials 4246 The atomic basis is formed by
9 valence orbitals, namely the s, p and d orbitals which
give rise to the main bands around the Fermi energy. In
this parameterization both the hoppings and the overlaps
to a neighboring atom depend on the interatomic posi-
tion, which allows us to apply this parameterization in
combination with the MD simulations. The overlap and
hopping elements have a cutoff radius that encloses up
to 9 (Ag, Pt and Al) or 12 (Ni) nearest-neighbor shells.
The left (L) and right (R) electrodes are constructed such
that all the hopping elements from the 112 wire atoms,
which we will call the central part or center of our con-
tact (C), to the electrodes are taken into account. This
means that the electrodes in the conductance calculation
are constituted of [001] layers containing even more than
the 288 slab atoms used in the structure calculations.
Note that with the word electrode we will refer, through-
out this article, to the fixed slab atoms (or the extended
[001] layers used in the conductance calculations).

The local environment in the neck region is very dif-
ferent from that in the bulk material for which the TB
parameters have been developed. This can cause large
deviations from the approximate local charge neutrality
that typical metallic elements must exhibit. Within the
TB approximation we correct this effect by imposing a
local charge neutrality condition on the atoms in the cen-
tral part of the nanowire through a self-consistent vari-
ation of the Hamiltonian. This self-consistent procedure
requires the computation of the electronic density ma-
trix Pjs,jg, which is obtained by integrating the Green
function of the center up to the Fermi energy4?

. 1 [Er
Ba,jﬁ = _;/ Im

In this expression CA?’(}CJ is the retarded Green’s function

dE.  (3)
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of the central part of the contact
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where o stands for the spin component, Sce is the over-
lap matrix of the center, Hcc,» is the Hamiltonian and
by x,0 (with X = L or R) are the self-energies that de-
scribe the coupling of the center to the electrodes. They
are given by

) o (E)= (ffcx,a - Egcx) IXx.0 (ﬁxc,a - ES'XC) ,

(5)
with the unperturbed retarded electrode Green’s function
9% x ., and the overlap (hopping) matrices from the center

to the electrodes Sc¢x (fICXJ). The unperturbed elec-
trode Green’s functions are assumed to be bulk Green’s
functions in all our calculations. The charge on the atom
i is then determined using a Mulliken population analysis

N; = Z (Pccgcc) ; (6)

(TR e

where only the contributions of the central part to the
atomic charge are considered. 2242 The new Hamiltonian
matrix elements H;, jg,, are obtained from the original

(0) 50

ones H as

io,jB,0

i + ¢
+Sz'a,jﬁ 5 7. (7)

Hiajg,o = Hi(g,)jﬁ,cr
The shifts ¢; are determined such that no atom deviates
from the charge neutrality by more than 0.02 electron
charges (|N; — Natom| < 0.02, and Nutom stands for the
electronic charge of the respective charge-neutral metal
atom). Note that there is one shift parameter per central
atom, also in the case of ferromagnetic metals.
The low-temperature linear conductance is then com-
puted using a Green’s function formalism (see Ref. 37 for
details), finally resulting in the Landauer formula

G (Br) = & YT (Er) ®)

with the Fermi energy E'r and the transmission T of the
nth transmission eigenchannel. The conductance is then
given as the sum over the different spin contributions

G=> G, (9)

which has the form
G =GoT (Bp) =Go Yy Tn (10)
for the spin independent case. As explained in the intro-

duction, Gy = 2¢?/h is the quantum of conductance, and
T is the total transmission.

To investigate the influence of a small bias voltage, we
have computed for Ag and Pt the transmission T (F) in
an energy interval of width 2A = 100 meV around the
Fermi energy2! The averaged conductance

1 Er+A

(G) = Go(T) = Gogx

T (E)dE, 11
N AL (11)

can then be compared to the conductance G = GoT (EF)
at the Fermi energy (cf. Eq. (I)). This provides infor-
mation on the nonlinearity of current-voltage characteris-
tics, although the formulas we use are, strictly speaking,
only valid for the zero-bias situation.

C. Local density of states calculations

To gain some insight into the electronic states relevant
for the transport through our nanowires, we shall also
compute the local density of states (LDOS) projected
onto particular atoms. The computation of the LDOS
requires the evaluation of the Green function of the cen-
tral part of the nanowire Goc o (cf. Eq. @)). From Gec,o
we construct the LDOS via a Lowdin transformation.2
The LDOS for a particular orbital « of atom ¢ is then
given by22

1 A1/2 A N
LDOS:a,; (E) = ~—Im |SdiGoc,, (B) Sdc|
(12
In the case of the nonferromagnetic metals (Ag and Pt)
the LDOS will in the following be given only for one spin

component, because of the spin degeneracy.

III. SILVER ATOMIC CONTACTS

We start the analysis of our results with the discussion
of the conductance of Ag nanowires. Ag is, like Au, a
noble metal with a single valence electron. Different ex-
periments have shown that the conductance of Ag con-
tacts exhibits a tendency towards quantized values in the
last stages of the wire formation.22:2%:56 In fact, the most
dominant feature in the experimental low-temperature
conductance histogram is a pronounced peak at 1 G.24:32

A. Evolution of individual silver contacts

Let us first describe some typical examples of the
breaking of Ag nanowires. In Fig. [l we show the for-
mation of a single-atom contact. Beside the strain force
we display the conductance G, the averaged conductance
(G) (cf. Eq. [D), the MCS radius and the channel trans-
missions. As one can see, after an initial evolution up
to an elongation of 0.2 nm (region with eight conduction
channels), which is similar for all the 50 Ag contacts stud-
ied, the conductance starts decreasing in a step-like man-
ner which changes from realization to realization. The
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Figure 1: (Color online) Formation of a single-atom contact
for Ag (4.2 K, [001] direction). The upper panel shows the
strain force as a function of the elongation of the contact. In
the lower panel the conductance G, the averaged conductance
(@), the MCS (minimum cross-section) radius and the channel
transmissions are displayed. Vertical lines separate regions
with different numbers of open channels ranging from 8 to
127 Above and below these graphs snapshots of the stretching
process are shown.

jumps in the conductance usually occur at plastic defor-
mations of the contact, i.e. when bonds break and sud-
den atomic rearrangements take place. Such sudden re-
arrangements are visible as a break-in of the strain force.
The elastic stages, in which the atomic bonds are being
stretched, are characterized by a linear increase of the
strain force. In this case the conductance exhibits well-
defined plateaus (see for instance the region with three
channels, which occurs for elongations between 0.7 nm
and 0.83 nm). In the last stages of the breaking of the
contact, displayed in Fig.[I], a stable single-atom contact
is formed. In this region the conductance is mainly dom-
inated by a single channel, although a second one is still
visible (see two-channel region or elongations between
0.86 nm and 0.95 nm). Subsequently, a dimer structure
is formed, which survives for a short period of time, after
which the contact finally breaks. In this region only a
single transmission channel is observed.

It is worth noticing that there is practically no dif-
ference between the conductance G and the averaged
conductance (G) (cf. Eq. (), demonstrating that the
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Figure 2: (Color online) Formation of a dimer configuration
for Ag (4.2 K, [001] direction). The upper panel shows the
strain force as a function of the elongation of the contact. In
the lower panel the conductance G, the averaged conductance
(@), the MCS (minimum cross-section) radius and the channel
transmissions are displayed. Vertical lines separate regions
with different numbers of open channels ranging from 8 to
127 Above and below these graphs snapshots of the stretching
process are shown.

transmission as a function of the energy is rather flat
around the Fermi energy (in the window —A < E—Ep <
A). This can be seen explicitly in Fig. Bl which we shall
discuss later in more detail. The flat transmission T'(E)
is expected for a noble metal like Ag because its density
of states around Er is mainly dominated by the contri-
butions of the s and p bands, which are rather broad and
vary slowly with energy.

Another example of a breaking curve for Ag is depicted
in Fig. @ In the beginning the conductance evolves like
for the contact discussed above (cf. Fig. [). This time a
stable dimer is finally formed. Prior to the formation of
the dimer structure, which sustains a single channel (see
one-channel region or elongations from 1.06 nm to 1.19
nm), there also appears a single-atom contact, where two
channels are still visible (see two-channel region or elon-
gations from 0.97 nm to 1.06 nm), in analogy to what has
been found for Au before2T We observe for both con-
figurations a single dominant transmission channel and
a conductance of around 1 Gg. This result is consistent
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Figure 3: (Color online) Ag contact of Fig. Bl at an elongation
of 1.16 nm. The total transmission 7 is plotted as a function
of the energy together with the contributions from the differ-
ent transmission channels T),. Additionally the LDOS (local
density of states) is given for an atom in the narrowest part
of the contact, where the different orbital contributions have
been itemized. Above the figure the narrowest part of the Ag
contact is displayed in a magnified fashion and the atom is
indicated, for which the LDOS is shown.

with first-principles calculations, where it has been shown
for selected ideal contact geometries that the transmis-
sion of Ag chains is around 1 Gy and the conductance is
carried by a single transmission channel.28:59

Due to the appearance of a stable dimer structure there
is now a long and flat last plateau before rupture in Fig. 2
Our simulations show that this type of dimer is the most
common structure in the last stages of the contact for-
mation.

