
Zur Erlangung des akademischen Grades eines
Doktors der Wirtschaftswissenschaften (Dr. rer. pol.)
von der Fakultät für Wirtschaftswissenschaften

der Universität Karlsruhe (TH)
genehmigte Dissertation.

Metamodel-based Knowledge Representation

von

Licentiaat Informatica Sara Brockmans

Tag der mündlichen Prüfung: 26.07.2007

Referent: Prof. Dr. Rudi Studer
Koreferent: Prof. Dr. Andreas Geyer-Schulz

Prüfer: Prof. Dr. Andreas Oberweis

2007 Karlsruhe

ii

Abstract

In this thesis, we investigate how the engineering of ontologies can be supported by successful
methodologies and technologies from software engineering. Thereby, our goal is to support
business partners in representing and exchanging their company’s knowledge in the form of
ontologies.

To facilitate ontology development, we introduce a solution based on the Meta Object
Facility (MOF), a metamodeling framework that is successfully used to enable the develop-
ment and interoperability of model and metadata driven software systems. First, we provide
MOF-based metamodels for the ontology languages OWL, SWRL, F-Logic, and for OWL
ontology mapping languages. We defined the metamodels in MOF, hence they can be applied
in the Model Driven Architecture (MDA) framework. The metamodels reflect the structure
of the ontology languages, whereas their instances are referred to as models, namely concrete
ontologies and rules. So called language mappings give the semantics of the metamodels by
translating the terms of the metamodels to those of the respective formalisms. Second, to ease
ontology development, we suggest a UML profile as a visual syntax for OWL ontologies as
well as for SWRL rules and OWL ontology mappings. Based on the metamodel, we provide
a prototypical implementation of the UML profile and show the practical applicability of our
approach through a case study evaluation in the pharmaceutical domain. Since a large array
of industrial strength tools is available for UML and MOF, companies are enabled to benefit
from ontologies. This facilitates the adoption of semantic technologies and their success in
real-life applications.

Our work is a first step to bring the W3C vision of a Semantic Web technology and
the OMG vision of a MDA together. While the primary purpose of this work is to enable
ontology development and maintenance with MDA technologies and tools, it also serves as a
basis for potential future developments that can be created by the flow of capabilities of the
semantic web into the software development environment.

iii

iv

Contents

1. Introduction 1
1.1. Context and Motivation . 1
1.2. Research Questions and Contributions . 2
1.3. Benefits and Overview of the Approach . 6
1.4. Readers’ Guide . 10

I. Foundations 13

2. Model Driven Architecture 15
2.1. Unified Modeling Language (UML) . 15

2.1.1. UML Class Diagrams . 17
2.1.2. Object Constraint Language . 22
2.1.3. UML Profiling Mechanism . 24

2.2. Meta Object Facility (MOF) . 25
2.2.1. The Four-Layer Architecture of MOF 25
2.2.2. Available Constructs in MOF . 26
2.2.3. Model and Metamodel Transformation in MOF 27

2.3. Conclusion . 28

3. Ontology Languages 29
3.1. Web Ontology Language (OWL) . 30
3.2. Semantic Web Rule Language (SWRL) . 32
3.3. Frame Logic (F-Logic) . 32
3.4. OWL Ontology Mapping Languages . 33
3.5. Conclusion . 34

II. Providing Metamodel-based Support for Ontologies 35

4. Metamodel Descriptions for Ontologies in OWL 37
4.1. A MOF-based Metamodel for OWL . 37

4.1.1. Ontologies and Annotations . 38
4.1.2. Entities and Data Ranges . 40

v

Contents

4.1.3. Class Descriptions . 44
4.1.4. OWL Axioms . 50
4.1.5. Class Axioms . 50
4.1.6. Object Property Axioms . 52
4.1.7. Data Property Axioms . 54
4.1.8. Facts . 56

4.2. Conclusion . 58

5. Metamodel Descriptions for SWRL Rules 59
5.1. A MOF-based Metamodel Extension for SWRL 59

5.1.1. Rules . 59
5.1.2. Predicate Symbols . 61
5.1.3. Terms . 62

5.2. Conclusion . 63

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic 65
6.1. A MOF-based Metamodel for F-Logic . 66

6.1.1. F-Logic Programs . 66
6.1.2. Terms . 66
6.1.3. Formulas . 68
6.1.4. Rules and Queries . 68
6.1.5. Logical Connectives . 72
6.1.6. Logical Quantifiers . 74
6.1.7. F-Atoms and F-Molecules . 75
6.1.8. P-Atoms . 78

6.2. Model Transformations for Rule-Extended Ontologies 79
6.3. Conclusion . 90

7. Metamodel Descriptions for OWL Ontology Mappings 91
7.1. A Common MOF-based Metamodel Extension for OWL Ontology Mappings 92

7.1.1. Mappings . 92
7.1.2. Queries . 95

7.2. A Metamodel Extension for C-OWL . 96
7.3. A Metamodel Extension for DL-Safe Mappings 97
7.4. Conclusion . 99

8. A UML Profile for Modeling Ontologies and Ontology Mappings 101
8.1. A UML Profile for Ontologies . 102

8.1.1. UML Syntax for Ontologies . 102
8.1.2. UML Syntax for Entities and Data Ranges 103
8.1.3. UML Syntax for Class Axioms and Class Descriptions 106

vi

Contents

8.1.4. UML Syntax for Properties and Property Axioms 111
8.1.5. UML Syntax for Facts . 113
8.1.6. The Ontology UML Profile . 115

8.2. A UML Profile Extension for Rules . 117
8.2.1. UML Syntax for Rules . 117
8.2.2. UML Syntax for Terms . 118
8.2.3. UML Syntax for Predicate Symbols in Atoms 119
8.2.4. The Rule UML Profile . 121

8.3. A UML Profile Extension for Ontology Mappings 121
8.3.1. UML Syntax for Mappings between Entities 122
8.3.2. UML Syntax for Mappings between Queries 124
8.3.3. The Ontology Mapping UML Profile 125

8.4. Conclusion . 127

III. Finale 129

9. Implementation and Case Study Evaluation 131
9.1. Prototype Implementation . 131
9.2. Case Study Setting . 134
9.3. Summative Evaluation . 136

9.3.1. Methodology . 136
9.3.2. Test Users . 137
9.3.3. Tasks . 138
9.3.4. Outcomes . 139

9.4. Formative Evaluation . 143
9.4.1. Methodology . 144
9.4.2. Test Users . 144
9.4.3. Tasks . 145
9.4.4. Outcomes . 145

9.5. Conclusion . 149

10. Related Work 151
10.1. Specific Ontology Support based on MOF Metamodels 151
10.2. General Visual Syntaxes for Ontology Languages 152
10.3. Conclusion . 155

11. Conclusion and Outlook 157
11.1. Summary . 157
11.2. Open Questions and Future Directions . 160

vii

Contents

A. Appendix 163
A.1. Detailed Overview of the OWL Metamodel 163
A.2. Mappings between OWL and the OWL Metamodel 189
A.3. Detailed Overview of the SWRL Metamodel Extension 196
A.4. Mappings between SWRL and the SWRL Metamodel 202
A.5. Detailed Overview of the F-Logic Metamodel 205
A.6. Mappings between F-Logic and the F-Logic Metamodel 218
A.7. Detailed Overview of the OWL Ontology Mappings Metamodel Extension . . 224
A.8. Mappings between C-OWL and the Ontology Mapping Metamodel 228
A.9. Mappings between DL-Safe Mappings and the Ontology Mapping Metamodel 230
A.10.Mappings between the Metamodel and the UML Profile 232
A.11.Questionnaire for the Summative Evaluation 250

A.11.1. A - Task Observation . 250
A.11.2. B - Usability . 251
A.11.3. C - Effectiveness and Efficiency . 252

A.12.Questionnaire for the Formative Evaluation 254
A.12.1. A - Task Observation . 254
A.12.2. B - Usability . 255
A.12.3. C - Effectiveness and Efficiency . 257

Bibliography 259

viii

List of Figures

1.1. The ontology model as a MOF-metamodel 4
1.2. The ontology metamodel and possible language mappings 6
1.3. Overview of the approach for transforming ontology models in different lan-

guages . 8
1.4. Overview of the approach for a visual syntax for modeling ontologies, rules

and ontology mappings . 9

2.1. UML class . 18
2.2. UML association, representing two properties or just one 19
2.3. UML multiplicities . 19
2.4. UML association class . 20
2.5. UML generalization . 20
2.6. UML aggregation . 21
2.7. UML composition . 21
2.8. UML dependency . 21
2.9. UML comment . 22
2.10. UML package . 22
2.11. UML object . 22
2.12. OMG’s four-layer metamodel hierarchy . 26

4.1. OWL metamodel: ontologies . 39
4.2. OWL metamodel: annotations . 39
4.3. OWL metamodel: entities . 41
4.4. OWL metamodel: entity annotations . 41
4.5. OWL metamodel: declarations . 42
4.6. OWL metamodel: object property expressions 42
4.7. OWL metamodel: data property expressions 43
4.8. OWL metamodel: data ranges . 43
4.9. OWL metamodel: propositional connectives 45
4.10. OWL metamodel: object property restrictions 46
4.11. OWL metamodel: object property cardinality restrictions 47
4.12. OWL metamodel: data property restrictions 48
4.13. OWL metamodel: data property cardinality restrictions 49

ix

List of Figures

4.14. OWL metamodel: axioms . 50
4.15. OWL metamodel: class axioms . 51
4.16. OWL metamodel: object property axioms - part 1 51
4.17. OWL metamodel: object property axioms - part 2 52
4.18. OWL metamodel: object property axioms - part 3 53
4.19. OWL metamodel: object property axioms - part 4 54
4.20. OWL metamodel: data property axioms - part 1 55
4.21. OWL metamodel: data property axioms - part 2 55
4.22. OWL metamodel: facts - part 1 . 56
4.23. OWL metamodel: facts - part 2 . 57
4.24. OWL metamodel: facts - part 3 . 58

5.1. SWRL metamodel extension: rules . 60
5.2. SWRL metamodel extension: predicate symbols 61
5.3. SWRL metamodel extension: terms . 62

6.1. F-Logic metamodel: ontologies . 66
6.2. F-Logic metamodel: terms . 67
6.3. F-Logic metamodel: formulas . 69
6.4. F-Logic metamodel: rules and queries . 70
6.5. F-Logic metamodel: logical connectives . 73
6.6. F-Logic metamodel: logical quantifiers . 75
6.7. F-Logic metamodel: F-molecules . 77
6.8. F-Logic metamodel: F-molecule host objects 78
6.9. F-Logic metamodel: methods . 79
6.10. F-Logic metamodel: P-atoms . 80

7.1. OWL mapping metamodel: mappings . 93
7.2. OWL mapping metamodel: queries . 96

8.1. UML construct for ontology . 102
8.2. UML construct for ontology import . 102
8.3. UML construct for ontology annotation . 103
8.4. UML construct for class . 103
8.5. UML construct for individual . 104
8.6. UML construct for class assertion . 104
8.7. UML construct for datatype . 104
8.8. UML construct for enumerated data range 105
8.9. UML construct for data type restriction . 105
8.10. UML construct for subclasses . 106
8.11. UML construct for n equivalent classes . 107
8.12. UML construct for disjoint union . 108

x

List of Figures

8.13. UML construct for object union description 109
8.14. UML construct for minimum cardinality restriction 110
8.15. UML construct for existsSelf restriction . 110
8.16. UML construct for object hasValue restriction 111
8.17. UML construct for data hasValue restriction 111
8.18. UML construct for object property domain and range 112
8.19. UML construct for data property domain and range 113
8.20. UML construct for property characteristics 114
8.21. UML construct for two different individuals 114
8.22. UML construct for object property assertion 115
8.23. UML construct for negative data property assertion 115
8.24. UML construct for rule - example one . 118
8.25. UML construct for rule terms . 119
8.26. UML construct for rule - example two . 120
8.27. UML construct for built-in predicate . 121
8.28. An ontology depicted using the UML profile - example one 122
8.29. An ontology depicted using the UML profile - example two 123
8.30. UML construct for ontology mapping definition 124
8.31. UML construct for mapping - example one 124
8.32. UML construct for mapping - example two 125
8.33. UML construct for mapping - example three 125
8.34. UML construct for mapping - example four 126

9.1. Architecture of the prototype implementation 132
9.2. The main components and models used during the GMF-based development

of OntoModel . 133
9.3. A screenshot of the implemented prototype 134
9.4. Intuitiveness . 140
9.5. Acquaintance . 142
9.6. Overall effectiveness . 143
9.7. Intuitiveness of ontology modeling . 146
9.8. Getting acquainted with the given ontology 147
9.9. Intuitiveness of ontology mapping modeling 148
9.10. Suitability of the UML-notation for modeling ontologies 148
9.11. Overall effectiveness of the approach . 149

xi

List of Figures

xii

List of Tables

9.1. Difficulties needed to overcome in order to complete the different tasks 139
9.2. Satisfaction with notation for ontology elements 141
9.3. Clear and simple sequences of steps to accomplish an action 141
9.4. Difficulties needed to overcome in order to complete the different tasks 146

xiii

List of Tables

xiv

1. Introduction

1.1. Context and Motivation

Ontologies and accompanying rules are an important means for enabling better collabora-
tion and improved communication by enabling machine-understandable semantics of data
[CPL+05, BMW+07]. For companies, streamlining the exchange of business information
means reduced costs as well as other gains in order processing time, product cycle time, time-
to-market, and customer satisfaction. The evidence of these facts brings an increasing number
of companies to representing or transforming their knowledge into shared models in the form
of (rule-extended) ontologies, for data integration in any kind of application1. However, many
employees are not familiar with ontology formalisms and need support in building their on-
tology.
Furthermore, market participants deciding to cooperate and exchange ontologies need

them to be aligned. Their ontology formalisms can be the same or, as in most cases, they
can be different and then have to be transformed to a common formalism. But even when
both trading partners are already using the same ontology language, or when their formalisms
have been aligned, typically the ontologies themselves do not directly match, and ontology
mappings need to be defined to be able to align them fully.

As a prominent example for this situation, we look at the pharmaceutical sector. More
specifically, we examine the cooperation of several Spanish laboratories called Pharmain-
nova, which has the objective of improving the commercial relations between labs and their
customers and suppliers. To decrease time and cost, the consortium aims at introducing elec-
tronic interchanges, whereas electronic invoicing is a first axis of technology improvement
they aim at. The main steps to introduce the electronic exchange of invoices are secured
sending of digital invoices over internet, reception and storage of electronic invoices, con-
necting the electronic invoice platform to the companies’ systems, and the management of
the complete invoice cycle. This project involves several thousands of laboratories and their
customers and suppliers. First improvements in introducing electronic invoicing were mainly
closed systems that were based on a specific data format. Because of the closed system and
high implementation costs, these solutions were not frequently used.
Fundamentally problematic in cases such as this use case is the heterogeneity of their

1Note that ontologies on its own are very expressive but still not expressive enough for what is needed in most
companies. Therefore a rule extension is essential.

1

1. Introduction

models as well as of the representation languages. Currently, technologies do not allow to
build generic solutions which can automatically process any type of model or language. Two
main possible solutions are applied for electronic invoicing. Some associations agree to define
a common invoicing infrastructure in terms of shared platforms, invoice formats, invoice
structures and processes. In other cases, a common invoicing infrastructure is identified
and for each partner a specific plug-in is implemented to automate invoice exchange. The
Pharmainnova partners decided to combine these options by defining a common invoice
model but keeping the internal infrastructure of the partners. To handle the heterogeneity of
the invoice models, they apply ontologies with which the semantics of invoicing is defined and
maintained. From each partner’s invoice model a separate ontology is built2 and consequently
mapped to one central reference ontology provided by Pharmainnova. Hence, although most
or all partners have different invoice models, the partners do not need to change the invoice
model nor the system they are using.

Also cases with just two partners each having an ontology and wanting to cooperate, bring
the same issues: partners need to transform their ontology into the same language, and the
ontology models itself need to be aligned. Additionally, users need support in building on-
tologies and ontology mappings.
The following section puts these issues into research questions, and answers the questions

with a compact description of our contributions.

1.2. Research Questions and Contributions

When experiencing the issues arising with ontology engineering, and identifying the success-
ful methodologies and technologies in the area of software engineering, an interesting central
research question comes up:

Central Question How can ontology engineering be supported using existing software en-
gineering methodologies and technologies?

Throughout our work, we divide this central question into two main questions. Our first main
question aims at investigating how to rely on success stories in the software engineering field
for supporting the use of different ontology languages by different cooperating partners:

Main Question I How can existing approaches in software engineering be applied to support
the use of different ontology languages by different partners?

Not all partners that want to cooperate utilize the same ontology language and hence their
ontologies need to be aligned. We looked at the ontology formalisms currently available to
decide on which languages we want to support in our work. In doing so, we chose to support

2In case the company already has an ontology available but in a different ontology language than the one used
by Pharmainnova, the ontology is transformed into the common language.

2

1.2. Research Questions and Contributions

the most common languages, taking into account both standardized ontology languages and de
facto standards, and so try to support as many users as possible. We want to allow automatic
transformations of models in different languages, as a solution to the use of different languages
by different partners. That way, partners can incorporate an aligning facility into or between
their existing systems without having to worry about the use of a different ontology language.
Additionally, when looking ahead and realizing that the range of available ontology languages
will be expanding for a while, we aim at an extensible solution.
Thus, to achieve a solution for the first main question, we asked ourselves the following

questions:

Question I.1 Which are the ontology languages to be supported?

Question I.2 How can models defined in one language be automatically transformed to an-
other language?

Question I.3 How can an extensible solution be provided, supporting the current semantic
web area in which it is not in every case clear yet which language will be the (de facto)
standard in the future?

Although the Web Ontology Language (OWL, [Mv03, PSHM07]) is well established as the
standard ontology language for representing knowledge on the web, at the same time, the rule
language F-Logic has shown its practical applicability in industrial environments. We decided
to focus on these two languages with respect to the model transformations.
As an answer on the second and the third question, we profit from the highly extensible

Model Driven Architecture framework (MDA, [MKW04, Fra03]) and its Meta Object Facility
(MOF, [Obj06, Fra03]) which are very successful in software engineering applications. We
provide a metamodel built on MOF supporting rule-extended ontologies in OWL and the
Semantic Web Rule Language (SWRL, [HPSB+04])3, as well as a metamodel built on MOF
supporting rule-extended ontologies in F-Logic [KLW95].
The general idea of using a MOF metamodel based approach is depicted in Figure 1.1: A

metamodel for ontologies and rules is defined in MOF4, i.e., it is defined in terms of the MOF
meta-metamodel. Constraints in the Object Constraint Language (OCL, [WK04]) make the
metamodel more precise. A metamodel refers to a model of a language, whereas the instances
of the metamodel are referred to as models. In our case, models thus refer to actual ontologies
and rules. Language mappings from the metamodel define the relationship with the particular
formalisms by translating the terms of the metamodel to those of the formalisms, and so
provide the semantics for the metamodel.
As MOF metamodels are all defined in a standardized way (using the MOF concepts),

3Note that SWRL is the rule language built on top of OWL.
4Note that, although the figure only shows one metamodel, we do provide two metamodels: one for OWL and
SWRL, one for F-Logic.

3

1. Introduction

Meta Object Facility
(MOF)

Metamodel for
Rule-extended Ontologies
and Ontology Mappings

Rule-extended Ontologies
and Ontology Mappings

Meta-
meta-
model

Meta-
model

Model

is defined in terms of

is defined in terms of

Figure 1.1.: The ontology model as a MOF-metamodel

transformations can be defined between the metamodels and hence automatic model trans-
formations can be provided from F-Logic on the one hand to OWL and SWRL on the other
hand, and vice versa. Hence, our work provides a step towards the bridge between F-Logic
and OWL.

The second main question we address in our work looks for succesful modeling paradigms
in the software engineering field that can be utilized for modeling ontologies, rules and ontol-
ogy mappings:

Main Question II How can existing approaches in software engineering be applied to sup-
port the modeling of ontologies, rules and ontology mappings?

Many users are not familiar with logic, or just with textual ontology languages. Even when
they are somehow familiar with it, manual work is known to cause more errors as the user
is not prevented from writing incorrect statements. Although some approaches already exist
to assist the user in modeling ontologies, the user still needs more abstraction from specific
aspects of ontology languages. Additionally, it is beneficial to use a paradigm with which the
user is familiar, or which is shown to be intuitive.
We divide our second main question into the following partial questions:

Question II.1 Which requirements do users have that are not familiar with textual syntaxes
of ontology languages?

Question II.2 How can manual work be avoided, resulting in fewer errors and hence im-
proving overall quality?

Question II.3 How can we rely on modeling paradigms with which users are generally fa-
miliar?

4

1.2. Research Questions and Contributions

Question II.4 How can shortcomings from existing approaches for ontology engineering be
considered?

Question II.5 How can be abstracted away from specific ontology language aspects when
modeling ontologies?

As an answer to these questions, we provide a common visual syntax for rule-extended on-
tologies and ontology mappings, based on the standard Unified Modeling Language (UML,
[Fow03, Gro05b]). A UML profile5 on top of the metamodel for OWL and SWRL6 and an
additional metamodel extension for OWL ontology mappings can employ the extensibility
features of UML to allow a visual notation for the modeling of ontologies, especially for peo-
ple familiar with UML. Leveraging the well-known UML for this purpose is a step towards
a model driven approach for modeling and implementing ontologies. The validity of UML
models as instances of the metamodel is ensured through the metamodel’s OCL constraints.
The user is guided in visual modeling in the sense that only valid models can be built. Relying
on the standard language UML allows us to make use of existing tool-support as well as of
available user experience.
In the answer on the first main question we do not provide a metamodel for OWL ontology

mappings. This extension for the metamodel for OWL and SWRL is new and, for lack
of any standardized or commonly accepted formalisms, we provide a common metamodel
covering the existing OWL ontology mapping formalisms. Constraint extensions provide
specific support for the two most well-known formalisms C-OWL [BGvH+03] and DL-Safe
Mappings [HM05]. Also for this ontology mapping extension for the metamodel, we provide
language mappings defining the relation between the metamodel and the languages. Figure
1.2 shows an overview of the OWL metamodel and its extensions. With OWL we have a
standard for representing ontologies, therefore we provide a metamodel of OWL directly,
with a one-to-one translation. For the other aspects of ontologies that we support, rules and
mappings, no such standards exist yet. In favor of general applicability we therefore provide
generic metamodels for these extensions that allow translations to different formalisms,
as the figure demonstrates. MOF allows to add additional modules extending the OWL
metamodel when desired. We provide the developed solution as a prototype implementation,
on which we conducted an evaluation based on our use case. In this evaluation, the end-users
themselves were the participants.

Most of our work has been published before in a number of conference papers. [BVEL04],
[BHHS06], [BGSSH06], [BHS06a] and [BHS06b] refer to the most relevant publications for
our contributions.

5UML profiles, discussed in Section 2.1.3 starting on page 24, are extensions of the UML language to adapt it
for specific domains or applications.

6Note that we focus on OWL, as decided in answering the first main question.

5

1. Introduction

Ontology Metamodel Ontology Languages / Formalisms

OWL Metamodel

Rules
Metamodel

Mapping
Metamodel

...

OWL

SWRL

...

C-OWL

DL-safe
Mappings

...

...

extends

Figure 1.2.: The ontology metamodel and possible language mappings

1.3. Benefits and Overview of the Approach

For easier and more intuitive modeling of ontologies, rules and ontology mappings, we rely
on a visual modeling paradigm. Visual syntaxes have shown to bring many benefits that sim-
plify conceptual modeling [Sch02]. In particular visual modeling of ontologies decreases
syntactic and semantic errors and increases readability. It makes the modeling and use of on-
tologies much easier and faster, especially if tools are user-friendly and appropriate modeling
languages are applied. The usefulness of a visual syntax for modeling languages has been
shown in practice; visual modeling paradigms such as the Entity Relationship model (ER,
[Che76]) or UML are used frequently for the purpose of conceptual modeling and software
engineering. Consequently, the necessity of a visual syntax for KR languages has been argued
frequently in the past [Gai91, Kre98]. Particular representation formalisms such as conceptual
graphs [Sow92] or Topic Maps [BBN99], for example, are based on well-defined graphical
notations. The absence of a dedicated visual syntax for ontologies7 has lead to several propos-
als. [Gai91] proposed a particular visual notation for the CLASSIC description logic. Newer
developments have abandoned the idea of a proprietary syntax and proposed to rely on UML
class diagrams. [CP99] suggested to directly use UML as an ontology language, whereas
[BKK+01] proposed to predefine several stereotypes such that a more detailed mapping from
UML to the primitives offered by the DAML+OIL description logic can be achieved. The lat-
ter further argues that the UMLmetamodel should be extended with elements such as property
and restriction such that UML is more compatible with KR languages such as OWL.
UML methodology, tools and technology seem to be a feasible approach for supporting

the development and maintenance of ontologies together with their rules and mappings.
However, an ontology can not be sufficiently represented in UML [HEC+04] and a dedicated
visual ontology modeling language is needed. Both representations share a set of core
functionalities such as the ability to define classes, class relationships, and relationship

7Which can be seen as a direct result of the criticisms about the semantics of early diagrammatic semantic
networks [Woo75, Bra79].

6

1.3. Benefits and Overview of the Approach

cardinalities. But despite this overlap, there are many features which can only be expressed in
an ontology language, and others which can only be expressed in UML. Examples for these
differences in expressiveness are transitive and symmetric properties in OWL or methods in
UML. For a full account of the conceptual differences we refer the reader to [Gro06b]. We
rely on UML as a visual approach to our goal.

We need several language transformations, from the visual UML syntax to the logical on-
tology languages as well as between different ontology languages, and take advantage of the
metamodeling features of the MDA. MDA provides the means for the specification and in-
tegration of modeling languages in a standardized, platform independent manner. MOF pro-
vides the language for creating models of modeling languages, called metamodels, whereas
UML defines the language for creating models corresponding to such metamodels. Defining
the ontology model in terms of a MOF compliant metamodel yields a number of advantages:

1. Interoperability with software engineering approaches In order for semantic tech-
nologies to be widely adopted by users and to succeed in real-life applications, they must be
well integrated with mainstream software trends. This includes in particular interoperability
with existing software tools and applications to put them closer to ordinary developers. MDA
is a solid basis for establishing such interoperability. With the ontology model defined inMOF,
we can utilize MDA’s support in modeling tools, model management and interoperability with
other MOF-defined metamodels.

2. Standardized model transformations MOF specifications are independent of particu-
lar target platforms (e.g. programming languages, concrete exchange syntaxes, etc.). Industry
standardized mappings of the MOF to specific target languages or formats can be used by
MOF-based generators to automatically transform the metamodel’s abstract syntax into con-
crete representations based on XML Schema [TBMM04], Java, etc. For example, using the
MOF-Java mapping, it is possible to automatically generate a Java API for a MOFmetamodel.

