
ar
X

iv
:c

on
d-

m
at

/0
60

52
63

v1
  [

co
nd

-m
at

.m
es

-h
al

l] 
 1

0 
M

ay
 2

00
6

pop header will be provided by the publisher

Full Counting Statistics of Interacting Electrons.

D. A. Bagrets1,2, Y. Utsumi1,3, D. S. Golubev1,2,4, andGerd Scḧon1,2
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In order to fully characterize the noise associated with electron transport, with its severe consequences
for solid-state quantum information systems, the theory offull counting statistics has been developed. It
accounts for correlation effects associated with the statistics and effects of entanglement, but it remains
a non-trivial task to account for interaction effects. In this article we present two examples: we describe
electron transport through quantum dots with strong charging effects beyond perturbation theory in the
tunneling, and we analyze current fluctuations in a diffusive interacting conductor.

Copyright line will be provided by the publisher

1 Introduction

Solid-state quantum information systems based on electronic spin or charge degrees of freedom offer a
number of intrinsic advantages and drawbacks. Among the former are the fast operation times, the possi-
bility to scale the systems to large size, and the relative ease to integrate them into electronic control and
read-out circuits. Probably the most serious disadvantageis the fact that, in general, solid state devices
suffer strongly from noise due to internal and external degrees of freedom as well as material-specific fluc-
tuations. They lead to relaxation and decoherence processes. Hence, one of the major tasks in the field is
the understanding and control of noise and decoherence. In this article we will concentrate on the analysis
of fluctuations which arise due to the discrete nature of the electron charge. They lead to what is denoted
asshot noise. Its analysis reveals information about electron correlations and entanglement [1].

In many circumstances the fluctuations are Gaussian distributed and fully characterized by their power
spectrum. In order to get further information in the generalcase, e.g. about correlations and entanglement,
the theory offull counting statistics (FCS) [2] of electrons has been developed. It concentrates on the
probability distribution for the number of electrons transferred through the conductor during a given period
of time. It yields not only the variance, but all higher moments of the charge transfer as well, and thus also
contains information about rare large fluctuations.

The FCS has its historical roots in quantum optics, where thecounting statistics of photons has been used
to characterize the coherence of photon sources [3]. Photons detected by the photo-counter are correlated
in time, reflecting the Bose statistics of the particles involved. For electronic currents the Fermi statistics
is the relevant one, but the first attempts to derive the FCS ofelectrons [4] revealed some fundamental
interpretation problems, related to subtleties of the quantum measurement process. We are interested in
the probability that the outcome of a measurement of the charge isq. According to text-book definitions
of projective measurement this quantity can be expressed by〈n|δ(q − Q̂)|n〉, whereQ̂ is the operator for
the transmitted charge, and|n〉 denotes the quantum state. It is tempting to relate the transferred charge to
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the current operator,̂Q =
∫ t0
0
ĵ(τ)dτ . However, in quantum transport problems one has to pay attention

to the fact that the electric currentĵ(τ) is an operator, which, in general, does not commute at different
times. This property led to severe interpretation problemswithin the original work. They were resolved
in the later work of Levitov and Lesovik [2], which invokes explicitly an extra degree of freedom, namely
the detector degree of freedom. The paradigm of projective measurement is then applied to this detector
degree of freedom.

In the meantime the theory of FCS in mesoscopic transport hasdeveloped into a mature field; some
achievement are summarized in Refs. [1, 5]. However, the experimental analysis of the FCS remains a
challenge. First measurements of the third cumulant of charge transfer through a tunnel junction have been
reported in Refs. [6, 7] and, very recently, the FCS of a semiconductor quantum dot (QD) has been inves-
tigated by a real-time detection of single-electron tunneling via a quantum point contact [8]. Furthermore,
threshold type of measurements of the FCS using an array of over-damped Josephson junctions has been
elaborated theoretically in Ref. [9].

In this paper we will review our recent results on the FCS of interacting electrons in a QD and low-
dimensional diffusive conductors. The QDs are basic constituents of most solid-state quantum information
systems. For example, superconducting single Cooper-pairboxes [10] and, similarly, a double-dot system
formed in a semiconductor 2DEG [11] have been shown to operate as charge qubits. A metallic QD or
single-electron transistor (SET) can serve as an electro-meter to measure the quantum states of a charge
qubit [12]. Since all these devices are based on the charge measurements, a thorough understanding of the
fluctuating properties of charge becomes crucial for progress in this field.

Recently further links became apparent between the FCS of electron transport and the field of solid-state
quantum information processing. One of these is related to the use of electron entangled states for these
purposes. Most of the work on entanglement has been performed in optical systems with photons [13],
cavity QED systems [14] and ion traps [15]. By now several ideas have been put forward how to generate,
manipulate and detect electronic entangled states [16]. Itturns out that in solid state systems entanglement
is rather common, the nontrivial task remaining its controland detection. For mesoscopic conductors, the
prototype scheme of such detection was discussed in Ref. [17]. It has been shown that the presence of
spatially separated pairs of entangled electrons, createdby someentangler, can be revealed by using a
beam splitter and by measuring the correlations of the current fluctuations in the leads. If the electrons are
injected in an entangled state, bunching and anti-bunchingof the cross-correlations of current fluctuations
should be found, depending on whether the state is a spin singlet or triplet. In Ref. [18] the FCS of
entangled electrons has been analyzed in detail. The FCS depends not only on the scattering properties of
the conductor but also on the correlations among the electrons that compose the incident beam. In Ref. [19]
the Clauser-Horne inequality test for the FCS in the multi-terminal structures has been proposed in order
to detect the entanglement in the source flux of electrons.

A second link is the intrinsic relation between FCS and detector properties of a quantum point contact.
QPCs were suggested as charge detectors in Ref. [20] and havebeen studied experimentally in Ref. [21].
Recently they have been used as detectors for the state of quantum-dot qubits [22, 23, 24]. The operating
principle of the QPC detector relies on the dependence of theelectron currentI through the QPC on the
state of the two-level system. In Ref. [25] the detector properties of the QPC have been calculated beyond
linear-response for arbitrary energy-dependent transparency and coupling. This is the case of interest since
for maximum detector sensitivity typical measurements aredone in the regime of high QPC transparency,
D ≃ 1/2, and for coupling that is not weak [22]. It was found that boththe back-action dephasing rateΓ
and the measurement rateW are determined by the electron FCS.

A further motivation to study FCS arises from the need to understand the effect of interaction on elec-
tron transport in disordered low-dimensional conductors.Disorder enhancement of Coulomb interaction,
together with quantum coherence effects strongly influencethe transport properties of these systems. The
FCS analysis of this long-standing problem provides a deeper insight into the question. Typically the
Coulomb interaction leads to a suppression of the conductance of mesoscopic samples at low temperatures
and bias voltages. It has been demonstrated [26, 27, 28] thatthe strength of this suppression in various
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types of mesoscopic conductors is related to their noise properties. Frequently we find the simple rule:
the higher the shot noise the stronger is the Coulomb suppression of the conductance. The reason is that
both shot noise and Coulomb corrections to the transport current are manifestations of the discreet nature
of the electric charge. Beyond that, it was shown that the Coulomb correction to the shot noise scales with
the third moment of the current in the absence of interactions [29]. Furthermore, it was demonstrated by
renormalization group studies of the FCS of short coherent conductors [30] and of quantum dots [31] in
the presence of Coulomb interaction that the interaction correction to then−th moment of the current is
determined byn + 1-th moment evaluated in the absence of interaction. Furtherdeveloping these ideas
we show in the present paper that Coulomb interaction may substantially enhance the probability of large
current fluctuations in low dimensions, leading to the appearance of long correlated ‘trains’ in the trans-
ferred charge. This effect is most pronounced when the system size matches the dephasing length due to
Coulomb interaction. Such coincidence is not accidental and comes from the presence of the soft diffusive
modes in the system which strongly renormalize the bare interaction.

The structure of this article is as follows: In the next section we introduce some basic definitions and
concepts of the FCS in mesoscopic transport. We discuss the paradigm of quantum measurement by using
a spin 1/2 as galvanometer and consider some simple illustrative examples. In the main part we concen-
trate on our own contributions to the field, discussing the effects of Coulomb interaction onto the shot
noise and FCS in interacting quantum dot systems (Section 3)and in low-dimensional diffusive interacting
conductors (Section 4).

