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Preface of the 
Workshop on Component-Oriented Programming (WCOP) 2007 
WCOP 2007 is the twelfth event in a series of highly successful workshops, which 
took place in conjunction with every ECOOP since 1996. 
COP has been described as the natural extension of object-oriented programming to 
the realm of independently extensible systems. Several important approaches have 
emerged over the recent years, including component technology standards, such as 
CORBA/CCM, COM/COM+, J2EE/EJB, .NET, and most recently software services, 
but also the increasing appreciation of software architecture for component-based 
systems, as in SOA, and the consequent effects on organizational processes and 
structures as well as the software development business as a whole. 
COP aims at producing software components for a component market and for late 
composition. Composers are third parties, possibly the end users, who are not able or 
willing to change components. This requires standards to allow independently 
created components to interoperate, and specifications that put the composer into the 
position to decide what can be composed under which conditions. On these grounds, 
WCOP '96 led to the following definition: 
 

A component is a unit of composition with contractually specified   interfaces 
and explicit context dependencies only. Components can be deployed 
independently and are subject to composition by third parties. 

 
After WCOP '96 focused on the fundamental terminology of COP, the subsequent 
workshops expanded into the many related facets of component software.  
WCOP 2007 will discuss the black-box nature of components. On the one hand, for 
many, components became synonymously with the black-box building blocks of 
software. Technically, this means a component is described by the interfaces it 
provides and requires. On the other hand, for many reasons, an abstract description 
of specific aspects of the component’s behaviour in addition to the mere interface 
specification is needed. These reasons include architectural dependency analysis, the 
description of non-functional properties or the verification of the absence of 
deadlocks. Therefore, in WCOP 2007 we explicitly ask for position statements 
discussing work related to the question: 
 

“How dark should a component black-box be?” 
 
This includes position statements dealing with components or component-based 
systems or component infrastructures that explicitly make use of information on 
components beyond mere provides and requires interfaces. 
 
WCOP 2007 accepted 10 papers, which are organised according to the program 
below. The organisers are looking forward to an inspiring and thought-provoking 
workshop. The organisers like to thank Klaus Krogmann for preparing the 
proceedings volume. 
 
Ralf Reussner, Clemens Szyperski, Wolfgang Weck 
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Programme WCOP 2007 
 
9:00h Opening of WCOP by Organisers 
9:15h Session I: Model-Driven Development and Adaptation of Components 
 

• Relating Model-Based Adaptation and Implementation Platforms: A Case Study with 
WF/.NET 3.0 ? 
Javier Cubo (1), Gwen Salaün (1), Carlos Canal (1), Ernesto Pimentel (1), Pascal 
Poizat (2,3) 
1 University of Malaga, Spain; 2 Université d'Evry Val d'Essonne, France; 3, INRIA 
Rocquencourt, France 

 
• On the benefits of using model transformations to describe components design process 

Eveline Kaboré and Antoine Beugnard 
ENST Bretagne, France 

 
9:45: Session II: Component Performance Prediction 
 

• Reengineering of Software Component Models to Enable Architectural Quality of 
Service Predictions 
Klaus Krogmann 
Universität Karlsruhe (TH), Germany 

 
• Predicting Software Component Performance: On the Relevance of Parameters for 

Benchmarking Bytecode and APIs 
Michael Kuperberg and Steffen Becker 
Universität Karlsruhe (TH), Germany 

 
10:15 Session III: Aspects and Components 
 

• Aspectual Dependencies: Towards Pure Black-Box Aspect-Oriented Composition in 
Component Models 
Bert Lagaisse and Wouter Joosen 
K.U.Leuven, Belgium 

 
10:30h Coffee Break 
11:00h Session III continued 
 

• A Seamless Extension of Components with Aspects using Protocols 
Angel Núñez, Jacques Noyé 
EMN-INRIA, Nantes, France 

 
• AOCI: An Aspect-Oriented Component Infrastructure 

Guido Söldner and Rüdiger Kapitza 
University of Erlangen-Nürnberg, Germany 
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11:30h Session IV: Component Nature:  
 

• How dark should a component black-box be? The Reuseware Answer 
Jakob Henriksson and Florian Heidenreich and Jendrik Johannes and Steffen Zschaler 
and Uwe Aßmann 
Technische Universität Dresden, Germany 

 
• Black & White, Never Grey: On Interfaces, Synchronization, Pragmatics, and 

Responsibilities 
Franz Puntigam 
Technische Universität Wien, Austria 

 
• Components have no Interfaces! 

Richard Rhinelander 
University of Kitara, Australia 

 
12:15h Planning of Break out Groups 
12:30h Lunch break 
14:00h Discussion in Break out Groups 
15:30h Coffee Break 
16:00h Presentations of Break Out Groups 
16:45h Closing of WCOP 
17:00h End of the 12th WCOP 
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Relating Model-Based Adaptation and
Implementation Platforms:

A Case Study with WF/.NET 3.0
Javier Cubo, Gwen Salaün,

Carlos Canal, Ernesto Pimentel
Dept. of Computer Science, University of Málaga

Campus de Teatinos, 29071, Málaga, Spain
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Abstract—In this paper, we propose to relate model-based
adaptation approaches with the Windows Workflow Foundation
(WF) implementation platform, through a simple case study. We
successively introduce a client/server system with mismatching
components implemented in WF, our formal approach to work
mismatch cases out, and the resulting WF adaptor. We end with
some conclusions and a list of open issues.

I. I NTRODUCTION

Software Adaptation [1] is a promising research area which
aims at supporting the building of component systems [2] by
reusing software entities. These can be adapted in order to fit
specific needs within different systems. In such a way, appli-
cation development is mainly concerned with the selection,
adaptation and composition of different pieces of software
rather than with the programming of applications from scratch.
Many approaches dedicated to model-based adaptation [3], [4],
[5], [6], [7] focus on the behavioural interoperability level, and
aim at generating new components calledadaptorswhich are
used to solve mismatch in a non-intrusive way. This process
is completely automated being given anadaptation mapping
which is an abstract description of how mismatch can be
solved with respect to behavioural interfaces of components.
However, very few of these approaches relate their results with
existing programming languages and platforms. To the best of
our knowledge, the only attempts in this direction have been
carried out using COM/DCOM [5] and BPEL [8].

In this paper, we propose to relate adaptor generation pro-
posals with existing implementation platforms. BPEL [9] and
Windows Workflow Foundation (WF) [10] are very relevant
platforms because they support the behavioural descriptions of
components/services. Implementing BPEL services is possible
with the Java Application Server included in Netbeans Enter-
prise. On the other hand, WF belongs to the .NET Framework
3.0 developed by MicrosoftR©. Here, we have chosen WF
to achieve our goal because the .NET Framework is widely
used in private companies whereas BPEL is a language that
recently emerged and for which tool support is being released.
In addition, WF can be used to implement Web services, as it
is the case for BPEL, but also any kind of software component.

WF makes the implementation of services easier thanks to its
workflow-based graphical support. Last, by using with WF,
most of the code is automatically generated, which is not the
case with BPEL platforms.

The remainder of the paper is organised as follows. We
give a quick overview of WF in Section II. We present in
Section III a simple example of on-line computer sale, and
the WF components on which it will rely on. In Section IV,
we apply successively the main steps that are necessary to
compose and adapt these WF components: extraction of be-
havioural interfaces from WF workflows, mismatch detection,
writing of the mapping, generation of adaptor protocol, and
implementation of the adaptor component from its abstract
description. In Section V, we draw up some conclusions, and
discuss issues that we will tackle in future work.

II. WF OVERVIEW

In this section we present the WF constructs that we use
in this work: Code, Terminate , InvokeWebService ,
WebServiceInput , WebServiceOutput , Sequence ,
IfElse , Listen with EventDriven activities, and
While . The reader interested in more details may refer
to [10].

WF belongs to the .NET Framework 3.0, and is supported
by Visual Studio 2005. The available programming languages
to implement the workflows in Visual Studio 2005 areVisual
Basic and C#. In this work, C# has been chosen as the
implementation language.

The Code activity is meant to execute user code pro-
vided for execution within the workflow. TheTerminate
activity is used to finalise the execution of a workflow. A
WF InvokeWebService activity calls a Web service and
receives the requested service result back. If such an invoke
has to be accessed by another componentC, it has to be
preceded by aWebServiceInput activity, and followed by
a WebServiceOutput activity. Hence,C will interact with
this new service using these two input/output activities that
enable and disable the data reception and sending, respectively,
with respect to the invoked Web service. WF-based XML Web
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services require at least oneWebServiceInput and one or
moreWebServiceOutput activities. The input and output
activities are related, thus each output activity must be associ-
ated with an input activity. It is not possible to have an instance
of WebServiceInput without associated outputs, as well
as having outputs without at least oneWebServiceInput .

TheSequence construct executes a group of activities in a
precise order. The WFIfElse activity corresponds to anif-
then-elseconditional expression. Depending on the condition
evaluation, theIfElse activity launches the execution of one
of its branches. If none of the conditions is true, theelsebranch
is executed.

TheListen activity defines a set ofEventDriven activ-
ities that wait for a specific event. One of theEventDriven
activities is fired when the expected message is received. Last,
the While construct defines a set of activities that are fired
as many times as its condition is true.

III. C ASE STUDY: ON-LINE COMPUTERSALE

In this section we introduce a simple case study of on-
line computer sale. The example consists of a system whose
purpose is to sell computer material such as PCs, laptops, or
PDAs to clients. As a starting point we reuse two components:
a Supplier and aBuyer. These components have been im-
plemented using WF/.NET, and their workflows are presented
in Figures 1 and 2 respectively.

First, the Supplier receives a request under the form of
two messages that indicate the type of the requested material,
and the max price to pay (type and price ). Then, it
sends a response indicating if the request can be replied
positively (reply ). Next, the Supplier can terminate the
session, receive and reply other requests, or receive an order
of purchase (buy ). In the latter case, a confirmation is sent
(ack ) pointing out if the purchase has been realised correctly
or not.

The Buyer can submit a request (request ), in which it
indicates the type of material he wants to purchase and the max
price to pay for that material. Next, once he/she has received
a response (reply ), the Buyer may realise another request,
buy the requested product (purchase ), or end the session
(stop ).

In both Supplier andBuyer we have split the workflows
of Figures 1 and 2, presenting them into two parts. On
the left-hand side, we show the initial execution belonging
to the first request, and on the right-hand side we present
the loop offering the possibility of executing other requests,
performing a purchase or finalising. We identify the names
of certain activities, whose functionality is the same, with an
index (such astype_1 and type_2 , or invokeType_1
and invokeType_2 in Supplier), because WF does not
accept activities identified using the same name. Note that
in the Buyer component, the messages with thecode
suffix, such asrequest_1_code , correspond to the exe-
cution of C# code. Last, someWebServiceInput and
WebServiceOutput activities may be meaningless with
respect to the component functionality, and appear in the WF

 


Supplier


s


s


Fig. 1. WF workflow for theSuppliercomponent

workflow only because WF obliges their presence before and
after InvokeWebService activities. In Figures 1 and 2
these activities are identified withtau identifiers.

IV. COMPOSITION AND ADAPTATION OF WF
COMPONENTS

In this section, we focus on the composition and adaptation
of the Buyer andSupplier components.

A. Extraction of the Behavioural Interfaces

First of all, we present in Figure 3 the LTS (Labelled Transi-
tion Systems) extracted from the workflow-based components
presented in Section III. The main ideas of the obtaining of
LTS from workflow constructs are the following:

• Code is interpreted asτ transition (internal);
• Terminate corresponds to a final state in LTS;
• InvokeWebService is split into two messages, one

emission followed by a reception;
• WebServiceInput and WebServiceOutput mes-

sages are translated similarly in LTS;
• Sequence is translated so that it preserves the order of

the involved activities in the resulting LTS;
• IfElse corresponds to a choice, that is two transitions

outgoing from the same state, which encodes both parts
of the conditional construct;
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Fig. 2. WF workflow for theBuyer component

• Listen corresponds to a state with as many outgoing
transitions as there are branches in the WF contruct; each
transition holds a message that may be received;

• While is translated as a looping behaviour in the LTS.

LTS does not support the description of data expressions,
consequently conditions appearing inWhile and IfElse
constructs are abstracted during the LTS extraction stage.
Likewise, WebServiceInput and WebServiceOutput
activities identified withtau identifiers (see Figs. 1 and 2)
are translated asτ transitions in the corresponding LTS.

Initial and final states in the LTS come respectively from
the explicit initial and final states that appear in the work-
flow. There is a single initial state that corresponds to the
beginning of the workflow. Final states correspond either to
a Terminate activity or to the end of the whole workflow.
Accordingly, several final states may appear in the LTS be-
cause several branches in the workflow may lead to the final
state. Initial and final states are respectively depicted in LTSs
using bullet arrows and darkened states.

The messages that appear in theBuyer LTS come from
the output and input parameters that appear in its invoke
activities. As far as theSupplier component is concerned, the
invoke activities are made abstract because they correspond
to interactions with external components (in charge of the
material database), and are not of interest for the composition

at hand. Therefore, the observable messages in this case are
coming from the input and output messages surrounding the
invoke activities. All theτ transitions in both LTSs corre-
sponding toC# code in theBuyer workflow, and totau
WebServiceOutput activities in theSupplier one have
been removed (byτ∗.a reduction [11]) to favour readability. To
identify unambiguously component messages in the adaptation
process, their names are prefixed by the component identifier,
respectivelyb for Buyer, ands for Supplier.

 s:type?  s:price?

 s:reply!

 s:price?  s:type?

 s:buy?  s:ack!

 b:request!

 b:reply?

 b:purchase!
 b:ack?

 b:request!

 b:stop!

Fig. 3. LTS interfaces ofSupplier(top) andBuyer (bottom) components

B. Mismatch Cases

In this simple example, we can emphasise three cases of
mismatch:

1) name mismatch: theBuyer may buy the computer using
purchase! whereas theSupplier may interact on
buy? ;

2) mismatching number of messages: theBuyer sends
one message for each request (request! ) while the
Supplier expects two messages, one indicating the type
(type? ), and one indicating the max price (price? );

3) independent evolution: theBuyer may terminate with
stop! but this message has no counterpart in the
Supplier.

C. Adaptation Mapping

Now a mapping should be given to work the aforementioned
cases of mismatch out. We use vectors that define some
correspondences between messages. More expressive mapping
notation exist in the literature, such as regular expressions of
vectors [4], but with respect to the example at hand, vectors
are enough to automatically retrieve a solution adaptor.
Vreq = 〈b :request!, s :type?〉
Vprice = 〈b :ε, s :price?〉
Vreply = 〈b :reply?, s :reply!〉
Vstop = 〈b :stop!, s :ε〉
Vbuy = 〈b :purchase!, s :buy?〉
Vack = 〈b :ack?, s :ack!〉
The name mismatch can be solved by vectorVbuy. The

correspondence betweenrequest! and messagestype?
and price? can be achieved using two vectors,Vreq and
Vprice, where the second contains an independent evolution of
componentSupplier. The last mismatch is solved usingVstop
in which the messagestop! is associated to nothing.
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D. Generation of the Adaptor Protocol

Given a set of component LTSs (Section IV-A) and a
mapping (Section IV-C), we can use existing approaches (here
we rely on [4]) to generate the adaptor protocol automatically.
This is a strength of this proposal because in some cases, the
adaptor protocol may be very hard to derive manually. Since
the adaptor is an additional component through which all the
messages transit, all the messages appearing in the adaptor
protocol are reversed.

Figure 4 presents theAdaptor LTS. Note first that the
adaptor receives the request coming from theBuyer, and
splits the message into messages carrying the type and price
information. This LTS also shows how the termination is
possible along thestop? message, and how the adaptor may
interact on different names (purchase? andbuy! ) to make
the interaction possible.

 b:request?  s:type!  s:price!  s:reply?  b:reply!

 b:request?
 s:type!

 s:price!

 b:stop?

 s:buy!

 b:purchase?

 b:ack!  s:ack?

Fig. 4. Adaptor protocol for the case study

E. Implementation of the WF Adaptor

From the adaptor LTS presented above, a corresponding
WF component is obtained following the reversed process
that we have sketched in Section IV-A,i.e., by generating
a workflow from an LTS. Therefore, every emission fol-
lowed by a reply is encoded as anInvokeWebService
construct. Other input/output events are translated using
WebServiceInput/WebServiceOutput activities. The
decision of theBuyer is translated as aListen construct,
and the looping behaviour as aWhile activity. We present in
Figure 5 theAdaptor workflow that has been encoded in WF.

Finally, we point out that the system presented in this
section has been completely implemented using WF, and the
Buyer and Supplier components works as required thanks
to the use of the WFAdaptor component.

V. CONCLUSION

This paper has presented on a simple yet realistic ex-
ample how existing model-based adaptation approaches can
be related to implementation platforms such as WF in the
.NET Framework 3.0. To make this work, we had to face
and work out specificities of the WF platform such as the
use of tau WebServiceOutput activities, or of several
InvokeWebService activities in one session. This work is
very promising because it shows that software adaptation is
of real use, and can help the developer in building software
applications by reusing software components or services.

We end with a list of future tasks we will tackle to make
the adaptation stage as automated as possible:

 


Adaptor


a


a


Fig. 5. WF workflow for theAdaptor component

• automating the LTS extraction from WF workflows;
• automating the mismatch detection, and generating the

list of mismatch situations from a set of component LTSs;
• beyond mismatch detection, tackling verification of WF

components;
• supporting techniques to help the designer to write the

mapping out, and to generate automatically part of it;
• generating WF workflows from the adaptor LTS.

We would also like to carry out experiments on the imple-
mentation of adaptors using BPEL and the Netbeans Enterprise
platform to compare on precise criteria the adequacy of both
platforms to apply adaptation in practice.
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On the benefits of using model transformations to
describe components design process

Eveline Kaboŕe and Antoine Beugnard
ENST Bretagne

Technople Brest-Iroise
CS 83818 - 29238 Brest Cedex 3 - France

Email: {Eveline.Kabore,Antoine.Beugnard}@enst-bretagne.fr

Abstract—In this paper we show how model transformations
can be used to describe and automatize component design
process throught an example of a communication component.
Automatizing parts of the design with transformations allows to
trace the design, defend such or such design choice and build
non functional variants of the same component.

I. I NTRODUCTION

Models are widely used in sciences and have become an
unavoidable tool for software designers and implementors.
Models were used in many development methods such as
SADT [1], JSD [2], etc. They allow to describe different
aspects of a system: structural, functional, behavioral, tem-
poral, etc. Models allow the description of the system to be
developed at different stages with various levels of details.
The Unified Modelling Language (UML) is the last avatar of
a standard modelling notation. The way models are produced
and elaborated is mainly beyond the scope of modelling; it
is mainly good-practices, know-how and methods more or
less formalized. One of the last great advances in software
engineering was the introduction of patterns (especially design
patterns) as a semi-formalization of good (or bad) practices
as catalog of patterns expressed in a language of pattern. The
formalization and the clarification of the process of elaborating
models are the next challenge. Considering the processes of
elaborating and refining models as an activity that can be
described with a dedicated language is in our point of view, a
revolution.

We show in this article how model transformations can be
used to automatize the design and implementation process
of a software component. Model transformation languages
can hence be considered as a language dedicated to process
modelling. In order to confront an idea to a real develop-
ment process we have developed communication components
using transformation techniques. Design choices are left to
the designer, but the refinement process is implemented as
transformations that are automatically applied once selected.

Communication components are components that are ded-
icated to communication and hence are naturally distributed.
In [3], E. Cariou presented a manual transformation process
that shows how the abstract specification can produce many
implementation variants: one can be centralized, another be
distributed without replication of data, and another with repli-
cation. The interest of this approach is that all variants are

functionally substitutable but offer different non functional
features. Communication components appear to be an inter-
esting candidate to study the design process as a sequence
of transformations. Due to its distributed deployed structure,
many algorithmic variants may be chosen.

The rest of the article is organized as follows. The next
section introduces the starting point of the process: the ab-
stract specification of a communication component. SectionIII
suggests the whole design process with models, meta-models
and transformations. Section V evaluate the benefits of using
model transformation to describe components design process.
Some related works are presented before the conclusion.

II. COMMUNICATION COMPONENT: MEDIUM

In order to elaborate a better understanding of model
transformations as design choices implementation, we have
restricted their use to special communication abstractions
calledmediums[4].

a) Definition: A medium is a special component which
implements any level communication protocol or system. A
medium can implement, for example, a consensus protocol, a
multimedia stream broadcast or a voting system. A medium in-
cludes classical component properties such as explicit interface
specification, reusability or replaceability, but a mediumis not
a unit of deployment. A communication component is alogical
architectural entity built to bedistributed. An application is the
result of inter-connecting a set of components and mediums.
This is particularly interesting as it would allow the separation
of two concerns: functional concern described by components
and communication concern described by mediums.

b) Example: As an illustration, let us consider the ex-
ample of an airline company with travel agencies located
worldwide. A medium can implement the reservation system
and offer services to initialize information on seats, to reserve
seats and to cancel reservations. A reservation application can
then be built by inter-connecting the reservation medium and
components representing the company and the agencies as
illustrated in figure 1.

c) Specification:The specification attempts to describe
the medium contract from its user’s point of view as illustrated
in figure 1. As a ’classical’ component, a medium is specified
through a set of offered and required services. For each role,
a medium defines an interface for offered services and an
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Reservation 

medium 

Airline 
company 

Agency 1 

Agency 2 

Service: initialize 

Services: reserve or cancel 

Fig. 1. An example of communication component: reservation medium

interface for required services. Each offered and required
service should be specified.

Mediums are specified in UML. The specification of a
medium in UML contains two aspects:structural aspect
described by a class diagram andbehavioral aspectdescribed
through other UML features such as interaction messages,
statecharts and OCL. Figure 2 presents a specification of the
reservation medium in a UML class diagram.

 

Fig. 2. Reservation medium abstract specification

d) Deployment target:In the previous section, we saw
that, at the abstract level, the medium is represented by a single
software component. The goal of the design process is to make
distribution of this abstraction possible. The single software
component which represents the medium at the abstract level
is split into small implementation components calledrole
managers. A different role manageris locally associated with
each component and the medium becomes a logical unit
composed of all therole managers. From a local point of
view, eachrole managerimplements the services used by its
associated component. From a global point of view all therole
managerscommunicate through middleware and cooperate to
realize all the medium services.

Thus, at the deployment level the single software com-
munication component which represents the medium at the
abstract level disappears completely and the medium becomes
an aggregation of distributedrole managers. This architecture
presents two main advantages: it allows several implementa-
tions of the same abstract medium model, depending on how
role managerscooperate, and a good separation of functional
and interactions concerns from specification to implementa-
tion.

The next section sketches out the full development process
and its implementation with models and transformations.

III. O UTLINE OF THE DESIGN PROCESS
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Fig. 3. An example of design alternatives

The entry point of the design process is the medium abstract
specification model (figure 3). Our aim is to produce a distrib-
uted medium implementation model from this abstract model.
This distributed implementation model should preserve allthe
functionalities of the medium and match all the deployment
constraints of the medium. In order to reach this goal, we
define a medium refinement process containing the three
following steps.

A. Step 1: Introducing the distributed architecture in the
medium model

The first step consists in transforming the single UML
class which represents the medium in its abstract specification
model into an aggregation ofManagers in order to match
the deployment architecture. This transformation is clearly
described in [4]. Figure 4 illustrates the result of this transfor-
mation in the reservation medium abstract model (figure 2).
In short, the transformation:

• associates aManager to each role (ReserverManager
for the role Reserverand SourceManagerfor the role
Source);

• implements in eachManagerall the services offered by
the medium to its associated role (setReserveIdSetin
SourceManager, reserveandcancelin ReserverManager
);

• translates all the references of each role on its associated
Manager(propertyreservedon ReserverManager).
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Fig. 4. Managers introduction into the reservation medium

B. Step 2: Specifying the medium actual design alternatives

1) Objective and principle:We propose a set of design
alternatives to the medium designer. In the case of the reser-
vation medium data management for example, the designer
will have to choose among data structures (that will be used
to express the communication semantic), distributed protocols
(that will be used to define the repartition strategy of the
medium data) and data representation formats (that will be
used to represent the distributed data structure in each storage
node). This is illustrated in the following example.

a) Example: design alternatives for the reservation me-
dium:

• Example of a centralized implementation. For a small
regional company, reservation management can be con-
centrated on a single role manager: the manager which
is associated to the company (SourceManagerin fig-
ure 4) for example. The other role managers associated
to reservers act as proxies. In this case, the designer
can represent the identifiers of reservation seats (property
available in figure 2) by a list that will be stored in the
SourceManager.

• Example of a distributed implementation. For a big
company with hundreds of flights and thousands of travel
agencies located worldwide, each agency can locally
manage its reservations in order to increase the perfor-
mance and the reliability of the application. In that case,
the designer can use a set to represent the identifiers
of reservation seats. It can distributed this set between
reservers using the protocolChord [5] and implements
it using the algorithm defined by theMIT [6]. Finally,
the designer can use a hashtable to locally represent the
identifiers stored on each reserver manager.

Other design alternatives can be proposed to deals with
non functional properties such as security, reliability, etc.
Thus the designer chooses each design alternative according
to its application features and constitutes the actual medium
implementation strategy.

2) Modelling design alternatives:In order to facilitate the
definition and the reuse of transformations, each choosen
design alternative is defined in a model which is injected into
the medium abstract model to produce the distributed medium
implementation model. Hence, we define a metamodel for

each design alternative. For the sake of brevity we only
show in figure 5 a view of the distributed protocol definition
metamodel.

 

Fig. 5. A view of the distributed protocol specification metamodel

a) Distributed protocol metamodel.:We define a dis-
tributed protocol by a set of objects calledProtocolObject
(figure 5). A ProtocolObjectis an object that can execute the
behaviour of a distributed protocol. EachProtocolObjectis im-
plemented by a specific algorithm (ProtocolObjectAlgorithm).
The main goal of the distributed protocol metamodel consists
in defining a common interface for all distributed protocols
that will be used in the context of mediums. Such interfaces are
proposed in [7], [8], [9]. TheIProtocolObjectServicesinterface
exported by the distributed protocol definition metamodel is
similar to the interface defined in [7]. This interface defines
services for three main distributed application abstractions:
the DHT (Distributed Hash Tables), the DOLR (Decentralized
Object Location and Routing) and the CAST (group any-
cast/multicast). TheIProtocolObjectServicesinterface offers
the following services:route (to route a message),forward
(to forward a message),deliver (to deliver a message),join
(to join the distributed application) andleave ( to leave the
distributed protocol).

b) Use of the distributed protocol metamodel.:To define
a distributed protocol model, we describe eachProtocolObject
and its implementation algorithms and we implement the
interfaceIProtocolObjectServicesfor this protocol by defining
its services. This is illustrated in the following example.

c) Example: a view of theChord protocol model.: In
short, the initial specification of theChord protocol defined
in [5] exportes one role and provides fives services described
in table I.