3. Self-defined model transformations As MOF-based metamodels are all built using
the same standardized constructs, mappings between them can be defined in a straightforward
way. Based on these mappings between the metamodels, automatic transformations between
models of the concerning languages can be performed.

4. Reuse of UML for modeling With respect to interoperability with other metamodels,
UML is of particular importance. UML is a well established formalism for visual modeling
and has been proposed as a visual notation for knowledge representation languages as well
[HEC+04, BKK+01, BKK+02, CP99, Kre98]. While UML itself lacks specific features of
knowledge representation languages, the extension mechanisms – UML profiles – allow to
tailor the visual notation to specific needs.

7

1. Introduction

5. Independence from particularities of specific formalisms The metamodeling
approach of MDA and MOF allows to define a model in an abstract form independent from
the particularities of specific logical formalisms. This enables to be compatible with currently
competing formalisms (e.g. in the case of rule- or mapping languages), for which no standard
exists yet. Language mappings define the relationship with particular formalisms and provide
the semantics for the ontology model. Furthermore, the extensibility capabilities of MOF
allow to add new modules to the metamodel if required in the future.

Figure 1.3 depicts an overview of our approach for transforming ontology models in
different languages and shows how its fits in the MOF architecture.

Meta Object Facility (MOF)

Metamodel for
OWL Ontologies Metamodel for

Rule-extended
Ontologies in F-Logic

Ontology in OWL and
Rules in SWRL

Rule-extended
Ontology in F-Logic

Mappings
+ SWRL Rules

Automatic
transformations

defined in
terms of

defined in
terms of

defined in
terms of

defined in
terms of

Figure 1.3.: Overview of the approach for transforming ontology models in different lan-
guages

The core of our work is a MOF-based metamodel for OWL ontologies and is displayed left
in the figure. The metamodel is grounded in MOF, in the sense that it is defined in terms of the
MOF meta-metamodel. Additionally, the core module is extended by a module that provides
rule features. The OWL ontology metamodel and its SWRL extension are directly related to
the OWL respectively the SWRL language. As is depicted by the box below and its arrow to
the metamodel, OWL ontologies and SWRL rules instantiate the metamodel. The constructs
of the specific languages have thus a direct correspondence with those of the metamodel.
The right hand side of the figure shows a metamodel for F-Logic. With this metamodel,

8

1.3. Benefits and Overview of the Approach

we provide support for F-Logic as another important ontology language. Ontologies in F-
Logic instantiate the metamodel. Based on mappings between the metamodel for F-Logic
and the metamodel for OWL and SWRL, automatic structural model transformations between
models of both formalisms can be provided. The semantics of the models on both sides of
the transformation are defined through the language mapping between the metamodel and the
language itself.

Meta Object Facility (MOF)

Metamodel for
OWL Ontologies

Ontology in OWL,
Rules in SWRL, and

OWL Ontology
Mappings

Automatic
transformations

defined in
terms of

defined in
terms of

UML Profile
(Visual Syntax) for

Ontologies, Rules and
Ontology Mappings

UML Model of a
Networked Ontology

defined in
terms of

defined in
terms of

+ SWRL Rules
+ OWL Ontology

Mappings

Mappings

Figure 1.4.: Overview of the approach for a visual syntax for modeling ontologies, rules and
ontology mappings

Figure 1.4 presents the approach for providing a visual syntax for modeling ontologies,
rules and ontology mappings.
An additional extension for the metamodel for OWL and SWRL provides features of ontol-

ogy mappings. In many application scenarios, only particular aspects are needed and only the
relevant modules need to be supported and used. However, the two extensions for rules and
mappings build on the core metamodel, and the extension for ontology mappings additionally
builds on the SWRL extension, thus they can not stand on their own. Since no consensus
exists yet on which OWL mapping language is most suitable, the ontology mapping extension
has a generic character in that it is formalism independent and allows a language mapping to
different OWL ontology mapping languages. Extensions in the form of OCL constraints can
specialize the mapping metamodel for specific languages.
On the left, the figure presents a UML profile which is also grounded in MOF. Our proposed

UML profile defines a visual notation for supporting the specification of ontologies, rules and

9

1. Introduction

ontology mappings. The graphical constructs for ontologies and rules are specific for OWL
and SWRL. For ontology mappings, our goal is to allow the user to specify the mappings with-
out having decided yet on a specific mapping language or even on a specific semantic relation.
This is reflected in the proposed visual syntax which is, like the metamodel, independent from
a concrete mapping formalism. The figure shows the mappings that are established in both
directions between the metamodel and the profile.
The left box at the bottom depicts that specific UML models instantiate the UML profile.

Within the MOF framework, the UML models are translated into definitions based on the
mappings between the metamodel and the UML profile. In case of ontology mappings, the
decision about a concrete mapping formalism is taken in this translation step, which is after
the visual modeling of the ontology mappings. This decision is based on the types of the
mappings that were modeled. Using the mapping metamodel and the sets of constraints that
are defined on it for specific ontology mapping languages, a so-called constraint checker
could check to which set of constraints, so to which concrete mapping formalism, a model of
mappings conforms.

In our case study, we apply our contributions to support the Pharmainnova partners in build-
ing their ontologies and mapping them to the reference ontology. Based on the metamodel and
its language mappings, as well as on the UML profile and its mappings to the metamodel, a
prototype is implemented with which we conducted two experiments to evaluate our approach
on usability for the end user.

1.4. Readers’ Guide

Part I of this thesis introduces the foundations for our work. At first, the Model Driven
Architecture with its two main components, namely the Unified Modeling Language and the
Meta Object Facility, is addressed in Chapter 2 starting on page 15. Chapter 3 starting on
page 29, introduces the different ontology, rule and ontology mapping languages.

Part II addresses our own contribution. Chapter 4 begins with the description of the
metamodel for ontologies in OWL. Appendix A.1 provides a full account of the metamodel,
whereas Appendices A.2 provides the language mappings to OWL. Similarly, Chapter 5
and accompanying Appendices A.3 and A.4 introduce the metamodel extension for SWRL.
Next, Chapter 6 describes the metamodel for ontologies in F-Logic and addresses the
transformations of models in F-Logic to OWL and SWRL. Appendix A.5 gives a detailed
overview of the metamodel and Appendix A.6 again provides the language mappings. As
the last metamodel part, Chapter 7 and accompanying Appendix A.7 present a common
metamodel extension for OWL ontology mappings as well as constraints defining extensions
of the common metamodel for specific mapping formalisms, whereas Appendices A.8 and
A.9 provide the language mappings for two specific OWL ontology mapping languages

10

1.4. Readers’ Guide

C-OWL and DL-Safe Mappings. Finally, Chapter 8 illustrates a visual syntax for modeling
rule-extended ontologies in OWL and SWRL, as well as OWL ontology mappings. Appendix
A.10 presents the relationship between the metamodel and the UML profile.

Part III describes the implementation as well as the evaluation of our case study in
Chapter 9, followed by a discussion of related work in Chapter 10. Finally, a conclusion with
ideas for future work is provided in Chapter 11.

11

1. Introduction

12

Part I.

Foundations

13

2. Model Driven Architecture

The Model Driven Architecture [MKW04, Fra03] is an initiative of the standardization orga-
nization OMG (Object Management Group) to support model-driven engineering of software
systems based on the idea that modeling is a better foundation for developing and maintaining
systems. MDA utilizes modeling as technique to raise the abstraction level and to effectively
manage the complexity of systems. Models increase productivity, under the assumption that
it is cheaper to manipulate the model, which is an abstraction of the system, than the system
itself.
Using the MDA methodology, system functionality may first be defined as a technology

neutral model through an appropriate modeling language. Then, using automated tools, this
can be translated to one or more technology specific models. Two of the fundamental com-
ponents of MDA that are used in our work, are the Unified Modeling Language and the Meta
Object Facility. We introduce them in Section 2.1 respectively 2.2. We conclude with a short
summary in Section 2.3 on page 28.

2.1. Unified Modeling Language (UML)

The UnifiedModeling Language [Fow03, Gro05b]1 driven by the OMG is a fundamental com-
ponent of MDA. UML is the unification of many existing object-oriented graphical modeling
languages of the late 1980s and the early 1990s. As a graphical notation, UML is independent
of the methodology for model design. Regardless of the methodology that one uses, UML
can be used to express the results. By now, UML has become a well-established and popular
standard helping in designing and describing system and domain models.
We mainly apply UML for a visual syntax for ontologies, rules and ontoloy mappings.

Additionally, we present our metamodels using UML to make them more understandable for
the reader.

People use UML in three different ways. The first and most common way is to use UML
for drawing sketches. It helps to communicate some aspects of a system, either by drawing
the UML diagram before writing code or by building a UML diagram from code, and hence
ease the understanding of the code. In this way, UML is used as a support in communication

1The current version of the language is UML2. When mentioning UML throughout this thesis, we always refer
to UML2.

15

2. Model Driven Architecture

and discussion. It is an informal and dynamic use mostly by drawing on a whiteboard, or in
documents where selective communication is more important than complete specifications.
Secondly, UML can be used for 'blueprints', when it rather is completeness that matters.

In software engineering, the designer draws a detailed design for the programmer, so that the
programmer does not need a lot of time to understand what has to be implemented and with
which details. With reverse engineering of blueprint UML diagrams, detailed information
could be drawn about existing code, to allow developers to understand the details more eas-
ily. Clearly, the use of UML for blueprints requires much more sophisticated tools than for
sketches.
Thirdly, another way of using UML is to use it as a programming language [MB02]. When

used in this form, the whole system is specified in UML. The diagrams are the code, and
they are compiled directly to executable code, which makes the UML diagram become the
source code. When using UML as a programming language, especially sophisticated tools are
needed.
Orthogonal to these three ways of using UML, one can distinguish two types of modeling

with UML: conceptual modeling in general and specific software modeling [Fow03]. When
modeling conceptually, a modeler applies UML to describe the concepts of a domain. Soft-
ware modeling is without any doubt the most familiar specific type of conceptual UMLmodel-
ing, where the elements in a UML diagram map fairly directly to the elements in the specified
software system. It can be noticed that UML supports a broad set of goals people can have
when modeling. For all this, UML defines thirteen types of diagrams, which can be divided
into two categories: structure diagrams and behavior diagrams.

Structure Diagrams emphasize which things must be in the system or the domain being
modeled:

• A class diagram describes the entity types (classes) with their features as well as the
relationships between them;

• a component diagram highlights the structure and the connections of the system’s com-
ponents;

• a composite structure diagram displays the runtime decomposition of a class;

• a deployment diagram models the run-time architecture of a system;

• an object diagram displays example configurations of instances;

• a package diagram highlights the compile-time hierarchic structure of the model.

Behavior Diagrams emphasize what must happen in the system being modeled:

• An activity diagram describes the procedural and parallel behavior of the system;

16

2.1. Unified Modeling Language (UML)

• a state machine diagram highlights how events change an object over its life;

• a use case diagram displays how users interact with a system;

• a communication diagram describes the interaction between objects while emphasizing
links;

• a sequence diagram describes the interaction between objects while emphasizing the
sequence of the interactions;

• a timing diagram describes the interaction between objects while emphasizing timing;

• an interaction overview diagram is a combination of a sequence diagram and an activity
diagram.

It is often allowed to use an element from a certain diagram type in another diagram. The
UML standard specifies which elements are generally used in certain diagram types, but it
is not a prescription. UML has rather descriptive instead of prescriptive rules (at least when
not used as programming language). Moreover, UML does not only consist of the graphical
notation, but provides a MOF metamodel2 as well, defining all concepts of the language.
From a MDA standpoint, UML has some great strengths. Firstly, it is not one fixed language
but allows to define extensions. Furthermore, UML allows to raise the abstraction level for
software development and domain modeling.

Of all UML diagram types, the class diagram is the most relevant for our work because
of the specific objective to represent domain models. We introduce UML class diagrams in
Section 2.1.1. Next, Section 2.1.2 starting on page 22 addresses the possibility to augment
UML diagrams with constraints to achieve precision. Finally, Section 2.1.3 starting on page
24 discusses the possibilities to extend UML for specific domains.

2.1.1. UML Class Diagrams

The class diagram notation is the backbone of UML. This type of static structure diagram de-
scribes the structure of a domain by showing the types of objects together with their properties
and the relationships between them. Class diagrams display which elements interact but not
what happens when an interaction takes place. We introduce the available constructs for UML
class diagrams.

Class As one can tell from the name, the central element in UML class diagrams is
the class construct. A class represents a type of entity in the domain and encapsulates
information about instances of that entity type. Figure 2.1(a) shows how UML depicts a

2For this section it suffices to know that a MOF metamodel is a model of a language, specifying the constructs
in the language.

17

2. Model Driven Architecture

class as a box carrying the name of the entity type. Figure 2.1(b) demonstrates optional
compartments defining features of the class. Attributes, which appear in one of the two
optional compartments, contain the properties, the structural features of the entity type. Each
such property contains a name and optionally a type, an indication whether the property
is mandatory (cardinality 0 or 1) and an initial value. A ”/” foregoing the attribute’s name
can indicate that the value of the attribute is derived from other attribute values. The other
primary optional compartments is not really used in domain models but rather in models of
software systems. It defines operations, called methods in programming terms, through their
name, optional parameters and the return type. Other compartments may be defined as well,
for example to define constraints that are defined on the class. When a class is defining an
entity type of which no instances exist, for example when it is only defined to generalize
other classes, this is called an abstract class which is commonly illustrated by an italicized
class name.

ClassName

(a) Without compartments

ClassName

attribute: Type[0..1] = initialValue

operation(arg list): return type

(b) With compartments

Figure 2.1.: UML class

The other principal elements in UML class diagrams are relationships. We highlight the
primary kinds of relationships in UML class diagrams.

Association Association is probably the best-known type of relationship in UML class di-
agrams. Although it is often used, it actually means exactly the same thing as an attribute in
a class box, being just an alternative way of representation. Usually attributes are used when
the attribute value is rather something simple, like a boolean or an integer. Otherwise, it is
common to use an association. Additionally, an association can be bidirectional, represent-
ing a pair of properties. Figure 2.2 shows that associations are graphically represented as a
solid line between the classes. The arrow indicates the direction of the relationship. At the
target end of the line, a property name can be shown as the role of the class on the other side.
However, this is not mandatory; if a name is needed, for example in a constraint, the target
class name with lower case is used. We explained that a ”/” can forego an attribute’s name
in case of a derived attribute value. The same counts for associations with derived property
values. An association can also carry specific property-strings between curly brackets to indi-

18

2.1. Unified Modeling Language (UML)

cate additional properties. A property-string that is often used is {ordered}, indicating that the
elements at the end of the association have a specific order.
At the beginning as well as at the end of an association, multiplicities can indicate the

number of objects that participate in the association. The most common multiplicities, which
we present in Figure 2.3, are 1 (exactly one), 0..1 (0 or 1), 1..* (at least one, without upper
bound), and * (0 or some, without upper bound).
Lastly, an association class can be defined for adding certain extra features to the associ-

ation. Figure 2.4 shows how a third class is connected to the middle of the association to
represent an association class.

ClassA

ClassA ClassB

ClassB
role of A

role of B

role of B

Figure 2.2.: UML association, representing two properties or just one

Class

Class

Class

Class

1

*

1..*

0..1

Figure 2.3.: UML multiplicities

Generalization When several entity types have similarities but also differences, this can be
represented by generalizing them into a superclass. A class which is a special kind of that

19

2. Model Driven Architecture

ClassA

Association
Class

ClassB

Figure 2.4.: UML association class

class, is called a subclass of that class. In software engineering, this setting is known as inher-
itance. In case of such relationship between a superclass and its subclasses, everything which
is said about the superclass, also counts for the subclasses (but not the other way around).
Any instance of a subclass is an instance of the superclass, too. Figure 2.5 demonstrates how
this relationship in UML class diagrams is depicted by a clear triangle shape at the side of the
superclass. A solid line connects the triangle with one or more subclasses.

Supertype

Subtype1 Subtype2

Figure 2.5.: UML generalization

Aggregation A UML aggregation can be seen as an association with a part-of relationship,
representing a collection or container. Figure 2.6 shows how aggregations are represented as
a clear diamond shape at the side of the containing class.

Composition A composition relationship in UML is similar to an aggregation, but with
composition, destroying the container implies destroying the contents too. Consider, for ex-
ample the relationship of a company to its departments. Both company and department are

20

2.1. Unified Modeling Language (UML)

Class

Figure 2.6.: UML aggregation

modeled as classes, and a department cannot exist if the company does not exist. Figure 2.7
demonstrates how a black diamond shape represents a composition relationship in UML.

Class

Figure 2.7.: UML composition

Dependency A dependency is a relationship between two elements where changes to one
element may cause changes to the other element. Dependencies can be specified between all
sorts of UML elements. Many UML relationships essentially imply a dependency, e.g. some
navigable associations between classes. Figure 2.8 presents how UML depicts a dependency
as a dashed arrow pointing from the dependent to the independent element. Additionally,
dependencies can be mutual.

DependentClass IndependentClass

Figure 2.8.: UML dependency

Comment Comments in the form of notes can be added to UML class diagrams, as to any
other UML diagram. Figure 2.9 shows how notes are drawn. They can be on their own next
to the diagram, or connected to a specific element via a dashed line. In contrast to constraints,
which are depicted in curly brace brackets and represent rules that the model must follow, a
note is just additional information for reference.

Package UML provides the package construct to allow better readibility of class diagrams,
grouping similar or related classes and their relationships. UML packages can be nested,

21

2. Model Driven Architecture

Some useful
text

Figure 2.9.: UML comment

and elements belonging to the same package can never carry the same name. Figure 2.10
demonstrates how a tapped folder represents a package, which can additionally be related
to other packages, similar to relationships between classes. The access to an element from
another package is carried out via its pathname, composed of the name of the other package,
a twofold colon and the name of the element.

PackageName

Figure 2.10.: UML package

Object Finally, although strictly seen not belonging to the class diagrams, we represent the
UML notation for objects as it is important for our work. Figure 2.11 shows how an object is
presented underlined in a class box, together with the optional name of the class to which it
belongs.

Objectname: Class

Figure 2.11.: UML object

2.1.2. Object Constraint Language

To add precision to UML diagrams, one can express constraints that must hold for every
model. For this, UML allows to use any language, with the only requirement that the con-

22

2.1. Unified Modeling Language (UML)

straints must be put inside braces ({}) when they are depicted directly in the UML diagram. A
modeler can choose to use natural language or a programming language, or UML’s formal
Object Constraint Language (OCL, [WK04, Gro06a]) based on predicate calculus. Although
the formal OCL notation demands the modeler to be familiar with the language, it lowers the
risk of misinterpretation, which could exist in case of ambiguous natural language. In our
work, we utilize OCL to specify the constraints on the metamodels.

OCL is a declarative language defining restrictions. Constraints defined in OCL return only
a value without causing any side effects (for instance when the constraint is violated). OCL
provides some built in types like integers, strings or collections, and types can be constructed
from the entities of a UML model. A context definition in front of an OCL expression can
specify the model element for which the expression is defined. Typically, UML diagrams
express OCL expressions within notes or in the definitions of classes in a UML diagram. We
present them separate from the diagrams. Four types of constraints are supported:

• An invariant is a constraint that must hold true for all instances of a particular element,
e.g. all objects that belong to a given class;

• a precondition is a constraint that must hold true when the execution of a particular
operation is about to begin;

• a postcondition is a constraint that must hold true when the execution of an operation
has just ended;

• a guard is a constraint that must be true before a state transition fires.

Throughout our work, we only need invariant constraints. Examples 1 and 2 illustrate the use
of them.

Example 1 Imagine an example model containing a class 'Customer' which has an attribute
'age'. The following is a simple attribute invariant constraint which could be defined to
restrict the attribute’s value:
context Customer inv :
age ≥ 18

Example 2 Imagine another example model of a class 'Treatment' which has an association
'includes' to a class 'Medicament', and an association 'helps' to a class 'Person'. Additionally,
the class 'Medicament' has an attribute 'hasMinimumAge' and the class 'Person' has an
attribute 'hasAge', both having an integer as value. Now, one could define the following
invariant constraint on this model expressing that the age of the person using a treatment
(an instance of the class 'Treatment'), must not be lower than the minimum age of the
medicaments of the treatment:

23

2. Model Driven Architecture

context Treatment inv :
helps.hasAge ≥ includes.hasMimimumAge

2.1.3. UML Profiling Mechanism

UML has the ability, via the profiling mechanism [Gro05b], to add features so that additional
meanings can be adduced, or to confine the language if only specific concepts are to be used.
The UML profile mechanism tailors UML to specific application areas, allowing to define
UML dialects. By means of general-purpose UML-tools, one can define and use additional or
restricted modeling constructs in the form of UML profiles.

The available adaptation constructs for UML profiles are stereotypes. Stereotypes can be
attached to any element of the UML vocabulary to indicate that the element is different from
other elements of that type. A stereotype consists of a keyword surrounded by guillemets
(<< >>). For instance in a UML diagram of a software system, classes can be classified
as representing objects of the problem domain (<<entity>>), objects of the user interface
(<<boundary>>) or controlling functions in the application (<<control>>).

A stereotype extending the UML metamodel element Class is added right above the
class name in the class box. For attributes, stereotypes can be prepended to the attribute’s
declaration in the class box. Additionally, icons can be specified as an alternative notation to
represent a stereotyped model element.
Additionally, the definition of a stereotype can include attributes that act as tags. Such tags are
written as tag name '=' tagged value. The modeler adds the values of such tags to instances
of the extended UML model elements. For example, for the previously introduced stereotype
<<entity>>, the tagged value baseClass = Class could be defined.

As an alternative to adapting UML via profiles, it can also be extended by adapting its
metamodel, since UML is defined via MOF. However, when using the profile mechanism
one can benefit from generic UML tools that support UML profiles, whereas in case of the
heavyweight extension via the metamodel, a modeler could not easily make use of existing
tools. This is clearly the main advantage of the profile extension alternative. However, the
disadvantage of UML profiles is that the extension possibilities are restricting, especially in
comparison to the heavyweight alternative. For our work, the available extension possibilities
of the profile alternative suffice, so we take the big advantage of benefitting from existing
generic UML tools.

24

2.2. Meta Object Facility (MOF)

2.2. Meta Object Facility (MOF)

When describing a universe of discourse in the real world, objects are being classified accord-
ing to their common attributes. Furthermore, when refering to the objects, some of their prop-
erties which are not relevant may be left out. This step of describing objects with only those
original properties that are of interest, and leaving out the irrelevant properties, is called ab-
straction. In addition, next to classification and abstraction, the classified objects are grouped
based on common features, a process called generalization.
These three steps of classifying, abstracting and generalizing take place in many contexts,

but they are crucial in the modeling area. When formalizing the description of some domain
in a model, these three steps are typically combined, and therefore performed at the same
time. That is to say, a modeler looks at the real objects to be modeled, and abstracts away any
information which seems not to be required. Simultaneously, the objects are classified into
types and these types are put into generalization-hierarchies.

To support the MDA initiative, it is essential that designed models are commonly under-
stood by all involved parties. This requires the ability to specify the meaning of a model. This
is where metamodels come into play. A metamodel specifies the constructs of a modeling lan-
guage, using the constructs that can be used in the description of a language. The Meta Object
Facility [Obj06, Fra03] provides such a set of metamodeling constructs to define MOF-based
metamodels as models of modeling languages.
We first introduce MOF using its four-layer architecture in Section 2.2.1. Next, Section

2.2.2 starting on page 26 introduces the available MOF constructs. Finally, we address the
transformation of models and metamodels in MOF in Section 2.2.3 starting on page 27.

2.2.1. The Four-Layer Architecture of MOF

Before explaining some more details of MOF, let us look at the relationship between a meta-
model and an instance model that represents the objects in the real world. A standardized
terminology of OMG eases the communication about the different layers we just introduced,
namely the information layer, the model layer and the metamodel layer. These are shown in
the three bottom layers of Figure 2.12.
The undermost layer of this hierarchy encompasses the raw information to be described.

For example, the figure contains information about a pharmaceutical laboratory called AECE
and about the country Spain, in which the laboratory is located. One layer above, the model
layer contains the definition of the required structures, like the classes used for classifying
information. Thus in the example, the classes Laboratory and Country are defined. If these
structures are combined, they describe the model for the given domain. The metamodel on
the third layer defines the terms in which the model is expressed. In our example, we would
state that models are expressed with classes and properties by instantiating the respective
metaclasses. Important to mention is that the architecture allows models to span more than one

25

2. Model Driven Architecture

Information:
Laboratory "AECE", Country "Spain", ...

Model:
Class "Laboratory", Class "Country", ...

Metamodel:
MetaClass "Class", MetaClass "Property", ...

MOF - Meta-metamodel:
MetaClass, MetaAttribute, ...

Figure 2.12.: OMG’s four-layer metamodel hierarchy

of the lower levels. Ontologies do not have a clear separation between model and information.
Therefore, in our work, the two bottom layers of Figure 2.12 are combined into one layer.
Finally, the figure also presents the fourth layer, the meta-metamodel layer called the MOF

layer. It is the meta-metadata defining the modeling constructs that can be used to define and
manipulate a set of interoperable metamodels on the level below. The MOF layer contains
only the simplest set of concepts for models and metamodels, and captures the structure and
semantics of arbitrary metamodels. Note that the top MOF layer is ”hard wired” in the sense
that it is fixed, while the other layers are flexible and allow to express various metamodels
such as the existing UML metamodel or our metamodel for ontologies, rules and ontology
mappings.
The model-driven framework supports any kind of metadata and allows new kinds to be

added as required. Clearly, the MOF layer plays a crucial role in this four-layer metamodel
hierarchy of OMG. It allows to define, manipulate and integrate metamodels and models in a
platform-independent manner.

2.2.2. Available Constructs in MOF

The set of constructs provided by MOF is a simple set of concepts, though powerful enough
for capturing the static structure of a model. The five MOF-concepts are represented as meta-
concepts in Figure 2.12 and can define the abstract syntax of a language:

• types (classes, primitive types, and enumerations),

• generalization,

• attributes,

26

2.2. Meta Object Facility (MOF)

• associations, and

• operations.

Ecore [BGS+03] has emerged as a quasi standard for the definition of metamodels and we
provide our metamodels in the Ecore-format. Also, throughout the years, OMG has striven
for a unification of MOF and UML ([Gro05b], [Obj06]). This makes UML also suitable as a
graphical notation for MOF metamodels. Moreover, when UML is used to build MOF meta-
models, such specifications are not merely UML diagrams. Instead, MOF borrows object-
oriented class-modeling constructs from UML and presents them for describing the abstract
syntax of modeling constructs. Thus, MOF metamodels can look like UML class models, and
one can use UML class-modeling tools to display them. We present our metamodels also in
UML so that they are easily understandable for the reader.

