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Abstract

This paper1 analyzes structured P2P systems where
peers choose both their interaction mode, i.e., how they pro-
cess incoming queries, and additional contacts in the net-
work autonomously. Since additional contacts incur addi-
tional costs, a new kind of free riding behavior, namely hav-
ing only few contacts, comes into the fray. We refer to it
as deliberately poor connectedness (dpc). In this paper, we
show that dpc is dominant in many situations. This leads
to networks with a low degree of connectivity and a higher
overall forwarding load than necessary. We then propose
an incentive mechanism against dpc and demonstrate its ef-
fectiveness using a formal analysis and experiments.

1 Introduction

Structured Peer-to-Peer systems (P2P systems) allow to
administer large numbers of data objects. With most struc-
tured P2P systems, there is a fixed topology: Each peer is
connected to certain other peers, its neighbors. This paper
investigates structured P2P systems where peers can estab-
lish connections to further peers based on utility consider-
ations, i.e., not predefined by any topology. The neighbors
and these further peers are the contacts of a peer. A peer
can choose peers as additional contacts that it deems coop-
erative. A network of peers with a high degree of coopera-
tion results, and lost messages are unlikely. In this paper, a
connection between peers is bilateral: Both peers can use it
and have to pay for it.

In unstructured P2P systems, peers tend to behave self-
ishly [20]: They try to benefit from the system without con-
tributing. We expect this effect in structured P2P systems
as well. Since the connection costs a peer must take de-
pend on its number of contacts, it is rational to establish
only few additional contacts if any. A peer needs to have
only few contacts – it can forward its queries to these con-

1This paper is the extended version of [14].

tacts – to obtain access to the whole network. This kind of
free riding behavior has not received much attention so far.
We refer to it as deliberately poor connectedness (dpc) or
contact-level free riding. We refer to ‘conventional free rid-
ing’ where a peer does not process queries issued by other
peers as query-level free riding. We will show that, without
incentive mechanisms against dpc, dpc is often rational.

Our objective is to design mechanisms against dpc that
are effective. This is not trivial: One must deal with net-
work formation, i.e. dpc, and interaction selection, i.e.
query-level free riding, in combination. To deal with dpc
peers and peers that do query-level free riding it is not suffi-
cient to take only connection costs into account, but also the
costs and benefit of message handling. This is necessary to
explore the dependency between interaction selection and
contact selection.

In this paper, we analyze the effects of dpc using a cost-
based model to show the following: dpc peers are more suc-
cessful than cooperative ones in many situations if there are
no mechanisms against dpc. Our model tells us when ex-
actly this is the case. We have found out that the better
peers differentiate between cooperative and uncooperative
peers at the query level, the more advantageous is dpc. This
is surprising: One might expect that mechanisms against
query-level free riding would not have any relationship to
dpc. To overcome dpc, we propose a new mechanism, the
C4C Mechanism, that stimulates peers to establish addi-
tional contacts. The idea behind C4C is that peers without
additional contacts cannot make use of additional contacts
of other peers: a peer forwards a query only as far as the
predecessor in the forwarding chain has done. The effect is
that queries issued by dpc peers have a longer path length
and are more likely to get lost than queries from cooperative
peers. Thus, dpc peers have a higher ratio of unanswered
queries and lower payoffs. The C4C Mechanism does not
need extra messages or complex computations. It does not
rely on any kind of statistics and is robust against churn.

Paper outline: We discuss related work in Section 2 and
describe one specific structured P2P system in Section 3.
We introduce our cost model (Section 4), describe differ-
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ent strategies (Section 5), and show that dpc dominates in
many networks (Section 6). Section 7 proposes the C4C
Mechanism, Section 8 features a formal analysis. We then
evaluate our mechanism experimentally, discuss our results
and conclude.

2 Related Work

We discuss related work on cooperation issues, followed
by network formation. We then cover work dealing with
both issues in combination.

There exist models that analyze free riding on the query-
level [12, 8] and countermeasures [16, 6]. [12, 8] do not
take network formation, i.e. dpc, into account. [16] pro-
poses a tamper-proof incentive mechanism for truth-telling.
It could be used to force peers to be honest about their in-
teraction mode. However, it requires a centralized infras-
tructure and side payments. These are not realistic in P2P
systems. [6] shows that peers can use feedback attached
to ‘regular’ messages to identify uncooperative peers. Both
[16, 6] do not deal with dpc.

Let us now turn to related work on contact selection: [9]
analyzes the network-formation process of selfish nodes for
different network structures regarding performance and re-
silience. They observed that a network is more robust if all
peers have almost the same number of contacts: If many
peers resort to free riding, there are some (few) highly con-
nected peers which become bottlenecks. In [9], nodes could
not choose their interaction mode. [18] proposes an incen-
tive mechanism based on taxes and subsidies that influences
the mode of cooperation and the number of contacts per
peer. This model is not applicable here since the nature of a
connection, i.e. neighbor or additional contact, is not taken
into account, and we are not aware of any coordinator-free
infrastructure for taxes. Other network-formation models
exist, [15] gives a good overview. The models are not ap-
plicable here because they do not address free riding.