A certain peculiarity can be observed, if one has a
closer look at the region with six open channels. Here,
the conductance first drops abruptly and then it increases
again in the region with five open channels. Notice that
this increase is accompanied by a steady decrease of
the MCS. This type of reentrance of the conductance,
which is often observed experimentally, cannot be ex-
plained in terms of semiclassical arguments, which are
based on Eq. [[). According to this formula the con-
ductance should be a monotonous function of the MCS,
which, however, is not always the case. Such break-ins
of the conductance have already been observed before in

simpler TB calculations 2%

In order to explain the existence of a single channel in
the final stages of breaking, we have plotted in Fig. Bl the
LDOS of an atom in the narrowest part of the junction as
a function of the energy together with the transmission.
We have chosen a dimer configuration at an elongation of
1.16 nm, right before the rupture of the contact displayed
in Fig. @ The transmission around the Fermi energy is

made up of a single channel, exhibiting only a tiny vari-
ation in the energy window —A < F — Er < A. In the
LDOS there are two dominant contributions, one com-
ing from the s orbital, as expected, and the other one
from the p, orbital. Therefore, the transmission channel
is expected to consist mainly of these two contributions,
the other orbitals being of minor importance. As found
before, 822 the s and p. orbitals are then forming a ra-
dially isotropic transmission channel along the transport
direction. If we denote by [, the projection of the angu-
lar momentum onto the z axis (transport direction), this
channel has the quantum number [, = 0.

B. Statistical analysis of silver contacts

In Fig. B our computed MCS histogram as well as
the computed conductance histogram are displayed. The
histograms are obtained by collecting the results of the
stretching of 50 Ag contacts oriented along the [001] di-
rection at 4.2 K, as described in Sec.[l In the case of the
MCS histogram, the most remarkable feature is the ap-
pearance of very pronounced peaks, which indicate the
existence of particularly stable contact radii. For the
purpose of correlating these peaks with the structure in
the conductance histogram, we have marked the regions
around the peaks in the MCS histogram with different
pattern styles. In the conductance histogram we indicate
the counts for conductances belonging to a certain MCS
region with the same pattern style, in order to establish
this correlation between the geometric structure of the
contacts and the features in the conductance histogram.

With respect to the conductance histogram, our main
result is the appearance of a pronounced peak at 1 Gy,
in accordance with the experimental results.24:22:56 This
peak mainly stems from the contributions of contacts
with MCS radii in the first (dimers) and second (single-
atom contacts) region of the MCS histogram. Therefore,
we can conclude that the peak at 1 Gy is a consequence
or manifestation of the formation of single-atom contacts
and dimers in the last stages of the breaking of the Ag
wires.

It is also important to stress that the contributions
to the conductance histogram coming from different re-
gions of the MCS histogram clearly overlap. This means
in practice that the MCS radius is not the only ingre-
dient that determines the conductance, as one would
conclude from semiclassical arguments (see Eq. (). In
other words, the peak structure in the MCS histogram
is not simply translated into a peak structure in the
low-temperature conductance histogram, as suggested in
Ref. [23.

At this stage, a word of caution is pertinent. In break
junction experiments, contacts are opened and closed re-
peatedly, and the breaking processes starts with a con-
ductance as large as 100 GoY Compared to this value,
our simulations start with a very small conductance of
around 4 Gy. Additionally, all the contacts are oriented
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Figure 4: (Color online) MCS (minimum cross-section) his-
togram (upper panel) and conductance histogram (lower
panel) for Ag (4.2 K, [001] direction, 50 contacts). In the MCS
histogram different regions of frequently occurring radii have
been defined with different pattern styles. The patterns in the
conductance histogram indicate the number of counts for con-
ductances belonging to the corresponding region of the MCS
histogram. For better reference in the text, some regions in
the MCS and conductance histogram have additionally been
labeled with numbers. In the inset of the lower pamnel the
conductance histogram is displayed in the relevant region in
a smoothed version by averaging over six nearest-neighbor
points.

along the [001] direction, which can be expected to have
an influence on the structure of the conductance his-
togram. Even for rather thick contacts it has been shown
experimentally that prefabricated wires cause a different

peak structure in the conductance histograms.82

The last three peaks of the MCS histogram (labeled 10,
11 and 12 in Fig. H)) are mainly dominated by the (arbi-
trarily) selected [001] starting-configuration. It is inter-
esting to observe that the MCS region labeled with a 10
has a large weight at conductances of somewhat above
2 Gy, although it should be expected to have contribu-
tions for large transmissions because of its high MCS.
The break-in of the conductance in Fig. B at the tran-
sition from the six- to five-channel region is an example
showing the origin of the large weight of this MCS region
at 2Ggy. This observation illustrates that even conduc-
tance regions down to 2 Gy are distorted due to the small
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Figure 5: (Color online) Mean value of the transmission co-
efficient (7,) as a function of the conductance for Ag (4.2
K, [001] direction, 50 contacts). The error bars indicate the

mean error.%:

size of our contacts. While we can be sure about the
first peak in the conductance histogram at 1 Gy, all the
higher peaks would require the study of bigger contacts
with even more atoms in the central region.

It is important to remark that out of 50 simulations we
have only observed the formation of three short chains
with 3, 4 and 5 atoms in each case. This is in strong con-
trast to the case of Au, where chains were encountered
much more frequently and with more chain atoms.2?
Short atomic Ag chains of up to three atoms have also

been observed in experiments.23:26

Another important piece of information can be ob-
tained from the analysis of the mean channel transmis-
sion (averaged over all contacts) as a function of the
conductance, which is shown in Fig. B Here, one can
see that the conductance region below 1Gj is largely
dominated by a single channel. Above 1Gq a sharp on-
set of the second transmission channel can be observed,
the third channel increasing more continuously. At 2Gg
again an onset of the fourth and fifth channel are visible.

These results can be related to the experimental ob-
servation on noble metals made by Ludoph et al.24:52
namely the principle of the “saturation of channel trans-
mission”. This principle says that there is “a strong ten-
dency for the channels contributing to the conductance
of atomic-size Au contacts to be fully transmitting, with
the exception of one, which carries the remaining frac-
tional conductance”.52 This tendency of the channels to
open one by one is evident for the first channel from Fig.
and also experimentally the first peak in the conductance
histogram for Ag fulfills this principle best.24 Concern-
ing the higher conductances the finite size of our contacts
plays an increasingly restrictive role, but we are well in
line with the statement (made for Au, Ag and Cu) that
“particularly the second peaks in the histograms are also
determined by other statistical (probably atomic) prop-
erties of the contact”.2



IV. PLATINUM ATOMIC CONTACTS

Now, we turn to the analysis of Pt contacts. Pt is
a transition metal with 10 valence electrons in the par-
tially occupied 5d and 6s orbitals. The experiments re-
ported so far show that in the case of Pt the last conduc-
tance plateau lies typically above 1Gp. Consequently,
the conductance histogram is dominated by the presence
of a broad peak centered around 1.5G(.22:%2 Another
remarkable feature of Pt contacts is the appearance of
monoatomic chains (with up to six atoms), which have
a conductance ranging from around 1.5 to 1.0 Gy as the
length increases.$4:52 Moreover, complex oscillations of
the conductance as a function of the number of chain
atoms are superimposed on top of such a decay. Their
origin has been explained in terms of a nearly half-filled
s band and the additional conduction channels provided
by the almost full d bands.%¢

A. Evolution of individual platinum contacts

In Fig. B a typical example of the formation of a dimer
configuration is shown. As before, beside the strain force,
we display the conductance, the averaged conductance,
the MCS radius and the channel transmissions. The ini-
tial evolution is quite similar for all the 50 Pt contacts
analyzed here. In this region, which corresponds to elon-
gations below 0.17 nm, we observe between 11 and 10
open conduction channels. After this region, and as in
the case of Ag contacts, the conductance evolves in a se-
ries of jumps which coincide with plastic deformations
(see the positions of break-ins in the sawtooth shape of
the strain force). However, in contrast to Ag, now we find
strong conductance fluctuations during the different elas-
tic plateaus. The stretching of the contact of Fig. @l ends
with the formation of a dimer, which sustains three open
channels and has a conductance above 1 Gy (see region
with elongations between 1.12 nm and 1.22 nm). This
is again contrary to the Ag junctions discussed above,
where only a single dominant channel is observed in the
final stages before rupture.

On the other hand, the comparison between the con-
ductance G and the averaged conductance (G) shows
certain deviations (see for instance the region with four
channels). This fact indicates that for Pt there is a much
stronger variation of the transmission as a function of
the energy around the Fermi energy, as compared with
Ag. This is in agreement with the experimental find-
ing of nonlinear current-voltage characteristics for Pt as
opposed to linear ones for a noble metal like Au.5%

The clear differences between the Pt and the Ag con-
tacts can be traced back to the difference in their elec-
tronic structure, as we now proceed to illustrate. We
show in Fig. [ the LDOS for an atom in the narrowest
part of the junction as a function of the energy together
with the transmission. We have chosen a dimer configu-
ration at an elongation of 1.18 nm just before the rupture
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Figure 6: (Color online) Formation of a dimer configuration
for Pt (4.2 K, [001] direction). The upper panel shows the
strain force as a function of the elongation of the contact. In
the lower panel the conductance G, the averaged conductance
(@), the MCS (minimum cross-section) radius and the channel
transmissions are displayed. Vertical lines separate regions
with different numbers of open channels ranging from 11 to
327 Above and below these graphs snapshots of the stretching
process are shown.

of the contact of Fig. Bl Notice the presence of a much
more pronounced structure in the transmission around
the Fermi energy as compared to Fig. Bl which can be
attributed to the contribution of d states. This fact nat-
urally explains the deviation between the conductance
G at Ep and the averaged conductance (G) (cf. Fig. B).
At the same time, the partially occupied d orbitals are
also responsible for the larger number of open transmis-
sion channels (three in the dimer region of Fig.[Hl), as they
provide additional paths for electron transfer between the
two electrodes.

From Fig. [ it is evident that d states play a major
role for the conductance in Pt contacts. The strong fluc-
tuations of the conductance during the elastic stages of
stretching, as observed in Fig. B point out a high sen-
sitivity of these d states to the atomic configurations.
These two phenomena, namely the pronounced structure
of the transmission around the Fermi energy and the sen-
sitivity of d states to atomic configurations are related.