2.2.3. Model and Metamodel Transformation in MOF

Recall our use case of Chapter 1 where trading partners want to build and exchange ontologies.
Whenever they have built an ontology but used another language than their partners, they
have to transform their ontology to be able to cooperate. In such cases, an automatic model
transformation can reduce the necessary efforts drastically, especially if adapting the internal
system is too costly and the company decides to stick to the language being used internally.
For the model transformations to be executed automatically, general mappings that are ap-

plicable to all models of a particular language must be defined beforehand. To allow this, one
needs to understand the modeling languages in which both models are expressed. Here comes
the MDA with its standards for representing models, metamodels as well as metametamodels
into play. MOF defines a set of modeling constructs and captures the structure and seman-
tics of arbitrary metamodels. This infrastructure allows the specification of the mappings on
the metamodel layer, and in this way the automatic transformations of models. Additionally,
MOF brings the benefit that we can not only transform metamodels that we defined ourselves
but also other MOF-based metamodels.
A mapping is a collection of rules that define how a particular mapping between two MOF-

based metamodels works. As it is defined against the metamodels of the participating models,
it applies to all models that conform to the same metamodel and hence is not specific to a
single model. Mapping rules specify very specific transformations between elements or com-
binations of elements in the one (graphical or textual) language to elements or combinations
of elements in the other (graphical or textual) language.
In order to automatically execute a model transformation, rules have to be specified in a

machine-readable manner, just as models must be formalized so that they can be consumed
and produced by a machine. To formalize the rules, many appropriate formalisms exist and
the user is free to select a suitable formalism. However, quite recently OMG developed QVT
(Query / Views / Transformations, [Gro05a]) especially for MOF, aiming at providing some

27

2. Model Driven Architecture

standards for defining MOF metamodel transformations. Two main approaches exist for spec-
ifying mappings, and are defined by QVT. Firstly, specifying mappings in an imperative way
consists of defining how to query the data in one metamodel, how to transform it, and how
to specify it. Secondly, in a declarative approach it is specified what is to be produced, not
how this is done. The QVT language is based on the OCL standard and supports most OCL
constructs.
Several QVT implementations already exist. To write our transformations in QVT, we used

ATL3[JK06] which is an open-source Eclipse plugin that implements the QVT and has a large
user community and an open source library of transformations. An ATL transformation pro-
gram is composed of rules that define how source model elements are matched and navigated
to create and initialize the elements of the target models.

2.3. Conclusion

UML is a well-established graphical notation for designing and describing system and domain
models. It defines thirteen different diagram types of which the class diagram, describing the
structure of a domain, is the most relevant for our work. On top of any UML model, textual
constraints in any language, for instance OCL, can be defined to add precision to the model.
For specific application areas, UML allows to define and use additional or restricted modeling
constructs in the form of UML profiles.
The UML methodology, tools and technology together with its extension mechanism seem to
be a feasible approach for supporting the development and maintenance of ontologies. In our
work, we apply UML to graphically represent ontologies, rules and ontology mappings, as
well as to represent our metamodels graphically.
MOF describes the modeling constructs available for the specification of metamodels.

These metamodels describe the modeling constructs of a certain language available for users
for the description of a domain (i.e. the creation of models). The fact that all MOF metamod-
els are defined using MOF and so have a commonly understood meaning, allows to specify
mapping functions on the metamodel layer, and hence achieve automatic model transforma-
tions. As UML is closely related to MOF, it makes it very suitable as a graphical notation
for MOF metamodels. Although no real standard for a textual syntax exists yet, Ecore has
emerged as the de facto standard.

3http://wiki.eclipse.org/index.php/ATL.

28

3. Ontology Languages

An ontology is a conceptual schema of a domain, representing the domain’s data structure
containing all the relevant entities and their relationships within that domain. Possibly, rules
are defined on top of the ontology. Additionally, with the increasing use of ontologies, a new
issue came up of aligning ontologies that describe the same domain.
OWL is the ontology language standardized by the World Wide Web Consortium and is

very well adopted. F-Logic is another ontology language, which is well-known by quite some
companies but, however, it was not intentionally built for ontologies but for deductive and
object oriented databases. Next to the standard language OWL on which we focus our work,
we incorporate F-Logic into our work and provide a first solution for trading partners using
F-Logic to transform their models into OWL.
Although OWL is very expressive, it is restricted to obtain decidability. This comes at the

price that it can not express arbitrary axioms: the only axioms it can express are of a certain
tree-structure. In contrast, decidable rule-based formalism such as function-free Horn rules
are not so restricted in the use of axioms but lack some of the expressive power of OWL: they
are restricted to universal quantification and lack negation in their basic form. To overcome the
limitations of both approaches, several rule extensions for OWL have been heavily discussed
[W3C05a] and the W3C initiated a working group for the definition of a Rule Interchange
Format [W3C05b]. SWRL is one of the most prominent proposals for an extension of OWL
with rules. DL-safe rules [MSS04] are a decidable subset of SWRL. As every DL-safe rule is
also a SWRL rule, DL-safe rules are covered in our work. It should be noted that, although
we consider SWRL as the most relevant rule extension for OWL in the context of our work,
it is not the only rule language which has been proposed for ontologies. Other prominent
alternatives for rule languages are mentioned in the W3C RIF charter, namely the Web Rule
Language WRL [ABdB+05] and the rules fragment of the Semantic Web Service Language
SWSL [GKM05]. These languages differ in their semantics and consequently also in the
way in which they model implicit knowledge for expressive reasoning support. From this
perspective, it could be desirable to provide particular support tailored to these specific rule
languages. From the perspective of conceptual modeling, however, different rule languages
appear to be very similar to each other. This opens up the possibility to reuse our outcome for
SWRL by augmenting it with some features and language primitives which are not present in
SWRL.
Often when ontologies are written in the same language, still they are modeled differently

and can not be aligned automatically. Mappings between the heterogenous ontologies have
to be defined by the user. For such mappings, we concentrate on OWL ontology mappings

29

3. Ontology Languages

since OWL is the most prominent ontology language currently available. Our work covers all
existing OWL ontology mapping formalisms we are currently aware of.
This chapter introduces the ontology languages that we support in our work. Firstly, Section

3.1 describes OWL, after which Section 3.2 introduces SWRL. Subsequently, the language F-
Logic is discussed in Section 3.3. Finally, OWL ontology mapping languages are addressed
in Section 3.4. We conclude with a short discussion on how these languages relate to each
other, and how they are supported in our work in Section 3.5.

3.1. Web Ontology Language (OWL)

The Web Ontology Language OWL [Mv03, PSHM07], based on the earlier language
DAML+OIL [vHPSH01], was standardized by the W3C in February, 2004. Since, it has
become the most-accepted ontology language in the semantic web community and is sup-
ported by a constantly increasing number and range of applications. At the moment of writing
this thesis, a new version of OWL, OWL 1.1 [PSHM07], based on experiences during the lan-
guage’s first years, is undergoing the standardization process. OWL allows to build, publish
and share ontologies. By describing the concepts of a domain as well as their relationships
formally, the meaning of documents becomes machine-understandable. The formal seman-
tics of OWL is derived from Description Logics (DL, [BCM+03]), an extensively researched
knowledge representation formalism. Hence, most primitives offered by OWL can also be
found in a Description Logic.
OWL is built on top of RDF [KC04] and allows to give web content even more semantics

than XML [BPSM+06], RDF and RDF Schema [BG04] by supporting additional vocabulary
with a formal semantics. We list the different languages from the bottom up:

XML (Extensible Markup Language) provides a syntax for structured data, without imposing
semantical constraints.

XML Schema allows to describe the structure of XML documents, and to restrict the content
of elements and attributes to specific datatypes.

RDF (Resource Description Framework) provides simple semantics for objects, called re-
sources, and their relationships. RDF models can be represented in an XML syntax.

RDF Schema additionally provides vocabulary for resource properties and classes, as well
as semantics for generalization-hierarchies.

OWL (Web Ontology Language) provides even more vocabulary to describe properties and
classes. Examples are descriptions of relations between classes, enumerated classes,
cardinalities, or property typing.

The first version of OWL defined three sublanguages: OWL Lite, OWL DL and OWL Full.
For these different language levels,

30

3.1. Web Ontology Language (OWL)

OWL Lite < OWL DL < OWL Full

holds in terms of expressivity.

OWL Full OWL Full allows expressions of higher order predicate logic, which results in the
fact that OWL Full ontologies can be undecidable and hence OWL Full is impractical
for applications that require complete reasoning procedures. Contrary to OWL Lite and
OWL DL which impose restrictions on the use of the vocabulary, OWL Full supports
the full syntactic freedom of RDF and can be seen as an extension of RDF. It has mainly
been defined for compatibility with existing standards such as RDF.

OWL DL is equivalent to a decidable subset of first-order predicate logic. It closely corre-
sponds to the SHOIN(D) description logic and all language features can be reduced1
to the primitives of the SHOIN(D) logic. To allow the representation in this logic,
OWL DL imposes several limitations on the set of supported language constructs. The
limitations defined on OWLDL ease the development of tools and allow complete infer-
ence. For OWL DL, practical reasoning algorithms are known, and increasingly more
tools support this or slightly less expressive languages.

OWL Lite is the smallest standardized subset of OWL Full, closely corresponding to the de-
scription logic known as SHIF (D). It is mainly to support the design of classification
hierarchies and simple constraints. Several language elements that are supported by
OWL DL, are not available in OWL Lite, specifically number restrictions are limited
to arities 0 and 1. Furthermore, the oneOf class constructor is missing. Other con-
structors such as class complement, which are syntactically disallowed in OWL Lite,
can nevertheless be represented via the combination of syntactically allowed construc-
tors [Vol04].

It holds that every legal OWL Lite ontology is a valid OWL DL ontology, and every valid
OWL DL ontology is a valid OWL Full ontology. For our work, OWL DL would be most
useful as it is the OWL dialect which is mostly used in practice as it is decidable although
still very expressive. The new version OWL 1.1 on which our work is built, is an extension
of OWL DL. OWL 1.1 provides additional Description Logic expressive power, moving
from the SHOIN(D) Description Logic that underlies OWL DL to the SROIQ Description
Logic [HKS06]. 2 3

OWL provides an elaborated set of constructs to define classes (concepts), properties and
individuals (instances of one or more classes). We introduce the OWL 1.1 constructs while
presenting our metamodel for OWL in Chapter 4.
1Some language primitives are shortcuts for combinations of primitives in the logic.
2The work in this thesis is based on the OWL 1.1 version available at the end of February, 2007.
3Throughout the rest of this thesis, we are talking about OWL 1.1 whenever we refer to OWL.

31

3. Ontology Languages

The OWL 1.1 specifications provide the so-called functional-style syntax as a human-
readable syntax. A syntax based on XML allows easy implementations of OWL 1.1. This
XML exchange syntax is defined in the XML schema language [TBMM04]. For a full
account of the available syntaxes, we refer the reader to [GMPS07]. Additionally, [GM07]
provides a mapping from the OWL 1.1 functional-style syntax to the RDF exchange syntax
[Bec04].

A formal semantics of OWL 1.1 is provided based on the principles for defining the seman-
tics of description logics. The semantics is defined as a model-theoretic semantics [TV56] by
interpreting the constructs of the functional-style syntax. The model-theoretic approach is an
accepted paradigm for providing a formal account of meaning and entailment. To interpret
OWL 1.1 ontologies serialized in the RDF syntax, they are translated into the functional-style
syntax first. For a full account on the model-theoretic semantics of OWL, we refer to [GM06].

3.2. Semantic Web Rule Language (SWRL)

One of the most prominent proposals for an extension of OWL with rules is the Semantic Web
Rule Language (SWRL, [HPSB+04]). SWRL proposes to allow the use of Horn-like rules
together with OWL axioms. For instance, asserting that the combination of the hasParent and
hasBrother properties implies the hasUncle property, is not possible in OWL but in SWRL.
The SWRL specifications, submitted to W3C in May 2004, include a high-level abstract

syntax for Horn-like rules extending the OWL abstract syntax. An extension of the model-
theoretic semantics from OWL provides the formal meaning for rules written in this abstract
syntax. Moreover, next to the abstract syntax, SWRL allows an XML syntax based on the
OWL XML presentation syntax, as well as an RDF concrete syntax based on the OWL RD-
F/XMI exchange syntax. Both the different syntaxes and the model-theoretic semantics of
SWRL are described in detail in [HPSB+04].
SWRL has a high expressive power but at the price of decidability. Moreover, it becomes

undecidable as rules can be used to simulate role value maps ([SS89]). To balance the expres-
sive power against the execution speed and termination of the computation, suitable subsets of
the language can allow efficient implementations. The original SWRL specifications are built
on OWL 1.0. The minor changes to adapt to OWL 1.1 are incorporated in our work.
We present the SWRL language constructs while explaining the metamodel in Chapter 5.

3.3. Frame Logic (F-Logic)

Frame Logic (F-Logic), for which we refer to [KLW95] for a full account, is a deductive,
object-oriented and frame-based formalism. Originally, the language was developed for de-
ductive and object-oriented databases in 1995. Later on, however, it has been applied for
the implementation of ontologies. F-Logic provides constructs for defining declarative rules

32

3.4. OWL Ontology Mapping Languages

which infer new information from the available information. Furthermore, queries can be
asked that directly use parts of the ontology. From a syntactic point of view, F-Logic is a
superset of first-order logic. Currently a new version of FLogic is defined as a community
process taking current developments from the semantic web area into account. Since these
new developments are work in progress we focus on the current implementations of FLogic
as addressed in [Ont06, FHK+97].
In contrast to OWL and SWRL, F-Logic does not have several syntactical representations

defined. Again, we introduce the grammar and the object-model of F-Logic while presenting
its metamodel in Chapter 6.
The F-Logic semantics is based on the fixpoint semantics of Datalog programs [Ull88].

The evaluation starts with an empty object base, and rules and facts are evaluated iteratively
(note that queries are not part of an F-Logic program). When the rule body is valid in the
actual object base with certain variable bindings, these bindings are propagated into the rule
head. In this way, new information from rule heads is deduced due to closure properties, and
inserted into the object base. Until no new information can be obtained anymore, rules are
continuously evaluated. However, this is only the abstract view on the semantics. An F-Logic
progam is not necessarily executed in a bottom up fashion.
As with Datalog, the evaluation of a negation-free F-Logic program reaches a fixpoint which
coincides with the unique minimal model of that program, which is defined as the smallest set
of P- and F-atoms such that all closure properties and all facts and rules of the program are
satisfied. As soon as a fixpoint is reached, the semantic of an F-Logic program is computed.
Additionally, F-Logic has a model-theoretic semantics. We refer to [KLW95] for a complete

presentation of the F-Logic semantics.

3.4. OWL Ontology Mapping Languages

Since we believe OWL is the most important currently available ontology language, and since
we chose OWL as the core of our work, we apply the logical restriction to focus on mappings
between ontologies represented in OWL. In contrast to the area of ontology languages, where
a de facto standard exists for representing and using ontologies, there is no agreement yet on
the nature and the right formalism for defining mappings between ontologies.
OWL mapping formalisms are often based on non-standard extensions of the logics used

to encode the ontologies. We focus on approaches that connect description logic based on-
tologies where mappings are specified in terms of logical axioms. This allows us to be more
precise with respect to the nature and properties of mappings. At the same time, we cover
all relevant mapping approaches [SSW05] that have been developed that satisfy these require-
ments: C-OWL [BGvH+03], OIS (Ontology Integration System, [CDL01]), DL for II (DL for
Information Integration, [CDL02]), and DL-Safe Mappings [HM05].
[SU05] researched the nature of ontology mappings and identified some general aspects of

the above mapping approaches. We want to take these general aspects as a basis for our work,

33

3. Ontology Languages

since we want to make sure that all these approaches are covered. Additionally, we provide
specific support for C-OWL and DL-Safe Mappings by defining sets of metamodel constraints
as well as language mappings for these concrete formalisms. For specific details on C-OWL
and DL-Safe Mappings, we refer to Chapter 7, where we present their aspects along with the
introduction of the metamodel.

3.5. Conclusion

The ontology language OWL allows to build, publish and share ontologies. Since its stan-
dardization in 2004, it has become the most-accepted ontology language in the semantic web
community, and an increasing range of applications became available. By specifying concepts
and relationships of a domain formally, computers and software are able to process the data.
Although OWL is very expressive, it can not express arbitrary axioms. SWRL is one of the
most prominent proposals for an extension of OWL to overcome this restriction, proposing to
use Horn-like rules together with OWL axioms.
F-Logic is another language which is applied to build ontologies, although it is intentionally

not built for semantics and the web. F-Logic additionally allows to define declarative rules
which infer new information from the available information.
The core language of our work is OWL. On top of a (MOF-based) metamodel for OWL, we

provide an extension for SWRL. Next to this metamodel, we provide a metamodel for F-Logic
to allow automatic transformations between models in the different languages and hence bring
the languages more closely together.
To allow interoperability between different heterogenous OWL ontologies, mappings can

be defined on top of the ontologies. No de facto standard exists yet for representing such
mappings, hence we rely on existing research in which general aspects of OWL ontology
mappings were identified. These general aspects cover the different languages C-OWL, DL-
forII, OIS and DL-Safe Mappings. We provide an extension of the OWL metamodel for these
languages by covering the general aspects. Specific support for two of the languages, C-OWL
and DL-Safe Mappings is given through constraints on the metamodel.
In addition, we provide a UML profile as a visual syntax for ontologies in OWL, rules in

SWRL and OWL ontology mappings. This profile is based on the metamodel and hence the
graphical models can be mapped to the metamodel and so to the languages itself, and vice
versa, automatically.

34

Part II.

Providing Metamodel-based
Support for Ontologies

35

4. Metamodel Descriptions for Ontologies
in OWL

This chapter introduces the core of our work, which is a MOF-based metamodel for OWL 1.1
ontologies. We provide the metamodel for OWL 1.1 using the core modeling features pro-
vided by MOF. To state the metamodel more precisely, we augment it with OCL constraints,
which specify invariants that have to be fulfilled by all models that instantiate the metamodel.

A metamodel for an ontology language can be derived from the modeling primitives
offered by the language. Our metamodel for OWL ontologies has a one-to-one mapping to
the functional-style syntax of OWL 1.1 and thereby to its formal semantics.1

Along with the explanation of the various OWL constructs2, we introduce and discuss the
corresponding metaclasses, their properties and their constraints in Section 4.1. To simplify
the understanding of the metamodel, we add accompanying UML diagrams to our discussion.
Appendix A.1 starting on page 163 provides a full account of the metamodel with a particular
description for each metaclass, including an informal description of the element, a listing of
attributes, associations and generalizations, as well as a listing of the OCL constraints appli-
cable to that class. We refer the reader to this Appendix for specific details of the metamodel.
Additionally, we provide a listing of the mappings between the OWL language constructs and
the metamodel in Appendix A.2 starting on page 189. We conclude with a short summary in
Section 4.2.

4.1. A MOF-based Metamodel for OWL

This section presents the MOF-based metamodel for OWL 1.1 in eight subsections: Section
4.1.1 starts with ontologies and annotations, after which Section 4.1.2 presents entities and
data ranges. Next, Section 4.1.3 demonstrates class descriptions and Section 4.1.4 presents
OWL axioms. Then, Section 4.1.5 gives class axioms, after which Section 4.1.6 presents

1Where the language specifications define constraints on character strings like for instance URIs, this is not
included as OCL constraints in the metamodel. Although it might be somehow possible to enforce such
restrictions by defining OCL constraints, it would be cumbersome and thus it is preferable that tools that
implement the metamodel support these constraints.

2Remember, however, that the language itself is not part of our contribution.

37

4. Metamodel Descriptions for Ontologies in OWL

object property axioms. Finally, Section 4.1.7 presents data property axioms and Section
4.1.8 presents facts.

4.1.1. Ontologies and Annotations

An OWL ontology is defined by a set of axioms, of which OWL 1.1 provides six different
types. Additionally, an ontology has an ontology URI which defines it uniquely, a (possibly
empty) set of imported ontologies, and a set of annotations (see Example 3). With the import
primitive, another ontology and so its axioms can be imported into an ontology. An annotation
is some arbitrary information on the ontology, like the creator, version info and so forth, and
consists of a URI to define the annotation type, and a constant which defines the annotation’s
value. Additionally, also the ontology’s elements, the axioms, can be annotated.

Example 3 The following example illustrates the definition of an ontology and involves the
specification of an imported ontology and an annotation:
Ontology(PharmaceuticalDomain Import(Medication) Comment(”An ontology about the
pharmaceutical domain.”))

Figure 4.1 shows the metamodel presentation for ontologies, its axioms and annotations as
metaclasses. The association ontologyAxiom connects the ontology to its axioms, whereas
the associations ontologyAnnotation and axiomAnnotation connect ontologies respectively ax-
ioms to their annotations3. The class Ontology has an attribute to identify the ontology, URI,
whereas the attribute URI of the class Annotation specifies the type of annotation. Although
it would be possible and also correct to define a metaclass URI to represent all URIs, a URI is
only a simple value and thus it is more suited to represent it as an attribute of the concerning
metaclasses instead of as a first-class object in the form of a metaclass. Finally, an associ-
ation importedOntology from the class Ontology to itself links an ontology to its imported
ontologies.
Annotations can be self-defined or can be one of two specificly defined annotation types:

label and comment. The URI that defines the type of an annotation is not applicable to a
label or comment as their type is already defined through the construct itself. The OWL 1.1
specifications specify the value of an annotation as a constant, which is composed of a string
and a datatype URI in case of a typed constant, or a string and a language tag in case of an
untyped constant.
Figure 4.2 demonstrates how the metamodel specifies the two specific types of annotations

as subclasses of the metaclass Annotation. The type of a self-defined annotation is defined
through its URI, whereas the type of a label or comment is defined through the instantiation of
the metaclass. OCL constraints define the restriction that the attribute URI is empty for Label
and Comment but mandatory for all other annotations:

3Note that the '+'-sign in front of a property name denotes its public visibility. Although in our models everything
is just public, in software models elements are often characterized as private or protected.

38

4.1. A MOF-based Metamodel for OWL

Figure 4.1.: OWL metamodel: ontologies

Figure 4.2.: OWL metamodel: annotations

1. When an annotation is not a label or a comment, a URI must be defined:
context Annotation inv:
not(self.oclIsTypeOf(Label) or self.oclIsTypeOf(Comment))
implies self.URI = 1

2. A label does not have a URI:
context Label inv:
self.URI = 0

3. A comment does not have a URI:
context Comment inv:
self.URI = 0

An association annotationValue connects an Annotation to its value, so the text that forms the
annotated remark, represented by the metaclass Constant. Constant has three attributes for
specifying the different parts a constant is composed of. The attribute value is applicable for
both typed and untyped constants, whereas languageTag is only applicable to untyped con-
stants and URI only to typed constants. A constraint defines the applicability of the attributes

39

4. Metamodel Descriptions for Ontologies in OWL

languageTag and URI 4:

1. A constant has either a language tag (untyped constant) or a URI (typed constant), but
can not have both:
context Constant inv:
(self.languageTag = 1 implies self.URI = 0) and
(self.URI = 1 implies self.languageTag = 0)

4.1.2. Entities and Data Ranges

Entities are the fundamental building blocks of OWL 1.1 ontologies. OWL 1.1 has five entity
types: data types, OWL classes5 (see Example 4), individuals, object properties and data
properties. A datatype is the simplest type of data range. The second entity, a class, is a
simple axiomatic class description classifying a set of instances. These class instances are
called individuals and are also classified as OWL entities. At last, an object property connects
an individual (belonging to a class) to another individual, whereas a data property connects an
individual to a data value (belonging to a data range).

Example 4 The following example illustrates the definition of a class in OWL:
OWLClass(Medication)

The OWL specifications highlight entities as the main building blocks of an OWL ontology
and its axioms. Hence, the metamodel defines them as first-class objects in the form of meta-
classes. Figure 4.3 presents an abstract metaclass OWLEntity which is defined as supertype of
all types of entities. The five specific types of entities are specified as subtypes of OWLEntity:
Datatype, OWLClass6, ObjectProperty, DataProperty and Individual. An attribute URI of the
abstract metaclass OWLEntity is inherited by all subclasses to identify the entity.
Just like ontologies and axioms, also entities can be annotated (see Example 5). OWL

categorizes such entity annotations as axioms. Hence an entity can be involved in two types
of annotation: an annotation of the entity itself, or an annotation of such entity annotation as
an axiom.

Example 5 The following example illustrates the annotation of an entity:
EntityAnnotation(OWLClass(Medication) Annotation(CreationDate ”Created in March
2007.”))

4Note that the metamodel specifies the attribute value as mandatory for any constant. Such cardinalities can be
found in the metamodel descriptions in Appendix A.1 starting on page 163.

5OWL provides two classes with predefined URI and semantics: owl:Thing defines the set of all objects (top
concept), whereas owl: Nothing defines the empty set of objects (bottom concept).

6Note that a simple class, in contrast to the other entities, has the prefix 'OWL' in conformity with the OWL 1.1
specifications.

40

4.1. A MOF-based Metamodel for OWL

Figure 4.3.: OWL metamodel: entities

Figure 4.4 demonstrates the metamodel representation of entity annotations by the meta-
class EntityAnnotation which is a subclass of the metaclass OWLAxiom, as OWL specifies an
entity annotation as an axiom. The association entityAnnotation connects EntityAnnotation

Figure 4.4.: OWL metamodel: entity annotations

to the annotation. As the number of annotations on entities is unrestricted, the association
carries the multiplicity 'zero to many'. The other association from EntityAnnotation, entity,
specifies the entity on which the annotation is defined. Naturally, the multiplicity of this
association is 'exactly one'.

Additionally, OWL provides axioms to declare entities (see Example 6). An entity is de-
clared in an ontology if the ontology, or one of its imported ontologies, contains a declaration
axiom for the entity. Entity declarations are important for checking the structural consistency

41

4. Metamodel Descriptions for Ontologies in OWL

Figure 4.5.: OWL metamodel: declarations

of an ontology: if each entity occuring in an axiom of the ontology is declared in the ontol-
ogy, the ontology is structurally consistent. Figure 4.5 presents a metaclass Declaration as a
subclass of the metaclass OWLAxiom, linked to the entity via the association entity.

Example 6 The following example illustrates how a class definition is declared:
Declaration(OWLClass(Medication))

Figure 4.6.: OWL metamodel: object property expressions

OWL distinguishes two types of property expressions: object property expressions and data
property expressions, represented by the respective metaclasses ObjectProperty and Dat-
aProperty. An object property can possibly be defined as the inverse of an existing object
property (see Example 7). The metamodel has an abstract superclass ObjectPropertyExpres-
sion for both the usual object property and the object property defined as an inverse of another.
Figure 4.6 gives its subclasses ObjectProperty and InverseObjectProperty, representing nor-
mal respectively inverse object properties. An inverse object property can be defined based
on any, normal or inverse, object property, hence the association inverseProperty from the

42

4.1. A MOF-based Metamodel for OWL

Figure 4.7.: OWL metamodel: data property expressions

metaclass InverseObjectProperty is connected to the superclass ObjectPropertyExpression.