Figure 6 illustrates the structure of theChord protocol ac-
cording to the distributed protocol metamodel. In this figure 6,
the classChordObjectrepresents the objects that can execute
the behaviour of theChord protocol. TheChordObjectcan be
implemented using two different algorithms represented bythe
classMITAlgorithm and the classMACEDONAlgorithm.The
classMITAlgorithm encapsulates the Chord protocol imple-
mentation algorithm proposed by the MIT. The classMACE-
DONAlgorithmencapsulates the Chord protocol implementa-
tion algorithm proposed by the MACEDON framework [8].
Other implementation algorithms of the Chord protocol can

16



Services Description
insert (key, value) inserts a key/value bin-

ding at r distinct nodes.
lookup(key) returns a value

associated with the key
update(key, newval) inserts the key/newval

binding atr nodes
join (n) add a node to the

Chord system
leave() leave the Chord system

TABLE I
A VIEW OF THE CHORD PROTOCOLAPI [5]

 

Fig. 6. A view of the Chord protocol specification

be added to the model.
In order to encapsulate each implementation algorithm of

the Chord protocol, we implement theinsert, lookup, update,
join and leave services (described in table I) on top of
the IProtocolObjectServicesinterface. As an illustration, a
simple implementation ofinsert routes anINSERTmessage
containingvalue and the local node’s nodehandle1, S, using
route(key, [INSERT,value,S], NULL). The key’s root, upon
receiving the message, stores the (key, value) pair in its local
storage. In this definition ofroute(key, [INSERT,value,S],
NULL) ,

• the first parameterkey represents the identifier of the
local node;

• the second parameter[INSERT,value,S] represents the
message. This message contains three information: the
type of the messageINSERT, the value to be inserted
and the local node’s nodehandle,S.

• the last parameter is an optional argument which is used
to specify a node that should be used as a first hop in
routing the message. No first hop node is specified in this
example: the value isNULL

The lookup, update, joinand leaveservices can be imple-
mented in the same way. We note that each implementation
algorithm of theChord protocol has its own definitions of

1A nodehandle encapsulates the transport address and identifier of a node
in the system. The transport address might be, for example, an IPaddress and
port (see [7] for more details).

information contained in the messages, algorithms used in
routing messages, etc.

C. Step 3: Merging the actual design alternatives in the
medium model

The third step consists in merging the actual design alter-
natives defined in the previous step into the medium deploy-
ment abstract model obtained in the first step. We perform
two kind of transformations to reach this goal: a structural
transformation and a behavioral transformation. In short,each
transformation is specified using a pre-condition, a post-
condition and a set of actions. All the transformations are
defined using the model tranformation languagekermeta[10].

1) Structural transformation:The structural transformation
introduces elements2 which will be used to ensure each data
distribution services. Two kinds of elements are created for
this purpose: elements which ensure distributed data access
services (small eclipse in figure 7) and elements which ensure
data distribution services (big circle in figure 7). Figure 7
illustrates the introduction of these elements in the reservation
medium model for the distributed implementation strategy
illustrated in the previous section. For the sake of simplicity,
we only present the new structure of theReserverManager.

Fig. 7. Outline of data managers introduction in the reservation medium

• the classSetDataManagerimplements all the functional-
ities that are necessary to distribute a set. The distributed
protocol functionalities are encapsulated in the class
ProtocolObject. The set data access primitive definitions
are encapsulated in the classSetDefaultAlgorithm. The
definition of primitives that are used to read and/or write
a piece of data stored in memory is encapsulated in the
classDataFormat.

• The classSetObjectimplements all the functionalities that
are necessary to access the distributed set.

Since the identifiers of reservation seats are distributed
between reservers, the new structure of theSourceManager
constains only elements which ensure data access services.
No modification is performed on all the other classes of the
medium model.

2The technical details of these element definitions will not begiven in this
paper
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2) Behavioral transformation:The behavioral transforma-
tion implements all abstract operations in the medium model
obtained in the second step. Two kinds of transformations are
performed for this purpose: algorithmic transformations and
configuration transformations.

a) Algorithmic transformations:denote transformations
that are used to generate abstract operation implementation
algorithms. As an illustration, the following example show
a view of the code which is automatically generated by an
algorithmic transformation in order to implement theadd
operation of the type set.

class SetDefaultAlgorithm inherits
ISetServices { ...

method add( element : Element) : Boolean
from ISetServices is

do
if (self.dataManager.lookup(element)

== void)
then
result := self.dataManager.place(element)

else result := false end
end

}

In this example, theadd operation invokes thelookup
service defined in its associated data manager to check the
existence of the current element in the set. If the element
is already in the set, it returns false, otherwise, it adds the
element in the set using the serviceplace defined in its
associated data manager.

b) Configuration transformations:denote transforma-
tions that are used to instanciate the appropriate objects
according to the designer choices. Here is an outline of the
result of the configuration transformation which is used to
instanciate the appropriate objects for the reservation medium
according to the distributed implementation strategy specified
in the previous the section.

class IReserverManager {...
operation connect() is
do
(1) available := SetDataObject.new
(2) availableDataManager :=

SetDataManager.new
(3) availableDataManager.protocolObject:=

ChordProtocolObject.new
(4) availableDataManager.protocolObject.

algorithm := MITAlgorithm.new
(5) availableDataManager.setAlgorithm :=

SetDefaultAlgorithm.new
end

}

In the connect3 operation, instruction (1) instantiates a new
SetObjectand assigns it toavailable (figure 7). Instruction
(2) instantiates a newSetDataManagerand assigns it to
availableDataManager(figure 7). Instruction (3) instantiates

3The methodconnectis invoked at the connexion of each manager

a new ChordProtocolObjectand assigns it to the property
representing the protocol object inavailableDataManager.
Instruction (4) instantiates a newMITAlgorithm and assigns
it to the property which represents the chord and instruction
(5).

IV. M ODEL TRANSFORMATIONS

Our approach of implementing the whole process outlined
in the previous section consists in distributing information
between metamodels and transformations.

A. Metamodels

The implementation of the whole process relies in 8 meta-
models:

1) a medium abstract specification metamodel,
2) a medium deployment abstract metamodel,
3) a medium implementation metamodel,
4) a medium decision metamodel,
5) a distributed protocol metamodel,
6) a data representation format metamodel,
7) an abstract type metamodel,
8) a distributed abstract type metamodel,

The medium abstract specification metamodel specifies
the concepts which are used to define a medium and the
relationships between these concepts. These concepts and
relationships are well described in [4]. Figure 8 illustrates the
abstract structure. A medium offers and requires services.

<< interface >>
I<RoleName>MediumServices

/<RoleName> <MediumName>Medium

I<RoleName>ComponentServices
<< interface >>

?

Fig. 8. A view of a medium abstract specification metamodel

<< interface >>
I<RoleName>MediumServices

/<RoleName> <RoleName>Manager <MediumName>Medium

I<RoleName>ComponentServices
<< interface >>

?1 1

Fig. 9. A view of a medium deployment abstract metamodel

The medium deployment abstract metamodel describes the
concepts which are used to define a medium abstract de-
ployment architecture and the relationships between these
concepts. The medium deployment architecture metamodel
is also described in [4]. Figure 9 sketches out the abstract
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structure of a medium deployment architecture:Managersare
introduced in the medium abstract specification metamodel.

The medium implementation metamodel describes the con-
cepts which are used to implement a medium and the relation-
ships between these concepts. Figure 10 depicts the abstract
structure of a medium implementation model: the medium
class desapears.

Fig. 10. A view of a medium implementation metamodel

The medium decision metamodel describes concepts which
are used to specify the actual design alternatives of a medium.

The distributed protocol metamodel is outlined in the pre-
vious section.

The data representation format metamodel exports a com-
mon interface which defines abstract primitives that will be
used to read and to write a data in a physical memory.

The abstract type metamodel defines concepts which are
used to specify an abstract type such as a collection, a list,a
set, a tree, a graph, a hashtable, etc.

The distributed abstract type metamodel defines concepts
which are used to implement a distributed abstract type (such
as a distributed collection, distributed list, distributed set, etc.)
and the relationships between these concepts.

The data representation format, the abstract type and the
distributed abstract type metamodels are defined in the same
way as the distributed protocol metamodel. For the sake of
brevity, we do not illustrate these metamodels in this paper.

In order to facilate models consistency checking, we asso-
ciate a property model to each metamodel. The property model
of a metamodel specifies all the constraints that a model should
satisfy to conform to its metamodel.

B. Transformations

1) Definition: A transformation defines a process of con-
version a model source into a target model [11]. In the context
of mediums, we define each transformation through a set
of preconditions, postconditions and steps (figure 11). The
preconditions describe the constraints that a model should
satisfy to be a valid source model of a transformation. The
postconditions specify the set of constraints that a model
should satisfy to be a valid result of a transformation. The
steps specify the sequences of the transformation execution.
Each step is defined by a set of actions or transformation rules

 

Fig. 11. Transformation specification

defining the process of converting a source model into a target
model.

The constraints are organized in the form of structured
properties. Each property contains a method calledisValid
which can be used to check the validity of this property in
a given model. The organization of constraints in the form
of structured properties allows to specify for each step of a
transformation, the constraints that the source models must
satisfy, the constraints that the target models must satisfy and
the constraints which can be invalidated by the step.

2) Implementation:We implement each transformation us-
ing the model transformation languageKermeta. The source
and target models of transformations areKermetafiles. The
following piece ofKermetacode illustrates the transformations
which are used to implement the step 1 of the design process
(i.e to introduce the distributed architecture in the medium
model).

class AddManagerTransformation inherits
Transformation {

operation transform(inputModel :
OrderedSet<Model>):OrderedSet<Model> is

do
if(self.preconditions.validate(inputModel))
then
.....
outputModel := self.addManagerStep.

run(inputModel)
if(self.postcondition.validate(

outputModel))
then

result := outputModel
end

end
end

}

class AddManagerStep inherits
TransformationStep {

operation run(inputModel:
OrderedSet<Model>) :OrderedSet<Model> is

do
if(self.preconditions.validate(inputModel))
then
outputModel := self.createDependencyStep.
run(self.createPropertyStep.run(

self.createManagerStep(inputModel)))
if (self.postconditions.validate(

outputModel))
then
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result := outputModel
end

end
end

}

class CreateManagerStep inherits
TransformationStep {...//code}

class CreatePropertyStep inherits
TransformationStep{...//code}

class CreateDependencyStep inherits
TransformationStep{...//code}

The AddManagerTransformationtransformation definition
contains a main step calledAddManagerStepwhich introduces
the Managers into the medium abstract model in order to
produce the medium deployment abstract model. TheAd-
dManagerStepstep definition contains:

• the CreateManagerStepstep which creates a class repre-
senting theManagerof each role;

• the CreatePropertyStepstep which updates the target
model properties or references according to the medium
deployment abstract metamodel definition;

• the CreateDependencyStepstep which updates the target
model dependencies according to the medium deploy-
ment abstract metamodel definition.

All the other transformations which are used to implement
the second and the third steps of the design process are defined
in the same way.

3) Validation: One of the main problem in using model
transformations is the validation of the target models. In the
context of mediums, the transformations are validated in three
steps:

1) The first step of the validation is performed during the
execution of the transformation and relies on the checks
of pre- and post-conditions. It ensures the correctness of
transformations.

2) After the execution of each transformation, we compile
the target model using the kermeta compiler to checks
types, inheritence, association multiplicities, etc. It en-
sures the UML correctness of models.

3) Finally, we instanciate and execute the generated imple-
mentation model of the medium in order to simulate the
behavior of the services.

C. Use of transformations

1) Principle: The transformations are applicable to any
communication component. In order to use them, the medium
designer should specify the abstract model and the decision
model of the medium. The medium abstract model should
conform to the abstract medium metamodel and the medium
decision model should conform to the medium decision meta-
model. Each design alternative model specified in the decision
model should also be defined according to its metamodel. We
provide a library of design alternative models and a mecanism

Initial SimpleList Reservation Comments

model num- Medium Medium

ber of classes 4 6

Manager SimpleList Reservation

introduction num- Medium Medium

ber of classes 6 9 1 + 1

per role

Data type List List List Set

selection num-

ber of classes 9 9 15 15 +3 per

attribute

Distribution Centralized Chord Chord Chord

model num-

ber of classes 11 13 19 19

Final model num-

ber of classes 13 15 21 21 +2

TABLE II
NUMBER OF CLASSES PER MODEL

to extend this library. In the next section, we give some
numerical data on the size of the the implementation models of
some communication components using the transformations.

2) Empirical results:The realization of the design process
relies on 8 metamodels and 18 transformations. The medium
abstract specification metamodel contains approximately 30
classes and the medium deployment abstract metamodel con-
tains approximately 35 classes. The first transformation which
transforms a medium abstract model into a medium deploy-
ment abstract model (described in the previous section) is im-
plemented with 516 lines of kermeta code. The pre-condition
of this transformation contains 6 properties implemented with
285 lines of kermeta code. Its post-conditions contains 11
properties implemented with 350 lines of kermeta code. The
whole set of transformations is 3565 lines of Kermeta code.
In order to apply the process models have been developed:
2 communication component models, 4 abstract data type
models, 4 distribution models, 3 data representation models.
Many others can be added. New metamodels could be added
in order to offer other design alternatives.

Table II shows the number of classes for some paths in
the design. Adding classes is the basic transformation; many
other model transformations are hidden such as association
between classes, definition of methods, source code changes,
etc. All these transformations are checked as consistent thanks
to pre and post-conditions. Note that each transformation runs
in a few seconds, including all verifications of pre and post-
conditions.

V. BENEFITS OF THE APPROACH

The benefits of using model transformation to describe
components design process is 6 fold.

1) The process is explicit. The process is described by the
transformations and all models and meta models used.

2) The process is traceable. Being explicit, transformations
could be memorized and could show the trace followed
during the process. All models produced during the
process can also be stored and retrieved when backtrack-
ing is required in the process.
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3) The process is reusable. Applying the process to other
initial models is direct. We applied our transformations
to abstract data types considered as distributed memories
with no difficulties.

4) The process is extensible. New models conforming
to the concerns metamodels used can be added. We
added new data type to implement association links very
simply. Models to describe distribution variants have
required more work. As long as the new models conform
to the concern meta model, the extension is feasible.

5) The process can produce many implementation variants.
From the same abstract specification of a medium we
have produced many variants with very different non-
functional features. Design choices are coded as trans-
formations and can be reused on demand at the right
moment in the process.

6) The process generates automatically the appropriate
code. The structural, behavioural and configuration code
of the medium can be generated according to its actual
implementation strategy.

However, to obtain these benefits this approach requires a
deep understanding of the domain. All metamodels constrain
the set of products that can be built. All the transformations
define the set of design choices that are applicable.

VI. RELATED WORKS

Most methodologies are informaly described. They suggest
a process which, in the most formalized cases, rely on con-
tracts [12] or mathematical refinements like the B-method [13].
B defines a language and a refinement methodology. It is an
algebraic specification language that is supported by toolsthat
help refining specification safely. Each step of the process
generates proof requirement the developer has to demonstrate,
either manually or automatically. Some critical systems were
developed in B (in 1998 the control system of line 14 of
the Parisian subway was fully developed and proved in B).
Our approach is more empirical and uses the so-called ”semi
formal” approach. It may be easier to learn and may tackle
different kind of design problems such as distribution. We do
not try to prove design steps, but just to automatize them and
give enough confidence in the transformations thanks to pre
and post-conditions.

In a recent paper, H. Sneed [14] criticizes the model driven
approach. He argues that model-driven tools (1) magnify
the mistakes made in the problem definition, (2) create an
additional semantic level to be maintained, (3) distort the
image of what the program is really like, (4) complicate the
maintenance process by creating redundant descriptions which
have to be maintained in parallel,(5) are designed for top-down
development that creates well-known maintenance problems.
These drawbacks are mainly associated with tools. All these
criticisms have already been raised when assembly was re-
placed by high level programming languages. We agree tools
are not mature. Our experiment shows that transformations
may help explicit the process and simplify the maintenance,if
models are defined well enough. Other experiments [15] tend

to prove that model composition (hence a bottom-up approach)
is possible.

This compositional approach looks like Aspect Oriented
Modelling [16]. This approach recommends to separate
concerns and offers an operation of weaving that com-
poses/weaves each concern with the functional specification.
Our approach differs since the ”weaving” operation we use
is a transformation that is adapted to the kind of concern
composed. Instead of using a universal weaving operation we
propose a more flexible approach (but less re-usable) were a
balance may be found between the meta-model definition of
the concern and its composition operation implemented as a
transformation.

Model transformations are widely used on UML models.
Most of them cover a small part of the development life cycle.
Some transformations are dedicated to code generation. They
usually produce the skeleton (structural part) of the source
code that has to be completed manually. Another current use
is applying design patterns [17]. Once again, the structural part
is rather well implemented4, but the collaboration one is still
research in progress. Our experiment relies on all those works
on model transformations and tries to demonstrate how (under
which conditions) all these steps could be integrated in a full
design process.

VII. C ONCLUSION

We have shown in this article how model transformations
can be used to automatize the design and implementation
process of a software component. The application context was
strongly constrained. The specification rules of communication
components are used as preconditions of our first transforma-
tions. Models and metamodels used are also defined to work
together. We wanted to demonstrate that when the domain is
well defined and when the design process is well understood,
it should be possible to automatize the whole design process
with a set of model transformations. The example used is large
enough and the deployment target complex enough to give a
good indication of what transformation driven design process
would look like.

Our experiment focuses on design, implementing design
choices as transformations. We believe transformations should
be considered in metrics computation, quality evaluation,test
generation, . . . in all the development life cycle in short.
Systems (viewed as a product) have their own dedicated lan-
guages: modelling or programming languages. We argue that
transformation languages should be considered as dedicated
process languages.
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Abstract—Predicting extra-functional properties of software
systems requires knowledge about their architectures. For
component-based software, it also requires understanding of
extra-functional properties of each individual component. How-
ever, black-box components, as most commonly provided by
current component models, do not provide sufficient details to
predict QoS. We sketch two architectural design scenarios and
describe which information about a component is needed to
enable relevant analyses. Based on these considerations a compo-
nent model is presented which defines such relevant information.
We discuss reengineering approaches, namely static analysis and
analysis combined with evolutionary algorithms to learn from
monitored data to yield such information about a component.
We conclude with a more refined view on the black-box-nature
of components.

I. INTRODUCTION

The black-box principle of software components is an
established concept [1]. We find that several architectural
analyses, and in particular the prediction of extra-functional
properties, require a more refined black-box principle that
includes knowledge on the interna of a software component
which is most commonly not provided by component models.

Currently, various researchers are concerned with analysis
using knowledge on component interna. For example, pre-
dicting QoS attributes like performance requires a detailed
component model, a pure interface model is not sufficient
(see discussion in section II). This poses two challenging
questions: Firstly, what kind of information is needed to make
components ready for QoS predictions for performance, while
keeping the black-box principle? Secondly, how to realistically
extract such information from components? This is particularly
interesting in cases where existing components lack such
information, as in legacy software.

As a contribution, this position paper discusses these chal-
lenges in detail. More concretely, we (a) use the Palladio
Component Meta Model [2] to identify those information that
is needed to reason on extra-functional properties (in particular
performance; namely execution time and response time), (b)
we discuss reengineering approaches to yield this information,
and thus (c) gain a more refined view on the black-box nature
of components.

The paper is organised as follows: In Section II, we dis-
cuss several relevant scenarios of extra-functional analysis in
component-based systems which need more information in

addition to mere interface specifications. In Section IV, we
present those parts of the Palladio Component Model that are
concerned with modelling components and their relationship
to interfaces and the usage profile. Section V sketches feasible
approaches to yield such models, for example static code
analyses and machine learning from monitored traces. The
conclusion in Section VI presents a more refined view on the
black-box nature of components.

II. INFORMATION NEEDED FOR PERFORMANCE
PREDICTIONS

Although it was perpetuated over the last years that a
component is solely defined by its interfaces, some researchers
already pointed out that certain analyses require additional
information. Architectural dependency analysis identifies com-
ponents of a system which could be affected by system
changes, such as updated components, architectural changes,
component failures, etc. [3]. Such information is needed to
select test cases for regression tests or to halt all components
affected by an update.

Another reason for specifying information on components
beyond interfaces is the automated adaptation of components
to restricted contexts. Here, a restricted context can be ei-
ther a context where only a true subset of the component’s
implemented services (as specified in the provides interface)
is needed and hence the component’s required interface most
likely can be weakened, or where – vice versa – a required
interface of a component is not fulfilled by the context and
hence, the component’s provides interface must be restricted.
Parametric contracts were originally introduced to automati-
cally adapt component protocols in these scenarios [4].

A similar argumentation holds for the analysis of extra-
functional properties of components. In such a case, any
meaningful model of quantitative extra-functional properties
of a component has to take dependencies between required
and provided services into account [5]. Fig. 1 gives a short
motivating example why an interface model is not sufficient
for performance prediction. Assume the response time of
service a() of Component A is going to be predicted. a()
itself relies on the component-external calls of b(), c(),
and d() which are provided by external components. In this
case, one needs to describe the dependencies an invocation
of a() has on the external services as the response time
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of b(), c(), and d() (bindings to required services are
not hard-coded). Such dependencies are not a property of
an interface as it depends on the component implementation
whether, for example, b() is called one or 100 times – the
choice of algorithms for component implementation should
not be expressed by interfaces.

Thus, to make modelled dependencies meaningful, one
should introduce parametrisation over required services. Fur-
ther parametric dependencies for the response time arise from
the usage profile of a component (e.g. amount of data to
process) and the underlying execution environment, which
consequently need to be respected as well.

A

B
a()

b()
c()

Cd()

Fig. 1. Excerpt from a component architecture: Component A is requiring
services of Component B and C

Our work is concerned with analysing component-based
architectures at design-time to support the quality-driven se-
lection (reasoning on extra-functional properties) of design
alternatives before implementing the system. Consequently,
we are dealing with models of components which can be
composed with other components, leading to an architecture
of a system. There are several reasons to make predictions
based on abstract component specifications also for systems
including components which are already implemented. This
sounds counter-intuitive, as implemented components are al-
ready executable and all their internals are fixed. However, in
this position paper we argue that

• implemented components are incorporated into many
planned systems, due to component reuse. Still, the
overall system is not executable by sole reuse of some
components, and architectural analysis is a meaningful
tool to drive the design.

• changes in the usage profile can require extensive analy-
ses of existing systems to learn how the existing system
will behave under different usage profiles (e.g., different
load situations, etc.). Testing these effects is often not
feasible due to the sheer size of the system.

• changes in the execution environment (i.e., component
container, operating system, hardware, etc.) may require
analyses of the system’s end-to-end quality. Again, tests
are often too expensive. In addition, such analyses often
should be done early before the actual new execution
environment is available.

The above scenarios clearly show the need to analyse
existing component implementations to yield abstractions of
the component which are needed to make analyses of extra-
functional properties or simulations. The argument that such
analyses could directly work on the code are true, but would

internally always include a component abstraction, as the
simulation of code execution is usually no more beneficial than
executing the code itself. Therefore, using an abstraction of
the component’s internals, like the Palladio Component Model
(PCM) from section IV, is required in any case.

Once abstractions of component’s internals (the intended
model) have been obtained, one can

• answer questions on extra-functional properties like ex-
ecution time, without plugging “real” components to-
gether,

• evaluate different design decisions by reasoning via ana-
lysis and simulation results, without buying all required
components,

• plan extensions of existing systems, without implement-
ing new components, or

• answer sizing questions: finding appropriate hardware
and middleware supporting desired loads before buying
and configuring it.

III. RELATED WORK

The approach presented in this paper is related to per-
formance meta-models and component models. Three recent
performance meta-models are compared by Cortellessa in [6]:
The UML Profile for Schedulability Performance and Time
(SPT) [7], the Core Scenario Model by Woodside et al. [8],
and the Software Performance Engineering (SPE) meta-model
[9] which are all designed for software systems in general –
having no specific support for component-based approaches.
KLAPER is a meta-model by Grassi et al. [10] designed for
component-based software systems. To reduce complexity of
models it introduces a unifying concept for resources and
components. Opposite to this, the PCM used in our approach
reduces modelling complexity by introducing developer roles,
that only have to deal with sub-models (domain specific
models).

Several other component models have been proposed, which
do not focus on performance prediction. Each one has its own
special focus on a set of particular aspects depending on the
proposed application of the model. Models like EJB or COM
are primarily aiming at industrial use. They have been de-
signed to support component developers at an implementation
level, while lacking the support for specifying or analysing
extra-functional properties. Research oriented models (like
SOFA [11]) are often bundled with a special analysis method
for a set of system properties. In [12] a taxonomy of recent
component models is given.

Architecture description languages like Rapide [13] fa-
cilitate an architectural description level of software sys-
tems including support for executable models. Rapide al-
lows the specification of real-time constraints, but does not
focus on component-based software systems. Darwin/Tracta
[14] supports behavioral descriptions of software architectures
including composition, but limits the description to finite
state machines to check for example for unwanted behavior.
Approaches like contract aware components introduced by
Beugnard et al. [15] include behavioral and quality of service
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level descriptions for components, but do not provide an
implementation of the meta-model that is required for our
performance prediction methods.

The need for information on components beyond interfaces
has previously been stated by Büchi and Weck. They named
their approach “greybox components” [16] and included para-
metric dependencies, but did not deal with extra-functional
properties.

IV. THE PALLADIO COMPONENT MODEL

The Palladio Component Model (PCM, cf. [2]) is a domain-
specific modeling language to describe component-based soft-
ware architectures. It is designed to enable design-time predic-
tions for software architectures with respect to extra-functional
properties like performance and reliability. Therefore, analysis
and simulation methods exist that base on the PCM and calcu-
late estimated behaviour (response times, resource utilisation,
etc.) of a component-based software architecture.

Our analysis methods [17] are able to calculate metrics like
the response time of provided services in a software system
with respect to parametric dependencies within components
and the actual usage profile of a software system. Simulation
tools [2] generate simulation source code and scenarios, based
on instances of the PCM. If, for example there are two design
alternatives for a software system, both are generated into sim-
ulation code and afterwards evaluated in a simulation run. The
outcome of such a simulation reveals preferable alternatives,
pertaining to criteria like response time or bottlenecks, e.g.
identified by overflowing simulated queues.

A rough overview on the PCM introduces the basic con-
cepts: The PCM supports the definition of components includ-
ing composite structures as well as the definition of provided
and required interfaces. Additionally, assembly connectors
describe the connections between required and provided in-
terfaces. Components can be added to explicit component
repositories and later be reused in different contexts to build
new software systems. This enables the PCM to facilitate the
reuse idea of component-based software engineering.

However, such an architectural model of a software sys-
tem is not sufficient to make predictions on extra-functional
properties: There are no specifications on the internals of com-
ponents. As we pointed out in section II (Fig. 1) a description
of component internals needs to include the dependencies an
invocation of a provided service has on the external (required)
services.

A. Service Effect Specification

As an essential part of the PCM, the so-called Service
Effect Specification (SEFF) abstractly describes the internal
behaviour (control and data flow) of a component, solving the
problems stated in the previous section. For each provided
service of a component (e.g. a() from Fig. 1), the SEFF
specifies the effects on external required services (b(), c())
of that component. The aim of a SEFF is to provide an
abstraction of the internal behaviour of a component. In
particular, in addition to internal actions and external calls

a SEFF can include control flow constructs (“actions”) like
loops, branches, resource acquisition and release, and forking.

MyComponent

IMyComponent:
getListWithLittleEntropy()

ICollection:
isEntropyLessThan()

sort()

Fig. 2. Component for the SEFF given in Fig. 3

Figure 3 (grey background areas) shows a simplified exam-
ple of a SEFF on the left-hand side for the component depicted
in Fig. 2. The service getListWithLittleEntropy
(gLWLE()) is provided by a component. This service it-
self requires the services sort() and isEntropyLess-
Than() which are provided by an external component
CollectionComponent.

