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Abstract

Fluid mechanical problems related to two-layer flows are of considerable interest in a
variety of geophysical, atmospheric and engineering contexts. Experience has shown that
the understanding of such problems can also yield valuable insight in stratified layered
flow problems including power plant and reservoir outflows as well as harbor and flood
channel design. While many geophysical and atmospheric flows involve continuously
stratified systems, often flows can be modeled as a composition of discrete layers.

In this study, a two-layer counter-current (exchange) flow system over a submerged
sill is investigated. The main objectives are to investigate the effect of higher Reynolds
numbers on the interfacial stability between the two layers, the effect of locally enhanced
bottom roughness on interfacial waves and the influence of the bottom slope on hydro-
dynamic instabilities at the interface. The approach is based on physical experiments
using optical measurement techniques and numerical analysis by means of linear stability
analysis.

Different initial experimental conditions are investigated, distinguishing the case of
hydrostatic disequilibrium and the case of a global pressure-balanced state. The exper-
iments demonstrate that it is impossible to generate experimentally a purely baroclinic
exchange flow, without invoking additional barotropic forcing. A simplified barotropic
model, adapted for the experimental conditions, is developed. This model can predict the
flow rate oscillations and the related period, revealing good agreement with experimental
data. The effect of the unsteady superimposed barotropic forcing on the interfacial wave
characteristics is further investigated. Large, two-dimensional, surge-like structures are
observed during the experiments, whose generation is related to the flow rate oscillations.
By analyzing time series of the velocity data, the length scales of these structures reveal
to be comparable to the total water depth and to increase with increasing Reynolds
number. Moreover, the entrainment coefficients are larger than the values reported in
previous studies of stratified exchange and arrested flows.

Further results of experiments with locally enhanced bottom roughness are presented.
Two different types of bottom roughness are investigated, namely fine, dense, short bot-
tom roughness elements and tall, sparse roughness elements. Bottom roughness causes an
increased energy dissipation and less inclined interface positions in the experiments. The
two roughness types (dense or sparse) control differently the generation and collapsing
mechanisms of the large-scale two-dimensional structures at the interface between the
two layers. The estimated vertical and horizontal length scales of the two-dimensional
structures are reduced in the rough cases compared to the smooth case and the related
generation period increases linearly with their size.

On the basis of dimensional analysis, three parameters representing the ratio between
the different vorticity production sources (baroclinic production, vortex stretching and
bottom benerated turbulence), are defined and compared to the different experiments.
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These parameters show that the vorticity production due to bottom friction reduces the
acceleration of the flow down the slope and acts as an additional restoring force, together
with the buoyancy force. Sparse bottom friction gives the lowest entrainment coefficients
which are reduced by 1/3 compared to the smooth case and to the case with dense bottom
roughness, where the entrainment coefficients are similar.

A first step in understanding the stability of a two-layer stratified exchange flow down
a slope was done by performing a linear stability analysis. As the modeled flow for the
stability analysis is strongly idealized, it does not take into account the full portrait
of the flow processes occurring at the interface. For this reason, results relative to the
stability analysis are not compared to experimental data. Comparisons to experimentally
measured quantities are done only for validating the choice of certain definitions for the
stability analysis, as for example the velocity profiles and other parameters characterizing
the shear layer or density layer thickness. Nevertheless, linear instability does correctly
describe the onset and early evolution of infinitesimal perturbations and the results can
be used as starting point for a non-linear analysis.

Different numerical methods are tested, namely a pseudospectral method employing
Chebyshev Polynomials and a finite difference method. Due to the low convergence of
the Chebyshev series, a central second-order finite difference method with an irregular
grid is employed. The stability is studied from a temporal frame of reference. Results
show that for a given wavenumber, the bottom slope has two effects on the stability:
first, it increases the unstable regions as the stationary neutral stability curve is not the
stability boundary anymore. Second, it introduces in the unstable region the coexistence
of two types of instabilities: Kelvin-Helmholtz instabilities characterized with higher
temporal amplification rates and which decrease for increasing Richardson numbers, and
Holmboe instabilities, which exist at higher Richardson numbers with a finite, non-zero
phase speed. The unstable regions increase for larger slope angles. The slope has thus a
similar effect on the stability of the flow as the ratio between the shear and density layer
thickness.



Kurzfassung
Natürliche Wasserkörper, die über eine Engstelle oder einen Kanal miteinander verbun-
den sind, können aufgrund unterschiedlichen Salz- oder Sedimentgehalts oder variabler
Temperatur eine veränderliche Dichte aufweisen. Dadurch entstehen Strömungsvorgänge,
bei denen große Wassermengen samt ihren chemischen, physikalischen, biologischen Was-
serqualitätsmerkmalen ausgetauscht werden. Zahlreiche Beispiele finden sich in der Ozea-
nographie (Straße von Gibraltar, Bosporus, Nord- Ostsee Verbindung) sowie im Bereich
der Binnengewässer (Seen und Wasserreservoirs, die über Engstellen verbunden sind, so-
wie Seitenarme bei Flüssen). An der Zwischenschicht solcher Austauschströmungen treten
Strömungsinstabilitäten auf, wie z.B. Kelvin-Helmholtz Wirbel, die zu einem Massenaus-
tausch bzw. Mischungseffekten zwischen der oberen und der unteren Fluidschicht führen,
und dadurch deren Wasserqualitäts- und Strömungseigenschaften beeinflussen. Ziel dieser
Arbeit ist es, den Zusammenhang zwischen den maßgeblichen Parametern (geometrische
Bedingungen, Wassertiefe sowie Dichteunterschiede) und den auftretenden Strömungs-
instabilitäten mit den damit verbundenen Misch- und Transportvorgängen im Detail zu
beschreiben. Eine Quantifizierung und Prognose dieser Strömungsphänomene soll mittels
physikalischer Experimente unter Verwendung moderner synoptischer Messtechniken, so-
wie durch hydrodynamische Stabilitätsanalysen erreicht werden.

Diese Arbeit besteht aus drei wesentlichen Elementen: 1) die experimentelle Unter-
suchung einer geschichteten Austauschströmung unter Bedingungen höherer Reynolds-
zahlen und 2) unter den zusätzlichen Einfluss von erhöhter Bodenrauheit und 3) die
lineare Stabilitätsanalyse einer Austauschströmung unter den Einfluss einer räumlichen
Beschleunigung. Im Folgenden werden diese drei Elemente zusammengefasst.

1. Einfluss höherer Reynoldszahlen. Unterschiedliche Anfangsbedinugungen für das
Experiment einer dichtegeschichteten Austauschströmung wurde zunächst unter-
sucht und diskutiert. Die erste dieser Möglichkeiten besteht darin, das selbe Was-
serniveau im rechten und linken Reservoir herzustellen. Unter dieser Konfigurati-
on, besteht ein anfängliches Ungleichgewicht, da die resultierende hydrostatische
Kraft auf der Trennwand auf der Salzseite größer ist als die resultierende Kraft auf
der Frischwasserseite: das führt zu einer pulsierenden barotropischen Strömung,
nachdem die Trennwand entfernt wird. Um diesen Effekt auszugleichen kann die
Wassertiefe im frischen Wasserbehälter vor Beginn des Experiments erhöht werden,
um damit ein globales Kräftegleichgewicht zu erzielen. Nach dem Ziehen der Trenn-
wand, erzeugt der Niveauunterschied eine barotropische Welle, die der baroklinische
Strömung überlagert ist. In beiden Fällen also, ist die Strömung durch eine Überla-
gerung auf eine baroklinischen Strömung, einer barotropischen Strömung charakte-
risiert. Experimentelle Ergebnisse zeigen, dass es unmöglich ist, einen ausschließlich
baroklinischen Austausch experimentell zu erzeugen. Zur Beschreibung dieses baro-
tropischen Effekts wurde ein vereinfachtes analytisches Modell entwickelt, angepasst
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an die experimentellen Bedingungen. Mit Hilfe dieses Ansatzes lassen sich nun der
Nettodurchfluß sowie die Periode der barotropischen Schwingungen voraussagen.
Schließlich wurde dieser Ansatz mit experimentellen Daten aus dieser und anderen
Untersuchungen validiert. Farbvisualisierungen zeigten, dass nicht nur klassische
Kelvin-Helmholtz Wirbel, sondern auch interne Wellen, in Form von pulsierenden
Salzkeilen an der Zwischenfläche generiert werden. Diese Salzkeile werden erzeugt,
um das barotropische Gleichgewicht wieder herzustellen. Diese Art der Instabilität
wurde bereits in anderen Untersuchungen beobachtet, konnten aber bislang nicht
physikalisch erklärt werden und wurden meist als normale Instabilität ähnlich den
Kelvin-Helmholtz-Wirbeln interpretiert. Es konnte gezeigt werden, dass die Erzeu-
gungsfrequenz dieser Instabilitäten nahe der berechneten Frequenz der barotropi-
schen Schwingungen in der Durchflussrate liegen. Weitere fünf Experimente sind
zur Analyse der pulsierenden barotropischen Strömung und deren Auswirkung auf
die Entwicklung der Scherschicht durchgeführt worden.

Spektren der Geschwindigkeitsfluktuationen besitzen im niedrigen Frequenzbereich
eine Steigung von −7/3 , während im hohen Frequenzbereich die Steigungen bei
−5/3 liegen. Diese unterschiedlichen Steigungen deuten auf das Zerfallen zweidi-
mensionaler großskaliger Strukturen in Strukturen mit höherer Frequenz hin. Die
unterschiedlichen spektralen Verteilungen der Geschwindigkeitsfluktuationen in der
horizontalen und vertikalen Richtung deuten weiterhin auf anisotrope Turbulenz im
niederfrequenten Bereich hin, das stärker ausgeprägt ist für die Experimente mit
höhererer Reynoldszahl. Mittlere Geschwindigkeitsfelder zeigen eine zunehmende
Scherschichtdicke mit zunehmender Richardsonzahl. Das Verhältnis u′/∆U , das
die Reaktion der Geschwindigkeitsfluktuationen durch den Geschwindigkeitsunter-
schied auf Grund der Beschleunigung entlang der Schwelle beschreibt, zeigt eine
allgemeine Zunahme in Längsrichtung. Diese Ergebnisse stehen im Gegensatz zu
Beobachtungen von Koop and Browand [1976] und Pawlak and Armi [2000]. In
diesen beiden Untersuchungen wird von einer Abnehmrate in Längsrichtung von
x−3/4 berichtet.

Die vertikalen und horizontalen Längenskalen der beobachteten großskaligen Struk-
turen wurden mit der Zeitskala, welche mittels Autokorrelationsfunktion der Ge-
schwindigkeitsfluktuationen bestimmt wurde, und der konvektiven Geschwindig-
keit ∆U/2 abgeschätzt. Die horizontalen und vertikalen Längenskalen zeigen eine
allgemeine Zunahme mit zunehmender Wassertiefe, gleichzeitig jedoch eine schwa-
che Abnahme mit zunehmender Auftriebsbeschleunigung bei Re∗ =

√
g′HH/ν <

60, 000. Die so definierte Reynoldszahl hat sich als Schlüsselparameter für die Be-
schreibung der Anfachungsrate der großskaligen Strukturen erwiesen. Die folgende
Beziehung zwischen dieser Reynoldszahl und der Längenskalen wurde vorgeschla-
gen: LI/H = κRe∗ wobei κ 0.9 · 10−5 für die horizontalen Skalen und 0.33 · 10−5

für die vertikalen Skalen beträgt. Ein ähnliches Verhalten der Längenskalen wur-
de auch in Abhängigkeit der Richardsonzahl beobachtet. Allerdings ist hierbei die
Abweichung zwischenVorhersage und experimentellen Daten höher. Einmischungs-
raten zeigen höhere Werte als in den meisten Studien über Zweischichtströmun-
gen (Pawlak and Armi [2000], Morin and Loewen [2004]), bei gleicher Richardson-
zahl. Für größere Reynoldszahlen, steigen auch die Einmischungsraten, was über-



raschend ist, denn normalerweise passiert das Gegenteil. Das kann damit erklärt
werden, dass die Erhöhung der Reynoldszahl durch die Erhöhung der Wassertiefe,
und somit einer verstärkten barotropischen Strömung gekoppelt ist. Eine stärke-
re barotropische Strömung erzeugt größere Salzkeile an der Zwischenfläche. Diese
großskaligen Wirbelstrukturen dominieren im vorliegenden Strömungszustand das
Einmischungsverhalten. Das Verhältnis zwischen der Einmischungsgeschwindigkeit
und den mittleren Geschwindigkeitsfluktuationen, aufgetragen gegen die in Pawlak
and Armi [2000] definierte Richardsonzahl, zeigt gute Übereinstimmung mit dem
Modell von Cotel and Breidenthal [1997], mit einer Abhängigkeit von Ri−1.

2. Einfluss erhöhter Bodenrauheit. Experimentelle Ergebnisse von Versuchen mit lokal
erhöhter Bodenreibung werden im Weiteren präsentiert. Die Daten dieser Experi-
mente wurden mit kombinierten PIV/PLIF Messungen erfasst. Zwei Rauheitstypen
sind in den Experimenten eingesetzt worden, nämlich dicht beieinanderliegenden,
niedrige Rauheitselemente und zerstreute und höhere Rauheitselemente. Diese Er-
gebnisse wurden mit deren eines Falles mit glatter Sohle verglichen. In einem Fall
wurde künstlicher Rasen als lokale erhöhte Bodenrauheit über der Schwelle ver-
wendet, mit einer mittleren Höhe von 1, 6 cm und einer sehr hohen Dichte der
Rauheitselemente. Im anderen Fall wurden Kunststoffdübel eingesetzt, mit einer
Höhe von 3, 5 cm jedoch mit einer verringerten Dichte der Rauheitselemente.

In solchen Strömungen sind drei unterschiedliche Parameter für die Produktion der
Wirbel verantwortlich: eine erste Quelle der Wirbelbildung wird durch die Verände-
rung der Wassertiefe über die Schwelle gegeben. Eine zweite Ursache sind barokli-
nischerzeugte Wirbel, die durch die Neigung der Scherschicht gegeben ist. Drittens,
trägt die erhöhte Bodenrauheit zur Turbulenz bei, die als zusätzliche Quelle der
Turbulenzproduktion angesehen werden kann. Durch Dimensionsanalyse der Wir-
belgleichung, wurden drei Parameter definiert, um den Beitrag jeder Turbulenz-
quelle zu analysieren. Das Verhalten der drei Wirbelparameter hat gezeigt, dass
die Bodenrauheit zwei wichtige Ursachen für die Stabilisierung der Scherschicht
darstellt: erstens verringert sie die Beschleunigung über die Schwelle und damit die
Geschwindigkeit in der unteren Schicht. Zweitens erhöht sie die turbulente Energie-
übertragung zwischen der unteren Schicht und der Scherschicht, mit dem Ergebnis,
dass in einem Experiment die großskaligen Wirbelstrukturen sich nicht mehr ent-
wickeln oder, im anderen Fall, dass sich kein Nachlauf hinter der Strukturen bildet.

Der Vergleich mit der Theorie zur internen Hydraulik hat gezeigt, dass die Rauheit
die Position der Scherschicht nach oben verschiebt und die Neigung in Längstrich-
tung reduziert. Die interne Energie der im Fall der erhöhten Bodenreibung weißt
hohe Verluste in der Beschleunigungszone der Schwelle auf und kleinere Werte der
internen Froudezahl im Vergleich zu den theoretischen Vorhersagen. Dies hängt
einerseits mit den erhöhten Scherschichtlagen zusammen aber auch mit den gerin-
geren Geschwindigkeiten in beiden Schichten im Fall der erhöhten Bodenreibung.

Die Struktur der Strömung wurde analysiert, wobei die physikalische Beschreibung
der Salzkeilen an der Scherschicht über der Schwelle und eine Abschätzung der
Längenskalen der beobachteten Strukturen durchgeführt wurde. Auch durch die
Spektralanalyse der Geschwindigkeitsfluktuationen, ist die Verkleinerung der Wir-



belgröße nachgewiesen worden. Die unterschiedlichen Bodenrauheitselemente zei-
gen bezüglich der Scherschichtwellen ein unterschiedliches Verhalten: im Falle ei-
ner dichten Bodenrauheit, sind die Geschwindigkeitsgradienten im Vergleich mit
der weniger dichten Bodenrauheit wesentlich ausgeprägter. Im ersten Fall ist die
Geschwindigkeit in der rauhen Zone fast null, steigt dann rasch in vertikaler Rich-
tung auf 5% der Bezugsgeschwindigkeit an. Im Falle einer geringeren Dichte der
Rauheitelemente, passiert die gleiche Geschwindigkeitszunahme in einer höheren
Schicht sodass geringere Geschwindigkeitsgradienten auftreten. Dies weist darauf
hin, dass die Interaktion zwischen der Grenzschicht und der Scherschicht im Falle
von dichtenRauheitselementen viel intensiver ist und die zweidimensionale Turbu-
lenz, die an der Scherschicht wegen der superponierten barotropischen Strömung
erzeugt wird, wesentlich schneller in dreidimensionale Turbulenz zerfällt.

Das hat auch unterschiedliche Auswirkungen auf die Einmischungsraten: niedrige-
re Einmischungsraten sind nur für das Experiment mit der niedrigen Dichte der
Rauheitselemente beobachtet worden. Im Fall einer glatten Sohle, ist die Haupt-
quelle der Einmischungsrate der Nachlauf hinter den großskaligen, barotropisch ge-
nerierten Wirbelstrukturen. Wenn die Rauheitselemente sehr dicht sind, kommt der
Hauptbeitrag für die Einmischungsraten von der Bodenrauheit, die eine sehr inten-
sive Interaktion zwischen der unteren Grenzschicht und der Scherschicht erzeugt.
Wenn die Rauheitselemente eine niedrigere Dichte haben, ist der Hauptbeitrag für
die Einmischungsrate wieder die Bodenrauheit, jedoch ist in diesem Fall einerseits
die Interaktion zwischen der Grenzschicht und der Scherschicht niedriger und an-
dererseits wird die Nachlaufbildung der Salzkeile verhindert, so dass auch in diesem
Fall niedrigere Einmischungsraten beobachtet wurden.

3. Lineare Stabilitätsanalyse. Mit Hilfe der numerischen linearen Stabilitätsanalyse
konnte eine allgemeine Beschreibung der Stabilität einer dichtegeschichteten Aus-
tauschströmung erzielt werden. Vorrangig wurden dabei der Einfluss der räumlichen
Beschleunigung untersucht. Die Austauschströmung wurde mit einem hyperboli-
schen Tangensprofil für die Geschwindigkeitprofile und Dichteprofile approximiert.

Unterschiedliche numerische Methoden wurden getestet, nämlich eine Spektralme-
thode, die auf Chebyshev-Polynomen beruht und eine Finite-Differenzen-Methode.
Aufgrund hoher Rechenzeiten und relativ geringer Qualität der Ergebnisse, wurde
eine zentrierte, Finite-Differenzen-Methode zweiter Ordnung angewendet , in der
ein unregelmäßiges Gitter zum Einsatz kam. Die Stabilität wurde zeitlich unter-
sucht. Aus diesen Ergebnissen hat sich ergeben, dass für eine gegebene Wellenzahl,
die Bodenneigung zwei Effekte auf die Stabilität der Strömung erzielt: erstens er-
höht sie die instabilen Regionen, da nun die stationäre Nullstabilitätskurve nicht
mehr die Stabilitätsgrenze ist. Zweitens koexistieren in den instabilen Regionen zwei
Arten von Instabilitäten: Kelvin-Helmholtz-Instabilitäten, gekennzeichnet von ei-
ner höheren zeitlichen Wachstumsrate, die sich aber bei erhöhter Richardsonzahl
verringert. Weiterhin wurden auch Holmboe Instabilitäten nachgewiesen, die bei
höheren Richardsonzahlen vorhanden sind und eine abnehmende Phasengeschwin-
digkeit aufweisen.

Zusammenfassend wurde durch diese Arbeit nachgewiesen, dass es unmöglich ist expe-



rimentell eine reine baroklinische Strömung zu erzeugen, ohne zusätzliche barotropische
(instationäre) Effekte hervorzurufen. Diese pulsierenden barotropischen Wellen erzeugen
großskalige Wirbelstrukturen an der Zwischenschicht, die die Einmischungsraten und die
Stabilität der Zwischenscherschicht signifikant beeinträchtigen. Die sich daraus ergeben-
den Strömungen sind in der Natur sowohl in Binnengewässern als interne Seichen zu
beobachten, als auch in der Ozeanographie und der Metereologie, wo metereologische
und/oder astronomische Gezeiten eine Rolle spielen. Weiterhin wurde gezeigt, dass die
Bodenrauheit, je nach Typ, die Einmischungsraten und die Stabilität der Scherschicht
unterschiedlich beeinflussen kann. Die lineare Stabilitätsanalyse hat schließlich gezeigt,
dass die Bodenneigung eine destabilisierenden Effekt aufweist, indem eine zweite Art
von Instabilität generiert wird, die durch eine Phasengeschwindigkeit characterisiert ist.
Ergebnisse aus der Stabilitätsanalyse wurden jedoch nicht mit den experimentellen Da-
ten verglichen, da die untersuchte experimentelle Strömung von Instabilitäten dominiert
ist, welche sich mit einer linearen Stabilitätsanalyse nicht vorhersagen lassen: die Insta-
bilitäten, welche während der experimente beobachtet wurde, sind das Ergebnis einer
Wechselwirkung zwischen barotropische und baroklinische Effekte. Diese können durch
die stark vereinfachenden Annahmen für die lineare Stabilitätsanalyse in den ergebnissen
nicht wiedererkannt werden.
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Cinque volte racceso e tante casso
lo lume era di sotto da la luna
poi che ′ntrati eravamo nell′alto passo,
quando n′apparve una montagna, bruna
per la distanza, e parvemi alta tanto
quanto veduta non avëa alcuna.
Noi ci allegrammo, e tosto torno′ in pianto;
che de la nova terra un turbo nacque
e percosse del legno il primo canto.
Tre volte il fe′ girar con tutte l′acque;
a la quarta levar la poppa in suso
e la prora ire in giu′, com′altrui piacque,
infin che ′l mar fu sovra noi rinchiuso.

(From The last trip of Odysseus trough the Strait of Gibraltar by Dante Alighieri [Cerchio VIII, bolgia 8a, IF XXVI
vs. 130–142.])
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1 Introduction

Stratified flows and the related flow processes attract considerable interest and are a
widely studied aspect of fluid mechanics. A special class of stratified flows is represented
by the equal exchange flow, in which the two layers are flowing with the same flow
rate in opposite directions (see figure 1.1). Such flows are ubiquitous for example in
environmental and geophysical flows, like interconnections between two water bodies of
different density (Farmer and Armi [1999]) and in the atmosphere (Assaf and Hecht
[1974]) between two valleys connected by a pass (see figure 1.2) and in architectural flows
(Linden [1999]), between the in- and outside of buildings through openings (windows,
vents), driven by temperature differences.

In environmental and geophysical flows stratified exchange flows typically occur at bot-
tlenecks in the ocean where large oceanic basins are connected by a small channel through
which pronounced water masses containing various water quality properties (e.g. chemi-
cal, physical and biological constituents and species) can be exchanged. Examples in the
oceanographic context include the Strait of Bosphorus connecting the Mediterranean sea
with the Black sea, the Faroe Bank channel connecting the Greenland-Iceland-Norwegian
Seas to the North Atlantic (Sherwin and Turrell [2005]) and the Strait of Gibraltar, con-
necting the Mediterranean sea with the Atlantic ocean (Sannino and Artale [2002]).

Since the beginning of the 20th century the Strait of Gibraltar has been a favorite
place for oceanographic studies. The dominant oceanographic feature of the Strait is
a two-layer inverse estuarine circulation that is driven by an excess of evaporation over
precipitation and river discharge into the Mediterranean (see figure 1.3 (a)). Recent field
experiments in the Strait have kindled a renewed interest in two-layer hydraulics and
its role in controlling the mass transport between the Mediterranean and the Atlantic
sea. The Mediterranean sea is a basin in which a wide range of oceanic processes and
interactions of global interest occur. Higher evaporation over the Mediterranean Sea
produces dense, salty water that outflows through the Strait of Gibraltar and can have
an impact on the general circulation of the global ocean and particularly on the formation
of deep water in the North Atlantic. One effect of the outflow from the Mediterranean

Figure 1.1: Definition sketch of a two-layer equal exchange flow over a sill.
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1 Introduction

Figure 1.2: An example of stratified exchange flow in the atmosphere: fog sea in a Rinevalley, flowing
into another valley due to temperature differences.

is to make the Atlantic Ocean saltier than either the Pacific or Indian Oceans.
The Gibraltar Strait controls the entire fresh water budget of the Mediterranean sea

and for this reason there has been both experimental and theoretical interest in the
physics of the Strait and on monitoring the heat and mass flux down the bottom sill in
the Strait (see figure 1.3 (b)). The existence of this strait makes the Mediterranean sea
one of the few regions in the world’s oceans where the advective heat and salt flow is
known with high accuracy.

Figure 1.3: Velocity distribution in the Strait of Gibraltar. a) Velocity field of the Mediterranean
outflow and b) of the Atlantic inflow. From Sannino and Artale [2002].
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Geophysical exchange flows can also be driven by a small density difference between
a lake and its embayment as a result of temperature differences, such as the exchange
flow between different portions of a lake as in Lake Lucerne [Wuest and Schurter, 1988,
Aeschbach, 1996] and the exchange flow between the Lake Ontario and Hamilton Harbor
through the Burlington Ship Canal [Hamblin and Lawrence, 1990]. Predicting the rate of
this flow exchange and the mixing and fate of the exchanged inflows into their neighboring
water bodies is important in environmental and ecological studies such as water quality
modeling and pollution remediation.

Earlier studies have shown that the rate of the exchanges are controlled and/or influ-
enced by the generation of hydrodynamic (interfacial) instabilities at the interface of the
two layers [Pratt, 1987, Zhu and Lawrence, 2000]. Significant flow entrainment is also
reported when the heavier fluid in the lower layer leaves the connecting channel and flows
down a slope into the neighboring water body [Morin and Loewen, 2004], similar to the
turbidity currents studied by Parker and Fukushima [1987]. Morin and Loewen [2004]
reported that the generation and break-up of large scale Kevin-Helmholtz instabilities
at the interface of the two layers are mainly responsible for the entrainment of the am-
bient lighter fluid into the heavier lower layer. This flow entrainment thus modifies the
density of the inflow and its eventual mixing and fate. Various review articles on mixing
in stratified lakes and oceans [Thorpe, 1985, Fernando, 1991, Wuest and Farmer, 2001]
document that hydrodynamic instabilities are largely responsible for the vertical mixing
in the interior of oceans and lakes. A fundamental study on hydrodynamic instabilities is
important for modeling the vertical transport of heat, oxygen, nutrients and pollutants
in lakes and oceans, as density stratification limits the vertical movement.

Oceans represent the biggest reservoir of CO2. The vertical transport rate of CO2 in
the stratified ocean water directly influences the absorption rate of CO2, which needs
to be quantified in order to properly model the balance of CO2 in the atmosphere,
an important issue in modeling global warming. In temperature stratified lakes and
reservoirs, the stratification reduces the vertical movement of the water and prevents the
aeration of cool water in the hypolimnion [Patterson and Imberger, 1984].

Thus it could result in fish kills when the dissolved oxygen in the hypolimnion is
depleted.

The entrainment induced by the heavier inflow along the bottom slope is also important
in many engineering problems, for example, river water of high sediment concentration
flowing into a reservoir [Alavian, 2002], seawater intrusion into a lake [Dallimore and
Ishikawa, 2001] or a fjord [Farmer and Armi, 1999]. Flowing along the bottom, the dense
water entrains the lighter, oxygen rich ambient water and carries it into deeper layers.
The fate of the dense water depends on the amount of the entrainment (i.e. dilution)
as well as the type of stratification in the receiving water body. Previous research has
concentrated on quantifying the mixing by the use of bulk entrainment coefficients rather
than looking at the mechanisms of the mixing. As a result, predictions of the rate of
entrainment can vary by more than 10 times [Alavian, 2002].

The quantitative understanding of shear-induced instability and subsequent mixing is
important in predicting the vertical transport of heat, oxygen, nutrients and pollutants
in inland water bodies, oceans, and the atmosphere (see figure 1.2). This has relevance to
many branches of science and engineering, such as hydrodynamics, meteorology, oceanog-
raphy, and engineering. Farmer and Armi [1999] hypothesized that these instabilities and

3



1 Introduction

Figure 1.4: Sketch of a two-layer exchange flow between the in- and outside of a building with internal
heat source induced by a temperature difference (see Linden [1999]).

mixing results in the establishment of the down-slope hydraulic flow in the Knight Inlet,
British Columbia, Canada. In atmospheric sciences, it has been estimated that instability
and mixing causes a 50% increase in the drag of atmospheric flows compared to the case
in which mixing is neglected and thus is substantial for atmospheric flow modeling and
weather forecasting [Afanasyev and Peltier, 2001]. Moreover, the study of atmospheric
exchange flows is important for predictions of the air quality and circulation in cities
located in valleys, as shown in figure 1.2, where a fog sea in a Rinevalley is flowing into
another valley due to temperature differences.