Some literature on both strategy selection and network
formation exists. [13] shows that the cost of adding a con-
tact affects the strategies played. [1] showed that the net-
work structure influences the behavior of peers. These mod-
els cannot be used to describe query-level free riding as well
as contact-level free riding and their dependencies. [3] an-
alyzes network formation with unreliable links. They show
that most of the time only ‘super-connected networks’ are
efficient. This means that peers in a network with unreli-
able links should establish more connections than in a reli-
able one. Still [3] does not investigate whether a peer has
an incentive to be connected well. Another analysis of the
simultaneous selection of interaction strategies and of the
contacts [4] shows that some efficient network structures
will not form without this simultaneous choice. Thus, net-
work formation and interaction selection should be investi-

(0;0)

A

C
x

B

(0;1) (1;1)

(1;0)

Figure 1. Two-dimensional CAN.

gated in tandem.

3 Content-Addressable Networks

Structured P2P systems manage sets of (key, value)-
pairs. Content-Addressable Networks (CAN) are a promi-
nent variant of such systems [19], and we will explain most
of our points based on two-dimensional CAN. Still we be-
lieve that our results hold for other structured P2P systems
as well, see Section 10.

To store data in a CAN, the keys of (key, value)-pairs are
mapped to coordinates of a coordinate space, which is a d-
dimensional torus. A peer administers all (key, value)-pairs
mapped to its zone, i.e., a part of the coordinate space. Each
peer also knows all peers with adjacent zones, its neighbors.
A peer can query the value corresponding to a key, i.e., issue
a query. To do so, it first transforms the key to coordinates,
the target of the query. Queries are forwarded using greedy
forwarding: The issuing peer calculates the distance of its
neighbors to the target and sends the query to one with a
small distance. This procedure recurs until the peer know-
ing the (key, value)-pair sought is reached. It then returns
the value to the issuer.

Example: Figure 1 shows a 2-dimensional CAN. Rect-
angles represent the peer zones. Suppose that Peer pA re-
quests the value of key X, and the coordinates of X are in
the zone of Peer pC. Peer pA does not know Peer pC, but it
knows that Peer pB is closer to the target than itself. Peer pB
and other peers forward the query until it reaches Peer pC.
Peer pC sends the query result to Peer pA. �

Additional Contacts. In a two-dimensional CAN, as de-
scribed above, the cost of query evaluation is the number of
hops, i.e.,

√
n

2 on average, with n being the number of peers
in the system [19]. [23] shows that the number of hops can
go down significantly when using additional contacts for
forwarding. [17] has investigated the routing complexity



in random networks with an inverse power-law distribution,
i.e., connections to close contacts are favored over distant
ones. It is proven that queries can always be delivered in
O(log2(n)) steps. This is significantly less than the CAN
routing complexity. The existence of such additional con-
tacts has an important benefit from the perspective of all
peers: The number of peers that process a query and hence
might drop or loose it is smaller.

In this paper, peers can become additional contacts of
each other if they both agree. A peer which deems an addi-
tional contact uncooperative drops the connection. This is
possible at any point in time.

4 Cost Model

In the presence of connection costs, peers will not form
too many connections, and dpc is attractive. In the follow-
ing we will show when exactly dpc is beneficial. We will in-
troduce a network model that takes network formation and
cooperation into account.

4.1 Network Properties and Assumptions

Each peer pi has ν i initial contacts, its neighbors. It can
add contacts or remove them. (It cannot remove its neigh-
bors.) Note that this is similar to social networks: A person
has relatives, neighbors etc. he cannot choose, but he can
choose his friends.

Our formal analysis will make certain assumptions:
Homogeneity. All peer zones have the same size. In

reality, CAN almost meet this condition. Their zones differ
only by a small limited factor [19]. Further, all peers have
the same utility function z which we will define in the next
subsection.

Time. Time is a discrete sequence of points.
Querying. All peers issue queries at the same rate, one

per point of time. Queries are equally distributed over the
coordinate space. This assumption is realistic – using a hash
function to map application keys to coordinates typically
ensures this.

Additional Contacts. Maintaining a connection incurs
costs proportional to its duration in time.

Lost Queries. There always are peers that do not for-
ward or answer queries. We believe this is a realistic as-
sumption: Even if all peers cooperate, some queries get lost
due to technical failures.

Insertions; Tampering. This analysis leaves aside in-
sertion of data objects into the CAN as well as tampering
with data objects. While these are important topics, they
exceed the scope of this paper.

Semantics Variable Utility
Factor

number of received answers α a
number of queries issued ρ q
number of forwarded queries θ f
number of answers produced φ w
number of additional contacts γ c
number of points in time r

Table 1. Utility function – variables.

4.2 Utility Function

A structured P2P system consists of a set of peers P =
{p1, ..., pn}. We assume that all peers are rational, i.e., they
try to maximize their payoff. Each peer gains positive utility
by obtaining results for queries it has issued. The gain of a
query result is a, and a Peer pi receives αi query results
during its lifetime. The revenue of Peer pi is revenue(i) =
a ·αi. To obtain a query result, a peer has to issue the query
first. Issuing a query incurs the negative utility q. ρi is the
number of queries issued by Peer pi. A peer can forward a
query at cost f and answer a query at cost w. The number of
queries Peer pi forwards in its lifetime is θi, and the number
of queries that it answers is φi. As mentioned before, each
peer can have additional contacts. Peer pi must take costs
c for every additional contact per point of time. γi is the
average number of additional contacts over the lifetime of
Peer pi in the network. ri is the time interval (i.e., number
of points of time) Peer pi is in the network (see Section 4.1).
Table 1 is a summary of the abbreviations.