On the right-hand side of the figure, a code listing is given,
showing the implementation of the service, while the left-hand
side shows a SEFF notation (based on UML 2 activity charts
[18]) of the service. If the shown service is called, a while
loop is executed at first. This is depicted as a LoopAction
node. Next, inside the while loop gLWLE() executes a for
loop. As there are no component-external calls in the for
loop, the code is merged into one InternalAction. SEFFs
always merge actions into one InternalAction, if they
are containing no component-external calls. Even, if there are
hundreds of lines of code including loops etc., they are merged.

The following if statement results in a BranchAction
(“diamond”). Within the branch and after it, the required
services sort() and isEntropyLessThan() are called
respectively. Those calls are provided by an external com-
ponent and therefore result in an ExternalAction. It
becomes clear that the SEFF allows to recognize dependencies
between provided and required services of a component.

B. Resource Demanding SEFF

To enable more precise predictions for component-based
systems, Resource Demanding SEFFs (RDSEFF) have been
introduced [2]. They are an extension of the original SEFF-
concept that adds two primary features: Parametrisation and
parametric dependencies and Resource usages for actions.

1) Parametrisation and Parametric Dependencies:
Parametrisation and parametric dependencies allow to specify
how input parameters of a service call are passed to actions.
In the above example, the input parameter count has an
influence on the execution time of the for loop and thus
has influence on the response time of the provided service.
The larger count is, the more time the loop consumes. For
external calls, parametrisation is supported, as well.

A RDSEFF’s primary aim is to provide an abstraction of
the components behaviour to facilitate analyses. Of course,
the source code of a component would be more precise than
a RDSEFF, but analyses would suffer from complexity and
component developers probably would not feel comfortable
if the specification of their components (maybe available
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<<InternalAction>>

public List getListWithLittleEntropy
(List listToSort, int count) {

while(mode) {

// some simple internal action
for(int x = 0; x < count; x++) {

listToSort.add(new Integer(x));
}

if(count > 100) { 
//external call:
collectionComponent.sort(listToSort);

}

//external call:
mode = collectionComponent.

isEntropyLessThan(listToSort, count);

}
return listToSort;

}

<<ExternalAction>>
CollectionComponent.sort()

<<ResourceDemandingSEFF>>
getListWithLittleEntropy

<<LoopAction>>

<<ExternalAction>>
CollectionComponent.isEntropyLessThan()

<<Parameter>>
parameterName=“list“
parameterName=“count“

<<BranchCondition>>
specification = count > 100

<<VariableUsage>>
list.NUMBER_OF_ELEMENTS = 
listToSort.NUMBER_OF_ELEMENTS

<<ParametricResourceDemand>>
specification = 100 * count.VALUE
unit = CPU-Unit

<<IterationCount>>
specification = Geometric(0.8)

<<VariableUsage>>
list.NUMBER_OF_ELEMENTS =
listToSort.NUMBER_OF_ELEMENTS

Fig. 3. Example of a simple SEFF: Abstract specification of a component service’s behaviour

in an openly accessible component database as a white-
box) contained the source code. Therefore, RDSEFFs merge
component’s internal behaviour and provide abstractions for
parameters. For example, lists are not characterized by each
of their elements but by the number of elements and/or the
bytesize of the whole list.

2) Resource Usage: Still, there is lack of information for
predicting metrics like the response time of a provided service.
So far, the presented specification leaves out a mapping to the
underlying hardware, for example, information on the actual
usage of resources, although the execution environment has
strong influence on the actual execution time of services.

To solve this problem, RDSEFFs allow the specification of
(parametrised) resource usages. Fig. 3 lists such specifications.
There is a ParametricResourceDemand of the Inter-
nalAction that defines a demand depending on the input
parameter count and adds a mapping to the usage of CPU-
Units.

3) Support of Stochastic Specifications: If one looks at
the example given in Fig. 3 it becomes clear that it is
not easy to determine the loop break condition (mode)
of the while loop. The loop break condition depends
on the boolean return value of the external service call
to isEntropyLessThan() and the evaluated entropy
strongly depends on the elements of the list. The param-
eter characteristics presented so far are not sufficient to
specify the loop break condition in a satisfying way, be-
cause a functional description of the loop break condition
would get too complex. Therefore the PCM includes sup-
port for stochastic expressions. The loop break condition
is described by a distribution function that describes the
probability of a certain number of loops (in the exam-
ple IterationCount with a geometric distribution). The
same applies to BranchTransitions. Fig. 3 includes one

BranchAction within the LoopAction. In the example,
there is a parametric specification (GuardedCondition)
for selecting one or another branch, but the PCM supports
stochastic definitions for branch transitions, too.

V. REENGINEERING APPROACHES

Section IV-A showed that SEFFs are required for predic-
tions of extra-functional properties. An ideal SEFF should
maintain a sufficient abstraction level to keep complexity of
analyses bounded, while being as accurate as possible. The
chosen abstraction level should enable analysis methods to
finish within a reasonable amount of time.

If one thinks about a scenario in which components are
offered in market places, predictions on extra-functional prop-
erties require exact component specifications as provided by
SEFFs in the PCM. Software architects model their software
architecture using the provided specifications of existing com-
ponents. Based on meta-models like the PCM, the software
architect could reason on design alternatives (and buy only
those components that fit). In doing so, component developers
could keep their intellectual property, as the SEFFs provide a
sufficient abstraction of the source code, nevertheless support-
ing the re-use of their components. SEFFs keep the black-box
view of components because they provide only on information
that is required for external use.

Especially RDSEFFs tend to become complex constructs
– a manual reconstruction would lead to a high effort for
components developers which provide RDSEFFs. Tools sup-
porting the automated reconstruction of component behaviour
specifications are therefore desired. The benefit of tool-
supported reengineering is ensuring the black-box principle
of components. Though reengineering tools have a white-
box view of components, their outcome (component behaviour
specification) gives a black-box view.
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Input
Source Code

Static 
Reconstruction 
(using existing 

tools)
Building Blocks

Genetic 
Algorithm

Output
RDSEFF 
Instance

Tracing

Static Analyses Analyses of 
Dynamics / Runtime Machine Learning

Fig. 4. Intended Process

We sum up the requirements to reengineering tools for
RDSEFFs and propose our own approach: Reengineering must
work in an automatic way to reduce the effort of gaining
the specification and to keep the black-box principle. It
must provide an abstraction of a component’s source code.
Therefore, it is required to find out important parameters and
significant characteristics of complex parameters to represent
an abstraction of real parameters. Parametric dependencies and
resource usages must be revealed. Alternative to parametric
dependencies, expressed in functional descriptions, stochastic
data on the choice of branches and the number of loop
executions should be available.

Current popular reengineering tools like Sotograph [19],
Lattix [20], SonarJ [21] or even the academic Bauhaus [22]
focus on reconstruction of static code structures. Those tools
reconstruct classes, their inheritance, compute metrics like co-
hesion, cycles and many more – but they remain “class tools”
that are not able to reengineer component’s behaviour descrip-
tions as needed for prediction of extra-functional properties.
Other approaches like DiscoTect [23] emphasize the runtime
monitoring but leave out data from static analysis. In any
case, additional analyses are required to extract appropriate
component behaviour specifications like RDSEFFs.

A. Methodology

Our idea for the reengineering of component behaviour
descriptions (in our case RDSEFFs) combines static analy-
ses, as supported by existing tools, with runtime tracing of
components. The results of these static and dynamic analyses
are fed into an evolutionary algorithm [24]. The task of the
evolutionary algorithm is to find an abstraction of parametric
dependencies – which are easier to analyse than the full source
code, especially leaving out QoS invariant parameters and
simplifying functional dependencies. The output of the evo-
lutionary algorithm finally provides values for parametrising
a RDSEFF. Fig. 4 sketches the intended process which needs
to be done only once by the component developer.

The initial point for the reengineering is the source code
of an application (left-hand side) – the reengineering target is
an instance of a RDSEFF (right-hand side). There are three
steps that are combined for reengineering (details are discussed
below): static analysis of source code, analyses of runtime

behaviour by tracing instances of a component, and machine
learning.

The reengineerings process starts with static source code
analysis for three reasons:

a) : The static structures of RDSEFFs (internal actions,
external actions, loops, branches) should be reconstructed
based on static analysis: An abstract syntax tree (a lot of tools
for AST extraction exist) is very similar to the control flow
part of a RDSEFF.

b) : For finding appropriate instrumentation points for
tracing, it is required to know where loops, branches, external
calls, etc. start and end in the code. If one would trace abso-
lutely everything, the resulting trace would be too large to be
evaluated efficiently. For example, for tracing it is important to
find parameters that are meaningful. Constants that are passed
as parameters will not improve knowledge on a component’s
behaviour. Consequently, there is no a priori knowledge on
significant parameters. For sorting complex parameters and
variables like list, it might be sufficiently to characterize
the list by the number of its elements (list.size()),
whereas in other cases like data streaming the list’s bytesize
is more meaningful. Tracing the whole data of every object
would take ages or exceed the memory for logging in many
cases. Finally, tracing results in monitored parameters and
variables, the execution time between two measuring points,
the resource usage, and in information on the probability of
selected branches.

c) : The initial “building blocks” (the initial genome)
for the evolutionary algorithm have to be extracted. For
example, the execution duration of a for-loop in many
cases is a linear function, depending on the starting size
of an iterator. The evolutionary algorithm takes such func-
tional blocks to improve the initial genome. For exam-
ple, this could lead to an approximation of parametrised
dependencies like execution duration = iterator size ∗
time per iteration + offset.

An evolutionary algorithm’s task is to judge on the fitness of
genomes. To do so, the evolutionary algorithm takes two target
functions to optimize the genome: (i) the evaluated results of
the tracing step and (ii) the complexity to calculate functional
dependencies found. The better the trade-off between easy
to calculate functional dependencies and matching with the
tracing results fits, the better a genome is.
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Finally, we want to state why a mix of static and dy-
namic approaches appears necessary. Static analysis provides
important information on the static structure of a RDSEFF.
Without knowing these details, it would be hard to reconstruct
a RDSEFFs control structure (based on tracing data only).
The necessity of analyses of dynamics become clear from
the example in Fig. 3. The loop exit condition of the while-
loop (mode) is manipulated by the loop body itself. In the
general case the halting problem would prohibit determining
a loop exit condition by static analyses. Monitoring runtime
behaviour nevertheless collects data on the loop exit condition.

B. Limitations and Assumptions

For the idea presented above, we assume that component
boundaries and its interfaces are given. As SEFFs contain only
component-external calls, this is a prerequisite for classifying
methods calls into internal and external actions.

Our idea for reengineering is not intended to support the
reconstruction of concurrency of components, though it heav-
ily influences their extra-functional properties. Concurrency
is neither fully supported by the PCM nor are our analysis
methods supporting concurrency at present. Nevertheless, fu-
ture work might deal with concurrency.

We are monitoring the runtime behaviour of components –
a kind of testing approach. Therefore we need to feed test data
into traced components. But of course test data will never be
able to cover the whole input space of provided services of a
component or cover all possible execution paths within finite
time [25]. This implies that we need to find adequate test data
to gain meaningful results.

For runtime tracing of a component, all it’s required services
need to be available. We assume implementations of those
interface are available or can be simulated [26] or mocked.

Our RDSEFFs are a model of a specific component for
the purpose of QoS predictions. This rises the question how
to deal with component substitution, as for complex QoS
specifications like RDSEFFs no simple substitutability check
exists. We are currently researching formal substitutability
checks for RDSEFFs.

VI. CONCLUSIONS

For many, the black-box principle of component usage
means that a component does not expose any information on
its interna. Accordingly, components are used at design- and
run-time solely via their interfaces. The often cited definition
of a component by Clemens Szyperski [1, p. 548] very much
reflects this view. However, in this paper we have shown
that for the analysis of extra-functional properties, one needs
information on the interna of a component which is not given
in the interfaces.

Since this trade-off between the black-box nature of a
component on the one hand and the architectural and QoS
analysis on the other hand seems to be unavoidable, we can
ask for the reasons and benefits of the black-box nature of
components. From our point of view, there are two reasons
why the black-box nature of components should be kept in

high esteem (in fact, anything else would drastically question
the component-based approach):

1) The re-use of a component at design-time should be
as easy as possible. In particular, one should not have
to understand the component’s interna to compose and
deploy the component (“information hiding”). This is
one of the major benefits of components compared to
other software re-use approaches.

2) The “business” knowledge of the component creator
should be protected. Unlike open source software, the
creator of a re-usable component may base his or her
business model on the assumption that the know-how
which was used to create the component is protected
and not “lost” when the component is released.

However, we take the position that these requirements do
not conflict with the retrieval of additional information on
a component beyond its interfaces. Therefore, we presented
a component reengineering approach supporting information
in addition to interfaces to enable the prediction of extra-
functional properties – in our case performance. These models
of components (RDSEFF) are going to be extracted using
an approach combining static and dynamic analysis with an
evolutionary algorithm.

Future work will deal with the evaluation of our approach.
For a start we plan to trace parametric dependencies by
monitoring primitive data types which then are analysed
by existing implementations of machine learning algorithms,
finally recovering functional dependencies.
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Abstract—Performance prediction of component-based soft-
ware systems is needed for systematic evaluation of design
decisions, but also when an application’s execution system is
changed. Often, the entire application cannot be benchmarked
in advance on its new execution system due to high costs or
because some required services cannot be provided there. In
this case, performance of bytecode instructions or other atomic
building blocks of components can be used for performance
prediction. However, the performance of bytecode instructions
depends not only on the execution system they use, but also
on their parameters, which are not considered by most existing
research. In this paper, we demonstrate that parameters cannot
be ignored when considering Java bytecode. Consequently, we
outline a suitable benchmarking approach and the accompanying
challenges.

I. INTRODUCTION

To meet requirements and expectations of users, modern
software systems must be created with consideration of both
functional and extra-functional properties. For extra-functional
properties such as performance, early analysis and prediction
reduce the risks of late and expensive redesign or refactoring
if the required extra-functional properties are not satisfactory.

The performance (i.e., response time and throughput) of
component-based software systems depends on several factors
[1]:

a) the architecture of the software system, i.e. static struc-
ture of components and connections

b) the implementation of the components that comprise the
software system

c) the runtime usage of the application (values of input
parameters etc.) and

d) the execution system (hardware, operating system, vir-
tual machine, middleware etc.) on which the application
is run.

Making the influence of the execution system on perfor-
mance explicit and quantifiable will help in different scenarios:

• Redeployment of a component-based application in
an execution system with different characteristics
(Fig. 1(a)): The execution system’s characteristics will
change when, for example, an operating system upgrade
is conducted or when a more powerful server is bought.
Assessing resulting performance changes before rede-

ployment to compare benefit and costs beforehand is very
reasonable.

• Estimation of suitable execution system to fulfill
changed performance targets for an existing software
system (“Sizing”) (Fig. 1(b)): Changes in the usage
profile (i.e., number of concurrent users, increased user
activity, different input) of a business application may
require adaptation of the application’s performance that
cannot be fulfilled with the original execution system.
Performance prediction can be useful in choosing which
execution system can fulfill the changed requirements.

The straightforward approach for predicting an application’s
performance on a new execution system would be to deploy
the application there and then to test it, obtaining the result-
ing performance. While generally possible, testing requires
installing the software on every concerned system and causes
effort to provide the components implementing required ser-
vices, an appropriate test workload and settings as well as
further effort to take measurements etc.

To avoid the expensiveness and the inflexibility of the
testing-based approach, the building blocks (such as bytecode
instructions) which constitute component implementation can
be used for performance prediction. Each building block’s
performance is obtained by benchmarking. The obtained per-
formance is combined with the frequency of the building
block, i.e. with the number of times the building block is
executed during the execution of the component’s services (cf.
[2], [3]). In this paper, we target components that are compiled
into Java bytecode and executed on a Java virtual machine, but
the approach for .NET and other bytecode-oriented execution
systems would be very similar.

The performance of such building blocks on an execution
system can be captured in several ways. One possibility is
to consider individual hardware and software resources that
comprise the execution system and to evaluate the individual
resource consumptions induced by the building block exe-
cution (for example, CPU time or memory usage). The results
of these separate measurements must be integrated into a
performance specification for the entire execution system. That
is, the final result for the considered building block must be
response time or another suitable metric.

Yet in general, such a bottom-up approach leads to a large
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and complex model of the execution system. Additionally, the
usage of the different resources of the execution system may
lead to cross-influences. For example, memory-intensive com-
putations may on some execution systems lead to unexpected
hard disk usage due to swapping of virtual memory. Such
cross-influences can impact several execution system resources
and a detailed analysis of the resulting effects is required to
evaluate the overall performance of a building block.

Hence, a simpler alternative is to consider the interaction
of the components (i.e. their building blocks) with the entire
execution system as interaction with one large black box, i.e.
at a high abstraction level.

Furthermore, benchmarking-based performance prediction
as utilised in this paper should also be faster than testing,
as there is no need to run the considered component service
for its entire wall-clock time duration. If the considered
component service performs external calls to services of other
components, their performance must be incorporated into the
prediction. This can be done through simulation or analytical
methods, and both should also be faster than testing.

Using bytecode instructions (or other building blocks) for
predicting performance of software systems is not limited to
component-based software. However, it appears suitable for
components (especially given the number of commercial com-
ponent architectures that rely on Java), and it can be applied
to systems where the source code is not available (such as
legacy systems). Once component services are annotated with
performance descriptions (e.g. mean response times), model-
based prediction methods such as KLAPER [4] or Palladio [5]
can use them to predict the performance of a component-based
software system that is reusing such components.

First approaches for utilising bytecode for performance
prediction are described in [2], [3] and [6], but they ignore the
parameters of bytecode instructions, assuming that parametric
dependencies at bytecode level are not important. Hence,
while each instruction’s frequency is counted by observing
the application at runtime, identification of the instruction
parameters is not attempted and not recorded.

The contribution of this paper is a demonstration of the im-
portance of bytecode instruction parameters and, correspond-
ingly, a comprehensive bytecode benchmarking approach de-
sign that takes care of parametric dependencies. We outline
the needed steps and present the resulting challenges that we
plan to address in future work.

To provide the background for our work, we explain
bytecode-level parameters and present our case study in sec-
tion II. Building on the study, we discuss the details on
benchmarking and performance prediction in section III-A.
Challenges that must be addressed are summarised in section
III-B. General limitations and assumptions of the resulting
approach are described in section IV. In section V, we consider
related work and compare it with our approach. Section VI
concludes by describing future work.

II. JAVA BYTECODE INSTRUCTIONS AND THEIR
PARAMETERS

A. Java Virtual Machine, Java Bytecode and Java API

Applications targeted for execution on the Java platform
are compiled into Java bytecode, an intermediate language
that is less machine-specific than pure native machine code.
Java bytecode is executed on the Java Virtual Machine
(JVM), which abstracts the specific details of the underlying
software/hardware platform. The usage of bytecode makes
compiled Java components portable across different platforms.

Through the standard Java API, application programmers
have access to a number of libraries that are bundled with the
JVM. These libraries implement frequently needed functional-
ity, such as collections, inter-program communication etc. The
functionality is accessed from Java components by calling the
API methods and using API interfaces/classes.

From the component point of view, when a class that is
part of a component makes an API call, this call could be
considered as a call to another component. However, following
the properties of components as described in Szyperski [7, p.
30], the JVM and the attached Java libraries should not be
considered as a component. This is because the JVM is neither
a unit of independent deployment (it cannot be deployed
where other Java components are deployed, namely inside a
Java virtual machine), but also because the JVM cannot be
composed by a third party into another Java component.

Furthermore, components are composed by connecting their
provides and requires interfaces, but direct use of the Java
libraries means direct access of API classes’ fields, and there-
fore is beyond the interfaces provided by the API. Therefore,
in this paper, we consider calls to the Java API (that are
done from the compiled bytecode) as part of the internal
implementation of the component, and not as calls to another
component.
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B. Java Methods and Their Parameters

In bytecode, four instructions (invokeinterface,
invokespecial, invokestatic, invokevirtual)
are used to invoke any methods from bytecode. This means
that these instructions are used both for API methods and for
methods provided by the calling component itself or provided
by other components. The method signatures are passed to
invoke* as bytecode instruction parameters stored directly
inside bytecode. Therefore, the performance of these four
method-invoking instructions will depend on the actual method
invoked, as well as on the parameters of that method.

Consequently, each combination of invoke*, method sig-
nature and method parameters potentially has its own per-
formance. However, previous approaches to bytecode bench-
marking did not consider bytecode instruction parameters to
account for this fact (see section V). As a method’s parameters
are already on top of the JVM stack when the method-invoking
bytecode instruction is called, the method parameters should
be detected and used for performance prediction, which has to
be considered during benchmark construction and execution.

Inside the JVM, a call to a single API method can re-
sult in many method calls and bytecode operations. Us-
ing a profiler, one can verify that for a single call to
System.out.println method, many bytecode instruc-
tions but also several other API methods are invoked in a
call tree. Some call trees can include native methods, so it is
in general not possible to decompose a call tree into a set
of bytecode instructions that does not include any method
invocations. Hence, method invocations must be considered
as building blocks in a bytecode-based performance prediction
approach, and invocations of private and/or native methods that
are not visible through the API must be considered as well.

One possibility to treat the resulting call tree of instructions
and methods is to record each one of them and to use a
benchmark to predict the performance of the call that is the
root of the call tree. Obviously, this is not a favorable approach
due to the resulting complexity. Additionally, propagation
of measurement errors for the nodes of the call tree and
other factors (e.g., need to circumvent Java security measures
to benchmark private methods) favor a different approach,
namely treating System.out.println and other API
methods in an atomic way. Therefore, we prefer to remain
at the highest abstraction level that is possible for components
that are compiled to bytecode, and the Java API methods will
not be decomposed any further in our approach.

Apart from method calls, parameters of other bytecode
instruction can be expected to play an important role when
working with collections. In the following section, we consider
initialisation of collections and identify important parameter
characterisations with respect to performance.

C. Influence of Bytecode Parameters on Performance of In-
structions

For our case study, we have considered the initialisation of
two data structure type: arrays and ArrayLists. Arrays in
Java have a fixed size that must be specified at initialisation

time while an ArrayList can grow dynamically and no
initial size must be specified for it at initialisation time
(although the Java API documentation specifies that the default
initial capacity will be 10).

Initialisation of data structures includes allocating memory,
and it is therefore logical to expect performance of the
initialisation to depend on factors such as

a) collection’s initial size
b) collection type
c) the type of the collection’s elements (including the

difference between value types and reference types) and
d) the size of each collection element (for example 8 bytes

for a double vs. 4 bytes for an int)

To validate whether these dependencies really do exist
for bytecode instructions, we have created arrays by using
appropriate bytecode instructions such as newarray and
anewarray. We then compared the results with initialisation
of ArrayLists, which corresponds to a method call inside
bytecode. The results in Fig. 2 show for each initial collection
size (on the x-axis) the median of 100 measurements. In each
measurement, 400 initialisations took place. The execution
system was MS Windows Server 2003 SP1 on a single-core
AMD SempronTM3100+ (1.80 GHz, 1 GB RAM) with Sun
Java 1.5.0 11 and standard settings.
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Fig. 2. Bytecode instructions’ parametric dependencies in data structure
initialisation

In fact, the measured values grow almost linearily with
the initial collection size and all four expected parametric
dependencies are exposed. This contradicts most existing
approaches, which do not identify these impacts on bytecode
instructions; at best, as in [3], only some few Java API methods
where linear dependency is expected are measured and their
performance is specified on a per-element basis.

III. BENCHMARKING OF JAVA BYTECODE AND API

In this section, we present our approach for bytecode-
based performance prediction of components and outline the
consequences of considering the instruction parameters. The
description of the methodology is followed by the discussion
of the resulting challenges in section III-B.
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A. Methodology

We follow the notation in [2], where frequency of individual
bytecode instructions is expressed by the application vector
~P = (p1p2p3 . . . pn)T . In ~P , n denotes the number
of available instructions and pi ≥ 0 is the execution
frequency of instruction i. Correspondingly, performance
of instructions is collected in the the n-dimensional system
vector ~S = (s1s2s3 . . . sn)T . The performance prediction
is obtained by ~P · ~S under the assumption that with the
same usage (i.e., input parameters etc.), ~P remains the same
accoss execution systems and component service executions.
In Fig. 3, the steps of the proposed methodology are outlined.

Step 1. Benchmarking Bytecode
As we need to benchmark the bytecode instructions
individually, a suite of microbenchmarks must be constructed.
The microbenchmarks will fall into two groups: (a) the
API methods that are called when instructions such as
invokevirtual are executed and (b) the instructions that
do not call the Java API.

When parameters have to be generated, attention must be
paid to their representativeness and several microbenchmark
runs must be performed if necessary (e.g. to discover linear
dependencies). Parametric dependencies must be reflected
by elements of ~S. Considering the fine-granular nature of
bytecode instructions, the microbenchmarks should measure
a sufficient number of instructions with regard to timer reso-
lution.

This will be problematic when it is not possible to separate
the preparation of parameters passed over the JVM stack
from the execution of the instruction itself. The performance
of parameter preparation must then be benchmarked and
subtracted from such results.

The benchmarking step has to be executed once for
each execution system, and changed settings of the
execution system require a repetition of this step. Also,
the microbenchmarks should be executed several times to be
able to eliminate outliers and to obtain statistically significant
results.

Step 2. Reducing the System Vector’s Dimensionality
The benchmarking step produces a very large system vector
due to instruction parameters, the API methods and their
parameters. We have envisioned two potential ways to prevent

the size of the system vector ~S from becoming prohibitively
expensive to work with: (a) usage of parametric descriptions
in system and application vectors, for example duration per
character in string conversion and (b) clustering of system
vector’s elements to group measurements with similar values.
These methods could be combined as well.

Step 3. Obtaining the application vector
From the execution of the component’s service on the original
execution system, we obtain the frequencies pi for the
application vector ~P . Since we assume that the component
will be run on the target execution system with the same
service parameters (i.e., runtime usage profile will remain
stable), we assume that ~P will be valid there as well. For
obtaining ~P , we aim at bytecode instrumentation which has
to be carried out on the original execution system only.

Step 4. Obtaining the prediction correction function
Hotspot compilation, JVM optimizations and other techniques
might distort the prediction. To cope with this, we plan to
introduce a prediction correction function (PCF). PCF could
be obtained, for example, by an algorithm that uses machine
learning to quantify the difference between prediction and
reality (i.e., measurements). To learn, the algorithm takes a
small fixed set of generic component services and compares
prediction and measurement. From this comparison, a
correcting function is derived that could be applied to the
performance prediction of other component services. Of
course, the application of PCF requires a representative
learning set and a learnable correction function.

Step 5. Predicting the performance
The prediction is computed by ~P · ~S, i.e. by

∑|~P |
i=1 pi · si.

For this, we assume that elements of the system vector ~S
contain only simple numerical values. However, API methods
that sort a collection perform differently for same size of
the collection because the sorting effort depends on the
orderliness of the collection. If probability distributions are
used to express the resulting variation of the performance
behaviour, [8] describes the computation of ~P · ~S using
convolution.
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B. Challenges
Of course, not all instructions are as expensive as collec-

tion initialisation or API calls. Hence, some simple instruc-
tions may be orders of magnitude faster and/or parameter-
independent. We aim at identifying the computationally ex-
pensive bytecode instructions and at fully benchmarking only
them and API methods, while approximating the performance
of the computationally “cheap” instructions.