Another example of exchange flows in the geological/geophysical context is given by
the exchange between the relatively dense fluid in a volcanic crater and the light fluid
contained in a deep magma reservoir (magma chamber), as for example the fluxes of SO2

and other volatiles from lava lakes in volcanic craters. The evaluation of the amount of
magma required to come to the surface to supply the SO2 flux can be calculated from
the known amount of SO2 dissolved in and transported by the magma. This value of
magma flux has shown to exceed over four orders of magnitude the actual erupted flux
[Francis and Stevenson, 1993, Wallace, 2003]. The explanation for this discrepancy was
given by Huppert and Hallworth [2006]: the magma relatively rich in dissolved SO2 rises
from the magma chamber. As the magma rises, the pressure decreases, which leads to
degassing of the SO2. The degassed SO2 travels mainly at the same velocity as the
rising magma, but when the magma reaches the surface the gas can escape. This leaves
the magma with an increased density, which is further increased by the cooling that
occurs, and also by crystallization. The relatively heavy magma then sinks back down
the connecting conduit (generating a bi-directional exchange flow), which can continue
transporting SO2 to the surface without eruption of any magma. The rate of flow in
the conduit has shown to be partly determined by the change in density which is itself
set by the heat transfer between the lava lake and the atmosphere. Exchange flows are
also common in architectural fluid mechanics, a research field which is attracting more
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1.1 Purpose

and more interest from the fluid-dynamic community. To improve the internal quality,
particularly in terms of comfort and temperature, there has been an increasing move
toward the use of air conditioning in modern buildings. This has undesirable energy
implications and leads to high carbon dioxide emissions. As a result there has been a
reawakened interest in the use of natural ventilation to provide a better indoor quality,
both in commercial and industrial buildings, where increasingly strict environmental and
health regulations concerning air quality have to be met. Results of research carried
out in the field of natural ventilation in buildings show that these techniques reduce by
20% the energy consumption for air-conditioning systems. Natural ventilation uses the
freely available resources of the wind and thermal energy that is a result of solar and
incidental heating of the building. Although these resources are free, they are difficult to
control. An important issue is to provide the necessary control mechanisms to develop
the required indoor air quality. Ventilation is essentially the flow of air between the inside
and the outside of a building. This flow occurs through vents, traditionally windows, but
more and more through purposely designed, controlled openings not necessarily used for
introducing light. Herein, the air flows generated are the result of wind-induced forces
on one hand, and of buoyancy (due to temperature differences, also called stack-driven
flow), on the other hand, and/or even a combination of them. Much of the early work
on the interaction of wind with buildings has been concerned with aerodynamic loading
[Owen, 1971]. To include effects of viscosity, the group at Cambridge University have
developed the methodology of small-scale modeling using water as the working fluid
[Linden and Smeed, 1990, Baker and Linden, 1991]. Buoyancy forces are produced by
salinity differences within the fluid. Single sided ventilation, which occurs when there
is a single opening into a space and in which exchange flows develop, was first studied
experimentally by Brown and Solvason [1962a,b]. This situation is schematically depicted
in figure 1.4. The hydraulic of the exchange flow trough the opening in single-sided
ventilation was investigated by Dalziel and Lane-Serff [1991]. Wilson and Keil [1990]
carried out experiments on the exchange flow through a window in a heated, sealed room
of a test house and found disagreements for the discharge coefficient found in the previous
studies. This was dictated by the superimposed wind effect. The exchange flow trough
the opening, if it is not in a vertical, but in a inclined wall, was investigated by Brown
and Solvason [1963], Epstein [1988], Keil [1991] and Davies [1993].

Thus, the study of stratified exchange flows and the understanding of the flow phe-
nomena related to such flows is important in many branches of science and finds a lot of
applications in industrial and environmental problems.

1.1 Purpose

Several numerical experiments have recently been reported in studying two-layer ex-
change flows: the exchange flow through the Strait of Gibraltar [Sannino and Artale,
2002] and through the Danish Strait [Kase and Oschlies, 2000]. While in these studies
it was possible to model the exchange flow, the accuracy of these numerical results is
hard to judge, due to the lack of good field data. It has been noticed, though, that these
models assume a hydrostatic pressure distribution and ignore interfacial entrainment. As
a result, the obtained interface appears to be stable to interfacial instabilities, which is
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1 Introduction

in contradiction to laboratory and field observations. A prudent approach might be to
calibrate and validate the numerical models using laboratory measurements before these
models can be applied to real flow situations. The majority of previous works studied
stratified two-layered flows for relative low Reynolds numbers, and thus the results can
not be applicable directly to natural flows as the flow behavior and the related phenom-
ena are expected to change if the flow is characterized by higher Reynolds numbers. The
first main purpose of this study is to investigate the effect of higher Reynolds numbers
as compared to previous studies on the interfacial waves and on mixing and entrainment
processes.

In natural water bodies, in the oceans and in the atmosphere, bottom roughness is ubiq-
uitous and is a key parameter in influencing the flow behavior and the related entrainment
and mixing processes. Indeed, most of the previous studies on stratified exchange flows
dealing with boundary layer effects focused their attention on the subsequent effects on
the hydraulics of these flows rather than analyzing their effect on the interfacial stability.
The second main purpose of this work is to study boundary layer effects caused by local
enhanced bottom friction on the interfacial wave activity and on mixing and entrainment
processes.

Under these conditions of higher turbulence and bottom roughness, this study will
deliver more representative results for the natural flows as they occur in the oceans, lakes
and reservoirs as well as in the atmosphere.

Earlier studies on hydrodynamic instabilities have shown that the quantity of ex-
changed water masses and the related entrainment are controlled and/or influenced by the
generation of hydrodynamic instabilities at the interface of the two layers. It is still not
clear which role plays the bottom slope on their generation and developing mechanism.
A fundamental and separate understanding of the effect of a bottom slope is needed in
order to correctly predict the onset and type of hydrodynamic instability at the interface,
as topographical obstructions are common in environmental and geophysical flows.

1.2 Approach

To study the stratified exchange flow down a submerged sill, physical and numerical
experiments will be carried out in order to determine velocity and density fields and to
investigate the stability of the flow. A fundamental understanding of the interfacial pro-
cesses that lead to the entrainment is gained through detailed laboratory experiments,
which are used for developing simplified models and parameters for prediction and man-
agement of the quality of our inland and coastal waters. Laboratory experiments are
conducted using Particle Image Velocimetry (PIV) to obtain velocity fields and fluctua-
tions and Planar Laser induced Fluorescence (PLIF) to obtain concentration fields. The
physical experiments will also provide the necessary data to validate eventual numerical
experiments.

A fundamental understanding of the effect of an inclined bottom (downslope accelera-
tion) on the generation and developing mechanism of hydrodynamic instabilities, such as
Kelvin-Helmholtz and Holmboe instabilities (see figure 2.2), at the interface between the
two-layers will be achieved by means of linear stability analysis. Although linear stability
analysis is only valid for a very short time before nonlinear effects become important, it
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does correctly describe the onset and early evolution of infinitesimal perturbations and
the results can be used as a guide, indicating which parameters may produce instabilities
of interest. Moreover, the results from linear stability analysis can be used as starting
perturbations for the analysis of the nonlinear problem. Experimental data will be used
for comparison in order to justify certain definitions and parameter choices for the linear
stability analysis.

In this study, we will focus on the conditions for the generation of hydrodynamic
instabilities at the interface of two-layer flows, the growth and eventual break-up of these
instabilities, as well as the induced flow entrainment and mixing. While the study focuses
on the hydrodynamic instabilities in two-layer flows, the results are generally applicable
to any sheared stratified flow.

1.3 Outline
The thesis is organized as follows: in chapter 2, a general literature review of stratified,
two-layer flows is given. Chapter 3 explains in detail the employed experimental facility
and techniques. In chapter 4 first the experimental starting conditions are discussed
and the main properties of the baroclinic exchange flow with superimposed barotropic
oscillation are described. The experimental results relative to higher Reynolds numbers
are presented in chapter 5. Chapter 6 presents results relative to the effect of local
enhanced bottom roughness. The governing equations, the numerical solution method
and the results relative to the linear stability analysis are presented in Chapter 7. Finally,
chapter 8 includes concluding remarks.
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2 Literature Review

The flow between two basins of different density (ρ1 and ρ2) can take on different forms
depending on the relative interplay between barotropic (an overall pressure gradient
causing a net flow) and baroclinic (due to the density difference) forcing [Turner, 1968,
Baines, 1975]. Two extreme cases are the equal two-layer exchange flow with eventual
barotropic effects and the arrested flow with a net motion in the lower (arrested surface
wedge) or in the upper (arrested bottom wedge) layer only. These two extreme cases are
schematically depicted in figure 2.1. It is important to distinguish between hydraulically
controlled arrested wedge flows and gravity currents and intrusions. Arrested (bottom or
surface) wedges are simply the high barotropic flow limit of the equal two-layer exchange
flow, where they are controlled by the geometry of the environment in combination with
hydraulics. However, these flows have typically been considered from the perspective of
gravity currents, as discussed by Benjamin [1968], but gravity currents are propagating
density fronts, in which there is a local balance between buoyant force and pressure drag.
Various authors [Arita and Jirka, 1987, Stefan and Johnson, 1989] have also attempt
to analyze arrested wedges by considering a density front arrested by friction. Arita
and Jirka [1987] discussed an interfacial frictional model in the context of these arrested
density currents and Jirka and Arita [1987] addressed methods for controlling intrusion
shape using boundary layer control. In the following, the review is divided in four sections:

Figure 2.1: Two extreme cases of two-layer stratified flows: the equal exchange (counter) flow, having
the same flow rates in the upper and lower layer , but flowing in opposite directions (left) and the highly
barotropic limit of the equal exchange flow, the arrested surface wedge flow (right) in which only one
layer is moving (here the lower layer). In this study, an equal exchange flow (left) is investigated.

the first one (section 2.1) summarizes past work about the hydraulic theory, the second
section (2.2) treats the studies on hydrodynamic instabilities, while the third section (2.3)
resumes entrainment studies. A brief summary on the effects of a superposed barotropic
flow on the pure baroclinic stratified shear flows is given in section 2.4.
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2.1 Two-layer hydraulic theory

Hydraulic theory of two-layer flows was first studied by Schijf and Schoenfeld [1953] who
extended classical one-layer hydraulics to two-layer (seawater and freshwater) estuaries.
Some unique behaviors of two-layer flows were demonstrated by Long [1954] in his clas-
sical experiments of two-layer flow past a bottom sill. Several studies Turner [1968] also
examined arrested wedge flows and a density current flowing into a lake.

Armi [1986] studied systematically the hydraulics of two-layer flows. Armi and Farmer
[1986] and Farmer and Armi [1986] applied the two-layer hydraulics to bi-directional
two-layer flows (i.e. exchange flows) and studied flow regimes as a function of flow
conditions, channel geometry and topography, e.g. a channel constriction, a bottom
sill, or combinations of a sill and a contraction. In their studies, Armi and Farmer
treated the flow as homogeneous layers of inviscid, non-diffusive fluid with a hydrostatic
pressure distribution. While these assumptions may not be valid for some flows, the
two-layer hydraulic, or internal hydraulic theory, provides the starting point in studying
two-layer flows. In two-layer flows, the flow regime is described using the composite
(or internal) Froude number G [Armi, 1986] G2 = F 2

1 + F 2
2 , where F 2

i = u2
i /g

′hi is the
densimetric Froude number for layer i, with ui as the mean horizontal velocity, and hi as
depth of the layer i, see figure 2.1. The reduced gravitational acceleration g′ is defined
as g′ = g(ρ2 − ρ1)/ρ2 with ρ1 and ρ2 being the density of the upper and lower layer,
respectively.

When G < 1 (or G > 1), the flow is internally subcritical (or supercritical), and when
G = 1 the flow is internally critical. The location where G = 1 is the (internal) hydraulic
control. Two-layer flows can have up to two internal controls. Exchange flows with two
controls are called maximal exchange flows. Exchange flows with one control are called
submaximal exchange flows Farmer and Armi [1986]. Zhu [2002] developed a control
curve approach for studying two-layer flows and applied it to identify the locations of
controls and flow regimes, as well as to predict exchange flows through a complex channel
geometry and topography.

Pratt [1987] reported that due to frictional effects, the location of a control, located
originally at the crest of a bottom sill, could be shifted away from the crest point, and for a
long channel or strait, the effect of friction cannot be neglected. Lawrence [1993] analyzed
theoretically and experimentally a steady two-layer flow past a fixed obstacle and found
that an important regime of the flow (namely, approach control flow) cannot be predicted,
even qualitatively, using the internal hydraulic theory. Zhu and Lawrence [1998] extended
the two-layer hydraulic theory by incorporating the non-hydrostatic pressure distribution
due to streamline curvature. The extended theory is able to predict all regimes of the
flows studied by Lawrence [1993]. Furthermore, Zhu and Lawrence [2000] extended the
theory to include both, friction and non-hydrostatic pressure distribution, and obtained
excellent agreement with their experimental measurements of exchange flows through
a channel of constant width with a bottom sill. Thus, interfacial friction cannot be
neglected in a rigorous dynamical treatment of these flows.

Anati and Thompson [1977] examined the relative importance of frictional and inertial
forces in exchange flows in constant-width channels. They classified the dynamic length
of the channel by the parameter α = fwLc/H, where fw is the bottom drag coefficient,
Lc is the channel length and H is the channel depth. If α � 1 inertial forces can be
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neglected while if α� 1, frictional forces can be neglected. The transition case is given
by α ∼ 1 where both contributes are important. Zaremba and Pieters [2003] developed a
numerical model to study effects of friction on the steady stratified exchange flow which
revealed three viscous flow regimes for a converging-diverging connecting channel and
further three flow regimes when a sill is introduced (see also the numerical studies of Assaf
and Hecht [1974] and Oguz and Latif [1990]). More recently, Gu and Lawrence [2005]
developed a one-dimensional analytical solution to the fully nonlinear problem of two-
layer frictional exchange flow within the context of internal hydraulics in a rectangular
channel of constant width.

Thorpe [1983] performed experiments of two-layer stratified flows down a slope over a
rough floor, where the roughness elements were represented by square bars set at regular
intervals. He observed the generation of radiating internal gravity waves at the initial
stage of the flow and reported turbulent mixing behind the bars due to flow separation
but low interaction with the interface between the two layers. He showed that this
turbulent layer spread vertically less rapidly than the internal waves and that the rate
of spread depends on the separation of the bars: the nearer the bars, the higher was the
interaction between the bottom generated and the interface generated turbulence. This
interaction was additionally enhanced by using an array of square cubes instead of the
bars. Myrhaug and Slaattelid [1998] studied analytically and numerically the bottom
shear stresses and velocity profiles in stratified tidal planetary boundary layer flows by
using similarity theory and determined for flow conditions in the rough, smooth and
transitional smooth to-rough turbulent regime the maximum bottom shear stress, for a
given seabed roughness length, free stream current velocity components, frequency of
tidal oscillation, Coriolis parameter and stratification parameter.

More recently, Skyllingstad and Wijesekera [2004] used a three-dimensional large-eddy
simulation (LES) model to examine how stratified flow interacts with bottom obstacles in
the coastal ocean. Their simulations yielded flow responses ranging from transition flows
with relatively high internal wave pressure drag to super-critical flow with relatively small
internal wave drag. The cases with high wave drag exhibited strong lee-wave systems
and regions of turbulent overturning. Application of bottom drag caused the formation
of a bottom boundary layer, which greatly reduced the strength of lee-wave systems in
the transition cases. Reidenbach and Genin [2006] performed measurements of velocity
and rates of turbulence over a fringing coral reef (Red Sea) to determine the effect of
bottom roughness on the flow dynamics and on the mixing in boundary layers and find
a good agreement between the existing boundary layer flow theory and the data over
rough topography of coral reef (see also the study of Fugate and Chant [2005]).

2.2 Hydrodynamic instabilities

The intense velocity gradients between the two layers in a two-layer stratified flow gener-
ate hydrodynamic instabilities, such as Kelvin-Helmholtz (see figure 2.2 (a)) and Holmboe
(see figure 2.2 (b)) instabilities. Earlier studies mostly focused on Kelvin-Helmholtz (in
the following KH) instabilities as they are commonly observed in the atmosphere [Turner,
1968, Drazin and Reid, 1981]. KH instabilities are characterized by the rolling up of the
density interface leading to two-dimensional billows. Sheared density interfaces have been
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studied analytically since the work of Taylor [1931] and Goldstein [1931]. Their analysis
led to an equation describing the stability of inviscid, parallel stratified shear flows.

Holmboe [1962] applied temporal linear stability analysis to piecewise linear velocity
profiles with a two-layer density structure. With a fixed limit of the Richardson number,
he predicted the occurrence KH instabilities and reported the possible existence of an-
other type of instabilities when the thickness of the density layer is much smaller than
the shear layer. This type of instability, named after Holmboe (see figure 2.2 (b)), is
characterized as two sets of waves with one layer cusping into the upper layer and the
other into the lower layer, and propagating in opposite direction.

Hazel [1972] conducted detailed numerical experiments on the conditions for Holmboe
instabilities, and found that Holmboe instabilities can be generated at any weak shear.
He examined the stability of flows where the density interface thickness has a finite
value and where the stability is characterized by the ratio of the shear layer thickness
δ to the density interface thickness η, R = δ/η. He found critical values for R below
which Holmboe instabilities do not exist. By numerically computing stability diagrams
for various values of R, Smyth and Peltier [1988] found the critical value of R to be
approximately 2.4. Smyth and Peltier [1989, 1991] studied numerically the transition
between the KH instability and Holmboe instabilities, and Smyth and Peltier [1988]
investigated finite growth of Holmboe waves.

Lawrence and Redekopp [1991] explained the behavior of asymmetric Holmboe waves
(i.e. the two sets of waves having different growth rates and propagation speed) by
displacing the density layer from the shear center. Theoretical studies by Haigh and
Lawrence [1999] on salinity stratified flows showed that the bulk Richardson number J
needs to be less than 0.071 for KH instabilities to be generated, where J is defined as
J = g′δ/(∆U)2 with g′ as the reduced gravitational acceleration between the layers, δ
the thickness of the mixing layer and ∆U the velocity difference between the upper and
the lower layer. But, when J is larger than 0.047, Holmboe instabilities are expected to
be dominant because they have a larger growth rate.

Figure 2.2: Interfacial instabilities generated at the interface in a two-layer exchange flow. a) Kelvin-
Helmholtz instability. b) Holmboe instability.
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Thorpe [1973] showed KH instabilities in his pioneering tilting tank experiments of two-
layer fluids. The importance of KH instabilities in causing vertical mixing in stratified
oceans and lakes is well recognized [Fischer, 1979, Thorpe, 1987].

Zhu and Lawrence [2001] reported the occurrence of symmetric Holmboe waves in the
subcritical region of their exchange flow experiments. They found that Holmboe insta-
bilities decay when Richardson number exceeds 0.7. Similar results have been reported
in the experiments of Strang and Fernando [2001] and Hogg and Ivey [2003].

Morin and Loewen [2004] studied KH instabilities observed in the supercritical region
downstream of a sill crest in an exchange flow. Their analysis of interfacial wave activities
showed that higher frequency KH waves are continuously being generated in the initial
developing flow region. This wave generation stops further downstream. This generation
of higher frequency KH waves has not been reported in the literature and is important,
because measurements show that the entrainment coefficient of the upper layer fluid into
the lower layer is much larger in this region. Their measured entrainment coefficient
is found to be several times larger than the prediction of Alavian [2002] for the same
Richardson number. This is mainly due to the development and break-up of the large-
scale KH instabilities. The entrained fluid modifies the density of the lower layer and
eventual spreads into the receiving environment. The measurements of the velocity field
by Morin and Loewen [2004] shows, while KH instabilities are generated the shear is
substantially weak with J ranging from 0.1 to 0.2.

Pawlak and Armi [2000] also observed KH instabilities in their arrested flows down-
stream of the sill crest with J ranging from 0.075 to 0.32. These values are larger than
0.071 required for the generation of KH instabilities as predicted by Haigh and Lawrence
[1999]. This discrepancy is probably due to significant spatial flow acceleration in the
developing region of the flow. Additionally, the proximity of the bottom boundary af-
fects the velocity structure of the lower layer, and might influence the behavior of the
KH instability.

The intense velocity gradient at the two-layer interface and the subsequently generated
interfacial instabilities cause intense interfacial mixing. Finnigan and Ivey [2000], Finni-
gan and Ivey [2001] and Finnigan and Lukas [2002] presented a scaling analysis for the
effect of diffusivity at the interface and a numerical modeling technique to quantify that
effect. As in a turbulent jet, the fast moving layer tends to entrain fluid from the slow
moving layer. Gerdes and Farmer [2002] examined the effect of this entrainment mecha-
nism on internal hydraulics for a simple flow configurations where only the lower layer is
moving. Morin and Loewen [2004] reported that for supercritical flow downstream of a
sill crest, there is significant entrainment induced by the fast moving lower layer. Pawlak
and Armi [2000] obtained similar results in their experiments on arrested flows. Further
research is needed to incorporate the flow entrainment into the internal hydraulic theory.

Additional literature review on recent stability analysis studies of two-layer stratified
flows is given in chapter 7.

2.3 Entrainment

The entrainment and mixing in stratified shear flows have received significant attention
due to their importance in environmental problems. Ellison and Turner [1959] studied the
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problem of buoyant flow of methane gas along the roof of a mine shaft, and examined the
entrainment of a developed stratified current along a slope. The entrainment coefficient
of ambient fluid into the flowing layer was found to have a power law relation to the bulk
Richardson number (defined with the thickness and mean velocity of the gravity current).
Subsequent research in this area focused on two types of two-layer stratified flows: those
on a horizontal plane and those down a slope. Christodoulou [1986] examined earlier
experimental data on mixing in two-layer stratified flows. For different flow regimes (su-
percritical, subcritical or close to critical) he proposed different equations for predicting
the entrainment coefficient based on the bulk Richardson number. Sullivan and List
[1994] studied the interfacial mixing in their two-layer stratified flow experiments. They
reported that interfacial mixing appears to be dominated by KH instabilities when the
gradient Richardson number is less than about 0.4, and it is dominated by shear-driven
wave breaking for a larger Richardson number. The rate of entrainment is also related
to the gradient Richardson number.

Strang and Fernando [2001] studied turbulent entrainment at the two-layer interface
with the moving upper layer and a quiescent, deep dense layer. They found that for the
flow with a bulk Richardson number J < 1.5 (defined using the depth of the upper layer),
the entrainment takes place as if no stratification were present (i.e. independent of J) and
the entrainment coefficient is consistent with what is reported by Christodoulou [1986].
For 1.5 < J < 5, KH billowing is the dominant mixing mechanism and the entrainment
coefficient is a function of J . At J > 5 KH-type instabilities are suppressed and the
entrainment coefficient is reduced by an order of magnitude. Peltier and Caulfield [2003]
examined the literature on the mixing efficiency in stratified shear flows. They found that
the commonly reported mixing efficiency value of 0.2 can be related to the transition of
the flow to turbulence through an intermediate instability of KH type. While caution has
to be taken in applying any of the above results, it is clear that interfacial wave activities
are directly responsible for interfacial entrainment and mixing. For flow entrainment
in downslope flows, Christodoulou [1991] proposed a simple model for evaluating the
dilution of a dense 3-D bottom plume, created by the disposal of heavier effluent into
a quiescent homogenous ambient. The spreading of the plume is described using the
available data, and the dilution was estimated based on matching requirements between
the near and intermediate field. Pawlak and Armi [2000] studied the flow entrainment
caused by the lower moving layer in arrested wedge flows downstream of the sill crest.
They reported that two regimes exist: an initial region of low Richardson number and
high entrainment coefficients, and a high Richardson number region characterized by
weak entrainment and the collapse of turbulence.

Baines [1975] extended the results of Ellison and Turner [1959] to stratified environ-
ments. The dense flow was released at the top of the slope for a finite period of time. The
downslope gravity current approaches its level of neutral density where the fluid leaves
the proximity of the slope. Rather than flow entrainment, a continuous loss of fluid
from the downflow was observed in most cases that he studied. Dallimore and Ishikawa
[2001] studied a saline underflow into a lake. The rate of entrainment into the bottom
layer is related to the bulk Richardson number (defined with the mean properties of the
layer). However, they indicated that the entrainment and mixing is mainly caused by
the bottom boundary generated turbulence, which is transported vertically to the density
interface. Most of the studies on entrainment in such flows have been dedicated in giving
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a general relation between the entrainment coefficients and the bulk Richardson number
(see Ellison and Turner [1959], Lofquist [1960], Christodoulou [1986], Garcia [1996] and
Kessel and Kranenburg [1996]). Dallimore and Ishikawa [2001] studied a saline underflow
into a lake relating the rate of entrainment into the bottom layer to the bulk Richardson
number (defined with the mean properties of the layer). However, they indicated that the
entrainment and mixing is mainly caused by the bottom boundary generated turbulence,
which is transported vertically to the density interface.

In downslope flows, however, it is not clear how important is the bottom generated
turbulence vs. the interfacial instabilities in causing interfacial entrainment and mixing.
Other studies tried to formulate general (empirical) expressions to relate entrainment co-
efficients in stratified exchange or arrested flows to the Richardson number and the drag
coefficient related to the bottom roughness (see for example Hebbert and Loh [1979],
Atkinson [1988] or Dallimore and Ishikawa [2001]). A detailed comparison between these
models and velocity field data of a shallow underflow into a medium-sized reservoir is
given in Fernandez and Imberger [2007]. Morin and Loewen [2004] studied the entrain-
ment caused by the downslope flows in an exchange flow down a sill. They obtained a
large entrainment coefficient in the region where K-H waves are generated. Their entrain-
ment coefficient was found to be considerably larger than the predicted values for gravity
currents at the same Richardson numbers. In the above studies, both, the thickness of
the active layer and the shear layer thickness are used in defining the bulk Richardson
number. The entrainment and mixing processes in Strang and Fernando [2001] exper-
iments are controlled by the large eddies with a length scale of the layer depth in the
flowing upper layer.

2.4 Barotropic effects

The flow behavior changes when external forces are superimposed on the pure baroclinic
flow. A series of papers by Farmer and Armi in the 1980′s analyzed the hydraulics of
exchange and arrested flows, also through a contraction and a combination of a contrac-
tion and a sill, including results with a constant barotropic component. They showed,
that maximal two-way exchange with a net barotropic flow requires the presence of two
controls, one at the narrowest and shallowest position and another control, whose posi-
tion depends on the barotropic force: the control must lie on the side from which the
barotropic component is directed. In the absence of barotropic flow the two controls co-
alesce and the interface at the narrowest and shallowest section is half of the total water
depth.

Pawlak and Armi [1998], Pawlak and Armi [2000] examined the vortex mechanisms
developed in a stratified shear layer subject to spatial acceleration and the subsequent
interfacial entrainment and mixing in their physical experiments in downslope currents,
including results for flows with a superimposed weak and strong constant barotropic flow.
Their outer flow was dictated by a hydraulically controlled wedge flow that provided a
spatially accelerating shear layer and baroclinic generation of interfacial vorticity along
the density interface above a mild sloping topography. They observed a mechanism of
vorticity generation, where the core of the growing vortex was separated from the vorticity
source and a second core developed. Using linear stability analysis they observed that one
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of two modified KH modes was dominant, so that the instability lied in the slower moving
stream. Finally, they showed that mixing induced by interfacial instabilities lead to the
generation of a sharp density interface near the high momentum stream. Recent studies
on unsteady two-layer hydraulics have some relevance to the initial start-up phases of
these flows. Baines [1975] (also see his book, Baines [1995]) studied the unsteady flow
adjustment of two-layer flow upstream of a bottom sill. Helfrich [1995] examined the effect
of the time-dependence (e.g. tidal influence) on exchange flows. Pawlak and Armi [1998]
reported the effect of non-uniform velocity profiles. Exchange flows through a barrier are
studied by Zhu [2002] and by Cuthbertson and Coates [2004] where a oscillating barrier
has been used.

Stommel and Farmer [1953] and later Welander [1984] pointed out that barotropic cur-
rent fluctuations can influence the state of overmixing, but none of them made a quan-
titative estimation of the effect. Stigebrandt [1976] developed a simple theory, showing
that the two-layer transport capacity of a constriction may be increased considerably by
barotropic current fluctuations. This was also confirmed by laboratory experiments. He
found out that the barotropic current fluctuations have no effects on the transports for
the case

√
g′H/(2ub) ≥ 1, where g′ is the reduced gravitational acceleration, H is the

total water depth and ub is the amplitude of the periodic barotropic current. Helfrich
[1995] examined the effect of the time-dependence (e.g. tidal influence) on exchange
flows.
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In this chapter the experimental design (section 3.1) as well as the investigation methods
used for the analysis of the interfacial instabilities are described. These are the Particle
Image Velocimetry technique (PIV) to obtain velocity distributions in the flow field
(section 3.2.1), and Planar Laser induced Fluorescence (PLIF) to obtain information
on the concentration in the flow field (section 3.2.2). The experimental errors related to
these techniques are highlighted in section 3.3.

The results relative to the experiments are presented separately in chapters 4, 5 and
6.

3.1 Experimental facility

To perform the experiments of a two-layer density-stratified flow over a submerged sill,
a 12 m long and 0.6 m wide basin shown in figure 3.1 has been used, which is divided
in the middle into two basins, and connected by a channel of reduced width (14.5 cm).
The tank has a volume of 6 m3, which is 10 times bigger than the one used by Morin
and Loewen [2004]. It thus, allows a much wider range of flow conditions to be studied,
in particular a longer experimental duration with much larger Reynolds numbers. A
bottom sill was placed in the channel. To avoid leakages caused by corrosion due to the
salt water in the tank, it has been painted using a special paint very resistant to salt
water (Sikagard Poolcoat, Otto Chemie, Germany). The sill, first made by concrete, was
then fabricated by AKA-Flieg Karlsruhe using foam plastic and it consists of two parts,
enabling two different sill slopes which shapes are described by: z(x) = hcos2(πx/(2L)),
for −40 < x < 0, and z(x) = h−x/5, for 0 < x < 100, where h = 20 cm and L = 100 cm
(see figure 3.1). The sill was clamped by two hooks fixed at the bottom.