Thus, in its lifetime, Peer pi must take the costs
costs(i) = q ·ρi + f ·θi +w ·φi +c ·γi ·ri. The utility function
of pi is z(i) = revenue(i)− costs(i). Thus,

z(i) = a ·αi− (q ·ρi + f ·θi +w ·φi + c · γi · ri) (1)

The utility function takes both network-formation costs and
costs of queries sent to contacts into account. This fa-
cilitates simultaneous investigation of network formation
and interaction selection. Like other approaches, e.g.,
[3, 4, 5, 8, 9, 10], we do not take the costs of simple compu-
tations, e.g., calculating a distance, into account. They are
negligible, compared to the costs of query processing.

If we do not have a specific peer in mind, we omit su-
perscript i. We denote the average over all peers with the ·̄
operator. E.g., θ̄ is the average number of forward opera-
tions per peer.

5 Strategies

In an ideal system each peer should process any query
it receives. In reality, peers use cut-off strategies [21], i.e.,



if a peer observes that a certain share of queries forwarded
to a neighbor gets lost, the peer stops processing queries
obtained from the neighbor.

By definition, a peer is cooperative if (a) it processes all
queries received from its contacts, unless it deems the con-
tact uncooperative, and (b) it establishes at least J con-
nections to additional contacts and cuts connections to ad-
ditional contacts that it deems uncooperative. (J is an ex-
ogenous, network-specific parameter; cf. [3].) A peer is
uncooperative if it drops queries it receives from contacts
that it deems cooperative. u f is the ratio of queries not for-
warded and ua the ratio of queries not answered, both due
to uncooperativeness. A peer is deliberately poor connected
(dpc) if it establishes Jd < J connections to additional
contacts. Note that dpc is orthogonal to uncooperativeness:
An uncooperative peer can or cannot be dpc.

dpc is attractive from the local perspective of a peer:
The average path length of the queries it itself has issued
increases by at most one hop. But its costs of additional
connections are zero (c · γ · r = 0). The peer can still is-
sue queries using its neighbors. From a global perspective,
however, the problem is that the peer does not help to lower
the total forwarding load.

To keep our model simple, we assume that dpc peers
have no additional contacts, i.e. Jd = 0. Another reason
for this simplification is that we want to investigate pure
strategies first, before analyzing mixed ones.

Let p be the percentage of peers using a certain strat-
egy. Superscript ‘c’ stands for a cooperative strategy. I.e.,
pc is the share of cooperative peers in the network. Super-
script ‘d’ stands for dpc peers (which are cooperative on
the query-level), ‘u’ for uncooperative peers and ‘ud’ un-
cooperative dpc peers. The following condition must hold:
pc + pd + pu + pud = 1.

6 Formal Analysis of DPC

To understand in which situations dpc peers dominate
cooperative peers, we derive the expected utility of dpc
peers and cooperative peers.

Average Path Length. The expected utility of dpc peers
and cooperative peers depends on the average path length.
This is the average number of hops until a query reaches its
target. More specifically, Dmax is the average path length if
no queries were dropped, and Davg is the actual average path
length including queries that have been dropped. Clearly,
Davg ≤Dmax. The average path length changes if peers have
additional contacts: Given a fixed number of queries, the
more contacts peers have, the fewer queries they have to for-
ward in total. In CAN without additional contacts, the aver-
age path length is

√
n

2 [19]. When the additional contacts of

cooperative peers are distributed uniformly, the number of
forwarding steps Dcoop

max is

Dcoop
max =

1
2

∫ √
n

2

0

(
ω0(r) · r +ω1(r) · (r +

√
n

2
)
)

dr (2)

with

ω0(r) = 4 · r · γ +1
n
· e−2·r2· γ+1

n (3)

and

ω1(t) = (−4t +2
√

n)
γ +1

n
[1−ω0(

√
n

2
)]e(2t2−2

√
nt) γ+1

n

(4)
See Appendix A for a proof. Note that Formula 2 is a worst
case estimation. Even if the second peer in the forwarding
chain is dpc already, Formula 2 holds. Obviously, the fol-
lowing inequation holds:

Davg ≤ Dmax ≤

{
Dcoop

max with additional contacts,√
n

2 otherwise.
(5)

Clearly, the average path length is related to the number of
queries each peer has to forward. Given the average num-
ber of queries issued per peer ρ̄ , the average number of for-
wards per peer is the number of queries (ρ̄) times their av-
erage path length:

θ̄ =
ρ̄ · (Davg−1) ·n

n
= ρ̄ · (Davg−1) (6)

In other words, for every query that has been issued, there
are (Davg− 1) forwarding steps. Subtracting 1 is because
the peer which has issued the query does the first forward.
(In our model the costs of the first forward are included in
the costs of issuing a query.)

Influence of Uncooperative Peers. Next to the average
path length, the overall effectiveness of the system depends
on the ratio of uncooperative peers: Queries get lost when
being forwarded to uncooperative peers. The probability
that queries get lost grows with the ratio of uncooperative
peers. It decreases with the ability to distinguish between
cooperative and uncooperative peers. We abstract from the
concrete classification technique that peers use and use an
oracle with error probabilities fp and fn. These probabili-
ties are constant values and are the same for all peers. fp is
the rate of false positives of the oracle, fn the rate of false
negatives. In other words, the oracle classifies an uncoop-
erative peer as cooperative in fp percent of the cases, and a
cooperative one as uncooperative in fn percent of the cases.
A peer which wants to forward a query (or a result) to Peer
pc first asks the oracle whether pc is cooperative or not. If
so, it performs the operation. Otherwise, it chooses a new



contact. If no contact is cooperative according to the oracle,
the peer drops the query.