For benchmarking the Java API, additionally to method
parameter generation and parameter range coverage (repre-
sentability), we must deal with runtime exception handling,
inheritance/polymorphism, invocation target instantiation (for
non-static methods) and some other challenges.

An implementation of the JVM (i.e., mapping of Java
bytecode instructions and Java APIs to machine code) is not
specified and varies across vendors. It is possible that an
instruction’s performance will be different for distinct JVMs
that executed on the same underlying hardware/operating
system. We can count for this by considering the JVM as
a part of the execution system and then specify the bytecode
instruction performance for each execution system.

Modern virtual machines start the execution of bytecode
in interpretation mode while trying to detect performance
hotspots. These hotspots are further compiled into native
machine code on the fly if the result is an overall performance
increase. The standard Sun Microsystems JVM features the
so-called just-in-time compilation (JIT [9]) capability, and for
long-running business applications that our research targets,
such compilation will be relevant. Thus, identifying and quan-
tifying hotspot compilation is a challenge for our research.

Pipelining [10] is a technique used by CPUs to increase exe-
cution speed. For our methodology, it means that a sequence of
bytecode instructions may execute in less time than the sum
of individual execution times, thus distorting the prediction.
A study must be performed to evaluate whether pipelining is
important at bytecode (JVM) level.

Background memory (de)allocation, i.e. the so-called
Garbage Collection (GC), is another important factor that
depends on the implementation of a JVM is which is visible
through irregular or periodical events halting or slowing the
program execution. Such interruptions and delays can distort
the prediction, and we will try to understand the effects of
GC on long-running business applications by inspecting its
duration in different modes, as for example exposed by usage
of -verbose:gc parameter of Sun Microsystems’ JVM.

Granularity of the benchmark atoms is important both for
complexity, accuracy and precision. Analysis of instruction
tuples in [11] has shown that some pairs are very frequent
while others do not occur at all; [12] uses sequential bytecode
blocks instead of individual bytecodes. For our research, we
may evalute the use of individual non-API bytecode instruc-
tions to separate parameter preparation for API calls from the
actual API calls’ performance.

Error and error propagation are general issues in bench-
marking and prediction; additionally, we can expect simple
bytecode instructions to be very fast. Consequently, special

attention must be paid to benchmark such instructions with
respect to timer resolution, confidence intervals, outliers and
similar aspects.

IV. ASSUMPTIONS AND LIMITATIONS

For an initial implementation of the proposed approach,
some helpful assumptions must be made which limit the
complexity of the undertaking. For instance, a virtual machine
can include different optimisations of bytecode execution, for
example by replacing some instructions with semantically
equivalent but faster ones in vendor-specific ways. Such be-
haviour would distort the performance prediction by altering
the application vector ~P . Therefore, we assume that no such
optimisations take place at runtime.

A component service implementation can include sections
that may be executed parallely (for example, by spawning a
new thread). Counting the bytecode instructions and combin-
ing them with the results of the bytecode benchmark as our
approach proposes will then result in wrong prediction results
if the service is executed on a system that offers hardware-
supported parallelism. For now, our approach assumes that
the execution of the service is not parallelisable.

The state of the components may impact their performance.
As this is hard to measure and hard to predict, separate
provisions would have to be developed for this. For now, we
aim to abstract from the state of the individual component and
to investigate it in future work.

The performance of the component’s required services must
be included into prediction. We assume that such external calls
can be detected and integrated into prediction, for example by
using Sevice Effect Specifications (SEFFs, [13]).

V. RELATED WORK

Sitaraman et al. [14] discuss parametrics of both space and
time behaviour of collection initialisation from the implemen-
tation viewpoint, while our work focuses on capturing the
resulting dependencies during measurement/benchmarking and
during prediction.

In the Java Resource Accounting Framework (JRAF [15]),
Binder and Hulaas use bytecode instructions counting for the
estimation of CPU consumption. However, all bytecodes are
treated equally, parameters of individual instructions (incl.
API method names) are ignored, which contradicts our case
study findings. In JRAF, it is assumed that invocations of API
methods break down to invocations of elementary bytecode
instructions in a platform-independent way, while we consider
API calls as atomic.

In HBench:Java [3], Zhang and Seltzer build the system vec-
tor by separating high-level JVM ”components” such as sys-
tem classes (i.e., API implementation), memory management,
JIT and control flow/primitive bytecode execution. However,
the evaluation was performed by selecting and benchmarking
only 30 particularly expensive API methods (some of them
were found to show linear dependency on one parameter),
and no absolute comparison between measured and predicted
performance is provided. Therefore, it remains questionable
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whether the such “components” can be combined into a
suitable and application-independent prediction. Furthermore,
it is not clear how an application vector can be obtained with
respect to the JVM ”components”. For our approach, we aim
to consider the JVM as a black box and to study execution of
bytecode instructions.

In [2], Meyerhöfer and Lauterwald want to measure the
application vector by using interceptors in an application
server. Interceptors then instrument the Java classes when
they are loaded and the executed bytecode instructions are
counted. Although API methods are mentioned in [2] as a
potential extension for that approach, method parameters are
not considered and it is not discussed how the substantially
larger number of the building blocks can be handled. To
deal with JIT effects, the authors suggest to maintain two
performance measurements per instruction (for interpreted and
JIT-compiled modes). However, it is not described how such
measurements can be obtained.

VI. CONCLUSIONS

This paper presents a detailed description of a substantially
refined performance prediction methodology. This methodol-
ogy relies on bytecode instruction benchmarking and learns
from the execution of existing component services to enhance
the performance prediction on new execution systems. A case
study is presented that shows the importance of parametric
dependencies for API methods and other bytecode instructions.
We discuss the inclusion of calls to the API into bytecode
benchmarking, since API calls are a very important part of
bytecode execution.

Other important factors influencing both benchmarking and
prediction, such as respect of hotspot compilation and garbage
collection are also discussed. Several suitable scenarios for the
usage of the prediction algorithm are described and the chal-
lenges as well as assumptions and limitations are presented.
We also mention ways to handle the large size of benchmark
results that is caused by analysis of parametric dependencies
and by API benchmarking.

The proposed approach can be beneficial for developers and
architects who wish to evaluate the performance of compo-
nents. For this, the bytecode benchmark can be intergrated into
component-oriented modeling languages, such as the Palladio
Component Model [5]. This can be done by constructing the
behavioural specifications of the component services and an-
notating them with performance predictions obtained through
the methodology proposed in this paper.

Future work will start with constructing the API benchmark
and by investigating whether benchmarking of a subset of
remaining bytecode instructions is sufficient for acceptable
precision of prediction. After the validation of the proposed
prediction methodology, we plan to extend it to allow proba-
bilistic descriptions of benchmark results. Ultimately, we plan
to integrate our approach into the modeling and prediction
tooling of the Palladio Component Model [5].
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Abstract—In this paper we present the DyMAC aspect-
component model that supports the specification of aspectual
dependencies: these are explicit dependencies between advised
and advising components involved in an aspect-oriented compo-
sition. DyMAC advocates a pure black-box approach to aspect-
oriented composition and aspectual dependencies further extend
this approach. The component model avoids explicit dependencies
of aspects on the implementation of a component: syntactically
as well as semantically.

We validate the concept in the context of one of the major ap-
plication domains of aspect-component models: AO-middleware.
Aspectual dependencies can express required middleware services
as explicit dependencies in the component specification. They
untangle the composition of the component with the middleware.
Middleware services can be well-modularized in reusable advis-
ing components with explicit interfaces that specify the aspectual
behaviour.

I. INTRODUCTION

Distributed applications are typically built on middleware
platforms, a software layer on top of the operating system that
offers a component model and execution environment for these
applications. Practical middleware platforms nowadays have to
support complex composition of application components and
have to support a broad range of services that deal with the
non-functional concerns in a distributed application. Due to
the specific needs of applications and the different deployment
contexts, middleware platforms need to be customizable and
extensible[3], [14]. Aspect-oriented middleware has been put
forward as a promising and relatively successful paradigm
to improve usability, extensibility and customization capabil-
ities of middleware platforms [8], [17], [13], [16]. In such
middleware, traditional component containers evolved from a
blackbox component with a declarative interface for a fixed
set of services, to an open micro-container with an open-
ended list of services that are composed by means of aspect-
oriented composition. The component model[1], [2] that is
offered by the AO-middleware has been extended to enable
aspect-oriented composition; the result is a so-called aspect-
component model [8], [16]. Before elaborating on the problem,
we explain the basic concepts of aspect-oriented software
development (AOSD) and aspect-component models.

Basic concepts of AOSD. To address the problem of cross-
cutting (often non-functional) concerns, aspect-oriented soft-
ware development (AOSD[5]) often has been put forward
as a possible solution. AOSD addresses this shortcoming by

focusing on the systematic identification, modularization, rep-
resentation and composition of (often crosscutting) concerns
or requirements throughout the entire software development
process. The core concept in AOSD is an aspect [5], [4]: a
coherent entity that addresses one specific concern and that has
the properties of a module that can be changed independently
of other modules. An aspect defines behaviour that can be
executed (so called advice) and defines composition logic
to describe complex and dynamic dependencies between this
behaviour and the rest of the software system. This compo-
sition logic is expressed using a joinpoint model. A common
definition of a joinpoint refers to well-defined places in the
structure or execution flow of a program [4], [5]. In any case,
joinpoints represent dynamic, runtime conditions that arise
during program execution. The occurrence of such a condition
is an event that can trigger the execution of aspect behaviour
(advice). A set of joinpoints can typically be specified with
pointcut designators that address and describe the kind and
context of the joinpoints [5]. By the kind of a joinpoint we
mean for instance a method call or a field access, etc. By
the context we refer to additional information that can be
made available to constrain the condition, such as the method
signature, type and identity of the caller or callee of a method,
further credentials and properties of the caller etc.

Aspect-component platforms focus on combining the ben-
efits of AOSD and CBSD[1], [2]. The state-of-the-art aspect-
component models are typically characterized by two main
properties:

1) The joinpoint model is non-invasive: the kind and con-
text of the joinpoints that can be advised are limited
to elements in the interfaces of the components. These
are typically incoming invocations on the provided in-
terfaces and outgoing calls on the required interfaces.
Deep advice in the implementation of the component is
not allowed.

2) Aspects have component semantics: this includes clearly
defined interfaces and support for third party composi-
tion. In the state of the art this is typically supported
by decoupling aspects (pointcuts +advice) into (1) an
aspect-component containing the (reusable) advices as
well-named methods, and (2) an aspect-oriented com-
position specification that binds the advices to a set of
joinpoints.
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A problem with aspect-components. State-of-the-art AO-
middleware offers an aspect-oriented programming model that
supports the concept of aspect-components to define new mid-
dleware services in the middleware platform. Consequently,
AO-middleware must offer appropriate means to specify the
composition of application components with such middleware
services - as these services are typically offered as aspect-
components. However, state-of-the art AO-middleware does
not allow application components (possibly provided by a
third party) to express essentially required middleware ser-
vices unless these services are modeled and implemented
as traditional (non-AO) components with provided interfaces.
In fact, if services are implemented as aspect-components,
then they cannot be specified in the required interface of an
application component. Middleware services are often needed
by the component in order to ensure correct behaviour of
the component and of the application. A classical example of
such middleware services are synchronization and transaction
services.

If two components interact in a traditional system, then one
component is a calling component - relying on a required
interface - and the other is the called component - offering
a provided interface. Required interfaces are dependencies of
a component that need to be fulfilled in order to guarantee
correct behavior of this component. The implementation of the
component typically includes calls to these required interfaces.
Figure 1 sketches a banking component that interacts with a
storage component.

Fig. 1. Object-oriented composition

An AO-composition model deals with the complex, cross-
cutting composition of an aspect-component (the advising
component) with other components (the advised components)
in the application. These AO-compositions are typically speci-
fied in separate composition specifications such as the deploy-
ment descriptor of the application. Such a composition specifi-
cation defines a set of middleware services that the middleware
platform needs to offer for the execution of the application: (a)
essential middleware services that are strictly required for the
correct behaviour of the application components, as well as (b)
middleware services that are specific for the given deployment
context. An example of the former is transaction support, an
example of the latter is an organization-specific authorization
aspect. We illustrated such an AO-composition in Fig 2.

Fig. 2. Aspect-oriented composition

State-of-the-art component specifications are lacking sup-
port to specify explicit dependencies to (aspectized) middle-
ware services that are essential for the correct behaviour of the
application components. A traditional example of such a de-
pendency is transaction management. Transactional behaviour
is a crosscutting concern, that one wants to untangle from
the component implementation, and specify in the component
descriptor (cfr EJB[6]). The behaviour of the application com-
ponent that needs to be advised by the transaction aspect needs
to be specified by the component developer [18]. The compo-
nent developer should never rely on the application composer
or deployer to specify the required transaction management for
the component[7]. Moreover, this would imply a (semantical)
dependency to the implementation of the component, because
the application composer needs to know what happens in the
implementation in order to configure the transaction support.

This lack of information in the specification of components
is an essential deficit to define components as self-containing
black-box entities (that ideally, should be deployable by a
third party). It also breaks the pure black-box approach to
aspect-oriented composition: although the transaction-aspect
composer does not have syntactical dependencies on the com-
ponent implementation (because of the non-invasive joinpoint
model), he has semantical dependencies on the implementation
of the component in order to compose the necessary transac-
tion support.

Furthermore, this lack of expressive power also makes it
impossible for the AO-middleware to verify that all essential
dependencies are satisfied. In practice an application composer
or deployer cannot be aware of such unspecified required
aspect-components. The resulting composition, in which each
dependency seems to be fulfilled, can result in inconsistent
application state at runtime, for instance - as suggested in the
example above - due to the lack of transaction management.

Solution. In this paper we present the support for aspectual
dependencies in AO-middleware, such that

1) Required middleware services can be specified as ex-
plicit dependencies in the component specification.

2) Middleware services can be well-modularized in
reusable aspects, i.e. advising components with provided
interfaces that explicitly specify aspectual behaviour.

This solution results in extensible and customizable AO-
middleware that supports pure black-box aspect-oriented com-
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position. We have implemented such a middleware platform
and we have illustrated and validated our solution by support-
ing transaction management in a component-based application
that is deployed on AO-middleware. In this validation we
have tackled the crosscutting composition of the application
components with the transaction service.

Note that required middleware aspects are inherently non-
oblivious to the base components . A common - but incorrect
- view on AOP assumes that components are always there
first and aspect are independent extensions that are always
imposed later on the unaware (oblivious) base components.
Obliviousness is a property that can be realized by aspect-
oriented composition, but it is not defining AO, and it also not
a requirement for AO. A further discussion on obliviousness is
out of the scope of this paper. Also note that in our approach
we assume that required middleware aspects are known when
defining the architecture of the distributed application. This
also postulates that the interfaces of required aspects are
defined at design time.

The remainder of the paper is structured as follows. In
section 2 we define the basic concepts and the rationale
behind our solution. In section 3 we describe how the DyMAC
AO-middleware supports aspectual dependencies. Section 4
illustrates aspectual dependencies for the composition of a
transaction service in DyMAC. Section 5 discusses related
work. Finally, we conclude in section 6.

II. THE CONCEPT OF ASPECTUAL DEPENDENCIES

In this section we present the essential concepts that are of-
fered by our solution to support aspectual dependencies. First
of all, the component description includes specific interface
definitions for AO-compositions. Secondly, the component
description explicitly describes aspectual dependencies for
composition in an application. Third, dependencies have to
be resolved at deployment time.

Interface definitions for aspect-oriented composition. In
general, an interface definition specifies the behaviour of a
component by means of provided and required interfaces. An
aspect-oriented composition defines a composition between a
set of advising components and components being advised.
From the viewpoint of the component being advised, the
advices can be essential (i.e. strictly required) for the correct
behaviour of this component, or not. For instance, an advice
that is only relevant for a particular application deployment
context is not required from the viewpoint of the component
being advised.

Interface definitions of application components need to
support aspect-oriented composition in two cases: for required
aspects in essential compositions and for imposed aspects
in other compositions. This leads to the following types of
specification in the interface definitions of the advising and
advised components:

1) For required aspects:
a) First, an aspect component (advising component)

needs to be able to specify its provided function-
ality. This is specified in the provided interface of

the advising component, which is an interface that
is specific for aspect-oriented composition.

b) Second, a component that needs advice must
specify (1) its dependencies towards the AO-
middleware: i.e the advising components that it
expects in the middleware platform, as well as
(2) its own corresponding joinpoints, i.e specifying
when advice is needed.

2) For imposed aspects:
a) An advising component should specify the inter-

face it requires from the advised components: the
kind of joinpoints the advising components wants
to advise.

b) A component that can be advised (i.e. a com-
ponent that is subject to aspect-oriented compo-
sition) should specify the interface of joinpoints
that it provides towards advising components. This
element has actually been the focus until now
of most related work on aspects and interfaces
(open modules [19], XPI [21], aspect integration
contracts[15]) - see section 5.

Our description therefore focuses on support for required
aspects. Aspectual dependencies are the key concept that we
put forward to bridge the gap.

Component specification with aspectual dependencies. An
aspectual dependency defines an aspect that is required by
a component. The component description therefore specifies
these aspectual dependencies and makes the required interfaces
of advising components explicit. An aspectual dependency
consist of (1) a name for the dependency, (2) a pointcut
that specifies the joinpoints, i.e. when and where the advice
is required and (3) a required interface and advice-method
that must be provided by a matching advising component.
This obviously assumes that advising components can specify
aspect behaviour in their interfaces.

The joinpoint model for defining the pointcuts is basically
irrelevant for the nature of our solution. In practice, we have
chosen for a model that specifies the kind and context of the
joinpoints as follows. The kind of joinpoints are calls and
executions of methods, which implies two kinds of pointcuts:
call and execution pointcuts. The pointcuts can further evaluate
on the context information that is associated with a joinpoint.
This context information is of course limited to the context
information about the component specifying the aspectual
dependency. In case of a call pointcut the pointcut can evaluate
on the required interface and method signature of the method
call. In case of an execution pointcut the pointcut can evaluate
on the provided interface and method signature of the method
execution.

Resolving aspectual dependencies. Dependencies are re-
solved by specifying bindings. Our solution defines aspectual
dependency bindings to map the aspectual dependencies to
concrete advising components in the AO-middleware platform.
These bindings are specified as an aggregation of (1) a set of
dependencies, requiring the same interface, and (2) an advising
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component that is selected to fulfill the required interface.
These bindings are specified in the deployment descriptor of
the application. They actually resolve the aspectual dependen-
cies of the components that are contained in the component
specification. An aspectual dependency and its binding is
depicted in Figure 3.

Fig. 3. Aspectual dependency

III. ASPECTUAL DEPENDENCIES IN DYMAC
In this section we describe the support for aspectual de-

pendencies in the DyMAC AO-middleware. First we focus on
the specification of aspectual dependencies to express required
aspects and on the specification of aspect interfaces.Second we
discuss how DyMAC supports the two kinds of aspect binding:
the binding of required aspects and the binding of imposed
aspects.

A. Interfaces and dependencies in DyMAC

DyMAC components are object-based entities that sepa-
rate interfaces and implementation. Components specify two
kinds of interfaces: provided and required interfaces. The
provided interfaces are declared in the component descriptor,
and specify the behaviour that is provided for each kind of
composition: i.e. their provided behaviour as called component
in a object-oriented composition and their provided behaviour
as advising component in an aspect-oriented composition. Dy-
MAC components declare their required interfaces by means
of dependencies in the component descriptor. A dependency
can be a normal dependency or an aspectual dependency. We
explain these different concepts and illustrate them shortly. A
more detailed illustration is presented in the next section.

The provided interfaces of a DyMAC component consist of
a create-interface and an instance-interface. A create-interface
specifies how to instantiate a component, and an instance-
interface specifies which methods are offered by a component
instance. We illustrate this for the BasicBanking component
in the next listing. 1

i n t e r f a c e I B a s i c B a n k i n g C r e a t e{
I B a s i c B a n k i n g C r e a t e ( ) ;}

i n t e r f a c e I B a s i c B a n k i n g{
. . .
void T r a n s f e r ( s t r i n g from , s t r i n g to , double amount ,

s t r i n g msg ) ;}

1The examples are implemented on the DyMAC.NET prototype and use
plain C#.

The advice-methods of a component are also defined in
the provided instance-interface of a component. The advice-
methods represent the provided aspect interface of the com-
ponent and they can be used as advice in an aspect-oriented
composition. These methods need to have a special signature:
i n t e r f a c e Transac t ionMgmtAspec t{

void a r o u n d t x ( R u n t i m e J o i n P o i n t r j p ) ;}

The dependencies of a component express the required be-
haviour of other components that the component is composed
with. Normal, object-oriented dependencies specify a required
interface on which the component explicitly calls method
invocations. Such a dependency is defined by a dependency
name and a required interface that is expected to be bound to
the dependency by means of OO-composition.

Aspectual dependencies extend the notion of dependencies
for required aspects. They are defined by a name, pointcut and
an advice of a required aspect interface. The joinpoint model
for the pointcuts in aspectual dependencies supports calls
on the required interfaces, including the advices of required
aspect interfaces. It also supports executions of methods in the
provided interface of the component, including the provided
aspect interface of the component. The advice specified in an
aspectual dependency must specify at least an AspectInterface
and advice method. AdviceType and InstantiationScope are
optionally, and can be left open to specify in the binding.

The component descriptor defines the component name, the
provided interfaces, the implementation file and the dependen-
cies of the component. We illustrate the component descriptor
of BasicBanking with the aspectual dependency towards the
aroundtx advice.
Component Bas i cBank ing{

. . .
A s p e c t u a l−dependency t r a n s a c t i o n s {

P o i n t c u t{
Kind : e x e c u t i o n
I n t e r f a c e : I B a s i c B a n k i n g
MethodMessage : ∗ t r a n s f e r ( . . ) ;

}
Requ i r edAdv ice{

A s p e c t I n t e r f a c e : I T r a n s a c t i o n M g m t A s p e c t
AdviceMethod : a r o u n d t x ;
AdviceType : Around ;
Scope : P e r I n s t a n c e ;

}}

B. Binding components in DyMAC

The composition of the application and the middleware is
defined in an application descriptor. The application descriptor
first defines a name for the application, then it defines the set
of components that is used, by referring to their descriptor.
Then the compositions of the components are defined. These
compositions can be (1) normal OO-bindings between OO-
dependencies and components, or they can be (2) aspectual
dependency bindings of required aspects, or they can be (3)
aspect-oriented compositions of imposed aspects. In this way
an application is constructed on a custom middleware plat-
form with the required middleware services and the imposed
application-specific middleware services. We now focus on the
bindings of required aspects and imposed aspects.
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1) Aspectual dependency bindings: are defined in the ap-
plication descriptor of DyMAC applications. They bind a set
of aspectual dependencies to a concrete advising component
in the application. This set of aspectual dependencies typically
requires the same aspect interface. This is illustrated in the next
listing. Optionally, the advice type and instantiation scope can
be defined.

A p p l i c a t i o n B a n k i n g A p p l i c a t i o n{
. . .
A s p e c t u a l−dependency−b i n d i n g{

Dependency : Bas i cBank ing . t r a n s a c t i o n s , . . . ;
Component : T ransac t ionMgmtAspec t . I T r a n s a c t i o n M g m t A s p e c t ;

}}

2) Binding imposed aspectual middleware services:
Aspect-oriented compositions of imposed, application-specific
middleware services are defined in the application descriptor.
This is only discussed briefly in this paper and is presented
more thoroughly in our previous work [9]. Aspect-oriented
compositions consist of two main parts: a pointcut expression
and a set of advices. We first discuss pointcut expressions,
then we discuss advices. The next listing specifies the stucture
of such an aspect-oriented composition as a guidance to the
textual explanation.

AO−c o m p o s i t i o n{
P o i n t c u t{

Kind : [ c a l l | e x e c u t i o n ] ;
S i g n a t u r e : <method−p a t t e r n >;
C a l l e r{

[<p r o p e r t y >: <s t r i n g−p a t t e r n >;]∗}
C a l l e e{

[<p r o p e r t y >: <s t r i n g−p a t t e r n >;]∗}}
[ Advice{

Advis ingComponent : <component−name>;
Scope : [ S i n g l e t o n | PerHos t | PerComponent | . . . ] ;
AdviceType : [ B e fo re | A f t e r |Around ] ;
AdviceMethod : <adv i ce−method >;

}]∗
}

Pointcut expressions. Pointcuts are logical expressions that
evaluate on the kind and context of the joinpoints. The kind
of joinpoints that can be evaluated on are calls and executions
of method invocations. The pointcut expressions to support
that are a call and execution pointcut. The context on which
the pointcuts can evaluate are the message signature, the
dependency name of the sending component, the interface of
the receiving component, and the names of the sending and
receiving component. If pointcuts do not specify a value for a
certain property, it has the default value all.

Advices. An advice is described by (1) the component that
provides the aspect behaviour, (2) its instantiation scope, (3)
an advice method of the advising component and (4) an advice
type (before, after or around).

IV. ILLUSTRATION

In this section we illustrate the composition of required
middleware services in DyMAC. First we present a description
of the example. Then we elaborate on the composition of the
middleware services in DyMAC.

A. Situating the example

We use an example of a webbanking application with which
a customer can manage his checking accounts and perform
financial transactions on the checking accounts. The core
business component is BasicBanking, which is a component
offering operations to manage checking accounts, and exe-
cute financial transactions. This component is located at the
application server. The customers use the WebClient com-
ponent at the webserver. The webclient sends the requested
operations to the BasicBanking service at the application
server. Each financial transaction involves updating multiple
data sources, but also involves updating the same data by
multiple concurrent clients. Software transactions ensure data
integrity in case of concurrent access or failure. Software
transactions rely on three standard operations: begin, commit
and rollback. Each transaction groups together a number of
operations on transactional objects, encapsulating application
data. For example the transfer operation of basic banking is
listed in the following pseudocode:

method t r a n s f e r
b e g i n t r a n s a c t i o n

c r e d i t s o u r c e a c c o u n t
d e b i t d e s t i n a t i o n a c c o u n t
u p d a t e t r a n s a c t i o n l o g s

commit t r a n s a c t i o n
o n e r r o r : r o l l b a c k t r a n s a c t i o n

end method

Input validation of the information entered by the customer
is also an essential non-functional concern in the application.
For example, the customer could insert SQL statements when
entering a message in order to withdraw the money from
another account[22]. A third party component SqlDetector
is used to detect SQL injection in input strings from the
customer. BasicBanking should be defined as a self contain-
ing entity, reusable in a third party composition, and thus
deployable in a third party environment. Therefore it has to
clearly define its dependencies. The aspectual dependencies of
the BasicBanking component are transaction management and
SQL detection.

In the deployment descriptor of the banking application,
other imposed aspects will be composed with the BasicBank-
ing component, for example bank-specific authentication and
authorization components. These aspects enforce security poli-
cies that are bank-specific and provide credential validation
and access control of the called method invocations on the
BasicBanking component.