3.1.1 Experiment execution and set-up optimization

The tank was first filled with fresh water to a desired depth. A plexiglas barrier was then
placed at the sill crest to divide the tank in 2 reservoirs. The density difference ∆ρ was
produced by adding salt to the water in the left reservoir. The water temperature was
recorded (typically ranging from 12◦C to 15◦C) and the density of each water body was
determined based on the water temperature and salt concentration using the formula
∆ρ/ρ ∼ 0.7S where S is the ratio between the salt weight and the water weight. In the
combined PIV/PLIF measurements, probes of the salty water were taken and the density
was measured with a density-meter (Anton Paar, DMA 5000, working according to the
oscillating U-tube principle) with a resolution in the order of 10−6 kg/m3. To minimize
effects of wave reflections at the end of the reservoirs, two grid plates were built at each
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(a)

(b)

Figure 3.1: (a) Plan view and (b) side view of the experimental set-up.

side end of the reservoirs. For a more detailed discussion about the experimental starting
conditions it is referred to chapter 5, section 4.1.

3.1.2 Scales and model similarity

A brief dimensional analysis is performed in order to determine the key parameters
influencing the flow behavior in the experimental facility described in the previous section.
One of the novelties brought from these series of experiments is a higher Reynolds number
(which is defined below), which ranges from 10, 000 to 100, 000. This is at least one order
of magnitude bigger than the exchange/arrested flows investigated before (see for example
Pawlak and Armi [1998], Morin and Loewen [2004]). The fluid dynamics of flows at high
Reynolds numbers is characterized by the existence of several length and time scales. In
the here performed experiments, different parameters play a role on the behavior of the
flow development.

The length scale in longitudinal direction L is determined by the development of the
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shear and mixing layer, and is estimated to be of the order of the right sill length L. The
corresponding time-scale is given by ta = L/U = L/

√
g′H. An acceleration time scale

can be defined to measure the local effect of the spatial acceleration on the developing
mixed layer, as follows

ta =

(
c

∆U

d(∆U)

dx

)−1

in which c is the propagation speed of the interfacial wave. This time scale will be used
to analyze the effect of the spatial acceleration through an acceleration parameter which
will be better defined in section 6.5.

The vertical length scale is given by the total water depth H. Moreover, other scales
are the buoyant acceleration g′, the kinematic viscosity ν, the bottom roughness height
ks and the sill slope, which effect can be represented by the gravitational acceleration g.
Finally, the velocity scale ∆U can be expressed as follows:

∆U = F(H, g′, ν, ks, g),

where F denotes some functional dependency. Scaling the velocity scale ∆U with the
velocity scale

√
g′H the following relationship can be obtained:

Fr∆ = F1(Re, ks/H, g
′/g)

where Fr∆ = ∆U/
√
g′H is an overall Froude number andRe =

√
g′HH/ν is the Reynolds

number. The ratio g′/g represent a comparison between the stabilizing effect of the
buoyancy and the destabilizing effect given by the acceleration down the sill. In this
study, the density difference between the two layers is small, typically 0.4%, and the
Boussinesq approximation can be applied so that this term can be neglected.

By this dimensional analysis, it is evident that the flow depends upon both the Froude
and the Reynolds number. The Reynolds numbers reached in these experiments are
reduced by a factor of roughly 1000 while the Froude numbers are reduced by a factor
2, as compared to the typical scales reached in a full scale-model (see for example the
typical scales for the Strait of Gibraltar in figure 1.3).

As pointed out above, the main flow velocities for hydraulically controlled flows scale
with the buoyant acceleration g′ and the water depth H (refer to figure 3.1 (b)), so that
the velocity scale U is given by

√
g′H. The relevant length scale in vertical direction is

given by the water depth H. The corresponding time scale is given by t = (H/g′)1/2.
Considering a ratio between the vertical scales between the model and the prototyp
of 1/1000, as typically it occurs in the experiments here, and for the same buoyant
acceleration, then timescales and velocity scales in the model are roughly 30 times faster
than those at the full scale model.

3.2 Experimental techniques

The velocity and concentration fields were obtained using a Particle Image Velocime-
try (PIV) and a Planar Laser induced Fluorescence (PLIF) measurement techniques,
respectively. A brief description of the two techniques are given in the following sections.
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3.2.1 Particle Image Velocimetry (PIV)

The PIV method is a non-intrusive measurement technique that is capable of measuring
two-dimensional velocities at many points in a flow field, simultaneously. The typical
experimental set-up for PIV consists of a light source, light sheet optics, seeding particles,
a camera, and a PC equipped with a frame grabber and an image acquisition software.
Polyamide particles (PA12, Vestosint 2157) with a mean diameter of 200 µm and a
density of 1.016 g/cm3, were added in both reservoirs as tracer material for the velocity
measurements with PIV. A 10 Watt Argon-Ion laser (Stabilite 2016, Spectra-Physics
lasers) operating in multimode (λ1 = 488 nm, λ2 = 514 nm) has been used as continuous
light source. The beam was transmitted through a fiber optic cable to a line generator
with spherical lenses (OZ Optics Ltd., Nepean, Ontario). The generated laser sheet at
the sill crest had a length of approximately 2 m and a width of 5 mm and was positioned
in the middle of the channel. Images of 70 cm x 70 cm were grabbed with a CCD camera
(1024 x 1024 Pixels, 8 bits) at a frame rate ranging from 16 to 24 Hz. On the CCD
camera, an objective (SIGMA AF EX 1.8/24 DG Macro AF for Nikon) was mounted
along with a low-pass filter (DT Cyan, Linos Photonics GmbH, Göttingen) leading to a
spatial resolution of 0.0625 cm/pixel. The 15, 000 raw images were stored in real time
on a raid system. This corresponded to enormous amounts of data with each experiment
using approximately 15 Gigabytes of disk space for the raw images and 5 Gigabytes for
the vector fields for a total value of approximately 20 Gigabytes of non-processed data
for each experiment. The raw image pairs were then processed using a PIV algorithm
to compute the velocity fields. The basic concept of a PIV scheme is based on the
splitting the first image into sub-regions, called interrogation windows, and the second
image into sub-regions called search windows. Cross-correlation of these sub-regions
within an image pair gives the averaged displacement of all of the particles within the
interrogation window. Dividing this displacement by the time separation between the
two images gives the instantaneous velocity vector for that interrogation window. This
process is then repeated for all the interrogation regions to obtain the velocity field over
the entire field of view. With the software package DaVis (LaVision) the velocity fields
were computed using a cross-correlation PIV algorithm. For this purpose an adaptive
multipass routine was used, starting with an interrogation window of 32 x 32 pixels and a
final window size of 16 x 16 pixels with 50% overlap. Each vector of the resulting vector
field represents an area of 0.6 cm x 0.6 cm. The velocity vectors were post-processed
using a local median filter.

3.2.2 Planar Laser induced Fluorescence (PLIF)

The use of LIF for measuring concentration fields is attractive because it is non-intrusive
and can measure scalar concentrations and their fluctuations at multiple points simul-
taneously. A laser beam illuminates a dye tracer and fluorescent light is emitted. To
translate dye concentrations into salt concentration it is important that the two solutes
have the same diffusivity (also known as diffusivity matching). The Schmidt (Sc) number
is defined as the ratio between the kinematic viscosity ν and the mass transfer diffusion
coefficient κc. Rhodamine 6G has a Schmidt number ranging from 600-1200, depend-
ing on the reference. The Schmidt number for salt is approximately 700 thus the use
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Rhodamine 6G with salt is a good combination for diffusivity matching (see for exam-
ple Troy and Koseff [2005] and many others). In all the concentration measurements
performed, Rhodamine 6G was used as dye and was added to the salt water. In gen-
eral, the fluorescence is the consequence of the decay of a molecule from an excited to
a fundamental state, involving spontaneous emission. The exited state can be reached
by the absorption of laser radiation (for Rhodamine 6G at 520 nm) whose wavelength
is within the absorption range of the molecule spectrum. The Rhodamine 6G dye emits
light at higher wavelengths than the laser and this is very helpful in separating the flu-
orescent light from the incident laser radiation. The emission of Rhodamine 6G is at a
wavelength of 590 nm. An orange high-pass filter (DT Orange, Hama GmbH, Monheim)
with a cutoff of 550 nm was placed on the camera to filter out the reflections at lower
wavelengths and so, to reduce the noise in the concentration measurements and to enable
later combined PIV/PLIF measurements. Images of 70 cm x 70 cm were grabbed with
a CCD camera (1280 x 1024 Pixels) at a frame rate of 210 Hz. On the CCD camera, an
objective (SIGMA AF EX 1.8/24 DG Macro AF for Nikon) was mounted, leading to a
spatial resolution of 0.0625x0.0625 cm/pixel. The 15, 000 raw images were stored in real
time on a raid system. This corresponded again to enormous amounts of data with each
experiment using approximately 20 Gigabytes of disk space of non-processed data.

3.2.3 Calibration procedure for PLIF

If the intensity of the laser sheet is known in every position the concentration of the
dye can be determined as the relation of the intensity is directly proportional to the
concentration of the fluorescent dye

S = αCrhoI (3.1)

where S is the fluorescent signal, Crho is the concentration of Rhodamine 6G and α is
some calibration constant. In the literature numerous parameters have been reported
which can affect the quality of the experimental results using Laser induced Fluorescence
but only attenuation was believed to be a significant problem. The diffusivity matching
could be neglected since Rhodamine 6G and salt have the same Schmidt number and
the refracting index matching was also neglected as long as the salt concentration was
very low. As the incident laser beam travels through the water attenuation of its energy
takes place. Concentration of solutes increase this effect and were found to be additive.
Koochesfahani and Dimotakis [1985] found for the decay of laser intensity along its path
the exponential function I = I0e

a(z−z0) where I is the light intensity at location z, I0 is
the light intensity at the location z0 (i.e. at the water surface) and a is the attenuation
coefficient. The attenuation due to different solutes are additive and also the attenuation
of the fresh water has to be taken into account. Daviero and Maile [2001] expressed the
attenuation a as the sum of the attenuation of the single solutes. The total attenuation
is given by: a = aw +arho +asalt, where aw, arho and asalt are respectively the attenuation
due to fresh water, Rhodamine 6G and salt. Daviero and Maile [2001] found for the
fresh water attenuation a value between 0.0011 cm−1 and 0.0045 cm−1. The attenuation
due to Rhodamine 6G and salt are dependent on the concentration and are given by:
arho = εrhoCrho and asalt = εsaltCsalt, where C is the concentration of the solute and values
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(a) (b)

Figure 3.2: a) Intensity decrease in vertical direction along a the optical beam path due to water and
salt. The intensity does not change increasing the salt concentration; b) Total attenuation coefficient
a = aw + εrhoCrho, with aw = 0.0004 and εrho = −2.3 ∗ 10−5 for different concentrations of Rhodamine
6G.

of 2.30 ·10−4 cm−1(µg/l)−1 and 1.24 ·10−4cm−1(g/l)−1 for the coefficient ε were reported,
for Rhodamine 6G and salt, respectively. Important to note is that for Rhodamine 6G
the concentrations are given in µg/l and for salt in g/l. Thus, the attenuation due to
salt can be neglected for small concentrations, as also shown in figure 3.2 (a), and the
total attenuation coefficient can be rewritten as

a = aw + εrhoCrho (3.2)

A series of calibration experiments have been performed in order to determine the attenu-
ation coefficients and to compare them with the values in the literature. The experiments
have been conducted in a 250 cm long, 10 cm deep and 50 cm high plexiglas tank. This
was filled to a 40 cm depth. The calibration experiments showed for the attenuation
coefficient of Rhodamine 6G (arho) and of water (aw) a very good match (see figure 3.2
(b)) with the coefficients found in literature (cf. Daviero and Maile [2001]).

The influence of the exposure time was examined to determine its influence on the
noise ratio and on recorded intensity. The longer the exposure time, the higher the
intensity; however, the exposure time is limited by the recording frequency of the camera
(10 Hz) and the storage speed capacity of the PC. Figure 3.3 show intensity profiles
at a horizontal section for different exposure times: the influence of the exposure time
is significant, while the influence on the noise is negligible. Thus, a exposure time of
20 ms was chosen, which is the maximal value which can be supported by the used CCD
camera.

The major problems with the PLIF calibration was a non uniform and a non stable
light distribution. Power fluctuations were observed not only from one day to the other,
but also during the same experiment, when the laser was not switched off. Figure 3.4
show this behaviour of the laser light distribution. The causes of these power fluctuations
are due to the optical set-up: the laser is operating in multimode (there is no prisma to
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3.2 Experimental techniques

Figure 3.3: Horizontal intensity profiles for four different exposure times.

separate the two wavelengths), so that both wavelengths of the laser light are leaded to
the optical fiber glass cable. First, the beams reflect different in the optical fiber glass
cable and second, they can interact.

This problem of an non-uniform and non-constant light distribution made it impossible
to calibrate the laser sheet before performing an experiment. Instead, a simple calibration
procedure is proposed in the following section.

3.2.4 Final calibration procedure

When examining the development of the flow down the sill slope, three zones can be
distinguished, in the following called 1, 2 and 3 (see figure 3.5). The first zone (zone
1, see figure 3.5) includes the fresh water region, where the laser light can travel with
relatively low attenuation. The third zone (zone 3, see figure 3.5) is characterized with
the highest concentrations and the effects of attenuation are very strong. In the second
zone (zone 2, see figure 3.5), the concentration can vary from the lower to the highest
value randomly. With this schematization of the flow, the calibration procedure proposed
here, is based on a series of assumptions and simplifications:

1. every pixel column in the picture, is divided by its maximum, so that the concen-
tration is ranging from 0 to 1. This is the only way to calibrate the non uniformly
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Figure 3.4: Laser intensity distribution along three horizontal profiles at the water surface during the
same experiment of 20 minutes duration.

distributed laser light, at every time. Zone 1 is then defined as the zone where the
concentration is ranging from 0% to 0.5% while zone 3 is defined as the zone where
the concentration is ranging from 99.5% to 100%. In zone 2, which is the region
of interest, the relation between the pixel intensities and concentration is assumed
to be linear and thus, attenuation effects are neglected in this zone. However, this

Figure 3.5: Definition sketch for the scheme used in the calibration procedure. a) Section of an
instantaneous picture, b) raw intensity profile at the left boundary of the instantaneous picture and c)
averaged and corrected density profile after calibration. In zone 1 there is only fresh water flowing from
the right to the left; zone 3 is the denser layer characterized with the highest (known) concentration
and flowing from the left to the right down the sill; zone 2 is the intermediate layer where mixing and
entrainment occur; on the right the vertical intensity profile of the instantaneous image is shown.
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assumption reproduce well the real concentration distribution, as long as the noise
in the vertical density profile is small (see figure 3.5) and as the thickness of the
zone 2 is not too large. It is estimated to be 25% of the total water depth;

2. with the calibration procedure described above, it is intrinsically assumed that
the concentration in zone 3 in not varying in longitudinal direction down the sill.
However, the eventual error is estimated to be below the precision enabled by the
experimental set-up. The cases where this assumption will produce higher errors
are the experiments with bottom roughness;

3. the beam paths are assumed to be vertical and not radial.

The following section also deals with the error estimation due to these assumptions.

3.3 Experimental errors
• PIV: the velocity measurements are subject to error due to the velocity gradients,

particle density, particle diameter, out-of-plane-motion and peak locking [Cowen
and Monismith, 1997]. The chosen PIV particles had a size between 100÷ 300 µm,
giving a non-dimensional particle diameter of 0.2 pixels/pixel. Particles smaller
than one pixel always occupy one pixel in a PIV image; thus, the true position of the
particle cannot be resolved within a pixel. A small ratio of particle size to pixel size
was inevitable in this experimental set-up due to the large field of view required for
the study. Peak locking refers to the bias that occurs when the estimated location
of the correlated peak is shifted towards the next integer value. La Vision software
delivers that 2% of the streamwise velocity vectors and 18% of the vertical velocity
vectors were affected by peak locking, to give a mean value of 10% for the total
velocity. The averaged Q-factor is 2.4. The surprisingly good density probability
distribution and the value of the Q-factor can be explained by the fact that the
La Vision software identifies a group of particles as one single particle. However,
there is no possibility of determining the percentage of the particles affected by this
grouping effect of the software and it does not matter, since we are interested in
what happens at larger scales.

The mean values of the largest velocity gradients in the streamwise and vertical
directions were computed from the raw PIV data and evaluated to be approximately
2% (cf. Morin and Loewen [2004]). In figure 5 (e) of Cowen and Monismith [1997]
the appropriate errors due to the velocity gradients are presented. The total error
due to a 2% gradient of a particle diameter of 3 pixels is estimated to be 0.08 pixels
(see figure 5 (a) in Cowen and Monismith [1997]). Out of plane motion has been
neglected, as the flow can be treated as two-dimensional. The total error can be then
estimated as the error of the particle size and velocity gradients to 0.08 pixels, which
corresponds to a value, in the worst case, of (spatial true resolution)× (error)×
(acquisition frequency) = 0.0625 cm/pixel · 0.08 pixel · 24 Hz = 0.12 cm/s,
expressed in velocity units. Given the velocities encountered in the experiments, the
experimental error in the instantaneous velocity is estimated to be approximately
3%.
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• PLIF: the errors due to the first assumption described in section 3.2.4 (due to
the energy loss in zone 2) are estimated to be approximately 8%-10%, using the
attenuation coefficients (aw = 0.0028 cm−1, arho = 0.00023 cm−1(µg/l)−1) found
during the calibration experiments. The error due to the non uniform distribution
of the laser sheet is not so easily calculated. The calibration algorithm takes the
maximum value in a vertical column of a picture which corresponds to different ini-
tial laser intensities. This error is increasing with increasing values of the diverging
angle of the beam paths. Therefore, the biggest errors will occur at the sides of the
picture and more on the left side. A more precise estimation of this error cannot
be made unless the distribution of the laser light is known.

Results relative to the physical experiments are presented in chapters 4, 5 and 6.
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4 Unsteady start-up conditions and
barotropic responses

In general, the flow processes involved in a two-layer density-stratified system are an
interaction of purely baroclinic effects (due to density differences) and the associated
interfacial instabilities, on one hand, and of additional barotropic components (due to
various types of steady or unsteady external forcing), on the other hand. In this study,
the baroclinic component of the flow is obtained using different salt concentrations, while
the pulsating external forcing (i.e. the barotropic component) is inevitably produced due
to the starting conditions related to the experimental facility. The combined effects
of baroclinic and unsteady barotropic components are ubiquitous in geophysical and
environmental flows, as for example in sea straits, where metereological or astronomical
tides are superposed to the baroclinic exchange flow or in exchange flows between two
confined reservoirs (like harbor oscillations) or different portion of a lake, where basin
oscillations often occur for example due to wind effects.

In this chapter, experimental results relative to the barotropic oscillation superposed
to the baroclinic flow are presented. The chapter is organized as follows.

The different starting conditions for the experiments are discussed in section 4.1. The
theoretical approach predicting the flow rate oscillations and the related period is pre-
sented in section 4.2. The experimental program is presented in section 4.3. In section
4.4 the baroclinic flow with superimposed barotropic oscillation is described showing that
significant effects on the exchange flow are produced by the barotropic component.

Further effects of the barotropic oscillation on the flow development and on interfacial
wave characteristics and entrainment coefficients under conditions of higher Reynolds
numbers are described in the next chapter 5.

4.1 Different starting conditions

There are different possibilities for starting the experiments given the experimental facil-
ity described in the previous section. A first possibility, which has also been used in the
majority of previous studies in stratified exchange flows, is to fill the tank to a desired
water depth. After inserting a separating barrier to divide the tank in two reservoirs,
a known amount of salt is added in one of the two reservoir to generate the density
difference. This configuration for the starting condition is illustrated in figure 4.1 (a).
Referring to figure 4.1 (a), if ∆h = 0 as assumed for this first possibility, the density
difference between the two reservoirs produces a net hydrostatic pressure force on the
separating wall prior to the experiment beginning, i. e. Fs > Fw, in which Fs is the force
on the partition from the salt water side, and Fw on the fresh water side. This initial
global pressure unbalanced state generates a net flow through the flume in longitudinal
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4 Unsteady start-up conditions and barotropic responses

(a) (b)

Figure 4.1: Sketch of different experimental starting conditions. (a) Hydrostatic pressure resultant
force is unequal but the water depths are at the same level; (b) Global balance equilibrium, but different
water depths.

direction and thus an impulsive barotropic forcing. This results finally in an oscillation
of the free surface, which will be superimposed onto the baroclinic exchange flow once
the wall is removed, leading to wave like responses.

An other possibility to start the experiments is to add the correspondent amount of
volume of water in the fresh water reservoir ∆h = h2(

√
ρ2/ρ1 − 1), with h2 denoting

the water depth in the reservoir filled with salt water and ρ2 and ρ1 being the density
of the salt and fresh water, respectively. Thereby, a global balance equilibrium prior to
the experiment beginning is established, i.e. Fs = Fw (cf. figure 4.1 (b)). In this second
configuration the unsteady barotropic component will be generated due to the depth
difference ∆h at the beginning of the experiment: surface a surge-wave will be created
once the barrier is removed.

In the experiments, different methods were tried covering the above two extremes,
including slow removal of the barrier. There are different ways to damp the barotropic
oscillation, however, in all cases, the experimental evidence shows that there is no way to
completely avoid the superposition of additional external forces on the baroclinic flow in
experiments on two-layer exchange flows, given this experimental facility. Thus careful
attention should be paid in applying the different experimental starting conditions and
their effects on the flow development should be carefully considered.

In the following section a simplified model adapted for our experimental conditions is
developed in order to deliver a general relation which can predict the flow rate oscillations
and the related period, in an experimental two-basins set-up.

4.2 Simplified model of barotropic oscillations
superimposed on exchange flows

In this section a simplified model to study barotropically induced oscillations is derived, in
an experimental two-basins set-up. The superimposed barotropic flow which is inevitably
generated at the beginning of the experiment is also known as Helmholtz oscillation.
The Helmholtz oscillation is characterized by a periodic mass exchange through a narrow
strait and associated spatially uniform changes in the basins, representing a simple kind
of resonance produced by an oscillatory external forcing. It would be useful to predict
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4.2 Simplified model of barotropic oscillations superimposed on exchange flows

Figure 4.2: Sketch of the hydraulic system used for the model in section 4.2.

the oscillation periods and the flow rates, given the experimental conditions. For this
purpose the oscillating flow is considered as an unsteady, one-dimensional flow between
the two basins as shown in figure 4.2. Neglecting in first order the viscous term, the
momentum equation for the horizontal velocity component u is

∂u

∂t
+ u

∂u

∂x
= −1

ρ

∂p

∂x
. (4.1)

Assuming that the volume of the basins are much larger than that of the channel, the
two basins are related by

A1η1 = −A2η2, (4.2)

where A1 and A2 are the basin areas and η1 and η2 are the free surface displacements
with respect to the still water elevation. The continuity equation reads

A2
∂η2

∂t
= qB, (4.3)

where q is the flow rate per unit width and B is the width of the channel, assumed
constant. Assuming a small surface deflection, η1 and η2 � h, the momentum equation
(4.1) becomes

1

h

∂q

∂t
+
q

h

∂(q/h)

∂x
= −1

ρ

∂p

∂x
. (4.4)

The pressure gradient is represented by a linear free surface deflection

∂p

∂x
=

(η2 − η1)ρg

LC

=
η2(1 + A2/A1)ρg

LC

, (4.5)
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where LC is the length of the connecting channel. Equation (4.4) becomes

1

h

∂q

∂t
+
q

h

∂(q/h)

∂x
= −gη2(1 + A2/A1)

LC

. (4.6)

Differentiating equation (4.6) with respect to time, we finally obtain

1

h

[
∂2q

∂t2
−

(
2

h2

dh

dx

)
q
∂q

∂t

]
= −gqB(1 + A2/A1)

LCA2

. (4.7)

At the sill location, dh
dx

= 0, equation (4.7) reduces to the wave equation

∂2q

∂t2
+

[
ghB(1 + A2/A1)

LCA2

]
q = 0. (4.8)

The general solution is then given by:

q(t) = Asin(ωt+ φ), (4.9)

where ω =
√
k, k = ghB(1 + A2/A1)/(LCA2), and φ is the initial displacement, which

can be set to zero with the initial condition q|t=0 = 0. The associated period is given by:

T =
2π

ω
= 2π

√
LC

g(1 + A2/A1)

A2

Bh
. (4.10)

Equation 4.10 can be rearranged to give

T =
2πLC√

ghAC
A1+A2

A1A2

, (4.11)

where AC = LCB is the surface area of the channel. If A1 � A2 (or A2 � A1), like the
connection between the ocean and a harbor, the above equation can be further simplified.
Equation (4.11) is derived assuming that the water level in both tanks rises and falls in
unison. In this study, the disturbance starts from the channel, and it travels through the
tank before it is bounced back. This should suggest that the period should be increased
by a factor which accounts for the time spent by the gravity wave to reach the end of
the channel. This correction could be made by using for example a larger length of
the channel and reduced areas for the reservoirs. On the other hand, the velocity in the
channel, which is proportional to

√
gh, is higher than assumed in the model, as we assume

the smallest water depth h at the sill crest, and this might compensate the assumption
of unison rise and fall of the water levels in the reservoirs. The very good agreement of
the observed periods with the periods predicted by equation (4.11) presented in the next
section will confirm this.

Finally, we expect that in addition to the above frequency other higher frequencies
will be present due to the limited dimensions of the tank (side wall effects), which can
be calculated by the classical relations valid for harbor hydrodynamics theory (see for
example Dean and Dalrymple [1984]) as well as lower frequencies related to internal
seiches.

In the following sections and in the next chapter it is shown that due to the starting
conditions described above and to the resulting unsteady barotropic forcing, significant
effects are generated on the exchange flow.
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Exp. g′ H faq Starting condition Re∗ Re Fr J
[cm/s2] [cm] [Hz] (Fig. 4.1) ×104 ×103 - -

1 3.09 40.5 16 a) 4.5 3 1.02 0.2
2 3.09 51.0 20 b) 6.3 8 1.04 0.29
3 3.09 59.7 20 b) 8.2 10 0.82 0.5
4 5.81 41.0 10 b) 6.0 4 0.97 0.21
5 5.81 61.0 16 a) 11.0 12 0.99 0.32
6 0 40+2 24 b) - - - -
7 0 40+6 24 b) - - - -

Table 4.1: PIV-measurement program with the notations used: g′ is the reduced gravity and H is the
total water depth. In all experiments a height of the sill crest of hc = 20cm was used. The sill slope
was in all the experiments 0.2 and smooth. Experiments 6 and 7 have been performed using only fresh
water. faq represents the acquisition frequency. Finally, the possibilities illustrated in figure 4.1 for the
starting conditions of the experiments are reported.

4.3 Experimental program

A listing of all the performed experiments with their conditions is given in table 4.1. Ex-
periment 1 was performed with a water depth of H = 40 cm and a buoyant acceleration
of g′ = 3.09 cm/s2. Images were captured with an acquisition frequency faq = 16 Hz. In
experiments 2 and 3 the water depth was increased to H = 50 cm and H = 60 cm, respec-
tively, giving thus higher Reynolds numbers compared to that of experiment 1. Hereby
the acquisition frequency was 20 Hz for both experiments. Experiment 4 was performed
with a water depth of H = 40 cm and a buoyant acceleration of g′ = 5.81 cm/s2, re-
sulting in a Reynolds number Re = 4, 000 using an acquisition frequency of 10 Hz. In
experiment 5, with the highest value of the Reynolds number, the water depth was in-
creased to H = 60 cm, with the same buoyancy acceleration as in experiment 4 and the
same acquisition frequency as in experiment 1. Experiments 6 and 7 were performed
using only fresh water, with the water depths being different prior to the experiment
beginning, with a depth difference of ∆h = 2 cm and ∆h = 6 cm, respectively.

Referring to table 4.1, experiments 1 and 5 were conducted using the first starting
possibility discussed in section 4.1 (figure 4.1 (a)), starting the experiment with the
water depths in the left and right reservoirs at the same level. Experiments 2, 3 and
4 were conducted adding the correspondent amount of fresh water in the fresh water
reservoir, thus using the second starting possibility described in section 4.1 (figure 4.1
(b)).

4.4 Barotropic oscillation in the exchange flow

In the following, the vertical lengths are non-dimensionalized with the total water depth
H while the horizontal lengths are non-dimensionalized with the length of the sill on the
right hand side of the sill crest L (see figure 3.1 (b)) and the channel width B. The origin
of the longitudinal coordinate is posed at the sill crest. Moreover, the velocity scale is
given by

√
g′H and the per unit-width flow rate scale by H

√
g′H.
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4 Unsteady start-up conditions and barotropic responses

Figure 4.3: Normalized net flow rate per unit width at the sill crest and at x/L = 0.4 plotted over
time (left column) with relative spectral distribution (right column) for all the experiments. Continuous
lines in the right column give the spectral distribution at the sill crest, the dashed lines at x/L = 0.4.
In experiments 6 and 7 the net flow rate is given in m2/s.
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4.4 Barotropic oscillation in the exchange flow

For the data processing, a number of images of 5, 000 was used. In figure 4.3, left
column, the normalized total flow rate approximately at the sill crest per unit width is
plotted over time for all the performed experiments. In experiments 6 and 7 the net
flow rate is normalized with the gravitational acceleration g. It can be noted that for all
the performed experiments the flow rate is oscillating in time around a zero value, thus
indicating a net flow oscillating periodically from one side to the other side, independent
of the chosen method for the experimental starting conditions. The amplitude of these
oscillations is decaying in time due to frictional effects. In the right columns of figure 4.3
the spectral distribution of the net flow rates at the sill crest are shown, with dominant
periods Tobs.q. From figure 4.3 it appears that these frequencies are caused by the influ-
ence of the pulsating barotropic component, because they are equal for each experiment
with the same water depth H and do not depend on the buoyant acceleration. This is
additionally proven by considering figure 4.4 (a) which gives the time-shifted velocity
profiles at the same location for experiment 1: baroclinic effects would result in a change
in the area of the velocity profiles between upper and lower layer, while barotropic effects
would cause a translation in longitudinal direction of the entire profile in time. Figure
4.4 (a) shows that the profiles translate in the streamwise direction.