2 Concepts of FCS

We start this section by introducing some definitions and general formulae of the FCS approach to meso-
scopic transport. The central quantity is the probability distribution,Pt0(N), for N electrons to be trans-
ferred through the conductor during a time intervalt0. The detection timet0 is assumed to be much larger
than the inverse current frequencye/I, which ensures that on averageN̄ ≫ 1. This probability distribution
Pt0(N) is related to the cumulant generating function (CGF),F(χ), via a discrete Fourier transform

e−F(χ) =
+∞∑

N=−∞

Pt0(N)eiNχ. (1)

The auxiliary variableχ is usually called “counting field”. From the CGF one readily obtains the “cumu-
lants” (irreducible moments)

Ck = 〈〈Nk〉〉 = −(−i)k ∂k

∂χk
F(χ)

∣∣
χ=0

. (2)

The first four of the irreducible moments, defined by

C1 = N̄ =
∑

N

NPt0(N), C2 = (N −N)2, C3 = (N −N)3,

C4 = (N −N)4 − 3C2
2 , (3)

denote the mean, variance, asymmetry (“skewness”) and kurtosis (“sharpness”), respectively. They charac-
terize the peak position, width of the distribution and further details of the shape of the distributionPt0(N),
as illustrated in Fig. 1.

In order to provide a quantum mechanical definition of the CGFof electrons we will follow the approach
proposed by Levitov and Lesovik [2]. The key step is to include the measurement device in the description.
As a gedanken scheme a spin-1/2 system is used as a galvanometer for the charge detection. This spin
is placed near the conductor and coupled magnetically to theelectric current. Let the electron system be
described by the HamiltonianH(q,p). We further assume that the spin-1/2 generates a vector potential
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Fig. 1 The distribution of the number of transmitted electronsN . The meanC1, the varianceC2, the skewnessC3

and the kurtosisC4 characterize the peak position, the width, the asymmetry and the sharpness of the distribution,
respectively.

a(r) of the forma(r) = 1
2χ∇f(r). Here the functionf(r) smoothly interpolates between 0 and 1 in the

vicinity of the cross-section at which the current is measured, andχ is an arbitrary coupling constant so
far. It will be shown below that it plays a role of “counting field”. If one further restricts the coupling
of the current to thez-component of the spin then the total Hamiltonian of the system takes the form
Ĥσ = H(q,p − a σ̂z).

In the semiclassical approximation, when the variation of∇f(r) on the scale of the Fermi wave length
λF is weak, it is possible to linearize the electron spectrum atenergies near the Fermi surface. Thus one
arrives at the Hamiltonian̂Hσ = H(q,p) + Ĥint, where

Ĥint = −1

e
σ̂z

∫ +∞

−∞

d3r a(r)j(r) = − χ

2e
σ̂zIS . (4)

Herej(r) is the current density andIS =
∫
d3r j(r)∇f(r) the total current across a surfaceS. On the

quasi-classical level Eq. (4) shows that a spin linearly coupled to the measured currentIS(t) will precess
with a rate proportional to the current. If the coupling is turned on at timet = 0 and switched off att0
the precession angleθ = χ

∫ t0
0 IS(t)dt/e of the spin around thez-axis is proportional to the transferred

charge through the conductor. In this way the spin-1/2 turnsinto analog galvanometer.
To proceed with the fully quantum mechanical description let us consider the evolution of the spin

density matrixρ̂S(t). We assume that initially the density matrix of the whole system factorizes,̂ρ =
ρ̂e ⊗ ρ̂S(0), with ρ̂e being the initial density matrix of electrons. Then the timeevolution ofρ̂(t) is given
by

ρ̂(t) = Tre

(
e−iĤσtρ̂ eiĤσt

)
, (5)

whereTre denotes the trace over electron states. Since, by construction, the evolution operatore−iĤσt is
diagonal in the basis of̂σz , the spin density matrix takes the form

ρ̂S(t0) =

[
ρ̂↑↑(0) Z(χ)ρ̂↑↓(0)

Z(−χ)ρ̂↓↑(0) ρ̂↓↓(0)

]
, Z(χ) = Tre

(
e−iHχtρ̂e e

iH−χt
)
, (6)

where the HamiltonianHχ = H(q,p) − χ

2e
IS acts on the electron degrees of freedom only. It becomes

clear now that the non-diagonal elements of the density matrix (6) contain the information about the distri-
bution of precession angles of the spin during timet0. To make it explicit we use the transformation rule
of the spin-1/2 density matrix corresponding to a rotation around thez-axis by the angleθ,

Rθ(ρ̂) =

[
ρ̂↑↑ eiθρ̂↑↓

e−iθρ̂↓↑ ρ̂↓↓

]
. (7)
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Fig. 2 Keldysh contourC, used for evaluation of the cumulant generating function (CGF) .

One now can identifyZ(χ) with the CGF introduced in Eq.(1), i.e one setsZ(χ) = e−F(χ), and the spin
density matrixρ̂S(t0) can be represented as a superposition of the form

ρ̂S(t0) =

+∞∑

N=−∞

Pt0(N)Rθ=Nχ(ρ̂), (8)

wherePt0(N) has a meaning of the probability to observe the precession atangleθ = Nχ. For a classical
spin a precession angleθ = χ corresponds to a current pulse carrying an elementary electron charge,e =∫ t0

0

IS(t)dt. Using the correspondence principle we conclude that the quantityPt0(N) can be interpreted

as the probability of transfer the multiple chargeNe. This consideration suggest the use ofZ(χ) as the
microscopical quantum mechanical definition for the CGF.

Using a cyclic permutation under the trace,Tre, in Eq. (6) one can representZ(χ) in the form of the
Keldysh partition function

Z(χ) = e−F(χ) =

〈
TK exp

{
−i

∫

C

dtHχ(t)

}〉
. (9)

Here the time integration is performed along the Keldysh contourC, as shown in Fig. 2, andTK denotes the
time ordering operator along the pathC. The average〈...〉 is performed with the non-equilibrium electron
density matrixρ̂e. The interaction part of the HamiltonianHχ(t) readsHint(t) = 1

2eχ(t)IS , where the
“counting field”χ(t±) = ±χ is asymmetric on the upper and lower branches of the Keldysh contour.

The definition (9) for the CGF can be generalized to obtain thefull frequency dependence of the current
correlators of arbitrary order [32]. Consider a mesoscopicconductor as shown in Fig. 3 coupled to two
leads such that lead 1 is grounded while lead 2 is biased with voltageV (t). We assume that the currentI(t)
is measured in the lead 2. This set-up is described by the interaction HamiltonianHint(t) = ϕ(t)I(t)/e

with the phasesϕ±(t) =
∫ t

−∞
eV (τ)dτ ± 1

2χ(t) defined on the lower/upper branches of the contourC,
and Eq. (9) yields the generating functionalZ[ϕ+(t), ϕ−(t)] of the current fluctuations in the lead 2. In
analogy with the definition (2) the higher-order derivatives of the functional yield then-point irreducible
correlation function of currents

enCn(t1, . . . , tn) = (−ie)n δ

δχ(t1)
. . .

δ

δχ(tn)
lnZ[ϕ+(t), ϕ−(t)]

∣∣
χ=0

. (10)

For illustration we consider anOhmic resistor with resistanceR at temperatureT . Its CGF is quadratic
in ϕ±(t) and reads

FR[ϕ+(t), ϕ−(t)] =
1

2π

RQ

R

∫

C

dt1

∫

C

dt2 α(t1 − t2)ϕ(t1)ϕ(t2), (11)

whereRQ = 2πh̄/e2 is the quantum resistance and

α(t) =
πT 2

2 sinh2(πtT )
. (12)

If the timest1,2 lie on different branches of the contour C the kernelα(t) is regularized by the shift into
the complex plane,t± → t ± i0; otherwise it is understood as principal value. The quadratic form of FR

reflects the Gaussian nature of current fluctuations in an Ohmic resistor with its well-known properties.
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8 D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schön: Full Counting Statistics of Interacting Electrons

Fig. 3 Voltage biased mesoscopic conductor of resistanceR.

The simplest example of a CGF for non-Gaussian processes is provided by atunnel junction . In this
case one has [33]

FT[ϕ+(t), ϕ−(t)] = −4π
RQ

RT

∫

C

dt1

∫

C

dt2 α(t1 − t2) sin2

[
ϕ(t1) − ϕ(t2)

2

]
, (13)

whereRT is a tunnel resistance. For a constant applied voltageeV and stationary ”counting field”χ the
corresponding CGF reduces to

FT(eV, χ) = −t0
[
Γ+

(
eiχ − 1

)
+ Γ−

(
e−iχ − 1

)]
, Γ± = ± 1

e2RT

eV

1 − e±eV/T
. (14)

This result represents the CGF of a bidirectional Poissonian process with ratesΓ± corresponding to un-
correlated tunneling processes of the charge through the junction. At zero temperature and positive bias
voltage the second term of Eq. (14) disappears. Then, performing the inverse Fourier transformation we
obtain a simple Poisson distribution, corresponding to uncorrelated charge transfer

P (N) =

∫ π

−π

dχ

2π
exp(FT (eV, χ) − iNχ) =

N̄ Ne−N̄

N !
, N̄ = t0Γ+. (15)

As a further important example we consider aquantum point contact (QPC), shown in Fig. 4. It can
be used as a quantum detector for the state of a quantum dot charge qubit. Its operating principle is based
on the property that - due to the electrostatic coupling between the dot and the QPC - the scattering matrix

Ŝj =

(
rj t∗j
tj r∗j

)
and thereby the currentI of the QPC depend on the state|j〉 of the qubit. For a given

realizationŜ of the scattering matrix the FCS has been calculated by Levitov et al. [2], with the result

F(χ) = −t0
∫

dǫ

2π
ln det

[
1 + f̂

(
Ŝ+(−χ)Ŝ(χ) − 1

)]
(16)

whereŜ(χ) =

(
rj t∗je

−iχ/2

tje
iχ/2 r∗j

)
, andf̂ = diag(fL, fR) is the diagonal density matrix of the leads.