B. Composing middleware services in DyMAC

The custom-built middleware platform for the application
offers support for the required aspects and the other imposed
aspects. We discuss the composition of the application with
the middleware as follows. First we define the interfaces of
the basicbanking component and we discuss the aspectual
middleware services TransactionMgmtAspect and SqlDetector.
Next, we illustrate the definition of the aspectual dependencies
and finally we illustrate the composition specification of the
required aspects and the other imposed aspects.
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The BasicBanking component provides the operations that
can be executed in the webbanking environment: transferring
money, inspecting customer information and updating cus-
tomer information.

i n t e r f a c e I B a s i c B a n k i n g{
void u p d a t e C u s t o m e r I n f o ( s t r i n g id , s t r i n g i n f o ) ;
s t r i n g g e t C u s t o m e r I n f o ( s t r i n g i d ) ;
void t r a n s f e r ( s t r i n g from , s t r i n g to , double amount ,

s t r i n g msg ) ;}

Support for transactions with demarcation based on method
executions is satisfactory for most of the applications. Middle-
ware containers offering declarative support for transactional
methods have been widely used, e.g. in EJB [6]. Despite of
the performance drawbacks, the reduced development efforts
for transactional methods are considered more beneficial.

AO-middleware can offer a similar kind of reusable trans-
action support: around-advices offer a reusable composition
pattern that calls the begin, commit and abort operations of
transactions. These around advices can be composed with
method executions to enforce transactional behaviour[18].
We illustrate this in DyMAC. The TransactionMgmtAspect
provides an advice-method aroundtx that can be executed
around operations to manage the transactional behaviour. The
implementation of that behaviour is specified in the class
TransactionMgmtAspectImpl: it starts a transaction before the
operation, then proceeds, then commits after the operation
or does a rollback in case of an exception. We illustrate the
interface and implementation of the aspect in the next listings.

I n t e r f a c e I T r a n s a c t i o n M g m t A s p e c t{
/ / t h e p r o v i d e d a d v i c e method
void a r o u n d t x ( R u n t i m e J o i n p o i n t r j p ) ;
/ / p r o v i d e d methods f o r oo c o m p o s i t i o n
s t r i n g g e t T x I d ( ) ;
void beginTx ( Componen t Ins t ance c ,

MethodMessage msg , s t r i n g i d ) ;
void commitTx ( Componen t Ins t ance c ,

MethodMessage msg , s t r i n g i d ) ;
void a b o r t T x ( Componen t Ins t ance c ,

MethodMessage msg , s t r i n g i d ) ;
}

c l a s s Transac t ionMgmtAspec t Imp l :
IT ransac t ionMgmtAspec t , Componen t Ins t ance{

p u b l i c vo id a r o u n d t x ( R u n t i m e J o i n p o i n t r j p ){
Component c = r j p . C a l l e e . I n s t a n c e ;
MethodMessage msg = r j p . Message ;

s t r i n g i d = g e t T x I d ( ) ;
t r y{

beginTx ( c , msg , i d ) ;
r j p . p r o c e e d ( ) ;
commitTx ( c , msg , i d ) ;

} ca tch {
a b o r t T x ( c , msg , i d ) ;
throw ;

}}
. . .

}

The SqlDetector component provides an advice-method to
validate the input arguments of the method execution. All
arguments that are a string are verified for sql injection.

i n t e r f a c e I S q l D e t e c t o r{
void V e r i f y I n p u t ( R u n t i m e J o i n p o i n t r j p ) ;}

c l a s s S q l D e t e c t o r I m p l{
void V e r i f y I n p u t ( R u n t i m e J o i n p o i n t r j p ){

f o r e a c h ( o b j e c t o i n r j p . MethodMessage . Args ){
/ / i f o i s s t r i n g , check f o r s q l

}}}

The specification of the BasicBanking component defines
aspectual dependencies for the required aspects. It requires a
transaction around the transfer method and input validation
on all methods. The component developer specifies which
methods require transaction support by means of aspectual
dependencies. In this approach, the person who provides the
component also specifies the transactional methods.

Component Bas i cBank ing{
/ / d e f i n e p r o v i d e d i n t e r f a c e
p r o v i d e s : I B a s i c B a n k i n g
. . .
A s p e c t u a l−dependency t r a n s a c t i o n s {

P o i n t c u t{
Kind : e x e c u t i o n
I n t e r f a c e : I B a s i c B a n k i n g
MethodMessage : ∗ t r a n s f e r ( . . ) ;

}
Requ i r edAdv ice{

A s p e c t I n t e r f a c e : I T r a n s a c t i o n M g m t A s p e c t ;
AdviceMethod : a r o u n d t x ;
AdviceType : Around ;

}
}
A s p e c t u a l−dependency i n p u t v a l i d a t i o n {

P o i n t c u t{
Kind : e x e c u t i o n ;
I n t e r f a c e : I B a s i c B a n k i n g
MethodMessage : ∗ ∗ ( . . ) ;

}
Requ i r edAdv ice{

A s p e c t I n t e r f a c e : I S q l D e t e c t o r
AdviceMethod : V e r i f y I n p u t ;
AdviceType : B e f o re ;

}
}

}

The application composer needs to fulfill the two aspec-
tual dependencies that are defined in the specification of
BasicBanking. We illustrate the composition of the transac-
tion dependency with the TransactionMgmtAspect component.
Additionally, aspect-oriented compositions impose the authen-
tication and authorization aspect.

A p p l i c a t i o n B a n k i n g A p p l i c a t i o n{
A s p e c t u a l−dependency−b i n d i n g{

Dependency : Bas i cBank ing . t r a n s a c t i o n s ;
Component : T ransac t ionMgmtAspec t . I T r a n s a c t i o n M g m t A s p e c t ;

}
. . .

AO−c o m p o s i t i o n{
/ / impose a u t h e n t i c a t i o n and a u t h o r i z a t i o n a s p e c t s
P o i n t c u t{

Kind : e x e c u t i o n ;
MethodMessage : ∗ ∗ ( . . ) ;
C a l l e e{

Component : Bas i cBank ing ;
}

}
Advice{

/ / a u t h e n t i c a t e u s e r
}
Advice{

/ / a u t h o r i s e u s e r
}

}
}
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V. RELATED WORK AND DISCUSSION

In this section we discuss other approaches to tackle cross-
cutting concerns in distributed applications. First we discuss
two non-AO approaches to middleware, two state-of-the-art
AO-middleware approaches, and two aspect languages that
have been proposed to deal with crosscutting concerns in
distributed applications. Afterwards we discuss related work
in the domain of aspect interfaces.

In the introduction we defined two requirements for exten-
sible and customizable middleware. First, composition logic
between application logic and the middleware services must be
untangled and middleware services must be well modularized
in a reusable component. Second, components deployed on
the middleware must be able to specify explicit dependencies
towards the middleware. We discuss these requirements in the
different technologies for the transaction service and the input
validation.

A. Non-AO-middleware

The first kind of technologies that we discuss are the
middleware approaches that do not focus on offering AO-
programming support. The first type of non-AO-middleware
is a naked ORB for distributed, object-based components.
The second type is container-based middleware that offers a
fixed set of declarative services for distributed object based
components. Examples of the first type are .NET remoting
or Java RMI. Example of the second type are the COM+
container of .NET (with ServicedComponents) or the EJB
container of J2EE platforms.

1) Object Request Brokers: In a naked ORB, middleware
services such as transaction support or security services need
to be enforced by means of API calls (e.g the JAAS au-
thentication and authorization API). The composition of the
transactional behaviour and security services is intermingled
with the application logic. Note that in such an approach,
there is an explicit dependency in each component descriptor
towards the required OO-interface of the middleware service.
These interfaces are typically used in the implementation
to explicitly call the transaction behaviour and SQL input
validation. This results in the crosscutting composition though.

IT ransac t i onMgmt txMgmt ;
I S q l D e t e c t o r s q l D e t e c t o r ;

p u b l i c vo id t r a n s f e r ( s t r i n g from , s t r i n g to ,
double amount , s t r i n g msg ){

s q l D e t e c t o r . v a l i d a t e ( from ) ;
s q l D e t e c t o r . v a l i d a t e ( t o ) ;
. . .
s t r i n g t x I d = txMgmt . g e t T x I d ( ) ;
t r y{

txMgmt . b e g i n ( t x I d ) ;
/ / check amount and new balance ,
/ / do w i t h d r a w a l and d e p o s i t
/ / up da t e t r a n s a c t i o n l o g s
txMgmt . commit ( t x I d ) ;

}ca tch ( E x c e p t i o n e ){
txMgmt . r o l l b a c k ( t x I d ) ;

}}

2) Container-based Middleware: We will discuss the EJB
container as an example of container-based middleware. The
j2ee specification contains a declarative interface to configure
the transactional behaviour that is needed in an EJB compo-
nent. The EJB components contain explicit dependencies to
the transaction interface of the EJB specification.

A j2ee vendor provides an implementation for the EJB spec-
ification, which includes the implementation of the transaction
behaviour in the EJB container. The crosscutting composition
of the begin(), commit() and rollback() operation, as well as
the implementation is dealt with in the transaction implemen-
tation in the container.

However, the containers that implement the EJB specifi-
cation only support limited configuration. They are hard to
customize or extend for application or deployment specific
contexts. Therefore, input validation (e.g. sql injection de-
tection) has to be implemented as an explicit call in the
BasicBanking component. This results in a tangled imple-
mentation and crosscutting composition. The next two listings
illustrate the untangled transaction management in EJB and
the explicit input validation in the transfer implementation.
I S q l D e t e c t o r s q l D e t e c t o r ;
. . .
p u b l i c vo id t r a n s f e r ( s t r i n g from , s t r i n g to ,

double amount , s t r i n g msg ){
s q l D e t e c t o r . v a l i d a t e ( from ) ;
s q l D e t e c t o r . v a l i d a t e ( t o ) ;
s q l D e t e c t o r . v a l i d a t e ( msg ) ;
/ / check amount and new balance ,
/ / do w i t h d r a w a l and d e p o s i t
/ / up da t e t r a n s a c t i o n l o g s

}

<c o n t a i n e r−t r a n s a c t i o n >
<method>

<e jb−name>Bas icBanking </ e jb−name>
<method−name>T r a n s f e r </method−name>
. . .

</method>
. . .

</ c o n t a i n e r−t r a n s a c t i o n >

B. AO-middleware

Many AO-middleware platforms offer similar support for
interface specification - although they are quite different from
other viewpoints. These platforms include JBoss AOP[23],
JAC[8], AspectJ2EE[17] and Spring[24]. We first discuss
JBoss AOP as a representative example of this group. Only
provided interfaces are supported in these technologies. Next
we discuss CAM/DAOP as it offers a more extended support
for interface specification.

1) JBoss AOP: JBoss AOP is an AO-middleware approach
that defines aspects as pure java objects. Advices are methods
that have a special signature. Aspects can provide multiple ad-
vice methods. The binding of the aspects with the other classes
are defined in separate xml-based composition descriptors.

The component provider of the TransactionAspect can mod-
ularize the transactional behaviour as an aspect that provides
the aroundtx advice method. The application composer deals
with the binding of the transaction aspect on the BasicBanking
component, and thus has to specify the transactional methods.
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There is no possibility to express the explicit dependency in the
basic banking component towards the required transactional
behaviour (or input validation).

i n t e r f a c e IT ransac t i onMgmt
p u b l i c O b j e c t a r o u n d t x ( I n v o c a t i o n i n v o c a t i o n ) ;}

c l a s s T r a n s a c t i o n A s p e c t implements I T r a n s a c t i o n M g m t A s p e c t{
p u b l i c o b j e c t a r o u n d t x ( I n v o c a t i o n i n v o c a t i o n ){

s t r i n g i d = g e t c u r r e n t t x ( ) ;
t r y{

b e g i n ( i d ) ;
o b j e c t o = i n v o c a t i o n . p r o c e e d ( )
commit ( i d ) ;
re turn o ;

}ca tch ( E x c e p t i o n e ){
a b o r t ( i d ) ;
throw e ;

}}

<b ind p o i n t c u t ="* * BasicBanking->transfer(..)">
<a d v i c e a s p e c t ="TransactionAspect"

name="aroundtx"/>
</ b ind >

2) CAM/DAOP: CAM/DAOP has two component types:
OO-components and aspect components. The provided inter-
face of OO-components (for OO-composition) and aspects
(for AO-composition) can be described in the component
specification. The required interfaces of OO-components to-
wards other OO-componentns can also be made explicit in
the component specification. Required aspect components can
not be specified. CAM/DAOP offers the notion of mandatory
aspects. But that term refers to the fact that advice that
is executed, must evaluate to true and may not throw any
exception in order to continue the execution of the application.

The approach for modularizing the input validation as aspect
component in CAM/DAOP is quite similar to the approach in
JBoss AOP. However, for the transaction management there
is a difference. CAM/DAOP does not support around advice.
Therefor the AO-composition of the transaction has to be
specified in terms of before, after and after-throwing advice
by the application composer. This involves a more complex
composition between application logic and middleware ser-
vice. Moreover, this composition needs to be specified by the
application composer.

C. Language support for service composition

The modularization and composition of crosscutting, non-
functional concerns in distributed applications by means of
aspect languages has been described in [11], [18], [10].
Aspect/J and Caesar[12] are two languages that have been put
forward to tackle such crosscutting concerns and modularize
them in aspects.

1) AspectJ: AspectJ offers abstract aspects with abstract
pointcuts to define aspects with reusable advices. An inher-
iting aspect defines the concrete pointcut to bind the aspect
behaviour to a concrete set of java classes.

The provider of the TransactionMgmt aspect can use ab-
stract aspects to deal with the modularization of the transac-
tional behaviour in a reusable aspect. The application com-
poser deals with the binding of the transaction aspect on
the basic banking component by means of an inheriting

aspect that specifies the transactional methods. However, there
is no possibility to express the explicit dependency in the
basic banking component towards the required transactional
behaviour (or input checking). We illustrate the abstract and
concrete aspect for transaction management in the next two
listings.

a b s t r a c t a s p e c t Transac t ionMgmt{
a b s t r a c t p o i n t c u t t r a n s a c t i o n s ( ) ;
a round : t r a n s a c t i o n s ( ){

t r y{
/ / b e g i n t r a n s a c t i o n
p r o c e e d ( ) ;
/ / commit t r a n s a c t i o n

}
catch ( E x c e p t i o n e ){

/ / r o l l b a c k t r a n s a c t i o n
}}}

a s p e c t Bas i cBank ingTransac t ionMgmt
ex tends Transac t ionMgmt{

p o i n t c u t t r a n s a c t i o n s ( ) : e x e c u t i o n (∗ ∗ . t r a n s f e r ( . . ) ) ; }

2) Caesar: Caesar offers the concept of provided and
expected methods in the aspect collaboration interfaces. These
interfaces define the interfaces for OO-composition between
the components. Provided methods are implemented in the
aspect implementation. Expected methods are implemented
in the aspect binding. Advice cannot be specified in the
collaboration interface. It is always specified and implemented
in the aspect binding. Therefore, CaesarJ does not support
the specification of advice in the provided interface of the
advising component or the specification of a required aspect
in the advised component.

The composition of the transaction behaviour can be untan-
gled from the application code in an around advice. However
that around advice that deals with this crosscutting com-
position has to be specified in the binding, thus by each
provider of an application component that needs transactional
behaviour. It is not possible to specify the around advice
signature and implementation in the aspect implementation
(as in the AO-middleware approach). Therefore there is no
support to define required aspects. There is only an explicit
OO-dependency to the OO-interface of the TransactionMgmt
component. Additionally, the definition of the BasicBanking
class has to be specified in the binding so that it cannot be
provided separately, without the explicit OO-dependency. This
is illustrated in the next listings.

i n t e r f a c e T r a n s a c t i o n P r o t o c o l{
i n t e r f a c e T r a n s a c t i o n a l O b j e c t{}
i n t e r f a c e Transac t ionMgmt{

p r o v i d e d s t r i n g g e t C u r r e n t T x I d ( ) ;
p r o v i d e d b e g i n ( i d ) ;
p r o v i d e d commit ( i d ) ;
p r o v i d e d r o l l b a c k ( i d ) ;

}}

/ / a s p e c t i m p l e m e n t a t i o n
c l a s s T r a n s a c t i o n P r o t o c o l I m p l

implements T r a n s a c t i o n P r o t o c o l{
c l a s s Transac t ionMgmt{

/ / i m p l e m e n t s p r o v i d e d methods
}}
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/ / a s p e c t b i n d i n g
c l a s s T r a n s a c t i o n P r o t o c o l B i n d i n g

b i n d s T r a n s a c t i o n P r o t o c o l{
c l a s s T r a n s a c t i o n a l B a s i c B a n k i n g

b i n d s T r a n s a c t i o n a l O b j e c t
wraps Bas i cBank ing{

c l a s s Bas icBank ing{
/ / d e f i n e and imp lemen t b a s i c bank ing i n t h e b i n d i n g

}
IT ransac t i onMgmt txMgmt ;
p o i n t c u t t r a n s a c t i o n s ( ) : e x e c u t i o n (∗ ∗ . t r a n s f e r ( . . ) ) ;
a round ( ) : t r a n s a c t i o n s ( ){

/ / c f r p r e v i o u s approaches .
}}

d e p l o y e d c l a s s CTP
ex tends T r a n a c t i o n P r o t o c o l <T r a n s a c t i o n P r o t o c o l B i n d i n g ,

T r a n s a c t i o n P r o t o c o l I m p l >{};

We can conclude that AO-composition in CaesarJ does not
support the specification of advice in the provided interface
of the advising component or the specification of a required
aspect in the advised component.

D. Black-box AO-composition

In this section we present related work on black-box AO-
composition that goes beyond the traditional non-invasive join-
point models. Non-invasive joinpoint models basically allow to
advise any invocation that is part of the provided and required
(OO) interfaces. However, the AO-technologies in this section
support the definition of an explicit interface of an advisable
component towards an advising component [15], [19], [20],
[21]. These interfaces specify explicitly the kind of joinpoints
they provide as well as concrete joinpoints they provide for
(possible) aspect-oriented compositions.

Aspect Integration contracts [15] support expressive power
in the component contracts to specify the set of joinpoints that
is available for AO-composition. The contracts can specify
which state and behaviour they provide towards concrete
aspects or groups of aspects. The pointcuts for the AO-
composition itself are still defined outside the component
contract in a composition specification.

Open modules [19] focuses on the same problem as As-
pect Integration Contracts. Open modules define an extended
approach to define interfaces of classes by exporting certain
private joinpoints by means of pointcuts. This opens up certain
parts of the private state of modules and implementation of
methods as possible joinpoints. Only the explicitly exported
joinpoints are advisable. XPI [21] is an approach that abstracts
the internal behaviour of a set of collaborating modules by
exposing abstract pointcuts on the collaborating modules.
These abstract pointcuts are advisable by aspects. In [20], a
module defines pointcuts that hide the joinpoints that must not
be advised.

We conclude that the exposed joinpoints in the discussed
related work are part of the provided interface for ao-
composition. These joinpoints can be advised by an aspect.
Aspectual dependencies also expose a set of joinpoints in the
abstract behaviour of a component, however the dependencies
also require well specified advice. Therefore they are part of
the required interface for ao-composition.

VI. CONCLUSION

Traditional middleware containers suffer from monolithic
design and limited configurability and extensibility. AO-
middleware opens up this black-box for the application de-
veloper. The container evolved from a black-box component
with a declarative interface for a fixed set of services, to an
open micro-container with an open-ended list of services that
are composed by means of aspect-oriented composition.

However, the application component specifications are lack-
ing support to specify explicit dependencies to (aspectized)
middleware services that are essential for the correct behaviour
of the application components. This lack of information in
the specification of components is an essential deficit to
define components as self-containing black-box entities. It
also breaks the pure black-box approach to aspect-oriented
composition: semantical dependencies on the implementation
of the component are introduced.

In this paper we presented aspectual dependencies in the
context of AO-middleware, such that required middleware
services can be specified as explicit dependencies in the
component specification. In that way, implicit semantical
dependencies towards the component implementation by the
application composer can be omitted. Aspectual dependencies
also define the mininal set of services that is required of
the open container by the application components in order
to guarantee correct execution.
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Abstract—This paper shows how components and aspects can
be seamlessly integrated using protocols. A simple component
model equipped with protocols is extended withaspect compo-
nents. The protocol of an aspect component observes the service
requests and replies of plain components, and possibly internal
component actions, and react to these actions (possibly preventing
some base actions to happen as is standard with AOP). A
nice feature of the model is that an assembly of plain and
aspect components can be transformed back into an assembly
of components. All this is done without breaking the black-box
nature of the components (dealing with internal actions requires
to extend the component interface with anaction interface).

I. I NTRODUCTION

Aspect-Oriented Programming (AOP), initially developed
in the context of Object-Oriented Programming (OOP), has
shown that classes are not enough to properly modularize all
the concerns of an application. The use of classes alone leads
to so-calledcrosscutting concerns, scattered in the various
classes that build the application. AOP makes it possible to
collect these scattered parts of the concern in a new modu-
larization construct: anaspect, and leave the set of classes to
which the aspect applies, thebase program, free from any code
for the concern. It is then the job of the compiler toweave
the aspect and the base program,i.e., to introduce concrete
connections between the aspect and the classes, using the
aspectpointcutandadvice. Thepointcutis a predicate defining
the join points, i.e., the execution points in the base program
which should be affected by the aspect. Theadvicedefines the
new behavior to be inserted at the join points, including calls to
base program methods. An abstract way of consideringweav-
ing is to see it as a transformation back to the scattered and
tangled code that would have been written by hand using plain
OOP (in practice, however, weaving is not a source-to-source
transformation, but a direct transformation to lower-level code,
typically bytecode). Apart from improving the modularity of
the application, AOP also allows incremental programming:
the base program can be developped independently from the
aspects, which can be developped at a later stage.

The situation is not really different when moving from OOP
to plain Component-Oriented Programming (COP). Cross-
cutting concerns have to be dealt with. In a strict black-
box model, incremental programming is not possible. The
crosscutting concern has to be implemented as a (collection
of) component(s). Connection code has to be introduced in the

implementation of the base components, which must also be
equipped with the proper interfaces.

This paper deals with improving on this situation by show-
ing how AOP and COP can be seamlessly integrated. We start
with a simple component model where components are defined
as a set of (structural) interfaces describing their provided and
required services and a protocol, describing the behavior of
the components in terms of service requests and replies as
well as internal actions. We then extend this model by adding
aspect components, which are also defined as a set of interfaces
and a protocol. This protocol has however a slightly different
meaning than a standard component protocol. It corresponds
to the definition of astatefulconcurrent aspect [1], [2], [3],
which can observe various base actions (service requests and
replies, internal actions) and react accordingly. This includes
the possibility of preventing a base action from happening,a
standard feature of AOP. In this model, weaving can be seen
as a transformation of the initial system of plain components
and aspect components into a system of plain components.

Section II gives more details on our approach. Section III
describes our simple reference model. Section IV extends
this model with aspect components. Section V shows how
weaving transforms an initial system with aspect components
into a system of plain components. Section VI illustrates the
approach with a small example. Section VII discusses related
work. Finally, Section VIII concludes.

II. T HE APPROACH

As explained in the introduction we integrate the notion
(class, aspect)of AOP with the notion(component, aspect
component)in a seamless way. For doing that, we use Ba-
ton [3], a language for programming concurrent stateful as-
pects in Java. This language is based on the Concurrent Event-
based AOP (CEAOP) approach [2] that models concurrent
base programs and concurrent aspects as Finite State Processes
(FSP). CEAOP models the weaving of aspects into the base
program as FSP composition of the corresponding FSPs. Baton
implements these ideas in the OOP world.

In order to implement the integration of AOP and COP,
we evolve Baton into a language for programming aspect
components that applies to component-based applications.The
weaving of aspect components written in Baton into an appli-
cation is implemented as the generation of a plain component
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representing the aspect component, which is connected to the
rest of the components of the system.

For the time being, this paper just considers the case
of weaving a single aspect into a component-based system.
However, we lay the foundations for the full support of the
concurrent aspects modeled by CEAOP.

In the following sections, we describe a simple component
model used as a reference model. Then, we present the syntax
of Baton and we describe the weaving of aspect components.

III. A SIMPLE COMPONENT MODEL

This section describes a very simple component model with
the basic features assumed by our aspect-component language.

We consider a minimal component model, whose compo-
nents areblack boxesequipped with interfaces and a protocol.
Furthermore, the model allows the definition ofprimitive and
compoundcomponents.

A primitive component declares its interfaces and its proto-
col with the following syntax:

Component ::= component Id implements
Interfaces { Behavior }

Interfaces ::= Id ( , Id )*

The definition of the interfaces is done outside the compo-
nent. Each interface declares provided and required services
with the following syntax:

Interface ::= interface Id { IntBody }
IntBody ::= ( Action ; )*
Action ::= Mod Name( Params? )
Mod ::= provides
Mod ::= requires

Action represents a service that can be provided or required,
Name is the name of the service, andParamsare optional
parameters declared by the service (parameters are used for
message passing purposes).

The protocol defines the behavioral interface of the compo-
nent using an FSP. We assume a protocol with the following
syntax:

Behavior ::= ProcDef ( , ProcDef )* .
ProcDef ::= ProcId = Body
Body ::= ( Prefix ( | Prefix )* )
Prefix ::= ( ActLabel -> )* ProcId
ActLabel ::= Name ( Params? )

The label of each transition (ActLabel) consists of the name
of a service declared in some interface (Name) and its optional
parameters (Params). We say that the transitionrefers to the
service. The semantics of each transition depends on the type
of service the transition refers. If a transition refers to a
provided service, then the semantics of the transition is that
the component receives a request for the service. If a transition
refers to a required service, then the semantics of the transition
is that the component sends a request for the service.

A compound component is an assembly of subcomponents.
Its interfaces are formed by interfacesexportedfrom subcom-
ponents. An exported interface is such that it has not been
bound or it only defines provided services. The protocol of
a compound component is obtained from the protocols of its
subcomponents by performing FSP composition.

Components are connected through their interfaces. We just
consider binary communication (one sender, one receiver).
When connecting two interfaces, services are bound through
name matching. The condition is that each required service of
one interface is provided by a service of the second interface.

A recent approach introduces the notion ofopen mod-
ules [4], which can be used to expose internal actions of
a black-box component. We extend the component interface
with an action interfacein order to include this notion. Then
a primitive component may not only declare the standard
interface of provided and required services, but also action
interfaces.

The action interface defines abstract internal actions thatare
made observable from outside the component and are included
in the component protocol together with provided and required
services. The syntax of an action interface is as follows:

Interface ::= interface Id { ActIntBody }
ActIntBody ::= ( ExpAction; )*
ExpAction ::= exposes Name ( Params? )

IV. A LANGUAGE FOR PROGRAMMING ASPECT

COMPONENTS

We seamlessly integrate the notion of aspect in AOP into
the notion of aspect component. For doing this, we present
Baton as a language for programming aspect components. This
section describes the syntax of the language.

A. Aspect components

An aspect component, as the name implies, is an aspect
with a component flavor. Like a component, it is defined using
a set of interfaces and a protocol. Its protocol has however a
slightly different meaning than a standard component protocol.
It corresponds to the definition of a stateful concurrent aspect.
The concrete syntax of an aspect component (see below) is
very similar to the syntax of a plain component, the differences
are in the definition of the interfaces and the protocol.

Component ::= aspect Id implements
Interfaces { Behavior }

Interfaces ::= Id ( , Id )*

An interface is defined by the following syntax, which is
very similar to the syntax of a plain-component interface:

Interface ::= interface Id { IntBody }
IntBody ::= ( Action ; )*
Action ::= Mod Name( Params? )
Mod ::= event
Mod ::= skippable event
Mod ::= action
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Whereas a plain-component interface declares required and
provided services, an aspect-component interface declares
abstract actions representing base-program actions. Actions
denoted with the keywordevent represent actions that the
aspect component observes in the base program. Actions
denoted with the keywordskippable event represent
actions that the aspect component observes and can make
the base program skip. Actions denoted with the keyword
action represent actions that the aspect component requires
to implement its advices.