Example 7 The following example illustrates the definition of an inverse object property:
InverseObjectProperty(MadeFromIngredient)

Figure 4.7 shows that, although inverse data properties can not be defined, the entity
DataProperty is also generalized into a supertype in the metamodel, in symmetry with object
properties.

Figure 4.8.: OWL metamodel: data ranges

Figure 4.8 gives the metamodel representations for the various data range constructs in
OWL. To define a range over data values, OWL provides four constructs, which are gener-

43

4. Metamodel Descriptions for Ontologies in OWL

alized in the metamodel into an abstract superclass DataRange. The basic and simplest data
range is the datatype, defined by a URI.
The metaclass DataComplementOf defines a data range as the complement of an existing

one, connected through the association dataRange. The third data range construct, repre-
sented in the metamodel by the metaclass DatatypeRestriction, applies a facet on an existing
data range, connected through the association dataRange. The facet is specified through the
association datatypeFacet, whereas the value of the facet is specified as a constant. A con-
straint defines the possible types of facets:

1. The facet of a datatype restriction may only have specific values:
context DatatypeRestriction inv:
self.datatypeFacet = 'length'
or self.datatypeFacet = 'minLength'
or self.datatypeFacet = 'maxLength'
or self.datatypeFacet = 'pattern'
or self.datatypeFacet = 'minInclusive'
or self.datatypeFacet = 'minExclusive'
or self.datatypeFacet = 'maxInclusive'
or self.datatypeFacet = 'maxExclusive'
or self.datatypeFacet = 'totalDigits'
or self.datatypeFacet = 'fractionDigits'

The last data range type, represented by the metaclass DataOneOf, defines a data range by
enumerating the data values it contains (see Example 8). The enumerated data values are
represented as constants.

Example 8 The following example illustrates the enumeration of data values:
DataOneOf(”5”ˆˆxsd:integer ”15”ˆˆxsd:integer)

4.1.3. Class Descriptions

The two remaining groups of constructs are classes and axioms. We first address the classes.
Classes group similar resources together and are the basic building blocks of class axioms.
The class extension is the set of individuals belonging to the class. To define classes, OWL
1.1 provides next to a simple class definition (metaclass OWLClass) several very expressive
means for defining classes. The metamodel defines a metaclass Description as abstract
superclass for all class definition constructs. These constructs can be divided into two
main groups: propositional connectives, and restrictions on properties. We present all class
descriptions in this section, accompanied by five diagrams.

44

4.1. A MOF-based Metamodel for OWL

Firstly, Figure 4.9 presents the class constructs with propositional connectives7. Proposi-
tional connectives build classes by combining other classes or individuals. The metaclasses
ObjectUnionOf and ObjectIntersectionOf represent constructs defining a class of which each
individual belongs to at least one, respectively to all of the specified classes (see Example
9). They both have an association called classes specifying the involved classes8. More-
over, a class can be defined as the complement of another class, represented by the metaclass
ObjectComplementOf with association class, or as an enumeration of a set of (at least one)
individuals. The latter one is represented in the metamodel by the metaclass ObjectOneOf
and its association individuals.

Example 9 The following example illustrates the definition of a class as a subclass of another
class, which is defined through a class description as the intersection of three other classes:
SubClassOf(FluidMedication ObjectIntersectionOf(Fluid Medication BottledProduct))

Figure 4.9.: OWL metamodel: propositional connectives

All other class definitions in OWL 1.1 describe a class by placing constraints on the class
extension. Figure 4.10 gives the next group, which defines restrictions on the property value of
object properties for the context of the class. The metaclass ObjectAllValuesFrom represents
the class construct that defines a class as the set of all objects which have only objects from a
certain other class description as value for a specific object property (see Example 10).

7Note that OWLClass, although shown in this figure as a subclass of Description, is just a simple class and no
propositional connective.

8Note that, as the involved classes can be defined by any class description construct, they are specified in the
metamodel via their abstract superclass.

45

4. Metamodel Descriptions for Ontologies in OWL

Figure 4.10.: OWL metamodel: object property restrictions

Example 10 The following example illustrates the definition of a class as a subclass of an-
other class, which is defined through a class description by restricting an object property:
SubClassOf(Medication ObjectAllValuesFrom(Treats Disease))

The OWL construct that defines a class as all objects which have at least one object from
a certain class description as value for a specific object property, is represented by the
metaclass ObjectSomeValuesFrom. Both ObjectAllValuesFrom and ObjectSomeValuesFrom
have an association called class, specifying the class description of the construct, whereas
their association property specifies the object property on which the restriction is defined.
To define a class as all objects which have a certain individual as value for a specific object
property, OWL provides a construct that is represented in the metamodel by the metaclass
ObjectHasValue, its association property specifying the object property, and its association
value specifying the property value. The metaclass ObjectExistsSelf represents the class
description of all objects that have themselves as value for a specific object property.

Thirly, Figure 4.11 demonstrates the third group of class definitions, which impose restric-
tions on the cardinalities of object properties. A cardinality of an object property for the
context of a class can be defined as a minimum, maximum or exact cardinality. The first one
of this group is represented by the metaclass ObjectMinCardinality, which defines a class of
which all individuals have at least N different individuals of a certain class as values for the
specified object property (N is the value of the cardinality constraint) (see Example 11).

46

4.1. A MOF-based Metamodel for OWL

Figure 4.11.: OWL metamodel: object property cardinality restrictions

Example 11 The following example illustrates the definition of a class as a subclass of an-
other class, which is defined through a class description by restricting the cardinality of an
object property:
SubClassOf(Medication ObjectMinCardinality(1 madeFromIngredient Ingredient))

Secondly, the construct represented by the metaclass ObjectMaxCardinality defines a class of
which all individuals have at most N different individuals of a certain class as values for the
specified object property. Finally, the construct represented by the metaclass ObjectExact-
Cardinality defines a class of which all individuals have exactly N different individuals of a
certain class as values for the specified object property. To specify the cardinality (N) of these
constructs, which is a simple integer, all three metaclasses have an attribute cardinality. OCL
constraints define that this cardinality must be a nonnegative integer9:

1. The cardinality must be nonnegative:
context ObjectExactCardinality inv:
self.cardinality >= 0

2. The cardinality must be nonnegative:
context ObjectMaxCardinality inv:

9Note that it would make sense to define a constraint which specifies that when a minimum and a maximum
cardinality on a property are combined to define a class, the minimum cardinality should be less than or equal
to the maximum cardinality. However, as the OWL specifications do not define this restriction and rely on
OWL applications to handle this, we also do not define an OCL constraint in the metamodel.

47

4. Metamodel Descriptions for Ontologies in OWL

self.cardinality >= 0

3. The cardinality must be nonnegative:
context ObjectMinCardinality inv:
self.cardinality >= 0

Additionally, they all have an association class and an association property representing the
class respectively the object property involved in the statement. Note that the multiplicity of
the associations called class have multiplicity 'zero or one' as OWL does not define the explicit
specification of the restricting class description as mandatory10.
Just like with object properties, restrictions can be defined on data properties to define

classes. On data properties only three kinds of property value restrictions can be defined (see
Example 12).

Example 12 The following example illustrates the definition of a class as a subclass of an-
other class, which is defined through a class description by specifying a certain value for a
data property:
SubClassOf(MedicationForAdults DataHasValue(hasMinimumAge ”12”ˆˆxsd:integer))

Figure 4.12.: OWL metamodel: data property restrictions

Figures 4.12 represents the metaclasses for these constructs, DataSomeValuesFrom,
DataAllValuesFrom and DataHasValue. The meaning of the corresponding constructs is

10In the case where it is not explicitly defined, called an unqualified cardinality restriction, the description is
owl:Thing.

48

4.1. A MOF-based Metamodel for OWL

the same as with these restrictions on object properties. The value of a data property
belongs to a data range, represented by the metaclass DataRange, and a specific value is
represented by the metaclass Constant. Moreover, the associations called properties that
both DataAllValuesFrom and DataSomeValuesFrom have, are ordered and have multiplicity
'1 to many', as OWL allows to specify more than one data property. This supports class
definitions like ”objects whose width is greater than their height”, where the width and height
are specified using two data properties.

Figure 4.13.: OWL metamodel: data property cardinality restrictions

As the last set of class descriptions in OWL, Figure 4.13 gives the cardinality restrictions
defined on data properties similar to the cardinality restrictions on object properties. The
restrictions specify a minimum, maximum or exact cardinality on a certain data range for
the specified data property. Again, OCL constraints restrict the cardinality to nonnegative
integers:

1. The cardinality must be nonnegative:
context DataMinCardinality inv:
self.cardinality>=0

2. The cardinality must be nonnegative:
context DataMaxCardinality inv:
self.cardinality>=0

3. The cardinality must be nonnegative:
context DataExactCardinality inv:
self.cardinality>=0

49

4. Metamodel Descriptions for Ontologies in OWL

4.1.4. OWL Axioms

Figure 4.14.: OWL metamodel: axioms

Figure 4.14 demonstrates the six types of OWL axioms. We now introduce the four reman-
ing types of axioms, which are class axioms, object property axioms, data property axioms
and facts. They are all defined through an abstract superclass with various subclasses11.

4.1.5. Class Axioms

Class axioms make statements about the extensions of two or more classes. Figure 4.15 gives
the metamodel representations for the four kinds of OWL class axioms. The first class axiom
defines that a class is a subclass of another class and is represented in the metamodel as the
metaclass SubClassOf, connected to the two classes via the associations subClass and super-
Class. Two other axioms, represented by the metaclasses DisjointClasses and Equivalent-
Classes, define that the extensions of two or more classes are disjoint respectively equivalent
(see Example 13). An association disjointClasses, respectively equivalentClasses connects
the metaclasses to the related class descriptions.

Example 13 The following example illustrates how three classes are defined to be equivalent:
EquivalentClasses(Disease Illness Sickness)

The fourth and last class axiom defines that one class is the union of a set of classes which are
all pair-wise disjoint. The metaclass DisjointUnion represents this axiom and has an associa-
tion unionClass specifying the class, and an association disjointClasses specifying the disjoint
classes.

50

4.1. A MOF-based Metamodel for OWL

Figure 4.15.: OWL metamodel: class axioms

Figure 4.16.: OWL metamodel: object property axioms - part 1

51

4. Metamodel Descriptions for Ontologies in OWL

4.1.6. Object Property Axioms

The group of object property axioms contains constructs defining relations between different
properties, definitions of domain and range and specifications of property characteristics. We
first introduce the various relations between object properties in Figure 4.16.

The first one, represented by the metaclass SubObjectPropertyOf, defines that the property
extension of one object property, specified through the association subProperties, is a subset
of the extension of another object property, specified through the association superProperty.
OWL allows to specify a subproperty chain, where the relation defined through the application
of the first until the last property of the chain is defined as the subproperty of the specified
superproperty. Hence the association subProperties is ordered and carries multiplicity
'one to many'. The metaclass EquivalentObjectProperties represents a construct that defines
that the property extensions of two or more object properties are the same, whereas the class
DisjointObjectProperties connects two or more object properties that are pair-wise disjoint.
Inverse object properties are combined with the construct represented as the metaclass
InverseObjectProperties, which defines that for every (x,y) in the property extension of one
property, there is a pair (y,x) in the other property extension, and vice versa.

Figure 4.17.: OWL metamodel: object property axioms - part 2

To define the class to which the subjects of an object property belong, OWL provides the

11Note that the metamodel models all these statements as metaclasses since OWL specifies them as first-class
objects in the form of axioms.

52

4.1. A MOF-based Metamodel for OWL

domain concept (see Example 14), whereas a range specifies the class to which the objects of
the property, the property values, belong. Figure 4.17 presents the metamodel elements for
the constructs defining an object property domain and range.

Example 14 The following example illustrates the definition of the domain of an object prop-
erty:
ObjectPropertyDomain(madeFromIngredient Medication)

The metaclass ObjectPropertyDomain specifies an object property and its domain via the
associations property respectively domain. Similarly, the metaclass ObjectPropertyRange
represents the construct to define the range of an object property.

The remaining OWL object property axioms take an object property and assert a character-
istic to it. In doing so, object properties can be defined to be functional, inverse functional,
reflexive, irreflexive, symmetric, antisymmetric, or transitive.
A functional object property is a property for which each subject from the domain, can have

only one value in the range, whereas an inverse functional object property can have only one
subject in the domain for each value in the range. A transitive property defines that when the
subject-object pairs (x,y) and (y,z) belong to the property extension, then the pair (x,z) belongs
to the property extension as well.

Figure 4.18.: OWL metamodel: object property axioms - part 3

When an object property is defined to be reflexive, then for each object x, the subject-object
pair (x,x) belongs to the object property extension. The opposite, when for each object x, the

53

4. Metamodel Descriptions for Ontologies in OWL

subject-object pair (x,x) does not belong to the object property extension, can be specified
as an irreflexive object property. When an object property is specified to be symmetric or
antisymmetric, then the pair (y,x) does respectively does not belong to the object property
extension when the subject-object pair (x,y) belongs to the object property extension12 (see
Example 15).

Example 15 The following example illustrates how an object property is defined to be anti-
symmetric:
AntisymmetricObjectProperty(madeFromIngredient)

Figure 4.19.: OWL metamodel: object property axioms - part 4

Figures 4.18 and 4.19 demonstrates that each of these axioms has an own metaclass with an
association property to the class ObjectPropertyExpression, specifying the property on which
the characteristic is defined.

4.1.7. Data Property Axioms

Similar to object property axioms, OWL provides six types of axioms on data properties.
Data properties can be defined to be a subproperty of another data property, or can be

defined as being functional. Additionally, two or more data properties can be defined to be

12Note that the correct name for this relation would be 'Asymmetric'. However, the current OWL specifications
call it 'antisymmetric'.

54

4.1. A MOF-based Metamodel for OWL

Figure 4.20.: OWL metamodel: data property axioms - part 1

equivalent or disjoint. Figure 4.20 presents the corresponding metamodel elements.
Finally, OWL provides constructs to define the domain and range of a data property (see

Figure 4.21.: OWL metamodel: data property axioms - part 2

Example 16).

55

4. Metamodel Descriptions for Ontologies in OWL

Example 16 The following example illustrates the specification of the range of a data prop-
erty:
DataObjectPropertyRange(hasMinimumAge xsd:nonNegativeInteger)

Figure 4.21 gives the classes that represent them in the metamodel, DataPropertyDomain and
DataPropertyRange. Both have an association property specifying the property, and addition-
ally an association domain to Description specifying its domain, respectively an association
range to DataRange specifying its range.

4.1.8. Facts

Figure 4.22.: OWL metamodel: facts - part 1

Seven different axioms allow to state facts in ontologies. Figure 4.22 gives the metamodel
representations for the first three of these axioms, stating facts about classes and individuals.
Since OWL is made for use on the web and one can not assume that everyone uses the same
name for the same thing on the web, OWL does not have the so-called unique name assump-
tion. Instead, OWL provides several constructs to define facts about the identity of individ-
uals: individuals can be defined to denote the same object, represented in the metamodel by
the metaclass SameIndividual, and two or more individuals can be defined to denote different
objects, represented by the class DifferentIndividuals. Both metaclasses have an association
to the metaclass Individual connecting the axiom with the individuals it applies. Moreover,
a class assertion specifies to which class a certain individual belongs (see Example 17) and
is defined in the metamodel as the metaclass ClassAssertion with an association individual to
Individual and an association class to Description.

56

4.1. A MOF-based Metamodel for OWL

Example 17 The following example illustrates how the class to which an individual belongs,
is specified:
ClassAssertion(sinusitis Disease)

The remaining fact axioms state facts about properties. To specify the value of a speci-
fied individual under a certain object property, OWL provides the object property assertion
construct (see Example 18).

Example 18 The following example illustrates how the value of an individual under an object
property, is defined:
ObjectPropertyAssertion(madeFromIngredient aspirin acetylsalicylicacid)

Figure 4.23.: OWL metamodel: facts - part 2

The opposite is defined by a negative object property assertion, which defines that an
individual is exactly not the value of another individual under the specified object property.
Figure 4.23 shows that both constructs are represented in the metamodel as a metaclass,
ObjectPropertyAssertion respectively NegativeObjectPropertyAssertion. Both have an
association to property representing the involved property, and two associations to Individual
representing the subject and the object of the assertion.

Finally, as the last constructs for facts in OWL, Figure 4.24 introduces instantiations of data
properties. Similar to object property instantiations, OWL allows normal (positive) as well as
negative data property assertions. Both metaclasses DataPropertyAssertion and NegativeDat-

57

4. Metamodel Descriptions for Ontologies in OWL

Figure 4.24.: OWL metamodel: facts - part 3

aPropertyAssertion have three associations connecting them to the property, an individual as
the subject of the property assertion, and a constant as the property value.

4.2. Conclusion

In this chapter and the accompanying Appendices A.1 starting on page 163 and A.2 starting
on page 189, we have presented a MOF-based metamodel for OWL 1.1. and ensured the va-
lidity of its instances through various OCL constraints. This metamodel is the first part of our
work towards MOF-support for ontology languages. On top of this metamodel, we build a
metamodel extension supporting SWRL rules, in Chapter 5 starting on page 59. Next to this
metamodel for OWL and SWRL, we present a metamodel for F-Logic in Chapter 6 starting
on page 65. Based on these two metamodels, we are able to provide some first possible (au-
tomatic) transformations from F-Logic models to OWL models, and vice versa. Moreover,
we provide another extension for the metamodel of OWL and SWRL to support mappings be-
tween heterogenous OWL ontologies in Chapter 7 starting on page 91. Additionally, directly
related to the metamodel we just presented and its extension for OWL mappings, we provide
a UML profile in Chapter 8 starting on page 101 as a visual syntax to allow model-driven
development of ontologies, rules and ontology mappings.

58

5. Metamodel Descriptions for SWRL Rules

We consistently extend our metamodel for OWL 1.1 presented in the previous section with a
metamodel for SWRL that directly resembles the extensions of SWRL to OWL (see Section
3.2 starting on page 32). Just like the OWL metamodel, this extension is augmented with
OCL constraints to state the metamodel more precisely.

Three subsections introduce the different parts of the metamodel extension along with a
discussion of the corresponding SWRL constructs in Section 5.1.1 2 Appendix A.3 starting
on page 196 gives a complete overview with details of the metamodel. In doing so, for every
metaclass of the metamodel an informal description, a listing of attributes, associations and
generalizations, as well as the constraints, is provided. Additionally, Appendix A.4 starting
on page 202 provides the mappings between SWRL and the metamodel. Finally, Section 5.2
starting on page 63 finalizes the Chapter with a short conclusion.

5.1. A MOF-based Metamodel Extension for SWRL

The following subsections present the extension of the OWL metamodel for SWRL. Section
5.1.1 starts with rules, after which Section 5.1.2 presents predicate symbols. Finally, Section
5.1.3 presents terms.

5.1.1. Rules

The main component of OWL ontologies is the set of axioms. SWRL specifies a rule also as
an axiom and Figure 5.1 demonstrates how our metamodel consequently represents it as a
subclass of the abstract superclass OWLAxiom, called Rule. As all OWL axioms, a SWRL
rule can be annotated, which is represented through an association of its superclass (Figure
4.1 on page 39). To identify a rule and assure compatibility with OWL, they can be assigned
a URI, represented by the optional attribute URI.

A rule in SWRL contains an antecedent, also refered to as 'body', and a consequent,
also refered to as 'head'. As we wanted to be able to treat them as first-class objects in our
metamodel, we represent them by metaclasses, called Antecedent and Consequent. Both

1Classes or relationships that already exist in the OWLmetamodel, can be recognized in the accompanying UML
diagrams by colored elements and an appropriate little icon.

2Remember that the language SWRL itself does not belong to our contribution.

59

5. Metamodel Descriptions for SWRL Rules

Figure 5.1.: SWRL metamodel extension: rules

antecedent and consequent contain a number of atoms, possibly zero, and multiple atoms
are treated as a conjunction in SWRL. Consequently, a rule actually says that if all atoms in
the antecedent hold, then the consequent holds3. The fact that antecedent and consequent
are possibly empty, is reflected in the metamodel by the multiplicity 'zero to many' on the
association bodyAtoms from Antecedent to Atom and the association headAtoms between
Consequent and Atom.

A SWRL atom is composed of a predicate symbol followed by an ordered set of terms. The
connections between the atom and these atom components are represented in the metamodel
through the associations from the metaclass Atom to the metaclasses PredicateSymbol and
Term. Both PredicateSymbol and Term are abstract classes. Most of their subclasses exist
already in the OWL metamodel.

3An empty antecedent is treated as trivially true, i.e. satisfied by every interpretation, whereas an empty conse-
quent is treated as false, i.e. not satisfied by any interpretation.

60

5.1. A MOF-based Metamodel Extension for SWRL

5.1.2. Predicate Symbols

An atom in SWRL rules can have the following forms:

• An OWL class description, defined on a variable or an OWL individual. The atom holds
if the value of the variable or individual belongs to the class description.

• An OWL data range specification using a variable or a data value. The atom holds if the
variable or individual belongs to the data range.

• An OWL property. In case of an object property, the subject and object of the property
are both an individual or a variable. If the specified property is a datatype property, the
atom takes an individual or a variable as the subject, and a variable or data value as
the object. The atom holds if the object of the property is related to the subject by the
specified property.

• A 'sameAs' construct, defined on two objects which are both an individual or a variable.
This construct is actually just some syntactic sugar and could be represented using other
existing constructs. However, since it is useful in practice, the SWRL specifications
define it as one of the basic constructs. The atom holds if the two terms are the same.

• A 'differentFrom' construct, defined on two objects which are both an individual or a
variable. Just as well as sameAs, also differentFrom is syntactic sugar but very practical.
The atom holds if the two terms are different.

• A built-in construct with a built-in ID and a set of variables and data values. Built-ins
are classified into seven modules, like built-ins for lists or built-ins for comparisons. Im-
plementations could select the modules to be supported. The atom holds if the relation
defined through the built-in ID, holds for the specified terms.

Figure 5.2.: SWRL metamodel extension: predicate symbols

Figure 5.2 shows that almost all predicate are available in the OWL metamodel. The set
of existing predicate symbols is extended in SWRL with one new predicate type, built-ins4.

4Note that the predicates sameAs and differentFrom are represented through the metaclass BuiltIn.

61

5. Metamodel Descriptions for SWRL Rules

These built-ins are represented by the metaclass BuiltIn which has an attribute URI for their
identification.

5.1.3. Terms

The last component in SWRL rules, is the set of terms. Figure 5.3 presents the metamodel
elements for the possible terms in rule atoms: variables, constants and individuals.

Figure 5.3.: SWRL metamodel extension: terms

Variables do not exist in OWL, so they are newly introduced in the SWRL extension of
the metamodel. Similar to the representation of data values and individuals, variables are
also represented by classes. As two types of variables are allowed, an abstract superclass
Variable is defined and both types of variables are defined by the subclasses DataVariable
and IndividualVariable. The name of any variable is defined through the attribute name of
the superclass, and their scope is always limited to the rule itself. Depending on the predicate
symbol of the atom, only a certain number of terms as well as certain types of terms are
allowed. These restrictions as well as the fact that variables that occur in the consequent must
occur in the antecedent, are defined on the metamodel as OCL constraints:

1. When the predicate symbol of the atom is a description, the atom has exactly one argu-
ment and this argument must be an individual variable or an individual:
context Atom inv:
self.atomName.oclIsTypeOf(Description) implies
self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable))

2. When the predicate symbol of the atom is a datarange, the atom has exactly one argu-
ment and this argument must be a constant or a data variable:

62

5.2. Conclusion

context Atom inv:
self.atomName.oclIsTypeOf(DataRange) implies
self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Constant) or
self.atomArguments→at(1).oclIsTypeOf(DataVariable))

3. When the predicate symbol of the atom is an object property, the atom has exactly two
arguments and each of these is either an individual or an individual variable:
context Atom inv:
self.atomName.oclIsTypeOf(ObjectProperty) implies
self.atomArguments→size()=2 and
self.atomArguments→forAll(oclIsTypeOf(Individual) or
oclIsTypeOf(IndividualVariable))

4. When the predicate symbol of the atom is a data property, the atom has exactly two
arguments and the first argument must be an individual or an individual variable, and
the second argument must be a constant or a data variable:
context Atom inv:
self.atomName.oclIsTypeOf(DataProperty) implies
self.atomArguments→size()=2 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable)) and
(self.atomArguments→at(2).oclIsTypeOf(Constant) or
self.atomArguments→at(2).oclIsTypeOf(DataVariable))

5. When the predicate symbol of the atom is a built-in, the atom can have zero to many
arguments and all these arguments can be either a constant or a data variable:
context Atom inv:
self.atomName.oclIsTypeOf(BuiltIn) implies
self.atomArguments→forAll(oclIsTypeOf(Constant) or oclIsTypeOf(DataVariable))

6. Only variables that occur in the antecedent may occur in the consequent of the rule:
context Rule inv:
self.ruleHead.headAtoms→atomArguments→forAll(t | t.oclIsTypeOf(Variable) im-
plies self.ruleBody.bodyAtoms→atomArguments→exists(t | true))

5.2. Conclusion

We introduced an extension for the MOF-based metamodel for OWL to support SWRL rules
in this chapter and Appendices A.3 starting on page 196 and A.4 starting on page 202. In
the next chapter, after presenting a MOF-based metamodel for rule-extended ontologies in F-

63

5. Metamodel Descriptions for SWRL Rules

Logic, we show how automatic transformations from F-Logic ontologies to OWL and SWRL
could be provided based on the MOF-based metamodels.
Additionally, after introducing an OWL metamodel extension supporting OWL ontology

mappings in Chapter 7 starting on page 91, Chapter 8 starting on page 101 introduces a UML
profile based on the OWL metamodel and its extensions for rules and mappings.

64

6. Metamodel Descriptions for
Rule-Extended Ontologies in F-Logic

We want to allow automatic transformations between models in F-Logic, and models in
OWL and SWRL, and vice versa. We rely on the MDA possibilities to achieve this and
define MOF-based metamodels for both formalisms. This chapter presents a metamodel for
the language F-Logic as it is described in Section 3.3 starting on page 32. The metamodel
for F-Logic is not related to the metamodel for OWL and SWRL in the sense that it is an
extension, but it is a stand-alone MOF-based metamodel for a different language. The only
relation that exists between the two is the fact that they are both defined in MOF, which
allows to use the automatic transformation possibilities of the MDA framework. The F-Logic
metamodel also contains OCL constraints to state it more precisely.