The explicit evaluation of Eq. (16) yields

F(χ) = −t0
∫

dǫ

2π
ln

[
1 + fL(1 − fR)D(eiχ − 1) + fR(1 − fL)D(e−iχ − 1)

]
, (17)

whereD = |t|2 is a transmission coefficient. The physical interpretationof this result is that electrons
can be transmitted either forward or backward with probabilities pR←L = fL(1 − fR)D andpL←R =
fR(1 − fL)D, respectively, with the occupation factors accounting forthe Pauli principle.

Recently, it has been realized that the quantum detector properties of the QPC are intrinsically related
to its FCS [25]. The two basic quantities to be considered arethe measurement-induced dephasing time
of the qubit, and the time needed for the acquisition of information about the qubit’s state. Keeping in

Copyright line will be provided by the publisher
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I V|j>

Fig. 4 The principal scheme of the qubits readout using the quantumpoint contact (QPC). Due to electrostatic
coupling the currentI driven by the external voltageV is controlled by the state|j〉 of the qubit.

mind thegedanken spin-1/2 measurement scheme for charge detection, described in the beginning of this
section, we realize that in the quantum measurement processby a QPC the role ofgedanken galvanometer
is played by the qubit (or more generally by a many-level system). Then the analog of Eq. (6) describes
the dephasing rateΓ of the qubit’s density matrix̂ρ(t) due to its interaction with the electron current in the

QPC,ρjk(t) = ρjk(0)
〈
eiĤkte−iĤjt

〉
≃ ρjk(0)e−Γjkt. Here the average is taken over a stationary state of

the QPC and̂Hj andĤk are electron Hamiltonians describing the propagation of electrons with scattering
matricesŜj andŜk. In the long-time limit,t > h̄/eV , the decay is exponential with rate

Γjk = −
∫

dǫ

2π
ln det

[
1 + f̂(Ŝ+

k Ŝj − 1)
]
. (18)

The analogy with the expression (16) is striking. For a qubitat low temperature,T ≪ eV , one obtains [25]

Γ12 = − eV

2πh̄
ln |t1t∗2 + r1r

∗
2 | . (19)

The second aspect of the measurement by the QPC is the rate of information acquisition. The infor-
mation about the state|j〉 of the qubit is encoded in the probability distributionP (j)

t (N) for N electrons
to be transferred via the QPC, given that the qubit is in the state|j〉. The mean value of this distribution,

N̄j , and its width
√
〈∆N2

j 〉 grow like t andt1/2. This time dependence implies that only after a certain

time, which we denote as the measurement timeτmeas, the two peaks, corresponding to different states|j〉
and|k〉 emerge from a broadened distribution. Quantitatively thistime can be defined by considering the

statistical overlap of two distributions,Mjk(t) =
∑

N

[
P

(j)
t (N)P

(j)
k (N)

]1/2

. For long times,t > h̄/eV ,

the decay should be exponential,Mjk(t) ∝ exp{−Wjkt}, with Wjk = 1/τmeas being the measurement
rate. As it was shown in Ref. [25] it can be expressed in terms of the CGF as

Wjk =
1

2t0
min χ [Fj(χ) + Fk(−χ)] (20)

In the case of quantum-limited detection the ratesWjk andΓjk coincide, while generallyWjk ≤ Γjk,
meaning that dephasing occurs faster than the information gain. One can show that a QPC can be operated
as quantum limited detector with the rates

Γjk = Wjk = − eV

2πh̄
ln

[
(DjDk)1/2 + (RjRk)1/2

]
. (21)

whereRj(k) = 1 −Dj(k) are reflection coefficients.
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Fig. 5 (a) The equivalent circuit of a metallic quantum dot. (b) TheCoulomb oscillations.

The FCS of tunnel junction and quantum point contact represent the two simplest generic examples with
non-Gaussian current fluctuations. In both cases the effects of electron-electron interaction were neglected.
This is justified provided the conductance of the system is not too small,G ≥ e2/2πh̄, and the length (size)
of the system does not exceed the inelastic mean free path. Accounting for interaction effects on the FCS
is no trivial task. This is the case, in particular, when electrons have an internal dynamics within the
conductor, so that in the derivation ofF(χ) the internal degrees of freedom have to be integrated out. Two
examples of these calculations are considered in the following sections. In Section 3 we discuss the effects
of Coulomb interaction onto the shot noise and FCS in interacting quantum dot systems, and in Section 4
we address the statistic of current fluctuations in the low-dimensional diffusive interacting conductors.

3 Full Counting Statistics in interacting Quantum Dots

In this section we review the FCS of a single electron transistor (SET), which is shown schematically in
Fig. 5 (a). It consists of a QD with strong local Coulomb interaction, which is coupled via two tunnel
junctions (left and right) with tunneling resistancesRL andRR and low capacitancesCL andCR to two
electrodes (source and drain). It is further coupled capacitively viaCG to a gate electrode which allows - by
an applied gate voltage which determines the ‘gate charge’QG = CGVG - to control the number of elec-
trons inside the QD. In the systems of interest the total capacitanceCΣ =CL+CR+CG is low and, hence,
the single-electron charging energyEC =e2/2CΣ typically in the range of 1K or above. IfEC exceeds the
temperature and applied source-drain bias voltage,|eV |, the electron transfer through the QD is suppressed
(“Coulomb blockade”). However, the Coulomb barrier can be tuned by the gate charge. For example, the
energy difference between the charge zero state and the one with one excess electron in the QD depends
onQG as∆0 = EC(1 − 2QG/e). The voltage drops across the tunnel junctions areµr = κreV , where
κL/R =±CR/L(CL+CR)−1 and the subscript r stands for either L or R junction. If thesevoltages satisfy
the conditionµR <∆0 <µL electrons can tunnel sequentially through the island. Thismechanism leads
to the typical oscillating behavior of the conductance as a function of the gate charge illustrated in Fig. 5 (b).

The first steps toward a theory of FCS in quantum dots with account of Coulomb interaction has been
performed in Ref. [34] where the FCS of charge pumping in the limit of high transmission of the contacts
was considered. Further progress was made by one of the authors and Nazarov [35], who derived the
FCS in the frame of a Master equation. This approach is valid in the weak tunneling regime, where the
parameterg ≡ RQ/RT, i.e., the ratio between the quantum resistanceRQ and the effective (parallel)
resistance,R−1

T = R−1
L + R−1

R , is much smaller than unity,g ≪ 1. Applied to a quantum dot in the
vicinity of the first conductance peak, the CGF is found to differ from a simple Poissonian distribution.
Rather it reads

F (1)(χ) = t0Γ

√
D(χ) − 1

2
, D(χ) = 1 +

4ΓLIΓIR

Γ2
(eiχ−1) +

4ΓRIΓIL

Γ2
(e−iχ−1) . (22)
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HereΓ = ΓIL + ΓIR + ΓLI + ΓRI, and the rates of electron tunneling into/out of the island through the
junction r are given by Fermi’s golden rule,

ΓrI/Ir = ± 1

e2Rr

∆0 − µr

e±(∆0−µr)/T − 1
. (23)

For special cases the CGF can be simplified: (i) Close to the threshold of the Coulomb blockade regime,
e.g., for∆ ≈ µL, and low temperaturesT ≪ |eV | the tunneling process through junction L becomes the
bottleneck sinceΓLI ∝ (µL −∆0) is much smaller thanΓIR. In this case the CGF reduces to a Poissonian
form,

F (1) ≈ t0 ΓLI (eiχ − 1) . (24)

(ii) For a symmetric SET,RL =RR andCL =CR, at the conductance peak,∆0 = 0, one finds forT = 0
andeV > 0

F (1) ≈ 2 N̄ (eiχ/2 − 1), eN̄/t0 = V/2(RL +RR) . (25)

The extra factor1/2 in the exponent leads to a sub-Poissonian value of the Fano factor, i.e., ratio between
dc power spectrum and average currentSII/2e〈I〉 ≈ 1/2, indicating that tunneling processes through the
two junctions are correlated. The distribution function inthis case becomesP (N)=

∑∞
NL,NR=0 PP(NL) ·

PP(NR) δN,(NL+NR)/2, where the distributions ofNL andNR transmitted electrons through the L and

R junctions have a Poissonian formPP(N) = N̄ Ne−N̄/N ! . Both are constrained as indicated by the
Kroneckerδ.