The syntax of the aspect-component protocol is as follows:

Behavior ::= ProcDef ( , ProcDef )* .
ProcDef ::= ProcId = Body
Body ::= ( Prefix ( | Prefix )* )
Prefix ::= ( ActLabel Advice?-> )* ProcId
ActLabel ::= Name ( Params? )

As we can see, the syntax of the aspect-component protocol
is almost the same as the syntax of the plain-component
protocol, except that the former allows the definition of
advisedtransitions (i.e. transitions including an aspect advice,
represented by the non-terminalAdvice). For both, advised and
non-advised transitions,ActLabel corresponds to an abstract
action declared in the interface, more precisely, it corresponds
to an action declared with the keywordskippable event
for advised transitions, and to an action declared with the
keyword event for non-advised ones. The semantics of a
non-advised transition is that the aspect changes its state
with the occurrence of the corresponding base action. The
semantics of anadvisedtransition is that, in the context of
the corresponding base action, the aspect may execute advices
and may prevent the action from happening. The syntax of
Adviceis as follows:

Advice ::= > Before PS After
Before ::= ( ActLabel ; )*
After ::= ( ; ActLabel )*
PS ::= skip | proceed

Advices (Before, After) are sequences of abstract actions.
Each of these abstract actions is an action declared with
the keywordaction in the aspect-component interface. The
semantics of each action is that the aspect component sends a
request for the corresponding service in some component of
the system.

The parameters (Params) declared in the syntax of the
aspect component are used for passing information from the
base program to the aspect component. These parameters are
available in the scope of each transition (Prefix).

B. Connectors

A connector binds abstract actions declared in the interface
of an aspect component with concrete actions declared in the

interface of the base components. The syntax of a connector
is as follows:

Connector ::= connector { Connection* }
Connection ::= connects Action to Pattern ;

Action is an action declared in the interface of an aspect
component.Pattern corresponds to a pattern that permits to
match actions declared in the interface of a component.

V. WEAVING

Weaving an aspect component into a component-based
system corresponds to generating a system with plain com-
ponents. This is done by transforming the aspect component
into a plain aspect component(PAC) and connecting it to the
rest of the components of the system.

A. The aspect component as a plain component

This section describes how an aspect component is
implemented as a plain component. In the remainder we
describe the generation of the interfaces and the protocol of
this component.

1) Generation of the protocol:The protocol of the PAC
is the result of transforming the protocol of the aspect
component. As previously explained, the aspect component
observes actions of the component-based application, thisis
implemented in the PAC as the reception and sending of
synchronization events (equivalent to the events introduced
by the CEAOP model). These events are implemented as
component services. We obtain the protocol of the PAC by
applying the following transformations:

T(name(params)-> P) =
eventB_name(params)-> eventE_name() -> P

T(name(params)> before; ps; after -> P) =
eventB_name(params)-> before ->

psB_name() -> psEname() -> after ->
eventE_name() -> P

The first transformation describes that taking into account
a base program actionname(params)is implemented as the
reception of an eventeventB_name(params)indicating that
the action is about to be executed (theB in eventB is for
begin) followed by the reception of an eventeventE_name()
indicating that the action has been executed (theE in eventE
is for end).

The second transformation describes that a transition that
introduces advices, and can make the base program skip an
action name(params), is programmed through the following
communication between the PAC and a base component:

i. The PAC receives the eventeventB_name(params)
from a base component when the action is about to be
executed.
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ii. Then, it executes the sequence of actions denoted by
before and emits either the eventskipB_name() or
the eventproceedB_name() to indicate to the base
component whether the action has to be skipped or not.

iii. The base component receives the last event, skip
the action or proceed, and emits either the event
skipB_name()or the eventproceedB_name()indi-
cating whether the action has just been skipped or not.

iv. The PAC receives the last event, executes the se-
quence of actions denoted byafter and emits the event
eventE_name()to indicate to the base component that
this base component can continue with its computation.

v. The base component receives this event and continues.

2) Generation of the interfaces:The interfaces of the PAC
are derived from the interfaces of the aspect component. They
basically consist of the declaration of the synchronization
events used in the PAC protocol.

An action declared asevent name(params)in the aspect-
component interface is used in non-advised transitions of the
aspect-component protocol. It generates the following interface
in the PAC:

interface SyncA_name {
provides eventB_name(params);
provides eventE_name();

}

In an analogous way, an action declared as
skippable event name(params) in the aspect-
component interface is used in advised transitions of
the aspect-component protocol. It generates the following
interface in the PAC:

interface SyncA_name {
provides eventB_name(params);
requires eventE_name();
requires proceedB_name();
provides proceedE_name();
requires skipB_name();
provides skipE_name();

}

Finally, an action declared asaction name(params)in
the aspect-component interface is used in the advice of advised
transitions and generates the following interface in the PAC:

interface A_name {
requires name(params);

}

B. Connecting plain components

Once the PAC has been generated, the second part of
the weaving process is to connect the PAC to the rest of
the components of the system. The Baton connector tells us

which base component should be connected to the PAC, more
precisely, which concrete actions from the base components
should be connected to which abstract actions of the aspect
component.

A Baton connector matches services and internal actions
declared in the interface of a base component. If a ser-
vice or internal actions(params) is matched, then there
is an association with an abstract action used by the as-
pect component (to simplify things, we suppose that for
each abstract action only one service or internal action
is matched in all the component hierarchy). If the ab-
stract action has been declared asevent name(params)or
skippable event name(params), then the PAC imple-
ments an interfaceSyncA_name. A complementary interface,
namelySyncB_name, is introduced in the component to make
the connection. Furthermore, the necessary modifications in
the protocol of the base component are performed.

We define two transformations to the base-component pro-
tocol:

T(s(params) -> P) =
eventB_name(params) ->

s(params) ->
eventE_name() -> P

T(s(params) -> P) =
eventB_name(params) -> proceedB_name() ->

s(params) ->
proceedE_name() -> eventE_name() -> P

|eventB_name(params) -> skipB_name() ->
skipE_name() -> eventE_name() -> P

The first transformation applies if the abstract action
name(params)has been declared asevent. Then the compo-
nent has to generate one event before the execution of the
concrete action and another event after. The second trans-
formation applies if the abstract action has been declared as
skippable event. Then the component has to generate
events that introduce the possibility of skipping the action (as
seen in the generation of the PAC protocol).

If the abstract action has been declared as
action name(params), then there is an interfaceA_name
that is connected to the interface ofs(params).

We have introduced a language for programming aspect
components and shown how these components can be im-
plemented as plain components. Afterwards, this section has
described the process of weaving. The next section presents
an example to illustrate the approach.

VI. EXAMPLE

To illustrate the approach we use a simple example based
on e-commerce applications. Clients connect to a website and
must login to identify themselves, then they may browse an
on-line catalog. The session ends at checkout, that is, as soon
as the client has paid. In addition, an administrator of the shop
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can update the website at any time by publishing a working
version. Consider the application has been programmed as the
component-based system of the following figure:

Auth

Catalog

Client

ConnC

ShopC

ConnS

ShopS

WorkS

Admin

WorkC

Logger

Trace

The application consists of five components:Client repre-
sent a client,Admin an administrator,Auth an authorization
entity, Catalog the on-line catalog, andLogger a compo-
nent that implements a logging functionality. The interfaces
Client.ShopC and Catalog.ShopS declare a service
getItems(), which is used by the client to browse the
catalog, and a servicepay(List items), used to make a
payment. The interfacesClient.ConnC andAuth.ConnS
declare a servicelogin(Credential credential),
which is used by the client to identify itself. The interfaces
Admin.WorkC and Catalog.WorkS declare a service
addItem(Item item), which is used by the administrator
to update the catalog.

As an example we show the definition of the component
Admin:

component Admin implements WorkC {
Begin = ( addItem(Item item) -> Begin).

}

interface WorkC {
requires addItem(Item item);

}

Let us now consider the problem of canceling updates to the
client-specific view of the e-commerce shop during session,
e.g. to ensure consistent pricing to the client. We can define
a suitable aspect component, which we callConsistency,
to solve this problem. The aspect component programmed in
Baton is as follows:

aspect Consistency implements ConsistencyI
{

OutSession =
( login() -> InSession ),

InSession =
( update() > skip; log() -> InSession

| checkout() -> OutSession ).
}

interface ConsistencyI {
event login();
event checkout();
skippable event update();
action log();

}

This aspect initially starts in stateOutSession and waits
for a login() action from the base program (other actions
are just ignored). When thelogin() action occurs, the
base program resumes by performing thelogin(), and the
aspect proceeds to stateInSession in which it waits for
either anupdate() or acheckout() action (other actions
being ignored). Ifupdate() occurs first, the associated
adviceskip; log() causes the base program to skip the
update() action and thelog() action is performed. Then
the base program resumes and the aspect returns to state
InSession. If checkout() occurs first, the aspect returns
to stateOutSession. Sinceupdate() actions are ignored
in stateOutSession, updates occurring out of a session
are performed, while those occurring within sessions (state
InSession) are skipped.

In order to weave theConsistency aspect component,
we define the following Baton connector, which binds the ab-
stract actions declared in the interface of theConsistency
aspect component with concrete actions declared in the sys-
tem:

connector Connector {
connects login() to *.*.login(..);
connects checkout() to *.*.pay(..);
connects update() to *.*.addItem(..);
connects log() to Logger.Trace.log();
}

In the weaving of the aspect component into the application,
the PAC is generated and connected to the corresponding com-
ponents of the system. The code below shows the definition
of the resulting PAC:

component PAC implements SyncA_login,
SyncA_checkout, SyncA_update,
A_log

{
OutSession =
( eventB_login() -> eventE_login() ->
InSession),

InSession =
( eventB_update() -> skipB_update() ->
skipE_update() -> log() ->
eventE_update() -> InSession

| eventB_checkout() -> eventE_checkout()
-> OutSession ).

}
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interface SyncA_login {
provides eventB_login();
provides eventE_login();

}

interface SyncA_checkout {
provides eventB_checkout();
provides eventE_checkout();

}

interface SyncA_update {
provides eventB_update();
requires eventE_update();
requires proceedB_update();
provides proceedE_update();
requires skipB_update();
provides skipE_update();

}

interface A_log {
requires log();

}

The following figure illustrates the PAC with its correspond-
ing interfaces connected to the rest of the system (for the sake
of space, we have hidden the componentCatalog).

i1

Auth

Client

ConnC

ShopC

Admin

WorkC Logger

Trace

PAC

SyncA_login

SyncA_checkout

SyncA_update

A_log

ConnS

The weaving also produces the instrumentation of some
base components.As an example the componentAdmin be-
comes equivalent to:

component Admin implements
WorkC, SyncB_update

{
Begin =
( eventB_update() -> proceedB_update() ->
addItem(Item item) -> proceedE_update()
-> eventE_update() -> Begin

| eventB_update() -> skipB_update() ->

skipE_update() -> eventE_update() ->
Begin ).

}

interface WorkC {
requires addItem(Item item);

}

interface SyncB_update {
requires eventB_update();
provides eventE_update();
provides proceedB_update();
requires proceedE_update();
provides skipB_update();
requires skipE_update();

}

VII. R ELATED WORK

The work on open modules [4] suggests that module in-
terfaces should be extended with pointcut names to be used
by aspect implementors in order to advise the aspect as well
as by the module implementor who, in case of an evolution
of the module, may have to update the definition of the
pointcut. We do something very similar with action interfaces,
which, together with the component protocol, is an abstract
description of the execution points within the component that
an aspect may affect.

FuseJ [5] aims at achieving a symmetric, unified component
architecture that treats aspects and components as uniform
entities. Then, it addresses the problem of properly configuring
connections between components implementing a concern and
the rest of the system. FuseJ proposes a powerfulconfiguration
language to program component connections that support
crosscutting connections. This is conceptually similar toa
Baton connector.

Fractal Aspect Component (FAC) [6] introduces a general
model for components and aspects. FAC decomposes a soft-
ware system into regular components andaspect components
(ACs), where an AC is a regular component that embodies a
crosscutting concern. Anaspect domainis the reification of
the notion of a pointcut: the components picked out by an
AC. Furthermore, the implicit relationship between a woven
AC and the component in which the aspect component applies
is a first-class entity called anaspect binding. A posterior work
[7] introduces the notion of open modules to FAC.

None of these approaches support the definition of con-
nections between components implementing advices and base
components that depend on a global shared state. Baton
permits to program this kind of smart connections that cor-
responds to stateful aspects in the AOP terminology. Further-
more, none of these approaches seamlessly integrate AOP into
COP as Baton does.
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VIII. C ONCLUSION

This paper proposed a solution of the problem of mod-
ularizing crosscutting concerns in component-based system.
Our main contribution is to show how AOP and COP can
be seamlessly integrated. The tuple(class,aspect)of AOP has
been introduced into COP as the tuple(component, aspect
components). In concrete terms, Baton, a language for pro-
gramming concurrent aspects in Java, has been evolved into a
language for programming aspect components that are applied
to a component-based system.

We have shown how weaving an aspect component and
plain components can produce a system with only plain com-
ponents. This can actually be extended to the weaving of many
aspects composed together using composition operators [2].
The operators are then also translated into plain components.
The action interface makes it possible to deal with aspects,
including some form of incremental development, without
breaking the black-box property of components. Indeed, the
action interfaces have to be anticipated and made part of the
component interface at design time but aspect weaving can still
take place at deployment time (this implies that component
implementations can be instrumented at deployment time,
which is for instance the case when these implementations
are provided as Java bytecode).

As future work, we plan to extend these ideas to a more
realistic component model including, for instance, multi-ary
communication. In this regard, we could combine efforts with
works on component models with explicit protocols such as
[8]. We also plan to integrate support for distributed aspects
in the line of AWED [9].
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Abstract—Component-based middleware provides already ma-
ture support for non-functional properties (e.g. load balancing,
transaction support or persistence) offered by the component
container. However, to support context-aware applications en-
abling a flexible dynamic reconfiguration and adaptation, further
techniques are required.

This paper proposes an Aspect-Oriented Component Infras-
tructure (AOCI) that allows the dynamic weaving according to
application and environment demands while preserving compo-
nent integrity. This is achieved by offering a greybox component
concept exporting potential points for extension together with
an ontology-based metadata description. In contrast to related
systems the proposed solution promises a better support for
runtime adaptation and eases the development of adaptable
components.

Index Terms—Component-based Middleware, Dynamic Adap-
tation, AOP.

I. INTRODUCTION

Software components [19] are usually considered as black
boxes that offer specific services provided by interfaces. Fur-
thermore, components can be easily combined with each other,
thereby forming complex applications. However, to support
component-based and context-aware applications enabling dy-
namic reconfiguration and adaptation, the component model
and the infrastructure should further ease the development. To
tackle these issues, recent systems [1], [6], [18] support the use
of Aspect-Oriented Programming (AOP) [14]. AOP aids the
programmer in the separation of concerns, specifically cross-
cutting concerns, as an advance in modularization.

A crosscutting functionality represents code that cannot be
located in one file but is scattered throughout many different
files of an application. The concept of aspects improves
modularity by locating these scattered elements in one place.
Implementing an aspect consists of providing advice code and
a pointcut. While the advice code defines the behavior of an
aspect, the pointcut specifies a set of joinpoints where this
behavior is applied in the application.

In this paper, we explore how to enhance Enterprise Java
Beans (EJB) [10] by means of AOP and ontology-based
metadata, thus enabling to provide components that can be
dynamically adapted at runtime by the environment.

Traditionally, black box components and AOP do not match
together, as components inherently forbid changing their im-
plementation or otherwise loose major benefits like encap-
sulation or information hiding. In the past, several systems

[9], [17] have been proposed to overcome this issue by ex-
porting additional points for adaptation. However, they do not
sufficiently address scenarios, where dynamic reconfiguration
and context-awareness is demanded. We propose AOCI, a
context-aware aspect-oriented component infrastructure, which
is built upon EJB. Developers using AOCI have the possibility
to export potential points for extension matching extended
pointcuts of a component for use with AOP, while enforcing
encapsulation and preserving the concept of a black box to
a certain degree. The extended pointcuts represent the devel-
opers domain-specific knowledge of the component, which is
expressed by means of the Resource Description Framework
(RDF) [15]. Thus, our system supports a greybox component
[3] approach, allowing a dynamic adaptation of components
at runtime on behalf of the exported pointcut information
together with additionally attached metadata. We call this com-
bination a greybox annotation. Based on the provided meta-
data and environment-specific rules the infrastructure is able
to integrate non-functional properties, provided by advices,
during run-time. This is achieved by dynamically weaving the
program elements, which match the rule configuration of the
context, together with the component.

Compared to standard component-based solutions [16] we
see several advantages. As our solution is based on AOP,
components can separate business logic from non-functional
properties and issues related to dynamic adaptation do not
need to be addressed. Therefore, neither interfaces have to be
implemented, nor is a custom code generation tool needed.
This significantly reduces the complexity of developing com-
ponents. Additionally, adaptations can happen without the
explicit knowledge of the source code, as the component de-
veloper provides the relevant information. Finally, our solution
is compatible with every container, which supports the EJB 3.0
specification.

The remainder of this paper is organized as follows. Section
2 gives an example scenario as a motivation for our architec-
ture. In Section 3 we describe the proposed solutions along
with the technologies which are needed for the implementa-
tion. An overview of related work can be found in Section 4,
followed by the conclusion in Section 5.
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Fig. 1. The AOCI architecture

II. MOTIVATION

In our scenario, an instant messaging software for a com-
pany is deployed within the AOCI component infrastructure.
Frist, the plain instant messaging component is used without
applying any constraints. Clients can dynamically discover
the service, log on with their credentials and use it. After
a certain time, the administrator of the software discovers,
that conversations between users are sniffed from time to
time. Therefore, it is decided that all the messages sent by
the instant messaging software should be encrypted. This
is possible, because the component developer has exported
the program elements where adaptation can happen, together
with the metadata offering information where security related
issues could be applied. The administrator changes the rules
of the AOCI-infrastructure, defining that the network traffic is
secured by using the Secure Sockets Layer (SSL). Afterwards,
the infrastructure intercepts all the calls of the component to a
plain socket and replaces the socket by a secure socket (e.g.,
java.net.ssl.Socket) thus enabling a secure communication.
After a while, the executive board of the company decides
that no private conversations may be held within the company.
To guarantee this, all employees at the company are informed
that the communication is being logged within the company.
Again the administrator changes the rules to apply logging
for each message being sent within the company. If clients
use the instant messenger at home, the container will rec-
ognize the context switch and turn logging off. Furthermore,
the company plans to further ease the communication with
people from abroad. Therefore, each incoming message should
automatically be transferred into the user’s native language
and each outgoing message be transferred to the language
of the communication partner. To fulfil this requirement, a
small piece of software is written which accepts a message,
transmits it to a webservice and returns the translated message.
By attaching it with metadata defined in the ontology, it is
quite easy to plug it into the existing software without any
greater modification of the instant messenger.

As outlined, AOCI-aware components can be dynamically
deployed without knowing in advance which non-functional
constraints are demanded at a specific target location. The
application developer concentrates only on the business logic,
while the constraints are imposed by execution context at
runtime.

While some of the functionality could also be fulfilled by
the container software, AOCI offers much more flexibility in
adapting the software. With the help of RDF and an ontology,
it is even possible to use AOP technology together with
functional requirements.

III. PROPOSED SOLUTION

Our AOCI architecture proposal is based on EJB. Therefore
we suggest an AOP implementation that is tightly integrated
into EJB and allows dynamic weaving of aspects. For our
prototype implementation, we use the JBOSS [12] application
server as it already provides basic support for AOP, allows the
dynamic weaving of aspects and is available as Open Source.
Figure 1 shows the overall architecture of the AOCI infrastruc-
ture. The main components are the deployed component with
its greybox annotations, the rules, the Code Repository, which
stores the nonfunctional advices, and the core component
provided by the AOCI-adapter. In the following we will
shortly discuss the underlying technology RDF, followed by
different architectural elements of the solution.

A. RDF-Ontology

In our approach the developers provide means for later
adaptability by exporting metadata about the component and
thus providing the component as a greybox. This informa-
tion allows the infrastructure to dynamically weave code to
the component. To enable the dynamic binding between an
extended component with context-sensitive code from the
infrastructure we use RDF, which is a family of World Wide
Web Consortium (W3C) specifications originally designed as
a metadata model using XML. The underlying structure of
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a RDF expression is a triple in the form of subject-predicate-
object. A collection of RDF statements intrinsically represents
a labeled, directed pseudo-graph. The benefits of RDF are its
simple data model and the ability to model disparate, abstract
concepts. Using this technology we are be able to define an
ontology that represents a set of concepts within a domain and
the relationships between those concepts. The metadata in the
rules and in the components corresponds to the nodes in the
ontology. This allows the infrastructure to have a common
understanding of the greybox components, the rules and the
advices, which are stored in the Code Repository, thereby
enhancing the infrastructure to dynamically adapt the software
in a context-sensitive environment. To outline the proposed
mechanism we present a partial definition of a domainspecific
taxonomy targeting security as an example for a non-functional
requirement (Figure 2).

IV. EXTENDED POINTCUTS

There are two ways to advise elements of a component.
Either a central XML-configuration file, where all possible
modifications can be specified, is used or Java annotations as
a hint for the infrastructure. In the following, the annotation-
based approach will be outlined (Figure 3), in which the
method sendMessage is marked.

p u b l i c c l a s s I n s t a n t M e s s e n g e r {
@AOCI( Secu r i t yMechan i sm .

S e c u r i t y P r o t o c o l . N e t S e c u r i t y )
@AOCI( Secu r i t yMechan i sm . A u d i t i n g )
p u b l i c vo id sendMessage ( S t r i n g t e x t ,

S t r i n g r e c e i v e r ) { }
}

Fig. 3. Annotation-based extended sample pointcut

With this information the AOCI infrastructure knows, that
this method is a place, where encryption like SSL or auditing
can be applied.

To determine how the component should be dynamically
adapted, defining the extended pointcuts is not enough. The
infrastructure must know which code must be added or re-
placed. Therefore rules are needed on behalf the infrastructure
can match existing extended pointcuts with possible code
fragments. The notion of the rules is very similar to the
extended pointcuts and also based on RDF. The following
snipped (see Figure 4) determines that communication must
be encrypted with the help of SSL.

A. AOCI Adapter

The AOCI-Adapter is the part of the framework which
analyzes and adapts the components. It has to fulfill several
steps (Figure 5). First of all, the extended pointcuts of the
greybox are read. It then checks, if the syntax of the extended
pointcuts is right and corresponds to a node in the RDF tree.
On success an appropriate implementation is searched. If no
such is found, there are different possibilities how to proceed.
Either the infrastructure can throw an error, can forget about

<xml−v e r s i o n = 1 . 0 e n c o d i n g = UTF−8 >
<AOCID>
<e n t r y>
<key> Secur i t yMechan i sm . S e c u r i t y P r o t o c o l .

N e t S e c u r i t y < / key>
<v a l u e> SSL < / v a l u e>
< / e n t r y>

< / AOCID>

Fig. 4. Example rule defining a security constraint

the missing implementations and just proceed or can take a
standard implementation for the extended pointcut. The infras-
tructure then dynamically builds an AOP fragment with the
implementation. Within the last step the point of the extended
pointcut is taken as a hook and the infrastructure weaves the
newly created fragment with the current implementation.

Read Extended 

pointcut

Apply AOP 

fragment

Build AOP 

fragment

Search 

implementation

Check Extended 

pointcut

Fig. 5. The AOCI-Adapter

While RDF is a flexible and extensible way to represent
information about the resources on a platform, there is still
need for a standardized way to retrieve these data. Therefore
we propose the use of SPARQL [5], which consists of the
syntax and semantics for asking and answering against RDF
graphs. Furthermore it is possible to query by triple patterns,
conjunctions, disjunctions, and optional patterns. Constraining
queries by source RDF graph and extensible value testing is
supported as well as the possibility that results of SPARQL
queries can be ordered, limited and offset in number. As a
framework for RDF and SPARQL we propose Jena [13],
which allows to dynamically compose and evaluate these
queries.

V. RELATED WORK

Recently, several infrastructures targeting the adaptation of
component-based software have been developed. Most of them
concentrated on providing mechanisms to adapt components,
only few use the benefits of AOP and make use of an ontology-
based metadata description.

Pessemier et al. [17] show that AOP can safely be supported
by Component-Oriented- Programming (COP). In their paper,
they explain which problems they have encountered when
using AOP with components. To overcome these issues they
have introduced the greybox, which marks a compromise
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Fig. 2. Security ontology

between modularity and openness. However there is no support
for building context-aware applications using the support of an
ontology.

In their work, Rho et al. [18] describe that services in
a Service Oriented Architecture (SOA) are general in their
nature, which allows them to fit the needs of as many clients
as possible. On the other hand, these systems cannot address
each single requirement. Therefore they introduced the concept
of context-sensitive service aspects which can be changed
dynamically at runtime. Their framework is called Ditrios,
which is based on OSGI, allowing a context-sensitive weaving.
Although there is support for AOP, there is no concept like a
greybox.

Duclos et al. [6] outline that both, component-based ap-
plications and AOP address the same separation of concerns
issue. While containers are only proposing a fixed set of
services, AOP is working at object level. Additionally they
present an approach to get both the advantages of AOP and
component based systems. Furthermore, they provide a simple
language for using aspects on applications. However, the
software allows the adaption of components, but no context-
awareness is supported.

The Rainbow framework [7] provides a software architec-
ture and infrastructure to support the self-adaption of software
systems. To fulfill these issues, the architecture uses an abstract
model to monitor the systems runtime properties, and provide
means to react upon events and adapt the software. However,
Rainbow neither addresses the concept of greyboxes nor AOP
and therefore misses concepts for dynamic injection of custom
code.

Another component-based approach is presented in the K-
Component-Model [4]. The work is based on architectural
reflection. To guarantee integrity and a safe dynamic software
evolution a graph transformation is proposed. Furthermore

adaption-specific code is separated from functional code by
encapsulating it in reflective programs called adaption con-
tracts. In contrast to AOCI, KComponent does not address
AOP and greybox and has no support for an ontology.

CAMidO [2] is an architecture for supporting development
and execution of context-aware component applications. It pro-
vides an ontology metamodel, which facilitates the description
of contextinformation. Additionally the platform provides the
possibility to write interpretation and adaption rules, which are
used by the CAMidO-compiler. However, there is no support
for either AOP or ontology.

Toa Gu et al. present a Service Oriented Context-Aware
Middleware (SOCAM) [8], which provides efficient support
for acquiring, discovering, interpreting and accessing various
contexts to build context-aware services. A formal context
model is introduced, which is based on ontology using
Web ontology Language to address issues including semantic
representation, context reasoning, context classification and
dependency. The infrastructure has no support for components.

Mügge et al. [9] present a solution for an adaptive mid-
dleware in the area of ubiquitous computing and describe a
new approach combining aspect-oriented programming with
structural metadata. However, they do not address context-
aware applications.