Figure 7: (Color online) Pt contact of Fig. Bl at an elongation
of 1.18 nm. The total transmission 7 is plotted as a function
of the energy together with the contributions from the differ-
ent transmission channels T),. Additionally the LDOS (local
density of states) is given for an atom in the narrowest part
of the contact, where the different orbital contributions have
been itemized. Above the figure the narrowest part of the Pt
contact is displayed in a magnified fashion and the atom is
indicated, for which the LDOS is shown.

Indeed, a slight variation of Er for a fixed contact geom-
etry has a similar effect on the conductance as the mod-
ification of electronic level positions caused by a variable
contact geometry but a fixed Fermi energy. Ultimately,
the sensitivity of d states to atomic configurations can be
attributed to the spatial anisotropy of the d orbitals as
compared to the spatially isotropic s orbitals, which are
responsible for the conductance in Ag contacts.

Now we proceed to discuss the formation of chains in
Pt contacts. In the last stages of our simulations we often
observe the formation of special structures, namely linear
chains of several atoms. In Fig. § we show the evolution
of a Pt contact, which features a five-atom chain before
rupture. As for the contact discussed previously, sub-
stantial fluctuations in the conductance are visible even
during the elastic stages, demonstrating again the sen-
sitivity of d orbitals to atomic positions. The conduc-
tance during the formation of the chain is mainly domi-
nated by two channels, but also a third one is contribut-
ing slightly. The first two channels can be of nearly the
same magnitude (see elongations above 1.1 nm). After
the dimer has formed, the transmission fluctuates around
1Go. Compared with Ag, the conductance can, however,
also be higher than 1 Gy due to the presence of a second
and a third open channel. The conductance of the last
plateau is slightly below the typical experimental value
of 1.5 Gy,22:88 3 fact that we shall discuss below.

During the formation of the chain (see three-channel
region or elongations above 0.8 nm), the strain force ex-
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Figure 8: (Color online) Formation of a five-atom chain for
Pt (4.2 K, [001] direction). The upper panel shows the strain
force as a function of the elongation of the contact. In the
lower panel the conductance G, the averaged conductance
(@), the MCS (minimum cross-section) radius and the chan-
nel transmissions are displayed. Vertical lines separate regions
with different numbers of open channels ranging from 11 to
327 Above and below these graphs snapshots of the stretching
process are shown.

hibits a clear sawtooth behavior. The abrupt jumps in
the force after the long elastic stages signal the incor-
poration of a new atom into the chain. Such incorpora-
tions happen at elongations of 0.79 nm (dimer), 1.00 nm
(three-atom chain), 1.05 nm (four-atom chain) and 1.27
nm (five-atom chain). Additional jumps at 0.83 nm, 1.11
nm and 1.33 nm are due to bond breakings at the chain
ends. Note that the incorporation of a new atom into
an atomic chain does not always require long stretching
distances of the order of the nearest-neighbor distance.
Because of metastabilities depending on the geometry of
the junction, they may actually be much shorter, as can
be inferred from the transition from the three-atom chain
to the four-atom chain.

In order to explore changes in the electronic structure
and their influence on the transmission for the evolution
from a dimer and to long atomic chain, we analyze these
two kinds of structures now in more detail. In Fig. 0
we plot the transmission and LDOS as a function of the
energy, considering as example the contact of Fig. B As
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Figure 9: (Color online) Pt contact of Fig. Bl at an elonga-
tion of 0.95 nm, when the contact is forming a dimer (a) and
at an elongation of 1.44 nm, when the contact is forming a
five-atom chain (b). In each case the total transmission 7'
is plotted as a function of the energy together with the con-
tributions from the different transmission channels 7;,. Ad-
ditionally the LDOS (local density of states) is given for an
atom in the narrowest part of the contact, where the different
orbital contributions have been itemized. Above each figure
the narrowest part of the Pt contact is displayed in a magni-
fied fashion and the atom is indicated, for which the LDOS is
shown.

can be seen in Fig. @(a) for the case of the dimer, the
main contributions to the LDOS at the Fermi energy
come from the s, dy., d., and ds,2_.2 orbitals. Just like
for the dimer structure investigated above, the d orbitals
contribute significantly to the LDOS (cf. Fig. [d). While
the energy dependence of the transmission looks qual-
itatively similar, the LDOS changes dramatically when
a long chain is formed (see Fig. B(b)). We observe a
pinning of the s and ds,2_ .2 states at the Fermi energy,

where the s state is close to half filling corresponding to
an electronic 5d?6s! configuration of the Pt atom. (No-
tice also the change in scale for the LDOS when going
from Fig. @a) to Fig. Kb).) Comparing the energy de-
pendence of the transmission channels and the LDOS in
Fig. B(b), we can infer that the first channel is a lin-
ear combination of s, p, and d3.2_.2 orbitals (I, = 0),
while the second and third seem dominated by d,, and
d, orbital contributions (I, = £1). These findings are
perfectly in line with Ref. |66.

It is also noteworthy that when the d states have de-
cayed 1 eV above the Fermi energy and the s contribution
dominates in the LDOS, only a single channel is observed
in the transmission for both the dimer and the chain con-
figuration (see Figs. [ and ). This would correspond
exactly to the situation described above for Ag wires,
and demonstrates that the differences between these two
metallic contacts (Ag and Pt) are mainly due to the dif-
ferent positions of their Fermi energy.

B. Statistical analysis of platinum contacts

Putting together all the results for the 50 Pt contacts
simulated in our study, we obtain the histograms for the
MCS and conductance shown in Fig. [l The MCS his-
togram exhibits a very pronounced peak at radii corre-
sponding to dimer contacts and chains of atoms. Out of
50 breaking events we obtain 18 chains, 17 chains ranging
from 5 to 11 atoms and one with up to 19 atoms. The
tendency of Pt to form atomic chains is consistent with
experiments,22:4 but the ratio of chain formation is obvi-
ously higher than in the experiments. This could partly
be due to the thinness of the contacts that we investigate.
There exists experimental evidence for the formation of
chains with lengths up to six atoms;22 while longer chains
become more and more unlikely. Therefore, our chains
with more than eight atoms seem somewhat artificial.

In the conductance histogram the low-lying MCS peak
for dimers and atomic chains gives rise to a very broad
peak in the conductance histogram. The position of this
peak is centered around 1 G rather than 1.5 G, as in the
experiment 5358 If we exclude the longest chains (chains
with more than eight atoms), we obtain a conductance
histogram with a very broad peak at 1.15Gq (cf. inset in
Fig. I0).

Experimentally it has been shown that the peak at
1.5 Go shifts to 1.8 Gy for higher bias voltages.®® This
has been attributed to a structural transition, where
atomic chains are replaced by single-atom contacts.
Thus, the conductance of dimers and chains should
be around 1.5Gy and the conductance of single-atom
contacts around 1.8Gp. In Fig. 2 of Ref. Smit
et al. reported a decrease of the average conductance
from 1.5 Gy to around 1 Gy for increasing chain lengths.
This demonstrates that our broad distribution of con-
ductances around 1Gjp in the conductance histogram
(cf. Fig. M) is not unreasonable, although the transmis-
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Figure 10: (Color online) MCS (minimum cross-section)
histogram (upper panel) and conductance histogram (lower
panel) for Pt (4.2 K, [001] direction, 50 contacts). In the MCS
histogram different regions of frequently occurring radii have
been defined with different pattern styles. The patterns in the
conductance histogram indicate the number of counts for con-
ductances belonging to the corresponding region of the MCS
histogram. In the inset of the lower panel the conductance
histogram is displayed in the relevant region in a smoothed
version by averaging over six nearest-neighbor points for all
contacts (solid) and contacts with up to 8 atoms in the chain
(dotted).

sion for dimers and short chains seems to be underesti-
mated. A recent DFT study investigated ideal Pt chains
consisting of two to five atoms in the [001] direction.?
Conductances between 2 Gg and 1 Gy were obtained with
a trend toward 1 Gy for longer chains in agreement with
experiment. The structure of the chains, which in our
case is linear, was zigzag-like. This could be another ex-
planation for the lower transmissions in our study.”®

Although the peak position in the conductance his-
togram in Fig. [ is lower than in the experiments, we
want to point out the strong qualitative differences in
comparison to Ag. While the first two MCS peaks in the
Ag histogram (cf. Fig. H)) are restricted to conductance
values below 1 Gy, this is not the case for Pt. Here, the
first two peaks cover a range of conductance values from
as low as 0.1 Gy up to 2Gy. This is again due to the
contribution of the d orbitals at the Fermi energy, which
leads to a higher number of open channels in the case of
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Figure 11: (Color online) Mean value of the transmission co-
efficient (T},) as a function of the conductance for Pt (4.2 K,
[001] direction, 50 contacts). The error bars indicate the mean
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Pt, as explained in Sec. [N Al Let us recall that for Ag
there is a single dominant transmission channel (and a
small second one), while for Pt there are usually three
channels in the last stages of breaking, and the second
channel can be comparable in magnitude to the first. As
explained above, the extraordinary width of the first peak
in the conductance histogram for Pt can be attributed to
the sensitivity of d states to the atomic configuration of
the contact.

This qualitative difference in the number of conduction
channels is illustrated in Fig.[[Tl, where we show the mean
value of the transmission coefficients as a function of the
conductance.8L Notice that as compared with the case of
Ag (cf. Fig. 0l), there are contributions from the second
and third channel already present for conductances below
1Gy. For conductances of 1.5 Gy there are four or five
channels on average.

In conclusion, the different behavior of Ag and Pt con-
tacts stems from the different electronic states present at
the Fermi energy. While for noble metals like Au and Ag
it is located in the s band, its position is shifted down-
wards into the d bands for Pt. Therefore, in the latter
case there are in general more open channels contribut-
ing to the conductance. This confirms the statements of
Scheer et al® that the number of transmission channels
is determined by the chemical valence.