The probability F that a query is forwarded depends on
the probability that (a) it will not be forwarded to an unco-
operative peer, or that the peer does not drop the query due
to uncooperativeness (FC := (pc + pd)+ fp(pu + pud)(1−
u f )) and (b) that the peer that receives the query does not
deem the forwarder uncooperative (FDC := (1− fn)+ fp).
It follows that F = FC ·FDC. If the classification is per-
fect, i.e. fp, fn close to zero, uncooperative behavior is not
dominant, and F close to one.

The probability A that the query is answered is anal-
ogous, except that the last forwarder cannot choose from
its contacts; the peer that knows the query result is fixed:
A = ((pc + pd)+(pu + pud)(1−ua)) ·FDC.

Since a query has to be forwarded over (Dmax−1) steps,
the probability P(Dmax,F ,A ) that a query is processed
successfully is:

P(Dmax,F ,A ) := F Dmax−1 ·A (7)

In other words, only some of the queries issued by a peer
will be answered. The average number ᾱ of queries an-
swered is as follows:

ᾱ = P(Dmax,F ,A ) · ρ̄ = F Dmax−1 ·A · ρ̄ (8)

Utility of DPC. Inserting Formulae 6 and 8 into For-
mula 1 yields the expected utility of a cooperative peer, de-
noted as zc:

zc =P(Dmax,F ,A ) ·a · ρ̄− (q · ρ̄ +P(Davg,F ,A )
· (Davg−1) · f · ρ̄ +w ·φ + c · γ̄ · r)

(9)

A dpc peer has a higher utility, for two reasons: First, it does
not have to take any connection costs. Second, it receives
fewer queries to forward, as it does not receive any queries
from additional contacts. This means that dpc peers only
forward ν

γ̄+ν
· θ̄ queries.

Example: Consider a highly connected network. Let co-
operative peers have four neighbors and 20 additional con-
tacts on average, whereas Peer pd has four neighbors and
no additional contacts. Peer pd only has to forward about
4

24 = 1
6 of the queries a cooperative peer has to forward. �

dpc however has a small drawback as well: The rate
of queries issued by a dpc peer answered by the system is
slightly less than the one of cooperative peers. But the issue
is not severe: If a dpc peer has a cooperative neighbor, its
queries only go through one additional hop. The probabil-
ity Pd(Dmax,F ,A ) that a query issued by a dpc peer is
answered is

Pd(Dmax,F ,A ) := P(Dmax +1,F ,A ) (10)

Hence, the expected utility zd of a dpc peer is:

zd = Pd(Dmax,F ,A ) ·a · ρ̄− (q · ρ̄+
ν

γ̄ +ν
·P(Dmax,F ,A ) · (Davg−1) · f · ρ̄ +w · φ̄)

(11)

To see which strategy is dominant we now compare the util-
ity of a cooperative peer to the one of a dpc peer.

Dominance of DPC. For some applications, the gain a of
a query result may be small. Thus, we want to identify set-
tings where dpc does not dominate cooperativeness even if
the gain a of a query result is only slightly larger than the
cost of forwarding a query ( f ) or of maintaining an addi-
tional contact (c).

Comparing the utility estimates from the previous sub-
section yields the following lemma:

Lemma 6.1 Let the probability that a query is forwarded
be less than 100%, i.e. F < 1. dpc dominates cooperative
behavior if the following inequation holds:

a <

γ̄

γ̄−ν
· (Davg−1)

(1−F )
· f +

1
(1−F )

· c · γ̄ (12)

See Appendix B for a proof. This lemma has two important
implications: First, if the cost of forwarding a query ( f ) or
of maintaining an additional contact (c) are high, coopera-
tiveness is dominant only if the gain of a query result (a) is
high. Second, if the probability F that a query is forwarded
is high, dpc dominates cooperative behavior. Note that this
is the case in particular when that classification is effective.

Example: Let there be 100,000 peers. 47.5% of these
are cooperative, 50% are dpc, and 5% do not answer any
queries (pc = 0.475, pd = 0.475, pu = 0.025, pud = 0.025).
Non dpc peers have 20 additional contacts (γ̄ = 20). Fur-
ther, the cost of maintaining an additional contact (c) and of
forwarding a query ( f ) are 1. Let the rate of false positives
be 0.03 and the one of false negatives be 0.05. Lemma 6.1
implies that the gain of a query result (a) must be about
1085 times greater than the cost of forwarding a query ( f )
and the cost of an additional contact (c) so that dpc does not
dominate cooperativeness. �

If dpc is dominant, networks without an additional con-
tact structure result, i.e., the CAN structure in our case. But
as mentioned, more efficient structures exist – in settings
where peers are not autonomous, and dpc is ruled out. We
wonder if we can arrive at more efficient structures in our
setting as well.

7 C4C – a Mechanism against DPC

In this section, we propose a cost-neutral mechanism
against dpc, the C4C Mechanism. (‘C’ stands for contact.)