Figure 6 shows an overview of the capabilities of the pre-
sented related work. Our approach is the only one supporting
context-awareness, AOP, components, the greybox concept and
semantic ontology. As we want to weave different aspects and
components together, which do not know each other until run-
time, we attach importance to the fact that the infrastructure
supports both the concept of a greybox and is capable to deal
with an ontology.
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System greybox AOP Context-aware Component-based Adaptive Ontology
Pessemier et al. X X X X

Rho et al. X X X
Duclos et al. X X X

Rainbow X X X
K-Component X X X

Camido X X X X
SOCAM X X X

Mügge et al. X X X
AOCI X X X X X X

Fig. 6. Overview of capabilities of related approaches

A. Conclusion

In this paper, we presented an architecture based on the EJB
component model, which allows the dynamic and automated
adaptation of components. Because this usually breaks the
modularity of components, we have introduced the greybox-
concept, which allows annotating certain program elements to
be adapted by the infrastructure.

At the moment, we are working on a prototype of the
described infrastructure. As already mentioned, it is based on
JBoss as an EJB container and uses the AOP support provided
by JBoss. In the near future we will define an ontology, which
contains preferably most functionality needed for effective
adapting components. This will demand for extended case
studies to figure out the right balance between generality
and practical usability of the terms defined by the ontology.
Additionally, we consider enhancing our infrastructure by
using OSGi [11] for flexible loading and unloading of aspect
as well as component code.

Additionally we are still evaluating some issues. One ques-
tion is to find out, if there is already a standardized ontology
which could possibly be adapted by AOCI and would ease
the further development of the infrastructure. Furthermore, we
will investigate, if it is possible to attach current software with
the metadata model of AOCI, which would allow to easily
integrate them with the infrastructure. Another field of exam-
ination is to find out, how to combine the infrastructure with
other technologies like web services. As a rule, AOP based
system are restricted to deal with non-functional crosscutting
concerns. Based on our infrastructure and the ontology we will
evaluate, if it is possible to extend the use of AOP to some
functional requirements within AOCI.
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Short answer: Jet-black with plenty of holes, some of which
are not visible to everyone.

Long answer:

I. INTRODUCTION

The Software Technology Group at TU Dresden has long
experience with component-based software development and
techniques. For a recent addition to the public debate, see
the book entitled Invasive Software Composition [1]. Cur-
rently, the group is involved in projects (e.g. European NoE
REWERSE, IP ModelPlex, feasiPLe etc.) addressing compo-
sition for declarative languages. More precisely, languages
important for the development of the Semantic Web and in
software modeling are addressed. Such languages include,
for example, rule languages (Xcerpt, R2ML), Web query
languages (XQuery), ontology languages (OWL, Notation3)
and general modeling languages (MOF, UML, Ecore). To
enable component-based development for such languages, the
composition framework Reuseware1 is being developed [3],
both as a conceptual framework and as a tool.

Szyperski [4] defines a software component as follows:
”A software component is a unit of composition
with contractually specified interfaces and explicit
context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties.” [4]

This definition calls for components to be black-box com-
ponents where no information can be inferred beyond the
explicitly specified interfaces of the component. Such an
approach enforces strong encapsulation and is very useful for
reuse of components by third parties as these third parties need
only rely on the—relatively little—information provided in the
interface specifications.

For declarative languages, a pure black-box approach cannot
always be taken. We currently see two reasons for this. First,
not all declarative languages describe processing entities (e.g.
ontology languages). As such, there is not even a notion
of well-defined inputs and outputs to interface components,
which is an assumption made for black-boxes. Thus, a different
composition paradigm is needed to address certain declarative
languages. We argue that the grey-box and fragment-based
component paradigm is more suited for these languages.

1http://www.reuseware.org

The second reason is related to our desire to reuse existing
tools for the different languages. To achieve this, all referenced
components need to be composed before applying the tools.
As the tools are assumed to not have a prior understanding
of components (in the fragment-based sense of the word),
they do not understand the need for their restricted interac-
tion (essential for proper component encapsulation). For this
reason the components needs to be opened up such that their
interactions can statically be ensured in the composition result.
Again, this is not an idea supported by black-box component
environments, but possible in composition systems based on
grey-box approaches.

For some general-purpose languages (e.g. C++, C#, Java),
components can be described on different abstraction-levels—
either as run-time entities or as static source-code snippets
(as done for aspects in Java). But for most languages used
in software modeling or on the Semantic Web we do not
have much choice. Thus, for the languages in these important
fields, components necessarily consist of source artifacts—
snippets of descriptions—which can play roles in more com-
plex, complete, coherent and usable descriptions or declarative
programs. However, one should take care not to meddle
with one of the most powerful notions in component-based
development: the power of abstraction. Thus, it is of utmost
importance to properly encapsulate components—hide their
details—and to access them via well-defined composition in-
terfaces. Here, again, we are in line with Szyperski’s definition
from above: All access to the component should occur through
well-defined interfaces, all dependencies should be explicit.
We shall return to the issue of interfaces shortly.

Our work has its roots in Invasive Software Composition
(ISC) [1]. ISC takes a grey-box composition approach where
components, or fragments, are static source-code entities with
well-defined interfaces using the notion of hooks. A hook is a
location in a component which may effectively be replaced by
another component, thus, composed. As such, the hooks of a
component define its interface. The replacement of a hook with
some existing component constitutes the basic composition
technique of ISC. One of the conclusions from work on
ISC was the identification of a set of primitive composition
operators implementing the described composition technique.
Two of the identified primitive composition operators are bind
and extend, where bind replaces a hook with some component
once and extend possibly multiple times. The composition
technique and operators defined for ISC are very general
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and applicable to many different languages and situations. It
should be noted that ISC is able to realize existing composition
approaches and techniques, such as aspect-orientation, view-
based programming, hyperspaces etc.

Our experience with ISC and component-based develop-
ment for declarative languages has refined our requirements
for composition interfaces. Most importantly, we argue that
components for declarative languages shall indeed be grey-
boxes, but with tailored and refined composition interfaces to
answer the call from language-specific needs and language-
specifically developed composition operators.

II. DEDICATED COMPOSITION SYSTEMS AND
ENVIRONMENTS

Many domain-specific languages in software modeling and
on the Semantic Web do not provide sufficient constructs for
defining reusable entities—components. Many languages do
have some form of abstraction and reuse idea, but it is often
limited, inflexible and most of all—fixed. For example, rule
languages on the Semantic Web often allow rule chaining;
the possibility of sequencing rules in different chains of
computations. As such, the notion of the rule is the level of
reuse made possible by the language itself. No other entities
are reusable; there is no other level of abstraction. That is,
the set of abstractions provided by the language is fixed.
Thus, once the language has been designed and its relevant
tools have been developed, the language as such is very
inflexible to be changed for new abstractions. It should be
noted that the expressiveness provided by languages is usually
adequate, since the languages certainly were developed against
use-cases and specific requirements. We exploit the fact that
appropriate expressiveness is provided for by reusing existing
tools developed for the different languages when processing
the composition results. However, we will address the issue
that a flexible level of abstraction is not to be found.

We argue that instead of redesigning an individual language,
additional levels of abstraction, and thus reuse, can be provided
via composition. We propose to layer a light-weight dedicated
composition system (LWDCS)2 on top of a targeted core lan-
guage and its tools (see Figure 1) to provide richer abstractions
and allow programmers to think about their programs in new
and interesting ways. The composition system is dedicated
because it addresses issues for a single targeted language, and
light-weight since once developed and deployed it is assumed
to be operable without its users directly being aware of it. The
LWDCS injects a core language with additional constructs,
giving users the possibility to define reusable components and
to compose them in desired ways, all tailored for the need at
hand. The LWDCS is responsible for interpreting the newly
introduced constructs and for composing specified components
into programs or descriptions of the core language. Thus,
the existing and already developed tools are reused and the
semantics of the core language is appropriately retained (as
mentioned, we deem the core languages already capable of

2Pronounced low-deeze; pl. LWDCSs (low-deezes).

expressing what they should). Furthermore, a LWDCS is type-
safe, ensuring that resulting descriptions (programs) are (syn-
tactically) valid with respect to the underlying core language.
Ensuring semantically correct results is also possible, but not
further discussed here.

Light-weight dedicated composition system (LWDCS)

Tools

P1 P4P3P2Programs Output

Core language

P1
P2

P5

Define components Compose programs
Improved

Abstraction
Level

Composition 
layer

Core layer

Fig. 1. A light-weight composition system can be layered on top of a
language and its associated tools to improve and add the level of abstraction
provided by the underlying language itself.

A composition system can be seen as a triple consisting
of: a component model, a composition language, and a com-
position technique [1]. We argue that a LWDCS should be
constructed as a refinement of a generic composition system,
where the triple comprising the system is specialized for
the task at hand—indeed tailored (see Figure 2). As can be
seen from Figure 2, the dedicated composition language is
adapted for the specialized task and refined from a more
general-purpose language. Furthermore, the dedicated compo-
nent model references an upper-level component model where
general composition system concepts are modeled. Finally,
instead of including a general composition technique and
generic operators in the dedicated composition system, it is
shipped with a set of predefined, specialized, composition
operators.

The most important detail to notice in Figure 2 in order to
answer the question about the desired darkness of components
is the relationship between the set of dedicated operators and
the dedicated component model. The detail to notice is that the
component model, which effectively determines the darkness
of the components used in a composition system, heavily
depends on the specific composition operators included in the
LWDCS. We shall return to this issue with a more detailed
discussion in Section IV. First, before describing our notion
of refined composition interfaces, we will briefly describe how
a dedicated composition system may be semi-automatically
generated. In particular, how a component model may be
derived from a core language.

III. GENERATED COMPONENT MODELS

We intend to build upon the language-independent composi-
tion technique introduced in ISC. This means that components
may contain hooks that can be replaced by other components.
We refer to these positions in components by the more general
term variation points. Thus, the variation points declared in
components define the components’ interfaces. From these
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Fig. 2. A dedicated composition system is a specialization of a generic
composition system where the tailored composition operators addressing
particular issues in a declarative language dictate the form and detail of the
dedicated component model and thus, the components’ interfaces.

requirements, one can automatically generate a component
model from a core language description (grammar or model
based) [3]. Figure 3 (a) shows a simple (partial) model of
some rule language. The model states that programs of the
rule language consist of one or more rules, which in turn are
composed from a head and a body (what they are in detail has
been left out here).

Assume the simple case that we want to be able to write
rule programs in our rule language where certain rules are
not explicitly given, but left unspecified (the program as a
whole is underspecified). The underspecified program is a
component with an interface, given by the variation points
programmed into the component. In order to be able to declare
variation points we inject the core language with constructs for
this purpose. This modification can be seen in Figure 3 (b).
The concept of the rule has here been made variable. Rule
programs may now consist of normal rules (concept Rule
in Figure 3 (b)) and rule slots (concept RuleSlot in Fig-
ure 3 (b)). The abstract super-concept AbsRule is introduced
to represent this choice. A Slot, as can be seen in the upper-
level component model is a kind of variation point. Here it
is assumed that a slot has some concrete syntax such that
variation points can explicitly be declared in components. The
model in Figure 3 (b) properly describes what our simple
rule components look like and defines how the composition
technique is allowed to modify the components (by replacing
variation points with other suitable components). The only
access points to the components are the declared variation
points (expressed using slots), everything else is properly
encapsulated. As such, the derived language model in Fig-
ure 3 (b), along with references to the upper-level component
model, is the component model for our simple components. It
is possible to automate such transformations.

IV. REFINED AND CONTROLLED COMPOSITION
INTERFACES

It is useful to be able to reuse common composition
techniques across different dedicated composition systems
targeting different languages (see relationship between the
generic composition technique and the dedicated operators

AbsRuleProgram
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Rule

Head Body
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RuleSlot

Program
1 *

Generate
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Fig. 3. The abstract syntax description of a simple rule language on the
left-hand-side can be extended into the abstract syntax description on the
right-hand-side to allow programs to be underspecified with unknown rules,
to be composed into the program at a later point.

in Figure 2). This is beneficial since the basic technology
does not have to be reimplemented for each composition
system and targeted language. However, in order to support
and realize the appropriate kinds of reuse abstractions, differ-
ent languages require special-purpose composition operators.
Thus, it is desirable that the dedicated composition operators
are defined in terms of, that is, reuse, the primitive composition
operators implementing the general composition technique
(see Figure 4). Furthermore, if a specific reuse abstraction
concept is desired for different languages, using the same basic
and underlying composition technique is again advantageous
for practical reasons. Examples of reuse concepts not limited
to a specific language are modules and aspects (disregarding
the exact detail of their purpose and how they look in the
specific languages).

As our work extends that of ISC, which provides a very
general composition technique, we aim at reusing this tech-
nique and its primitive composition operators for creating
LWDCSs. While a single operation of a primitive operator
only can describe a low-level composition step, a properly
defined sequence of such primitive composition operators can
achieve a more advanced desired effect on a set of fragments—
a high-level composition step. If such a high-level sequence
is found useful for different fragments, one would like to
be able to encapsulate the sequence as a single reusable
atomic composition operator. We call such an operator a
complex composition operator. Thus, a complex composition
operator is able to encapsulate and realize a non-obvious reuse
abstraction. This notion gives us the possibility to develop
language-tailored composition operators to be included in
LWDCSs.

One thing to notice about complex composition operators
is that they may not only encapsulate a sequence of primitive
operators, but also components. That is, some composition
operators may require internal components, needed for the re-
alization of the (abstraction) construct they are implementing.
Such components are not visible, or indeed known, to pro-
grams using the operators; they are completely encapsulated
within the operator definitions.
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Fig. 4. Complex and dedicated composition operators for a dedicated
composition system are defined in terms of general composition operators and
techniques from invasive software composition. The operators to-module() and
import() address specific issues in the core language Xcerpt.

A. Example – Modules for the Web Query Language Xcerpt

We have practical experience with targeting and building
a LWDCS for the Web query language Xcerpt [2]. Xcerpt is
a powerful rule-based language following the logic program-
ming paradigm for querying different kinds of semi-structured
data. An Xcerpt program consists of a finite set of rules. What
differentiates Xcerpt from some other well-known Web query
languages, e.g. XQuery, is that Xcerpt programs (i.e. their
rules) have a clear separation between data query parts and
data construct parts. As in other logic programming languages,
Xcerpt rules consist of a head and a body. The body of a
rule can match existing data, resulting in variable bindings.
The variable bindings produced by successful matching of the
body of a rule can then be applied to the head of the rule in
order to derive new data. As such, the rule bodies represent
the queries and the rule heads the construct parts.

An identified and desired (but so far lacking) abstraction
for Xcerpt was the notion of Xcerpt modules (much in the
style of other logic programming systems). An Xcerpt module
consists of a set of rules, which can be imported and reused
in different programs. A good example of a useful module is
a set of rules able to perform simple reasoning on ontology
documents (e.g. OWL). An example of such reasoning is
to derive implicit subclass-of relationships from explicitly
declared class-hierarchies.

As a module consists of a set of rules, they should all
be included in the importing program at composition-time,
such that they are available to the Xcerpt interpreter when the
composition result is executed. However, properly realizing
the module system is more subtle and complicated than just
executing the merger of different rule-sets. Since a module
from our point of view is a component, certain parts of the
module should be able to be encapsulated. From a usage
perspective, a module can almost be seen as a black-box with
an input rule and an output rule. The input rule is passed data
to process (possibly constructing intermediate results for rules
encapsulated in the module) and eventually data to be used by
the importing program is constructed by the output rule. At
the level of composition, however, we cannot consider modules
as black-boxes. In order to allow modules to be encapsulated,

one must ensure that inappropriate rule dependencies do not
occur when programs and modules are merged before being
executed. That is, programs should only have access to certain
rules in imported modules, and vice versa. This encapsulation
can be realized by transforming the heads and bodies of
the rules of the imported module in appropriate ways. The
details are left out since it is not relevant exactly how this is
realized. What is clear is this: If rules in modules are to be
transformed in some way at composition time, the way they
are transformed, and thus accessed by composition operators,
must properly be reflected in the relevant component model.

Core language
(Xcerpt)

Modularization
Concepts

Refined Language
(Modular Xcerpt)

Composition
Language

<<implemented in>>

Upper-level
Component Model<<use>>

Component User

Composition
System Developer

black-box view

grey-box view

Fig. 5. The Component User and the Composition System Developer are
working with different parts of the composition system and have different
views on the system.

To understand the requirements of the component model, it
is helpful to distinguish two different roles—or view-points—
with respect to a LWDCS (containing the component model).
Figure 5 illustrates these different view-points.

1) Component user role Users of the above-described
Xcerpt module system only want to be able to define (en-
capsulated) modules and import already existing ones.
The constructs for doing so should appear to be first-
class constructs of the core language rather than added
composition operators. As such, one should not require
the module programmers and users to define precisely
how and where their modules must be transformed dur-
ing composition. That is, they should not be required to
describe how the underlying encapsulated composition
operators realize the module system and, thus, access
the modules (components).

2) Composition system developer role The composition
system seen from the view of the system developer is
however much different. The system developer cannot
assume the black-box view of the users, but rather
a grey-box view in line with our arguments of this
necessity for declarative languages. The system devel-
oper must develop the complex composition operators
responsible for realizing the module system and provide
an appropriate component model reflecting the intended
interfaces of the components. We recall from Section I
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the argument for the need to ensure proper component
interactions statically. Hence, the components do need to
be opened up in the deployment of the module system
and this responsibility lies on the composition system
developer.

To support these different roles—considered attractive for
the users—the development of the specific composition op-
erators and the composition system as a whole dictate re-
quirements for the component model. We therefore need to
transform the core language model in a slightly different way
(Figure 6) as to what was done in Figure 3. As can be seen
in Figure 6 (b), in place of the head construct we introduce
a head variation point (HeadVP), which forms part of the
interface of components adhering to the component model.
At the variation point, either the original head construct can
directly be programmed in its place (as a default value for
the variation point), or a concrete variation point (slot) can be
used. This means that regardless of whether the head of some
rule consists of a core language head construct (Head) or is
left unspecified (using the introduced HeadSlot construct),
the component model describes it as accessible, as part of the
component’s interface.

HeadVP

Rule

Head Body

1
11

(a)

Rule

Body

1

11

1

HeadSlot Head

(b)

Variation 
Point

Generate
Component model

Slot

Fig. 6. The original construct (here Head) must at composition time be
accessible to certain composition operators. Thus, the construct must be part
of the interface of the component, which is realized by making the variation
point (HeadVP) a super-class of Head.

The same kind of transformation can be done for the body
of rules. Again, it should be stressed that module programmers
working against the component model in Figure 6 (b) do not
have to express via some special mark-up that the rule heads
are part of the interface. They can write rules as they normally
would, but still expect the programmed modules to be usable
in the LWDCS realizing the module system.

So, the module system is realized by a set of dedicated com-
position operators (transforming rules), along with a dedicated
component model adjusted to the needs of the operators. Along
with a composition language (not discussed here) we can
create a LWDCS for Xcerpt realizing additional abstractions,
in this case the possibility of authoring encapsulated modules
and using them in Xcerpt programs.

The critical notion is the following: due to the encapsulation
of the complex composition operators, we find it necessary
to refine our notion of composition interfaces. This is a
consequence from the fact that was remarked upon earlier:
the set of dedicated composition operators included in a

targeted composition system dictates the form of the associated
component model, that is, how components look and interact
(see Figure 2).

In a similar fashion one can identify needed abstractions
for other declarative languages. Instead of re-designing the
language and its tools one can realize the abstraction by
implementing the necessary additional constructs as complex
composition operators in a LWDCS and generate an appropri-
ate and tailored component model with the appropriate shade
of darkness.

V. CONCLUSION

In this paper we have presented the Reuseware approach to
Invasive Software Composition in an attempt to answer the
question “How dark should a component black-box be?” for
components in declarative languages or in situations where
composition occurs on the source-code level.

Our short answer has been “Jet-black with plenty of holes,
some of which are not visible to everyone.” In the long answer
we showed that this means that we require encapsulated
components where composition can only occur in well-defined
places—hence they are “jet-black”. At the same time, however,
component developers and users should not have to worry
about all the details of the composition interface relating
to encapsulated composition operators. Rather, this part of
the interface should be described in the relevant component
model and taken advantage of by the complex composition
operators available in the dedicated composition system for
which the components have been written. Hence, components
“have plenty of holes”, but they are “not visible to everyone”.
More specifically, some parts are visible to developers of
dedicated composition systems (LWDCS), while component
developers and users only have to care about the part of the
interface relevant to them.
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Abstract—When composing systems from components we have
to deal with involved aspects like synchronization or non-
functional properties like performance. It is nearly impossible
to clearly specify such aspects in interfaces. Looking behind
the interfaces (into grey boxes) does not solve the problem
because of lost substitutability. In this paper we explain on the
example of synchronization, first, how pragmatic descriptions
solve the problem in usual cases and, second, that moving and
splitting responsibility for synchronization between components is
helpful in further cases. We argue that there is a general pattern
applicable to many functional and non-functional aspects behind
this solution.

I. M OTIVATION AND OVERVIEW

The most important concept in object-based programming is
data abstraction, this is the encapsulation of data and routines
in objects together with data hiding. We regard objects as black
boxes the internal structure of which is hidden from the rest
of the world. Since users of an object do not see and (more
importantly) have no direct access to implementation details,
we can safely change these details and even substitute the
object for another similar one without breaking code. On this
substitutability property we build successful concepts like in-
clusion polymorphism (with subtyping and dynamic binding)
in object-oriented programming as well as the composition of
systems from components.

While we use concepts and tool based on data hiding we
often experience the fact that data hiding poses limits on
the usability of objects and components. We are led into
temptation to look inside the box and make use of some parts
we find there, this is, we regard the box as being grey instead
of black. Doing so usually gives us an immediate advantage:
We have to write less code, get better performance, and can
show useful properties. Often the pain follows later when we
detect that our system does not work properly after substituting
objects or components. Then, we remember why our tools
required black boxes. Even worse, especially when composing
components there are situations where we intentionally give up
the idea of black boxes and use grey boxes instead, knowing
that it will be difficult to replace them later on; sometimes the
only other alternative would be to program everything from
scratch. Such situations give raise to the question whether
black boxes are really that successful when dealing with
components.

Actually no component is completely black because inter-
faces give needed information to users. This information is
considered to be stable and, therefore, we regard interfaces as
white boxes. In this paper we distinguish between components
as

• black boxes with white boxes at their entries where
interfaces clearly specify which portions of the compo-
nents are white and stable, and the unstable black rest is
completely hidden from the user,

• and grey boxes where even unstable portions can become
visible.

Of course, a balanced combination of black and white is
preferable over grey since we can get substitutability and the
needed stable information at the same time.

Conventional interfaces (= signatures) cannot give all the
information needed by users. For example, users need infor-
mation about synchronization in the component to avoid syn-
chronization conflicts that can lead to deadlocks and livelocks.
Hence, we often think of grey boxes as something we cannot
avoid in practice.

In the author’s opinion, rich interfaces and pragmatic models
can be very effective to reduce the need of grey boxes. It
is not even necessary to wait for new technologies (although
new techniques slowly coming up promise to be quite helpful
in this respect) because clear contracts and component de-
scriptions written in a natural language are often all we need.
However, the basics of many contracts in software are still
not understood well enough. For example, even seemingly
harmless synchronization primitives somewhere deep in the
code of a component can cause synchronization conflicts. If we
solved this problem by putting all synchronization information
into the interface, we would have to consider much more
program parts as stable than we like to, causing many useful
component substitutions to be impossible. We will discuss
such topics in this paper.

In Section II we point out problems with synchronization in
black boxes and how they are usually addressed in practice.
In Section III we argue that it can be quite useful to move
responsibility for synchronization from a component to its
user. Next, in Section IV we generalize what we have seen
so far to further aspects. Finally, in Section V we give some
concluding remarks.
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II. SYNCHRONIZATION AND INFORMAL INTERFACES

We deal with synchronization whenever we require an
action to be performed before another one as well as when we
simply perform actions in sequence. In sequential programs,
synchronization is implicit in the control flow, and in concur-
rent programs we handle it explicitly.

Synchronization is a very complex topic because it can be
conflicting. For example, if a component performs an action
A only before another action B while a user insists on B to
be performed before A (by invoking B before A) we have a
deadlock. The user must know the behavior of the component
to avoid such conflicts. Unfortunately, the requirement of “A
before B” may not be statically determinable; it may occur
only under certain conditions like full buffers that are not
predictable in practice.

From playing with this and similar simple examples we can
learn the following:

• We expect good components not to cause deadlocks.
Unfortunately, this statement is more of a wish than real-
ity: Deadlocks often result from the interaction between
components. We usually find no deadlocks when testing
components in isolation. Of course, good components
make it more unlikely to experience deadlocks in realistic
environments.

• Static deadlock prevention is usually no option because
of its restrictive nature. Actually it is easy to find a set
of syntactic constraints to ensure programs to be free of
deadlocks. However, each such approach restricts the set
of programs conforming to the constraints in a severe
way that is not acceptable in most cases. Statically en-
suring other liveness properties (like livelock prevention)
restricts conforming programs even further.

• In the few cases where we absolutely need static deadlock
prevention we have to design the whole system (or sub-
system) with this goal in mind. This means, components
can be used only if designed with the same goal in mind;
then, interfaces statically specify the synchronization be-
havior. A simple analysis of a component (as a grey box)
is rarely helpful in this respect.

• Without static deadlock prevention we will sometimes
(hopefully not too often) experience deadlocks. To find
out the cause of them it is helpful to inspect the source
code of the component as a grey box. Without a proper
documentation and without access to the source code it
can be quite difficult to find the reason for the deadlock.
Once we know the problem we can usually avoid it
without any need to change the component (except if we
found a problem in the component itself).

• It is difficult to describe all cases that can lead to
a deadlock when interacting with a component. Most
interface specifications do not tell much in this respect.
One of the simplest ways to specify all possible deadlocks
is to describe the complete control flow by, for example,
an automaton. However, such approaches turn black into
nearly white boxes.

• Without clear interface specifications it is always an open
question who is responsible for a problem, the component
or its user.

These considerations do not give much hope that we can avoid
grey boxes by giving appropriate interfaces in the context of
synchronization although such interfaces are important toar-
range responsibilities. Other liveness properties (like livelocks)
are even more difficult to handle. Fortunately, there is another
side of the coin as we will see below.

Deadlocks do not occur that often in practice. Obviously,
users and developers of components already employ some sort
of (informal) interface specification that includes synchroniza-
tion behavior. In general we have a description that tells users
what a component does and how to use it (often in the form of
an application programmer interface). Even if the description
does not specify the component’s synchronization behaviorin
detail, it shows the overall structure, and experienced users
are able to derive the most likely synchronization behavior
just from this description. Only in cases of unexpected syn-
chronization patterns the documentation gives hints on them.
This pragmatic and mostly implicit kind of communication
between developers and users works surprisingly well.

Simplicity of synchronization patterns and their pragmatic
use is an important precondition for this communication.
Theoretically we can imagine a huge number of possible
synchronization patterns, but only a handful of them actually
occurs. For example, with a mechanism to ensure mutual
exclusion (“synchronized” in Java) and another one to avoid
underflows and overflows we cannot just develop buffers, but
almost everything that needs synchronization. Furthermore, it
is not necessary to mention mutual exclusion in an interface
of a component: If the code running in mutual exclusion
terminates in finite (and for practical reasons short) time,then
mutual exclusion cannot cause synchronization conflicts [10].
(Of course we must specify in interfaces if a routine expects
to be invoked in mutual exclusion and does not ensure mutual
exclusion by itself.) Synchronization to avoid overflows and
underflows in a component can be in conflict with (often
unintended and accidental) synchronization by the user. Fortu-
nately, it is usual to describe in the interface what happensin
the case of an underflow or overflow although this description
often does not refer to synchronization.