The Master equation approach captures the basic physics of the strong Coulomb correlations inside the
QD, but it neglects non-Markovian effects, which become important for strongly conducting QDs, i.e.,
if the dimensionless conductanceg is no longer small. This includes quantum fluctuations of thecharge
due to co-tunneling, i.e., simultaneous tunneling of two electrons through two junctions. This process
dominates in the Coulomb blockade regime, i.e. far away fromthe conductance peaks. Recently Braggio
et al. [36] considered these effects in second order perturbationtheory ing in extension of the theory [35]
using well established real-time diagrammatic techniques[37, 38].

The CGF of a quantum dot in the limit of very strong tunneling,g ≫ 1, has also been considered [31]. In
this limit the Coulomb blockade almost disappears. Its weakprecursor is caused by quantum fluctuations of
the phase, which is the variable canonically conjugated to the island charge. The small negative correction
to the conductance is logarithmic:g̃ ≈ g− 2 ln(Ω/T ), whereΩ=1/(RTCΣ) is the inverseRC time [39].

Several further articles dealt with different setups. In Ref. [40] bosonization techniques were used to
find the FCS of an open quantum dot coupled to reservoirs by single-channel point contacts in the presence
of a strong in-plane magnetic field. Similarly, the CGF for the generalized two-channel Kondo model,
which models a QD in the Kondo regime, has been derived [41]. In both cases the authors succeeded to
fully account for Coulomb correlations, but the results arelimited to a very special, exactly solvable case.
Despite this work the understanding of the effects of quantum fluctuations on the FCS of interacting QDs is
far from complete. In what follows we evaluate CGF for the regime of intermediate strength conductance.

3.1 FCS OF A SET FOR INTERMEDIATE STRENGTH CONDUCTANCE

Here we consider a quantum dot single-electron transistor in the intermediate strength tunneling regime,
where (introducing for convenience a new dimensionless conductance parameter)α0 ≡ g/(2π)2 < 1. We
assume that the inverseRC time is still smaller than the characteristic charging energy, Ω ≪ EC , which
ensures that the charge-state levels are well resolved. In the vicinity of the conductance peak, precisely for
|∆0|/EC ≪ 1, it is sufficient to restrict the attention to only two chargestates of the quantum dot with
charges differing bye. The Hamiltonian can then be mapped onto the ‘multi-channelanisotropic Kondo
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model’ [42]. Introducing a spin-1/2 operatorσ̂, which acts on the charge states, we have

Ĥ =
∑

r=L,R,I

∑

kn

εrk â
†
rknârkn +

∆0

2
σ̂z +

∑

r=L,R

∑

kk′n

(Trâ
†
Iknârk′nσ̂+ + H.c.). (26)

Hereâ†rkn creates an electron with wave vectork and channel indexn (including spin) in the left or right
electrode or island (r=L,R,I). The tunneling matrix elementsTr are assumed to be independent ofk andn.
The junction conductances are1/Rr = 2πe2Nch|Tr|2ρIρr, withNch being the number of channels andρr

the electron DOS. We assume that energy and spin relaxation times are fast so that electrons are distributed
according to a Fermi distribution functionf(ω) = 1/[exp(ω/T ) + 1] both in the island and in the leads.

In the intermediate conductance regime the main consequence of the quantum fluctuations of the charge
is the renormalization of system parameters, specifically of the charging energy and the conductance.
A perturbative two-loop renormalization group analysis for Nch ≫ 1 predicts a renormalization of the
conductance,α0 → z0α0, and of the charging energy,∆0 → z0∆0, to depend logarithmically on the low
energy cut-offΛ = max{T,∆0} [42]

z0 =
1

1 + 2α0 ln(EC/Λ)
, (27)

Such a conductance renormalization has been confirmed by experiments [43], where the observed height
of the conductance peaks has been suppressed as1/ lnT .

The logarithmic renormalization is typical for Kondo problem, in which one encounters logarithmic
divergences in perturbation theory. Likewise, a perturbative treatment of quantum fluctuations in a quantum
dot leads to logarithmic divergences. Handling these divergences remains a nontrivial task, especially in
non-equilibrium transport problem. Schoeller and Schön [37] have formulated a real-time diagrammatic
approach to this problem. Summing up a certain class of infinite order diagrams, they managed to remove
the divergences and recover the renormalization factor (27). Furthermore, they derived non-linear current-
voltage characteristics including low-bias Kondo anomalies. Recently the second cumulant of the current,
i.e. the noise, has been evaluated in lowest [44] and second-order perturbation theory [45]. However, apart
from the second-order analysis by Braggioet al. [36], the FCS of a quantum dot in the moderate tunneling
regime has not been yet analyzed, in particular in situations where the finite-order perturbation theory fails
and infinite order diagrams need to be included. Motivated bythat, we addressed this problem in Ref. [46],
where the FCS of a SET has been evaluated with the use of Majorana fermion representation [47, 48, 49].
This formulation enabled us to apply Wick’s theorem and consequently the standard Schwinger-Keldysh
approach [50, 51, 52]. Since practical calculations are rather technical, we will first summarize our main
results, and postpone the sketch of the derivation to Sec. 3.3.

In the intermediate strength tunneling regime we obtained the CGF in the following form [46]

F(χ) ≈ t0
2π

∫
dω ln[1 + TF(ω)fL(ω){1 − fR(ω)}(eiχ−1) + TF(ω)fR(ω){1 − fL(ω)}(e−iχ−1)], (28)

wherefr(ω) = f(ω−µr) is the Fermi distribution function for electrons in the leadr. This result looks simi-
lar to the Levitov-Lesovik formula for noninteracting systems [2], but the effective transmission probability
TF (ω) accounts for the strong quantum fluctuations of the charge [46, 53],

TF(ω) = (2π)2
αL

0α
R
0 (ω − µL)(ω − µR)

|ω − ∆0 −
∑

r=L,R ΣR
r (ω)|2 coth

ω − µL

2T
coth

ω − µR

2T
, (29)

ΣR
r (ω) = αr

0

[
2Reψ

(
i
ω − µr

2πT

)
− 2ψ

(
EC

2πT

)
− 2πT

EC

]
− iπαr

0(ω − µr) coth
ω − µr

2T
, (30)

whereψ is the digamma function. For a symmetric SET atT =0 and|ω|≪ eV , the self-energy becomes∑
r=L,R ΣR

r (ω) ≈ α0 ln(2EC/eV )ω − iΓ/2. From the real-part of this expression one reproduces the
logarithmic renormalization (27), and thus in this sense weaccounted for leading logarithms. The imagi-
nary part describes the effect of finite life-time of the charge state of the quantum dot in non-equilibrium

Copyright line will be provided by the publisher



pop header will be provided by the publisher 13

Ι
ln

 P
 (

e/
  
  
  
t 

) 0

ΙΙ/

(a)

∆  /eV=00

0.4
0.475

∆  /eV=10

0 2 4
-4

-2

0

α  =100
-3

ln
 P

 (
2
e 

(R
 +

R
 )

/ 
V

t 
)

L
R

0

Ι
ln

 P
 (

e/
  
  
  
t 

) 0

-2

-1

0

ΙΙ/
0 1 2

-2

-1

0

0 1 2
I  2(R +R )/ VL R

α  =100
-1

10 -2

10 -4
5×

α  =0.10(b)

Fig. 6 (a) The zero-temperature current distribution ateV =0.2EC for various values of∆0 ( RL =RR andCL =
CR). (b) Plot ofP at∆0 = 0 for various values of the conductance versus the current normalized toV/2(RL + RR);
inset: the same distribution normalized to the average current〈I〉.

situations. We also reproduce the average current predicted by Schoeller and Schön [37]. Furthermore, the
second order expansion inα0, F (1) + F (2), with

F (2)(χ) = ∂∆0
{ReΣR

c (∆0)F (1)(χ)}+Fcot(χ), Fcot(χ) = t0{γ+(eiχ−1)+γ−(e−iχ−1)}, (31)

is consistent with the result of Ref. [36]. The first term in the expression forF (2)(χ), describes the renor-
malization (27) in lowest order perturbation theory. Corrections of this type for the current were derived
earlier in Ref. [38]. The cotunneling correction to the CGF,Fcot, describes a bidirectional Poissonian
process governed by the cotunneling rates

γ± = 2π αL
0 α

R
0

∫
dω

(ω − µL)(ω − µR)

(e±(ω−µL)/T − 1)(1 − e∓(ω−µR)/T )
Re

1

(ω + i0 − ∆0)2
.

This term dominates in the Coulomb blockade regime (|∆0| > |eV/2| for a symmetric SET) and is con-
sistent with the FCS theory of quasiparticle tunneling in the presence of many-body interaction [54].