V. ALUMINUM ATOMIC CONTACTS

Al is an example of the so-called sp-like metals. In
the crystalline form there are three valence electrons oc-
cupying partly the 3s and 3p bands around the Fermi
energy. In this respect, Al has a very different electronic
structure as compared to Au, Ag or Pt, and in this sec-
tion we study how this electronic structure is reflected
in the conductance through Al atomic wires. Due to the
technical problems detailed below, this analysis will be
considerably shorter than for the other metals.
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The experimental studies of the conductance of
Al atomic-sized contacts have shown several peculiar
features.2:8:55:71.72 For instance, Scheer et al®, making
use of the superconducting current-voltage character-
istics to extract the transmission coefficients, showed
that usually three conduction channels contribute to the
transport, although the conductance of the last plateau
is typically below 1 Go. This was explained in Ref. | in
terms of the contribution of the p orbitals to the trans-
port. Exploiting conductance fluctuations, the presence
of several conduction channels for conductances above
0.5 G could subsequently be confirmed by another inde-
pendent experimental technique®* As an additional pe-
culiarity, Al is one of the few multivalent metals which ex-
hibits several pronounced peaks in the conductance his-
tograms at low temperatures.” The first peak appears
at around 0.8 Gy and the next ones at 1.9Gy, 3.2 Gy
and 4.5 Gy. Furthermore, the conductance plateaus in Al
have a positive slope upon stretching,2™ which is quite
unique.

Again we simulated 50 breaking events. Although we
always observe in the last stage of the nanocontacts ei-
ther a single-atom contact (36 times), a dimer (13 times)
and in one case a four-atom chain, the single-atom con-
tacts and dimers are often very short-lived configurations
and less stable than the corresponding Ag and Pt struc-
tures. We attribute this to shortcomings in the semiem-
pirical potential employed for Al in this work. Previ-
ously it has been shown that this potential cannot repro-
duce adequately the mechanical properties of an infinite
Al chain.™ This underestimation of the stability of thin
wires is quite apparent in our simulations, where the con-
tacts break effectively at conductances well above 1.5 G
and with several atoms present in the MCS.

This technical problem hindered the proper analysis
of the statistical properties of Al contacts. However, we
could recover a few sensible examples. One of the forma-
tions of a relatively stable dimer is displayed in Fig.
A region of three transmitting channels can be observed
shortly before contact rupture, and the conductance of
the dimer configuration is close to 1Gyp, which agrees
nicely with the observations of Scheer et al2® The ori-
gin of these three channels is, as explained in Ref. i,
the contribution of the partly occupied sp-hybridized va-
lence orbitals of Al to the transport. Before this region,
a nice plateau around 2 G is visible. Both features agree
well with the peaks in the experimental conductance his-
togram for Al close to 0.8 Go and 1.9 G2272 More impor-
tantly, our results reproduce the peculiar positive slopes
of the last plateaus of the stretching curves, in compli-

ance with Refs. 58 34/71.

VI. NICKEL ATOMIC CONTACTS

During the last years a lot of attention has been

devoted to the analysis of contacts of magnetic
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Figure 12: (Color online) Formation of a dimer configuration
for Al (4.2 K, [001] direction). The upper panel shows the
strain force as a function of the elongation of the contact.
In the lower panel the conductance G, the MCS (minimum
cross-section) radius and the channel transmissions are dis-
played. Vertical lines separate regions with different numbers
of open channels ranging from 17 to 327 Above and below
these graphs snapshots of the stretching process are shown.

references see Refs. m@) In these nanowires the spin
degeneracy is lifted, which can potentially lead to inter-
esting spin-related phenomena in the transport proper-
ties. For instance, different groups have reported the ob-
servation of half-integer conductance quantization either
induced by a small magnetic field”® or even in the ab-
sence of a field "7 These observations are quite striking
since such quantization requires simultaneously the exis-
tence of a fully spin-polarized current and perfectly open
conduction channels 22 With our present understanding
of the conduction in these metallic junctions, it is hard
to believe that these criteria can be met, in particular,
in the ferromagnetic transition metals (Ni, Co and Fe).
As a matter of fact, in a more recent study by Untiedt
et al. 80 carried out at low temperatures and under cryo-
genic vacuum conditions, the complete absence of quan-
tization in atomic contacts of Ni, Co and Fe has been
reported, even in the presence of a magnetic field as high
as b T. Several recent model calculations support these

findings 52:53.84.85

In this section we address the issue of the conductance



quantization and the spin polarization of the current
with a thorough analysis of Ni contacts. As described
in Sec. we apply our method to a Hamiltonian with
spin-dependent matrix elements 4%

A. Evolution of individual nickel contacts

In Fig. we show the evolution of the conductance
during the formation of a Ni dimer structure, which is the
most common geometry in the last stages of the break-
ing process. Beside the evolution of the conductance
and transmission eigenchannels for both spin components
separately, we have plotted the MCS radius, strain force,
spin polarization of the current and contact configura-
tions. The spin polarization P, shown in the inset of the
lower panel, is defined as

elyel
where G is the conductance of the spin component o
(cf. Eq. )). Here, spin up (0 =1) means majority spins
and spin down (o =|) minority spins. Notice that in the
last stages of the stretching the conductance is dominated
by a single channel for the majority spins, while for the
minority spin there are still up to four open channels.
In the final stages (see regions with three or one open
channel(s) for GT) the conductance for the majority spin
lies below 1.2¢2/h, while for the minority spin it is close to
2¢2/h, adding up to a conductance of around 1.2-1.6 Gy.

With respect to the evolution of the spin polarization of
the current, in the beginning of the stretching process it
takes a value of around —40%), i.e. the conductance of the
minority-spin component outweighs that of the majority-
spin component. This is expected from the bulk density
of states of Ni. For this transition metal the Fermi level
lies in the s band (close to the edge of the d bands) for the
majority spins and in the d bands for the minority spins.
For this reason, there is a larger number of conduction
channels for minority-spin component. This value of P
is indeed quite close to the value of the spin polarization
of the bulk density of states at the Fermi energy, which
in our model is equal to —40.5%. As the contact geome-
try starts changing, the spin polarization of the current
begins to fluctuate. It increases even to values of above
0%, but keeps a tendency towards negative values, until
it starts increasing to over +80% in the tunneling regime,
when the contact is broken.

Let us now try to gain further insight into these find-
ings. We show in Fig. [[4 the transmission as a function
of the energy together with the LDOS for an atom in the
narrowest part of the constriction portrayed in the upper
part of the figure. It can be observed that the Fermi en-
ergy, as in bulk, is located just at the edge of the d states
for the majority-spin component, while it is inside the d
states for the minority-spin component. The majority-
spin component therefore exhibits a single transmission
channel, behaving like a noble metal (cf. results for Ag
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Figure 13: (Color online) Formation of a dimer configuration
for Ni (4.2 K, [001] direction). The upper panel shows the
strain force as a function of the elongation of the contact. In
the lower two panels the conductance G, the MCS (mini-
mum cross-section) radius and the channel transmissions are
displayed for the respective spin component o. Vertical lines
separate regions with different numbers of open channels rang-
ing from 7 to 1 and 18 to 4, respectively2’ An inset shows
the evolution of the spin polarization. Above and below these
graphs snapshots of the stretching process are shown.

in Sec. [T, while there are several open channels for the
minority-spin component like in the case of a transition
metal (cf. results for Pt in Sec. [M]).

Concerning the spin polarization of the current, the
large density of states at Fr for the minority-spin com-
ponent usually gives rise to a higher number of open
channels for the minority-spin component than for the
majority-spin component, which in turn leads to a neg-
ative spin polarization of the current. However, this ar-
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Figure 14: (Color online) Ni contact of Fig. [ at an elonga-
tion of 0.83 nm. The transmission is plotted as a function of
the energy together with the contributions from the different
transmission channels T} for the respective spin component
o. Additionally the LDOS (local density of states) is given
for each spin component for an atom in the narrowest part
of the contact, where the different orbital contributions have
been itemized. Above the figure the narrowest part of the Ni
contact is displayed in a magnified fashion and the atom is
indicated, for which the LDOS is shown.

gument is just qualitative, because the actual transmis-
sion of the channels cannot simply be predicted from the
LDOS. The conductance depends also on the overlap of
the relevant orbitals and on non-local properties like the
disorder in the contact region. As a counter example,
Fig. shows that also intervals of positive spin polar-
ization can be found, although the density of states of the
minority-spin component is usually higher than for the
majority-spin component. This is particularly dramatic
in the tunneling regime at the end of the breaking pro-
cess, where for instance in Fig. [[3 we see that a value of
P = +80% is reached. Such a reversal of the spin polar-
ization is due to the fact that the couplings between the
d orbitals of the two Ni tips decrease much faster with

distance than the corresponding s orbitals. As will be
discuss further below, the result is typically a reduction
of the minority-spin conductance and therefore a positive
value of P.

We would like to point out that the contribution of the
minority-spin component to the conductance is very sen-
sitive to changes in the configuration. As is evident from
Fig. @3 the minority spin shows stronger fluctuations
than the majority spin as a function of the elongation.
Again, this is a consequence of the fact that the minority-
spin contribution is dominated by the d orbitals, which
are anisotropic and therefore more susceptible to disorder
than the s states responsible for the conductance of the
majority spins. The sensitivity to atomic configurations
is in agreement with the findings for Ag and Pt as dis-
cussed above, where stronger fluctuations of the conduc-
tance are seen for the transition metal Pt, as compared
with the noble metal Ag.