The discussion of the F-Logic metamodel starts in Section 6.1 with introducing the various
metaclasses with their properties and constraints, while explaining the F-Logic constructs
they represent1. UML diagrams accompany this discussion for the sake of clarity. Appendix
A.5 starting on page 205 provides an entire listing of the metaclasses, consisting of an
informal description, a listing of all its attributes, associations and generalizations, as well
as a listing of the constraints defined on it. The specification of the metamodel is completed
with the mapping between the metamodel and F-Logic, presented in Appendix A.6 starting
on page 218.

The open world semantic of OWL does not fit together with the F-Logic semantics, and
unrestricted transformations between both languages will not be possible. However, possible
transformations in a certain extent are desirable. Section 6.2 starting on page 79 addresses
transformations between the metamodel for F-Logic, and the metamodel for OWL and SWRL.
In doing so, we provide a first step towards automatic transformation of models in F-Logic to
OWL and SWRL, and vice versa.

We summarize the chapter in Section 6.3 starting on page 90.

1Remember, however, that we did not contribute to the language F-Logic itself.

65

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

6.1. A MOF-based Metamodel for F-Logic

Eight subsections present the metamodel: Section 6.1.1 starts with F-Logic programs, after
which Section 6.1.2 presents terms. Next, Section 6.1.3 presents Formulas and Section 6.1.4
presents rules and queries. Then, Section 6.1.5 gives logical connectives and Section 6.1.6
presents logical quantifiers. Finally, Section 6.1.7 demonstrates F-atoms and F-molecules,
whereas Section 6.1.8 P-atoms.

6.1.1. F-Logic Programs

The F-Logic specifications define an F-Logic program as a set of facts and rules. Facts are
expressions that represent statements about objects and their relationships. Queries take the
form of rules without heads and operate on a given F-Logic program. Typically, F-Logic
applications group the facts, rules and queries together and call it an F-Logic ontology.

Figure 6.1 describes the core of our metamodel and defines a metaclass FLogicOntology
connected to a set of Formulas via the association ontologyFormulas. The class Formula is an
abstract superclass of classes representing rules, facts and queries.
Formula also has subclasses that do not represent facts, rules or queries but are partial

formulas that are contained in rules and queries. Due to the potential overlap between formulas
that are contained directly in an ontology, and the set of partial formulas indirectly contained
in an ontology, the metamodel generalizes both groups into one superclass.
OCL constraints specify which of the subclasses can be directly contained in FLogicOntol-

ogy.

Figure 6.1.: F-Logic metamodel: ontologies

6.1.2. Terms

The basic syntactical elements of F-Logic are predicate symbols, function symbols, and vari-
ables, where functional terms and variables are called id-terms in F-Logic, which identify

66

6.1. A MOF-based Metamodel for F-Logic

objects, methods and classes. Functional terms are id-terms that have other id-terms as argu-
ments. The F-Logic specifications define constants as functional terms with zero arguments.
To distinguish between constants and variables, every variable has to be bound to a logical
quantifier.

Figure 6.2.: F-Logic metamodel: terms

Figure 6.2 depicts how the various types of F-Logic id-terms are derived from an abstract
metaclass called Term, carrying an attribute name that is inherited by all subclasses. Variables
and functional terms are represented by the classes Variable respectively FunctionalTerm.
An ordered association arguments to the class Term specify its arguments in the right order.
The association carries a multiplicity of 'zero to many', denoted by a star, as the number of
arguments in a functional term is unrestricted. For the specific type of functional terms that
have zero arguments, constants, the metamodel has a specific class as it is a very common id-
term. Two OCL constraints restrict the multiplicity of the association arguments for constants
as well as for functional terms that are not a constant:

1. A constant is a functional term with zero arguments:
context Constant inv:
self.arguments→size()=0

2. A functional term that is not a constant must have at least one argument:
context FunctionalTerm inv:
self→forAll(not oclIsTypeOf(Constant) implies self.arguments→size()>0)

Finally, the metaclasses Exists and ForAll are connected to the class Variable via respective as-
sociations isBoundToExists and isBoundToForAll to connect a variable to the logical quantifier
it is bound to.

67

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

Although every instantiation of Variable has to be connected to an instance of one of the
two classes, the associations have multiplicity 'one or zero' as two multiplicities 'exactly one'
would define that every variable needs to be connected to both classes. An OCL constraint
makes sure that an instantiated variable does always have one connection to any of the two:

1. A variable must be bound to exactly one universal quantifier or existential quantifier:
context Variable inv:
(self.isBoundToExists=1 or self.isBoundToForAll=1)
and
(self.isBoundToForAll=1 implies self.isBoundToForExists=0)

6.1.3. Formulas

Facts, rules and queries are represented in the metamodel by subclasses of the metaclass For-
mula, which is linked to FLogicOntology through an association. Figure 6.3 gives an overview
of the (partial) formulas that are derived from the class Formula. We distinguish four groups
of (partial) formulas:

• Logical connectives: classes Conjunction, Negation, Equivalence, Disjunction and Im-
plication

• Logical quantifiers: classes ForAll and Exists

• Facts: classes PAtom, FMolecule and FAtom

• Rules and queries: classes Rule and Query

An OCL constraint restricts the metamodel so that the logical connectives and quantifiers can
not be contained directly into an ontology:

1. The only subtypes of the class Formula that can be directly in an ontology, are F-
molecules (and so F-atoms), P-atoms, rules and queries:
context FLogicOntology inv:
self.ontologyFormulas→forAll(oclIsTypeOf(FMolecule) or oclIsTypeOf(Rule) or
oclIsTypeOf(Query) or oclIsTypeOf(PAtom))

The next sections explain the details of the different subclasses of Formula, and explains which
combinations are possible.

6.1.4. Rules and Queries

Rules (see Example 19) infer new information from available facts and so extend the object
base intensionally. A rule consists of a head (postcondition), an implication sign ('←−'), and
a body (precondition). A rule defines that when the formula (or combination of formulas) in

68

6.1. A MOF-based Metamodel for F-Logic

Figure 6.3.: F-Logic metamodel: formulas

the body is satisfied, then the formula (or combination of formulas) in the head is satisfied.
The rule head is a conjunction of P-atoms, F-Molecules and F-atoms, all connected through
'AND' . In the body, arbitrary formulas are allowed, and P-atoms, F-atoms and F-molecules
can be connected by any of the logical connectives: implies ('→'), implied by ('←'), equiv-
alent ('↔'), and ('AND'), or ('OR'), and not ('NOT').

Example 19 A pharmacy that is a client of a certain pharmaceutical lab, can sell the
medications produced by that lab:
∀X,Y,Z X : Pharmacy[canSell→ Z] ←−

X : Pharmacy[clientOf→ Y] ∧ Y : Laboratory[produces → Z].

When a rule contains variables, they must be introduced using a quantifier. A universal
quantifier ('∀') can appear in front of a rule or in the rule body, and an existential quantifier
('∃') can appear anywhere in the rule body.

From the rules and facts in an F-Logic program, a model is computed on which queries
(see Example 20) can be asked. The result of a query is a set of substitutions for the query’s
variables, that can be derived from the facts and rules in the knowledge base. Note that also
schema level queries are allowed, where not only instances and their values but also concept
and attribute names can be provided as answers via variable substitutions.

Example 20 The following example query retrieves sets of variable substitutions
'medication, person, disease' whereas the medication is made from the ingredient

69

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

'acetylsalicylicacid', and the person has a disease against which the medication helps.
The following values are a possible result of the query: X = Aspirin, Y = APerson, Z =
headache:
∀X,Y,Z ←− X : Medication[madeFromIngredient→ acetylsalicylicacid, helps→ Y] ∧
Y[hasDisease→ Z]

Figure 6.4 depicts the representation of rules and queries as the metaclasses Rule respectively
Query in the metamodel. As the F-Logic specifications define that rules and queries can be
given a name, both classes contains the attribute name.
Both Rule and Query are connected to the formula it contains through an association con-

tainedFormula carrying multiplicity 'one'2.

Figure 6.4.: F-Logic metamodel: rules and queries

Several OCL constraints define how partial formulas can be combined in a rule:

1. A rule is an implication formula and possibly has a universal quantifier in front:
context Rule inv:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication))

2. The head of a rule is a conjunction of facts or is just one fact (F-molecule or P-atom)3.
The following constraint defines this for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies

2Remember that when a rule or query consist of a combination of more than one formula, this is also represented
as one formula, hence they can always contain maximum one formula.

3Note that another fact construct in F-Logic, F-atom, is defined as a subclass of FMolecule and thus is also
included.

70

6.1. A MOF-based Metamodel for F-Logic

self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction)
or self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(FMolecule)
or self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(PAtom)

3. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(FMolecule) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(PAtom)

4. When the head of a rule is a conjunction, the combined formulas may only be facts.
The following constraint defines this for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies
(self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction)
implies self.containedFormula.oclAsType(Implication).consequent.
oclAsType(Conjunction).connectedFormulas→forAll(oclIsTypeOf(FMolecule) or
oclIsTypeOf(PAtom)))

5. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
(self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclAsType(Conjunction).connectedFormulas→forAll(
oclIsTypeOf(FMolecule) or oclIsTypeOf(PAtom)))

6. The body of a rule can be any formula except a rule or a query. The following constraint
defines this for rules without a universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Query)

7. A similar constraint is defined for rules with universal quantifier:
context Rule inv:
self.containedFormula.oclIsTypeOf(ForAll) implies

71

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Rule) and
not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Query)

Three OCL constraints specify how partial formulas are combined in queries:

1. A query is an implication formula with empty head, and can have a universal quantifier
in front:
context Query inv:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(Implication) implies
self.containedFormula.oclAsType(Implication).consequent→isEmpty)
and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication)
and self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).consequent→isEmpty)

2. The formula in the body of the query can be any formula except a rule or a query. The
following constraint defines this for queries without a universal quantifier:
context Query inv:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Query)

3. A similar constraint is defined for queries with universal quantifier:
context Query inv:
self.containedFormula.oclIsTypeOf(ForAll) implies
not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Query)

6.1.5. Logical Connectives

Partial formulas can be combined using logical connectives to form more complex formulas.
Not only facts (P-atoms, F-atoms and F-molecules) but also logical quantifiers or other
formulas which already connected through logical connectives, can be combined. The
following table gives the symbol in logic, the serialization in F-Logic, and the representation

72

6.1. A MOF-based Metamodel for F-Logic

in the metamodel for the logical connectives in F-Logic:

Logical symbol Serialization in F-Logic Metamodel element
∧ AND class Conjunction
≡ ↔ class Equivalence
� → class Implication
¬ NOT class Negation
∨ OR class Disjunction

Figure 6.5 details logical connectives4. Each of these subclasses is connected to the
class Formula, specifying the formulas that are combined. Conjunction and Disjunction both
have an association connectedFormulas with multiplicity 'two to many' in the metamodel, as
they combine two or more partial formulas. Equivalence combines exactly two formulas,
denoted by the multiplicity 'exactly two' on the association connectedFormulas. As a negation
is only containing one formula, the association connectedFormula from Negation to Formula
has multiplicity 'exactly one'. Finally, the metamodel provides two separate associations from
Implication to the two formulas it combines, antecedent and consequent, as it is necessary to
be able to distinguish between the two formulas as being the one before or the one behind
the implication-sign. OCL constraints restrict the metamodel in the sense that the five logical

Figure 6.5.: F-Logic metamodel: logical connectives

connectives cannot be used in combining rules or queries:

4Note that the two classes Formula in the figure represent the same metaclass but are only depicted twice for the
sake of clarity, as allowed in UML diagrams.

73

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

1. A conjunction can not combine rules or queries:
context Conjunction inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

2. A disjunction can not combine rules or queries:
context Disjunction inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

3. An equivalence construct can not combine rules or queries:
context Equivalence inv:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

4. A negation can not be defined on a rule or a query:
context Negation inv:
self.connectedFormula→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

5. An implication can not combine rules or queries:
context Implication inv:
self.antecedent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query)) and
self.consequent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

6.1.6. Logical Quantifiers

F-Logic allows the two logical quantifiers ∀ and ∃, binding variables in a formula. Figure 6.6
shows how the metamodel represents the two logical quantifiers as the subclasses Exists and
ForAll of the metaclass Formula. Both are connected to Formula via an association contained-
Formula, specifying the formula that is combined with the quantifier. To specify the variables
that are bound to the logical quantifiers, the metamodel provides an association boundVari-
ables from both to the metaclass Variable. To make sure that a variable that is connected to
a quantifier through the association boundVariables is also connected to the quantifier in the
other direction through the association isBoundToExists respectively isBoundToForAll, and
vice versa, three OCL constraints are defined:

1. When a variable is bound to a quantifier in one direction, than this quantifier must have
the variable defined as one of its bound variables in the other direction:
context Variable inv:
(self.isBoundToExists=1 implies
self.isBoundToExists.boundVariables→exists(v: Variable | v=self)) and
(self.isBoundToForAll=1 implies
self.isBoundToForAll.boundVariables→exists(v: Variable | v=self))

2. When an existential quantifier has defined a variable as one of its bound variables, then
this variable must be defined as bound to that quantifier:

74

6.1. A MOF-based Metamodel for F-Logic

context Exists inv:
self.boundVariables→forAll(v : Variable | v.isBoundToExists=self)

3. When a universal quantifier has defined a variable as one of its bound variables, then
this variable must be defined as bound to that quantifier:
context ForAll inv:
self.boundVariables→forAll(v : Variable | v.isBoundToForAll=self)

Figure 6.6.: F-Logic metamodel: logical quantifiers

6.1.7. F-Atoms and F-Molecules

Let c, c1, c2, m, o, r, r1, r2, ..., rn and t be F-Logic id-terms. Then we can define an F-atom as
a fact expression with one of the following forms:

• instanceOf assertion: o : c denotes that object o is an instance of class c.

• subclassOf assertion: c1 :: c2 denotes that class c1 is a subclass of class c2.

• single-valued method signature (method definition): c[m⇒ t] is a signature-atom spec-
ifying that the application of the single-valued (or functional) method m on an object of
class c has as result an obect of type t, where single-valued or functional means that at
most one object exists as value for the application of the method on an object.

• multi-valued method signature (method definition): c[m ⇒⇒ t] is a multi-valued
signature-atom denoting that the application of the method m on an instance of class
c has a set of possible objects of type t as result.

75

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

• single-valued method application (method instantiation): o[m → r] expresses that the
application of the method m on the object o has the object r as value.

• multi-valued method application (method instantiation): o[m � {r1, r2, ..., rn}] ex-
presses that a set of the objects r1, r2, ..., rn is the result of the application of the method
m on object o.

In the method signatures and method applications, the parts between the square brackets is
referred to as the method part, whereas the object in front of the brackets is called the host in
F-Logic. All method signatures and method applications can additionally have parameters.

To group several F-atoms about an object together conjunctively, F-Logic allows F-
molecules. F-molecules can contain several method applications or method signatures in
the method part of one construct, and moreover, not only a class but also an instanceOf or
subclassOf assertion can appear as host in front of the method list5. For example

X : Researcher[authorOf→ Y; cooperatesWith → Z]

is equivalent to

X : Researcher ∧ X[authorOf→ Y] ∧ X[cooperatesWith→ Z]

Figure 6.7 describes a metaclass FMolecule as a subclass of the metaclass Formula to rep-
resent an F-molecule. Because F-atoms are actually a special kind of F-molecules which can
only have a simple term as host, and can only have one method in the method part, whereas
F-molecules are unrestricted as regards the host objects as well as the number of methods,
F-atoms are represented as a subclass of the metaclass FMolecule, called FAtom.
An association called host from the metaclass FMolecule to the metaclass HostObject links

an F-molecule (and so an F-atom) to its host object, whereas an association called meth-
ods links an F-molecule (and so an F-atom) to its methods. Both F-molecules and F-atoms
have always exactly one host object, which is denoted in the metamodel by the multiplicity
'exactly one' on the association host. The association methods has multiplicity 'zero to many'
since an F-molecule has one or more methods, but an F-atoms has zero methods in case it has
a simple term (a variable, a functional term or a constant) as host object. An OCL constraint
restricts the metamodel with respect to the number of methods in F-atoms:

1. An F-atom is an F-molecule with exactly one method in case it has a simple term as
host object, and zero methods otherwise:
context FAtom inv:

5Note that atoms can also be nested. For example, the value of a method application can be defined as an atom
itself.

76

6.1. A MOF-based Metamodel for F-Logic

(self.host.oclIsTypeOf(Term) and self.methods→size()=1) or
(not self.host.oclIsTypeOf(Term) and self.methods→size()=0)

Figure 6.7.: F-Logic metamodel: F-molecules

Figure 6.8 shows the representation of the host objects in the metamodel. The three different
types of host objects are defined as subclasses of the abstract superclass HostObject. The first
type of host object is a simple term, represented by the metaclass Term which we introduced
earlier and is an abstract supertype for variables, constants and functional terms. Secondly, a
host object can be a combination of two terms of which one is defined to be the subclass of the
other one, represented by the metaclass SubClassOf. The metaclass SubClassOf is connected
to the two terms it combines, via the associations subclass and superclass. Thirdly, the host
object can be a combination of two terms of which the first one is defined to be an instance
of a specific class represented by the second term. This last type of host object is represented
in the metamodel by the metaclass InstanceOf, which is connected to the metaclass Term
via the associations instance and class specifying the terms that are combined in the construct.

Figure 6.9 shows how the methods are represented in the metamodel. The four different
types of method signatures and method applications are all represented as a subclass of the
abstract class Method: SingleValuedSignature, SingleValuedApplication, MultiValuedSigna-
ture and MultiValuedApplication. Every type of method has a name, which is represented
through the association name of their superclass. Additionally, the association parameters
with multiplicity 'zero to many' represents the optional parameters a method in F-Logic can
have.
The fact that all method types except the multi-valued method application have exactly

one object as value, is represented by the association value with multiplicity 'exactly one' that
the three metaclasses SingleValuedSignature, SingleValuedApplication and MultiValuedSig-
nature share. As the multi-valued method application has a set of one or more method val-

77

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

Figure 6.8.: F-Logic metamodel: F-molecule host objects

ues, the association value between MultiValuedApplication and MethodValue has multiplicity
'one to many'6.
As not only terms but also F-molecules itself are allowed as method values, an abstract

metaclass MethodValue is defined in the metamodel for the different types of method values.
The metaclasses Term and FMolecule which were introduced already earlier, are defined as
subclasses of the metaclassMethodValue.

6.1.8. P-Atoms

F-Logic provides P-atoms for compatibility with languages like Datalog. P-atoms consist of
a predicate symbol p and a list of id-terms F1 to Fn as parameters: p(F1, ..., Fn). Information
expressed by F-atoms can usually also be represented by P-atoms.
F-Logic additionally provides some built-in features, including several comparison predi-

cates, the basic arithmetic operators, and so forth. Built-ins are actually specific, predefined
P-atoms with at least one parameter.

Figure 6.10 demonstrates the metamodel representation of P-atoms as the metaclass PAtom.
The predicate symbol in front of the parameters in a P-atom is represented in the metamodel
by the class PredicateSymbol which has an attribute name specifying the predicate’s name.
The metaclass PAtom is connected to the metaclass PredicateSymbol through the association
predicate with multiplicity 'exactly one', as every P-atom must have a predicate symbol. The
P-atoms’s parameters are represented by instantiations of any subclass of the metaclass Term,
to which the metaclass PAtom is connected with the ordered association parameters. This

6Note that, although a multi-valued method has more method values, the method value of a multi-valued method
signature is defined as a class and hence it has not more than one method value.

78

6.2. Model Transformations for Rule-Extended Ontologies

Figure 6.9.: F-Logic metamodel: methods

association carries a multiplicity 'zero to many' as a P-atom does not have any restrictions
with respect to the number of parameters: it can contain zero but also many parameters.
As F-Logic built-ins are used in the same way as predicate symbols, the metamodel de-

fines a metaclass Builtin as a subclass of the metaclass PredicateSymbol. An OCL constraint
restricts the metamodel with respect to the number of parameters of a built-in:

1. If the predicate is a built-in, it must have at least one parameter:
context PAtom inv:
self.predicate.oclIsTypeOf(BuiltIn) implies self.parameters→size()>0

More detail about the F-Logic metamodel can be found in Appendices A.5 starting on page
205 and A.6 starting on page 218.

6.2. Model Transformations for Rule-Extended Ontologies

Recall our use case where trading partners want to build and exchange ontologies. Here,
we experience the situation where most companies do not have ontologies yet. However,
some companies have already modeled their knowledge as ontologies earlier. As no specific
ontology language such as OWL was existing yet, companies often used F-Logic, although it
is not intentionally built for modeling ontologies. To let such companies switch to OWL and
get full advantage from their ontologies, an automatic model transformation is very beneficial.

79

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

Figure 6.10.: F-Logic metamodel: P-atoms

Transformations can be defined on the level of MOFmetamodels to transformmodels based
on the F-Logic or OWLmetamodel. To this extent the correspondences between the metamod-
els must be established.
The semantic correspondence between F-Logic and OWL is heavily being researched

[MHRS06, MR07]. Our goal is to provide a structural transformation from the core part
of an F-Logic ontology to OWL. This core ontology part consists of the taxonomy, which is
the concept hierarchy, and instantiations.
A taxonomy and instantiations in F-Logic are modeled using F-atoms and F-molecules,

including class assertions, instance specifications, as well as single- and multivalued methods.
As every F-molecule can be split up in several F-atoms, it suffices to define transformations for
F-atoms to provide an automatic transformation from a core ontology part in F-Logic to OWL.
Below, we define the transformations for the six possible forms of F-atoms7: instances of
classes, subclasses, and the different method constructs, which concerns single valued method
signature, multi valued method signature, single valued method application and multi valued
method application.
We represent each transformation first in a table which we believe is more readable

than the QVT syntax, which is very close to OCL as it uses many OCL constructs. The
corresponding elements in the MOF metamodel for F-Logic and the corresponding elements
in the MOF metamodel for OWL, defined through the mapping 'σ', are defined. In doing so,
we sometimes rely on the OCL syntax to define elements. Elements that are indented, are

7Remember that the interpretation of the models is not always identical, and not all transformations yield seman-
tically equivalent statements.

80

6.2. Model Transformations for Rule-Extended Ontologies

attributes of the element above. The variables s1, s2 and s3 represent strings. After each table,
we give the corresponding QVT syntax.

The F-Logic construct for defining an individual as an instance of a certain class, is written
as follows: s1 : s2. The corresponding construct in OWL is the ClassAssertion construct:
ClassAssertion(s1 s2).
As an example, aspirin could be defined as an instance ofMedication, represented in F-Logic
as: aspirin : Medication and in OWL as: ClassAssertion(aspirin Medication).
The table and QVT syntax below define this transformation.

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom ClassAssertion
host = InstanceOf individual = Individual
instance = Term URI = s1
name = s1 class = OWLClass

class = Term URI = s2
name = s2

ru l e I n s t a n c eO f 2C l a s sA s s e r t i o n {
from

f : FLogic ! FAtom (
f . h o s t . o c l I sTypeOf (FLogic ! I n s t a n c eO f)
)

us ing {
s 1 : Str ing = f . h o s t . i n s t a n c e . name ;
s 2 : Str ing = f . h o s t . c l a s s . name ;

}
to

c : OWL! C l a s sA s s e r t i o n (
i n d i v i d u a l <− i ,
c l a s s <− o

) ,
i : OWL! I n d i v i d u a l (

URI <− s 1
) ,
o : OWL!OWLClass (

URI <− s 2
)

}

81

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

The second type of F-atom in F-Logic is the subclass-construct, defining that one concept is
a subconcept of another one: s1 :: s2. The corresponding construct in OWL is the SubClassOf
construct: SubClassOf(s1 s2).
An example could define a class FluidMedication as a subclass of the class Medication,
presented in F-Logic as follows: FluidMedication :: Medication and in OWL as follows:
SubClassOf(FluidMedication Medication).
The corresponding transformation is presented in the following table and QVT syntax.

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom SubClassOf
host = SubClassOf subClass = OWLClass
subclass = Term URI = s1
name = s1 superClass = OWLClass

superclass = Term URI = s2
name = s2

ru l e FLogicSubClassOf2OWLSubClassOf {
from

f : FLogic ! FAtom (
f . h o s t . o c l I sTypeOf (FLogic ! SubClassOf)

)
us ing {

s 1 : Str ing = f . h o s t . s u b c l a s s . name ;
s 2 : Str ing = f . h o s t . s u p e r c l a s s . name ;

}
to

s 3 : OWL! SubClassOf (
s ubC l a s s <− s 4 ,
s u p e rC l a s s <− s 5

) ,
s 4 : OWL!OWLClass (

URI <− s 1
) ,
s 5 : OWL!OWLClass (

URI <− s 2
)

}
F-Logic provides four other types of F-atoms, which define methods over classes. OWL

distinguishes between data properties and object properties. Our transformation presents all

82

6.2. Model Transformations for Rule-Extended Ontologies

properties as object properties. Further processing could detect the specific type of property
from an F-Logic method construct.

The methods in F-Logic can be single- or multi-valued, and can be either method signatures
or method applications. We first address the method signatures.

The general form of a single-valued method signature in F-Logic is as follows: s1[s2 ⇒
s3]. By transforming this F-Logic construct into OWL, two constructs are built. Firstly, one
construct defines an OWL description using an ObjectAllValuesFrom restriction to denote
the fact that the application of the specified method on the OWL description has instances
of the specified class as value: SubClassOf(s1 ObjectAllValuesFrom(s2 s3)). Secondly, as
we additionally have to denote that the F-Logic construct denotes a single-valued method,
an ObjectMaxCardinality restriction with maximum cardinality 1 is defined over the same
description8 9: SubClassOf(s1 ObjectMaxCardinality(1 s2 s3)).
An example single-valued method signature in F-Logic could define that the method
producedBy applied on instances of the class Medication returns instances of the class Lab-
oratory: Medication[producedBy ⇒ Laboratory] . The corresponding OWL constructs for
this example are: SubClassOf(Medication ObjectAllValuesFrom(producedBy Laboratory))
and SubClassOf(Medication ObjectMaxCardinality(1 producedBy Laboratory)).
The following table and QVT syntax present the transformation.

8Note that a single-valued method in F-Logic possibly has no value, wich means that it does not denote an exact
cardinality of 1 but a maximum cardinality of 1.

9Note that we can not define the property as a functional property instead of defining the cardinality restriction,
as that would be defined globally on the property. A cardinality restriction is defined locally on the property
for the concerning class, as a method in F-Logic does as well.