3.2 NON-MARKOVIAN EFFECTS: RENORMALIZATION AND FINITE
LIFETIME BROADENING OF CHARGE STATES

We present now some results. Figure 6(a) shows the current (I = eN/t0) distribution for a symmetric
SET and for several values of the Coulomb energy barrier∆0. The conductance is chosen to be very
small. As we sweep∆0 from the center of the conductance peak,∆0/eV = 0, to the threshold of the
Coulomb blockade regime,∆0/eV = 0.5, the CGF gradually changes from the correlated Poissonian (25)
to the uncorrelated one (24). Simultaneously the current distribution widens. With further increase of
∆0 one enters into the Coulomb blockade regime, where the CGF smoothly crosses over toFcot and the
non-Markovian co-tunneling processes becomes dominant.

As the conductance increases, quantum fluctuations are enhanced. We find that forz0Γ ≪ Λ, [Λ =
max(|z0∆0|, 2πT, |eV |/2)], the simple expression for CGF,F (1), still holds provided the parameters are
properly renormalizedα0 → z0α0, ∆0 → z0∆0. The effect of this renormalization is illustrated in
Fig. 6(b), where the current distribution for∆0 = 0 is plotted. Sincez0 decreases with increasingα0, the
mean value of the current, i.e. the position of the peak in thecurrent distribution, shifts to lower values.
The renormalization effect can be absorbed if we re-plot thesame data with the current (horizontal axis)
normalized by the average current〈I〉 rather than byV/2(RL + RR) [inset of Fig. 6(b)]. However, even
after this procedure the three curves do not completely collapse to a single one. The remaining differences
can be attributed to the non-Markovian effect of the broadening of the charge states due to their finite life
time, which is described by the imaginary part of the self-energy, Eq. (30). We observe the following trend:
the probability for current much larger than the average value is suppressed and the current distribution
shrinks with increasingα0.
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Fig. 7 Panels (a-1) and (b-1) are the skewness and the kurtosis ateV = 0.1EC and 0 K for various conductance.
Panels (a-2) and (b-2) are those normalized by the average value.

Let us discuss the lifetime broadening effect quantitatively. At moderately large voltages,eV ≫ TK =
ECe

−1/2α0/2π, and atT = 0 the real part of the self-energy (30) is negligible and
∑

r=L,R ΣR
r (ω) ≈

−iπα0eV . Then the CGF at∆0 =0 reads

F(χ) ≈ F (1)(χ) − 4 q̄ α0(e
iχ−1) + 2 q̄ π2α2

0 (ei3χ/2−eiχ/2) +O(α3
0). (32)

It is evident from this formula that the higher order cumulants are suppressed with increasingα0 due to
lifetime broadening.

Figures 7(a-1) and (b-1) show the skewnessC3 and the kurtosisC4 as a function of∆0. A double-peak
structure growing with increasing conductance is observed. In general, we found that higher cumulants
of the current depend on the gate charge in a complicated way and depend strongly on the conductance.
E.g., the kurtosis even changes its sign for large values ofα0. For the generalized ‘Fano factors’ defined
asC3/C1 andC3/C1 [Figs. 6(a-2) and (b-2)], we observe a suppression with increasingα0

3.3 KELDYSH ACTION AND CGF IN MAJORANA REPRESENTATION

In this section, we sketch our calculations [46, 53]. Since within the Schwinger-Keldysh approach the
calculation of CGF isformally equivalent to the calculation of the partition function (9)on the closed time-
pathC (Fig. 2), we can apply the standard field theory methods. Fromthe Hamiltonian (26) we obtain the
path-integral representation of the Keldysh partition function (9) following the standard procedure. Tracing
out the electron degrees of freedom, we obtain the effectiveKeldysh action, which is the sum of two parts:
the charging partSch and the tunneling oneSt — S≡Sch+St. They read

Sch =

∫

C

dt{c∗(i∂t −∆0)c+
i

2
φ∂tφ}, St = −

∑

r=L,R

∫

C

dtdt′ c∗(t)φ(t)αr(t, t
′)φ(t′)c(t′) +O(T 4

r ).

Herec(t) andφ(t) are Grassmann fields which correspond to Dirac fermionic operatorsĉ and Majorana
fermionic operatorŝφ, respectively. The latter operators are defined by the following relations:σ̂+ = ĉ†φ̂
andσ̂z = 2ĉ†ĉ− 1. The actionSt is equivalent to the tunneling action (13), defined earlier.

A particle-hole Green’s function,αr, describing the tunneling of an electron between an electrode r=L,R
and the island, is expressed in the Keldysh space as a2×2 matrix,

α̃r(ω) =

(
0 αA

r (ω)
αR

r (ω) αK
r (ω)

)
= −iπαr

0

(ω − µr)E
2
C

(ω − µr)2 + E2
C

(
0 −1
1 2 coth ω−µr

2T

)
, (33)
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where,αr
0 =RK/(4π

2Rr) is the dimensionless junction conductance. Here we have introduced a Lorentzian
cutoff function to regularize the UV divergence. The terms higher thanT 4

r describe theelastic cotunneling
process. They can be neglected in the limit of fixedα0 but large number of channels,Nch ≫ 1. In this
caseTr scales as∝ 1/

√
Nch and thus the terms∝ T 4

r give only small corrections∝ 1/Nch. In order to
derive the CGF, we introduce the counting fieldχ by means of the following rotation in the Keldysh space,

α̃χ
r (ω)=exp(iκrχτ 1/2)α̃r(ω) exp(−iκrχτ 1/2). (34)

Hereτ 1 is the Pauli matrix. The CGF takes the following form

F(χ)= −ln

∫
D[c∗, c, φ] exp[i S(χ)], (35)

whereS(χ) is the effective action containing the rotated particle-hole Green’s function (34). Tracing out
the c fields, we obtain a term of fourth order inφ in the action, which means that the path integration
cannot be performed exactly. Therefore we proceed in a perturbative expansion inα0 and resum a certain
class of diagrams. Namely we take into account the contributions from free Majorana Green’s function
and Dirac Green’s function with the bubble insertions formed by particle-hole Green’s (34) function and
free Majorana Green’s function.

4 FCS and Coulomb interaction in diffusive conductors

In this section we consider the FCS of low-dimensional diffusive conductors, such as quasi-one-dimensional
disordered wires and two-dimensional disordered films. It has been appreciated more than two decades ago
that the interplay of interaction and phase coherence effects in these systems may drastically affect its trans-
port properties [55, 56]. Initially, the conductance was a main object of study, but more recently the trend
moved toward the study of essentially non-equilibrium phenomena, like the quantum shot noise.

We consider short diffusive wires and films (with diffusion constantD) where the Thouless energy
ETh = D/L2 is large compared to the applied voltage,ETh ≫ eV . In these systems the Fano factor, i.e.
the ratio between shot noise and current,S = 2|e|IF , takes the valueF = 1/3 [57, 58]. The condition for
short conductors can be equivalently rewritten asτD ≪ 1/eV , whereτD = L2/D is a typical diffusion
time of electron through the system. Such short conductors are coherent and effectively zero-dimensional
so that all effects of Coulomb interaction come from the external electromagnetic environment. It has
been shown recently that the environment modifies the conductance, noise [26, 29] and generally the
FCS [30, 31].

Much less is known about the role of Coulomb interaction ontothe FCS in the quasi- 1D and 2D
diffusive systems, whenτD ≫ 1/eV . Under this condition the inelastic electron-electron scattering inside
the conductor is important. This subject has recently attracted the attention in Ref. [59, 60, 61], where
the so-called “hot electron” regime , was discussed. It is defined byτD ≫ τE , with τE being the energy
relaxation time due to Coulomb interaction, and at the same time τD ≪ τe−ph, with τe−ph being the
electron-phonon relaxation time. These two conditions imply that the size of the conductor is larger than
the energy relaxation length due to electron-electron interaction, but the energy relaxation from the electron
subsystem to phonons is negligible. In this situation the electron distribution function relaxes to the local
Fermi distribution with a position dependent electron temperature along the conductor. This changes the
Fano factorF from 1/3 to

√
3/4 [62], an effect that was confirmed experimentally [58].

The microscopic theory [63] of electron-electron interaction in low-dimensional disordered conductors
predicts, however, in addition toτE a further time scale, the dephasing timeτφ(See Table I). Both times are
energy dependent and in the limit of good conductorsg = G/GQ ≫ 1, which we wish to consider, differ
parametrically from each other (τφ ≪ τE). It is usually believed [64] that classical phenomena described
by the Boltzmann equation are governed only by the energy relaxation timeτE , while the decoherence
time τφ affects essentially quantum-mechanical phenomena. Sincethe FCS is a classical quantity, in the

Copyright line will be provided by the publisher



16 D. A. Bagrets, Y. Utsumi, D. S. Golubev, and G. Schön: FullCounting Statistics of Interacting Electrons

Table 1 The electron scattering times for low-dimensional (1D and 2D) diffusive conductors,E = max{T, eV }. At
T ≤ τ−1

φ (V ), we getτ∗ = τφ(V ).

d 1/τE 1/τφ 1/τ∗, T ≥ τ−1
φ (V )

1 (E/D)1/2ν−1
1 (E2/Dν2

1)1/3 (eV/T )1/2 τ−1
E (V )

2 E/g (E/g) ln g ln(eV/T ) τ−1
E (V )

sense that it is proportional to the number of conducting channels, one might naively expect that it crosses
over between the coherent and the “hot electron” regime on the scaleτD ∼ τE .