B. Statistical analysis of nickel contacts

For the Ni contacts we did not observe the formation
of any chain in the 50 simulated stretching processes.
As a consequence, only a small first peak is visible in
the MCS histogram (see Fig. [[H). This peak originates
from the dimer configurations, which usually form before
the contacts break. In the conductance histogram there
is a shoulder at around 1.3 Gy. Part of this first peak
is buried under the subsequent conductance peak with
its maximum at 2.5Gy. This second very broad peak
is mainly influenced by the starting configuration, which
means that the small size of our contacts might hide part
of the peak structure in the conductance histogram. Ac-
cording to the MCS regions contributing to the shoul-
der in the Ni conductance histogram, the first peak is
mainly composed of thick contacts (MCS of around 2 A).
This also explains the large broadening of the histogram
peak, since for thick contacts, there is more configura-
tional variability.

Concerning the comparison with measurements, the
shoulder at 1.3 Gy in our results is in agreement with the
experimental conductance histogram, where a particu-
larly broad peak between 1.1 Gy and 1.6 Gy is observed 22
Our calculations indicate that this peak contains contri-
butions from high-MCS regions. The remarkable width
of the first peak in the experimental conductance his-
togram is then explained by the configurational variabil-
ity of thick contacts in conjunction with the contribution
of configurationally sensitive d states to the conductance
of the minority-spin component. However, this interpre-
tation requires further discussion. Usually the first peak
in the experimental conductance histograms is believed
to arise from single-atom contacts and dimers.” With re-
spect to the problems encountered for Al (cf. Sec. M), it
may be that the employed EMT potential for Ni under-
estimates the stability of single-atom and dimer configu-
rations in a similar manner. As a consequence the contri-
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Figure 15: (Color online) MCS (minimum cross-section)
histogram (upper panel) and conductance histogram (lower
panel) for Ni (4.2 K, [001] direction, 50 contacts). In the MCS
histogram different regions of frequently occurring radii have
been defined with different pattern styles. The patterns in the
conductance histogram indicate the number of counts for con-
ductances belonging to the corresponding region of the MCS
histogram. In the inset of the lower panel the conductance
histogram is displayed in the relevant region in a smoothed
version by averaging over six nearest-neighbor points.

bution of such configurations to the first peak in the con-
ductance histogram may be underestimated in our calcu-
lations. In addition, as mentioned above, this first peak
in the conductance histogram is not well separated from
contributions with a high MCS, which are influenced by
our starting configuration. Simulations of thicker con-
tacts and more sophisticated calculations of the contact
geometry may be needed to clarify the robustness of our
findings.

Regarding to the mean channel transmission of the
spin-components as a function of the conductance;St
the minority-spin component exhibits more transmission
channels than the majority-spin component (see Fig. [[H).
This further illustrates our previous argument, where we
explained that the majority-spin component possesses an
Ag-like character, while the minority-spin component be-
haves more Pt-like. Note also that the first channel for
the majority-spin component opens up remarkably slowly
compared with Ag (cf. Fig. H).

Now we want to address the question of how the spin
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Figure 16: (Color online) Mean value of the transmission coef-
ficient (T}7) for the respective spin component o as a function
of the conductance for Ni (4.2 K, [001] direction, 50 contacts).
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Figure 17: Spin polarization of the current as a function of
the conductance. All the data points for the spin polarization
are plotted in the graph, while in the inset their arithmetic
mean and the corresponding mean error are displayed28

polarization of the current is influenced by configura-
tional changes. For this purpose, we show in Fig. [[1
the spin polarization P as a function of the conductance
for all the 50 simulated breaking events. As it could al-
ready be observed in the simulation of a single breaking
event (cf. Fig.[3)), the spin polarization of all the contacts
starts at a value of —40%, when the contact is close to
its starting configuration. As explained above, this value
for the spin polarization of the current coincides rather
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well with the polarization of the bulk density of states
at the Fermi energy. As the contact is stretched, also
the diversity of geometrical configurations increases and
the spin polarization values are widely spread, ranging
from around —60% to 20%. There is a tendency towards
negative spin polarizations, as can be observed in the
inset of Fig. [l The average spin polarization varies be-
tween —30% and —10% for conductances above 0.6 Gy.
As described in the previous subsection, these variations
arise from the high sensitivity of the minority-spin con-
ductance to atomic positions, as compared to the less
sensitive majority-spin conductance. The trend towards
negative P values can be explained by the higher number
of states present at the Fermi energy for the minority-spin
component as opposed to the majority-spin component.

In the region of conductances below 0.6 Gy the num-
ber of points is comparatively lower, which explains the
partly bigger error bars. Nevertheless, the number of re-
alizations is still enough to see the spreading of P values
over an even wider interval than in the contact regime, to-
gether with an average tendency towards positive values.
We attribute this trend of reversed spin polarizations to
the faster radial decay of the hoppings between the d
orbitals that dominate the minority-spin contribution to
the conductance, as compared with the s orbitals that
dominate majority-spin contribution. The faster decay
with distance overcomes in the tunneling regime the ef-
fect of the higher density of states of the d bands versus
the s bands.

VII. MECHANICAL PROPERTIES OF
METALLIC ATOMIC CONTACTS

Experimentally it is possible to measure simultane-
ously the conductance and the strain force during the
breaking of nanowiresA2 Special attention has been de-
voted to the force in the very last stage of the stretching
process22 For this reason, we present in this section a
detailed analysis of this breaking force for the different
metals discussed above, including the results for Au of
Ref. 37. In addition, the exotic atomic chain structures
will be investigated further.

Using the 50 contacts that we have simulated for the
different metals, we construct histograms of the break-
ing force in the following way: We consider the last 30
recorded atomic configurations before the point of rup-
ture of the contact. Out of them the 20 highest values
of the strain force are assembled in a force histogram,
combining the data from all 50 contacts.8” The break-
ing force histograms obtained for the different metals are
shown in Fig.[[8 For all elements, except for Ni, a clear
maximum is visible in the center of a broad distribution
of force values. We will address later, why Ni forms an
exception in our simulations.

It is elucidating to compare the values of the breaking
force obtained in the simulations with the corresponding
forces in bulk. For this purpose, we use the “universal”
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Figure 18: Histogram of the force needed to break atomic
contacts of the metals Ag, Au, Pt and Ni. For every contact
the highest 20 force values of the last 30 recorded geometries
before the point of rupture are gathered. The force data for
50 contacts of the respective metal are assembled in the re-
spective histograms.

| metal | Ag Au Pt Ni

EMT |0.40-0.75]0.55-1.00 {0.80-1.45|1.00-2.15
bulk 0.57 0.85 1.31 0.89

Table I: Breaking forces in nN for the metals Ag, Au, Pt and
Ni. The values in the column called “EMT” (effective medium
theory) are read off from the force histograms in Fig. [[8 and
“bulk” refers to Eq. [A3).

binding energy function, suggested in Ref. 8], to get a
rough estimate for the breaking force expected for a bulk
bond (see Appendix [A] for details).

Values for the breaking forces are put together in
Tab.[l The expression for the breaking force in Eq. (A3)
needs to be considered as a rough estimate of the force
needed to break a bulk-like bond. Concerning a com-
parison of this bulk estimate and the EMT results, it
needs to be recalled that the EMT employed in the
MD simulations considers by construction the experi-
mentally verified increase of atomic bonding energies for
low coordination.22 Breaking forces for low-coordinated
chains have been shown to be two to three times larger
than bulk-like bonds and bond breaking may take place
at distances well before the inflection point of the bulk
estimate (cf. Appendix [A).4L Another difference is that
the forces listed under “bulk” are estimates for break-
ing forces of a single bond. This is not necessarily the
case for the result called “EMT”. The EMT results are
based on the stretching of the nanocontacts in our MD
simulations. If the contact breaks while more than one
atom resides in the MCS, several atomic bonds might be
contributing to the breaking force of the contacts. This
implies that the resulting force could be higher than the
breaking force for a single bond.

For elements with a large peak in the MCS histogram
at single-atom radii, like for the elements Au and Pt,



which form chains, usually the contacts break after the
formation of a dimer or atomic chain. As a consequence,
for Ag, Au and Pt single atomic bonds are probed in the
EMT results. For all these elements, the force estimated
from bulk considerations agrees surprisingly well with the
EMT results. For Ni however, there is a discrepancy be-
tween the breaking force determined with EMT and the
bulk prediction. We attribute this to the fact that its
MCS histogram does not display a pronounced peak for
dimer structures (cf. Fig. [[@), indicating that Ni dimers
are less stable than dimers of the other investigated met-
als (Ag, Au and Pt). On account of this the breaking
force typically contains contributions from more than a
single atomic bond, and is therefore higher than the force
of the bulk estimate. The contributions of several bonds
also explain the broad distribution without a clear max-
imum for Ni in Fig.

The absolute values of our breaking forces in Tab. [l
need not be quantitative, as the investigations of Rubio-
Bollinger et al42 show. While our EMT-breaking force
for Au coincides well with their value of “around 1 nN”,
they found that DFT calculations are in better agreement
with the experimentally measured breaking force of 1.5
nN.

Coinciding with the DFT-simulations by Bahn et al4:
the ordering of breaking force strengths for the different
metals as predicted by the bulk estimate is Fag < Fau <
FNi < Fpy, where Fy is the breaking force for the material
x. The EMT results modify this ordering slightly by
interchanging Pt and Ni.