The idea is that peers without additional contacts cannot
make use of additional contacts of other peers: A peer for-
wards a query only as far as the predecessor in the forward-
ing chain has done. In other words, cooperative peers re-
duce the utility of dpc peers: The probability that a query
issued by a dpc peer is dropped increases, due to the higher
path length. The mechanism gives dpc peers an incentive to
change their behavior. It does not incur any extra costs due
to extra messages, etc.

Algorithm 1: Forwarding of Queries
Input: Query q, Peer ps
Point t← Target of query q;1

Peer pp← The last peer which forwarded q to ps;2

Radius ρ ← ∆pp,t −∆ps,t ;3

if ρ < 0 then4

return;5

end6

Array of Peers ℵ← list of additional contacts of ps;7

foreach Contact pc ∈ℵ ordered by ∆pc,t ascending do8

if ∆pc,t < ρ then9

forward q to pc;10

return;11

end12

end13

Forward q using closest neighbor of ps that is14

cooperative;

By definition, ∆pi,t is the distance from the center of the
zone of Peer pi to Point t in the coordinate space. Algo-
rithm 1 describes the C4C Mechanism: Before Peer ps for-
wards a query, it computes the distance between the center
of the zone of the predecessor pp in the forwarding chain
and the target t of the query. To determine how much the
predecessor has shortened the forward distance, Peer ps
subtracts the distance ∆ps,t from ∆pp,t (Line 3). If the dis-
tance has increased, Peer ps ignores the query (Lines 4-6).
Peer ps chooses a Contact pc which is the closest contact to
the target that is not further away than ρ from Peer ps and
forwards it the query (Lines 7-13). If such a peer does not
exist, Peer ps forwards the query to its cooperative neigh-
bor that is closest to the target (Line 14). If there is no such
neighbor, it drops the query.

Note that cooperative peers do not drop queries obtained
from dpc peers completely. This would be problematic, be-
cause peers that have just entered the system would not have
a chance of meeting other peers and establishing additional
contacts.

By forwarding a query to a neighbor, dpc peers do not
bring it much closer to its target. The neighbor in turn will
only forward the query to its neighbor etc. It follows that
the average path length of queries issued by dpc peers will

be equal to the average path length in networks without an
additional contact structure. In other words, there now is
a direct relationship between contributing to the network
structure and profiting from it. Establishing additional con-
tacts becomes rational, as we will show in the next section.
Further, our experiments will show that cooperative peers
benefit more from the network than dpc peers. This is the
case even though their queries are not routed via additional
contacts as soon as they reach a dpc peer.

8 Formal Analysis of C4C

The formal analysis in this section lets us understand
when C4C is effective. In the analysis and in our experi-
ments we will assume that all cooperative peers use the C4C
Mechanism. (Section 10 will discuss why this assumption
is realistic.)

The C4C Mechanism ensures that peers without addi-
tional contacts cannot use the additional contacts of other
peers. This means that dpc peers have the average path
length of peers in a CAN without additional contacts
whereas cooperative peers have a shorter path length (see
Formula 5). The average path length for queries issued
by dpc peers Dd pc

max is
√

n
2 . I.e., Dmax =

√
n

2 = Dd pc
max in For-

mula 10. However, the number of hops of queries issued by
cooperative peers (Dcoop

max ) is much smaller. (See Appendix
A.)

Comparing the expected utilities yields the following:

Lemma 8.1 Let the probability F that a query is for-
warded be less than 100% (F < 1). Then dpc dominates
cooperation if the following equation holds.

a <

γ̄

γ̄−ν
· (Davg−1)

(1−F Dd pc
max−Dcoop

max )
· f +

1

(1−F Dd pc
max−Dcoop

max )
·c · γ̄ (13)

Appendix C contains a proof. Lemma 8.1 has one important
implication, in contrast to Lemma 6.1, where dpc dominates
cooperation without the C4C Mechanism: The more addi-
tional contacts cooperative peers have, the smaller becomes
the average path length of queries from cooperative peers
(Dcoop

max ), but not the path length of queries from dpc peers
(Dd pc

max). Hence, the denominator in Formula 8.1 is about
orders of magnitudes larger than without the mechanism.
In large networks in particular, cooperative peers can break
the dominance of dpc if they establish many connections. In
these networks, effective classification does not necessarily
lead to a dominance of dpc any more.

Example: Let all parameters be as in the previous exam-
ple, except that cooperative peers use the C4C Mechanism.
The gain of obtaining a query result must be greater than 19
so that cooperation dominates dpc. Compare this number



to the setting without C4C: There, a must be greater than
1085.�

Lemma 8.1 describes the worst case for cooperative
peers: Even if the issuer forwards its query only over one
additional contact, Lemma 8.1 holds. If the query is for-
warded over more than one additional contact, the results
for cooperative peers should be even better.

9 Experiments

For our evaluation of the C4C Mechanism so far we have
assumed that (a) all peers have zones of the same size, and
that (b) dpc peers have no additional contacts at all. We will
relax these assumptions in our experiments. The assign-
ment of peers to zones is as in the original CAN paper [19].
dpc peers have between zero and five additional contacts
(randomly chosen and uniformly distributed), and uncoop-
erative peers drop between 50% and 100% of the queries
on behalf of others; the exact rate is randomly chosen and
uniformly distributed. The relaxation of (a) leads to a more
natural network structure. Relaxing (b) reduces the effec-
tiveness of our mechanism. Peers with few additional con-
tacts can use some – but not all – of the additional contacts
of cooperative peers, in spite of the C4C Mechanism. Still
the objective of C4C is that these peers have a lower payoff
than cooperative peers and a higher one than peers without
any additional contacts.