The results presented in figure 4.3 also demonstrates that the second possibility dis-
cussed in section 4.1 does not really solve the problem of pulsating barotropic forcing
generation, as the same oscillations in the flow rate time sequence and the same peaks
in their spectral distributions as in experiments 1, 4, and 5 can be observed.

Spectral analysis was also conducted on the time series of the shear interface, here
defined as (h|u=0.85 + h|u=0.15)/2, where u is the normalized velocity ranging from 0 to 1.
At the sill crest, low frequencies could be observed and the corresponding periods (Tobs,i)
are also resumed in table 4.2 along with the periods observed also by Morin and Loewen
[2004]. From table 4.2 it can be noted that the periods of oscillation of the interface
are slightly different from those of the net flow rate. This difference in the periods of
the oscillation of the interface and flow rate has been observed previously by Morin and
Loewen [2004] (cf. table 4.2), and can be explained as follows: the oscillation in the net

Figure 4.4: Velocity profiles at the sill crest for experiment 1. The time steps are 10 s. The profiles
translate in the longitudinal direction thus suggesting that barotropic forces are responsible for the flow
rate oscillations.
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H − h Tobs.i Tobs.q TEq.(3.11) Tobs.q − Tobs.i

[cm] [s] [s] [s] %
Morin et al (2004) 20 14–24 14–17 14.5 15.4

This study 20 16.7 20.0 22.5 16.5
30 14.3 17.2 18.3 16.8
40 13.3 16.7 16.2 20.3

Table 4.2: Comparison between the observed periods in the spectral distribution of the experimental
net flow rate (Tobs.q) for this study and the study of Morin and Loewen (2004) and the predictions by
the theoretical model presented here for the experimental data (TEq.(3.11)). The experimental periods of
the flow rate are also compared to those observed in the spectral distribution of the interface position
(Tobs.i) showing discrepancies (Tobs.q − Tobs.i). h represents the height of the sill crest.

flow rate is controlled by the translation motion of the fluid through the channel. The
fluctuations of the interface, however, are the result of two mechanisms, namely surge-
like accumulations at the sill crest triggered by the barotropic flow and the additional
baroclinic wave growth at the interface (i.e. even for steady exchange flow). As can
be seen in table 4.2, apparent non-linear interaction between these mechanisms causes a
shorter interfacial wave period Tobs,i as opposed to the pure barotropic flow fluctuation
period Tobs,q.

The flow rate driven by the barotropic forcing due to the initial experimental conditions
can be computed and compared with the measurements. The corresponding ∆h due to
the density difference is 0.18 cm and 0.12 cm for experiments 1 and 3, respectively. The
volume difference between the two tanks is ∆hA1 = 3.6 l and 5.4 l, respectively. This
volume difference can drive the flow rates q = 0.36 l/s and q = 0.6 l/s, respectively, if the
volume is divided by half of the barotropic oscillation period Tobs,q (cf. figure 4.3, right
column). The normalized flow rates (q/

√
g′HHB) give 0.055 and 0.051 respectively,

which can be well compared with the flow rate amplitudes plotted in figure 4.3, left
column.

In experiments 6 and 7 both basins were filled with fresh water and with a depth
difference ∆h of 2 cm and 6 cm, respectively, across the barrier between the two basins.
The time series of the net flow rate per unit width at the sill crest and the spectral
distributions for experiment 6 and 7 are presented in figure 4.3. Again, the same peaks
for these two experiments can be recognized as compared to the other experiments with
a density difference. The volume difference between the two tanks is ∆hA1 = 60 l and
180 l, respectively, which can drive normalized flow rates q/(Bg) = 0.0042 and 0.013
for experiment 6 and 7, respectively. These values are again well comparable to the
amplitudes plotted in figure 4.3. Figure 4.3 for experiments 6 and 7 also shows that
the depth difference ∆h does not influence the frequency, but only the amplitude of the
oscillation. It is also worth noting that while in the experiment 6 and 7 the mean value of
the flow rate is zero, while in the other experiments the mean value seems to be negative,
i.e. more fresh water is flowing from the right to the left as salt water from the left to the
right. This is probably due to three dimensional effects and to the difficulty in resolving
the lower layer velocity.

A comparison between the periods observed in the flow rate oscillation in the ex-
periments performed in this study, and the periods observed by Morin and Loewen
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(a) (b)

Figure 4.5: Instantaneous horizontal velocities in the upper (continuous line) and lower (dashed line)
layer at the instantaneous velocity interface position for experiment 1 (a) and experiment 2 (b). The
time series of the velocities in the upper and lower layer are in phase, thus showing that the oscillations
are caused by barotropic forces rather than by internal seiches, in which case they would be out of phase.

[2004], with the periods given by equation (4.11) is given in table 4.2 and it shows
excellent agreement. In our experimental facility, the sill height hs is given by 0.2 m,
A1 = A2 ≈ (0.6 · 5) m2 = 3 m2, B = 0.145 m and LC = 2.5 m.

Another proof to show that the oscillations in the flow rate are caused by barotropic
forces rather than by higher modes of internal seiches is given in the figures 4.5 and
4.6. In figure 4.5 the time series of the instantaneous horizontal velocities at the velocity
interface position in the lower (continuous lines) and upper (dashed line) layer are plotted
for experiment 1 (a) and 2 (b). The time series of the velocities in the upper and lower

(a) (b)

Figure 4.6: Correlation of the velocities in the upper and lower layer for experiment 4 (a) and experiment
5 (b). The correlation functions remains at a value of nearly one for a long time, thus demonstrating that
the velocities are in phase. This suggests again that barotropic forces are responsible for the frequencies
resumed in table 4.1.
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layer are in phase: for internal seiches they would be out of phase. Moreover, figure 4.6
shows the time-averaged spatial correlation of the velocities in the upper and lower layer
(ui =

∫
u2

i dz/
∫
uidz) showing to remain at a value of unity for a long time. It is of interest

to compare the above frequencies with that of basin internal seiches. As described by
Morin and Loewen [2004], an approximate estimate of the seiche period can be obtained
assuming the reservoir is a closed two-dimensional basin with a length Ltot = 12 m. The
propagation speed of the internal interfacial wave is given by c =

√
g′z1z2/(z1 + z2),

where z1 and z2 are the water depths of the lower and upper layer, respectively. The
fundamental mode of the internal seiche has thus a period of Ts = 2Ltot/c. Assuming
the interface is at the middle depth of the reservoir, i. e., z1 = z2, the periods of the
internal seiche are given by Ts = 610 s, 498 s, 432 s, 445 s, 315 s for experiments 1, 2, 3,
4, 5, respectively. The peaks relative to these periods can not be observed in figure 4.3
because the steady period duration of the experiments is similar to that of the internal
seiche, so that not enough data for the spectral analysis is available.

Finally, it is observed that as an additional effect the superposed barotropic oscillation
influences the properties of the flow regimes: generally, for purely baroclinic flows, the
maximal exchange regime is steady, but in the case of superimposed pulsating barotropic
flow, the maximal exchange regime becomes periodic.

In conclusion, the evidence suggests that it is impossible to create a purely baroclinic
stratified exchange flow given the experimental facility described in section 3.1: the
initial disequilibrium always results in a propagating pulsating gravity wave, which causes
oscillations in the flow rate and influences the interface wave activity.

The generated barotropic oscillations are not only an artefact due to the chosen ex-
perimental design: such oscillations appear ubiquitous in environmental and coastal en-
gineering as the basin oscillations between the different portions of a lake (like the lake
Lucerne in Switzerland Wuest and Schurter [1988]) or harbor oscillations. In these ex-
amples the barotropic component can be caused under the action of surface wind and
the periods of oscillations are determined by the geometry of the basins and are of the
same order of magnitude of the periods encountered in our experiments. Barotropic
oscillations appear also common in oceanography, i.e. in sea straits, or in atmospheric
flows as mountain downslope winds, and are caused by astronomical or metereological
tides. In these cases, however, the period is not determined by the geometrical features
of the basins, as they can be assumed as infinitely large, but by the tide period. These
periods are significantly larger than those encountered in our experiments: for example
using a water depth of 500 m as typical in the Strait of Gibraltar or in the Faroe Bank
Channel, the periods in nature are 50 times larger than the periods in these experiments.
Nonetheless, the effects of this barotropic oscillation on the exchange flow and on the
interfacial wave characteristics can not be neglected, as also demonstrated by the field
observations of Sherwin and Turrell [2005] (see also Hansen and Osterhus [2000]).

Once the origin of the periodic flow rate fluctuations has been explained, the next
question which logically arises is what effect has this oscillation in the flow rate on
the flow development and on entrainment coefficients. With this aim, results from the
experiments 1, 2, 3, 4 and 5 of the PIV measurements are further analyzed and discussed
in chapter 5, under conditions of higher Reynolds numbers. In chapter 6 results relative
to another serie of experiments are discussed relative to the effect of locally enhanced
bottom roughness.
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4.5 Summary and conclusions
The flow processes related to stratified exchange flows are generally the result of purely
baroclinic effects, and related interfacial instabilities, eventually with superimposed pul-
sating external forces, which can be provided for example by astronomical or metereo-
logical tides or other basin oscillations.

First of all, different starting conditions for the experiment execution have been dis-
cussed. The first possibility consists in having the same water level in both the right and
left reservoir. In this configuration, there is an unbalanced state prior to the experiment
start, as the resultant hydrostatic pressure force on the salt water side is higher than the
resultant force on the fresh water side on the separating wall. In the second possibility
discussed in section 4.1, the water depth in the fresh water tank is higher, in order to
achieve a global balanced equilibrium, before the experiment starts. After the separating
wall is removed, the surface water level difference generates a propagating surface wave.
Thus, in both cases, additional barotropic forcing is invoked and superimposed onto the
baroclinic exchange flow.

Experimental results demonstrate that it is impossible to experimentally generate a
purely baroclinic exchange flow.

A simplified model of barotropic oscillations superimposed on exchange flows has been
adapted for the presented experimental conditions. The model can predict the flow rate
oscillations and the related period, given the geometrical and experimental conditions.
The model was finally validated with the experimental results presented here and with
the results of Morin and Loewen [2004], revealing good agreement.
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5 Experimental results on high
Reynolds number exchange flows

In this chapter, results relative to an experimental study of a stratified two-layer exchange
flow over a submerged sill with a superimposed pulsating external forcing are presented,
under conditions of higher Reynolds numbers, as compared to previous studies of co-
current or countercurrent two-layer systems.

The superposed unsteady barotropic component has shown to be responsible for the
generation and development of large-scale two-dimensional structures at the interface
between the two layers, in form of surges. These large-scale billows have been previously
observed also by other authors having similar experimental conditions (Pawlak and Armi
[2000], Morin and Loewen [2004], Fouli and Zhu [2005]). The impact of the superimposed
pulsating barotropic flow under conditions of higher Reynolds numbers on the develop-
ment of the shear interface is examined, including results for entrainment coefficients. A
fundamental study on hydrodynamic instabilities at the interface of exchange stratified
flows is important for modeling the vertical transport of heat, oxygen, nutrients and pol-
lutants in lakes and oceans, as density stratification limits the vertical movement. The
chapter is organized as follows. The experimental program is given in section 5.1. A
qualitative description of the effect of barotropic oscillations on the baroclinic exchange
flow is given in section 5.2. In section 5.3 a quantitative discussion of this effect on in-
terfacial waves is presented, along with an estimation of the length scales (section 5.4).
Results relative to entrainment coefficients are finally presented in section 5.5.

5.1 Experimental program

Given the flow scales described in section 3.1 and defining the Reynolds number as
Re =

√
g′HH/ν, there are different possibilities to increase the Reynolds number, namely

by increasing the buoyant acceleration g′ and/or the water depth H. For this reason,
different experiments with different density differences and different water depths have
been conducted. It is worth to mention that the change of these parameters will also
change the Froude Fr = ∆U/

√
g′H and the Richardson J = g′δ/(∆U2) numbers and of

course also the Reynolds number defined with the mean shear velocity ∆U and the shear
layer thickness δ as length scale: in table 4.1 the mean values for the different experiments
are resumed. From the table, comparing the variation of all these adimensional numbers
and the parameters g′ and H, it can be noted that only the Reynolds number changes
remarcably changing g′ or H and a trend can be observed (increasing g′ or H, also the
Reynolds number is increasing). The Froude number varies very slightly from 0.82 to
1.0, thus remaining in the subcritical range. The Richardson number varies also very
slightly from the critical value 0.25 to 0.65. With these arguments, the Reynolds number
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5 Experimental results on high Reynolds number exchange flows

Exp. g′ H Re =
√
g′HH/ν

[cm/s2] [cm] [−]

1 3.09 40.5 45,000
2 3.09 51.0 63,000
3 3.09 59.7 82,000
4 5.81 41.0 60,000
5 5.81 61.0 110,000

Table 5.1: PIV-measurement program with the notations used: g′ is the reduced gravity and H is the
total water depth. In all experiments a height of the sill crest of hc = 20cm was used. The sill slope
was in all the experiments 0.2 and smooth. Experiments 6 and 7 have been performed using only fresh
water. faq represents the acquisition frequency. Finally, the possibilities illustrated in figure 4.1 for the
starting conditions of the experiments are reported.

is chosen as key parameter for the performed experiments. For a more detailed discussion
on the flow scales it is referred to section 3.1.2.

In this chapter, experimental results relative to five experiments are presented. The
details relative to these experiments are listed in table 5.1. These five experiments are
the same as presented in table 4.1 (experiments 1 to 5).

5.2 Visual observations and qualitative description of
the flow

When the separating wall is removed, an exchange flow commences. After an initial
unsteady period (here of about 1 minute), a maximal exchange regime is established
[Armi and Farmer, 1986, Zhu and Lawrence, 1998, Morin and Loewen, 2004] with two
internal controls, one at the sill crest, the other at the channel exit. In the last part
of the experiment, the flow becomes unsteady again due to the loss of one control (at
the channel exit) and the sub-maximal exchange, characterized with a decreasing flow
rate, starts. Here, only results of PIV experiments in the steady maximal exchange
regime are considered. Figure 5.1 shows a series of instantaneous pictures (with a time
interval of 2 s) for experiment 3, in which Rhodamine 6G is mixed in the salt water,
three minutes after the beginning of the experiment. The vertical scale is about 60 cm,
the horizontal scale 64 cm. At the beginning of this cycle, the interface position at the
sill crest increases and is advected downstream (see figure 5.1 (a)). In this region, where
the velocity difference between upper and lower layer is increasing due to the accelerating
flow down the sill, the formation of a large-scale billow can be observed at approximately
x/L = 0.25 (see figure 5.1 (b), (c) and (d)). This billow is advected downstream and
grows further, entraining a lot of fresh water into the core of the billow, at the same time
carrying salty water from the lower layer to higher water depths, where it can be mixed
with the fresh water in its core (see figure 5.1 (e) and (f)). Until this point, a very sharp
interface is created on the front (on the right) of the billow, where small scale KH billows
are generated (cf. figure 5.2 (a)). In figure 5.1 (g) the billow starts to collapse creating a
more sharp interface upstream, characterized again by the formation of small scale KH
billows. Meanwhile the interface at the sill crest increases again and produces at the front
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Figure 5.1: Series of images taken 3 minutes after the beginning of the experiment (experiment 3)
with Rhodamine diluted in the salt water layer flowing from the left to the right. The interval between
successive images is 2 s. The image is 56 cm vertical and 70 cm horizontal. In the pictures (c) and (g)
the dashed squares represent the zoomed zones in figure 5.2 (a) and (b), respectively.
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(a)

(b)

Figure 5.2: (a) Zoom in of the front of the billow in figure 5.1 (c), (d), (e) and (f), and (b) of the sharp
interface in the wake direct behind the billow in figure 5.1 (g), (h), (i) and (l). The image is (a) 10 cm
(vertical) by 6 cm (horizontal) and (b) 6 cm by 15 cm, respectively.

(a)

(b)

Figure 5.3: Physical explanation of the large-scale wave mechanism observed during the experiments.
(a) Instantaneous image (picture (c) in figure 5.1) with a surge-like flow sketched onto the picture (dashed
lines). (b) Schematization of the exchange flow down the sill with periodic surge formation to balance
the barotropic generated overflows.
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of the wave further KH instabilities (see figure 5.2 (b)), while the old billow continues
to decay as it is stretched and further advected downstream. The high interface front
at the sill crest is then advected down the sill (figure 5.1 (l)) and the phenomena starts
again from the beginning as in figure 5.1 (a). The KH instabilities generated at the sill
crest are advected in both down and upstream directions.

In summary, the flow region investigated in this study can be divided into three zones:
the first region (region 1) on the left of the sill crest (at −0.15 < x/L < 0, cf. figure 5.1),
characterized with a thin shear and density layer, in which small scale instabilities can
be generated, but are advected from the right to the left. The second region (region 2,
at 0 < x/L < 0.2, cf. figure 5.1)) is characterized with a developing and growing shear
and density layer, in which typically KH instabilities are generated, grow and eventually
collapse within this region. They are normally advected downstream from the left to
the right. In the third region (region 3) the large scale billows are generated with a low
frequency (at 0.2 < x/L < 0.55, cf. figure 5.1).

The large scale billows, which are periodically generated during the maximal exchange
regime have been seen in such laboratory experiments also by previous authors (e.g.
Morin and Loewen [2004], Fouli and Zhu [2005]), although their generating mechanism
has apparently not been identified and analyzed in detail. From experimental observa-
tions, with dye diluted in the lower layer, the life period of these large scale interfacial
instabilities is of the same order of the period of the barotropic flow rate oscillations, de-
pending on the Reynolds number. A possible physical explanation for the observed large
scale billows consists in considering them as a series of surges that lead to a pulsating den-
sity current in the lower layer, superposed to a base flow (see figure 5.3). These surge-like
elements are generated periodically at the sill crest to assure that the barotropic induced
overflow can be exchanged from one reservoir to the other. These surges act very similar
to thermals on a sloping bottom (see for example Turner [1968]). Also, there is a strong
similarity of these pulsating surge-like flows with roll waves in single-layer flows, which
are explained in Baines [1989] as a sequence of periodic hydraulic jumps propagating
down a slope and which have shown to be spatially periodic stable solutions of the linear
stability analysis of a uniform, steady flow with bottom slope and roughness (Whitham
[1967]). These type of waves have been observed in atmospheric flows, for example in
downslope windstorms in Boulder, Colorado (Scinocca and Peltier [1989]).

The next section will adduce as evidence the physical explanation of the large scale
billows which has been given above.

5.3 Interfacial wave characteristics

The time series of the interface position were used to generate a wave characteristic plot
(figure 5.4), from which the wave activities can be extrapolated. Two sets of waves prop-
agating in opposite direction are generated at the sill crest: the steeper slope of the wave
characteristic line of the waves traveling downstream (continuous lines in figure 5.4, Exp.
4) as compared to the slope of the characteristic lines of the waves propagating upstream
(dashed lines in figure 5.4, Exp. 4), suggest that the waves propagating upstream are
smaller in amplitude and travel slower compared to the waves propagating downstream.
The large breaking waves observed during the maximal exchange are shown from the
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Figure 5.4: Wave characteristic plot of experiments 1, 2, 3, 4, 5. Dark zones are locations at which
the instantaneous interface is higher as the mean interface, bright zones regions where the instantaneous
interface is smaller as the mean value.

plot to be generated with a period of approximately 20 s for all the experiments (cf. the
gap between the continuous lines in figure 5.4, Exp. 4), within 0 < x/L < 0.15. Beyond
these larger front, the generation of smaller KH at their steep fronts can be noted (see
dotted line in figure 5.4, Exp. 4). Spectral distributions of the velocity fluctuations
were calculated from the velocity fields obtained from the PIV measurements to have
an overview on the scales dominating the flow. These energy spectra gives only quali-
tative estimations of spectral slopes and behaviors due to the relatively low acquisition
frequency and spatial resolution of the PIV experiments. Figure 5.5 shows representative
energy spectra of the velocity fluctuations of the main velocity component (continuous
line) and of the vertical velocity component (dashed line) at x/L = 0.1. Slopes of −7/3
and −2 are shown for comparison along with the typical turbulent spectral slope of −5/3.
The spectral slope is a measure of the rate of energy transfer between the scales since
the Reynolds number is large enough. For all experiments the first part of the spectrum
is better described by a −7/3 slope, while the central part is better described by a −2
slope. The classical −5/3 slope characterize more the last part of the spectrum until
frequencies of 2 · 100. An important issue in the study of stratified flows is to separate
the large scale generated frequencies caused for example by internal waves, and the con-
tribution by the buoyancy driven small scales. Low frequency ranges in stratified flows
have shown to be better described by −2 and −7/3-slopes, for frequencies usually lower
than the buoyancy frequency N [Lien and Dairiki, 1998]. In this zone of the spectrum,
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(a) (b)

(c) (d)

(e)

Figure 5.5: Spectral distribution of the velocity fluctuations in streamwise (continuous line) and in
vertical direction (dashed line) at the interface position at x/L = 0.2 for Experiments 1 (a), 2 (b), 3
(c), 4 (d) and 5 (e). Spectral slopes of −7/3, −2 and −5/3 are plotted for comparison along with the
(bulk) buoyancy frequency N = g′/δ. The spectra of the vertical velocity fluctuations are one order of
magnitude lower than those of the horizontal component for low frequencies. Moreover, the two spectra
coalesce earlier for the experiments with higher buoyant acceleration ((d) and (e)).

45



5 Experimental results on high Reynolds number exchange flows

the velocities are anisotropic, as also demonstrated by the difference in the spectrum of
the horizontal and vertical components of the velocity: first, the slopes in the spectra of
the vertical component of the velocity (dashed lines in figure 5.5) for all the experiments
is from the beginning better described by a −5/3 slope. Second, the effect of buoyancy
can be seen in the vertical velocity fluctuations at the larger scales where the energy is
approximately one order of magnitude less than that of the streamwise fluctuations. For
increasing frequencies, the velocities become nearly isotropic and the spectral slopes for
the horizontal component of the velocity decrease to the −5/3-slope, characterizing the
small scale buoyancy dominated turbulence. The data relative to the presented spectral
slopes will be discussed also in section 5.5. Despite the fact that at these scales the limits
of the PIV averaging becomes significant, the energy in the last part of the spectrum
shows a distinct separation, which is very remarkable for experiments 1, 2 and 3 and is
much more weak for experiments 4 and 5 characterized with a higher buoyancy, where
the spectra of the streamwise and vertical velocity components coalesce very early, at
approximately f ∼ N . For the first three experiments the gap between the two spectra
remains nearly constant for all the range of frequencies. This is probably due to the
increasing Reynolds number (see table 4.1), which inhibits the stabilizing effect of buoy-
ancy (see table 4.1). For comparison, the (bulk) buoyancy frequency N = g′/δ is plotted
in figure 5.5.

The streamwise rms velocity fluctuation u′ are plotted versus streamwise direction
in figure 5.6 (a), normalized with the local velocity difference ∆U . This ratio gives
the response of the velocity fluctuations to the velocity difference increase due to the
acceleration down the sill. In experiment 1 the ratio increases, while in experiment 4 the
ratio remain constant on a value of ≈ 0.28. This different tendency between experiment
1 and 4 can be explained by the higher restoring force given by the higher buoyancy
in experiment 4, which works for stabilization. The effect of the higher water depth in
experiments 2, 3 and 5 is to reduce the increasing rate of the gap between the two velocity
scales as their development in streamwise direction remains nearly constant. Figure 5.6
(a) shows also that an increase in the water depth and in buoyancy, i.e. the more the
Reynolds number increases, the more the response of the velocity fluctuations to the
acceleration down the sill decreases. Increasing the Reynolds number the mean values of
the ratio changes from 0.4 to 0.2. Koop and Browand [1976] and Pawlak and Armi [2000]
have reported a decay of this ratio in the longitudinal direction of x−3/4 as an indicator
of collapse of the initial turbulence in the shear layer. This is not observed here, as the
increasing Reynolds number in the accelerating, rapid growth region right to the sill crest
results in an input of energy, thus keeping the ratio nearly constant.

The mean shear layer thickness was defined as δ = h|u1=0.85− h|u2=0.85, where h|ui=0.85

is the water depth at which the velocity in the upper (i = 1) or lower (i = 2) becomes
85% of the maximal velocity in that layer. The mean shear layer thickness along the
longitudinal direction is plotted in figure 5.6 (b). The increase for experiment 1 and 4 is
linear and almost equal for both. It is also worth noting that an increase of the water
depth causes the shear layer thickness to grow faster, while an increase of the buoyant
acceleration results in a slight slower growth of the shear layer. This is obviously due
to the buoyancy, inhibiting the vertical motion. The bulk Richardson number is here
defined using the velocity shear layer thickness, J = g′δ/∆U2, (see figure 5.6 (c)). For all
the experiments, it remains nearly constant and it ranges from 0.2 for experiments 1 and
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(a) (b)

(c)

Figure 5.6: Time averaged quantities for all the performed experiments. (a) Maximal r.m.s. of the
streamwise velocity component normalized with the local maximal velocity difference vs. x. In contrast
with the results of Koop and Browand (1976) and Pawlak and Armi (2000) the ratio remains constant
along the longitudinal direction and does not show the decay observed previously of x−3/4. This suggests
that all the region treated in this study is a turbulence growth region. (b) Shear layer thickness and
correspondent slopes of lines representing the fitted data and (c) bulk Richardson number.

4 to 0.5 for experiment 3. These averaged quantities of the mean shear layer thickness
and Richardson number are interesting for the discussion on the length scale estimation
of the large scale interfacial structures.

The streamwise rms velocity fluctuation u′rms are plotted versus streamwise direction
in figure 5.6 (a), normalized with the local velocity difference ∆U . This ratio gives
the response of the velocity fluctuations to the velocity difference increase due to the
acceleration down the sill. In experiments 1 and 4 there is an abrupt increase of this
ratio at the sill crest, then, in experiment 1, it continues to increase, while in experiment
4 the ratio remain constant from x/L ∼ 0.1 on a value of 0.33. This different tendency
between experiment 1 and 4 can be explained by the higher restoring force given by the
higher buoyancy in experiment 4, which works for stabilization. The effect of the higher
water depth in experiments 2, 3 and 5 is to reduce the increasing rate of the gap between
the two velocity scales as their development in streamwise direction show a moderate but
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an overall increase. Figure 5.6 (a) shows also that an increase in the water depth and
in buoyancy, i.e. the more the Reynolds number increases, the more the response of the
velocity fluctuations to the acceleration down the sill decreases. Increasing the Reynolds
number the mean values of the ratio changes from 0.2 to 0.4. This has repercussions
also on entrainment quantities, which are presented in detail in section 5.5. Koop and
Browand [1976] and Pawlak and Armi [2000] have reported a decay of this ratio in the
longitudinal direction of x−3/4 as an indicator of collapse of the initial turbulence in
the shear layer. This is not observed here, as the increasing Reynolds number in the
accelerating, rapid growth region right to the sill crest results in an input of energy, thus
keeping the ratio nearly constant.

The mean shear layer thickness along the longitudinal direction is plotted in figure
5.6 (b). The shear layer thickness undergoes an abrupt increase near the sill crest for
the experiments with a water depth H = 40 cm at x/L = 0.1 for experiment 1 and
at x/L = 0 for the experiment with the same water depth but with a higher buoyant
acceleration (experiment 4). The increase for these two experiments is then linear and
almost equal for both. Experiments 2, 3 and 5 do not present an abrupt increase of the
shear layer and the curve is linear, probably because the impact encountering the sill
crest is not so high. The shape of the line fitting the data for the shear layer thickness
increases for the experiments 1, 2, 3, increasing the water depth and taking the buoyant
acceleration constant, but it is decreasing increasing the buoyant acceleration and taking
the same water depth. The bulk Richardson number, here defined using the velocity
shear layer thickness instread of the density layer thickness, J = g′δ/∆U2, (see figure
5.6 (c)) shows an abrupt increase in longitudinal direction at the same locations as the
abrupt increase in the shear layer thickness. For experiments 1 and 4 it increases from
x/L = 0.3. In Experiments 2, 3 and 5, it remains constant. These averaged quantities of
the mean shear layer thickness and Richardson number are interesting for the discussion
on the length scale estimation of the large scale interfacial structures.

5.4 Estimation of length scales

For the estimation of the length scales of these structures, the temporal correlation
functions R(τ) of the horizontal (see figure 5.7 (a)) and vertical (see figure 5.7 (b))
velocity components has been determined. The length scales were then calculated as
product between the time scale TI =

∫ τI

0
R(τ)dτ , with τI being the first reached minimum

value of the correlation function, and a convective velocity scale, here assumed to be half
of the velocity difference ∆U/2.