Before we conclude, we want to investigate the ap-
pearance and structural properties of the peculiar atomic
chain structures in more detail. The general mechanism
behind the chain formation during a stretching process
is an increase in bond strength between low-coordinated
atoms 27414289 Tndependent of the metal under inves-
tigation, we observed that contacts in which an atomic
chain has formed always break because of a bond rupture
at the chain ends. The higher bond strength for low-
coordinated atoms explains this phenomenon. Namely,
the terminal atoms in the chain are connected with the
thicker part of the contact, and possesses a higher coor-
dination number than the other chain atoms. As a con-
sequence the bonds at the chain ends are weaker than
the bonds in the interior of the chain.®®

We want to illustrate the mechanical properties of an
atomic chain considering as example the Pt contact of
Fig. B8 In Fig. [@ we plot the atomic displacements for
this Pt contact projected onto the stretching direction (z
axis) in the final elastic stage for elongations of L; = 1.37
nm and Ly = 1.49 nm. The z-projected displacement is
defined as d. ; = R, ;(Ly) — R, j(L;), where R, ; is the
z-component of atom j, and Ly (L;) is the final (initial)
elongation. (Additionally we add an offset to d, ;, such
that the fourth layer in the lower electrode has zero dis-
placement.) Due to the low coordination of the chain
atoms and the associated higher bond strength as com-
pared to interatomic bonds of the other atoms in the cen-
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Figure 19: (Color online) The atomic displacements for the
Pt contact of Fig. B are shown in the last elastic stage be-
fore rupture (change in coordinates between initial and final
elongations of L; = 1.37 nm and Ly = 1.49 nm). On the
abscissa the displacement of each atom is plotted, while on
the ordinate the positions of the atoms can be seen at the
end of the elastic stage (elongation Ly). To the right the final
configuration is displayed. The atomic displacements and po-
sitions have both been projected onto the stretching direction
(z axis).

tral part of the nanowire, the chain is expected to be par-
ticularly stable. For this reason the chain atoms should
stay close to each other in a displacement plot during
an elastic stage of stretching. Instead, most of the dis-
placement should take place in the regions of more highly
coordinated atoms in the central part of the nanowire.
Exactly this is visible in Fig. T Note that a similar
analysis has been performed by Rubio-Bollinger et al2
for a Au chain.

Finally, we want to comment on experimental results
of Ref. 64. There, Smit et al. compare the tendency of
formation of atomic chains for the neighboring 4d and
5d elements, namely Rh, Pd and Ag compared to Ir, Pt
and Au. They find a higher occurrence of chains for
the 5d elements as compared to 4d elements, and ex-
plain this by a competition between s and d bonding.
From their data?® we extract an enhancement factor of
chain formation of 3.28 for Au compared to Ag. Taking
the ratio between the content of the first MCS peak in
the histograms, which corresponds to dimers and atomic
chains, for Ag and Au normalized by the complete area
of the MCS histograms (cf. Fig. Bl and Fig. 9 of Ref. [37),
we obtain a value of 3.09, in good agreement with their
experiments. Bahn et al#! pointed out that the chain
formation depends sensitively on the initial atomic con-
figuration. In general we believe that chain formation in
our thin geometries might be enhanced compared to ex-
perimental conditions. Nevertheless the chain enhance-
ment factor, as it is a relative measure, might be robust.
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VIII. CONCLUSIONS

In summary, we have analyzed the mechanical and
electrical properties of Ag, Pt and Ni nanojunctions. Us-
ing a combination of classical MD simulations and trans-
port calculations based on a TB model supplemented
with a local charge neutrality condition, we have stud-
ied the origin of the experimentally observed characteris-
tic features in the conductance histograms of these met-
als. The ensemble of our results indicates that the peak
structure of the low-temperature conductance histograms
originates from an artful interplay between the mechani-
cal properties and the electronic structure of the atomic-
sized contacts.

We have found strong qualitative differences between
these metals. In the case of Ag wires, we observe a
first peak at 1 G in the conductance histogram, resulting
from single-atom contacts and dimers in good agreement
with experiments23 In the last stages of the stretching
process the transport is dominated by a single conduc-
tion channel, which arises mainly from the contribution
of the 5s orbitals. We find practically no formation of
monoatomic chains, as opposed to Au wires.2” To be pre-
cise, the chain formation is found to be suppressed by a
factor of three compared to Au, which is again consistent
with the experimental observations.54

In the case of Pt contacts, the first peak in the con-
ductance histogram is mainly due to single-atom contacts
and long atomic chains. However, it also contains some
contributions from contacts with larger MCS radii. This
peak is rather broad and centered around 1.15 G, which
is somewhat below the experimental value of 1.5 G .23:62
The differences in width and value of this conductance
peak, as compared with Ag, can be attributed to the key
contribution of the 5d orbitals to the transport. First, the
d orbitals provide additional conduction channels. Com-
monly there are three open transmission channels in the
final stages of the Pt contacts. Second, these additional
channels naturally give rise to higher conductance values.
Third, caused by their spatial anisotropy the d orbitals
are much more sensitive to changes in the contact ge-
ometry, which results in a larger width of the histogram
features.

With respect to Al the statistical analysis of the con-
tacts was hindered due to shortcomings in the employed
EMT potential. However, for a sensible example a re-
gion of three transmitting channels is observed shortly
before contact rupture, and the conductance of the dimer
configuration is close to 1 Gy, which agrees nicely with
experimental observations.2 These three channels orig-
inate from the contribution of the partly occupied sp-
hybridized valence orbitals of Al to the transport. In ad-
dition, our results reproduce the peculiar positive slopes
of the last plateaus of the stretching curves.2:8:34.71

In the case of ferromagnetic Ni, we have shown that the
contacts behave as a mixture of a noble metal (like Ag)
and a transition metal (like Pt). While the 4s orbitals
play the main role for the transport of the majority-spin

electrons, the conduction of the minority-spin electrons
is controlled by the partially occupied 3d orbitals. This
follows from the position of the Fermi energy, which lies
in the s band for the majority spins and in the d bands
for the minority spins. In the conductance histogram
we obtain a shoulder at 1.3 Gy, whose large width can
again be attributed to the extreme sensitivity of the d
orbitals to atomic configurations. On the other hand, we
find that the spin polarization of the current in the Ni
contacts is generally negative, increasing and fluctuating
as the contacts narrow down and become disordered. In
particular, large positive values are possible in the tun-
neling regime, right after the rupture of the wires. Once
more, this behavior can be traced back to the fact that
the d orbitals play a key role in the conductance of the
minority-spin component.

The mechanical properties of our nanocontacts have
been analyzed in detail with respect to breaking forces
and the peculiar atomic chains. Concerning the break-
ing forces a simple estimate for the maximal force per
bulk bond matches well the simulation results for Ag and
Pt. However, Ni shows deviations from the bulk estimate
and an extraordinarily broad distribution of breaking
force values, which we attribute to the generally larger
thickness of the contacts at the breaking point, meaning
that the breaking force contains contributions of several
atomic bonds. Contacts with an atomic chain configura-
tion were observed to always tear apart due to a bond
rupture at the chain ends in agreement with previous
simulations.82 Pt atomic chains were illustrated to ex-
hibit an enhanced stability as compared to the remaining
atoms in thicker parts of the nanowire.

Another important observation is that, although we
obtain for every metal a sequence of peaks in the
MCS (minimum cross-section) histogram, these peaks are
smeared out in the conductance histograms. This indi-
cates that not only the narrowest part of the constriction
determines the conductance, but also the atomic con-
figuration close to the narrowest part plays a role. This
finding challenges the direct translation of peak positions
in the conductance histogram into contact radii via the
Sharvin formula. However, we should also point out the
limitations of our modeling, in particular the small num-
ber of atoms present in the junctions. Moreover, let us
remind that we have focused our analysis on low tem-
peratures (4.2 K), where the atoms do not have enough
kinetic energy to explore the low-energy configurations.
Both the small number of atoms and the low temperature
may cause an enhanced atomic disorder of the contacts
in the stretching process.

The effects of higher temperatures, different crystal-
lographic orientations of the contacts, other protocols
of the stretching process with different annealing, heat-
ing and relaxation times have not been addressed in this
study. A first-principles description of thick contacts, in
which both the mechanics and the electronic structure of
the contacts are treated at a higher level of accuracy and
on an equal footing, should be a major goal for the theory



in the future. Experiments in which, simultaneously to
the recording of a conductance histogram, also the con-
tact geometries are observed, could help to validate the
correlation between conductance peaks and stable wire
radii.
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Appendix A: BULK FORCE

We give here a short derivation of an estimate for the
force needed to break a bulk-like bond in a fcc lattice
(cf. Eq. (&3)). The reasoning follows Ref. 42 (see remark
[25] of that Ref.), where however no derivation is given.

The total energy of a crystal can approximately be
written as En(r) = NE(r), where N is the number of
atoms in the volume V of the considered crystal, E(r) =
EconE*(r*) is the energy of a single atom as a function of
the Wigner-Seitz radius, .y, is the equilibrium cohesive
energy (or enthalpy of formation) and E*(r*) is the “uni-
versal” energy function E*(r*) = — (1 +r*)exp (—r*)28
The Wigner-Seitz radius r is defined as r = (3/47TnA)1/3
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with the atom density n4. Because na = N/V =4/a% in
a fcc crystal, r is connected with the fcc-lattice constant a
viar = (3/167r)1/3 a. Additionally, * = (r — rg) /¢ is the
scaled Wigner-Seitz radius and ry the equilibrium value
of r. The length scale ¢ is related to the bulk modulus
B, and it can be shown®® that

, Feon 167 0
-V 127Bry < 3 )
with the equilibrium fcc-lattice constant ag.

An estimate for the maximal force F' needed to break
a bulk-like bond may be obtained at the the inflection
point of En(r) at a Wigner-Seitz radius ri, = 79 + ¢
(where ip stands for inflection point). If we use the
relation r = (3/ 1677)1/ 2z between the Wigner-Seitz
radius and the fcc-nearest-neighbor distance (or inter-
atomic bond length) x, an approximate bond length at
rupture of z;, = (ap+ (167T/3)1/3 ¢)//2 is obtained. The
absolute value of the maximal force F' per bond (where
there are 6N bonds in a fcc lattice) is then given as

Ecoh

—_— Al
127TBa0 ( )

F=_—
6N dx

_< 3 >%7‘/§EC°h (A2)

16w ) Gexp(1)€

T=Tip

(where En(z) = En(r)). This finally leads to the follow-
ing maximal force per bond in a fcc lattice:

EconBag

F=,——.
8exp (2)

(A3)

In order to obtain numerical values from Eq. [A3), we
employ the data listed in Ref. |91 for the three constants
Ecoh: B and agp.