By using “wait” and “notify” we can produce arbitrarily
complex synchronization patterns. However, it is better not to
do so. The implicit communication between developers and
users works well in the simple cases mentioned above (and in
some further simple cases), but not in general. It is extremely
difficult to describe complex synchronization patterns in inter-
faces. Moreover, complex synchronization patterns are often
less stable. Since they should be specified in interfaces so that
users can avoid conflicting synchronization, there is a danger
that we have to either keep inappropriate synchronization be-
havior in future versions or change interfaces and thereby lose
substitutability. Good components keep their synchronization
behavior simple and as usual (this is, pragmatic).

There is a tendency to support more restrictive synchroniza-
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tion primitives that can be better expressed in an interface. For
example, in Polyphonic C# [2] (based on the Join calculus
[3]) we combine routines like “put” and “get” in a buffer
to a chord to be executed as a single unit. Users see in the
interface how routines in a chord are synchronized. Since only
one routine in a chord is executed synchronously and all other
routines are asynchronous, synchronization with chords isless
expressive but more visible than that with “wait” and “notify”.
However, even a component written in Polyphonic C# can
have synchronization not visible in the component interfaces.
The interfaces show only synchronization that happens when
invoking component routines from outside, but not that occur-
ring when invoking them from inside. Such languages help to
avoid the worst cases. However, they cannot solve the problem.

We can argue that it is absolutely necessary to specify
the complete synchronization behavior of a component in its
interface (thereby turning a black box into a nearly white one)
because users need this information. Once users rely on such
information we cannot easily change the communication struc-
ture anyway. Perhaps there is much truth in this argumentation
if we consider arbitrarily complicated communication patterns.
Fortunately, current software engineering practice showsthat
in many situations users have all needed synchronization
information without turning black into white boxes. It is an
open question whether we have to show all synchronization
behavior in the remaining cases. Of course, we want to avoid
that if possible. In the next section we deal with required
synchronization as a way to specify partial synchronization
information (as opposed to complete synchronization informa-
tion) in an interface. It is our goal to keep as much information
as possible hidden in the black box.

III. R EQUIRED SYNCHRONIZATION

Under required synchronization we understand the syn-
chronization that a component requires from the user when
invoking routines.1 For example, many components require
from a user to invoke an initializing routine before any other
routine. This is clearly a kind of synchronization althoughwe
need no synchronization primitive like “synchronized”, “wait”,
and “notify” to ensure it.

Users can provide the required synchronization only if they
know exactly in which ordering routines are invokable. The
synchronization depends only on data available to both the
component and the user. Thus, it is much easier to specify
required synchronization in interfaces than other kinds of
synchronization. Required synchronization is specified inthe
interface and usually only there. Such properties cannot be
derived from the implementation (since there are no explicit
synchronization primitives), and the component is always a
black box in this regard.

1Required synchronization has nothing to do with require interfaces of
components. There is just an unintended similar naming. In this paper, a
require interface does not differ from any other interface and, hence, can
also specify required synchronization. Required synchronization in a require
interface specifies synchronization to be ensured by the component itself
because the component acts as client of the unit referred to by the require
interface.

Required synchronization can be very expressive. We can
specify arbitrary sequential orders of routine invocations,
alternatives (where always the user selects the alternative to
be taken), and of course arbitrary interleavings thereof. This
means, we can express each possible prefix-closed set of
routine invocation sequences (or trace set). The expressiveness
need not depend on the language we use in the interface – a
plain natural language or any formal language able to express
trace sets. Substitutability of required synchronizationis also
easy and well-defined: A subtype must essentially support all
routine invocations in all orderings supported by the supertype,
this is, the trace set corresponding to the subtype includesthat
corresponding to the supertype (just set inclusion).

The difficulty is rather at the side of the user who must
ensure that routines are invoked only in an ordering specified
in the interface. At a first glance this seems to be easy since
the user has all needed information. However, in most cases
there is not just one component with a single well-defined
user. In systems composed from components, each component
can provide services to and use services from several other
components. If several users interact with the same component,
the users must coordinate themselves to invoke routines in
a required linear ordering. There are several ways to ensure
linearity:

• The simplest solution is to require only a single user
whenever there are constraints on the ordering of routine
invocations. In simple cases (like initializing routines
to be invoked before others) this solution is absolutely
appropriate. It is easily enforceable and expressible in a
natural language.

• In the case of several users we can ensure that at each
point in time only a single user interacts with the compo-
nent. This solution requires more effort on coordinating
users, but it is doable. However, without tool support and
without a clear concept how to do it the approach is error
prone. An obvious disadvantage is the strict linearity (this
is, a single user at a time) even for independent routine
invocations.

• To improve the approach we add support for splitting
a single linear thread into several independent linear
threads and combining them again when threads become
dependent. In this context a thread can be an independent
instance of any mechanism to ensure linearity, and it
can also be a concurrent thread of control in concurrent
programs. This improved approach is the most flexible
one, but it is difficult and error prone without proper tool
support.

Tool support has been proposed for single as well as
multiple linear threads [1], [4], [5], [6], [7], [8], [9], [10].
However, such support is currently not widely available. At
the moment it is only possible to simulate the corresponding
techniques by writing annotations in natural language intothe
users’ code and check them by hand.

Although the most advanced approaches are possibly not yet
mature, required synchronization is in many cases preferable
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over more complex synchronization using synchronization
primitives in components (except of mutual exclusion and a
handful simple synchronization patterns). In a large majority
of cases we need to ensure linearity only in small scale (which
is doable by hand).

As a simple example let us consider a window on a screen
that is shown either in full or as a small icon. The win-
dow component supports two methods (iconify acceptable
only when the window is shown in full, anduniconify
acceptable only when being an icon) changing the state of the
window. To have a further level of complexity we assume
the methods to take parameters and return results so that
we cannot simply ignore invocations that occur when the
window is in the wrong state. Synchronizing executions of
such methods in the window component is not simple because
of the state dependence. Users need detailed information
about the synchronization and the window’s state to avoid
undesirable program behavior like no immediate reaction
and some undesirable delayed reaction when pressing the
“iconify” button. This information must be expressed in the
interface. If we require the synchronization to be providedby
users (this is, users have to ensure that method invocations
occur only in appropriate window states), then we need no
synchronization at all in the component, and it is probably
easy for the users to ensure proper synchronization: We have
to ensure linearity (this is, always only one user can invoke
iconify or uniconify) and let the corresponding user
know the window’s (initial) state. It is quite natural to provide
this required synchronization simply by having only a single
“iconify” button while the window is shown in full and a single
“uniconify” button while the window is an icon; we need no
synchronization primitives at all to get proper synchronization.

Systems based on required synchronization

• avoid the grey-box view of components,
• clearly regulate responsibilities for synchronization,
• usually do not suffer from deadlocks,
• and are often simpler and promise higher performance.

In the author’s opinion, few safe synchronization patterns
together with required synchronization are almost always
sufficient to achieve the desired synchronization behavior.
There is no need to regard a component as a grey box for
synchronization. The desire to look inside a component to
determine its synchronization behavior is often just a signof
bad component design.

IV. H OW TO AVOID THE GREY AREA

Availability of source code is independent of regarding a
component as grey box. For example, offering customers a
look at the code (or supplying open source code) can be
an effective way of establishing trust into software. Code
inspection need not cause a black box to become grey. The
code can tells us something about the developers, company,
or product line, and it is a back-up in case the software is
no longer supported. However, modifications adapting code
to own needs or just making use of implementation details

decouples the software from further developments and is
undesirable.

Sometimes we regard a component as a grey box even
without looking at its code. This happens, for example, if
we measure the performance (or any other non-functional
property) of a system composed of components. Even if
the performance is satisfactory we cannot rely on it after
substituting a component with a new one. Although there
exist approaches to specify non-functional properties we are
currently far away from being able to specify them as part of
a practical software contract. Of course, it is always possible
to give some kind of guarantee based on average usages.
However, it remains an open question if the one application
we are concerned with fits into the class of average usages.

In this scenario we can apply a similar pattern as we did
in Section II (based on the pragmatic support of usual cases):
The description of the component clearly explains what the
component is supposed to be used for and how to use it.
Most users who correspond to this rather narrow description
will most likely experience no dramatic performance decrease
with future releases; they fit into the class of average usages.
However, each other user is let alone. Hence, we have a
pragmatic solution for the usual cases and an unpleasant
position in other cases. We can improve the situation by a deep
analysis of the problem and the development of appropriate
tools, especially tools to improve the communication and to
shift responsibility from components to their users (similarly
as we did in Section III). As a simple example, we can allow
users to influence the performance of components by setting
parameters or providing specialized routines.

Probably this is a general pattern for a large number of
aspects:

• We are able to describe the aspect in an informal inter-
face in a very pragmatic way. The notion of pragmatic
description means that component developers and users
have some common understanding of the aspect and the
usual solution space for corresponding problems; the de-
scription mentions only which solutions have been taken
(if there are several alternatives) as well as deviations
from the usual solutions. Interface specifications can be
very brief (or even non-existing) especially in usual cases.
Quite often such specifications are abstract in the sense
that they only refer to some notion and give no details
at all. For example, an interface specifies that a compo-
nent behaves as a “buffer” without clarifying what this
notion means. Although we can imagine many different
kinds of buffers this simple word often gives us enough
information to correctly use the component. Furthermore,
an interface often explicitly specifies a component to
be usable as replacement of another component with-
out giving details. Such specifications relate abstractions
based on common understanding. To have a common
understanding is the basic idea behind the “simulation of
the real world” which is a key concept in object-oriented
programming. When dealing with involved aspects like
synchronization we need a common understanding even
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if there is no direct counterpart in the real world.
• The pragmatic approach has its limits. It works fine as

long as all taken solutions are close to the usual solutions
(this means that there is a common understanding) and
the users need no information about other aspects than
usually considered in the component description. How-
ever, it breaks down in unusual cases. For example, the
pragmatic approach fails where we need static deadlock
prevention because this aspect is usually not considered
in the description.

• Tools and formal techniques (based on a deep problem
analysis) can help in cases where the pragmatic approach
fails. For example, we can apply a specific type checker to
ensure deadlock-free programs. Such tools and techniques
are very specific to aspects they consider and require a
deep understanding of the aspects, and their use often
costs much time and/or severely restricts the flexibility of
the solutions. Therefore, they are often not widely used.
They will be used only if the limits of the pragmatic
approach begin to hurt.

• There is a common pattern behind many of these
tools and techniques: Primarily they describe components
in greater detail so that users get more information
through interfaces. For example, type checkers to ensure
deadlock-free programs impose specific program struc-
tures and make them visible in the interface. However,
because of needed substitutability it is important to keep
implementation details hidden. For this reason it is often
no good idea to specify the complete synchronization
behavior in an interface.

• To avoid unnecessary exposion of implementation details
we take an additional way to strengthen connections
between components and users: We move responsibilities
from components to users, for example, by introducing
required synchronization as we did in Section III. Then,
users can take advantage of all knowledge about the
environment they have. It is likely that these responsi-
bilities rather belong to components than to their users
in the usual understanding; otherwise we would not
have considered them to be part of the components.
Hence, the tools and techniques are mainly concerned
with the support of responsibility for aspects at places
where they do not naturally belong to without these tools
and techniques. They give us more freedom in moving
things around. They also allow us to split (otherwise not
divisible) responsibility so that we can deal with each
sub-aspect where we have the needed information. For ex-
ample, techniques mentioned in Section III handle aliases
and ensure linearity to allow us to move synchronization
between components and to divide responsibility for it
between all users of a component.

Historically, many developments in object-oriented and
component-based programming had one common goal: Sup-
port programmers in arranging (or moving) code and data
such that it becomes easy to add new parts and replace

existing parts without any need to change unrelated parts.
The application of tools and techniques to arrange or move
further aspects (besides code and data) seems to be the natural
next step. Aspect-oriented programming (as often advertised
today) can probably not achieve this goal because it is not
specific enough to the particularities of certain aspects. We
will have to put effort into each aspect separately. Much
hard work remains to be done in this area. Unfortunately,
most results of such work will only be used in small scale
because they are especially useful in exceptional cases where
pragmatic solutions fail. Nonetheless, such work is important.
Today object-oriented and component-based programming are
already well-established. Progress will be made by many small
improvements, not by radically new ideas as was the case years
ago. Sometimes new techniques will become standard and part
of the pragmatic solution.

V. CONCLUSIONS

The black-box view of components is practically important
and we shall avoid to give it up even if it causes troubles.
In most cases it is possible to develop components based on
a common understanding of how to handle certain aspects.
Interface specifications in a natural language are all we need
in these cases to keep the black-box view. In more unusual sit-
uations it often helps to move responsibility for certain aspects
to other components and/or to divide responsibility to several
components. However, depending on the considered aspects,
today we have only few tools and techniques that support us
in doing so. That is an open area of research in the tradition
of object-oriented and component-based programming.
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Abstract—12 While the discussion on ”what is a component”
seems to finally come to a (wrong) conclusion, this paper argues
heavily against one of the most dramatic misconceptions of this
still immature field, i.e., that software components are specified
by their interfaces. We explain what problems result from this
misconception and we discuss requirements for a component
model which avoids the problems discussed. Most interestingly
to the rest of the community, such a component model is not an
interface model, but much more a model where components are
not defined by their interfaces.

a) keyword (selected): predictable assembly of compo-
nents, performance/efficiency and reliability of component-
based systems, systems for the description and prediction of
non-functional component properties, deployment attribution
/ constraints, COP and Model-driven Development (MDA),
role of composition frameworks, interoperation among com-
ponent frameworks, dynamic composition of component-based
systems, component-oriented development processes, relating
architectural principles/approaches to component software,
architecture description languages suitable to guide COP,
addressing variability requirements in component-based so-
lutions, system design for independent extensibility, system
design for the use of third-party components, component
versus application evolution, components in distributed em-
bedded systems, incl. mobile phones and PDAs, domain-
specific (vertical) standards, organizational aspects, business
aspects, what worked / what didn’t work in practice and
lessons learned, plus some other keywords, not mentioned
here explicitly, but including SOA, metamodelling, UML and
various other politically incorrect terms.

I. INTRODUCTION

One of the major driving forces and motivations of the
whole field of component based software engineering3 is the
fundamental question of ”what is a component”. The discus-
sion was certainly made ”interesting” by views ranging from
”anything but reusable” [HC91] to a principally undefinable
entity [CE00]. Particularly damaging is the list of component
properties from Clemens Szyperski (most often cited as a

1Author names not in alphabetical order.
2The German Research Council would not be happy to hear that this work

is supported by it. Therefore, various grant references are suppressed.
3In fact formerly, component phrased software engineering, as the majority

of self-declared component experts simply declared objects or classes as
components and re-submitted their old concepts. However, we now beat back
in declaring components as services.

definition, hence we do not cite it here) that a component ”is
a unit of third party deployment, has contractually specified
interfaces and that is has no state”. For teachers, in particular
the latter property is still a pain in the neck. However, for the
author (of this position statement, not the property list) the
second property shows the irresponsibility of the author (of
the list, not this paper) much more clearly. Not alone with
letting us alone what ”contractually specified” means (a term
that was most often used inconsistently and wrongly in the
community, until a hallmarking paper [RS02] (by one of the
most overrated researchers in the community)); much worse
(back again with the other irresponsible author (the one of
the property list, not the hallmarking paper), the whole idea
that a component has interfaces (what so ever specified) is
totally wrong and results in various misconceptions. One of
the more severe problems caused was a review comment on
a paper of the author (of this position paper, but a review
comment was on another paper), that rejected the idea of a
novel component model because the reviewer insisted that a
component model is in fact the same as an interface model.
Beyond this dramatic mislead of at least one reviewer, there are
various lighter problems of less concern (in fact, all relating
to topics listed in the Call for Papers).

However, as (of course totally by accident) the organisers of
this year’s WCOP explicitly asked for position statements on
how dark is the component black-box, the author clearly sees
a feeling of guilt in the workshop organisers attitude and is
willing to forgive and to share his more fundamental insights in
the true nature of components. (Attention to reviewers:) The
contribution of this paper is the clarification of the relation
between components and interfaces, in particular interfaces
mistakenly pretending to specify component-QoS-properties
plus a sketch of a solution to save the world (”world” in the
broader meaning of the word: ”universe”). The remainder of
the paper is organised as follows: in section II, interfaces and
components, we (unexpectedly) discuss the terms interfaces
and component.4 In section III we conclude that components
have no interfaces and conclude. Related work (of course of a
much lesser depth of thought as the author’s work (the author
of the this paper, not the ones of the related work)) is presented
in section IV. Section V than again states the main message of

4We intentionally use interface in its plural form while using the term
component in its singular, as one component can have several interfaces. (oh
shit. In fact, they don’t.)
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this position paper, but now in a form that you can cut of of the
paper and wear it as a sticker (which less humble characters
may do to demonstrate their intellectual superiority).

II. INTERFACE(S) AND COMPONENT(S)

Message number one is: An interface is an abstraction of an
encapsulated software unit. In case of a procedure (as software
unit) the signature would be the interface, but that is a little
pathologic, as interfaces are mostly known as an abstraction
of a module (as a software unit), as introduced by Parnas
1972 [Par72]. Argued in an exemplary way, modules defined
to encapsulate design decisions. Interfaces are used as the sole
way to access modules. The idea is, that the module imple-
mentation can change (if the design decision is changed to
use an alternative implementation), but the interface is stable.
Therefore, it is clear that the interface must be an abstraction
of the module. If it were not, than any change of the module
would also affect the interface. Although this sounds simple,
Parnas also stated that an interface should contain sufficient
information to use the module and to implement the module.
Interestingly, this is in direct contradiction to the ”interface
is an abstraction”-idea, as an abstraction intentionally omits
information and, hence, may not for all cases provide sufficient
information for usage or implementation. However, in any
case, the interface is used to describe a module. As a module
is always supposed to be in a fixed environment (at least if
it is seen as a way to encapsulate design decisions and not
as a means for software reuse), one has not to worry whether
the module really provides the functionality promised in the
interface. However, things are different for components (which
are delivered without context and can be deployed in different
contexts). Therefore, we continue with:
Message number two is: Interfaces are first class entities.
They can exist without any component. (For example, this
is the case in domain standards, where interfaces are defined
and the semantics of the service 5 signatures listed in the
interfaces is described.) As a consequence, between two first
class entities (namely components and interfaces) there can be
several relationships:

implements:
that is what we know from Java. The meaning of
”A implements B” is that a class (err, component)
A contains the code of the service signatures of the
implemented interface B.

depends:
that is also easy. The meaning of A requires B means
that component A contains code, that depends on
external services as specified in interface B.

provided:
totally meaningless for isolated components: what
functionality a component actually provides depends
not only on the component itself, but also on several
factors, in particular whether external components

5The use of the term ”service” instead of ”method” or even ”procedure /
function” is a concession to the zeitgeist.

which the component depends on are connected and
which properties they have. Hence, the provided
relationship between a component and an interface
can only occur in architectural diagrams where a
component is put into its context (which includes
the wiring to other components).

required:
totally meaningless for isolated components: what
functionality a component actually requires depends
on the functionality one component is used for in a
specific context. Without knowing what functionality
of a component is actually called, one cannot specify
which functionality is really required. Like above, the
required-relationship between a component and an
interface only occurs in architectural diagrams where
a component is put into its context.

The message number three is: What information is actually
specified in an interface, is given by the interface model (actu-
ally interface meta model). The even more important massage
is: an interface model is not a component model, as, trivially,
an interface is not a component and both are independent first-
class entities.6 Various interface model classifications have
been published, one of the most often cited is the one from
Beugnard et al [BJPW99]. In this classification the authors
interestingly omit the dimension of classification and just
list classes (of probably increasing complexity): ”Syntactic
level, behavioural level, synchronisation level, QoS level”. In
fact, it is clear why the classification dimension is omitted,
because in fact, it were two dimensions intermixed. Therefore,
in a brilliant work7, Becker et al presented at CBSE 04
a landmarking paper about an interface model classification
with two dimensions, namely, the level of granularity you are
specifying properties for (single services of an interface or the
interface itself) and whether you talk on functional or extra-
functional properties.8 While moving from functional signa-
tures to functional protocols (as a behaviour specification you
stay constant in the functional-extra-functional axis, but move
on in granularity. Differently, when going from behaviour
to QoS specifications. Here you move back in granularity
but more to extra-functional properties. The basic message
however, is, what is specified in an interface is not fixed.
Although mist time it are service signatures, it was firstly
argued by Nierstrasz in 1993 that a list of service descriptions
is insufficient and one needs in addition a specification of
valid call sequences [Nie93].9 In a different dimension you

6Listen! Listen carefully, thou reviewer of a recent conference who rejected
one of my papers because this difference was not clear to you. Dopey!

7Probably not as brilliant as the paper which got rejected, as the reviewers
where still able to grasp the concepts of the paper.

8In case you are always confused with a clear borderline between functional
and extra-functional properties: functional properties are all those you can
specify with a Turing machine, those you cannot, are extra-functional.
However, this is an academic statement: I got to know that in consulting
and industrial practice Turing machines are sometimes omitted in functional
specifications.

9Yes, it was Nierstrasz, not TomH in 2000. In between even the author
argued for specifying component protocols, at least one year before some
(suitably chosen) others.
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can extent interfaces by specifying the quality of services.
In practice, one is mainly interested in performance metrics
(such as response time or throughput) or reliability metrics
(mean-time-to-failure or availability). To summarise: although
not used in Java, there are interfaces which describe not
only the signature of services but also some of their quality
properties, and this is perfectly ok with the interface concept.
(In particular, there is no need to introduce new terms, like
”gates”.)

III. COMPONENTS AND INTERFACES

Unlike modules, components are to be used in different
contexts. Therefore, they have to make dependencies to the
context explicit. Naively, one would think that a component
uses one or several interfaces to specify what functionality
they expect from the environment (to be implemented). While
this is naive even for purely functional interfaces, the whole
tragedy comes most clear when considering QoS-specifying
interfaces. What QoS of a required service our component
should ask for? For example, assume that our QoS-specifying
interfaces allow to specify response time. What response time
a component C should ask for a specific external service e for?
The answer is simple: this depends on what the component’s
C services (who are using e) promise as a response time to
callers. However, this is not the right answer, because what
the response time of C’s services is also not clear. In fact,
it depends from the C callers, hence it is context dependent.
Altogether: as long as we do not know, which QoS is expected
from C, we cannot specify the ”required” interfaces of C.
With the same line of argumentation, we also cannot specify
what QoS C will provide, as long as we do not know, which
QoS will be provided by the required external service e
to our component C. Although not such seductively clear,
the argumentation holds for functional properties: should our
component C always ask for all external services which are
referenced in its code? Of course, it could (and has to be (type-
) safe), but that would restrict reusability in all cases, where
actually not all of C’s implemented functionality is used by
callers. In practice, this is often the case and it exactly should
be the case. As it should be cheaper to reuse a component
which implemented actually more functionality than I want
to use in a specific context is perfectly ok. And in fact, if
such a reuse is made unnecessarily expensive by formally
required external services which in fact are never used, the
whole component reuse idea gets questionable.

From the above argumentation, we can derive the following
two requirements for component models:

A distinction between unbound components and compo-
nents which are wired into a context. As discussed in the
introduction of this paper, the central question of the whole
research field of component orientation centers around the
question of what is a component.Much confusion exist, as
it is usually not differentiated for which level of abstraction
the component is defined for. In fact, a clear distinction
of component abstraction levels is lacking. From the above

discussion on the relation between interfaces and components,
we learned that at least two different levels of components
exist. The first level is concerned with unbound components
which can implement on interfaces or depend on interfaces.
The second level are architecturally bound components, which
provide and require interfaces. You can refine these two layers
of abstraction even further, by distinguishing between the
following layers:

Provided component type:
A component in a coarse grained architecture: you
just describe that a component exists which will im-
plement some functionality. As in this level of coarse
grained architectural design you are mainly interested
in decomposing a system (i.e., identifying compo-
nents) you should not forced to specify interfaces
the component depends on. Hence, implementations
of this type can depend on interfaces which are not
specified in the provided type.

Complete component type:
This component already includes a specification of
the interfaces it implements and those it depends on.
An implementation of this type must not depend on
more interfaces as specified in the complete type.

Implementation component type:
while the words ”implementation” and ”type” sound
contradicting, the point is that this type contains ad-
ditional information which may relate very strongly
to its implementation. However, it is still a speci-
fication of an unbound component which abstracts
from the actual implementation. Which information
is specified in this in particular is discussed in the
next subsection.

Deployed component:
This component is deployed. This means it is linked
to its resources and the interfaces it references to are
itself connected to external components.

Run-time component:
A lump of code in the memory, we do not discuss
any further.

The next section is unnecessary and therefore clearly identifies
itself of having as a sole reason of existence the addressing a
concern of a hasty reviewer.

Note that although a component has no interfaces, it can
implement interfaces and can also depend on interfaces. The
point is, that a until deployment time it is rather unclear
whether all interfaces implemented are actually provided and,
likewise, whether all interfaces the component implementation
depends on are actually required. The ”provides”-relation
and ”requires”-relation between a component and an inter-
face are deployment-context specific (including the usage-
profile), while the ”implements”-relation and ”depends-on”-
relation between a component and an interface are component
implementation specific.

A different way for specifying unbound components than
interfaces. As the discussion shows, one has to specify the
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relation between what a components gets from the environ-
ment (as specified by the required interfaces the component
is bound to at deployment) and what the component provides
(as specified by by the provided interfaces the component is
bound to at deployment). Now three different scenarios exist:

1) A component is bound to required interfaces, hence it
has to be computed what the component in this context
can actually provide (given the required interfaces, what
would be ”maximal” provided interfaces, i.e., the inter-
faces which describe all functionality at the best QoS
the component can provide with the required interfaces
given.)

2) A component is bound to provided interfaces, hence it
has to be computed what the component in this context
hast to actually ask for (given the provided interfaces,
what would be ”minimal” required interfaces, i.e., the
interfaces which describe the least functionality at the
worst QoS the component has to ask for to provide the
functionality specified by the provided interfaces given.)

3) A mixed case: some provided and some required inter-
faces are bound. Now the question is what is a suitable
combination of provided and required interfaces for the
unbound ports, if such a combination exists at all.

Note that in any case, one can ask all questions also for pro-
tocol specifying interfaces. (The answer for questions one and
two for protocol specifying interfaces was even so academic
(not to say: confusing) that it was rewarded with a dissertation
in a until than well-regarded south-western German university.
[Reu01])

IV. RELATED WORK OF LESSER DEPTH OF THOUGHT

Omitted to to space restrictions of the paper and time
restrictions of the author. Although the paper is accepted and
some additional pages were granted according to its outstand-
ing importance, the author did still not consider writing this
section.

V. CONCLUSIONS

Cut of here and place it in your name badge of the confer-
ence. Wearing it during the conference dinner is supported
by the SUSIMSSRUC (Society to use superior innovative
marketing to support scientific results of unclear character),
pronounced (soozie-hmmm-ruk.)

Lessons learned:

1) Components have no interfaces. This is true for any
unbound component, and particularly obvious for QoS-
specifying interfaces.

2) It is ok to say, that a component implements an interface,
if the interface is not specifying any QoS-properties.

3) It is ok to say, that a bound component provides
and interface, even if the interface is specifying QoS-
properties.

4) It is not ok to say that a component requires an interface,
unless the component is bound to its calling compo-
nent(s).

5) It is not ok to forget to cite parametric contracts.
6) A component model is not an interface model.
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