One fundamental issue in the investigation of interfacial instabilities in stratified ex-
change flows is the determination of the key parameters governing the generation, the
growth and development of these instabilities. They are the result of an interplay between
buoyancy and the mean shear velocity for a constant slope of the sill. As the flow treated
here is also governed by barotropic forces, we expect the water depth is playing a crucial
role in determining the size of these instabilities. Thus, we argue that the key parameter
governing the generation and development of these surge-like waves is the water depth
H. The buoyancy seems to have a secondary importance in influencing the size of these
instabilities at the interface. In this sense, a Reynolds number defined using the velocity
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(a) (b)

(c) (d)

Figure 5.7: Estimation of the length scales of the large structures observed in the experiments. Tem-
poral correlation functions of the horizontal (a) and for the vertical (b) velocity components for all the
experiments. (c) Estimated length scales from the correlation functions of the horizontal (empty sym-
bols) and of the vertical (filled symbols) length scales vs. the overall Reynolds number Re∗ =

√
g′HH/ν

and (d) vs. the overall bulk Richardson number J = g′δ/(∆U)2. The integral length scales were obtained
integrating the correlation function until it reached its first minimal value.

scale
√
g′H and as length scale the water depth H, i.e. Re∗ =

√
g′HH/ν, should be an

appropriate parameter to illustrate the development of the length scales of such waves
in a stratified exchange flow with superposed pulsating barotropic forcing, as firstly the
effects of changes in the water depth are taken into account and, secondly, the effects of
buoyancy.

In figure 5.7 (a) the horizontal (empty symbols) and vertical (filled symbols) length
scale estimations are plotted versus the Reynolds number. Both the vertical and hori-
zontal estimated length scales show overall increasing values with increasing Re∗. If the
data are fitted with a linear curve, a slower increase for the vertical scales can be noted.
This is obviously due to the buoyancy, which inhibits vertical motion. Interesting to note
is that increasing the buoyant acceleration (experiments 1 to 4 and experiments 3 to
5) the estimated length scales are not really increasing but actually remain constant or
decrease. This is observed for values of the Reynolds number smaller then approximately
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0.6 ·105. At this value, there is an abrupt increase of the size of the scales with increasing
Reynolds number, and the buoyancy seems to alleviate his stabilizing effect. We thus
propose a relation between the Reynolds number Re∗ and the length scales of the large
scale surges as follows

LI

H
= κRe∗

were κ is 0.33 · 10−5 for the vertical scales and 0.9 · 10−5 for the horizontal scales. More
precise estimations of the value of the constant κ should be achieved through additional
experiments. For all experiments, the horizontal scale is larger than the vertical scale.
The vertical scales show to be approximately 1/3 of the total water depth for experiments
1 and 2, while they are roughly 1/2 for experiment 3 and 5 and 1/4 for experiment 4.
Also the results for the horizontal length scales show consistence with the experimental
observations presented in section 5.2.

If the scales are plotted vs the Richardson number no firm conclusions about a tendency
are possible, as shown by the larger difference between the experimental data and the
linear fit in figure 5.7 (b) as compared to figure 5.7 (a). The bulk Richardson number is
a measure of the stabilizing effect of buoyancy relative to the destabilizing effect of the
mean shear. Changes in the bulk Richardson number are primarily the result of changes
in the buoyant acceleration. As mentioned above, a change in the buoyant acceleration
produces both changes in the velocity difference and in the shear layer thickness. All these
parameters are included in the definition of the bulk Richardson number and relative
changes between these scales are complicated and difficult to predict so that this number
is much more sensitive to changes in both the density difference and the water depth,
as also demonstrated in figure 6.5 (c). The generation of the large-scale surges in the
lower layer, on the other hand, is triggered by the pulsating barotropic component and is
influenced by changes in the water depth, rather than by the buoyant acceleration. This
explains why the Reynolds number is more appropriate for predicting the growth of the
length scales compared to the Richardson number.

5.5 Mixing and entrainment
Given the velocity field data, estimates of the entrainment coefficients can be obtained.
Following Ellison and Turner [1959], the entrainment coefficient is defined as

αe =
1

V

dq

dx
with V =

∫
u2dz∫
udz

(5.1)

where q is the flow rate per unit width in the layer of interest and V is a representative
velocity for the layer. Figure 5.8 (a) shows the entrainment coefficients for all the exper-
iments and the higher values are found in the region 0 < x/L < 0.2. The overall lowest
entrainment coefficients are observed for the experiments 1 and 4, which are of the same
order of magnitude as the entrainment coefficients found by Morin and Loewen [2004] and
Fouli and Zhu [2005], with the highest values approaching the value 0.1. The entrainment
coefficients for the experiments 2, 3 and 5 pass this level and reach maxima of 0.13, 0.15
and 0.25, respectively which are very high values compared to that observed previously in
stratified exchange and arrested flows (see the data of Pawlak and Armi [2000] in figure
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5.5 Mixing and entrainment

5.8 (a)) and in density currents. In figure 5.8 (b), entrainment coefficients αe of the here
performed experiments along with the results obtained by Ellison and Turner [1959] are
plotted versus the bulk Richardson number Ri = g′δ cosα/(∆U)2, as it was defined by
Ellison and Turner [1959]. With exception of experiment 5, all the other experiments
have values of the entrainment coefficients comparable with the results obtained by El-
lison and Turner [1959]. The observed increased entrainment coefficients for increasing
Reynolds number is surprising, as generally higher Reynolds numbers leave to reduced
entrainment coefficients. This is obviously not the case here, because the first contribu-
tion to the increase of the Reynolds number is given by an increased water depth. The
higher water depth is responsible for a higher barotropic component and thus is related
to larger sizes of the surge-like waves (cf. figure 5.7). These large scale structures deliver
the primary contribution to the entrainment coefficients. This also show consistence with
figure 5.8 (c), which will be discussed in the following.

To analyze the link between the buoyancy dominated large scales, which represents the
primary contribution to u′, and the smaller-scale fluctuations, associated with entraining
motions, the ratio of entrainment velocity ue = αeVq = dq/dx to u′ plotted in x direction
represents an effective comparison between these scales [Pawlak and Armi, 2000]. The
entrainment velocity is representative of the entrainment motions. For all the experiments
there is a rapid increase in the initial region (see figure 5.8 (c)), where ue is a significant
fraction of u′ (up to x/L ∼ 0.1). Further downstream, the ratio drops significantly as
the gap between the scales increases. These results are also consistent with the evolution
of the Richardson number J . Pawlak and Armi [2000] observed for this ratio an increase
in the initial, rapid growth, developing region and a drop farther downstream as the
gap between the scales increases. This is not the case here, where obviously the gap is
decreasing moving downstream from the sill crest. This suggests that the region studied
here is overall a growth region.

The variation of the ratio between the entrainment velocity ue and the rms of the
velocity fluctuations as a function of the Richardson number based on the large scale
of turbulence was investigated by numerous authors. For example, Ellison and Turner
[1959] observed a dependence of ue/u

′ = Ri−1 for large Richardson numbers and of
ue/u

′ = Ri−3/2 for moderate Richardson numbers (see also Baines [1975], Fernando
[1991], Crapper and Linden [1974]), where the Richardson number was defined using the
reduced gravitational acceleration g′, the length scale associated with the wave number k
from the energy spectra and the rms of the velocity fluctuations in streamwise direction
u′. Cotel and Breidenthal [1997] have suggested a model based on vortex persistence to
account for the varied dependence on the Richardson number, the Schmidt number and
the Reynolds number. Pawlak and Armi [2000] suggested a relation of ue/u

′ = Ri
n+1
2n+6 ,

where n is the spectral slope. This relation gives the dependence of the entrainment
velocity on the bulk properties of the turbulence given a spectral shape along with the
limiting effect of buoyancy on the entrainment. The relation by Pawlak and Armi [2000]
matches well the prediction of Ri−1 by Cotel and Breidenthal [1997] using the observed
spectral shape of −7/3 characterizing the low frequency region of the spectra presented in
figure 5.5. In figure 5.8 (e) this ratio is plotted versus the Richardson number Ri = g′l′/u′

for all the experiments: for g′ the constant mean values for each experiment were used
(see table 4.1) while l′ was calculated using the convective velocities of ∆U/2 and the
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5 Experimental results on high Reynolds number exchange flows

(a) (b)

(c) (d)

Figure 5.8: Downslope entrainment coefficient of lower-layer fluid for exp. 1 (∗), 2 (+), 3 (o), 4 (×), 5
(�) compared with the results of Pawlak and Armi (2000) (?) (a), and entrainment coefficients compared
to the coefficients obtained by Ellison and Turner (1972) (?) (b). Entrainment velocity normalized by
the maximum rms velocity fluctuations in streamwise direction vs. x (c). Ratio between the entrainment
velocity ue and the rms of the velocity fluctuations as a function of the Richardson number based on
the large scales of turbulence for all the performed experiments (d), showing a good agreement with the
vortex persistence model of Cotel and Breidenthal (ue/u′ ∝ Ri−1). The dashed line represents Ri−1,
symbols represent the performed experiments.

dominant frequencies observed in the spectra of the horizontal velocity fluctuations for
each experiment. If the data are fitted with an exponential function, an exponent of
−0.1 for the Richardson number can be obtained, which compares well with the vortex
persistence model of Cotel and Breidenthal [1997].

5.6 Summary and conclusions

In this chapter, results of physical experiments have been presented, in order to under-
stand the effects related to higher Reynolds numbers.

From dye visualizations in the experiments it could be observed that not only KH
instabilities at the interface between the two layers were generated (as typically and just

52



5.6 Summary and conclusions

largely observed in previous studies), but also a new type of instability in form of large
scale billows. These billows take the form of pulsating surges to balance the overflow
from one water body to the other. This type of instability at the interface has been
observed in prior studies [Morin and Loewen, 2004, Fouli and Zhu, 2005], but has not
been analyzed in detail. The period of generation of these instabilities has shown to be
in the same order of magnitude of the period of oscillation of the net flow rate.

Results for five experiments have been examined more in detail to show the impact of
the flow pulsation on the development of the flow and on entrainment coefficients. From
the time analysis the period of the flow rate fluctuations could be recognized again in the
velocity fluctuation spectra. Slopes of −7/3 have been reported for smaller frequencies,
along with slopes of −5/3 in the last part of the spectrum for higher frequencies. These
different slopes suggest the presence of two-dimensional structures which decay in higher
frequencies as the turbulence becomes more isotropic. The spectral distributions of the
velocity fluctuations in horizontal and vertical direction also show differences of one order
of magnitude in the energy values, respectively. This is more evident for the experiments
with a lower Reynolds number (cf. figure 5.5).

The results of averaged velocity fields reveal an increasing rate of the velocity shear
layer thickness with increasing Richardson number J (cf. figure 5.6) and that the overall
region studied is characterized with growing turbulence as the Richardson number in-
creases in downstream direction in experiments 1, 2 and 4, while in experiments 3 and
5 the Richardson number remains constant in longitudinal direction. The ratio u′/∆U ,
which gives the response of the velocity fluctuations to the velocity difference increase
due to the acceleration down the sill, has revealed an overall increase in longitudinal
direction, which is different from the results by Koop and Browand [1976] and Pawlak
and Armi [2000], who reported a decaying rate in longitudinal direction of x−3/4.

The vertical and horizontal length scales of the observed large scale breaking waves
has been estimated using the time scale obtained from the correlation functions of the
velocity fluctuations and the convective velocity ∆U/2 (cf. figure 5.7). Both the vertical
and horizontal scales are increasing with increasing water depth, but slightly decreasing
with increasing buoyant acceleration for Re∗ =

√
g′HH/ν < 60, 000. This Reynolds

number has shown to be the key parameter governing the generation, the development
and growth of the interfacial instabilities for stratified exchange flows with superposed
pulsating barotropic component. Considering the overall behavior, it could be concluded
that for increasing Re∗, the scales show an increase and the relation LI/H = κRe∗ has
been proposed, κ being 0.9 for the horizontal scales and 0.33 for the vertical scales.
A similar behavior has been also observed for the values of the length scales plotted
versus the Richardson number, where a very similar relation between the scales and the
Richardson number is found as compared to the relation obtained using the Reynolds
number.
Entrainment coefficients have shown to be similar to the values of Ellison and Turner
[1959] but larger than those reported by Pawlak and Armi [2000], Morin and Loewen
[2004] and Fouli and Zhu [2005]. The results show higher entrainment coefficients for
increasing Reynolds number, which is surprising as generally the opposite behavior has
been observed. This is due to the fact that the increase of the Reynolds number is
caused by higher water depths, which increases the barotropic oscillations and so the
size of the surge-like waves. The ratio between entrainment velocity and maximal rms
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5 Experimental results on high Reynolds number exchange flows

values of the streamwise rms velocity fluctuation plotted versus the Richardson number
Ri = g′l′/u′2, as defined in Pawlak and Armi [2000] show a decrease with increasing
Richardson number with a dependence ofRi−1, which is consistent with the predictions of
Ellison and Turner [1959] and with the vortex persistence model of Cotel and Breidenthal
[1997].
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6 Experimental results on locally
enhanced bottom roughness

In natural water bodies, in the oceans and in the atmosphere, bottom roughness is ubiqui-
tous and is a key parameter in influencing the flow behavior and the related entrainment
and mixing processes. Indeed, most of the previous studies dealing with boundary layer
dominated flows focused their attention on the subsequent effects on the hydraulics of
these flows (Zhu and Lawrence [1998], Zaremba and Pieters [2003], Gu and Lawrence
[2005]) and the related entrainment and mixing (Dallimore and Ishikawa [2001], Fer-
nandez and Imberger [2007]) rather than analyzing their effect on the interfacial wave
activity.

This chapter is aimed at investigating the effect of bottom friction on the generation
and growth mechanism of the large-scale, surge-like structures at the interface between
the two layers. Such surge-like waves are observed in oceanography (Sherwin and Turrell
[2005] see also Hansen and Osterhus [2000]) and in atmospheric flows, for example in
downslope windstorms in Boulder, Colorado (Scinocca and Peltier [1989]).

Thorpe [1983] performed experiments of linearly stratified flows down a slope over
a rough floor, where the roughness elements were represented by square bars set at
regular intervals, studying both the configurations of k-type and d-type as defined in
Perry and Joubert [1969], the first type characterized by dense roughness elements with
a high interaction with the overlaying layer, and the second type characterized by a
lower interaction with the overlaying layer, as the roughness elements act more as single
disturbance bodies. In his experimental study, Thorpe [1983] observed the generation of
radiating internal gravity waves at the initial stage of the flow and reported turbulent
mixing behind the bars due to flow separation but low interaction with the interface
between the two layers. He showed that this turbulent layer spread vertically less rapidly
than the internal waves and that the rate of spread depends on the separation of the
bars: the nearer the bars, the higher was the interaction between the bottom generated
and the interface generated turbulence. This interaction was additionally enhanced by
using an array of square cubes instead of bars.

In this chapter, a specific goal is the consideration of the combined effects of bottom
generated turbulence and internal baroclinic generation of vorticity. The experimental
results presented here will show that bottom friction has a significant impact on the
developing mechanism of these interfacial instabilities showing a damping effect on their
growing and collapsing mechanisms and that their generation frequency depends lin-
early upon their size. Moreover, dense bottom friction has shown to reduce entrainment
coefficients if a sparser grid (the d-type) of roughness elements is employed.

The chapter is organized as follows. In section 6.1 a discussion on the different sources
of turbulence production is presented and three different parameters describing the ratio
between these sources are defined. An estimation of the bottom roughness coefficients
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6 Experimental results on locally enhanced bottom roughness

Figure 6.1: Definition diagram for vorticity production in a gradually evolving two-layer flow over
downslope.

along with a comparison with hydraulic theory results is given in section 6.4. The effect
of the bottom roughness on interfacial waves is discussed in section 6.6, while effects on
the turbulence characteristics and on the entrainment coefficients are given in sections
6.7 and 6.8 respectively.

6.1 Vorticity production in a two-layer stratified flow
over a rough sill

The definition diagram for the vorticity generation in a gradually evolving two-layer flow
over downslope is given in figure 6.1. In such a flow, different turbulence mechanisms
are responsible for vorticity production: a first source of vorticity is given by the vortex
stretching due to the variation in height of the channel because of the sill placed on
the bottom. A second source is represented by the baroclinic generation of vorticity,
given by the inclination of the interface. In addition, the enhanced bottom roughness is
contributing to the vortex stretching as an additional source of turbulence production.
It would be useful to relate the turbulence produced at the bottom with the turbulence
produced by the density and velocity gradients and thus, we define some parameters
which can express the ratio between the magnitude of each contribution. The starting
point for this analysis is the vorticity equation for a two-layer stratified flow which reads
(Baines [1975])

Dζ

Dt
= ζ · ∇u +

∇ρ×∇p
ρ2

+ ν4ζ +B.C. (6.1)

where D/Dt denotes the Lagrangian derivative, u = (u, v, w) is the velocity vector,
ζ = ∇ × u the vorticity vector, ρ(x, y, z) the density, p(x, y, z) the pressure, ν the
kinematic viscosity,4 the Laplacian operator and B.C. denotes the boundary conditions.
In the following, the vorticity production related to viscous effects will be neglected.
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6.1 Vorticity production in a two-layer stratified flow over a rough sill

The boundary conditions enable to introduce into equation (6.1) the vorticity contri-
bution coming from the bottom generated turbulence. This additional dispersion term
needs to be modeled. As starting point to model the bottom friction, the Newtonian-law
for the bottom shear stress τb is considered, which reads as follows

τb
ρ2

= ν
∂u

∂z
(6.2)

where ρ2 is the density of the lower layer fluid and ∂u/∂z the streamwise velocity
gradient due to the bottom generated shear stress. Using the definition of the bottom
shear stress velocity u? =

√
τ/ρu

√
fw/8, equation (6.2) can be rewritten as follows

ν
∂u

∂z
=
fw

8
u2 (6.3)

where fw = 4cf , with cf being a quadratic-law friction coefficient. To introduce this
term into equation (6.1) the Laplacian operator has to be applied on both hand sides of
equation (6.3), leaving to

ν4
(
∂u

∂z

)
= ν4ζ =

fw

4

[(
∂u

∂z

)2

+
∂2u

∂z2
u

]
, (6.4)

where the streamwise and cross-stream variation of the velocity u has been neglected,
since ∂/∂y < ∂/∂x� ∂/∂z. The term B.C. in equation (6.1) can thus be replaced with
the right hand side of equation (6.4) and equation (6.1) reads finally as follows

Dζ

Dt
= ζ · ∇u +

∇ρ×∇p
ρ2

+
fw

4

[(
∂u

∂z

)2

+
∂2u

∂z2
u

]
(6.5)

In the following, the different production terms on the right hand side of equation (6.5)
are scaled separately.

The vortex stretching generation of y-vorticity is given by:

(ζ · ∇u)y =

(
∂u

∂z
− ∂w

∂x

) (
∂u

∂y
+
∂v

∂y
+
∂w

∂y

)
. (6.6)

The continuity equation requires that

∂v

∂y
= −∂u

∂x
− ∂w

∂z
(6.7)

Substituting this expression into equation (6.6) it follows

(ζ · ∇u)y =

(
∂u

∂z
− ∂w

∂x

) (
∂u

∂y
+
∂w

∂y
− ∂u

∂x
− ∂w

∂z

)
. (6.8)

Remembering that ∂/∂x � ∂/∂z and assuming that there is no cross stream variation
in u and w, equation (6.8) can be simplified as follows

(ζ · ∇u)y = −∂u
∂z

∂w

∂z
. (6.9)
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6 Experimental results on locally enhanced bottom roughness

To evaluate the term ∂w/∂z we note that the variation of the velocity w in the vertical
direction is expected to be proportional to the variation of the water depth above the
sill zs in the streamwise direction, i.e. ∂w/∂z ∝ u/zsdzs/dx, where zs is the water depth
above the slope. The vortex stretching term can then be written as

(ζ · ∇u)y =
∂u

∂z

u

zs

dzs

dx
. (6.10)

Thus, the contribution to the vorticity due to vortex stretching is a result of both the
streamwise velocity vertical gradient and the deceleration due to the variation in height
of the channel. Taking as velocity scale the velocity difference between the upper and
lower layer ∆U and as vertical scale the vorticity thickness δν , the vortex stretching term
is finally approximated as follows

(ζ · ∇u)y =
∆U2

δν

1

zs

sin θ. (6.11)

where θ denotes the angle of inclination of the slope with respect to the longitudinal
direction x and the equality dzs/dx = sin θ has been used.

The baroclinic production of y-vorticity reads

∇ρ×∇p
ρ2

=
1

ρ2

(
∂ρ

∂x

∂p

∂z
− ∂ρ

∂z

∂p

∂x

)
(6.12)

Assuming the horizontal pressure gradient is negligible and using the Boussinesq approx-
imation for small density variations it follows

∇ρ×∇p
ρ2

=
g

ρ

∂ρ

∂x
=
g

ρ

∂ρ

∂n
sinθ (6.13)

with ρ being the mean density in the layer. The relation ∂ρ/∂x = ∂ρ/∂nsinθ derives
from the flow geometry, in which n is the direction of density gradient and θ denotes
the angle of inclination of the interface with respect to the longitudinal direction x (see
figure 6.1). For a dimensional analysis the vertical length scale δρ represents the shear
layer thickness. Assuming that the interface is approximately parallel to the sill slope,
sinθ ∼ dz2/dx, and equation (6.13) can be approximated as follows

∇ρ×∇p
ρ2

=
g′

δρ

dz2

dx
. (6.14)

Taking as velocity scale the velocity in the lower layer u2, the contribution of y-vorticity
production due to the bottom roughness can be evaluated as

fw

4

[(
∂u

∂z

)2

+
∂2u

∂z2
u

]
∼ fw

4

[(
u2

δb

)2

+
1

δb

u2

δb
u2

]
(6.15)

where δb = z2/2 is the vertical scale for the bottom velocity gradient, with z2 and u2 being
the water depth and velocity in the lower layer, respectively (cf. figure 6.1). Assuming
that the vorticity and density gradients are constant across the interfaces, integrating
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equations (6.14) and (6.15) to obtain the total vorticity produced at a given x-location,
amounts to multiplying by δν , δρ and δb respectively. The following interaction parameter
can be defined

Baroclinic production
Vortex stretching

= Zv ≡

∣∣∣∣δρ (
∇ρ×∇p

ρ2

)
y

∣∣∣∣
|δν(ζ · ∇u)y|

=
g′zs

(∆U)2 sin θ

dz2

dx
= F−2

z , (6.16)

Friction production
Baroclinic production

= Zr ≡
∣∣δb (

fw

8
4(u2)

)∣∣∣∣∣∣δρ (
∇ρ×∇p

ρ2

)
y

∣∣∣∣ =
fwu

2
2

2δbg′
dz2

dx

= F 2
`

(
dz2

dx

)−1

,

(6.17)

Friction production
Vortex stretching

= Zrv ≡
∣∣δb (

fw

8
4(u2)

)∣∣
|δν(ζ · ∇u)y|

=
zs

` sin θ

( u2

∆U

)2

, (6.18)

where F 2
z = (∆U)2/(g′zs) is a Froude number defined using the velocity scale ∆U and the

vertical length scale zs and can be understood as the ratio between the limiting effects of
buoyancy and of the deceleration of the flow due to the increasing water depth. The length
scale ` = 2δb/fw represents a “roughness scale” and F 2

` = |u2|2/(g′`) is a “frictional Froude
number”, which can be reinterpreted as a measure of the limiting effects of buoyancy on
the velocity acceleration (hindered by the friction) in the lower layer. The parameter Zrv

expresses the ratio between the frictional velocity scale u2 to the baroclinic velocity scale
∆U and the frictional length scale ` relative to the total water depth above the slope zs.

Equation (6.5) tells that the vorticity production due to vortex stretching is balanced
by the the stabilizing vorticity contribution related to the stratification and to bottom
friction. Moreover, while the vorticity generated by the stratification as well as by the
vortex stretching are “intrinsic” contributions related directly to the fluid properties, the
term resulting from the bottom friction represents an “external” source of vorticity and is
built from the boundary conditions. In this sense, the interaction parameters containing
this contribute are the most interesting parameters.

Because there are three parameters defined using three vorticity contributions, they
are related to each other and one of them is redundant, i.e. Zv = Zrv/Zr.

6.2 Experimental program
Table 6.1 lists the experimental conditions. In all the performed experiments a water
depth of H = 40 cm was used with a constant density difference of roughly 0.4% yield-

Exp. g′ Bottom Mean Mean Equivalent sill Roughness
cm/s2 configuration height spacing height h′H [cm] Coefficient fw

1 4.47 smooth - - 20.0 0.01
2 3.97 dense ∼ 1.6 cm 0.1 cm 20.9 0.05
3 4.10 sparse ∼ 3.5 cm 3.0 cm 20.4 0.07

Table 6.1: Details of the performed experiments. g′ is the reduced gravitational acceleration, h′ is the
equivalent sill height calculated from equation (6.19). In all the experiments the inclination of the sill
was roughly 10◦ and the acquisition frequency was 10 Hz.
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6 Experimental results on locally enhanced bottom roughness

ing g′ of the order of 4 cm/s2. Experiment 1 was conducted using a smooth bottom,
while experiments 2 and 3 have been performed with two different bottom roughness: in
experiment 2 artificial turf was used (see figure 6.2 (a)), with a dense close spacing of
fine, short roughness elements. Hereby, the mean height of the roughness elements was
approximately 1.6 cm with an averaged spacing of 1 mm (cf. table 6.1). The bottom
roughness here appears to be the k-type (Perry and Joubert [1969]), the height of the
roughness elements playing a role in determining the eddy scale of the turbulence.

In experiment 3 screw anchors were used (see figure 6.2 (b)), with sparse spacing of
coarse, tall roughness elements. In this bottom configuration, the mean height of the
roughness elements was 3.5 cm with an average spacing of 3 cm. The bottom rough-
ness here appears to be the d-type (Perry and Joubert [1969]), where due to the sparse
configuration, the roughness elements act more as single disturbance bodies, with wake
turbulence generated in the wake behind the elements and thus, with a less effectiveness
in disturbing the overlying flow.

The vertical and horizontal length scales are given by the total water depth H and
the sill length L on the right hand side of the sill crest, respectively. The velocity scale
is given by

√
g′H and the flow rate scale by H

√
g′H. The overall Reynolds number

Re =
√
g′HH/ν is approximately 50,000, with ν being the kinematic viscosity of fresh

water.

Figure 6.2: Sketch of the roughness used in the rough experiments. a) Experiment 2 with artificial turf,
with a dense close spacing of fine, short roughness elements. Hereby, the mean height of the roughness
elements was approximately 1.6 cm with an averaged spacing of 1 mm (cf. table 6.1). The bottom
roughness here appears to be the k-type (Perry and Joubert [1969]). (b) In experiment 3 screw anchors
were used, with sparse spacing of coarse, tall roughness elements. In this bottom configuration, the mean
height of the roughness elements was 3.5 cm with an average spacing of 3 cm. The bottom roughness
here appears to be the d-type (Perry and Joubert [1969]), where due to the sparse configuration, the
roughness elements act more as single disturbance bodies.
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6.3 Visual observations and qualitative description of the flow

6.3 Visual observations and qualitative description of
the flow

The flow development at the interface for the three experiments is presented in figure
6.3 by a series of instantaneous pictures with a time lag of 2 seconds taken during the
maximal exchange regime. In the smooth case (experiment 1) the flow is characterized
by the generation of two-dimensional structures, generated by oscillations of the flow
rate due to the superimposed barotropic flow (see chapter 5) leading to large billow-like
structures at the interface between the two layers. The interface fronts passes right to the
sill crest ((a), first and second picture) and the flow in the lower layer begins to accelerate
down the sill. In the third and fourth picture, the growth of the large structure can be
clearly observed, while in picture five, it starts to collapse. During the collapsing process,
small KH billows are generated at the sharp interface created directly in the wake of the
large structure. In this smooth case, the wake behind the surge-like flow can fully develop
leaving in this region significant entrainment. The rolling-up of the structure followed by
a collapsing mechanism in the wake of the structure, forces the depth of the lower layer
to reduce its height significantly (in the order of 10% of the total water depth) and this
creates the immediately following sharp interface characterized with KH billows. This
behavior is periodic and the phenomenon starts again from the beginning (picture 8) (see
chapter 5). Experiment 2, with dense bottom roughness shows a different behavior: the
increase in the water depth of the lower layer is still present at the interface as a result
of the pulsating barotropic flow. But the growth and subsequent roll-up mechanisms
of the structures can not be observed anymore, because the turbulence produced by
the bottom roughness takes their kinetic energy and redistributes it on smaller three-
dimensional scales, favoring the eddy stretching. Without roll-up of the two-dimensional
structures, no wake zone is generated. The turbulent fluctuations are increased in this
experiment as is discussed more in detail in section 6.5 further below. Experiment 3 with
a sparse configuration of bottom roughness lies in between the behavior of the smooth
and the dense roughness case: it behaves like the smooth case in the initial accelerating
region near the sill crest (pictures 1 to 4), where a growing two-dimensional structure
can be observed. However, in this case, the collapse mechanism does not occur and
therefore, no wake region is generated in the lee of the surges. This is due to the fact
that in this configuration, the sparse distributed bottom roughness, with tall roughness
elements, inhibits the roll-up mechanism of the large-scale structures when the structures
reach a certain size, and interact with the roughness elements. The roughness stops the
counterclockwise rotation of the structure induced by the exchange flow and the two-
dimensional turbulence decays very fast with an initial longitudinal vortex stretching
followed by the usual three-dimensional vortex stretching.

6.4 Estimation of bottom roughness coefficients and
comparison to hydraulic theory results

In this section, results from the PIV measurements are compared to the results from the
inviscid hydraulic theory. Quantities in the upper layer are denoted with the index 1
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(a) (b) (c)

Figure 6.3: Instantaneous images of experiment 1 (a) the dense roughness case (b) and the sparse
roughness case (c) with dye (Rhodamine 6G) mixed in the lower layer (salt water). The time lag
between the images is 2 seconds. The image size is 55 cm (vertical) x 70 cm (horizontal). Dashed lines
follow the development of the large-scale interfacial structures.