To evaluate the influence of the distribution of dpc peers,
the distribution of uncooperative peers, and the influence of
the network size, we varied these parameters in three series
of experiments. We measured the utility (z) of cooperative
and dpc peers, to see which strategy is dominant. The fig-
ures also graph our predictions of the utility (z+

c , z+
d ), to

validate our formal analysis. For the prediction we assumed
a rate of false positives of 0.025 and one of false negatives
of 0.035. Our formal analysis had assumed that dpc peers
do not have any additional contacts. Thus, we expect the
predicted utility of dpc peers to be smaller than the mea-
sured one. In our experiments we have limited the number
of additional contacts (γ) to 10. We have conducted exper-
iments with other numbers, and the results were similar to
the ones presented here. Part of our future work is to let
peers themselves find good values for γ . All peers use a
cut-off strategy to detect uncooperative peers. I.e., if a cer-
tain rate of queries sent from Peer pi to its Contact pc fails,
pi deems pc uncooperative. This is in line with [21]: This
work has shown that peers when controlled by humans use
such strategies. The actual cut-off value is crucial: If it is
too low, uncooperative peers are not recognized. If it is too
high, cooperative peers are deemed uncooperative. In pre-
liminary experiments, we had varied the cut-off threshold;
0.1% turned out to be good. In our experiments we used
the following further parameters: The coordinate space has

Figure 2. Influence of dpc peers.

Figure 3. Influence of uncooperative peers.

two dimensions, the gain of obtaining a query result (a) is
100, the cost of forwarding a message ( f ) and the one of an
additional contact per point in time (c) are both 1. Issuing a
query costs 2 (q = 2) and answering one costs 5 (w = 5). To
avoid startup effects all measurements start after an initial
phase of 500 rounds. Thus, the peers have formed a net-
work structure already. (Investigating the dynamics of the
system is future work.)

With a first series of experiments, we test how the share
of cooperative peers and dpc peers influences the effective-
ness of our mechanism. The network consists of 5,000
peers. There are 5% uncooperative peers. Figure 2 graphs
the result. The x-axis shows the percentage of dpc peers.
The larger it becomes, the fewer cooperative peers are in
the network. The y-axis is the utility per peer. First and
foremost, the utility of cooperative peers using C4C is al-
ways higher than the one of dpc peers. dpc peers have less
connection costs and slightly less forwarding costs, as long
as there are cooperative peers in the network. On the other
hand they have less income than cooperative peers if the
C4C Mechanism is used.

In the second series of experiments, we varied the per-



Figure 4. Influence of network size.

centage of uncooperative peers in the network. The remain-
ing peers were either cooperative or dpc with the same prob-
ability. The network consists of 5,000 peers. Figure 3 shows
the result: If the share of uncooperative peers is under 1%,
dpc peers dominate cooperative peers. For higher ratios of
uncooperative peers cooperation leads to a higher utility. As
soon as more than 11% of the peers are uncooperative, co-
operative peers and dpc peers do not benefit from the net-
work any more, since too many queries get lost. It is not
rational to participate in the system any more.

The predicted utilities and the ones observed in the ex-
periments differ from each other, in particular when the rate
of uncooperative peers is high. Our explanation (backed
by further experiments not described here) is as follows:
Our formal analysis uses global, fixed values for the rate
of false positives and of false negatives of the classifier. In
the experiment in turn, peers themselves estimate the de-
gree of cooperativeness of their contacts. These estimations
become more difficult with a higher rate of uncooperative
peers, hence the difference in these settings.

Third, we investigated the influence of the network size.
We varied it from 100 to 10,000 peers with 5% uncooper-
ative peers, 47,5% cooperative ones and 47,5% dpc peers.
Figure 4 shows the utility and the predicted utility for coop-
erative and dpc peers. Peers in larger networks have a lower
benefit due to a larger average path length (and therefore
a higher probability that a query is dropped). Again, dpc
peers benefit less from the network.

All experiments are in line with our predictions. Our
mechanism is robust against different distributions of co-
operative, dpc and uncooperative peers as well as different
network sizes. In our experiments, dpc dominates coop-
eration only in networks with few (≤ 1%) uncooperative
peers. This indicates that C4C is effective in many realistic
settings. If cooperative peers want to break the dominance
of dpc in networks with few (≤ 1%) uncooperative peers,
then, according to Lemma 8.1, they have to establish more

connections.

10 Discussion

In the following we say why we think that our assump-
tion that peers use the C4C Mechanism is realistic. We then
discuss the generality of our results.

Tit-for-Tat. [2] has shown that Tit-for-Tat, i.e. behave
like your contact has behaved, is the most effective strat-
egy when actors play cooperation games. The C4C Mech-
anism leverages this result: Only a peer that has additional
contacts profits from the additional contacts of another peer.
Even though Tit-for-Tat strategies incur additional costs (for
bookkeeping), participants still use them.

Whitewashing. Whitewashing, i.e. peers leave the net-
work and reenter with a new identity, is a serious problem
in P2P systems [11]. The C4C Mechanism is robust against
whitewashing, since it is history-free, i.e. no statistics is
needed.

Limits of C4C. There are situations where C4C is not
effective. This is the case when no query is lost (F = 1).
This in turn holds when there are no uncooperative peers,
or the classification works perfectly. Further, there must not
be any technical failures. These conditions in combination
are rather unlikely.