Electronic address: Fabian.Pauly@tip.uni-karlsruhe.de

' N. Agrait, A. Levy Yeyati, J.M. van Ruitenbeek,
Phys. Rep. 377, 81 (2003).

2 N. Agrait, J.G. Rodrigo, S. Vieira, Phys. Rev. B 47, 12345
(1993).

3 JI. Pascual, J. Méndez, J. Gomez-Herrero, A.M. Baro,
N. Garcia, V.T. Binh, Phys. Rev. Lett. 71, 1852 (1993).

* C.J. Muller, J.M. van Ruitenbeek, L.J. de Jongh, Physica
C 191, 485 (1992).

5 E. Scheer, P. Joyez, D. Esteve, C. Urbina, M.H. Devoret,
Phys. Rev. Lett. 78, 3535 (1997).

6 J.C. Cuevas, A.L. Yeyati,
Phys. Rev. Lett. 80, 1066 (1998).

" E. Scheer, N. Agrait, J.C. Cuevas, A. Levy Yeyati, B. Lu-
doph, A. Martin-Rodero, G.R. Bollinger, J.M. van Ruiten-
beek, C. Urbina, Nature 394, 154 (1998).

8 J.C. Cuevas, A. Levy Yeyati, A. Martin-Rodero,

G.R. Bollinger, C. Untiedt, N. Agrait, Phys. Rev. Lett. 81,

2990 (1998).

A. Martin-Rodero,

® L. Olesen, E. Lagsgaard, 1. Stensgaard, F. Besenbacher,
J. Schigtz, P. Stoltze, K.W. Jacobsen, J.K. Ngrskov,
Phys. Rev. Lett. 74, 2147 (1995).

10°3.M. Krans, J.M. van Ruitenbeek, V.V. Fisun, LK. Yan-
son, L.J. de Jongh, Nature 375, 767 (1995).

1 7. Gai, Y. He, H. Yu, W.S. Yang, Phys. Rev. B 53, 1042
(1996).

12 N. Agrait, G. Rubio, S. Vieira, Phys. Rev. Lett. 74, 3995
(1995).

13 A1 Yanson, LK. Yanson, J.M. van Ruitenbeek, Nature
400, 144 (1999).

4°A1 Yanson, LK. Yanson, J.M.
Phys. Rev. Lett. 87, 216805 (2001).

15 BE. Medina, M. Diaz, N. Leon, C. Guerrero, A. Hasmy,
P.A. Serena, J.L. Costa-Kramer, Phys. Rev. Lett. 91,
026802 (2003).

16 A 1. Mares, A.F. Otte, L.G. Soukiassian, R.H.M. Smit,
J.M. van Ruitenbeek, Phys. Rev. B 70, 073401 (2004).

17°A.1. Mares, J.M. van Ruitenbeek, Phys. Rev. B 72, 205402

van Ruitenbeek,


mailto:Fabian.Pauly@tfp.uni-karlsruhe.de

20

19
20
21

22

23
24
25
26
27
28

29
30

31
32
33
34
35

36

37

38

39
40
41
42
43

44

(2005).

V. Rodrigues, T. Fuhrer, D. Ugarte, Phys. Rev. Lett. 85,
4124 (2000); V. Rodrigues, D. Ugarte, Phys. Rev. B 63,
073405 (2001).

Y. Kondo, K. Takayanagi, Science 289, 606 (2000).

Y. Oshima, H. Koizumi, K. Mouri, H. Hirayama,
K. Takayanagi, Y. Kondo, Phys. Rev. B 65, 121401(R)
(2002).

J.A. Torres, J.I. Pascual, J.J. Saenz, Phys. Rev. B 49,
16581 (1994).

Hard wall boundaries are assumed in this formula, and
the inclusion of a work function alters the prefactor of the
second term as explained in A. Garcia-Martin, J.A. Torres,
J.J. Saenz, Phys. Rev. B 54, 13448 (1996). This effect is
usually not taken into account.

A. Hasmy, E. Medina, P.A. Serena, Phys. Rev. Lett. 86,
5574 (2001).

U. Landman, W.D. Luedtke, N.A. Burnham, R.J. Colton,
Science 248, 454 (1990).

A.P. Sutton, J.B. Pethica, J. Phys.: Condens. Matter 2,
5317 (1990).

T.N. Todorov, A.P. Sutton, Phys. Rev. Lett. 70, 2138
(1993).

AM. Bratkovsky, A.P.
Phys. Rev. B 52, 5036 (1995).
T.N. Todorov, A.P. Sutton, Phys. Rev. B 54, R14234
(1996).

H. Mehrez, S. Ciraci, Phys. Rev. B 56, 12632 (1997).

M. Brandbyge, M.R. Sgrensen, K.W. Jacobsen,
Phys. Rev. B 56, 14956 (1997).

A. Buldum, S. Ciraci, I.P. Batra, Phys. Rev. B 57, 2468
(1998).

M.R. Sgrensen, M. Brandbyge,
Phys. Rev. B 57, 3283 (1998).

A. Nakamura, M. Brandbyge, L.B. Hansen, K.W. Jacob-
sen, Phys. Rev. Lett. 82, 1538 (1999).

P. Jelinek, R. Pérez, J. Ortega, F. Flores, Phys. Rev. B
68, 085403 (2003).

E.Z. da Silva, F.D. Novaes, A. J. R. da Silva, A. Fazzio,
Phys. Rev. B 69, 115411 (2004).

J.A. Torres, J.J. Séenz, Phys. Rev. Lett. 77, 2245
(1996); T. Lopez-Ciudad, A. Garcia-Martin, A.J. Caa-
maifio, J.J. Saenz, Surf. Sci. 440, L887 (1999); J. Biirki,
C.A. Stafford, X. Zotos, D. Baeriswyl, Phys. Rev. B 60,
5000 (1999); A. Garcia-Martin, M. del Valle, J.J. Séenz,
J.L. Costa-Kramer, P.A. Serena, Phys. Rev. B 62, 11139
(2000).

M. Dreher, F. Pauly, J. Heurich, J.C. Cuevas, E. Scheer,
P. Nielaba, Phys. Rev. B 72, 075435 (2005).

A. Hasmy, A.J. Pérez-Jiménez, J.J. Palacios, P. Garcia-
Mochales, J.L. Costa-Kramer, M. Diaz, E. Medina,
P.A. Serena, Phys. Rev. B 72, 245405 (2005).

K.W. Jacobsen, P. Stoltze, J.K. Ngrskov, Surf. Sci. 366,
394 (1996).

P. Stoltze, Simultion methods in atomic-scale materials
physics, Polyteknisk Forlag, 1997: page 258.

S.R. Bahn, K.W. Jacobsen, Phys. Rev. Lett. 87, 266101
(2001).

G. Rubio-Bollinger, S.R. Bahn, N. Agrait, K.W. Jacobsen,
S. Vieira, Phys. Rev. Lett. 87, 026101 (2001).

G.M. Finbow, R.M. Lynden-Bell, I.R. McDonald, Molecu-
lar Physics 92, 705 (1997).

Note that the overlap elements S;q, ;s are spin-independent
for all the metals studied in this work. In principle, the

Sutton, T.N. Todorov,

K.W. Jacobsen,

45

46

47

48

49

50

51

52

53

formulation of the employed TB parameterization allows
a spin-dependence of the overlap integrals for ferromag-
netic metals;¥> but for the parameters used for Ni2¢ they
are identical for the different spin-components. This is ex-
pected, because the elements of the overlap matrix Sia, ;s
should just be integrals over some (real) basis functions ¢
with orbital indices o and § at atomic positions R; and
R; (Siajs = [ ¢a(r — Ri)gs(r — R;)d’r).

M.J. Mehl, D.A. Papaconstantopoulos, Phys. Rev. B 54,
4519 (1996); “Tight-Binding Parametrization of First-
Principles Results” in Computational Materials Science,
C. Fong, ed. (World Scientific Publishing, Singapore,
1998); http://cst-www.nrl.navy.mil/bind/.

See parameters ni_ferro_par at
http://cst-www.nrl.navy.mil/bind/ni.html; ~ M.I. Haf-
tel, N. Bernstein, M.J. Mehl, D.A. Papaconstantopoulos,
Phys. Rev. B 70, 125419 (2004).

Technically the integration runs along a semicircular con-
tour in the upper complex plane22 The lower end of the
contour starts at —5Ry = —68eV, well below all orbital
energies, and ends at the Fermi energy of the respective
metal. The integration points (around 150) have once been
determined for a thin configuration of an exemplary con-
tact of each metal with the help of an adaptive integration
scheme of the closed Newton-Cotes form22 But to speed
up the iterative determination of the charge neutral Hamil-
tonian elements, which takes the most computer time in
our computations, the points are kept unchanged in later
integrations. The integration points get denser, when the
Fermi energy is reached. The imaginary offset from the real
axis is 10°* Ry, and has been checked to be sufficiently
small to insure converged conductance results.

The circumstance that for simplicity matrices only extend
over the central part of our system and charges in the elec-
trodes are neglected has a slight influence on the conduc-
tance for thick contacts due to interface effects. But during
the stretching process, the narrowest part of the junction
plays an ever more important role, so that finally this ap-
proximation becomes unimportant.

The Mulliken population analysis N; = Y _(PS)ia,ia
is chosen over the Lowdin analysis N; =
ZQ(SI/2PSI/2)W¢Q, which would be more consis-
tent with the LDOS calculation (cf. Eq. (&) due to
efficiency reasons. First the square root of the overlap
does not need to be computed in the Mulliken population
analysis. But the main advantage is the saving of an
additional matrix multiplication required in every step of
the iterative solution of the charge-neutrality condition,
which requires that |N; — Natom| < 0.02 for every atom i
of the central part of the nanowire.