62



6.4 Estimation of bottom roughness coefficients and comparison to hydraulic theory results

Figure 6.4: Normalized flow rate in the upper layer for the rough experiments compared to the nor-
malized flow rate in the upper layer of the smooth experiment, showing decreased values for the rough
experiments.

while quantities in the lower layer with the index 2. The bottom roughness coefficients
were estimated using the measured flow rates in the upper layer for all three experiments
at positions near the sill crest, where the entrainment between the two layers can be
neglected (Morin and Loewen [2004]). We expect the flow rates to be decreased in
the rough cases, as the bottom roughness effectively results in an increased height of
the sill. The normalized flow rates in the upper layer of the rough experiments were
thus compared to that of the smooth experiment to obtain the ratio q1c,r/q1c,s, where
q1c,r and q1c,s are, respectively, the flow rates in the upper layer at the sill crest for the
rough (index r) and for the smooth (index s) experiments. The ratio gives a value of
93% for the dense roughness case and 97% for the sparse roughness case as shown in
figure 6.4. These values can be used to calculate with the help of internal hydraulic
theory an equivalent sill height for the rough experiments. For this purpose, following
Zhu [2002], the critical condition at the sill crest for the internal Froude number G, i.e.
G2 = q2/g′(z−3

1 +z−3
2 ) = 1 and the condition h+z1 +z2 = 1 were used. Herein, h denotes

the normalized height of the sill, z1 and z2 the normalized water depth in the upper and
lower layer, respectively, and g′ = (ρ2−ρ1)/ρ1g, with ρ1 and ρ2 being the density of fresh
water and salt water, respectively. Assuming that at the sill crest z1 = z2 and equalizing
the critical condition for G for both the smooth and rough experiments the following
expression can be obtained

h′ = 1−
(
q1c,r

q1c,s

)2/3

(1− h) (6.19)

where h′ denotes the equivalent sill height. Using the estimations as shown in figure
6.4 the equivalent sill heights are h′2 = 0.524 and h′3 = 0.510 for experiments 2 and 3,
respectively. With the water depth of 40 cm used in all the performed experiments, this
corresponds to heights of 20.96 cm and 20.4 cm for the dense and sparse configuration,
respectively (see table 6.1). The internal hydraulic energy was defined as E = h +
z2 + q2/g′(1/z2

2 − 1/z2
1) and calculated using both the measured flow rate and interface

position and is plotted in figure 6.5 (a), with the continuous line representing the inviscid
hydrostatic prediction of E = 0.75, which can be calculated following the method outlined
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(a) (b)

(c)

Figure 6.5: Comparison between experimental data (symbols) and theoretical prediction using the
hydraulic inviscid hydrostatic prediction (continuous line). (a) Total internal hydraulic energy E, (b)
mean interface position and (c) internal Froude number G vs. x.

in Zhu [2002]. While the internal hydraulic predictions are in very good agreement for
experiment 1, it overestimates the internal energy for experiments 2 and 3 on the right of
the sill crest, from x/L = 0.1 onward. In this experiments energy is obviously dissipated
due to frictional effects and this is the reason for the poor matching between experimental
data and theoretical predictions. Zhu and Lawrence [2000] gave a relation to estimate
the energy loss in longitudinal direction due to wall and interfacial friction. Considering
only the contribution given by the bottom wall, an estimation of its friction coefficient
can be made using the rearranged relation given in Zhu and Lawrence [2000]:

fw =
2

u2
2

z2

[
Sf

√
H/Lc − τI

(z1 + z2)

z1z2

]
(6.20)

where Sf is the measured slope of the energy decrease in longitudinal direction, Lc is
the length of the connecting channel and τI =

√
−ρu′w′ is the measured interfacial shear

stress between the two layers. For the two roughness experiments friction coefficients
fw = 0.05 and fw = 0.07 are obtained for the dense and sparse roughness configuration,
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6.5 Mean flow characteristics

Figure 6.6: Mean flow characteristics in the measured flow field. (a) Normalized averaged velocity field
(left column) and normalized Reynolds stresses u′w′ distribution (right column) for all the experiments.

respectively.
Figure 6.5 (b) shows the position of the averaged interface, along with the predictions

of the inviscid hydrostatic internal hydraulic theory (see Zhu [2002]). For the experiments
with roughness, the position is higher than the predicted values on the right hand side
of the sill crest. This is also consistent with the statement that one effect of the bottom
roughness is to increase the height of the sill.

Figure 6.5 (c) shows the densimetric Froude number G, calculated using the predicted
flow rate and the measured interface position and using the equivalent sill height for the
rough experiments. For all the experiments the theoretical prediction (solid line) over-
estimates the measured values on the right hand side of the sill crest, which is probably
due to the interface position being overestimated.

6.5 Mean flow characteristics

In figure 6.6, the averaged velocity fields (left column) and the Reynolds-stress u′w′ distri-
bution (right column) are shown for the three performed experiments. A first noticeable
difference between the smooth experiment and the rough experiments is the decrease,
for rough bottoms, in the velocity difference between the two layers, due to the reduced
acceleration down the slope as compared to the smooth case, and also a decrease of the
shear layer thickness. The Reynolds stresses are significantly higher in the two rough
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(a) (b)

(c) (d)

Figure 6.7: Time averaged quantities for the performed experiments. (a) Vorticity thickness and (b)
density layer thickness, bulk Richardson number (c) and acceleration parameter Ta (d) vs. x.

experiments with a thinner sheared layer.
The vorticity and density thicknesses, first mentioned in section 6.1, were obtained

from the inverse slope of the best-fit line through the normalized velocity profile between
the 15% and 85% values (Pawlak and Armi [2000]):

δν =

(
du

dz
|u=0.85
u=0.15

)−1

and δρ =

(
dρ

dz
|ρ=0.85
ρ=0.15

)−1

,

respectively, where u and ρ are the normalized velocity and density, ranging from 0 to 1.
These parameters are plotted for all the experiments in figure 6.7.

The vorticity thickness shows a faster increase for the smooth case (see figure 6.7 (a)),
followed by the dense roughness case and, finally, the sparse roughness case. The mixed
layer thickness (figure 6.7 (b)) is larger right to the sill crest for the smooth case while
it shows smaller values for the rough cases. The wake behind the pulsating surge-like
currents observed for the smooth experiment can not develop right to the sill crest: the
bottom roughness acts as a catalyst in the energy cascade process characterized by energy
transfer from larger to smaller scales and accelerates the dissipation process. This results
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6.5 Mean flow characteristics

(a) (b)

(c) (d)

Figure 6.8: Averaged concentration values. (a) Mean concentration profiles for the smooth case (exper-
iment 1, continuous line), the dense roughness case (experiment 2, dashed line) and the sparse roughness
case (experiment 3, dash-dot line). (b) Comparison between the concentration at the interface and the
mean concentration in the density layer (15%-85% bounded) for the smooth case, the dense roughness
case (c) and the sparse roughness case (d). The higher gap between the concentration values for the
roughness experiments suggests that the density profiles has been modified by stretching them.

in a reduced increase of the shear and density layer thickness downstream of the sill crest.

In Pawlak and Armi [1998] the effects of acceleration on the initial region right to the sill
crest of the developing shear layer were parameterized using an acceleration parameter,
defined as TA = (δ/u2)(du2/dx), in which δ is the shear layer thickness and u2 is the
representative velocity for the lower layer. This ratio can be interpreted as a ratio of an
eddy time scale to an acceleration time scale. TA is plotted in figure 6.7 (d) for all the
performed experiments. Left to the sill crest, they all have similar values. For x/L > 0
the acceleration parameter for the smooth case (experiment 1) is higher than in the
rough cases (experiments 2 and 3). This means that the time scale for the acceleration is
smaller or that the eddy time scale is higher for the smooth case compared to the rough
cases, thus indicating a lower acceleration down the sill, and so a lower input of energy
due to the sill slope in the rough experiments as compared to the smooth experiment.

The effect of the roughness can also be noted on the density layer properties. The
normalized concentration profiles are plotted in figure 6.8 (a): the concentration profiles
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6 Experimental results on locally enhanced bottom roughness

becomes sharper when the roughness is increasing and thus, the interface in the rough
cases is more stable. This is also demonstrated in the other pictures of figure 6.8, where
the concentration at the density interface is compared to the mean concentration in the
density layer for experiment 1 (figure 6.8 (b)), for experiment 2 (figure 6.8 (c)) and for
experiment 3 (figure 6.8 (d)). As the roughness increases, the gap between the data in-
creases remarkably. This is somehow contradictory, because bottom roughness normally
increases the mixing, and thus makes the density profile less sharp as compared to a
smooth case. However, in the flow treated in this study, there are two main sources for
mixing between the upper and lower layer: the first one is given by the wakes developed
by the large-scale structures periodically generated at the interface and triggered by the
barotropic oscillation, while the second one is given by the small-scale, bottom gener-
ated turbulence. In the smooth experiment the main source of mixing is given by the
wake region developed in the collapsing phase of the large-scale surges mechanism. In
experiment 2, the main source of mixing is given by the bottom generated turbulence
and the contribute coming from the large-scale surges is unimportant. In experiment 3,
the bottom roughness inhibits the collapsing phase of the large-scale barotropic surges
and consequently, the wake region in which mixing normally takes place. Moreover, the
bottom generated turbulence interacts less intensively with the interface in this case as
compared to experiment 2. Both these effects result in reduced mixing as compared to
the smooth experiment. Thus, the contribution to the mixing at the interface given by
the two-dimensional, large-scale structures seems to prevail as compared to the contri-
bution given by the bottom roughness, resulting in more sharp density interfaces in the
rough experiments. Finally, we point out that, in fact, if one looks at the instantaneous
density profiles, they show sharper density interfaces in the smooth case as compared to
the rough cases, but in the average the results show the contrary.

Also interesting to note is that the concentration at the density interface is decreasing
from a value of roughly 0.45 for experiment 1 to a value of 0.4 for experiment 2 and
finally to a value of 0.3 for experiment 3. This could suggests that the mixing in the
rough cases is not so efficient as in the smooth case. This contraddictory behavior will
be further discussed in section 6.8.

6.6 The effect of bottom roughness on the interfacial
large-scale structures

The difference between the two experiments with roughness is that the configuration
with dense close spacing and fine short roughness elements is more effective in damping
the formation of the two-dimensional structures at the interface because it inhibits the
acceleration down the sill of the lower layer and causes a quicker energy transfer from the
large to the small turbulence scales. Sparse spacing of coarse, tall roughness elements act
almost as single disturbance bodies and the turbulence produced between the elements is
not interacting so intensively with the interface as compared to the dense configuration.

Due to the larger height of the roughness elements in the sparse roughness experiment
the growth process of the two-dimensional structures generated at the interface is dis-
turbed and the collapse of these structures is hindered, so that no wake zone can be

68



6.6 The effect of bottom roughness on the interfacial large-scale structures

observed behind them. In contrast to free shear layers which grow continuously down-
stream, shear layers generated by submerged roughness elements grow only to a finite
thickness Ghisalberti and Nepf [2004]. Because these shear layers are characterized by co-
herent vortex structures and rapid vertical mixing, their thickness controls the exchange
between the roughness zone and the overlaying water. In the dense roughness case, the
velocity gradients are much stronger than in the sparse roughness case: in figure 6.9 (a)
the characteristic velocity profile for a dense roughness case is depicted schematically.
The measured averaged velocity profiles for this case are shown in figure 6.10 (a) and
it can be noted that the velocity is zero near the bottom of the sill due to the dense
distribution of the roughness elements, but then it increases very fast (cf. also figure
6.6). In the sparse roughness case (schematically depicted in figure 6.9 (b)) a more gen-
tle increase of the velocity in the lower layer occurs to reach similar velocities as in the
dense roughness case. This can also be seen in the measured averaged velocity profiles
for the sparse roughness case in figure 6.10 (b)), where the velocity is low between the
roughness elements and increases slowly in vertical direction. Also the mixing layer is
growing faster and becomes larger in the dense roughness case than in the sparse rough-
ness case (cf. figure 6.7): this suggests that the interaction between the boundary layer
and the velocity shear interface between the two layers is more intensive for the dense
roughness case than for the sparse roughness case and the two-dimensional turbulence
which would be generated at the interface shear layer due to the superimposed barotropic
flow decays much more faster in three-dimensional turbulence in the dense roughness case
as compared to the sparse roughness case.

In the sense of Perry and Joubert [1969], the dense, short roughness used in the dense
roughness case is more of the d-type, with a higher interaction of the bottom generated
turbulence with the interface between the two layers, while the sparse, tall roughness
employed in the sparse roughness case are more of the k-type, where there is a generation
of a turbulent shear layer between the roughness elements, but this does not interact with
the sheared interface (Thorpe [1983]). Thus, in the sparse roughness case, the turbulent
bottom layer spreads vertically less rapidly than the two-dimensional structures generated

(a) (b)

Figure 6.9: Schematic sketch of the velocity profiles with enhanced bottom roughness. (a) Velocity
profiles for dense close spacing short roughness elements and (b) for sparse coarse tall roughness elements.
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(a) (b)

Figure 6.10: Measured averaged velocity distributions for (a) the dense roughness case and (b) sparse
roughness case.

at the interface due to baroclinic/barotropic effects.
Figure 6.11 shows the time series of the velocity shear interface, which is here defined

as (h|u=0.85 + h|u=0.15)/2, at three different longitudinal sections (x/L = −0.05, x/L =
0.19, x/L = 0.42) for the smooth case (a), the dense roughness case (b) and the sparse
roughness case (c). While for the smooth case the mean interface position is decreasing
as ∼ 0.7 → 0.6 → 0.55 from the sill crest to the right, for the rough cases it starts
with a mean value of ∼ 0.75 decreasing to ∼ 0.65 and reaching finally ∼ 0.55. This
means that in the rough cases the depth of the lower layer is higher at least in the first
accelerating region compared to the smooth case. In the dense roughness case has the
smallest amplitude of the sheared interface fluctuations while in the smooth and the
sparse roughness cases, it has the same order of magnitude, at least for the sections on
the right hand side of the sill crest, but in experiment 3 the frequency is higher. This
higher frequency is again the result of the shorter time life of the internal waves, which
collapse faster compared to the smooth case.

Figure 6.12 shows the interface fluctuation record for a time series of 400 s duration,
constructed from a vertical cut at a fixed location in the spatial image, i.e. at x/L = 0.24.
A spatial length scale can be inferred by assuming a convective velocity of ∆U/2. The
vertical fluctuations of the density interface are visibly reduced for the rough cases as
compared to the smooth case. Moreover, the horizontal size of the large-scale structures
is visibly reduced in the rough cases as compared to the smooth case.

Figure 6.13 (a) shows the standard deviation of the density interface fluctuations shown
in figure 6.12 as a measure of the growth rate of the large-scale two-dimensional struc-
tures. It is worth noting that while for the smooth experiment there is a constant increase
of the standard deviation as the flow moves down the slope, the rough experiments show
an opposite behavior, with the standard deviation decreasing in longitudinal direction.
In the sparse roughness case there is an initial increase in the region 0 < x/L < 0.15, and
then it continuously decreases, indicating an initial growth rate, but a rapid collapse of
the large-scale structures at the interface. In the dense roughness case there is a constant
decrease, suggesting that no two-dimensional structures are generated at the interface.
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(a) (b)

(c)

Figure 6.11: Time series of the instantaneous velocity shear layer interface at three different longitu-
dinal positions. (a) experiment 1, (b) experiment 2, (c) experiment 3. The highest amplitude of the
fluctuations is observed for experiment 1, followed by experiment 3 and finally for experiment 2.

Moreover, the standard deviation for the rough experiments is higher as compared to
that of the smooth case in the initial developing region x/L < 0.3, while in the growing
region of the large scale structures, the fluctuations of the density interface become larger
than those of the rough experiments. This is also consistent with the visual observations
described above.

Figure 6.13 (b) show an estimation of the horizontal (empty symbols) and vertical
(filled symbols) length scales of the large, two-dimensional structures at the interface,
calculated using the time scale TI obtained from the autocorrelation functions of the
horizontal and vertical velocity fluctuations and the mean velocity shear ∆U/2 as con-
vective velocity scale. For the dense roughness case, both the horizontal and vertical sizes
of the large-scale structures at the interface are reduced, while for the sparse roughness
case only the vertical scale is reduced, as compared to the smooth case, while the hor-
izontal scale is roughly the same. As noticed previously in other studies (Negretti and
Jirka [2007], Morin and Loewen [2004]) the period of the oscillations in the net flow rate
due to the unsteady external forcing are not exactly the same as those of the interface.
This was explained by Negretti and Jirka [2007] as different control mechanisms of these
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(a)

(b)

Figure 6.12: (a) Reconstructed images of the interfacial fluctuations for all the performed experiments
at x/L = 0.24 vs xc = t∆U/2, where ∆U/2 is assumed as mean convective velocity. The values of ∆U
are 0.05 m/s, 0.046 m/s and 0.05 m/s are for experiment 1, 2 and 3 respectively. The pictures shows
the large internal breaking waves as well as KH billows, with a higher frequency. (b) is a zoom in of the
time series showed in (a).
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6.6 The effect of bottom roughness on the interfacial large-scale structures

(a) (b)

Figure 6.13: (a) Standard deviation of the density interface fluctuations for the three experiments.
(b) Estimated horizontal (empty symbols) and vertical (filled symbols) length scales of the large, two-
dimensional structures at the interface, calculated using the time scale obtained from the autocorrelation
functions of the horizontal and vertical velocity fluctuations and the mean velocity shear as convective
velocity scale. Symbols are as given in figure 6.7.

Figure 6.14: Size of the large-scale structures observed at the interface versus the observed period of
generation: the higher the size of the structures, the higher the period of generation. The increase seems
to be linear.

oscillations: the oscillation in the net flow rate is controlled by the translation motion
of the fluid through the channel; the fluctuations of the interface, however, are the re-
sult of two mechanisms, namely surge-like accumulations at the sill crest triggered by
the barotropic flow and the additional baroclinic wave growth at the interface (i.e. even
for steady exchange flow). Apparent non-linear interaction between these mechanisms
causes a shorter interfacial wave period as opposed to the pure barotropic flow fluctua-
tion period. Here the amplitude of fluctuations of the interface and the growth of the
surge-like flows is hindered by bottom friction: to assure that the necessary amount of
volume for the barotropic equilibrium can be exchanged from one reservoir to the other,
the interface can only change its frequency of oscillation, if the amplitude growth is lim-
ited by friction. Thus, the frequency of oscillations of the interface, and so the frequency
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by which the surge-like flows are generated, does depend not only on the geometrical
quantities of the two reservoirs and the connecting channel, but also by the amplitude
and maximal growth of the large-scale structures. From figure 6.12 (a), we estimate the
period of events characterized by the large-scale billows to be approximately 18.0 s for
the smooth case and also for the sparse roughness case, while for the dense roughness
case it is estimated to be 11.8 s. The dependence of the size of the large scale struc-
tures versus the observed periods of generations is reported in figure 6.14 for the three
performed experiments and shows that the generation period increases linearly with the
increase of the size of the large-scale structures at the interface, with a slope of roughly
0.059. Thus we propose the following relation:

AI

H2
= CTobs (6.21)

where AI = LI,horLI,ver is a rough estimation of the area of the large-scale structures and
Tobs is the related observed period of generation. For a more exact estimation of the value
of the constant C more experiments are needed as well as a more detailed estimation of
the period of generation of these structures, for example through the spectral analysis of
the density interface fluctuations. Due to the relatively low image acquisition frequency
this will not be done here.

The different behavior between the two rough experiments can be explained, again,
by the different intensity of interaction between the bottom generated turbulence and
the interfacial, two-dimensional turbulence: in the dense roughness case the bottom
roughness interacts more with the interface and results, as shown previously, in hindering,
in an early stage, the development of the large-scale structures at the interface. In the
sparse roughness case, on the other hand, there is a limited interaction between the
bottom generated turbulence and the interface between the two layers and the large-
scale structures can still grow, reaching similar, but still reduced sizes as compared to
the smooth case (cf. figure 6.13 (b)). This explains the similar periods observed for the
generation of the two-dimensional structures at the interface.

On the basis of these results, we finally conclude that the roughness reduces the vertical
and longitudinal size of the two-dimensional structures and that dense roughness is more
effective for this scope. Moreover, the period of generation of these large-scale structures
at the interface shows to depend linearly on the size of the large-scale structures.

6.7 The effect of bottom roughness on the turbulence
production

The vorticity parameters Zr and Zrv which has been defined in section 6.1 are plotted
in figure 6.15.

The vorticity parameter Zr (equation (6.17)) is given by the product of the frictional
Froude number F` and the inverse of the inclination of the interface (figure 6.15 (a)). The
data for the smooth experiment show a steeper increase for x/L < 0.3, and a constant
increase after. The data for the two rough experiments show a more gentle increase
compared to the increase of the smooth case and the constant phase starts earlier, i.e.
at x/L ∼ 0.2. The steeper trend of the smooth case is because in this case the only
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(a) (b)

Figure 6.15: Vorticity parameters expressing the ratio between the three main contribution of vorticity
production in a two-layer stratified flow down a slope with enhanced bottom roughness. (a) Zr as ratio
between the friction vorticity production and the baroclinic production due to stratification and (b) Zrv

expressing the ratio between the friction production and the vortex stretching production due to the
acceleration down the slope vs. x (cf. equations (6.16, 6.17, 6.18)).

restoring force is given by buoyancy, while in the rough cases the gap between frictional
and baroclinic production is smaller and they both work for stabilizing the flow. This
also explain why the equilibrium is reached earlier by the rough cases as by the smooth
case.

The third parameter Zrv, giving the ratio between the roughness vorticity production
and the vortex stretching, is plotted in figure 6.15 (b) and it shows to increase very fast
in the region −0.2 < x/L < 0, just before the sill crest for all the three experiments,
with the same rate. The sharpness of the curves decreases then between 0 < x/L < 0.25
for experiment 1, between 0 < x/L < 0.18 for the dense roughness case and between
0 < x/L < 0.1 for the sparse roughness case, but still with the same gradient. This change
in the slope of the curves is given by the effects of the acceleration down the sill, so that
right to the sill crest, vortex stretching increases faster than the friction production of
vorticity. The third region, for x/L > 0.25, x/L > 0.18 and x/L > 0.1 for experiment 1,
2 and 3 respectively, is characterized by a constant slope for the two rough experiments,
as the friction contribution becomes more important, while for the smooth case a reduced
slope is present. In conclusion, the behavior of the three vorticity parameters shows that
the bottom roughness plays a twofold role in stabilizing the interface. First, it reduces
the acceleration down the sill and consequently the velocity in the lower layer. Second, it
increases the turbulent energy transfer between the lower layer and the sheared interface,
resulting in limiting the growth (in the dense roughness case) or the collapse (in the
sparse roughness case) of the large-scale surge-like flows.

These effects can also be observed in the spectral distribution of the fluctuations of the
main and vertical velocity components at the interface (see figure 6.16): for the smooth
case, the initial part of the spectrum is better described by a −7/3-slope and only in the
second part by the −5/3-slope for the streamwise velocity component (continuous line).
For the other two experiments, the spectrum is better described from the beginning by
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(a) (b)

(c)

Figure 6.16: Spectral distribution of the velocity fluctuations in streamwise (continuous line) and in
vertical direction (dashed line) for experiment experiments 1 (a), 2 (b) and 3 (c). Spectral slopes of
−7/3, −2 and −5/3 are plotted for comparison along with the natural buoyancy frequency N .

the −5/3-slope. The spectral slope is a measure of the rate of energy transfer between
the scales since the Reynolds number is large enough. An important issue in the study of
stratified flows is to separate the large scale generated frequencies caused for example by
internal waves, and the contribution by the buoyancy driven small scales. Low frequency
ranges in stratified flows have shown to be better described by −2 and −7/3-slopes,
for frequencies usually lower than the buoyancy frequency N [Lien and Dairiki, 1998].
Despite the fact that at these scales the limits of the PIV averaging becomes significant,
the energy in the last part of the spectrum shows a distinct separation between the
longitudinal (continuous line) and vertical (dashed line) velocity fluctuations spectra (see
figure 6.16) and they fall together only at higher frequency than the natural buoyancy
frequency N for the smooth case, while they fall together very early for experiments 2
and 3, at frequencies which are almost one order of magnitude smaller than their natural
buoyancy frequency N . This is an additional indicator that the energy cascade for the
rough cases starts earlier compared to the smooth case.
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(a) (b)

Figure 6.17: entrainment coefficients of the upper-layer fluid along the longitudinal direction (a) and
entrainment coefficients compared with the relation proposed by Dallimore and Ishikawa [2001] vs.
the Richardson number Ri (b). Symbols represent averaged entrainment coefficients of the performed
experiments, while the curves represent equation (6.23) for different bottom drag coefficients cD.

6.8 The effect of bottom roughness on mixing and
entrainment

Given the velocity field data, estimates of the entrainment coefficients can be obtained.
Following Ellison and Turner [1959], the entrainment coefficient is defined as

αe =
1

V

dq

dx
with V =

∫
u2dz∫
udz

(6.22)

where q is the flow rate per unit width in the layer of interest and V is a representa-
tive velocity for the layer. As pointed out in the introduction, many authors tried to
give a general relation in order to predict the entrainment coefficients as a function of
the Richardson number [Ellison and Turner, 1959, Christodoulou, 1986] and both the
Richardson number and the bottom friction coefficient [Hebbert and Loh, 1979, Kessel
and Kranenburg, 1996, Dallimore and Ishikawa, 2001]. Here, we also use the relation
proposed by Dallimore and Ishikawa [2001], where the entrainment coefficient is defined
as follows

E =
CkC

3/2
D + Cs

Ri+ 10(CkC
3/2
D + Cs)

(6.23)

where Ck and Cs are coefficients measuring the efficiency of the boundary-introduced
turbulent kinetic energy and of the local shear production, respectively. Past experimen-
tal data examined by Cherman and Corcos [1978] suggested universal values for Ck = 2.2
and Cs = 0.2. Ri = g′h2/u

2
2 is the Richardson number as defined also in Ellison and

Turner [1959], with h2 and u2 being respectively the depth and the characteristic velocity
in the lower layer and CD is the bottom drag coefficient. Figure 6.17 (a) shows the en-
trainment coefficients for all the performed experiments and the higher values are found

77



6 Experimental results on locally enhanced bottom roughness

in the region 0 < x/L < 0.15. The overall higher entrainment coefficients are observed
for the the dense roughness case, which are of the same order of magnitude of the en-
trainment coefficients found by Morin and Loewen [2004] and Fouli [2006], approaching
the value 0.1. The entrainment coefficients for the smooth case are similar to the entrain-
ment coefficients observed for the dense roughness case: the high turbulence intensities
at the interface in the rough experiments favorizes the mixing as the interaction between
the bottom boundary layer and the interface is very intensive, as demonstrated by the
Reynolds stresses distribution (cf. figure 6.6). In the sparse roughness case the lowest val-
ues for the entrainment values are reported (about 30% less as compared to experiments
1 and 2). This reduction is a result of a lower interaction between the bottom boundary
layer and the interface between the two layers, on one hand, due to the reduced velocity
gradients at the bottom (cf. figure 6.9) and, on the other hand, this results from the fact
that the large-scale structures do not develop a wake zone like in the smooth case. In the
smooth experiment the main source of entrainment is given by the wake region devel-
oped in the collapsing phase of the large-scale surges mechanism. In the dense roughness
case, the main source of entrainment is given by the bottom generated turbulence, due
to the very strong velocity gradients. Even if the large-scale surges are not observed in
this experiment, entrainment coefficients are in the same order as in the smooth case.
In the sparse roughness case, the bottom roughness inhibits the collapsing phase of the
large-scale barotropic surges and thus, the wake region in which entrainment normally
takes place. Moreover, the bottom generated turbulence interacts less intensively with
the interface in this case as compared to the dense roughness case. Both these effects
result in reduced entrainment coefficients as compared to the other two experiments.
These results are also briefly summarized in table 6.2. In figure 6.17 (b), the averaged
entrainment quantities reported in all the experiments are plotted (symbols) versus the
Richardson number Ri as defined in Ellison and Turner [1959]. The lines represent the
prediction proposed by Dallimore and Ishikawa [2001] as in equation (6.23) for different
values of the drag coefficient. Increasing the drag coefficient also the entrainment should
increase. This is only partially valid for the dense roughness case, as compared to the
smooth experiment. For the sparse roughness case the entrainment is lower than in the
other two cases, given the same Richardson number. The prediction by Dallimore and
Ishikawa [2001] overestimates the entrainment coefficients observed here.

6.9 Summary and conclusions

Results of an experimental study on stratified exchange flows down a submerged slope
with a superposed barotropic pulsating flow were presented. Two different types of rough-
ness have been used in the experiments and their results have been compared with results
relative to a smooth experiment (experiment 1). In the dense roughness case, artificial
turf was used as local enhanced bottom roughness over the sill, with a mean height of
1.6 cm and with a very high density. In the sparse roughness case, screw anchors were
used, with a height of 3.5 cm and a reduced density. In such flows, three different mecha-
nisms are responsible for the vorticity production: a first source of vorticity is given by the
vortex stretching due to the variation in height of the channel because of the sill placed
on the bottom. A second source is represented by the baroclinic generation of vorticity,
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6.9 Summary and conclusions

Exp. growth collapse Main source of Main source of
of surges of surges vorticity production mixing

1 yes yes surges (barotropic) surges (barotropic)
2 no no bottom roughness bottom roughness
3 yes no baroclinic surges (barotropic)

Table 6.2: Summary of the results obtained for the three performed experiments relative to the large-
scale structures growth and collapse mechanisms, the vorticity production. For damping the large-scale
surges, the most effective possibility is represented by the dense roughness case. The primary contribution
for mixing is given by the large-scale structures.

given by the inclination of the interface. In addition, the enhanced bottom roughness is
contributing to the vortex stretching. By dimensional analysis of the vorticity equation,
three parameters have been defined, in order to analyze the weight of each contribution
for every experiment. The behavior of the three vorticity parameters has shown that
the bottom roughness plays two important roles in stabilizing the interface: firstly, it
reduces the acceleration down the sill and so, the velocity in the lower layer. Secondly, it
increases the turbulent energy transfer between the lower layer and the sheared interface,
resulting in hindering the growth (in the dense roughness case) or the collapse (in the
sparse roughness case) of large-scale surge-like flows.