Structured P2P Systems. dpc can occur with other
structured P2P systems as well. Without the C4C Mecha-
nism it is rational to drop connections to peers with a distant
zone. A peer still has access to the network if cooperates
with only those peers whose zones are adjacent or at least
close to its zone.

Example: In Chord, peers form a ring [22]. A peer has
neighbor contacts as well as distant ones. A dpc peer pd
would only establish connections to its right and left contact
on the Chord ring. The fact that there is a specific topology
that prescribes the distant contacts of a given peer does not
make a difference: Peer pd can drop all queries from the
distant contacts. �

Generalization. We believe that our findings are not
only interesting for the P2P community, but for a broader
audience. Any network with an underlying distance metric
which consists of autonomous participants who can choose
their contacts freely can benefit from our results, be it social
or commercial. Participants can use the C4C Mechanism if
they want other participants to establish additional contacts
of their own.

11 Conclusions and Future Work

Conclusion. Networks should have a contact struc-
ture that facilitates routing with a low routing complexity.
But since forming connections is costly, dpc, i.e., forming



hardly any connections, is rational. In many situations, dpc
dominates cooperation, as we have shown. Further, we have
proposed an incentive mechanism against dpc, the C4C
Mechanism, and have demonstrated its effectiveness. The
idea is that peers behave reciprocally on the contact-level, to
stimulate dpc peers to establish more connections: A peer
forwards a query only as far as the predecessor has done.
This scheme is cost neutral and robust against changes of
the network size or of the distribution of strategies in the
network.

Future Work. As far as we know no operational struc-
tured P2P Systems exist. Hence, we cannot verify our the-
ory in practice at the moment. Still we believe our theory
can be tested in behavioral economics experiments. As part
of our future work we will conduct corresponding experi-
ments.
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Figure 5. Peers equidistant to the destination
peer.

A Number of Hops per Query

To analyze the C4C Mechanism, we need to know how
often a query is forwarded on average if the issuer uses ad-
ditional contacts. In the worst case, the query is forwarded
only once over an additional contact and then via neigh-
bors. In the following we make a worst case estimation of
how often a query is forwarded if the issuer uses additional
contacts. Figure 5 serves as an illustration. What is the ex-
pected shortest distance, i.e. the minimum number of hops,
from the peer to the destination peer, i.e. the peer which
zone contains the query target? The distance between two
peers is the number of hops between them. In Figure 5,
the black zones represent the additional contacts of Peer pi.
Light gray zones represent peers that have the same distance
to the destination peer as the contact of Peer pi that is clos-
est, i.e., Contact 2. The peers equidistant to the destination
peer form a rhombus (and not a circle). This is because
a Peer pi in the two-dimensional space has four contacts,
namely those peers whose zones have a joint edge with the
zone of pi.

Our problem is similar to the ’Law of Distribution of the
Nearest Neighbor in a Random Distribution of Particles’ in
[7]. The differences are that we use another metric, and that
our space is a torus. Instead of particles, the issuer pi of a
query and its contacts are the objects under observation. In
what follows, Ki stands for this set of γi +1 peers.

Our estimation consists of two steps: First, we calculate
the probability ω(r) that one or more peers in Ki have dis-
tance r to the destination peer and that none of them has
a shorter distance. We then calculate the weighted average
where the weight is this probability.

In what follows,

ω(r) :=

{
ω0(r) if r ∈ [0,

√
n

2 ]
ω1(r−

√
n

2 ) otherwise
(14)

The differentiation is necessary since for radii r greater
√

n
2

the torus property plays a role: In this case equidistant
points do not form a rhombus any more, but a rhombus
‘without corners’. Figure 5 illustrates this: Dark gray peers
have a distance of eight hops to the destination peer. They
form a rhombus without corners.

We start with computing ω0(r). The probability p that a
given zone belongs to a Peer pk ∈Ki is equal to the cardinal-
ity of Ki relative to the number of peers, i.e., p = (γ +1)/n.
Given p we can calculate the probability that at least one
of the peers in Ki has the distance r to the destination peer.
To this end, we have to calculate the probability that the set
of peers with distance r to the destination peer includes at
least one peer in Ki. It is probability p times the perime-
ter of the sphere with radius r, which is 4 · r. The radius r
is again measured in number of hops. For instance, in Fig-
ure 5, 12 = 4 ·3 peers (represented by light gray zones) have
a distance of three hops to the destination peer.

Let r ≤
√

n
2 hold and let ω0(r) · dr denote the probabil-

ity that the shortest distance of a peer in Ki to the desti-
nation peer is between r and r + dr. This probability is
equal to the probability that at least one peer has distance
r, which is 4 · r · p, and that at the same time no peer in Ki
has a smaller distance (1−

∫ r
0 ω0(r)dr). Thus, the following

equation holds.

ω0(r) = [1−
∫ r

0
ω0(r)dr] ·4 · r · p (15)

From Equation 15 we derive:

ω0(r)
4 · r · p

= [1−
∫ r

0
ω0(r)dr](

ω0(r)
4 · r · p

)′
=−4 · r · p ω0(r)

4 · r · p(
ω0(r)
4·r·p

)′
ω0(r)
4·r·p

=−4 · r · p

(16)

The Logarithmic Derivative Formula ((ln( f ))′ = f ′
f ) lets us

deduce ω0(r) from Formula 16:(
ln

(
ω0(r)
4 · r · p

))′
=−4 · r · p

ω0(r) = 4 · r · p · e−2·r2·p
(17)

To obtain the average distance we have to sum up over all
possible distances and multiply the probability with the ac-



tual distance:

DH1
max =

∫ √
n

2

0
ω0(r) · r ·dr (18)

While we cannot solve Equation 18 analytically, we can ar-
rive at an arbitrarily precise approximation.