83

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom SubClassOf
host = Term subClass = OWLClass
name = s1 URI = s1

methods = superClass = ObjectAllValuesFrom
SingleValuedSignature property = ObjectProperty
name = Term URI = s2
name = s2 class = OWLClass

value = Term URI = s3
name = s3 SubClassOf

subClass = OWLClass
URI = s1

superClass = ObjectMaxCardinality
property = ObjectProperty
URI = s2

class = OWLClass
URI =s3

cardinality = 1

ru l e S i n g l eV a l u e dS i g n a t u r e 2 P r o p e r t y {
from

f : FLogic ! Fatom (
f . h o s t . o c l I sTypeOf (FLogic ! Con s t a n t) and
f . methods .
oc l I sTypeOf (FLogic ! S i n g l eVa l u e dS i g n a t u r e) and
f . methods . name . oc l I sTypeOf (FLogic ! Con s t a n t) and
f . methods . v a l u e . oc l I sTypeOf (FLogic ! Con s t a n t)

)
us ing {

s 1 : Str ing = f . h o s t . name ;
s 2 : Str ing = f . methods . name . name ;
s 3 : Str ing = f . methods . v a l u e . name ;

}
to

s 4 : OWL! SubClassOf (
s ubC l a s s <− s 5 ,
s u p e rC l a s s <− s 6

) ,
s 5 : OWL!OWLClass (

84

6.2. Model Transformations for Rule-Extended Ontologies

URI <− s 1
) ,
s 6 : OWL! Ob jec tA l lVa lue sF rom (

p r o p e r t y <− o 1 ,
c l a s s <− d 1

) ,
o 1 : OWL! Ob j e c t P r o p e r t y (

URI <− s 2
) ,
d 1 : OWL!OWLClass (

URI <− s 3
) ,
s 7 : OWL! SubClassOf (

s ubC l a s s <− s 8 ,
s u p e rC l a s s <− s 9

) ,
s 8 : OWL!OWLClass (

URI <− s 1
) ,
s 9 : OWL! Ob j e c tMaxCa r d i n a l i t y (

p r o p e r t y <− o 2 ,
c l a s s <− d 2 ,
c a r d i n a l i t y <− 1

) ,
o 2 : OWL! Ob j e c t P r o p e r t y (

URI <− s 2
) ,
d 2 : OWL!OWLClass (

URI <− s 3
)

}
The transformation of an F-Logic multi-valued method signature is quite similar to the

single-valued method signature but results in only one OWL construct, as it does not pose
any restrictions on the cardinality10. Generally, a multi-valued method signature in F-Logic
is presented as follows: s1[s2 ⇒⇒ s3] . The corresponding OWL construct for this is:
SubClassOf(s1 ObjectAllValuesFrom (s2 s3)).
The following example defines that when the method treats is applied on the class Medica-
tion, a set of values from the class Disease is returned: Medication[treats ⇒⇒ Disease]. In

10Note that F-Logic defines multi-valued methods as methods that return sets of values, although no minimum
number of elements for such sets is specified.

85

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

OWL, this statement would look like: SubClassOf(Medication ObjectAllValuesFrom (treats
Disease)).
The table and QVT syntax below define the corresponding transformation from the F-Logic
metamodel to the OWL metamodel.

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom SubClassOf
host = Term subClass = OWLClass
name = s1 URI = s1

methods = superClass = ObjectAllValuesFrom
MultiValuedSignature property = ObjectProperty
name = Term URI = s2
name = s2 class = OWLClass

value = Term URI = s3
name = s3

ru l e Mu l t iV a l u e dS i g n a t u r e 2P r o p e r t y {
from

f : FLogic ! FAtom (
f . h o s t . o c l I sTypeOf (FLogic ! Con s t a n t) and
f . methods . oc l I sTypeOf (FLogic ! Mu l t iV a l u e dS i g n a t u r e)
and
f . methods . name . oc l I sTypeOf (FLogic ! Con s t a n t) and
f . methods . v a l u e . oc l I sTypeOf (FLogic ! Con s t a n t)

)
us ing {

s 1 : Str ing = f . h o s t . name ;
s 2 : Str ing = f . methods . name . name ;
s 3 : Str ing = f . methods . v a l u e . name ;

}
to

s 4 : OWL! SubClassOf (
s ubC l a s s <− s 5 ,
s u p e rC l a s s <− s 6

) ,
s 5 : OWL!OWLClass (

URI <− s 1
) ,
s 6 : OWL! Ob jec tA l lVa lue sF rom (

86

6.2. Model Transformations for Rule-Extended Ontologies

p r o p e r t y <− o 1 ,
c l a s s <− d 1

) ,
o 1 : OWL! Ob j e c t P r o p e r t y (

URI <− s 2
) ,
d 1 : OWL!OWLClass (

URI <− s 3
)

}
Finally, we present the transformations of the two remaining F-Logic constructs that

make up the core part of the ontology consisting of the taxonomy and the instantiations:
the method applications, which instantiate method signatures on class instances. Again,
F-Logic distinguishes between methods returning scalar values and methods returning
sets of values. The general form of a single-valued method application in F-Logic is as
follows: s1[s2 → s3]. The corresponding construct in OWL is an ObjectPropertyAssertion:
ObjectPropertyAssertion(s2 s1 s3).
An example statement of a single-valued method application could specify that the ap-
plication of the method producedBy on the instance aspirin returns the instance bayer,
represented in F-Logic as: aspirin[producedBy → bayer] and in OWL as ObjectProp-
ertyAssertion(producedBy aspirin bayer).
We define the transformation of the corresponding MOF elements in the F-Logic metamodel
to the corresponding elements in the OWL metamodel in the following table and QVT syntax.

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom ObjectPropertyAssertion
host = Term property = ObjectProperty
name = s1 URI = s2

methods = source = Individual
SingleValuedApplication URI = s1
name = Term target = Individual
name = s2 URI = s3

value = Constant
name = s3

ru l e S i n g l eV a l u e dApp l i c a t i o n 2P r o p e r t y {
from

f : FLogic ! FAtom (
f . h o s t . o c l I sTypeOf (FLogic ! Con s t a n t) and

87

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

f . methods .
oc l I sTypeOf (FLogic ! S i n g l eV a l u e dApp l i c a t i o n) and
f . methods . name . oc l I sTypeOf (FLogic ! Con s t a n t) and
f . methods . v a l u e . oc l I sTypeOf (FLogic ! Con s t a n t)

)
us ing {

s 1 : Str ing = f . h o s t . name ;
s 2 : Str ing = f . methods . name . name ;
s 3 : Str ing = f . methods . v a l u e . name ;

}
to

o 1 : OWL! Ob j e c t P r o p e r t yA s s e r t i o n (
p r o p e r t y <− o 2 ,
s o u r c e <− i 1 ,
t a r g e t <− i 2

) ,
o 2 : OWL! Ob j e c t P r o p e r t y (

URI <− s 2
) ,
i 1 : OWL! I n d i v i d u a l (

URI <− s 1
) ,
i 2 : OWL! I n d i v i d u a l (

URI <− s 3
)

}

At last, we define the transformation for multi-valued method applications in F-Logic:
s1[s2 � s3]. The corresponding construct in OWL is the same as with single-valued method
applications as OWL does not make the same distinction for property instantiations as
F-Logic does for method applications: ObjectPropertyAssertion(s2 s1 s3).
An example could define that the application of the method treats on the instance aspirin
returns the instance headache as value. In F-Logic, this is presented as: aspirin[treats �
headache], whereas the corresponding OWL construct is: ObjectPropertyAssertion(treats
aspirin headache).
The table and QVT syntax below specify the transformation of the corresponding elements in
the MOF metamodel for F-Logic to the corresponding elements in the MOF metamodel for
OWL.

88

6.2. Model Transformations for Rule-Extended Ontologies

MOF-element in MOF-element in Metamodel for OWL =
Metamodel for F-Logic σ(element in Metamodel for F-Logic)
FAtom ObjectPropertyAssertion
host = Term property = ObjectProperty
name = s1 URI = s2

methods = source = Individual
MultiValuedApplication URI = s1
name = Term target = Individual
name = s2 URI = s3

value = Term
name = s3

ru l e Mu l t iV a l u e dApp l i c a t i o n 2P r o p e r t y {
from

f : FLogic ! FAtom (
f . h o s t . o c l I sTypeOf (FLogic ! Con s t a n t) and
f . methods .
oc l I sTypeOf (FLogic ! Mu l t iV a l u e dApp l i c a t i o n) and
f . methods . name . oc l I sTypeOf (FLogic ! Con s t a n t) and
f . methods . v a l u e . oc l I sTypeOf (FLogic ! Con s t a n t)

)
us ing {

s 1 : Str ing = f . h o s t . name ;
s 2 : Str ing = f . methods . name . name ;
s 3 : Str ing = f . methods . v a l u e . name ;

}
to

o 1 : OWL! Ob j e c t P r o p e r t yA s s e r t i o n (
p r o p e r t y <− o 2 ,
s o u r c e <− i 1 ,
t a r g e t <− i 2

) ,
o 2 : OWL! Ob j e c t P r o p e r t y (

URI <− s 2
) ,
i 1 : OWL! I n d i v i d u a l (

URI <− s 1
) ,
i 2 : OWL! I n d i v i d u a l (

URI <− s 3

89

6. Metamodel Descriptions for Rule-Extended Ontologies in F-Logic

)
}

6.3. Conclusion

In this chapter and the accompanying appendices, we presented a MOF-based metamodel for
ontologies and rules in F-Logic, along with OCL constraints that give it the right precision.
After we also presented a MOF-based metamodel for ontologies in OWL in Chapter 4 starting
on page 37, we could define a transformation from the metamodel of F-Logic to the meta-
model of OWL. This transformation on metamodel level allows us to automatically transform
a taxonomy and its instantiations in F-Logic to OWL. Hence, we provide a first step of sup-
port for companies that are already using F-Logic but want to benefit from the advantages of
OWL.

90

7. Metamodel Descriptions for OWL
Ontology Mappings

When people are modeling the same domain, they mostly produce different results, even
when then use the same language. Mappings have to be defined between these ontologies
to achieve an interoperation between applications or data relying on these ontologies. This
chapter provides an extension for the metamodel for OWL and SWRL to give additional
support for mappings between heterogeneous ontologies.

Section 7.1 introduces the metamodel extension in the same way as we did in the intro-
duction of the metamodel for OWL and SWRL, and for F-Logic. While introducing the
various mapping aspects1, we discuss their representation in the metamodel. Accompanying
UML diagrams document the understanding of the metamodel.2 For a full account on the
metamodel, we refer the reader to Appendix A.7 starting on page 224, which lists each
metaclass with an informal description, its attributes, associations and generalizations, and
applicable OCL constraints.

The metamodel is a common metamodel for the different OWL mapping languages. On top
of this common metamodel, we define two sets of constraints to concretize it to two specific
OWL ontology mapping languages, DL-safe mappings and C-OWL. Section 7.2 starting
on page 96 presents the extension for C-OWL mappings, consisting of a set of constraints.
Similarly, Section 7.3 starting on page 97 presents the extension for DL-Safe Mappings.

Additionally, Appendix A.8 starting on page 228 provides the mapping between the
metamodel and the language C-OWL, whereas Appendix A.9 starting on page 230 provides
the mapping for DL-Safe Mappings.

Finally, Section 7.4 starting on page 99 concludes the chapter with a little summary.

1Remember, however, that the OWL ontology mapping languages and their general aspects, are not part of our
contribution.

2In doing so, meta-classes that are colored or carry a little icon again denote elements from the metamodel for
OWL or SWRL.

91

7. Metamodel Descriptions for OWL Ontology Mappings

7.1. A Common MOF-based Metamodel Extension for OWL
Ontology Mappings

This section presents the common metamodel extension for OWL ontology mappings in two
subsections: Section 7.1.1 presents mappings, after which Section 7.1.2 presents queries.

7.1.1. Mappings

We use a mapping architecture that has the greatest level of generality in the sense that other
architectures can be simulated. In particular, we made the following choices:

• A mapping is a set of mapping assertions that consist of a semantic relation between
mappable elements in different ontologies. Figure 7.1 demonstrates how this structure
is represented in the metamodel by the five metaclasses Mapping, MappingAssertion,
Ontology, SemanticRelation andMappableElement and their associations.

• Mappings are first-class objects that exist independent of the ontologies. Mappings
are directed, and there can be more than one mapping between two ontologies. The
direction of a mapping is defined through the associations sourceOntology and targe-
tOntology of the metaclass Mapping, as the mapping is defined from the source to the
target ontology. The cardinalities on both associations denote that to each Mapping
instantiation, there is exactly one Ontology connected as source and one as target.

These choices leave us with a lot of freedom for defining and using mappings. For each pair
of ontologies, several mappings can be defined or, in case of approaches that see mappings as
parts of an ontology, only one single mapping can be defined. Bi-directional mappings can be
described in terms of two directed mappings.

The central class in the mapping metamodel, the classMapping, is given four attributes. For
the assumptions about the domain, the metamodel defines an attribute DomainAssumption.
This attribute may take specific values that describe the relationship between the connected
domains: overlap, containment (in either direction) or equivalence.
The question of what is preserved by a mapping is tightly connected to the hidden as-

sumptions made by different mapping formalisms. A number of important assumptions that
influence this aspect have been identified and formalized in [SSW05]. A first basic distinc-
tion concerns the relationship between the sets of objects (domains) described by the mapped
ontologies. Generally, we can distinguish between a global domain and local domain assump-
tion:

Global Domain assumes that both ontologies describe exactly the same set of objects. As a
result, semantic relations are interpreted in the same way as axioms in the ontologies.
This domain assumption is referred to as equivalence, whereas there are special cases

92

7.1. A Common MOF-based Metamodel Extension for OWL Ontology Mappings

Figure 7.1.: OWL mapping metamodel: mappings

of this assumption, where one ontology is regarded as a global schema and describes
the set of all objects, other ontologies are assumed to describe subsets of these objects.
Such domain assumption is called containment.

Local Domains do not assume that ontologies describe the same set of objects. This means
that mappings and ontology axioms normally have different semantics. There are varia-
tions of this assumption in the sense that sometimes it is assumed that the sets of objects
are completely disjoint and sometimes they are assumed to overlap each other, repre-
sented by the domain assumption called Overlap.

These assumptions about the relationship between the domains are especially important for
extensional mapping definitions, because in cases where two ontologies do not talk about the
same set of instances, the extensional interpretation of a mapping is problematic as classes
that are meant to represent the same aspect of the world can have disjoint extensions.
The second attribute of the metaclass Mapping is called inconsistencyPropagation,

and specifies whether the mapping propagates inconsistencies across mapped ontologies.
uniqueNameAssumption, the third attribute of the metaclass Mapping, specifies whether the
mappings are assumed to use unique names for objects, an assumption which is often made
in the area of database integration. The fourth attribute, URI, is an optional URI which allows
to uniquely identify a mapping and refer to it as a first-class object.

93

7. Metamodel Descriptions for OWL Ontology Mappings

The set of mapping assertions of a mapping is denoted by the relationship between the two
classes Mapping and MappingAssertion. The elements that are mapped in a MappingAsser-
tion are defined by the class MappableElement. A MappingAssertion is defined through
exactly one SemanticRelation, one source MappableElement and one target MappableEle-
ment. This is defined through the three associations starting fromMappingAssertion and their
cardinalities.

A number of different kinds of semantic relations have been proposed for mapping asser-
tions and are represented as subclasses of the abstract superclass SemanticRelation:

Equivalence (≡) Equivalence, represented by the metaclass Equivalence, states that the con-
nected elements represent the same aspect of the real world according to some equiva-
lence criteria. A very strong form of equivalence is equality, if the connected elements
represent exactly the same real world object. Specific forms of the equivalence rela-
tion are to be defined as subclasses of Equivalence in the specific metamodels of the
concrete mapping formalisms.

Containment (�,
) Containment, represented by the metaclass Containment, states that the
element in one ontology represents a more specific aspect of the world than the element
in the other ontology. Depending on which of the elements is more specific, the contain-
ment relation is defined in the one or in the other direction. This direction is specified
in the metamodel by the attribute direction, which can be sound (�) or complete (
). If
this attribute value is sound, the source element is more specific element than the target
element. In case of the attribute value complete, it is the other way around, thus the
target element is more specific than the source element.

Overlap (o) Overlap, represented by the metaclass Overlap, states that the connected ele-
ments represent different aspects of the world, but have an overlap in some respect. In
particular, it states that some objects described by the element in the one ontology may
also be described by the connected element in the other ontology.

In some approaches, these basic relations are supplemented by their negative counterparts, for
which the metamodel provides an attribute negated for the abstract superclass SemanticRe-
lation. For example, a negated Overlap relation specifies the disjointness of two elements.
The corresponding relations can be used to describe that two elements are not equivalent (�),
not contained in each other (�) or not overlapping or disjoint respectively (Ø). Adding these
negative versions of the relations leaves us with eight semantic relations that cover all existing
proposals for mapping languages.
In addition to the type of semantic relation, an important distinction is whether the map-

pings are to be interpreted as extensional or as intensional relationships, specified through the
attribute interpretation of the metaclass SemanticRelation.

94

7.1. A Common MOF-based Metamodel Extension for OWL Ontology Mappings

Extensional The extension of a concept consists of the things which fall under the concept.
In extensional mapping definitions, the semantic relations are interpreted as set-relations
between the sets of objects represented by elements in the ontologies. Intuitively, ele-
ments that are extensionally the same have to represent the same set of objects.

Intensional The intension of a concept consists of the qualities or properties which go to
make up the concept. In the case of intensional mappings, the semantic relations relate
the concepts directly, i.e. considering the properties of the concept itself. In particular,
if two concepts are intensionally the same, they refer to exactly the same real world
concept.

As mappable elements, the metamodel contains the class OWLEntity that represents an ar-
bitrary part of an ontology specification. While this already covers many of the existing map-
ping approaches, there are a number of proposals for mapping languages that rely on the idea
of view-based mappings and use semantic relations between (conjunctive) queries to connect
models, which leads to a considerably increased expressiveness. These queries are represented
by the metaclass OntologyQuery. Note that the metamodel in principle supports all semantic
relations for all mappable elements. OCL constraints for specific mapping formalisms can
restrict the combinations of semantic relations and mappable elements.

7.1.2. Queries

A mapping assertion can take a query as mappable element. Figure 7.2 demonstrates the class
Query that reuses constructs from the SWRL metamodel.
We reuse large parts of the rule metamodel as conceptual rules and queries are of very sim-

ilar nature [TF05]: A rule consists of a rule body (antecedent) and rule head (consequent),
both of which are conjunctions of logical atoms. A query can be considered as a special kind
of rule with an empty head. The distinguished variables specify the variables that are returned
by the query. Informally, the answer to a query consists of all variable bindings for which
the grounded rule body is logically implied by the ontology. A Query atom also contains a
PredicateSymbol and some, possibly zero, Terms. In the SWRL metamodel, we defined the
permitted predicate symbols through the subclasses Description, DataRange, DataProperty,
ObjectProperty and BuiltIn. Similarly, the different types of terms, Individual, Constant, Indi-
vidualVariable and DataVariable are specified as subclasses of Term. Distinguished variables
of a query are differentiated through an association between Query and Variable. An OCL
constraint defines a restriction on the use of distinguished variables:

1. A variable can only be a distinguished variable of a query if it is a term of one of the
atoms of the query:
self.distinguishedVariables→forAll(v: Variable |
self.queryAtoms→exists(a: Atom | a.atomArguments→exists(v | true)))

95

7. Metamodel Descriptions for OWL Ontology Mappings

Figure 7.2.: OWL mapping metamodel: queries

7.2. A Metamodel Extension for C-OWL

We define OCL constraints on the common mapping metamodel extension to concretize it
according to the specific formalism C-OWL [BGvH+03]. We list the specific characteristics
of C-OWL and introduce the necessary constraints for them. For each constraint, firstly the
context of the constraint, so the class in the metamodel on which it is to be defined, is defined
using the OCL syntax ”context classname inv:”3. Some existing reasoners support only a
subset of C-OWL. Additional constraints could be defined to support this.

1. C-OWL does not have unique name assumption. To reflect this in the metamodel, a
constraint defines that the value of the attribute uniqueNameAssumption of the class
Mapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. C-OWL does not have inconsistency propagation. Similary, a constraint is defined to
set the value of the attribute inconsistencyPropagation of the classMapping to 'false':
context Mapping inv:
self.inconsistencyPropagation = false

3where 'inv' stands for the constraint type invariant.

96

7.3. A Metamodel Extension for DL-Safe Mappings

3. The relationship between the connected domains of a mapping in C-OWL is always
assumed to be overlap. A constraint sets the value of the attribute domainAssumption
of the classMapping to 'overlap':
context Mapping inv:
self.domainAssumption = 'overlap'

4. C-OWL does not allow to define mappings between queries. Moreover, only object
properties, classes and individuals are allowed as mappable elements. A constraint de-
fines that any mappable element in a mapping must be anObjectProperty, anOWLClass
or an Individual:
context MappableElement inv:
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual)

5. A mapping assertion can only be defined between elements of the same kind. As the
previous constraint defines that mappings can only be defined between three specific
types of elements, an additional constraint can easily define that when the source ele-
ment is one of these specific types, then the target elements must be of that type as well:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(Individual) implies
self.targetElement.oclIsTypeOf(Individual))

6. As semantic relations in mappings, C-OWL supports equivalence, containment (sound
as well as complete), overlap and negated overlap (called disjoint). A constraint defines
this by specifying which different subclasses of SemanticRelation are allowed. When
only the non-negated version of the semantic relation is allowed, the constraint defines
that the attribute negated of the class SemanticRelation is set to 'false':
context SemanticRelation inv:
(self.oclIsTypeOf (Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false) or
self.oclIsTypeOf(Overlap)

7.3. A Metamodel Extension for DL-Safe Mappings

This section provides OCL constraints on the common metamodel for OWL ontology map-
pings to concretize it to the formalism DL-Safe Mappings [HM05]. Again, we highlight the
specific characteristics of the language and provide the appropriate constraints.

97

7. Metamodel Descriptions for OWL Ontology Mappings

1. DL-Safe Mappings do not have unique name assumption. To reflect this in the meta-
model, a constraint defines that the value of the attribute uniqueNameAssumption of the
classMapping is always 'false':
context Mapping inv:
self.uniqueNameAssumption = false

2. DL-Safe Mappings always have inconsistency propagation. A constraint is defined to
set the value of the attribute inconsistencyPropagation of the classMapping to 'true':
context Mapping inv:
self.inconsistencyPropagation = true

3. The relationship between the connected domains of a DL-Safe Mapping is always as-
sumed to be equivalence. A constraint sets the value of the attribute domainAssumption
of the classMapping to 'equivalence':
context Mapping inv:
self.domainAssumption = 'equivalence'

4. DL-Safe Mappings support mappings between queries, properties, classes, individuals
and datatypes. A constraint defines that the type of aMappableElement must be one of
these subclasses:
context MappableElement inv:
self.oclIsTypeOf(OntologyQuery) or
self.oclIsTypeOf(ObjectProperty) or
self.oclIsTypeOf(DataProperty) or
self.oclIsTypeOf(OWLClass) or
self.oclIsTypeOf(Individual) or
self.oclIsTypeOf(Datatype)

5. In DL-Safe Mappings, elements being mapped to each other must be of the same kind.
Thus, when one wants to map for instance a concept to a query, the concept should be
modelled as a query. A constraint defines that when the source element is of a specific
type, the target element must be of the same type:
context MappingAssertion inv:
(self.sourceElement.oclIsTypeOf(OntologyQuery) implies
self.targetElement.oclIsTypeOf(OntologyQuery)) and
(self.sourceElement.oclIsTypeOf(ObjectProperty) implies
self.targetElement.oclIsTypeOf(ObjectProperty)) and
(self.sourceElement.oclIsTypeOf(DataProperty) implies
self.targetElement.oclIsTypeOf(DataProperty)) and
(self.sourceElement.oclIsTypeOf(OWLClass) implies
self.targetElement.oclIsTypeOf(OWLClass)) and
(self.sourceElement.oclIsTypeOf(Individual) implies

98

7.4. Conclusion

self.targetElement.oclIsTypeOf(Individual)) and
(self.sourceElement.oclIsTypeOf(Datatype) implies
self.targetElement.oclIsTypeOf(Datatype))

6. DL-Safe Mappings specify that queries that are mapped to each other, must contain the
same distinguished variables. A constraint defines that when both elements are a query,
each variable that exists as distinguished variable in the source element, must exist as
distinguished variable in the target element:
context MappingAssertion inv:
self.sourceElement.oclIsTypeOf(Query) and
self.targetElement.oclIsTypeOf(Query) implies
self.sourceElement.oclAsType(Query).distinguishedVariables→
forAll(v: Variable | self.targetElement.oclAsType(Query).distinguishedVariables→
exists(v | true))

7. The interpretation of semantic relations in DL-Safe Mappings is always assumed to be
extensional. A constraint defines that the value of the attribute interpretation of the class
SemanticRelation must be set to 'extensional':
context SemanticRelation inv:
self.interpretation = 'extensional'

8. DL-Safe Mappings support the semantic relations equivalence and containment (sound
as well as complete). A constraint specifies this by defining which types SemanticRela-
tion can have and what its value for the attribute negated should be:
context SemanticRelation inv:
(self.oclIsTypeOf(Equivalence) and self.negated = false) or
(self.oclIsTypeOf(Containment) and self.negated = false)

7.4. Conclusion

We introduced an extension for the MOF-based metamodel for OWL and SWRL to support
OWL ontology mappings. A common extension for general mapping aspects covers several
existing OWL mapping languages. Constraints on this define concrete extensions for the spe-
cific languages C-OWL and DL-Safe Mappings. A constraint checker could check which
metamodel is actually instantiated by a certain model of mappings, so to which concrete for-
malism the model conforms. Such a model could be modeled using the UML profile that we
define in Chapter 8 starting on page 101, which allows graphical modeling of ontologies, rules
and ontology mappings in a UML-like syntax based on the metamodel.

99

7. Metamodel Descriptions for OWL Ontology Mappings

100

8. A UML Profile for Modeling Ontologies
and Ontology Mappings

This chapter introduces the visual syntax for rule-extended ontologies and ontology mappings
to support users unfamiliar with specific logical ontology modeling languages. We rely on the
UML profile mechanism to adapt the language to the specifics needs in modeling ontologies.

Even when different ontologies are modeled using the same language, different people often
model the same domain differently. Mappings have to be defined between these heterogeneous
ontologies to achieve an interoperation between applications or data relying on these ontolo-
gies. To support the user in defining such mappings, we define an extension of the UML
profile for ontologies and rules, to allow visual modeling of ontology mappings as well.

Our goal is to allow the user to specify mappings without having decided yet on a specific
mapping language or even on a specific semantic relation. This is reflected in the proposed
visual syntax which is, like the metamodel, independent from a concrete mapping formalism.
The UML profile is consistent with the design considerations taken for the profiles for OWL
ontologies and rule extensions.

Design Considerations Our goal is to provide a UML profile that it is cognitively
more adequate for people familiar with UML concepts. Our profile utilizes the maximal
intersection of features of both UML and ontology languages. Hence, classes are depicted as
classes, properties as associations and individuals as UML objects. Furthermore, we heavily
rely on the custom stereotypes and dependencies, and few stereotype tags. We provide an
argumentation for the specific notations throughout the next sections.