Bottom friction coefficients and an equivalent sill height have been estimated through
comparison of experimental data with the internal hydraulic theory. The results showed
that the roughness shifts the interface position as one effect of roughness is to increase
the height of the sill. A remarkable internal energy loss for the rough cases has also been
observed.

In the smooth case, the shear and density layer thickness increase faster compared
to the rough cases. Averaged velocity fields and Reynolds stresses distributions show a
decrease of the velocity difference between the two layers and an increase of the Reynolds
stresses in the shear layer ranging from the smooth case to the rough cases. The roughness
has shown to make much more sharp the density profiles.

The structure of the flow has been examined in detail, with a physical description of the
wave mechanisms at the interface. An estimation of the length scales of the large-scale
structures generated at the interface has been made using the autocorrelation functions
of the vertical and horizontal velocity components and the results demonstrated the
reduction of the size of the structures in the rough experiments. Moreover, the period
of generation of these large-scale structures at the interface seems to depend linearly on
the size of the large-scale structures.

The different bottom roughness elements have shown to behave differently with respect
to the interfacial wave activity: if the bottom roughness is very dense, the velocity gradi-
ents are much more stronger as compared to sparser roughness. The interaction between
the boundary layer and the velocity shear interface between the two layers is much more
intensive for very dense distributed roughness elements and the two-dimensional turbu-
lence which would be generated at the interface shear layer due to the superimposed
barotropic flow decays much more faster in three-dimensional turbulence in such cases.
These results are summarized also in table 6.2.

This also has shown to have ripercussions on the different behaviors relative to the
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6 Experimental results on locally enhanced bottom roughness

entrainment coefficients. Reduced entrainment coefficients have been reported only for
the experiment with a less density of roughness elements. In the smooth case, the main
source of entrainment is given by the wake generated in the lee of the surge-like flows
induced by the barotropic component. In the dense roughness case, with high distributed
roughness elements, the main contribution to entrainment is given by the bottom rough-
ness, which assures a very intensive interaction between the bottom boundary layer and
the interface between the two layers. In the third experiment, with a low density of
roughness elements, the major contribution to the entrainment comes from the bottom
roughness: but a reduced interaction between the boundary layer and the interface and
the hindered collapsing phase of the interfacial large-scale structures generated by the
pulsating barotropic flow both leave to the reduction of the entrainment coefficients.
These results are summarized also in table 6.2.

The study of the local effect of roughness in stratified exchange flows is important as
it well represents the natural conditions in environmental ambient as in ocean straits or
in the atmosphere between valleys, influencing the exchanged masses of water and the
air circulation.
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7 Linear stability of accelerating
two-layer shear flows

7.1 Introduction

Linear stability analysis is a useful tool for predicting the type of instability and its
occurence under different flow conditions. The traditional method adds a perturbation
to a background flow and the governing equations are then linearized about this state.
The normal mode approach allows one to determine the wave number, the growth rate,
and the spatial structure of the most unstable modes. Herein it is intrinsically assumed
that if the initial perturbation from the mean flow is white noise, then it is the most
unstable mode that grows fastest and dominate.

When linear stability analysis was first used, many investigators hoped that the tran-
sition to turbulence would follow directly from linear stability analysis. It was quickly
shown, however, that this is not necessarily the case. Linear stability analysis is only
valid for a very short time before nonlinear effects become important. Nevertheless, linear
instability does correctly describe the onset and early evolution of infinitesimal pertur-
bations. It also seems to give a qualitatively correct indication of the overall stability
of the flow [Maslowe, 1985]. For this reason much of the literature has been devoted to
linear stability theory [Gage, 1973, Pellacani, 1976, Drazin and Reid, 1981].

The normal mode approach of linear stability analysis reduces the system of nonlinear
partial differential equations (PDE) into a system of linear ordinary differential equa-
tions (ODE) where the boundary conditions depends on the flow configuration. These
new differential equations describe an eigen-problem with eigenvalues. However, this
transformation from PDE into ODE does not come without complications. Namely,
with this substitution, the complex eigenfunctions are unknown functions of the spatial
variable and it introduces unknown eigenvalues. Hence, one must make assumptions
concerning these unknowns in order to obtain any solution. In one case, one may assume
that the disturbance amplifies in space and not in time with a fixed frequency. As such
α becomes the unknown eigenvalue, ωi = 0 and ωr is specified. This is referred to as
spatial stability theory. A second case could assume that the disturbances amplify in time
and not in space. Hence, ω becomes the unknown eigenvalue αi = 0 and αr is specified.
This is referred to as temporal stability theory. The intersection of temporal and spatial
theories occur at neutral locations where disturbances neither amplify nor decay in space
and time. That is αi = ωi = 0 and both theories yield the same normal mode solution.

In the spatial stability theory with α complex and ω real, it should be noted that ω
can be real if and only if the phase speed c = ω/α is also complex. Thus, we have that
ωr = αrcr − αici and ωi = αrci + αicr = 0 which is much more complicated from a
mathematical point of view and this becomes even more significant when viscous effects
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7 Linear stability of accelerating two-layer shear flows

are considered. This is the reason because most of the stability theory has been devoted
to study the stability from a temporal frame of reference and then relating the temporal
results to spatial modes by means of the phase velocity, i.e. ωi = −crαi. Such a simple
relation is not valid in general. Gaster corrected the relationship by making use of the
group velocity instead of the phase velocity. Gaster [1962] noted that there exist an
asymptotic relation between temporally increasing and spatially increasing disturbances.
After Gaster [1962], if the temporal solution has parameters α = αr and αc = αrcr+ıαrci,
then the corresponding spatial solution has parameters α = αr− ıαrci/cg and αc = αrcr,
where cg = ∂(αrcr)/∂αr is the group velocity. This relation is now referred to as Gaster
transformation in honor of this important contribution to hydrodynamic stability theory.
Temporal studies can be so qualitatively extended to spatially developing flows and can
be extrapolated with the above relations in cases where the convective velocity is large
in comparison to the mean shear.

However, it is well known that spatial stability theory is more appropriate to describe
field or laboratory situations, as a reference frame is singled out by boundary conditions
and therefore one should refer to the concept of absolute or convective instability to
understand the dynamics of the flow (see Huerre and Monkewitz [1990]). Convectively
unstable flows are known to behave as noise amplifiers and their dynamics are described
by the spatial stability theory. In contrast, absolutely unstable flows exhibit self sustained
oscillations even in the absence of external perturbations, since the zero group velocity
wave is amplified in the selected frame.

The following sections are organized as follows: firstly, the governing stability equa-
tion will be derived for a two-layer, stratified flow accelerating down a slope (section
7.2). Herein it is assumed that the flow is parallel, incompressible and the Boussinesq
approximation is applied. The employed velocity and density profiles will be defined in
section 7.3, with the relevant scales for the non-dimensionalization. A brief summary
on the existing most important results will be summarized in section 7.4. Finally the
employed numerical solution methods (section 7.5) and the results on the linear stability
analysis (section 7.6) performed will be presented.

7.2 Governing equations
A two-dimensional, unsteady, stratified flow can be described completely using the ve-
locity components in the horizontal x and vertical z directions, u and w respectively, the
density ρ, the concentration of the stratified agent S and the pressure p. For a Newtonian,
incompressible fluid flowing over an inclined wall (θ) and assuming a linear equation of
state, the governing equations are given by (cf. figure 7.1):

• Conservation of momentum:

ρ(ut + uux + wuz) = −px + ρgsinθ + µ(uxx + uzz), (7.1a)
ρ(wt + uwx + wwz) = −pz − ρgcosθ + µ(wxx + wzz), (7.1b)

• Conservation of mass:

ρt + (ρu)x + (ρw)z = 0, (7.2)
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7.2 Governing equations

• Diffusion equation for stratifying agent:

St + uSx + wSz = κ(Sxx + Szz), (7.3)

• Equation of state

ρ = ρ0[1− γ(S − S0)], (7.4)

where g, µ, κ, and γ are the gravitational acceleration, the molecular viscosity, the
diffusivity of the stratifying agent and the coefficient of expansion for the stratifying
agent respectively, and they are all assumed to be constant. The subscript 0 represents
the variables in a standard state and the subscripts x or z denotes differentiation.

For an incompressible flow the change of density due to transport of stratifying agent
does not affect the mass conservation, so that equation (7.2) leaves to the simple form of
the continuity equation:

ux + wz = 0. (7.5)

Equation (7.3) and equation (7.4) can be combined to give

ρt + uρx + wρz = κ(ρxx + ρzz). (7.6)

If ρ and p are expanded about a state of hydrostatic equilibrium ρ0 and p0, the equations
of conservation of momentum can be written as

ρ(ut + uux + wuz) = −p′x + ρ′gsinθ + µ(uxx + uzz), (7.7a)
ρ(wt + uwx + wwz) = −p′z − ρ′gcosθ + µ(wxx + wzz), (7.7b)

where ρ = ρ0+ρ′, p = p0+p′, dp0/dz = −gρ0 cos θ, and where the prime denotes dynamic
quantities. If the density difference is small compared to the standard density ρ0, the
Boussinesq approximation can be used and the momentum equations can be rewritten
as

ut + uux + wuz = −p
′
x

ρ0

+
ρ′

ρ0

gsinθ + ν(uxx + uzz), (7.8a)

wt + uwx + wwz = −p
′
z

ρ0

− ρ′

ρ0

gcosθ + ν(wxx + wzz), (7.8b)

Figure 7.1: Definition for deriving the governing stability equation.
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7 Linear stability of accelerating two-layer shear flows

where ν = µ/ρ0 is the kinematic viscosity. These equations together with the continuity
equation and equation (7.6), are valid for small density variations and for incompressible
flows.

The continuity equation for incompressible flows can be used to define a stream function
ψ such that

u =
∂ψ

∂z
; w = −∂ψ

∂x
(7.9)

Differentiating the momentum equation in x direction with respect to z and the mo-
mentum equation in z direction with respect to x and subtracting the second resultant
equation from the first, one obtains the following equation for the stream function.

(4ψ)t + u(4ψ)x + w(4ψ)z =
g

ρ0

(ρ′x cos θ + ρ′z sin θ) + ν44ψ (7.10)

where4 = ∂2/∂x2+∂2/∂z2 is the two-dimensional Laplace operator. Non-dimensionalization
of equation (7.10) is done by introducing the following non-dimensional dimensional vari-
ables:

u = Uu∗ ψ = ULψ∗ x = Lx∗

w = Uw∗ ρ = %ρ∗ z = Lz∗

t = L/Ut∗

with U , L, % being a velocity scale, a length scale and a density scale, respectively.
These scales will be defined later. Substituting the above definitions into the governing
equations (7.10) and (7.6), one obtains

(4ψ)t + u(4ψ)x + w(4ψ)z = J(ρ′x cos θ + ρ′z sin θ) +
1

Re
44ψ (7.11a)

ρt + uρx + wρz =
1

PrRe
4ρ. (7.11b)

where the ∗ notation has been dropped for simplicity. From the above equations three
non-dimensional parameters can be recognized: the bulk (local) Richardson number J ,
the Reynolds number Re and the Prandtl number Pr. These parameters are defined as

J =
%gL

ρ0U2
, Re =

UL

ν
, Pr =

ν

κ
. (7.12)

where the Prandtl number gives the ratio between the kinematic viscosity and the dif-
fusion coefficient of the stratified agent and is also known as the inverse of the Schmidt
number Sc.

For the linear stability analysis, the flow field is splitted into a parallel mean component
and a perturbation field, i.e.

ψ′(x, z, t) = ψ̂(z) + ψ̃(x, z, t), (7.13a)
ρ′(x, z, t) = ρ̂(z) + ρ̃(x, z, t), (7.13b)
u′(x, z, t) = û(z) + ũ(x, z, t), (7.13c)
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7.2 Governing equations

Substituting these expressions into the governing equations (7.11), and collecting terms
of equal magnitude (neglecting higher order terms) and subtracting the background flow,
the perturbation equations can be obtained:

(4ψ̃)t + û(4ψ̃)x + w′ûzz = J(ρ̃x cos θ + ρ̃z sin θ) +
1

Re
44ψ̃, (7.14a)

ρ̃t + ûρ̃x + w′ρ̂z =
1

PrRe
4ρ̃. (7.14b)

Using the method of normal modes

ψ̃(x, z, t) = <[φ(z)eıα(x−ct)], (7.15)

ρ̃(x, z, t) = <[ϕ(z)eıα(x−ct)] (7.16)

and substituting these expressions into the linear equations (7.14a) the eigen-problem
can be obtained

[(û− c)(φzz − α2φ)]− ûzzφ =

J
[
ϕ cos θ +

ϕz

ıα
sin θ

]
+

1

Reıα
[φzzzz − 2α2φzz + α4φ]. (7.17)

Similarly, equation (7.14b) gives

(û− c)ϕ− ρ̂zφ = − 1

ıαPrRe
(ϕzz − α2ϕ+ ρ̂zz). (7.18)

Herein, φ denotes the complex amplitude of the disturbance, α = αr+ıαı and ω = ωr+ıωı

are the wave number, the spatial amplification rate, the frequency and the temporal
amplification rate of the perturbation, respectively and c = ω/α = cr + ıci is the complex
wave speed. Equation (7.17) and equation (7.18) can be solved to study the linear
stability of the flow.

Note that without stratification (J = 0), equation (7.17) reduces to the Orr-Sommerfeld
equation.

If the density diffusion is neglected (Pr →∞), the right hand side of equation (7.18)
can be neglected and

ϕ =
1

û− c
ρ̂zφ (7.19)

Introducing this expression into equation (7.17) one obtains:

(φzz − α2φ)− uzz

(u− c)
φ+ J cos θ

ρz

(u− c)
φ+

J sin θ

ıα(u− c)2

[
ρzzφ−

ρzuz

(u− c)
φ+ ρzφz

]
=

1

ıαRe(u− c)
[φzzzz − 2α2φzz + α4φ] (7.20)

where the ˆ has been dropped for simplicity. This is the final form of the governing
equation, valid for a stratified, incompressible, parallel, Boussinesq, shear flow. Herein,
u(z) and ρ(z) are the velocity and density profiles, respectively, which need to be de-
fined a priori (see section 7.3). Note that without slope (θ = 0) and neglecting viscous
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7 Linear stability of accelerating two-layer shear flows

effects, equation (7.20) reduces to the Taylor-Goldstein equation. J , Re, α and c are
the unknowns (four) variables. By fixing two of them, the other two can be numerically
determined.

Finally, the definition of the different velocity, density and length scales need to be
defined. To be consistent with the definitions of the non-dimensional velocity and density
profiles defined in section 7.3, we choose the following scales:

U ≡ ∆U

2
, % ≡ ∆ρ

2
, L ≡ δν , (7.21)

where ∆U = U2 − U1 is the velocity difference between the two layers, ∆ρ = ρ2 − ρ1 =
−(ρ1− ρ2) (this explains the change of sign of the terms containing the bulk Richardson
number J) is the density difference between the two layers, and δν is the thickness of
the velocity shear layer (see figure 7.2). With these definitions, the three adimensional
parameters reads

J =
2∆ρgδν
ρ0(∆U)2

, Re =
∆Uδν

2ν
, Pr =

ν

κ
. (7.22)

In the remainder of this study, we will deal with the inviscid stability equation and the
term containing the Reynolds number will be neglected.

7.3 The velocity and density profiles
The velocity and density profiles are usually considered in a dimensionless form, but there
are slight differences in the ways different authors achieve the non-dimensionalization.
This can lead to misunderstandings in effecting comparisons.

Here we take first the dimensional velocity and density profiles:

u(z) = A+
∆U

2
tanh

(
z

δν

)
, (7.23)

ρ(z) = ρ0 +
∆ρ

2
tanh

(
z

δρ

)
, (7.24)

where A is a superposed background flow, ∆U = U2−U1 is the velocity difference between
the two layers, ρ0 = (ρ1 + ρ2)/2 is a reference density. This contribute can be dropped
as it is a constant and only the first and second derivatives of the density profiles are
required in the stability governing equation (7.20). The typical vertical scales must not
be necessarily the same for the velocity and density profiles: thus, two different typical
vertical scales are defined, namely δν for the velocity profile and δρ for the density profile.
The profiles are made dimensionless by use of the velocity scale ∆U/2, the density scale
∆ρ/2 and as vertical length scale δν . The profiles reads then

u∗(z) = a+ tanh(z∗), (7.25)
ρ∗(z) = tanh(Rz∗), (7.26)

where the stars denotes non-dimensional quantities, a = 2A/∆U is the non-dimensional
background flow and R = δν/δρ is the ratio of the velocity shear layer thickness to the
density layer thickness and changes the steepness of the density profile.
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7.3 The velocity and density profiles

Hazel [1972] proposed after definition of the typical vertical length scale δν , the follow-
ing definitions for the velocity and density profiles:

u(z) = V u∗(z∗) such that (du∗/dz∗)z∗=0 = 1, (7.27)
log(ρ/ρ0) = λ(z∗) = σρ∗(z∗) such that (dρ∗/dz∗)z∗=0 = 1 (7.28)

with V being a typical velocity, σ a typical density measure. Remembering the definition
of the gradient Richardson number Ri(z) with the above definitions, we have:

Ri(z∗) =
Jdρ∗/dz∗

(du∗/dz∗)2
(7.29)

where J = σgδν/V
2 is the bulk Richardson number. The use by Hazel [1972] of this

particular scaling for the velocity and density profiles, ensures that the dimensionless
number J is always equal to the overall Richardson number at the origin. Hazel [1972]
studied the stability as a function of R defining then the velocity and density profiles as
follows:

u∗(z∗) = tanh(z∗) (7.30)

ρ∗(z∗) =
1

R
tanh(Rz∗). (7.31)

These definitions for the velocity and the density profiles assure the conditions given in
(7.28) and thus, that the gradient Richardson number Ri and the Richardson number at
the origin J are equal. This definition is in some cases unphysical because the density
ranges between ±1/R and not between the constant value ±1, but has the merit of
uniformity for comparisons between different cases. In the following, the stars indicating
non-dimensional quantities will be dropped for simplicity.

With the definitions of our profiles given in equation (7.26), the condition that the
first derivative of the non-dimensional density profile is not satisfied, so that the equality
between the overall and local Richardson numbers does not hold.

The derivatives of the velocity and density profiles (7.26) are given by

uz = 1− tanh2(z) uzz = −2 tanh(z)uz (7.32)
ρz = R(1− tanh2[Rz]) ρzz = −2Rρρz (7.33)

and are plotted in figure 7.2 (b).
Pawlak and Armi [1998] also used the same definitions for the density and velocity

profiles given by Hazel [1972] in order to satisfy the conditions given in (7.28), with only
one difference in the definition of the velocity profile, where a background flow has been
added.

Most of the other authors (Lawrence and Redekopp [1991], Haigh and Lawrence [1999],
Ortiz and Loiseleux [2002] with a background flow) used the piecewise linear velocity and
density profiles, without satisfying the rule (7.28) proposed by Hazel [1972].

Here, the choice of the hyperbolic tangent profiles for both the velocity and density
distributions is justified by the good agreement between the theoretical definitions and
the experimental data, as demonstrated in figure 7.2 (c) and (d).

87



7 Linear stability of accelerating two-layer shear flows

(a) (b)

(c) (d)

Figure 7.2: Sketch of typical velocity and density profiles for a stratified exchange flow taken from
(Zhu and Lawrence 2001) (a) and first and second derivatives of the velocity and density profiles (for
R = 2, ε = 0.5)(b). Comparison between the experimental (continuous line) and theoretical (dashed
line) velocity (c) and density (d) profiles.

7.4 A brief summary of previous stability studies on
stratified shear flows

7.4.1 Stability studies from a temporal frame of reference

Miles [1961] have proven that stability of an inviscid continuous stratified flow is assured
if the gradient Richardson number, which gives the ratio between buoyancy to intertia
forces, is everywhere greater that 1/4. However, Maslowe [1985] have shown that stratifi-
cation effects are in general more complex since stable stratification adds a restoring force
that constrains the vertical displacement of particles, and the stability depends on the de-
tails of the density and velocity profiles. A large effort has been devoted to understanding
the effect of buoyancy forces on shear instability by experimental and theoretical studies
(Holmboe [1962], Hazel [1972], Koop and Browand [1976], Smyth and Peltier [1988, 1989,
1991], Lawrence and Redekopp [1991], Haigh and Lawrence [1999], Strang and Fernando
[2001], Zhu and Lawrence [2001], Hogg and Ivey [2003]). Based upon the totality of
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Figure 7.3: Stationary neutral stability curve for equal shear and density shear layer thicknesses (R = 1).
The stationary stability curve is also the stability boundary. Inside the curve, KH modes develop
characterized with a zero phase speed. From Hazel [1972])

these studies, which have focused on temporal stability of the stratified shear flows, it is
known that if the characteristic thicknesses of the velocity shear and density interface are
similar, the stability is stationary with respect to the mean flow (i.e. the phase velocity
cr = 0) and is called Kelvin-Helmholtz (KH) instability. For a piecewise velocity profile
and a two layer density step, Holmboe [1962] found theoretically that the shear layer is
primarily unstable either to KH waves or to two travelling waves, which have the same
amplification rates but opposite propagating directions with respect to the mean speed
of the shear layer. These waves are known as Holmboe waves. In contrast to KH modes,
Holmboe waves are not restabilized when the stratification increases in the inviscid ap-
proximation. When the bulk Richardson number (the value of the Richardson number
at the origin of the vertical coordinate system) is low enough, KH modes will develop,
while if the bulk Richardson number is increased, the development of KH modes is in-
hibited and the interface starts being deformed by Holmboe waves. Assuming tangent
hyperbolic profiles, Hazel [1972] studied the stability as a function of the ratio of the
scale of the shear thickness to the density interface thickness. He showed applying the
Miles-Howard (Miles [1961]) criterion that a ratio greater than two is a necessary con-
dition for instability whatever the value of the bulk Richardson number. Generally, the
transition between stable and unstable modes is given by the stationary neutral stability
curve, where αi = ωi = 0. This holds also for the stability of stratified shear flows having
the same thickesses of the velocity and density shear layers (cf. figure 7.3). However,
if the thicknesses of the shear and density layer are not the same, i.e. for ratios equal
or larger than two, the stationary neutral stability curve where αi = ωi = 0 and where
the phase speed cr = 0 is not the stability boundary, but represents the transition from
KH modes to Holmboe modes, characterized with a phase speed cr 6= 0 (Hazel [1972]).
Referring to figure 7.4 in which different regions are defined with letters, the results are
summarized as in Hazel [1972] for different thicknesses of the velocity and density shear
layers, as follows:
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7 Linear stability of accelerating two-layer shear flows

Figure 7.4: Stability characteristics for different shear and density shear layer thicknesses (R = 5). The
stationary neutral stability curve is not the stability boundary. Inside the continuous curve, KH modes
develop, characterized with a zero phase speed, outside Holmboe modes develop, with a non zero phase
speed. From Hazel [1972]).

• In the regions (a) no solutions could be found by Hazel [1972], so that only neutral
modes lives in this region.

• In region (b), an unstable moving mode has been found (cr 6= 0, ci > 0). Because
of the anti-symmetry of the velocity and density profiles due to different values of
the thicknesses (i.e. in figure 7.4, R = 5) there are in fact two modes, of the same
growth rate, moving with equal velocity in opposite direction (Holmboe modes).

• In region (d), there are two stationary, unstable modes (cr = 0, ci > 0, KH modes).

• The dividing line (c), between regions (b) and (d), marks the locus of bifurcation
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Figure 7.5: Stability characteristics for different shear and density shear layer thicknesses (R = 5). The
stationary neutral stability curve is not the stability boundary. Inside the continuous curve, KH modes
develop, characterized with a zero phase speed, outside Holmboe modes develop, with a non zero phase
speed. From Ortiz and Loiseleux [2002]).

points in the cr, ci-plane, points where the phase velocities of the two Holmboe
modes of region (b) become zero, and the growth rates of all four modes of regions
(b) and (d) are equal. This is well illustrated in figure 7.5 (from Ortiz and Loise-
leux [2002]) where the temporal amplification rates ωi and the wave frequency ωr

are plotted versus the real wave number αr. Herein, KH modes are represented
in dotted lines and the Holmboe modes in continuous lines, for Ri = 0.04 and us-
ing piecewise linear velocity and density profiles instead of the tangent hyperbolic
profiles.

• In regions (f) and (g) there is one stationary, unstable mode (KH mode).

• The dividing line between the regions (d) and (f) is the stationary neutral curve
where αi = ωi = cr = 0. This relates to the other stationary, unstable mode, which
is unstable outside it, in region (d).

Other authors investigated the effect of an offset of the density interface relative to the
shear interface and found that this results in the formation of asymmetric Holmboe waves.
For more details see Haigh and Lawrence [1999], Zhu and Lawrence [2001].
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7.4.2 Stability studies from a spatial frame of reference

Only recently has the spatially stability theory been addressed by Pawlak and Armi
[1998] in the case of wedge flow where the upper stream was not moving and in which
the ratio between the velocity shear layer and the density shear layer thicknesses was
very large (R = 50) for small Richardson numbers. They clearly demonstrated that the
spatial theory differs strongly from the temporal theory. The most amplified modes are
different and the spatial instability results from a combination of KH modes and Holmboe
instabilities, which was called in their study a hybrid instability region. Later, Ortiz and
Loiseleux [2002] extended the analysis by Pawlak and Armi [1998], by analyzing the effect
of the mean advection and of changing the Richardson number, for piecewise velocity
and density profiles. Moreover they first studied the transition between the absolute
and convective instability, showing that the classical scenario for the transition should
be modified due to the presence of propagating waves (cf. figure 7.6). In the convective
region, the spatial theory is relevant and the slowest propagating wave is shown to be
the most spatially amplified. These results of their study can be summarized as follows
(see figure 7.7): when both streams move in the same direction (a > 1), the flow is
convectively unstable whatever the value of the Richardson number. When the streams
propagate in opposite direction (a < 1) two cases must be distinguished: when both the
KH and Holmboe are unstable under a certain value of the Richardson number, the flow
is always absolute unstable. When only Holmboe waves are unstable, over the Richardson
number limit, both convective and absolutely instabilities can live. This means that in an
equal exchange flow, like that treated in this study, when the Richardson number is lower
than a certain threshold the flow will be only absolutely unstable, while for a Richardson
number larger than this threshold, the flow will be only convectively unstable. However,
as pointed out in Ortiz and Loiseleux [2002], absolutely instabilities could arise due to
self-sustained resonance triggered by reflective boundary conditions.

Finally, they showed that the spatial and temporal results differ from each other re-
marcably only for values of the normalized background flow greater than a ∼ 0.2.

More recently, Gelfgat and Kit [2006] studied the spatial instability of parametrically
excited stratified mixing layer flows together with the related temporal instability prob-
lem. They performed a parametric analysis of the temporal and spatial Kelvin–Helmholtz
and Holmboe instabilities and compared characteristic features of the instabilities, includ-
ing results for the viscid solution. Moreover, they showed that in their study, the Gaster
transformation is valid for the Kelvin–Helmholtz instability, but cannot be applied to
the Holmboe one. Herein, it was also found that for the same governing parameters the
spatial upstream and downstream Holmboe waves have different amplification rates and
different absolute phase velocities, with larger difference observed at larger Richardson
numbers.

In an exchange flow like that treated in this study, a = 0, and the temporal and spatial
results differ very weakly. Thus, we will address the stability analysis from a temporal
frame of reference.

No linear stability studies studying the influence of a decomposition of the buoyancy
term in the governing stability equation in one direction parallel to an inclined boundary
and in one direction orthogonal to this inclined wall, are available.

Goal of the linear stability analysis in this work, is to examine the influence of the spa-
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Figure 7.6: Sketch of the impulse responses in the (x, t)-plane. For Ri < 0.07 a single wave packet, (a)
absolutely unstable for a normalized background flow a < 1 and (b) convectively unstable for a > 1. For
Ri > 0.07 behavior of the two Holmboe wave packets for a positive varying as follows: (c) convectively
unstable, (d) absolutely unstable and (e) convectively unstable. From Ortiz and Loiseleux [2002]).

tial acceleration (sill slope) on the stability of the interface under different flow conditions,
i.e. under the influence of a weak superposed background flow a.

7.5 Numerical solution methods

As the coefficients of the resulting ODE, i.e. the governing stability equation, are in
general not constant, they can be solved exactly for only a handful of special cases.
These are mostly limited to steady flows approximated by either piecewise constant or
linear velocity and density profiles (see Drazin and Reid [1981], Criminale and Joslin
[2000]). Although these flows are not physically realistic, they often admit simple solu-
tions. For more complicated flow profiles it is usually necessary to use either asymptotic
approximations, or to solve the equations numerically.

We propose in the following two different numerical solution methods to solve the
eigenvalue problem: the first is based on a power series expansion of the amplitude
function φ in Chebyshev Polynomials, while the second method is based on a centered
finite difference method.
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7 Linear stability of accelerating two-layer shear flows

Figure 7.7: (a) in light gray absolutely unstable modes (A) in white convectively unstable modes (C)
for different Richardson numbers and versus different values of the normalized background flow a. From
Ortiz and Loiseleux [2002]).