Note that Equation 18 requires that r ≤
√

n
2 . We now

calculate the probability ω1 that the distance of the closest
peer in Ki to the destination peer is greater than

√
n

2 . Let

the radius r now be greater than
√

n
2 , and define t := r−

√
n

2 .
Then, in analogy to Equations 15 and 17, the probability
that the shortest distance of a peer in Ki to the destination
peer is ω1(r) is:

ω1(t) = [1−ω0(
√

n
2

)−
∫ t

0
ω1(t)dt](−4 · t +2

√
n)p (19)

With ς := 1−ω0(
√

n
2 ) we can transform Formula 19 into a

formula that is solvable in the same way as Formula 15.

ω1(t)
ς

= [1− 1
ς

∫ t

0
ω1(t)dt](−4t +2

√
n)p

ω1(t) = (−4t +2
√

n)pςe(2t2−2
√

nt)p
(20)

From Equations 18 and 20 we derive the average shortest
distance Dcoop

max of a peer in Ki to the destination peer.

Dcoop
max =

∫ √
n

2

0

(
ω0(r) · r +ω1(r) · (r +

√
n

2
)
)

dr (21)

Again, we cannot solve Equation 21 analytically, but we can
approximate the result.

We can derive the average path length of all queries that
reach their target from Formula 21. We start by calculating
the average path length including dropped queries Davg. We
can derive it by taking the probability that a query is not
dropped during the forwarding process into account. If we
add the probability F r that a query is forwarded r hops
to Formula 21, we derive the average path length Dcoop

avg of
queries from cooperative peers including queries that are
dropped eventually:

Dcoop
avg =∫ √

n
2

0

(
ω0(r) ·F r · r +ω1(r) ·F r+

√
n

2 · (r +
√

n
2

)
)

dr

(22)

The average path length Dd pc
avg of queries from dpc peers in-

cluding queries that are dropped eventually is:

Dd pc
avg ≤

∫ √n

0
r ·F rdr (23)

If we weigh the path lengths from Formulae 22 and 23 with
the relative frequency of the different kinds of peers, we get
the average path length including dropped queries for all
peers:

Davg = (pc + pu) ·Dcoop
avg +(pd + pud) ·Dd pc

avg (24)

B Proof of Lemma 6.1

To understand when dpc dominates cooperation, we will
now compare the expected utility functions for cooperative
peers zc and dpc peers zd (Formulae 9 and 11). If the ex-
pected utility of a cooperative peer minus the one of a dpc
peer is negative, dpc dominates cooperative behavior. We
now compute this difference.

Diff =zc− zd

=s(Dmax,F ,A ) · (1−F ) ·a · ρ̄− γ̄

γ̄−ν
·

s(Dmax,F ,A ) · (Davg−1) · f · ρ̄− c · γ̄ · r

(25)

It follows from Formula 25 that dpc dominates cooperative
behavior if the following inequation holds:

s(Dmax,F ,A ) · (1−F ) ·a · ρ̄ <
γ̄

γ̄−ν
·

s(Dmax,F ,A ) · (Davg−1) · f · ρ̄ + c · γ̄ · r
(26)

Dividing by s(Dmax,F ,A ) · (1−F ) · ρ̄ , in Formula 26, to-
gether with the fact that r = ρ̄ (see Subsection 4.1), yields
the following result:

Lemma B.1 Let the probability that a query is forwarded
be less than 100% (F < 1). Then dpc dominates coopera-
tion if the following condition holds.

a <

γ̄

γ̄−ν
· (Davg−1)

(1−F )
· f +

1
(1−F )

· c · γ̄ (6.1)

C Proof of Lemma 8.1

The C4C Mechanism gives peer dpc peers an incentive
to cooperate if their utility is lower than the one of cooper-
ative peers. To obtain the expected utilities of cooperative
peers z+

c and dpc peers z+
d if all peers use the C4C Mecha-

nism, we substitute the average path length without dropped
queries (Dmax) in the functions zc and zd with the length for
cooperative peers Dcoop

max in zc and with the path length for
dpc peers Dd pc

max in zd :

z+
c =s(Dcoop

max ,F ,A ) ·a · ρ̄− (q · ρ̄ + s(Davg,F ,A )
· (Davg−1) · f · ρ̄ +w ·φ + c · γ̄ · r)

z+
d =sd(Dd pc

max,F ,A ) ·a · ρ̄− (q · ρ̄+
ν

γ̄ +ν
· s(Dmax,F ,A ) · (Davg−1) · f · ρ̄ +w · φ̄)

(27)



In analogy to Appendix B, we derive the following lemma.

Lemma C.1 Let the probability that a query is forwarded
be less than 100% (F < 1). Then dpc dominates coopera-
tion if the following condition holds.

a <

γ̄

γ̄−ν
· (Davg−1)

(1−F Dd pc
max−Dcoop

max )
· f +

1

(1−F Dd pc
max−Dcoop

max )
·c · γ̄ (28)