We present the ontology profile in a series of examples while covering all OWL 1.1 con-
structs. Hereby, every example is presented both in the visual syntax and in the functional-
style syntax. Section 8.1.6 starting on page 115 gives an overview of the profile. The profile
extensions for rules and ontology mappings are represented similarly in Section 8.2 starting on
page 117 and Section 8.3 starting on page 121. We complete the specifications of the profile
with the mappings between the metamodel for OWL, SWRL and ontology mappings on the
one hand and the profile on the other hand, given in Appendix A.10 starting on page 232.

101

8. A UML Profile for Modeling Ontologies and Ontology Mappings

8.1. A UML Profile for Ontologies

We start with the constructs for ontologies, their import statements and annotations. Further,
entities (except properties) and data ranges are addressed, followed by class descriptions and
class axioms. Next, we discuss the different properties and property axioms, after which we
end with facts in OWL ontologies.

8.1.1. UML Syntax for Ontologies

<<Ontology>>
http://www.uni-karlsruhe.de/PharmaceuticalDomain

Figure 8.1.: Ontology(http://www.uni-karlsruhe.de/PharmaceuticalDomain)

<<Ontology>>
http://www.uni-karlsruhe.de/MedicinalDomain

<<Ontology>>
http://www.uni-karlsruhe.de/PharmaceuticalDomain

<<OWLImport>>

Figure 8.2.: Ontology(http://www.uni-karlsruhe.de/PharmaceuticalDomain
Import(http://www.uni-karlsruhe.de/Medication))

Ontologies are represented by packages, which are the UML construct for packaging ele-
ments together. In this way, the ontology’s axioms are contained in the package representing
the ontology. The ontology’s URI is represented by the package name. Fig 8.1 shows an ex-
ample of an ontology called PharmaceuticalDomain. Note that we left out any axioms in the
example.
An appropriately stereotyped dependency between two ontology packages indicates the

import of one ontology into another. That way, Figure 8.2 demonstrates an ontology called

102

8.1. A UML Profile for Ontologies

PharmaceuticalDomain which imports the ontology MedicinalDomain. Although UML pro-
vides a predefined import dependency between packages, it can not be used for our import
statements since it means that the elements of the imported packages are integrated into the
importing package. Also the specific access dependency in UML works in this way and so is
not suited either.

<<Ontology>>
http://www.uni-karlsruhe.de/PharmaceuticalDomain

<<ExplicitAnnotation>>
type = CreationDate

Created in March 2007.

Figure 8.3.: Ontology(PharmaceuticalDomain Annotation(CreationDate ”Created
in March 2007.”))

Figure 8.3 shows how ontologies can be annotated using the profile. We reuse the UML
comment construct and specialize it with stereotypes, as it is originally provided by UML to
annotate any UML construct. The example shows an explicit annotation which does not only
carry a stereotype denoting the type of OWL annotation, but in case of an explicit annotation,
the stereotype additionally has a tag to define the type of the annotation more specifically.
When an annotation is defined on a combination of several UML constructs, the UML com-
ment is attached to the main element connecting the others.

8.1.2. UML Syntax for Entities and Data Ranges

Medication

Figure 8.4.: OWLClass(Medication)

We use the UML class notation for atomic classes, as well as for class descriptions where we
rely on stereotypes. The first compartment of the class notation is mandatory and contains the

103

8. A UML Profile for Modeling Ontologies and Ontology Mappings

class name as well as stereotypes. The second compartment can specify data properties. The
third compartment is not being used, since no operations are specified in ontologies. Figure
8.4 shows an example of a class definition.

Aspirin

Figure 8.5.: Individual(Aspirin)

Figure 8.5 shows how individuals are modeled using the UML object notation. Although,
strictly seen, class assertions do not belong in this section on entities and data ranges, we ad-
dress them here already since the discussion on class assertions is very close to the discussion
of individuals as entities. Figure 8.6(a) demonstrates how a class specification names the class
to which the individual belongs.

sinusitis: Disease

(a) Object

Disease

sinusitis

<<ClassType>>

(b) Association

Figure 8.6.: ClassAssertion(sinusitis Disease)

Figure 8.6(b) demonstrates an alternative notation using a stereotype <<ClassType>>, which
is necessary in the case of an instance of an anonymous class description.

<<Primitive>>
nonNegativeInteger

Figure 8.7.: Datatype(xsd:nonNegativeInteger)

The last group of constructs in this section are the data ranges. Figure 8.7 presents an
example of a datatype. By default, a datatype is modeled in the form of a class. In case of a

104

8.1. A UML Profile for Ontologies

primitive datatype a specific stereotype is provided. We will see later that the datatype can be
depicted differently when it defines the data range of a data property.

For the enumeration of data values, an anonymous class is connected to the enumerated
data values (in object notation) using dependencies connected with a small stereotyped cir-
cle (which is an available UML notation). Figure 8.8(a) shows an example of a datavalue
enumeration in this notation. The example in Figure 8.8(b) applies a suitable icon as an al-
ternative to the textual declaration with the stereotype. The specifications of the enumeration
construct that is available in the UML metamodel are in several aspects not suitable for the
OWL enumeration. One main reason for this is the restriction that in the UML enumeration,
all values have to be from the same type. Since these specifications do not correspond to the
enumeration characteristics in OWL, this can not be used as a possible notation.

<<DataOneOf>>

15: integer5: integer

(a) White dot

{}

15: integer5: integer

(b) Icon

Figure 8.8.: DataOneOf(”5”ˆˆxsd:integer ”15”ˆˆxsd:integer)

The complement of a data range is denoted via a stereotype <<DataComplementOf>> in
the data range. For the data range restriction, the restriction value and the facet type are added
to the data range as attributes. Figure 8.9 shows an example of such a datatype restriction.

datatypeFacet: minLength
restrictionValue: 4

<<primitive>>
string

Figure 8.9.: DatatypeRestriction(xsd:string minLength 4)

105

8. A UML Profile for Modeling Ontologies and Ontology Mappings

8.1.3. UML Syntax for Class Axioms and Class Descriptions

Figure 8.10(a) depicts how subclass-statements are depicted as generalizations. Class equality
between two classes can be presented by a double-sided generalization arrow, as a simplified
notation for two generalization arrows in opposite directions. Strictly speaking, this construc-
tion is not UML-conform, since the UML-metamodel does not allow cycles in a general-
ization hierarchy. A UML-conform notation could depict subclasses and equivalent classes
via appropriately stereotyped dependencies. Figure 8.10(b) shows this alternative notation.
For equivalent classes, the dependency would be double-sided and carrying the stereotype
<<EquivalentClasses>>. Note that by representing these constructs with generalization ar-
rows, stereotypes are not needed.

Disease

CommunicableDisease

(a) Generalization

Disease

CommunicableDisease

<<SubClassOf>>

(b) Dependency

Figure 8.10.: SubClassOf(CommunicableDisease Disease)

OWL 1.1 allows more than two classes in the construct for equivalent classes. Although
the specific notation for two classes is most useful and intuitive for this particular case, an
elaborated notation for the construct with more than two classes is necessary. For this we
need a certain construct connected to the different classes of the definition. Clearly, a class
box is inappropriate for this since we do not want to specify another class but only specify
some characteristic of existing classes. For such constructs in OWL 1.1 where a characteristic
is defined between several objects, we draw a stereotyped small circle with an appropriate
stereotype and connect it to the classes of the definiton. Figure 8.11(a) gives an example of
three classes defined to be equivalent. Figure 8.11(b) demonstrates an icon that provides an
alternative for the stereotyped notation.
The disjointness of two classes is depicted similarly to the equivalence between two

classes. A double-sided dependency with the stereotype <<DisjointClasses>> connects the
two classes. Also when more classes are involved in the statement, the notation is similar to
the one for equivalent classes. The profile provides the '⊥' sign as an icon for the alternative
notation.
As the last OWL 1.1 class axiom, Figure 8.12 presents the UML notation for defining a

106

8.1. A UML Profile for Ontologies

<<EquivalentClasses>>

SicknessIllnessDisease

(a) White dot

SicknessIllnessDisease

(b) Icon

Figure 8.11.: EquivalentClasses(Disease Illness Sickness)

class as a union of other classes, all of which are pair-wise disjoint. Although the notation
is very similar to the notation we just introduced for equivalent and disjoint classes, it is
different in the sense that it has one class with a particular position. For this specific class, the
dependency is directed towards instead of away from the icon or dot, as we saw it before for
the enumeration of data values. Note that this notation for a disjoint union can be used with
any number of classes in the definition.

After discussing the UML constructs for class axioms, we now examine the constructs for
class descriptions. Except for OWLClass, which we addressed in the very beginning of this
chapter, class descriptions are not used on their own, but are used in axioms. To give the
reader a clear idea of how the constructs would be used, we present the class descriptions
in an axiom defining a class as a subclass of the description. We provide a compact nota-
tion where the new class to be defined is affiliated with the anonymous class defined by the
description itself. Additionally, for the descriptions we always take simple classes in our ex-
amples. The first group of descriptions, unions and intersections, can be depicted by applying
the stereotypes <<ObjectUnionOf>> and <<ObjectIntersectionOf>> on the visual notation
that we introduced earlier. Figure 8.13 demonstrates the union class description.

The OWL 1.1 construct defining the complement of a description has a connection from
the anonymous class to exactly one description. As only one element is involved on each
side, the dot notation is not necessary and a normal <<ObjectComplementOf>> stereotyped
dependency can be used.

The enumeration of individuals follows the same presentation pattern as the constructs be-

107

8. A UML Profile for Modeling Ontologies and Ontology Mappings

<<DisjointUnion>>

Medication

NonPrescriptionMedicationPrescriptionMedication

(a) White dot

NonPrescriptionMedicationPrescriptionMedication

Medication

*

(b) Icon

Figure 8.12.: DisjointUnion(Medication PrescriptionMedication NonPrescriptionMedication)

fore and the enumeration of data values. The class is connected with the enumerated individ-
uals using a <<ObjectOneOf>> stereotyped group of dependencies, or an icon.
Another means of defining classes in OWL 1.1 is by defining restrictions on properties.

We represent the property by an association to the qualifying property range, which is a class
in case of an object property and a data range in case of a data property. The intention of a
UML association is exactly what we need to represent a property. We only add a restriction-
specific stereotype to the association, and depict the property’s name at the end of the arrow.
For restrictions on data properties, an alternative notation would be the UML class attribute
notation. This is only possible if the datarange is a datatype and otherwise, only the notation
that we just explained can be used. The special notation for restrictions on data properties
with data types as value, we introduce later in other constructs using this notation. Also for
an argumentation and a deeper discussion on the property notation, we refer the reader to the
next section.
For cardinality restrictions, we rely on UML association multiplicities to define the cardi-

108

8.1. A UML Profile for Ontologies

<<ObjectUnionOf>>

GasFluidSolid

ChemicalComponent

(a) White dot

ChemicalComponent

GasFluidSolid

(b) Icon

Figure 8.13.: SubClassOf(ChemicalComponent ObjectUnionOf(Solid Fluid Gas))

nality. Figure 8.14 shows how UML multiplicities are applied for an OWL minimum cardi-
nality on an object property. The notation for maximum and exact cardinalities, as well as for
these cardinalities on data properties, are similar.

When only the cardinality is explicitly specified but no range, the association of the un-
qualified cardinality restriction leads to the universal class owl:Thing (in case of an object
property) or the unary datatype rdfs:Literal (in case of a data property).

It could be useful to allow merging several cardinality restrictions on the same property and
so merge it into one visual construct. Note here that UML does not permit that the highest
cardinality is lower than the minimum cardinality.

For value restrictions and existential restrictions, the indication of a multiplicity is not ap-
plicable. Otherwise, the notation stays the same as for cardinality restrictions. The stereo-
types <<ObjectSomeValuesFrom>>, <<ObjectAllValuesFrom>> and <<ObjectExistsSelf>>
are used. The notation for cardinality restrictions on data properties is exactly the

109

8. A UML Profile for Modeling Ontologies and Ontology Mappings

Medication

Ingredient

<<ObjectCardinality>>

madeFromIngredient1..*

Figure 8.14.: SubClassOf(Medication ObjectMinCardinality(1 madeFromIngredient
Ingredient))

same as for object properties, and utilizes the stereotypes <<DataSomeValuesFrom>> and
<<DataAllValuesFrom>>.

Patient

<<ObjectExistsSelf>>

knows

Figure 8.15.: SubClassOf(Patient ObjectExistsSelf(knows))

The example of Figure 8.15 looks different but uses exactly the same pattern of a stereo-
typed association with property name from a class to the range. In this case, the range is
defined to be the class itself.
Finally, the last description construct provided by OWL 1.1 is the property filler, for which

we can not use the same pattern as we used for the descriptions before because UML does not
allow to connect a class with an object using an association. Taking this into account, no more
compact notation conform to the UML metamodel exists than a combination of an existential
restriction and an enumeration 1. Figure 8.16 demonstrates an example. In this manner, we
actually build an anonymous class which consists of the individual defined in the property
filler construct. Consequently, we define a class which has an instance of the anonymous class
as value for the given property. Since the anonymous class contains only one individual, in
this way we indirectly defined the property filler. When the property is a data property, the
value for the property filler is defined to be a constant and we can utilize the compact class

1Note that a dependency is not suitable either, as the property name can not be defined on a dependency as on an
association.

110

8.1. A UML Profile for Ontologies

FluidMedication

hasPackage

bottle
<<ObjectOneOf>>

<<ObjectSomeValuesFrom>>

Figure 8.16.: SubClassOf(FluidMedication ObjectHasValue(hasPackage bottle))

<<DataHasValue>> hasMinimumAge: 12
MedicationForAdults

Figure 8.17.: SubClassOf(MedicationForAdults DataHasValue(hasMinimumAge
”12”ˆˆxsd:integer))

notation with its attributes. Figure 8.17 demonstrates this notation. A similar notation can be
used for the restrictions we addressed before, in case of a datatype.

8.1.4. UML Syntax for Properties and Property Axioms

In UML, attributes and associations are the means to model characteristics of classes or rela-
tions between classes. To accomodate the UML-user, we represent properties by attributes and
associations not only in the context of restrictions which we addressed in the former section.
We discuss the associated problems and possible ways out.
Figure 8.18(a) shows that for object properties, the associated classes serve as initial and end

point of a directed association. Figure 8.19(a) demonstrates how a data property is depicted
as an attribute of the domain, whose type determines the range. This representation in which
the properties are interpreted as attributes of its domain, can not be harmonized with the
global character of an OWL property without violating the UML-metamodel. A property
belongs to the namespace of its domain. For the illustration of properties using attributes,
additional conventions are necessary. Moreover, this notation is perceived to be less intuitive
when a property contains multiple domains and ranges. Then, for domains Di and ranges
Ri, it insinuates D1 × R1 ∪ ... ∪ Dn × Rn. Correct would be (D1 ∩ ... ∩ Dn) × (R1 ∩
... ∩ Rn). Figure 8.19(b) demonstrates an alternative consisting in utilizing associations as
with object properties. Figures 8.18(b) and 8.19(c) present one more alternative notation for

111

8. A UML Profile for Modeling Ontologies and Ontology Mappings

Medication

Ingredient

madeFromIngredient

(a) Association

<<ObjectProperty>>
madeFromIngredient

Medication Ingredient

<<ObjectPropertyDomain>> <<ObjectPropertyRange>>

(b) Diamond class

Figure 8.18.: ObjectPropertyDomain(madeFromIngredient Medication)
ObjectPropertyRange(madeFromIngredient Ingredient)

properties. To be able to distinguish them from normal classes, we depict them in the form
of a diamond. The classes of domains and ranges are thereby connected explicitly through
stereotyped dependencies.
An object property can be connected to its inverse with a two-sided dependency arrow

with stereotype <<InverseObjectProperties>>. Functionality, inverse functionality, reflexiv-
ity, irreflexivity, symmetry, antisymmetry and transitivity of object properties, as well as func-
tionality of data properties is indicated by a stereotype. Figure 8.20 gives an example of an
antisymmetric object property. Note that a model element in UML 2 can have several stereo-
types. Although some of these characteristics could be represented utilizing cardinalities, we
chose not to do so because of uniformity.
Similar to classes, property inclusion is depicted with a generalization arrow or

the alternative dependency notation with the stereotypes <<SubObjectPropertyOf>> or
<<SubDataPropertyOf>>. When more subproperties are contained in the definition, we apply
a usual UML combination of generalization arrows into one arrow.

112

8.1. A UML Profile for Ontologies

Medication

hasMinimumAge: nonNegativeInteger

(a) Class attribute

Medication

<<primitive>>
nonNegativeInteger

hasMinimumAge

(b) Association

<<DataProperty>>
hasMinimumAge

Medication <<primitive>>
nonNegativeInteger

<<DataPropertyDomain>> <<DataPropertyRange>>

(c) Diamond class

Figure 8.19.: DataPropertyDomain(hasMinimumAge Medication)
DataObjectPropertyRange(hasMinimumAge xsd:nonNegativeInteger)

For properties defined to be equivalent, we provide the same notation as for classes.
When only two properties are defined to be equivalent, a two-sided generalization
arrow as well as an alternative notation with a <<EquivalentObjectProperties>> or
<<EquivalentDataProperties>> dependency can be used. When more than two properties
are specified, we reuse the notation with the dot or icon.
Disjoint properties are depicted in exactly the same way but with the stereotype

<<DisjointObjectProperties>> or <<DisjointDataProperties>>. The generalization notation
is not applicable in this case.

8.1.5. UML Syntax for Facts

We augment the UML notation for class assertions that was introduced earlier on with the
remaining six types of facts in OWL 1.1. Figure 8.21 presents the notation for equality and
inequality between two individuals using UML object relations. An appropriate stereotype,

113

8. A UML Profile for Modeling Ontologies and Ontology Mappings

<<ObjectProperty>>
<<Antisymmetric>>
madeFromIngredient

Figure 8.20.: AntisymmetricObjectProperty(madeFromIngredient)

influenza

cephalalgia

<<DifferentIndividual>>

Figure 8.21.: DifferentIndividual(influenza cephalalgia)

<<SameIndividual>> or <<DifferentIndividual>> defines the type of relation.

Although this notation is very useful when only two individuals are contained in the defini-
tion, we need an additional construct since OWL 1.1 allows more than two individuals in the
construct. The notation we used before, for instance to define several classes to be equivalent
(see Figure 8.11), seems adequate for this as well, and allows us to provide a UML profile
with a maximum degree of uniformity.

Figure 8.22 demonstrates that the value of an object property is depicted as an object
relation. When the construct defines a negative object property assertion, the association
carries an appropriate stereotype <<Not>>.

In case of a data property, the property value can alternatively be depicted as an attribute of
the respective individual. Similary as with object properties, a stereotype is added when it is
a negative property assertion. Figure 8.23 shows an example of such a negative data property
assertion.

114

8.1. A UML Profile for Ontologies

aspirin

acetylsalicylicacid

madeFromIngredient

Figure 8.22.: ObjectPropertyAssertion(madeFromIngredient aspirin acetylsalicylicacid)

aspirin

<<Not>> hasMinimumAge=0

Figure 8.23.: NegativeDataPropertyAssertion(hasMinimumAge aspirin 0)

8.1.6. The Ontology UML Profile

The following table gives a complete overview of the profile for OWL ontologies. For each
stereotype, we specify possible tags, as well as the element of the UML metamodel it is
defined on.

115

8. A UML Profile for Modeling Ontologies and Ontology Mappings

Stereotype Tags UML metamodel element
Ontologies
Ontology Package
OWLImport Dependency
Annotations
Comment Comment
Label Comment
ExplicitAnnotation type Comment
Entities
OWLClass Class
ClassType Dependency
Datatype Class, Property
Primitive Class, Property
Data ranges
DataOneOf Connector
DataComplementOf Class
Class axioms
SubClassOf Dependency
EquivalentClasses Dependency, Connector
DisjointClasses Dependency, Connector
DisjointUnion Connector
Class descriptions
ObjectUnionOf Connector
ObjectIntersectionOf Connector
ObjectComplementOf Dependency
ObjectOneOf Connector
ObjectCardinality Association
DataCardinality Association, Property
ObjectSomeValuesFrom Association
ObjectAllValuesFrom Association
ObjectExistsSelf Association
DataSomeValuesFrom Association, Property
DataAllValuesFrom Association, Property
DataHasValue Property

116

8.2. A UML Profile Extension for Rules

Stereotype Tags UML metamodel elements
Properties
ObjectProperty Class
DataProperty Class
ObjectPropertyDomain Dependency
ObjectPropertyRange Dependency
DataPropertyDomain Dependency
DataPropertyRange Dependency
InverseObjectProperties Dependency
Functional <<ObjectProperty>> Class,

<<DataProperty>> Class
InverseFunctional <<ObjectProperty>> Class
Symmetric <<ObjectProperty>> Class
Antisymmetric <<ObjectProperty>> Class
Transitive <<ObjectProperty>> Class
Reflexive <<ObjectProperty>> Class
Irreflexive <<ObjectProperty>> Class
SubObjectProperty Dependency
SubDataProperty Dependency
EquivalentObjectProperties Dependency, Connector
EquivalentDataProperties Dependency, Connector
DisjointObjectProperties Dependency, Connector
DisjointDataProperties Dependency, Connector
Facts
SameIndividual Connector, Connector
DifferentIndividual Connector, Connector
Not Association, Property

8.2. A UML Profile Extension for Rules

Most of the notations used in the profile for rules exist already in the profile for OWL. We
introduce the profile in the order we used when discussing the SWRL metamodel in Section
5 starting on page 59.

8.2.1. UML Syntax for Rules

Figure 8.24 shows an example of a rule defining that a pharmacy that is a client of a certain
pharmaceutical lab can sell the medications produced by that lab. The figure demonstrates
that for collecting the atoms of a rule, we reuse the package notation which is used in UML

117

8. A UML Profile for Modeling Ontologies and Ontology Mappings

to represent collections of elements2. An appropriate stereotype <<Rule>> denotes the rule
construct. An optional stereotype tag name can specify the name of the rule. The complete
rule is packed in one package, and stereotypes on the different atoms denote whether they
belong to the antecedent or the consequent. Another possible notation for the rule construct
would be to take two separate packages for antecedent and consequent, and connect them
using a dependency. Because this would make even a very simple rule look very complex, we
decided not to use this notation.
The figure shows that three variable definitions as well as three property assertions between

these variables are defined in the example. Two of the property assertions build the antecedent
of the rule, whereas the third one defines the consequent. We explain the specific design
considerations of these concepts in the following subsections.

<<Rule>>

<<Variable>>
x

<<Variable>>
y

<<Variable>>
z

clientOf

produces

canSell

<<Precondition>>

<<Precondition>>

<<Postcondition>>

Figure 8.24.: canSell(x, z)← clientOf(x, y) ∧ produces(y, z)

8.2.2. UML Syntax for Terms

Although the OWL profile already comprises a visual syntax for individuals and data values,
namely by applying the UML object notation, it does not include a notation for variables as
OWL ontologies do not contain variables. We depict variables in the UML object notation
as well, since a variable can be seen as a partially unknown class instance. A stereotype
<<Variable>> distinguishes a variable from an individual. Figure 8.25 shows an example for

2Note that UML packages can be nested. Hence rules can be contained in the ontology package.

118

8.2. A UML Profile Extension for Rules

each type of term: a variable x, an individual aspirin belonging to the classMedication, and a
data value 6 which is a nonNegativeInteger.

<<Variable>>
x

(a) Variable

aspirin: Medication

(b) Individual

6: nonNegativeInteger

(c) Data value

Figure 8.25.: Rule terms

8.2.3. UML Syntax for Predicate Symbols in Atoms

8.2.3.1. Class description and data range

A visual notation for individuals as instances of certain classes is already provided in the
profile for OWL. Exactly the same notation is used for rule atoms defining that a variable
belongs to a certain class. In this way, when the class is a simple class, the class name is
added to the notation from Figure 8.25(a) like in the notation for individuals (Figure 8.25(b)).
The example in Figure 8.26 contains several such constructs, for instance the definition of
the variable x belonging to the class Person. The rule defines that when a person has at least
the minimum age for the medication that helps against the disease he/she suffers, then the
medication helps the person. Among others, the figure also contains a variable y defined
as a nonNegativeInteger. Similar to the adaptation of the class assertion notation to support
variables, the available notation for data ranges with individuals is adapted.

8.2.3.2. Properties

We depicted object property assertions as directed associations between the two involved ele-
ments. A datatype property can be pictured as an attribute or as an association. These notations
were provided for individuals by the OWL profile, and we follow them to depict properties of
variables. Figure 8.24 contains three such object properties between variables, clientOf, pro-
duces and canSell. The example rule depicted in Figure 8.26 contains amongst other things
two datavalued properties hasAge and hasMinimumAge.

8.2.3.3. sameAs and differentFrom

According to the ontology profile, equality and inequality between objects are depicted using
object relations. Again, because of the similarity between individuals and variables, we use the
same visual notation for sameIndividual and differentIndividuals relations between variables
or between a variable and an object.

119

8. A UML Profile for Modeling Ontologies and Ontology Mappings

<<Rule>>

<<Variable>>
x: Person

<<Variable>>
y: nonNegativeInteger

<<Variable>>
z: Disease

hasAge

hasDisease

<<Precondition>>

<<Precondition>>

<<Variable>>
v: Medication

<<Variable>>
w: nonNegativeInteger

treats
<<Precondition>>

hasMinimumAge
<<Precondition>>

>

<<Postcondition>>
helps <<Precondition>>

Figure 8.26.: helps(v, x)← Person(x), nonNegativeInteger(y), hasAge(x, y),Disease(z),
hasDisease(x, z),Medication(v), treats(v, z), nonNegativeInteger(w),
hasMinimumage(v,w), swrlb:greaterThanOrEqual(y,w)

8.2.3.4. Built-in predicates

For the visual representation of built-in relations, one would want to use the notation with the
dot or the icon with the dependencies as we introduced for quite some constructs in OWL for
the sake of uniformity. However, because the order of the different elements in the built-in
relation should be specified, dependencies are not suitable. In consequence of that, built-ins
are represented in an object notation with the specific built-in ID and an appropriate stereo-
type. All participating variables and data values are connected through associations that have
a number as name, to denote their order. Figure 8.27 shows an example of a built-in relation
swrlb:greaterThan, which defines whether the first involved argument is greater than the sec-
ond one. For some binary built-in predicates, a dependency with an appropriate icon can be
used. The example rule of Figure 8.26 uses this alternative notation for the built-in predicate
greaterThanOrEqual.