7.5.1 Pseudospectral method

A pseudo-spectral collocation method can be used to solve equation 7.20, which employs
Chebyshev Polynomials, mapped to an infinite domain, which are more appropriate for a
shear interface, since no truncation is required to apply the boundary conditions at ±∞
([Canuto et al., 1988]).

Here, Chebyshev polynomials are used as basis functions for the expansions of φ. To use
Chebyshev polynomials, the transverse direction is mapped into the interval [−1, 1]. It is
assumed that as the space variable goes to infinity, φ approaches some known continuous
function of the other space variables and time. In other words, the boundary conditions
for φ at infinity are known.

Here, the definition of the Chebyshev polynomials is given by

Tk(z) = cos(k cos−1 z), (7.34)

which has collocation points

zj = − cos(π(2j − 1)/(2(N − 2)), (7.35)

where N denotes the number of grid points. With this definition, the Chebyshev poly-
nomials are defined on [−1, 1]. The highest density of collocation points, formed by this
function, is located at the boundaries. Boyd [1989] suggested the following mapping
function

ξj =
γzj√
1− z2

j

, (7.36)
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defined on [−∞,∞], to map zj to an unbounded domain and with γ defining the density
of grid points over the domain. So, the highest density of collocation points is found at
the origin. This is an advantage for a shear interface since the strongest velocity gradients
occur where the grid is the most refined.

To use the mapped Chebyshev polynomials, TBn = Tn(ξ), an equation in the following
form is needed

χ1(z)φ
′′′′ + χ2(z)φ

′′ + χ3(z)φ
′ + χ4(z)φ = 0. (7.37)

Then, an approximation of the eigenfunction is sought as

φ(z) =
N∑

k=0

φ̂kTBk(z), (7.38)

where φ̂n are constant coefficients. The collocation equations are, then,

N∑
k=0

φ̂k [χ1(zk)TB
′′′′
k + χ2(zk)TB

′′
k + χ3(zk)TB

′
k + χ4(zk)TBk] = 0, (7.39)

with the boundary conditions

φ(±∞) = φ′(±∞) = 0. (7.40)

By the definition of the Chebyshev polynomials, they are satisfied automatically, so that
they must not be imposed in the numerical solution. Rearranging the terms in equation
(7.20), the coefficients χi (i = 1, 2, 3, 4) in equation (7.37) are evaluated as

χ1 =
1

αıRe(u− c)
, (7.41)

χ2 = 1 +
2α2

ıRe(u− c)
, (7.42)

χ3 = +
ρz

(u− c)2

J sin θ

ıα
, (7.43)

χ4 = −α2 − uzz

(u− c)
+
J sin θ

ıα

[
ρzz

(u− c)2
− ρzuz

(u− c)3

]
+
J cos θρz

(u− c)2

− α3

ıRe(u− c)
. (7.44)

The collocation equation (7.39) can be written as

[L] · Φ̂ = 0, (7.45)

where Φ̂ = (Φ̂0, Φ̂1, ..., Φ̂N)T and [L] is the matrix which assure that equation (7.45)
satisfies equation (7.39) and which is defined as follows:

Li,j = χ1(zi)TB
′′′′
j+1(zi)+χ2(zi)TB

′′
j+1(zi)+χ3(zi)TB

′
j+1(zi)+χ4(zi)TBj+1(zi), (7.46)

95



7 Linear stability of accelerating two-layer shear flows

where the prime denotes differentiation with respect to the spatial variable. Equation
(7.45) represents an eigenvalue problem which permits, when solved, to determine a pair
of eigenvalues, imposing that the determinant of the matrix [L] matrix is zero.

Gelfgat and Kit [2006] showed that in the case of tangent hyperbolic profiles, the
convergence of these series is particularly slow, even if one uses a high number of basis
functions for the approximation of the amplitude function. For this reason, they preferred
to use a central, finite difference method with a number of nodes varying between 500
and 2,000.

7.5.2 Finite difference method

The basic idea of the finite difference method is to approximate the partial derivatives
appearing in the stability equation (7.20) by discrete difference operators. The most
common forms of the finite difference with discrete difference operators are forward,
backward and central differences, all of which stem from the Taylor´s series:

dφ(z)

dz
≈ φi+1 − φi

∆z
forward (7.47)

dφ(z)

dz
≈ φi − φi−1

∆z
backward (7.48)

dφ(z)

dz
≈ φi+1 − φi−1

2∆z
central (7.49)

(7.50)

where φ is the function which has to be approximated. The order of a finite difference
scheme is defined according to the lowest order of the neglected Taylor series expansion
terms and indicates the behavior of the numerical error with respect to the discretization
length. The usage of the Taylor series expansion to derive the expressions (7.50) is based
on the assumption of a smooth function. However, if solutions are not smooth, the use of
high order schemes can lead to oscillations in the solution and hence can be less accurate
than low order methods (see Ferziger and Peric [1996]).

The finite difference method employed in this study is a high-order, central, explicit
method. In a few special cases (e.g. for explicit approximations on equidistant grids),
the optimal weights are known in closed form. Fornberg [1998] presented two short
algorithms for finding the optimal weights for derivatives of any order, approximated
to any level of accuracy. He also provided the algorithms which calculate the exact
weights for both explicit and implicit approximations for both regular and irregular grid
spacings. He proposed very simple recursion relations for the coefficients, so that starting
from a trivial value, all the required weights follow recursively from these expressions,
thus reducing enormously the computation time. For more details about the derivation of
these recursion relations for the weights and for the algorithms it is referred to Fornberg
[1988, 1998].

In the following section the two methods (the pseudospectral method described in
section 7.5.1 and the finite difference method described above) are employed to solve
the governing stability equation (7.20). The results will provide information on which
method is the most appropriate to solve the Taylor-Goldstein equation.
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7.5.3 Comparison between the two numerical solution methods
and sensitivity analysis

The results obtained applying the different numerical solutions methods were first com-
pared in order to choose the best one. As mentioned before, Gelfgat and Kit [2006]
studied the stability of stratified shear flows using the viscid Taylor-Goldstein equation
and the tangent hyperbolic profiles. They showed that in the case of tangent hyperbolic
profiles, the convergence of the Chebyshev polynomials series is particularly slow, even
if one uses a high number of basis functions for the approximation of the amplitude
function. Additionally, they compared the results obtained using this general Galerkin
method with the results obtained using a central finite difference method employing
stretching of the grid where necessary, and showed that a minimum number of 500 to
2,000 of nodes was required to obtain acceptable results.

A first numerical analysis showed that in general, the Taylor-Goldstein equation presents
many singular points for different values of the eigenvalues, so that the numerical solu-
tion becomes more difficult. In fact, when analyzing the Taylor Goldstein equation we
note that compared to the Orr-Sommerfeld equation we have terms which are divided by
(u− c)n, where n = 2, 3. This results in multiple symmetric solutions and a different be-
havior as compared to the unstratified stability equation. Moreover, the Taylor-Goldstein
equation has shown to be very sensitive to discontinuities in the meshgrid, so that a very
high number of basis functions for the general Galerkin method or of a very high number
of grid points for the finite difference method is required to obtain the right solutions.
From the results obtained applying the two different numerical solution methods, we
can confirm the results obtained by Gelfgat and Kit [2006] that the Chebyshev series
are converging very slow, so that no gain of the time required for the calculations us-
ing the pseudospectral method could be achieved. Moreover, the results obtained using
the Chebyshev series showed to have a higher noise as compared to the finite difference
method, so that the search for the physical solutions becomes more difficult. Bayliss and
Matkowsky [1995] also showed that a roundoff error in computing derivatives using the
Chebyshev differentiation matrix occurs.

Figure 7.8 shows the condition numbers given for different values of the real and imag-
inary part of the calculated eigenvalue, i.e. ω. The condition number represents the
ratio of the largest singular value to the smallest: large condition numbers indicate a
nearly singular matrix. Figure 7.8 (a) and (b) shows the results obtained solving the
inviscid Taylor-Goldstein equation using a infinite Chebyshev grid with 50 and 150 basis
functions, respectively, while in (c) and (d) the results were obtained using the finite
difference method with, respectively, 500 and 1,500 grid points. From the figure it can
be noted that the number of numerical (unphysical) solutions is increasing if the number
of basis functions increases using the Chebyshev polynomials (figure 7.8 (a) and (b))
and, on the other hand, the noise is higher employing the Chebyshev polynomials in the
interesting region (black regions at the axis origin) as compared to the finite difference
method (figure 7.8 (a) and (c) of (b) and (d)). The numerical, unphysical solutions can
be recognized in the figure as the light gray zones, which are also moving depending on
the number of basis functions/grid points. The physical solutions (black regions) remain
at the same position independently from the numerical grid. Moreover, the time re-
quired for the calculation of one eigenvalue is very much larger using the pseudospectral
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Figure 7.8: Condition numbers for different values of the real and imaginary part of the calculated
eigenvalue, i.e. ω. Large condition numbers indicate a nearly singular matrix. Chebyshev polynomials
on an infinite grid with (a) 50 basis functions and (b) with 150 basis functions. Central finite difference
method with (c) 500 and (b) 1, 500 grid points. The noise using the finite difference method is smaller
so that the physical solutions are found more easily.

method as compared to the second-order central finite difference method, and also the
precision has shown to be lower. In figure 7.9 (a) the value of the calculated eigenvalue
(the temporal amplification rate ωi) for αr = 0.5 and J = 0.25 is plotted for different
computation times corresponding to a different spatial resolution. The calculated eigen-
value should be zero, as the pair αr = 0.5, J = 0.25 lie on the stationary neutral stability
curve (J = αr(1 − αr), see Holmboe [1962], Hazel [1972]). From the figure it can be
clearly seen that the pseudospectral method converges slower and produces less accurate
results as compared to the finite difference method on a regular grid spacing, for the
same computation times. In figure 7.9 (b), the same temporal amplification rates are
plotted versus the number of grid points employed using the finite difference method and
the number of basis functions (multiplied by a factor 10) employed using the Chebyshev
series, for different values of the wavenumber. The results shows that a minimum number
of 10,000 grid points for the finite difference method on a regular grid spacing is required
to obtain satisfactorily results.

On the basis of these results from the sensitivity analysis and on the results of Gelfgat
and Kit [2006], the second-order finite difference method is chosen. The results shows
that a minimum number of 10,000 grid points for the finite difference method is required
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Figure 7.9: Comparison between the results obtained using a second-order central finite difference
method on a regular grid spacing and the pseudospectral method employing Chebyshev polynomials.
The exact solution for the temporal amplification rates is given by ωi = 0. a) Temporal amplification
rates vs. the computation time using the two numerical solution methods. Chebyshev series show
higher computation times and a lower precision. b) Temporal amplification rates versus the number of
grid points (finite difference method) or the number of basis functions multiplied by 10 (pseudospectral
method) for different values of the wavenumber αr.

to obtain satisfactorily results, which efforts very high computing times. Due to the high
mesh resolution required, an irregular grid will be used with the central finite difference
method, which is as the grid defined for the pseudospectral method (infinite grid, see
equations (7.35) and (7.36)).

7.6 Results and discussion

7.6.1 Determination of instability types

Hazel [1972] showed that in the unstable region Kelvin-Helmholtz modes develop, char-
acterized by a zero phase speed (cr = 0) and finite temporal amplification rates ωi, which
have shown to decrease for increasing bulk Richardson numbers J . The transition from
stable to unstable regions is given by the stationary neutral stability curve, characterized
by purely real values of the eigenvalues and additionally, by a zero phase speed. Indeed,
Hazel [1972] showed that if R > 2, an anomalous behavior starts and the stationary
neutral stability curve is not the stability boundary, but the boundary for the transition
from KH modes to Holmboe modes, characterized by a non-zero phase speed. This tran-
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Figure 7.10: Schematic of search criterion for the stability boundaries. a) Wave frequency and b)
temporal amplification rates vs. the Richardson number J . The transition is found when the wave
frequency changes. At that point, amplification rates changes too.

sition represents the point at which two steady KH modes are replaced by two conjugated
oscillatory Holmboe modes and is also known as the Takens-Bogdanov codimension-two
bifurcation point (Kuznetsov [1998]). Gelfgat and Kit [2006] showed that this point is
also retained for continuous velocity and density profiles and for the complete model
that accounts for viscosity and diffusion. Moreover, they also showed that in the spatial
case, the KH to Holmboe transition is continuous. In this study, selecting the values for
J , R, αr, and ωr giving an initial guess for the eigenvalue ω = ωr + ıωi, the numerical
code computes the value of ω. We select R = 1, a certain wavenumber and let the bulk
Richardson number range between 0.01 < J < 0.51. For every Richardson number, the
correspondent eigenvalue ω is computed. This calculation is then repeated for different
values of the wavenumber 0.01 < αr < 1.0 and for five slope angles, i.e. starting from
known results for 0 radians and increasing the slope to reach the slope of 0.2 radians.
An example is given in figure 7.10, in which the wave frequency (a) and the temporal
amplification rate (b) is plotted versus the bulk Richardson number for no slope angle
θ = 0, R = 1, a = 0.05, and α = 0.505. It can be observed that the wave frequency
remains at a constant value an then it increases suddenly, reaching a higher constant
value. This happens at a Richardson number J = 0.26. The amplification rate vanishes
at J = 0.25. At this point, the transition from unstable modes (KH billows characterized
by a zero phase speed) to stable modes occurs. Also, these results were used to validate
the chosen numerical method and are in good agreement with the well known results
obtained from Hazel [1972].

100



7.6 Results and discussion

Figure 7.11: Results from linear stability analysis for R = 1, and different slope angles. Intrinsic
frequency ω∗

r = ωr − aαr (left column) and temporal amplification rates (right column) with respect to
the the Richardson number J , for αr = 0.3 ((a) and (b)) and αr = 0.5 ((c) and (d)). In (d) the area
where the amplification rates drops to a constant value are zoomed in the additional square.

7.6.2 Inclined exchange flow with superimposed weak mean
advection

The mean advection a in the temporal case acts as a Doppler shift in frequency, as it
was shown by Ortiz and Loiseleux [2002], and it affects only the real part of ω in the
temporal theory. Therefore, temporal instability will be fully described by considering
the intrinsic frequency of the temporal mode, defined as the frequency of the wave seen by
an observer moving with the local mean flow ω∗r = ωr − aα as a function of α. Moreover
ω(α) = −ω̄(−ᾱ) (where ¯ denotes the complex conjugate) so that only positive wave
numbers can be considered, without any loss of generality. All the results presented
in the following are obtained for a = 0.05. Changes of the mean advection become
important in the spatial stability analysis.

In figure 7.11 the intrinsic frequency (left column) and the temporal amplification rates
(right column) are plotted versus the Richardson number J for αr = 0.2 ((a) and b)) and
for αr = 0.5 ((c) and d)) for different values of the bottom slope. For a horizontal bottom
(θ = 0, continuous line) there is initially a strong decrease of the temporal amplification
rate for increasing Richardson numbers. At a certain value of the Richardson number, the
curve reaches a zero value. If the buoyant component containing the Richardson number
is decomposed in one component parallel and one orthogonal to the inclined bottom, the
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Figure 7.12: Transitions boundaries from KH to Holmboe modes for different slope angles, R = 1 and
a = 0.05. The instability regions are increased for larger slope angles. For θ > 0 the curve represent the
transition from KH to Holmboe modes, while for θ = 0 the curve represents the stability boundary as
the amplification rates of the Homlboe mode are zero, thus indicating a neutral mode.

temporal amplification rates do not decrease to zero in the range of Richardson numbers
studied: they reach a very small value and remain constant. The details are shown in
the zoom in the figure 7.11 (d). The constant value reached is larger for larger values of
the bottom slope. Due to this fact, that the amplification rates does not become zero if
θ 6= 0, it means that the point at which the curves stop to decrease and become constant,
is not the transition from unstable to stable modes, but it represents the transition from
KH to Holmboe modes, characterized with a non-zero phase speed (cf. figure 7.11 (a)
and (c)). It is also worth noting that the transition occurs at higher Richardson numbers
if the slope is larger. Moreover, the decreasing rate of the amplification rates is lower if
the slope increases. Holmboe waves are neutral in the case of a zero bottom slope, as
the amplification rates becomes zero ((cf. figure 7.11 (b) and (d)), continuous lines). For
θ = 0, the transition is found when the amplification rates becomes zero, while if θ > 0,
the transition from KH to Holmboe modes is found at the point where the amplification
rates reaches the constant value and the phase speed becomes non-zero. Each of these
locations, at a given wavenumber, corresponds to a critical Richardson number. The
transition boundary is plotted in figure 7.12 for the different slopes. The results for
θ = 0 are in good agreement with previous results (continuous line). If the slope angle is
non-zero, the unstable regions where KH modes exist are larger particularly for smaller
wavenumbers. The regions on the right hand side of the boundary lines for θ > 0 in figure
7.12 are unstable regions too, in which Holmboe modes live. These results suggest that
the bottom slope has a similar influence on the stability of the flow as the change of the
parameter R for the density profile. In fact, from a physical point of view, we expect that
both a bottom slope and an increased ratio R have the effect of destabilizing the flow, as
both terms are modifying the contribution of the buoyancy term (which gives a stabilizing
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Figure 7.13: Transitions from KH to Holmboe modes for different slope angles, R = 1 and a = 0.05.
The instability regions are increased for larger slope angles. While for θ > 0, the curve represent the
transition from KH to Holmboe modes, for θ = 0 the curve represents the stability boundary.

contribute) in the stability equation (7.20). The difference is that with the bottom slope
other terms are added into the governing stability equations, but their value remains
small since the slope angles are small. If the amplification rates are plotted versus
the wavenumber as illustrated in figure 7.13 it can be noted that, for a given Richardson
number, there is a range of wavenumbers in which the amplification rates are particularly
large. These are the regions of maximal amplification rates and correspond to the KH
mode (characterized with a zero phase speed, see figure 7.11), whatever the value of the
bottom slope. The difference between the curves for different slopes is very weak for low
Richardson numbers; as it increases the difference increases much more for the horizontal
case as compared to the inclined one. While for the horizontal bottom, the range of
wavenumbers with non zero amplification rates is shifting to the middle point αr = 0.5,
only the right boundary is shifting to the left for the inclined cases, thus indicating that
for larger Richardson numbers, i.e. for more stable flows, the bottom slope makes the
flow more unstable relative to long waves, while shorter waves becomes more and more
indifferent. This is also shown in figure 7.14, in which the maximal amplification rates
(a) and the correspondent wavenumber (b) are plotted versus the Richardson numbers.
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Figure 7.14: Maximal amplification rates (a) and correspondent wavenumber (b) for different Richard-
son numbers. The maximal amplification rates are found only for the KH modes. Holmboe´s amplifica-
tion rates are at least one order of magnitude smaller.

For larger Richardson numbers, the maximal amplification rates are decreasing, reaching
a zero value for the horizontal flow, and continuously decreasing for the inclined flow.
The decreasing rate is lower for larger slope angles. It is worth noting that these maximal
amplification rates correspond to KH modes, while Holmboe´s amplification rates are at
least one order of magnitude smaller.

Also interesting to note is that while the correspondent value of the wavenumber,
at which the most amplified mode develops, is slightly increasing for the horizontal flow
reaching the well known value 0.5, at J = 0.25, the other curves present an inflection point
at J = 0.25 and the values are decreasing for larger Richardson numbers. For J < 0.25,
the value of the wavenumber correspondent to the most amplified mode decreases if the
slope is larger, while for J > 0.25 larger slopes have larger wavenumbers correspondent to
the highest amplification rates. At J = 0.25, for all slopes these value of the wavenumber
collapse at the same value αr = 0.25. At this point also the curves of the amplification
rates for θ > 0 changes and their slope becomes smaller.

7.7 Summary and conclusions

A first step in understanding the stability of a two-layer stratified exchange flow down a
slope was done by performing a linear stability analysis, through which a first insight in
this method of analysis could be obtained. The modeled flow for this analysis is strongly
idealized as many simplifications and assumptions have been met. It thus does not take
into account the flow processes occurring at the interface. These are for example the un-
steady barotropic forcing superposed on the baroclinic exchange flow, the fact that the
flow is non-parallel and that is varying not only in the vertical but also in the streamwise
direction (two-dimensional variability). The obtained experimental results presented in
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the previous chapters show that these effects are dominating the flow behavior and par-
ticularly the generation of instabilities at the interface. Comparisons to experimentally
measured quantities are done only for validating the choice of certain definitions for the
stability analysis, as for example the velocity profiles and other parameters characterizing
the shear layer or density layer thickness. The results relative to the stability analysis
which includes amplification rates, wavenumbers and frequencies are not compared to ex-
perimental data, since the flow defined for the stability analysis strongly differs from the
high-turbulent, baroclinic/barotropic flow analyzed with the experimental investigations.
Nevertheless, linear instability does correctly describe the onset and early evolution of
infinitesimal perturbations and the results obtained can be used as starting point for a
non-linear analysis.

Different numerical methods were tested, namely a pseudospectral method employing
Chebyshev Polynomials and a finite difference method. Finally, a central, second-order
finite difference method with an irregular grid was employed. The stability was studied
from a temporal frame of reference. From the results it was concluded that for a given
wavenumber, the bottom slope seems to have two effects on the stability of the flow:
firstly, it increases the unstable regions as the stationary neutral stability curve is not
the stability boundary but the boundary for the transition from KH modes to Holmboe
modes. Secondly, it introduces in the unstable region the coexistence of two types of
instabilities: KH instabilities characterized with higher temporal amplification rates and
which decrease for increasing Richardson numbers, and Holmboe instabilities, which lives
at higher Richardson numbers and which have a finite, non-zero phase speed. At smaller
wavenumbers the regions in which KH modes exist are increased as compared to the
horizontal case and the amplification rates are also found to be larger and to decrease
slower with increasing Richardson numbers. The amplification rates of the Holmboe
modes are found to be much smaller (one order of magnitude) as compared to those of
the KH modes, and they are independent on changes of the wavenumber.
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8 Concluding remarks
In this thesis, the interfacial wave activity at the interface between the upper and lower
layer of a density-stratified exchange flow down a topographical obstruction has been
studied. The effects of different experimental initial conditions, and so the effect of a
pulsating barotropic component superimposed to the baroclinic flow, have been analyzed
revealing that pulsating density currents are generated in the lower layer in order to
balance the barotropic generated overflow between the two reservoirs. These surges-like
flows form in their wakes high turbulent recirculation zones, thus causing significant en-
trainment and mixing between the two layers. The size of these structures has shown
to be comparable to the total water depth. The experiments have all been run with
Reynolds numbers in the order of 103 ÷ 104, thus they are more representative for natu-
ral flows as the flow exchange between sea straits and between two reservoirs connected
by a narrow pass in environmental engineering, in comparison with past studies. Also
the investigated superimposed barotropic flow is of relevance for natural flows. For con-
nections between two reservoirs of different densities, like the Burlington Ship Canal in
Canada or the Lake Lucerne in Switzerland, the pulsating barotropic components are
dictated by basin oscillations or seiches, and their period is triggered by the geometrical
dimensions of the reservoirs and of the connecting channel. In this respect, the results
of the present work are very representative with similar periods and can predict not only
the size of the interfacial waves and the related entrainment and mixing at the interface
for different Richardson and Reynolds numbers, but also the net flow rate oscillations
and the related period, simply as a function of the geometrical conditions. Moreover,
the results are also representative for the oceanographical or geophysical community:
for infinitely large water bodies connected by a narrow pass or channel, like sea-straits,
the pulsating barotropic component superposed to the baroclinic flow is dictated by me-
tereological or astronomical tides so that again, the results of this study relative to the
interfacial wave activity and the entrainment coefficients are also representative for such
flows (see for example the studies of Sherwin and Turrell [2005]), even if the time scales
in the model are faster than in nature.

Control methods in form of local enhanced bottom roughness in order to influence
the generation and the developing of the large-scale structures at the interface, have
shown to influence not only the developing mechanism of the pulsating density currents,
but also their period of generation. Two different types of bottom roughness have been
used during the experiments, which generated different types of velocity profiles. If the
velocity profile is such that the bottom roughness causes a very strong velocity gradients
near the bottom, the wakes behind the surges are not generated anymore. Nevertheless,
entrainment and mixing are in the same order of magnitude as in the smooth case, due
to the strong Reynolds stresses, causing a much rapid decay of turbulence and a more
effective redistribution of turbulent kinetic energy in the three coordinate directions. If
the velocity gradients in the lower layer are not so strong, the large-scale structures still
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generate, but they can not fully develop the wake region, so that both the size of the
structures and the entrainment coefficients have shown to be reduced as compared to
the smooth case. Also these results are representative for natural flows, not only in the
geophysical context, but also for atmospheric flows, like windstorms down mountains
or the air exchange and circulation in cities in a valley between night and day (see for
example studies of Cermak [1993]). For example, winds in the atmosphere in which air
cooled by contact with a cold ground flows down a hill are of importance to agriculture
because they can influence damages due to frost or they can carry smoke or fog, thus
affecting the visibility at ports.

However, the present work also contains some uncertainties. In the PIV measurements
conducted in this thesis, the size of one pixel on the CCD chip was about half a millimeter
(cf. section 3.3). This small ratio of particle size to pixel size (about 1/3 instead of the
suggested 2/1) was inevitable in these experimental setup due to the large field of view
required for the study. This inconvenience could be partly suppressed by defocusing the
field of view with the lens mounted on the CCD camera, leaving to a ratio of 1 in the
worst scenario. The small peak locking observed for all the experiments can be justified
by the fact that the software DaVis interpreted sometimes a group of particles as one
single particle, thus removing the inconvenient of small ratio. Of course, no structures
smaller than roughly 1 cm x 1 cm could be resolved, but this was also not the scope
of this work, since the attention was directed in understanding the large-scale governing
processes occurring at the interface. Due to the various difficulties encountered during
the calibration procedure for the PLIF system, the combined PIV/PLIF measurements
could not deliver the Reynolds transport terms u′c′, as the precision of the concentra-
tion measurements was not sufficient to determine accurate concentration fluctuations
c′. However, the mean concentration fields could be used to describe the most impor-
tant properties of the flow. For the experiments with local enhanced bottom roughness,
a very rough estimation of the roughness coefficient has been made so that the values
are rudimentary and no prediction of entrainment coefficients and size of the large-scale
structures observed at the interface could be made as a function of a drag or roughness
coefficient.

Another point which awakes a lot of interesting questions is the connection between
the period of oscillation of the net flow rate and the period of generation of the large-scale
surges at the interface: as pointed out in chapter 5, experimental results have demon-
strated that these two periods are not exactly the same. Moreover, from experimental
observations, it has been noted that this difference changes when enhanced bottom rough-
ness is locally brought above the sill and when the water depth is changing. The variation
of the generation period with the variation of the water depth or with increasing bottom
roughness should be related with a general expression. For this aim, detailed PIV mea-
surements with different water depths and purposely designed barotropic oscillations are
required. Such studies are currently in progress at the Institute for Hydromechanics.

Also the effect of the sill slope and so of different acceleration components on the
generation period could have an influence and could be further investigated. The effect
of higher Reynolds numbers, in the order of 105 ÷ 106 using higher water depths and
buoyant accelerations should be further investigated. This surely will demand high speed
cameras with a high temporal, but also spatial resolution. As these experiments will be
very challenging from the technical point of view, an interesting compromise would be
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to perform numerical simulations using for example DNS or LES, also in order to verify
the experimental data. In this view, the experimental data collected during the course of
this work could deliver the data necessary to calibrate numerical codes, so that various
numerical simulations could be run investigating the effect of high Reynolds numbers on
the interfacial wave activity. These results could also furnish more information about an
eventual Reynolds invariance.

A first step in understanding the stability of a two-layer stratified exchange flow down
a slope was done by performing a linear stability analysis, through which a first insight
in this method of analysis could be earned. However, careful attention should be paid for
these results, which are useful for the overall understanding of the flow stability and which
can correctly predict only the early evolution of infinitesimal perturbations. Moreover,
the modeled flow for this analysis is strongly idealized as many different simplifications
and assumptions have been met and as such does not take into account the full portrait
of the flow processes occurring at the interface. These are for example the unsteady
barotropic forcing superposed on the baroclinic exchange flow, the fact that the flow is
non-parallel and that is varying not only in the vertical but also in the streamwise di-
rection (two-dimensional variability). The obtained experimental results show that these
effects are dominating the flow behavior and particularly the generation of instabilities
at the interface. For these reasons, results relative to the stability analysis, such as
amplification rates and wavenumbers, were not compared to experimental data. Com-
parisons to experimentally measured quantities are done only for validating the choice
of certain definitions for the stability analysis, as for example the velocity profiles and
other parameters characterizing the shear layer or density layer thickness. Nevertheless,
linear instability does correctly describe the onset and early evolution of infinitesimal
perturbations and the results can be used as starting point for a non-linear analysis.

From the results of the linear analysis it is concluded that for a given wavenumber,
the bottom slope has two effects on the stability of the flow: first, it increases the
unstable regions as the stationary neutral stability curve is not the stability boundary
anymore. Second, it introduces in the unstable region the coexistence of two types of
instabilities: KH instabilities characterized with higher temporal amplification rates and
which decrease for increasing Richardson numbers, and Holmboe instabilities, which lives
at higher Richardson numbers and which have a finite, non-zero phase speed. Further
analysis is required to study the additional effect of the viscosity and of the change of
the ratio of the shear layer thickness to the density layer thickness. Also the effect of
bottom roughness on the stability of the flow, using a different definition for the velocity
profile, is an issue that still has to be addressed.
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