M. Brandbyge, N. Kobayashi, M. Tsukada, Phys. Rev. B
60, 17064 (1999).

The averaged transmission (T") (cf. Eq. (IIJ)) is determined
as a sum over T(E) on 11 equally spaced points in the
energy interval [Er — A, Er + A] around the Fermi energy
(A =50 meV).

A. Szabo, N.S. Ostlund, Modern Quantum Chemistry:
Introduction to Advanced Electronic Structure Theory,
Dover 1996.

For plots of the LDOS of an atom a broadening of n =
1073 Ry = 0.0136 ¢V is used in Gee,o (cf. Eq. @), while
for transport the broadening is chosen to be n = 10" * Ry =
1.36 - 10~ eV.

B. Ludoph, J.M. van Ruitenbeek, Phys. Rev. B 61, 2273


http://cst-www.nrl.navy.mil/bind/
http://cst-www.nrl.navy.mil/bind/ni.html

56

57

58

59

60

61

6

¥

63

64

65

66

67

68

69

70

(2000).

Al Yanson, Ph.D. thesis,
Netherlands, 2001.

V. Rodrigues, J. Bettini, A.R. Rocha, L.G.C. Rego,
D. Ugarte, Phys. Rev. B 65, 153402 (2002).

For the division of a conductance trace into regions with
different numbers of open conductance channels we use a
criterion of 7)) < 0.01 to consider the nth channel to be
closed. This division is only approximate: Due to fluctu-
ations in the geometry, a channel transmission may fall
temporarily below 0.01 but reenter later on. In other cases
(especially Pt, Al and Ni) many channels are present and,
in order not to overload our pictures, we need to combine
several channel-closing events into one.

J.L. Mozos, P. Ordejon, M. Brandbyge, J. Taylor, K. Stok-
bro, Nanotechnology 13, 346 (2002).

Y.J. Lee, M. Brandbyge, M.J. Puska, J. Taylor, K. Stok-
bro, R.M. Nieminen, Phys. Rev. B 69, 125409 (2004).
LK. Yanson, O.I. Shklyarevskii, Sz. Csonka, H. van Kem-
pen, S. Speller, A.I. Yanson, J.M. van Ruitenbeek, Phys.
Rev. Lett. 95, 256806 (2005).

The mean channel transmission (7)) as a function of the
conductance is determined as follows: For all simulated
contacts of a certain metal we consider the breaking curve
of the conductance and all the channel transmissions 7,7 .
(For the nonferromagnetic contacts we suppress the spin
index o in this article.) Next we concentrate on a fixed
conductance G = G' + G (within a bin-width of 0.04 Gy).
We obtain the mean channel transmission (T,7) of the
nth channel as the mean value over all the corresponding
individual channel transmissions 7}, ; for this fixed con-

ductance ((T)7) = Z;V:1 T7 ;/N, where N is the num-
ber of values present in the average). The error of the
mean channel transmission (as given in Figs. B [ and

8] is computed as the mean error of the arithmetic mean
X =085 /VN and & = /30, (T, — (Tg)* /N (N — 1) is
the mean quadratic error of the values Ty, ; o (The aver-
age (T5,) should not to be confused with the average over
energies employed to determine (G) (cf. Eq. ([[)).)

B. Ludoph, M.H. Devoret, D. Esteve, C. Urbina, J.M. van
Ruitenbeek, Phys. Rev. Lett. 82, 1530 (1999).

R.H.M. Smit, Y. Noat, C. Untiedt, N.D. Lang, M.C. van
Hemert, J.M. van Ruitenbeek , Nature 419, 906 (2002).
R.H.M. Smit, C. Untiedt, A.I. Yanson, J.M. van Ruiten-
beek, Phys. Rev. Lett. 87, 266102 (2001).

R.H.M. Smit, C. Untiedt, G. Rubio-Bollinger, R.C. Segers,
J.M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003).
L. de la Vega, A. Martin-Rodero, A.L. Yeyati, A. Sail,
Phys. Rev. B 70, 113107 (2004).

S.K. Nielsen, M. Brandbyge, K. Hansen, K. Stokbro,
J.M. van Ruitenbeek, F. Besenbacher, Phys. Rev. Lett. 89,
066804 (2002).

S.K. Nielsen, Y. Noat, M. Brandbyge, R.H.M. Smit,
K. Hansen, LY. Chen, A.I Yanson, F. Besenbacher,
J.M. van Ruitenbeek, Phys. Rev. B 67, 245411 (2003).
V.M. Garcia-Suarez, A.R. Rocha, S.W. Bailey, C.J. Lam-
bert, S. Sanvito, J. Ferrer, Phys. Rev. Lett. 95, 256804
(2005).

Further investigations are needed to find out, why the
transmission of dimers and short chains is rather 1 Gy than
1.5 Go. Possible reasons could lie in the structural proper-
ties, like for example the high disorder of our thin contacts
or linear instead of zigzag chains. The approximation of

Universiteit Leiden, The

71

72

73

74

75

76

7

78

79

80

81

82

83
84

85

86

87

88

89

21

surface Green’s functions by bulk Green’s functions in the
electrodes has been checked to have little influence on the
transmission when chains have formed. Potentially the low
transmission for dimers and short chains could also indi-
cate limitations for the use of the Pt TB parameters in
conductance calculations.

J.M. Krans, C.J. Muller, I.LK. Yanson, Th.C.M. Govaert,
R. Hesper, J.M. van Ruitenbeek, Phys. Rev. B 48, 14721
(1993).

A. 1. Yanson, J.M. van Ruitenbeek, Phys. Rev. Lett. 79,
2157 (1997).

T. Kitamura, Y. Umeno,
Simul. Mater. Sci. Eng. 11, 127 (2003).
J.L. Costa-Kramer, Phys. Rev. B 55, R4875, (1997).

F. Ott, S. Barberan, J.G. Lunney, J.M.D. Coey, P. Berthet,
A .M. de Leon-Guevara, A. Revcolevschi, Phys. Rev. B 58,
4656 (1998).

T. Ono, Y. Ooka, H. Miyajima,
Appl. Phys. Lett. 75, 1622 (1999).

M. Viret, S. Berger, M. Gabureac, F. Ott, D. Olligs,
I. Petej, J.F. Gregg, C. Fermon, G. Francinet, G. LeGoff,
Phys. Rev. B 66, 220401(R) (2002).

F. Elhoussine, S. Matéfi-Tempfli, A. Encinas, L. Piraux,
Appl. Phys. Lett. 81, 1681 (2002).

V. Rodrigues, J. Bettini, P.C. Silva,
Phys. Rev. Lett. 91, 096801 (2003).

C. Untiedt, D.M.T. Dekker, D. Djukic, J.M. van Ruiten-
beek, Phys. Rev. B 69, 081401(R) (2004).

More generally, the half-integer conductance quantiza-
tion could also arise from a perfectly polarized current,
where the channel transmissions of the transmitted spin-
component add up to one.

A. Martin-Rodero, A. Levy Yeyati, J.C. Cuevas, Physica
C 352, 67 (2001).

A. Delin, E. Tosatti, Phys. Rev. B 68, 144434 (2003).

A. Bagrets, N. Papanikolaou, I. Mertig, Phys. Rev. B 70,
064410 (2004).

D. Jacob, J. Fernandez-Rossier, J.J. Palacios, Phys. Rev. B
71, 220403(R) (2005).

Note that bins (where a of bin-width of 0.04 Gy has been
used) containing only a single data point are not displayed
in the inset of Fig. (). The reason is that the calculation
of the mean error of the arithmetic mean requires at least
two data points.5:

The choice of the 20 highest force values out of the last 30
recorded geometries before the point of rupture for each of
the 50 simulated contacts can be justified as follows: To ob-
tain enough statistics on the breaking force, and because of
the evident fluctuations in the strain force (cf. Fig @), for
example) several geometries after breaking of a wire need
to be considered in the breaking force histogram. This is
why we take into account 30 recorded geometries before
the point of rupture. However, the very tiny strain forces
directly after and at the point of rupture (which is signaled
by a negligible MCS of less than 0.3 A) will produce arti-
ficial peaks at small force values. For this reason we select
the 20 highest strain forces from the set of the 30 strain
force values. This is done for each of the 50 simulated con-
tacts, and the data is complied in the histogram of the
breaking force.

M.M. Sigalas, J.H. Rose, D.A. Papaconstantopoulos,
H.B. Shore, Phys. Rev. B 58, 13438 (1998); J.H. Rose,
J.R. Smith, J. Ferrante, Phys. Rev. B 28, 1835 (1983).
S.R. Bahn, Ph.D. thesis, Technical University of Denmark,

Modelling

Y. Otani,

D. Ugarte,



22

Lyngby, 2001.

% In Fig. 4 of Ref. 64 a fraction of long plateaus is given
for Au and Ag respectively. Taking the ratio between the
Py s-values for Au and Ag, an enhancement of chains by
a factor of P1.5(Au)/P1.5(Ag) =~ 0.59/0.18 = 3.28 is found
for Au compared to Ag.

91 Ch. Kittel, Introduction to solid state physics <dt.>, Old-
enbourg 1999.

92 R. Zeller, J. Deutz, P.H. Dederichs, Solid State Comm. 44,

993 (1982).

% W.H. Press, B.P. Flannery, S.A. Teukolsky, Numerical
Recipes in FORTRAN 77 and FORTRAN 90: The Art of
Scientific and Parallel Computing, Cambridge University
Press, 1996.

94 I.N. Bronstein, K.A. Semendjajew, G. Musiol, H. Miihling,
Taschenbuch der Mathematik, Verlag Harri Deutsch 1997.