As we show below the timeτE is indeed responsible for a smooth crossover between the coherent and
the “hot electron” limits if one is interested in the shot noise and the 3d cumulant of charge. However,
this is not the case for the higher order cumulants of charge transfer in the shot noise limiteV ≫ T .
Moreover, in this limit the smooth crossover in the FCS does not exist. The Coulomb interaction drastically
enhances the probability of current fluctuations for short conductors1/eV ≪ τD ≪ τE . We coined for
this range of parameters the term “incoherent cold electrons” [65]. In what follows we will show that the
tail of the current distribution for such electrons is exponential,P (I) ∼ exp(−γ|I|t0/e). The fluctuations
are strongest for low temperatures,T ≪ ETh, and they reach the maximum on the scaleτD ∼ τφ(V ).
In this caseγ ∼ g−1/2 for 1D wire andγ ∼ (ln g/g)1/2 for 2D film. The FCS of this type can be
understood as the statistics of a photocurrent which is generated by electron-hole pairs excited by classical
low-frequency fluctuations of the electromagnetic field. Itis remarkable that the time scale of optimal
current fluctuations transforms to the scaleτϕ(T ), known as a decoherence time in the theory of weak
localization [63], provided one identifieseV with T . Therefore, in strongly non-equilibrium situation the
timeτφ rather thanτE governs the crossover in the FCS between the coherent and the“hot electron” limits.

4.1 MODEL AND EFFECTIVE ACTION.

We consider a quasi-one-dimensional (1D) diffusive wire oflengthL and a quasi- two-dimensional (2D)
film of sizeL× L, with density of statesνd per spin, diffusion coefficientD and large dimensionless con-
ductanceg = 4πνdDL

2−d ≫ 1. They are attached to two reservoirs with negligible external impedance
which are kept at voltages±V/2. The current flows along thez direction and we concentrate on the
incoherent regime,max{eV, T } ≫ ETh.

To evaluate the CGF we have used the Keldysh technique and employed the low-energy field theory of
the diffusive transport [66] which leads to the action

S[χ,Q,A] =

∫
d drTr

[
gL2−d

8

(
∇Q− i[Â, Q]

)2

− 2πνd

(
∂tQ

)]
− i

8πe2

∫
d t

∫
d3r

(
Ȧ2

1−Ȧ2
2

)
.

(36)

Here Â = diag(A1(t, r),A2(t, r)) is the2 × 2 matrix in Keldysh space, whereA1,2 stand for fluctu-
ating vector potentials in the conductor. We assume thatcurlA = 0, thus neglecting relativistic effects.
The matrixQ̂(r, t1, t2) accounts for diffusive motion of electrons and obeys the semi-classical constraint
Q̂(r) ◦ Q̂(r) = δ(t1 − t2). Boundary conditions are imposed on the fieldQ in the left (L) and right (R)
reservoirs [67],Q

∣∣
r=R

= ĜR andQ
∣∣
r=L

= ĜL(χ) = eiχτ̂3/2ĜLe
−iχτ̂3/2. HereGL,R are the Keldysh

Green’s functions in the leads.
With the action (36) the CGF should be evaluated as a path integral over all possible realizationsA1,2

and Q̂. In general this is a complicated task. However, in the limit1/g ≪ 1 the problem simplifies.
We employ the parameterizationQ = eiW Ĝe−iW , WĜ + ĜW = 0. Here the fieldW accounts for the
rapid fluctuations ofQ with typical frequenciesω ∼ eV and momentaq ∼

√
eV/D, while Ĝ(ǫ, r) is the
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slow stationary Usadel Green’s function varying in space onthe scale∼ L. As a first step we integrate
out the fieldW in the Gaussian approximation to obtain the non-linear action S̃(χ, Ĝ,A) of the screened
electromagnetic fluctuations in the media. We keep only quadratic terms inS̃, what is equivalent to the
random phase approximation (RPA). As second step one can integrate out the photon fieldA and reduce
the problem to an effective actionSeff [χ, Ĝ]. Then the saddle point approximation,δSeff [χ, Ĝ]/δĜ = 0

yields the kinetic equation for̂G(ǫ, r). This program is very similar to that pursued in Ref. [66].
In the universal limit of a short screening radius,r−1 = (4πe2ν3)

1/2 ≫
√
eV/D, we get the following

result

Seff [χ, Ĝ] =
t0
8
gL2−d

∫
d dr

∫
d ǫ

2π
Tr

[
∇Ĝǫ(r)

]2

+
t0
2

∫
d dr dω d dq

(2π)
d+1

ln

[
Det||D−1

ω (r,q)||
−(Dq2)2 − ω2

]
(37)

whereDω is a 2 × 2 matrix operator in Keldysh space corresponding to the non-equilibrium diffuson
propagator,

Dα β
ω (r,q) =

[
Dq2 τα β

1 + (i/4)

∫
dǫTr

(
γαγβ − γαĜǫ+ω/2(r)γ

βĜǫ−ω/2(r)
)]−1

with γ0 = 1̂, γ1 = τ̂3. The first term inSeff is due to the diffusive motion of free electrons, while the
second describes the real inelastic electron-electron collisions with energy transferω ≤ max{eV, T }.

Minimizing the actionSeff under the constraint̂G(ǫ, r)2 = 1 one obtains a non-linear matrix kinetic
equation forG(ǫ, r). It has a structure of the stationary Usadel equation

D∇
(
Ĝǫ(r)∇Ĝǫ(r)

)
=

[
Îǫ(r), Ĝǫ(r)

]
(38)

with the extra matrix collision integral̂Iǫ in the r.h.s

Îǫ(r) =
i

8νd

∑

α,β

∫
dω d dq

(2π)
d+1

Dα β
ω (r,q)

[
γαĜǫ−ω(r)γβ + γβĜǫ+ω(r)γα

]
(39)

This kinetic equation should be supplemented by theχ-dependent boundary conditions at the interfaces
with the leads, as described after Eq. (36). Since we consider the FCS at low frequencies,Ω ≪ ETh,
there is no time-dependent term in our kinetic equation similar to that of the usual time-dependent Usadel
equation. In this limit the collision integral (39) guarantees the current conservation,div j = 0, where

j ∝
∫
dǫTr

(
τ̂3Ĝǫ(r)∇Ĝǫ(r)

)
. The resulting CGF,F(χ), can be found by evaluating the action (37) and

solving the kinetic equationGǫ(χ, r). In the absence of the fieldχ our matrix kinetic equation reduces to
the standard kinetic equation with a singular kernelK(ω) ∝ ω d/2−2 in the collision integral [63, 64, 66].

To derive the action (37) we have used a local approximation,i.e. we neglected gradient corrections
proportional to(∇Ĝ ∼ 1/L) ≪ ∇W . In this way we incorporate only classical effects of interaction
into the FCS. The gradient terms would be responsible for quantum corrections to the CGF, coming from
frequenciesω ≫ max{T, eV }. They are small in the parameter1/g and are beyond the scope of this
article.

So far our consideration was rather general. In the following we restrict the analysis to the most inter-
esting shot-noise limit,eV ≫ T . Then the further particular solution of kinetic equation strongly depends
on the relative magnitude of the diffusion timeτD compared to the voltage dependent energy relaxation
time τE(V ). In the range of sufficiently high voltages, so thatτD ≫ τE(V ), the system is driven into the
“hot electron” regime. In this limit the electron distribution function of electrons has the from of a local
Fermi distribution with position dependent temperatureT (r) set by the applied voltageeV and differing
from the temperatureT in the leads. For smaller voltages, so that1/eV ≪ τD ≪ τE(V ), the electrons are
described by a strongly non-equilibrium two step distribution function, which results from the weighted
average of the Fermi distribution functions in the left and right leads. We thus call this situation the regime
of “cold electrons”. The behavior of the FCS is essentially different in these two regimes and we consider
them separately in the following subsections.
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4.2 “COLD ELECTRON” REGIME.

The cold electron regime is defined by relationETh ≫ 1/τE. Under this condition the collision term in
the kinetic equation is small, and one can obtain the Green’sfunction perturbatively around the coherent

solution obeying the Usadel equation∇z

(
Ĝ 0

ǫ (z)∇zĜ
0
ǫ (z)

)
= 0. Here0 < z < 1 is a dimensionless

coordinate along the current direction. This solution was found in Ref. [68] and atT ≪ eV can be written
as

Ĝ 0
ǫ (χ, z) = Lχ(z)ĜL(ǫ, χ) +Rχ(z)ĜR(ǫ) (40)

Lχ(z) =
sinh(1 − z) θχ

sinh θχ
, Rχ(z) =

sinh z θχ

sinh θχ
, θχ = ln(u+

√
u2 − 1),

whereu = 2eiχ − 1 for energies0 < ǫ < eV andu = 1 otherwise. In first order inτD/τE the CGF can be
found by substitutinĝG0 in the action (37). The main contribution comes from frequenciesT < ω < eV .
After some algebra we obtain

F(χ) = −(t0 g/8π)

∫
dǫ θ2χ(ǫ) + FColl(χ). (41)

Here the first term is the CGF of non-interacting electrons, andFColl(χ) is the correction due to electron-
electron interaction. It reads

FColl =
t0L

d

2

1∫

0

dz

eV∫

ω∗

dω d dq

(2π)d+1
ln

{
1 − Nω ω

2Π(χ, z)

(Dq2)2 + ω2

}
(42)

Π(χ, z) = −4Lχ(z)Rχ(z)eiχ
{
1−Lχ(z)−Rχ(z) − [zLχ(z)+(1 − z)Rχ(z)] (eiχ−1)

}

whereNω = (eV/|ω| − 1), andω∗ = max{ETh, T }. The Thouless energy appears in the low frequency
cut-offω∗ due to finite-size effects whileT takes into account the smearing of a step in the Fermi distribu-
tion. We also note two important properties of the functionΠ(χ, z), namely (i)Π(iγ, z) > 0 for imaginary
χ = iγ and (ii)Π(χ, z) = −P2(z)χ

2 +O(χ2) atχ≪ 1 whereP2(z) = 8
3z

2(1 − z2)(1 − z + z2) > 0.
To estimate the range of validity of the result (42) we substitute a zero order distribution function

f0(ǫ) = (1− z)fF (ǫ− eV/2) + zfF (ǫ+ eV/2) into the collision integral,fF (ǫ) being equilibrium Fermi
distribution. Then one estimates the 1st order correction to be

δf(1)(ǫ±) ∼ L2/D

τE(V )

∫ eV

ǫ±

dω

ω

(
eV

ω

)(2−d)/2

(43)

if ǫ± = |ǫ± eV/2| ≪ eV andǫ± > max{ETh, T }. By virtue of Pauli’s principle this correction may not
exceed unity,δf(1) ≤ 1, which is true only forǫ± ≥ ǫ∗, where the scaleǫ∗ is given by

ǫ∗(V ) ≃
{

(eV )2/g2ETh , for D = 1
eV exp{−g ETh/eV } , for D = 2.

(44)

This result shows that a simple perturbation theory is validprovidedǫ∗ < max{ETh, T }. Resolving this
inequality we obtain the conditionτD < τ∗, where the time scaleτ∗ is presented in Table 1. The 1st order
perturbation theory breaks down for higher voltages, whenτD > τ∗. In this situation we can still obtain
the result up to a factor of order of unity from Eq. (42) if we use as cut-offω∗ ≃ ǫ∗.

The result (41 - 42) with cut-offω∗ = max{ETh, T, ǫ
∗} enables us to evaluate all irreducible cumulants

Ck = −(−i)k(∂k/∂χk)F(χ) of a number of electrons transfered. There is no correction to the current on
the classical level. The interaction correction to the noise and the 3d cumulant is small in the parameter
τD/τE and dominated by inelastic collisions with the energy transfer ω ∼ eV . On the contrary, the

Copyright line will be provided by the publisher



pop header will be provided by the publisher 19

Fig. 8 Sketch of the voltage dependence of the even cumulants of thecharge transferC2n for n > 2 for a 1D diffusive
wire (left panel) and a 2D diffusive film (right panel). The curves 1,2,3,4 correspond to temperaturesETh ∼ T1 <
T2 < T3 < T4.

leading contribution to the higher order cumulants is due toCoulomb interaction and it is dominated by
quasi-elastic collisions with low energy transfersω∗ ≤ ω ≪ eV . Up to a numerical constant the result is

C2k,2k+1 ∝ 〈N〉
g

( eV

ETh

)d/2(eV
ω∗

)k−1−d/2

, for k ≥ 2 (45)

where〈N〉 ≫ 1 is the average number of electrons transfered andω∗ = max{ETh, T, ǫ
∗}.

The voltage dependence of thenth cumulant withn ≥ 4 at different temperatures is sketched in Fig. 8.
Eq. (45) shows that then + 1st cumulant of the charge transfer is parametrically enhanced versus thekth
one by the large factoreV/ω∗ ≫ 1. It also follows from Eq. (45) that the higher cumulants growwith
increasing voltage forETh > 1/τ∗ and decay forETh < 1/τ∗, where the new time scaleτ∗(eV, T ) is
parametrically smaller thanτE , τ∗ ≪ τE . (See Table I). The current fluctuations are strongest ifT ≤
ETh ∼ 1/τφ(V ). In this case their maximum occurs ateV/ETh ∼ g for 1D and ateV/ETh ∼ g/ ln g for
2D. To clarify the physical origin of this strong amplification of the current fluctuations we present below
a heuristic interpretation of the result (42) by relating itto the phenomenon of photo-assisted shot noise.

Photo-assisted shot noise has been theoretically predicted by Lesovik and Levitov [69]. They considered
the mesoscopic scatterer with a single transmission channel T biased by the AC voltageV (t) = VΩ sin(Ωt)

(See Fig. 3). This voltage leads to an oscillating phaseϕ(t) =
∫ t

−∞
eV (τ)dτ = ΦΩ cosΩt across the

conductor with amplitudeΦΩ = eVΩ/h̄Ω. It has been shown in Ref. [69] that such a phase modulation
results in a zero-frequency non-transport shot noise due tothe excitation of electron-hole pairs in the leads.
At low temperatures,T ≪ h̄ΦΩ, the noise is

S2(ω = 0) =
e2

2πh̄
T (1 − T )

+∞∑

n=−∞

|nΩ|J2
n(ΦΩ) (46)

wherePn = J2
n(ΦΩ) is the probability to excite an electron-hole pair with the absorption ofn photons,

andJn(x) are Bessel functions. In the limit of weak phase oscillations,ΦΩ ≪ 1, the noise is quadratic in
the amplitude,S2 = GQh̄ΩT (1 − T )Φ2

Ω.
The physical origin of the interaction correction to the FCSin diffusive conductors has very much

in common with the generation of photo-assisted shot noise.Exploiting the path integral formulation of
quantum mechanics one can represent an interacting electron problem by a picture where a given electron is
moving in a fluctuating electromagnetic fieldA1,2(r, t) created by all other electrons (with indicesj = 1, 2
referring to a forward and a backward time evolution operator). Since the main effect of the interaction
comes from low-frequency fields withω ≪ eV , the classical partA = (A1+A2)/2 is of main importance.
The fieldAq,ω leads to the excitation of electron-hole pairs, which, similar to photo-assisted shot-noise,
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Fig. 9 Diagrammatic representation of interaction corrections to the shot noise andC4. Shaded blocks correspond
to the imaginary part of diffuson, denoted asD̃q(t), and thick solid lines correspond to the screened propagator of the
electromagnetic fluctuationsB(t). Each vertextk brings time derivative∂tk

.

produce corrections to the FCS of the form

∆F(χ,A) = −gL
2(1−d)

4π

∑

q1,q2

ω2

(D|q1 + q2|2/4)2 + ω2

∫
ddrω Π̃(χ, z)Aq1,ωA∗q2,ωe

i(q1−q2)r

(47)

Up to second order inχ2 the polarization operator̃Π(χ, z) agrees withΠ(χ, z) in Eq. (42). It is important
that this correction is proportional to the total conductanceg of the system. Thus it may become comparable
with the non-interacting result for the CGF when the magnitude of phase fluctuation across the sample
becomes of the oder of unity.

In diffusive system with large conductanceg ≫ 1 the fluctuation ofAq,ω are screened and can be
considered as Gaussian with an Ohmic spectrumB(ω) = 〈|Aq,ω|2〉 = Nω/(νDω), whereNω

∼= eV/|ω|
is a non-equilibrium distribution function of electromagnetic modes. Thus in order to obtain the interaction
contribution to the CGF, the correction (47) has to be exponentiated and averaged over these fluctuations.
Such considerations give exactly the result (42) with polarization operator calculated to accuracyχ2.

It is also instructive to consider the physical picture of photo-assisted current fluctuations in the time
domain. To illustrate the main idea we compare the interaction corrections to the shot noiseC2 and the 4th

cumulantC4 for a 1D wire. In the time representation they read

∆C2 =

∫ 1

0

P2(z) dz
∑

q

∫
D̃′t1(q, t1 − t2)B′t2(t2 − t1)dt1dt2 (48)

∆C4 = 6

∫ 1

0

P 2
2 (z) dz

∑

q

∫
D̃′t1(q, t1 − t2)D̃′t4(q, t4 − t3)B′t3(t3 − t1)B′t2(t2 − t4)dt1 . . . dt4

where

B(t) =

∫ +∞

1/ǫ∗

dω

π

Nωe
−iωt

νDω
, and D̃(q, t) =

∫ eV

0

dω

π
Im

(
1

Dq2 − iω

)
e−iωt (49)

The corresponding Feynman diagrams are shown in Fig. 9. The correlation time of the diffuson propagator
D̃q(t) is short, given byτV ∼ 1/eV , while the photon propagatorB(t) is strongly non-local in time with
long correlation timeτ ∼ 1/ǫ∗ ≫ τV . Therefore the time integral in∆C2 is dominated by the short range
|t1 − t2| ∼ τV only, and the correction to shot noise is small. In contrast,when evaluating the correction
to ∆C4 both short,|t1 − t2| ∼ |t3 − t4| ∼ τV , and long time intervals,|t1 − t3| ∼ |t2 − t4| ∼ 1/ǫ∗,
are essential. The same structure holds for higher cumulants C2n>4 which are expressed by one-loop
diagrams withn diffusons andn propagators of the electromagnetic field. We thus see that a conversion of
the long-time electromagnetic field correlations into the current of electron hole pairs is the reason for an
enhancement of higher order cumulants in diffusive wires and films.
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Fig. 10 The log of probability to measure the big non-equilibrium current fluctuations (eV ≫ T ). Curve (1),
coherent regime; curve (2), incoherent “cold electron” regime,γ = 0.2; curve (3), “hot electron” regime.

With the results (41, 42) we can also explore the current probability distribution

P (I) =

∫ π

−π

dχ

2π
exp{−Ω(χ)}, Ω(χ) = −F(χ) + i(It0/e)χ. (50)

In the long-time limit,It0/e ≫ 1, this integral can be evaluated within the stationary phaseapproxi-
mation. For this analysis it is important that the actionF(χ) has two branch points,χ = ±iγ, where
γ ∼ (ω∗/eV )1/2 ≪ 1. The points±iγ give two threshold currents,I± = (e/t0)∂S/∂χ

∣∣
χ=±iγ

, which

read(I± − 〈I〉)/〈I〉 = ±γ/3.
Provided the fluctuations are small,I− < I < I+, the saddle pointχ∗ of the functionΩ(χ) lies on

the imaginary axis and satisfies the condition|χ∗| < γ. Thus with exponentially accuracy the probability
distribution becomesP (I) ∼ exp{−Ω(χ∗)}. Due to the smallness of the parameterτD/τE we found that
P (I) deviates only slightly from the probabilityP0(I) of current fluctuations in the non-interacting limit.
For larger current fluctuations,I < I− or I > I+, the potentialΩ(χ) does not have a saddle point any
more, and one should use the contourC0 of a zero phase,ImΩ(χ)

∣∣
χ∈C0

= 0 for the asymptotic analysis
of the integralP (I). This contour is pinned by the branch pointχ = ±iγ, which yieldsexponential tails
in the current probability distribution

P (I) ≈ exp{−F(±γ)∓ γIt0/e} . (51)

The results for the probability distribution are displayedin Fig. 10. The Coulomb interaction does not
change the Gaussian fluctuations, but strongly affects the tails of P (I). They describe long correlated
“trains” in the transfered charge, in agreement with our previous discussion on the enhancement of higher
order cumulantsSn≥2(D+1).

One can also relate the statistics (42) to the photocountingstatistics studied by Kindermannet al. [70].
In that work the FCS of incoherent radiation, which is passedthrough a highly transmitting barrier with
transmission coefficientT ≤ 1, was studied. It was shown that a highly degenerate (or classical) source
of radiation with bosonic occupation numberfω ≫ 1 produces long exponential tails in the photocounting
distribution,P (n) ∝ exp(−n/fω). The tails of the distribution (51) are of the same bosonic nature. The
classical electromagnetic fieldAq,ω with ω ≪ eV and large occupation numberNω

∼= eV/|ω| can excite
electron-hole pairs with probabilityP = ω2/((Dq2)2 + ω2). This probability plays the role similar to
the transmission coefficientT . It is enhanced due to the diffusive motion of electrons and can be of order
of unity. The polarization operatorΠ(χ, z) describes the efficiency of the conversion of electromagnetic
radiation into a current of electron-hole pairs.
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4.3 “HOT ELECTRON” REGIME.

In the “hot electron” regime,ETh ≪ 1/τE, describing the regime of high applied voltages or long enough
samples, the collision term in the kinetic equation (38) dominates. Thus the saddle point solution of the
action (37) should make the collision integral vanish. To find this solution we note the that collision term
in the action is invariant under the gauge transformationG̃ǫ(r) = e−K̂ǫ(r)Gǫ(r)e

K̂ǫ(r). HereK̂ǫ(r) =
1
2 τ̂3[γ(r) + β(r)(ǫ − φ(r))] andγ, β andφ are arbitrary functions in space. In particular, this leadsto
the conservation of the current density,div j = 0, and of the energy flow,div jE = 0, wherejE ∝
(2π)−1

∫
ǫ dǫTr

(
τ̂3Ĝǫ(r)∇Ĝǫ(r)

)
. It is well known that the physical Green functionG(ǫ, r) with a

local Fermi distributionfǫ(r) = [e(ǫ−φ(r))/T (r) + 1]−1 makes the collision term in conventional kinetic
equations vanish. Its gauge transform,G̃ǫ(r), does the same for the generalized kinetic equation (38).

The four unknown functionsφ, γ, T andβ can be found from the extremum of the simplified action
Shot which is obtained by substituting̃Gǫ(r) into the diffusive part of the actionSeff . For the rest of this
discussion we restrict ourselves to a 1D wire, since for the 2D geometry shown in Fig.1, all results are
identical to 1D. We write the action in the formShot = (2π)−1g0t

∫ 1

0 dzShot(z), where the spatial density
Shot(z) reads

Shot(z) = −T (∇γ − β∇φ)2 + (∇γ − β∇φ)∇φ − π2

3
T 3(∇β)2 +

π2

6
(∇T 2)∇β (52)

HereT (z) andφ(z) have a meaning of a local temperature and chemical potential, while β(z) andγ(z)
are their quantum conjugate counterparts. The action (52) has to be minimized subject to the boundary
conditionsφ(z)

∣∣
z=0,1

= ±eV/2, T (z)
∣∣
z=0,1

= T , iγ(0) = χ andγ(1) = β(0) = β(1) = 0.
The actionShot possesses 4 integrals of motion. They are the physical current J = ∂Shot/∂∇γ, the

“quantum” currentM = ∂Shot/∂∇φ, the energy currentJE = Jφ − 2π2

3 T 3∇β + π2

6 (∇T 2), and the
spatial density of the actionShot(z). Performing the Legendre transform ,we can reduce the task to the
boundary value problem for two functionsT (z) andβ(z). Since it appears not to be possible to obtain an
analytic solution of these equations f or non-vanishingχ, we solved them numerically. The results for the
probability distributionP (I) are shown in Fig. 10. As in the previous section it can be evaluated using the
saddle point approximation. We can see from Fig. 10 that the probability of positive current fluctuations,
∆I > 0, is enhanced in the “hot electron” limit as compared to the coherent regime, while the probability
of negative fluctuations,∆I < 0, is affected to a lesser extent. The action (52) is equivalent to the actions
of Refs. [60, 61] under the appropriate change of variables.A further increase of the voltage or the sample
size will eventually bring the system into the macroscopic regime,L≫ Le−ph. The conductor in this case
displays only Nyquist noiseS = 4kBT/R, while higher order cumulants vanish and the probability of
current fluctuations becomes Gaussian [61].

5 Summary

To summarize, we have studied the full current statistics (FCS) of charge transfer in two important ex-
amples of the mesoscopic conductors taking into account theeffects of Coulomb interaction. First, we
derived the FCS for a single-electron transistor with Coulomb blockade effects in the vicinity of a conduc-
tance peak. Quantum fluctuations of the charge are taken intoaccount by a summation of a certain subclass
of diagrams, which corresponds to the leading logarithmic approximation. In lowest order in the tunneling
strength our results reproduce the ‘orthodox’ theory, while in second order they account for renormaliza-
tion and cotunneling effects. We have shown that in non-equilibrium situations quantum fluctuations of the
charge induce lifetime broadening for the charge states of the central island. An important consequence is
the reduction of the probability for currents much larger than the average value.

We further investigated the effect of Coulomb interaction onto the FCS in one- and two-dimensional
diffusive conductors. We have found that Coulomb interaction essentially enhances the probability of rare
current fluctuations for short conductors,1/eV ≪ τD ≪ τE , with τD andτE being the diffusion and
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energy relaxation times. The fluctuations are strongest at low temperatures,T ≪ 1/τD, and they reach
the maximum when the sample size matches the voltage dependent dephasing length due to Coulomb
interaction. We have shown that tails of the probability distribution of the transfered charge are exponential
and they arise from the correlated fluctuations of the current of electron-hole pairs which are excited by the
classical low-frequency fluctuations of the electromagnetic field in the media.
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