120

8.3. A UML Profile Extension for Ontology Mappings

<<Built-in>>
greaterThan

<<Variable>>
y

<<Variable>>
x

#1

#2

Figure 8.27.: Built-in predicates

8.2.4. The Rule UML Profile

After introducing the different visual constructs using examples, the following table provides
an overview of the SWRL extension of the OWL profile. For each stereotype, we specify
possible tags and the UML metamodel element it is defined on. Note that the profile would
not be used on its own as listed here, but always together with the profile for ontologies,
which we listed in Section 8.1.6 starting on page 115.

Stereotype Tags UML metamodel element
Rule name Package
Precondition Dependency, Class,

InstanceSpecification, Association,
Generalization, OWL profile-stereotyped
Connector, Actor

Postcondition Dependency, Class,
InstanceSpecification, Association,
Generalization, OWL profile-stereotyped
Connector, Actor

Variable InstanceSpecification
Built-in InstanceSpecification

8.3. A UML Profile Extension for Ontology Mappings

As the last part of the profile, this section introduces the extension to support the visual def-
inition of OWL ontology mappings. The metamodel for ontology mappings reuses elements
of the metamodel for OWL and SWRL for defining the mappable elements. The metaclass
OWLEntity is directly available in the OWL metamodel, whereas OntologyQuery is not but it
is defined as consisting of elements which are all available in the SWRLmetamodel. Similary,

121

8. A UML Profile for Modeling Ontologies and Ontology Mappings

also the profile extension for ontology mappings reuses much from the profile for ontologies
and rules. In fact, all mappable elements except queries are already available.
Figures 8.28 and 8.29 present examples of ontologies depicted using the UML profile for

ontologies that we introduced in the previous sections. Based on these example ontologies, we
now demonstrate and explain the UML notation for ontology mappings. Additionally, Section
8.3.3 on page 125 shows an overview of the profile extension.

<<Ontology>>
OntologyA

MedicalProduct

MedicationSalveBandage

name: String
Laboratory

producedBy

<<DisjointClasses>>

Headache:Disease Aspirin: Medication
treatedBy

Disease

CommunicableDisease

<<ObjectProperty>>
treatedBy

<<ObjectPropertyDomain>>

<<ObjectPropertyRange>>

Figure 8.28.: A first sample ontology depicted using the UML profile

8.3.1. UML Syntax for Mappings between Entities

When users want to define mapping assertions, they first specify the mapping between the two
ontologies. Figure 8.30 presents the visual notation for a mapping between two ontologies.
As ontologies are represented as packages, and dependencies are the only allowed means
to connect UML packages, our construct builds on dependencies. As defined in the meta-
model, mapping definitions between two ontologies do not only have a name but also several
attributes. As a dependency could carry predefined attributes but no user-defined name, we
define a mapping definition using a class with an appropriate stereotype and the specified
attributes. Stereotyped dependencies connect the mapping definition to the two ontologies.

122

8.3. A UML Profile Extension for Ontology Mappings

<<Ontology>>
OntologyB

NonPrescription
Medication

Prescription
MedicationBandage

Aspirin: NonPrescriptionMedication

MedicalProblem

<<ObjectPropertyDomain>>

<<ObjectPropertyRange>>

producer: String

Product

<<ObjectProperty>>
isTreatableWith

Figure 8.29.: A second sample ontology depicted using the UML profile

Dependencies with the stereotype <<Mapping>> link the mapping definition to the defined
mapping assertions. We explain the notation for mapping assertions into more detail in the
following examples. Note that the packages around the elements in the examples give a rather
complicated impression, but the reader should remember that these packages always represent
a full ontology which we do not show in every mapping example.

Figure 8.31 shows the first example mapping assertion, that defines that the class Medical-
Product in the source ontology represents a more specific aspect of the world than the class
Product in the target ontology. The semantic relation used in this example is the so-called
sound containment relation. Note also that a notation with stereotypes can be used instead of
using icons on the dependency. However, we present the icon-versions here.

The second example, depicted in Figure 8.32 relates two properties treatedBy and isTreat-
ableWith using an extensional equivalence relationship. The attribute extensional denotes that
the semantic relation is to be interpreted extensionally. For these specific mappings, it means
that the set of objects, so the property assertions, of the source property treatedBy is exactly the
same set as the set of property instantiations of the target property isTreatableWith. Note that
the metamodel defines the default value of the attribute interpretation as 'intensional'. Hence,
the previous examples of 8.31 is interpreted intensionally. When using the stereotype notation,

123

8. A UML Profile for Modeling Ontologies and Ontology Mappings

<<Ontology>>
OntologyA

<<Ontology>>
OntologyB

domainAssumption: containment
uniqueNameAssumption: true
inconsistencyPropagation: false

<<MappingDefinition>>
SampleMapping

<<SourceOntology>> <<TargetOntology>>

Figure 8.30.: Sample mapping definition between two ontologies

<<Ontology>>
OntologyA

MedicalProduct

<<Ontology>>
OntologyB

Product

Figure 8.31.: Sample sound containment relation between two concepts

the stereotypes <<Intensional>> and <<Extensional>> explicitly define the interpretation.
Figure 8.33 pictures a more complex example mapping assertion. The example defines that

the union of the classes PrescriptionMedication and NonPrescriptionMedication in the target
ontology, is equivalent to the classMedication in the source ontology. Although more classes
are involved in the union of the target element, the mapping itself is defined on the anonymous
class.

8.3.2. UML Syntax for Mappings between Queries

A mapping can be defined not only between usual ontology entities as in the previous ex-
amples, but also between queries. Figure 8.34 shows an example of an equivalence relation
between two queries. A query is packed into a stereotyped package. Note that the package
we show in the example, is the query package and not the ontology package as in the previous

124

8.3. A UML Profile Extension for Ontology Mappings

<<Ontology>>
OntologyA

<<Ontology>>
OntologyB

Ext
<<ObjectProperty>>

treatedBy
<<ObjectProperty>>
isTreatableWith

Figure 8.32.: Sample extensional equivalence relation between two properties

<<Ontology>>
OntologyA

Medication

<<Ontology>>
OntologyB

Prescription
Medication

NonPrescription
Medication

Figure 8.33.: Sample equivalence relation between complex class descriptions

examples. The first query in the example contains a MedicalProduct X produced by a Lab-
oratory Y named Z. The distinguished variables, which are the elements that are effectively
being mapped, are denoted with an appropriate stereotype. The target query is about a Prod-
uct X with producer Z. The mapping assertion defines an equivalence relation between the
distinguished variables in the queries.

8.3.3. The Ontology Mapping UML Profile

An overview of the profile for ontology mappings is provided in the following table. For
each stereotype, we specify the UML metamodel element it is defined on3. Note that the
profile would not be used on its own as listed here, but always together with the profile
for ontologies and rules, as listed in Sections 8.1.6 starting on page 115 and 8.2.4 on page 121.

3Note that this profile extension does not have any tags.

125

8. A UML Profile for Modeling Ontologies and Ontology Mappings

<<SourceQuery>>

<<Distinguished>>
<<Variable>>

X: MedicalProduct

<<TargetQuery>>

<<Distinguished>>
<<Variable>>
X: Product

<<Distinguished>>
<<Variable>>

Z

<<Variable>>
Y: Laboratory

<<Distinguished>>
<<Variable>>

Z

producedBy

name

producer

Figure 8.34.: Sample equivalence relation between two queries

Stereotype UML metamodel element
MappingDefinition Class
SourceOntology Dependency
TargetOntology Dependency
Mapping Dependency
SourceQuery Package
TargetQuery Package
Distinguished <<Variable>> InstanceSpecification
SoundContainment Dependency
CompleteContainment Dependency
Equivalence Dependency
Overlap Dependency
NotSoundContainment Dependency
NotCompleteContainment Dependency
NotEquivalence Dependency
NotOverlap Dependency
Intensional Stereotyped Dependency
Extensional Stereotyped Dependency

126

8.4. Conclusion

8.4. Conclusion

In this chapter we introduced a visual syntax for ontologies, rules and ontology mappings,
based on UML. We can rely on the existing experience of users with the UML-paradigm as
well as rely on available tool support. Mappings between the metamodel and the profile, as
presented in Appendix A.10 starting on page 232, define the relationship between the two.
Based on this and on the mapping function between the metamodel and the logical languages
(presented in Appendices A.2, A.4, A.8 and A.9), we can provide automatic transformations
between visual models and OWL ontologies, SWRL rules and ontology mappings in C-OWL
or DL-Safe Mappings, and vice versa.

127

8. A UML Profile for Modeling Ontologies and Ontology Mappings

128

Part III.

Finale

129

9. Implementation and Case Study
Evaluation

To evaluate our approach for visually modeling ontologies, we implemented a prototype with
which we conducted two experiments. This chapter explains the architecture of the imple-
mentation in Section 9.1, and discusses the general setup of the evaluation in Section 9.2.
Consequently, Sections 9.3 and 9.4 represent details and results of both experiments. Finally,
Section 9.5 concludes the chapter.

9.1. Prototype Implementation

We implemented an editor based on a framework called Eclipse1, which is extensible via
plug-ins. We provide a plug-in called OntoModel, based on our metamodel and correspond-
ing UML profile to support the graphical development of OWL ontologies and ontology map-
pings.
OntoModel provides the following functionalities:

• Load (import) an ontology in OWL.

• Graphically model ontologies and mappings between ontologies using a UML-syntax.

• Save (export) a model in the appropriate syntax (OWL or DL-Safe Mappings).

Figure 9.1 shows how OntoModel builds on Eclipse and some of its available plug-ins: it
builds on the Graphical Modeling Framework (GMF2), which in turn builds on the Graphical
Editing Framework (GEF3) and the Eclipse Modeling Framework (EMF4).

EMF is a code generation facility for building applications based on a structured model.
It helps to turn models into efficient, correct, and easily customizable Java code. Out of our
Ecore metamodel, we created a corresponding set of Java classes using the EMF generator.
The generated classes can be edited and the code is unaffected by model changes and regener-
ation. Only when the edited code depends on something that changed in the model, that code
has to be adapted to reflect these changes.

1http://www.eclipse.org/.
2http://www.eclipse.org/gmf/.
3http://www.eclipse.org/gef/.
4http://www.eclipse.org/modeling/emf/.

131

9. Implementation and Case Study Evaluation

KAON2import/export

Metamodel (Ecore)

OntoModel

GMF

GEF + EMF

Eclipse 3.2

Figure 9.1.: Architecture of the prototype implementation

EMF consists of two fundamental frameworks: the core framework and EMF.Edit. The
core framework provides basic generation and runtime support to create Java classes for a
model, whereas EMF.Edit extends and builds on the core framework, adding support for
generating a basic working model editor as well as adapter classes that enable viewing and
editing of a model. EMF started out as an implementation of the MOF specification. It can be
thought of as a highly efficient Java implementation of MOF, and its MOF-like metamodel is
called Ecore.

The EMF adapter listens for model changes. When an object changes its state, GEF
becomes aware of the change, and performs the appropriate action, such as redrawing a figure
due to a move request. GEF provides the basic graphical functionality for GMF.

GMF is the layer connecting OntoModel with GEF and EMF. It defines and implements
many functionalities of GEF to be used directly in an application and complements the stan-
dard EMF generated editor. Figure 9.2 illustrates the main components and models used
during the GMF-based development of OntoModel.
The graphical definition model is the core concept of GMF. It contains the information

related to the graphical elements that are used in our ontology models. However, they do not
have any direct connection to our metamodel. The graphical definition model is generated
semi-automatically from our Ecore metamodel.5 Similarly, the tooling definition model is
generated semi-automatically from the metamodel to design the palette and other periphery
(menus, toolbars, etc).

5Note that, although our editor is UML-based, GEF also provides other graphical elements.

132

9.1. Prototype Implementation

Ecore Metamodel

Graphical Definition
Model

Tooling Definition
Model

Mapping Model

Generator Model

OntoModel Plug-In

Figure 9.2.: The main components and models used during the GMF-based development of
OntoModel

A goal of GMF is to allow the graphical definition to be reused for several domains. This
is achieved by using a separate mapping model to link the graphical and tooling definitions
to the selected domain metamodel. This semi-automatically generated model is a key model
to GMF development and is used as input to a transformation step producing the generator
model.

The generator model generates the OntoModel plug-in which is then refined with dialogs
and other application-specific user interface aspects. The plug-in bridges the graphical
notation and the domain metamodel when a user is working with a diagram, and also
provides for the persistence and synchronization of both. An important aspect of GMF-based
application development is that a service-based approach to EMF and GEF functionality is
provided which can be leveraged by non-generated applications.

Finally, Figure 9.1 illustrates that for import and export of OWL ontologies and DL-Safe

133

9. Implementation and Case Study Evaluation

Mappings, we rely on KAON26, an infrastructure providing among others an API for
programmatic management of ontologies in these languages.

Figure 9.3 shows a screenshot of the prototype. The navigator pane on the left lists
the various models in use together with their diagrams, whereas the palette on the right
provides a menu for the different ontology elements that can be modeled. The main window
displays a simple ontology.

Figure 9.3.: A screenshot of the implemented prototype

9.2. Case Study Setting

The pharmacy sector is an important economic market in Europe. All European countries have
a similar scenario with the same actors and similar legislation. The main actors in this sector
are governmental entities, pharmacists and laboratories. Pharmainnova is a cooperation of
several pharmaceutical laboratories in Spain with the objective of improving the commercial
relations between laboratories and their partners, by introducing electronic interchanges. One
axis of technology improvement of Pharmainnova, addressed as a case study in the European
project NeOn7, aims at supporting the process of electronic invoicing between pharmaceutical

6http://kaon2.semanticweb.org/.
7NeOn is a project involving fourteen European partners and co-funded by the European Commission’s Sixth
Framework Programme, started in March 2006 for a duration of four years. For further information see
http://www.neon-project.org/.

134

9.2. Case Study Setting

labatories, their customers and their suppliers. The main steps to introduce the electronic
exchange of invoice, are:

• Sending digital invoices over internet using electronic signature to guarantee security;

• Reception, storage and search for the electronic invoices;

• Connecting the electronic invoice platform to the companies’ external systems to inte-
grate the data flow;

• The management of the complete invoice cycle, including issues as confirmations, dis-
putes or corrections of sent or received invoices.

This project involves several thousands of laboratories and their customers and suppliers.

The first advance in introducing electronic invoicing was the regulation of SIMFT (Inter-
change Invoicing System by Telematics Resources), a closed system based on EDI (Electronic
Data Interchange) communications and standards. However, only some of the participants in
Pharmainnova have an internal system based on EDI. Hence, the SIMFT solution was an ad-
vance but was not frequently used because of the closed system, and also because of high
implementation costs.
The main problem of invoice exchange is the heterogeneity of the invoice types. Existing

technology and methods do not allow to build generic solutions which allow to automatically
process any type of invoice. Currently, two main possible measures are applied. Some associ-
ations agree to define a common invoicing infrastructure in terms of shared platforms, invoice
formats, invoice structures and processes. In other cases, a common invoicing infrastructure is
identified and for each partner a specific plug-in is implemented to automate invoice exchange.
The partners of the Pharmainnova association decided to mix these two options by defining

a common invoice model but keeping their internal infrastructure. Although this solution
brings the benefit that all partners can keep their infrastructure, this process can be costly. For
example, when a new member enters the Pharmainnova cooperation, both the common model
and all partners’ models must be revised. Additionally, possible changes in the law or in the
business dynamics enforce updates.

The case study in the NeOn project aims at abstracting away the difficulties of heteroge-
neous invoice models by applying ontologies. The use of ontologies will guarantee a concep-
tual framework where the semantics of invoicing will be easily defined and maintained.
Instead of enforcing one single ontology for all partners, from each partner’s invoice model

a separate ontology is built and consequently mapped to one central reference ontology
provided by Pharmainnova. Hence, although most or all partners have different invoice
models, the partners do not need to change the invoice model nor the system they are using.

With our work, we address the following uses cases of this case study:

135

9. Implementation and Case Study Evaluation

• Build, adapt and visualize the common Pharmainnova ontology as well as the partners’
ontologies.

• Define mappings between the common and each partner’s ontology.

As the typical end user in this scenario is not experienced in modeling ontologies, we
provide the user with the Pharmainnova ontology. The user can adapt this ontology until it
reflects the partner’s invoice structure, instead of modeling the ontology from scratch himself.
Thus, the demanded input from the end users is expected to be considerably lower. When
the user finished adapting the ontology, he specifies which elements of both ontologies (the
Pharmainnova ontology and the own ontology) can be mapped to each other, for example
using an equivalence relation.

In the following sections we discuss the evaluation of our approach. User testing with
real end users (i.e., people which will most likely be deploying the tool in the future) is the
most fundamental usability testing method. The evaluation of our approach consists of two
experiments with real users. One experiment compares our approach quantitatively with the
primary other available approach, which is the tree form approach. The classes and properties
of an ontology are presented in a tree and additional relationships or attributes can be seen in
a separate window per element. The second experiment is qualitative and aims at evaluating
whether our tool OntoModel provides the necessary functionalities and options for end users.
[Nie93] calls these experiments a summative respectively a formative evaluation. Sections 9.3
and 9.4 address both experiments in detail.

9.3. Summative Evaluation

The following sections address the methodology, the test users and the tasks as well as the
outcomes of our first evaluation.

9.3.1. Methodology

The goal of our first evaluation is to assess the overall quality of our approach. For this
purpose, we compared it with the primary other approach available. This approach which
is used in (among others) Protégé8, the most popular currently available tool for modeling
ontologies, is the tree from approach. As other existing approaches do not support ontology
mappings, the experiment focused on ontologies themselves to evaluate the approach.

A typical method for such general quality evaluation, called a summative evaluation, is a
measurement test in which certain measures are collected while a group of test users perform
a predefined set of test tasks. Clearly, the time it takes a participant to complete a certain task

8http://protege.stanford.edu/.

136

9.3. Summative Evaluation

should be measured in a comparison of different approaches. However, the test would not be
valid if we would only measure the time, without looking at other important measures. Not
only the time, but also the correctness of the models as well as the level of satisfaction of the
users should be measured. The measures time, correctness and satisfaction together form a
measure for intuitiveness.
To measure time, all participants got a sheet to write down the time on the moment that

they finished reading a task description and started to accomplish the task, as well as on the
moment that they finished the task. Correctness was measured by two ontology experts who
checked the test results on soundness and completeness afterwards. For each elementary task,
they counted the number of participants per approach that did not complete the task correctly.
In doing so, nonrelevant issues such as slightly differently named elements were ignored. At
the end of the experiment, all participants filled in a questionnaire about their experience in
the test. Using directed questions the participant’s satisfaction was measured. Appendix A.11
gives the questions of the questionnaire.

Comparing the usability of several systems can be done by between-subject testing, where
each participant evaluates only one system, or within-subject testing, where all users test all
systems [Nie93]. As within-subject testing has the major disadvantage that the test users can
not be considered as representative end users anymore after they learned how to use the first
approach, we chose for between-subject testing. The participants were divided randomly
into two test groups, each using one of the two approaches in completing the tasks of the
experiment.

In the beginning of the experiment, the participants got a short introduction about ontologies
and the different approaches, including a small test case to let them become acquainted with
the tools and the approaches. During the experiment, a facilitator was available for each group
to answer specific questions or provide minimal help.

9.3.2. Test Users

[Nie93] argues that the group of participants in a summative evaluation should consist of
at least 20 to 25 persons to achieve a confidence level of 95 %. With this number of test
users, variations in various user skills concerning the experiment are smoothed over when
randomly dividing the participants over the different groups. Moreover, the group should be
homogeneous and the participants should have the same level of experience in the topic. They
should represent the end user as much as possible.
For our experiment, we had a group of 24 students of economics attending a lecture

'Knowledge Management' at Universität Karlsruhe(TH). The students do not have much
computer science experience but have little experience in (visual) modeling through vari-
ous lectures they attend. One of the lectures they attended in the beginning of their stud-
ies, covered UML, hence they all had some experience in this specific modeling language.

137

9. Implementation and Case Study Evaluation

Additionally, all participants knew the invoicing domain but had no particular experience.
Moreover, as we conducted the experiment in the beginning of the semester, the lecture
'Knowledge Management' only started some weeks before and ontologies were not addressed
yet. The participants did not have any experience with ontologies. Hence generally, our test
users represented end users as they had no knowledge about ontologies, little experience in
UML, and some knowledge about the invoicing domain.

9.3.3. Tasks

The participants were given an initial ontology containing five classes 'Address', 'Company',
'PaymentMode', 'Invoice' and 'TermOfPayment'. Moreover, the ontology contained three
object properties between these classes: a property 'hasAddress' between 'Company' and
'Address', a property 'hasPaymentMode' between 'Invoice' and 'PaymentMode', and a prop-
erty 'payment' between 'Invoice' and 'TermOfPayment'.
All participants received a sheet with three tasks, all consisting of several small tasks to

expand the given ontology. The task descriptions guided the users by giving hints on how to
accomplish the task, so that all test users modeled the same ontology in the end and correctness
could be checked easily. The task descriptons as they were given to the participants, are
presented below.

First task The original ontology is very simplified. We will now add some more details
about a company. Currently, a property 'hasAddress' is defined between the class 'Company'
and the class 'Address', denoting that a company has an address. We want to specify the street
and city of an address. For this we need properties. As the values are just strings, we use data
properties. Define two data properties for the class 'Address', called 'hasStreet' and 'hasCity',
that both have strings as values.
Additionally, we want to have some specific companies in our ontology. Such instances are
called individuals. Define two individuals called 'Kin' and 'Aece', both being instances of the
class 'Company'.

Second task We want to explicitly specify that the two companies, 'Kin' and 'Aece', are
really different companies. Define the relation that both individuals are different.
To specify the address for the company 'Kin', we define an individual 'KinAddress' as an
instance of 'Address'. Define a property instantiation for the property 'hasAddress' from the
individual 'Kin' to its address.

Third task Finally, a company wants to distinguish between emitted invoices and re-
ceived invoices. Define two subclasses of the class 'Invoice', called 'EmittedInvoice' and
'ReceivedInvoice'.
We want to define that an emitted invoice is received by some company, whereas a received

138

9.3. Summative Evaluation

invoice is sent to a company. Define a property 'hasReceiver' from the class 'EmittedInvoice'
to the class 'Company', and a property 'hasSender' from the class 'ReceivedInvoice' to the class
'Company'.
Additionally, change the name of the class 'TermOfPayment' to 'PaymentDetails'.

9.3.4. Outcomes

A first measure, correctness, was measured by the experts after the test users completed the
tasks. The results showed that all except one elementary task were completed properly by
about all participants in both groups. The task to specify two individuals as different from
each other, which was part of the second task in the experiment, could only be finished by
few of the participants evaluating the tree form approach (Protégé) but was finished correctly
by all participants evaluating our UML approach. Possibly, this can be attributed to the
fact that the tree form approach does not give a clear overview of relationships between
elements whereas with the UML approach the user sees all elements, and can define that
the two individuals are different by dragging the appropriate dependency arrow between them.

The time measure was calculated using the times the participants wrote down before and
after each task. There were no real differences in time needed by the test users to complete
the tasks. The very small existing variations rather seemed coincidental and appeared within
one group as much as between the groups. Hence we can draw the conclusion that there is
no big difference in time needed to accomplish certain tasks in both approaches. However,
this conclusion does not count for the elementary task of specifying that two individuals are
different from each other as this task was not finished correctly by most of the participants
evaluating the tree form approach. Possibly, more time would have been needed to correctly
accomplish this task using the tree form, if the test users would have known that what they
did was incorrect.

low average high
Task 1
Tree form approach 7 5 0
UML approach 8 4 0
Task 2
Tree form approach 5 4 3
UML approach 3 7 2
Task 3
Tree form approach 2 6 4
UML approach 2 10 0

Table 9.1.: Difficulties needed to overcome in order to complete the different tasks

139

9. Implementation and Case Study Evaluation

The third measure we took into account, is the satisfaction of the participants in the ex-
periment. For this, we rely on the results of the questionnaire. The questionnaire contained
general questions about the tasks themselves, questions about the usability of the approach,
and questions about its effectiveness and efficiency. Below we discuss the answers of the par-
ticipants of both groups.

1

3

7

1

not at all not really rather yes for sure

answer

n
r.

 o
f

a
n

s
w

e
rs

(a) Tree form approach

0 0

11

1

not at all not really rather yes for sure

answer

n
r.

 o
f

a
n

s
w

e
rs

(b) UML approach

Figure 9.4.: Intuitiveness

Three questions were asked about the difficulties to complete the different tasks. Table 9.1
shows the answers of the participants. At first view, it looks like the difficulties needed to
overcome the first two tasks were received about similar by both approaches. However, the
correctness measure showed that the second task was not done properly by the participants
using the tree form approach. Hence, although they had the feeling that it was not difficult,
they did not achieve the right result. The third task was clearly perceived easier by the
participants using the UML-approach.

140

9.3. Summative Evaluation

not at all not really rather yes for sure
Tree form approach 1 6 5 0
UML approach 0 2 8 2

Table 9.2.: Satisfaction with notation for ontology elements

Figure 9.4 illustrates the general intuitiveness of both approaches as experienced by the test
users. The UML approach was perceived as intuitive by all, whereas the tree form approach
was evaluated as 'not intuitive at all' by one user and 'not really intuitive' by three others. This
means that 33 % of the the participants evaluating the tree form approach, did not find it
intuitive. This measure can probably be attributed to the fact that the participants already used
UML before, but also to the fact that the tree form approach gives the user only a limited
overview of the relationships between different elements and specific windows have to be
opened to maintain relationships.

not really rather yes for sure
Tree form approach 3 6 3
UML approach 0 9 3

Table 9.3.: Clear and simple sequences of steps to accomplish an action

Table 9.2 shows the answers on the question whether the participants were satisfied with
the choice of the specific notations for the different ontology elements. None of the two test
groups received only positive answers on this question. However, in the group evaluating the
UML approach only two were not happy with the notations whereas in the group evaluating
the tree form approach, the negative answers counted up to more than 50 %. Two people in
the UML group were even very satisfied. The satisfaction level in this group could be related
to the fact that with our UML notation we tried to reuse the existing UML constructs as much
as possible to provide the user with less new notations or new intentions for known notations.

Our experiment also showed that users find it easier to get acquainted with an ontology
using the UML approach than with the tree form approach. Figure 9.5 illustrates the division
of the different answers on the question how difficult they found to get acquainted with the
given ontology. With the UML approach, all participants found it rather or very easy, whereas
with the tree form approach it was perceived difficult by more than half of the participants.
The main reason for this is that the UML approach gives one overview for all elements, their
attributes as well as their relationships to other elements, whereas the tree form approach only
gives a high-level overview of some elements without immediately showing all relationships.

Another question in the questionnaire asked the participants whether they find that the

141

9. Implementation and Case Study Evaluation

1

6

5

0

very difficult rather difficult rather easy very easy

answer

n
r.

 o
f

a
n

s
w

e
rs

(a) Tree form approach

0 0

8

4

very difficult rather difficult rather easy very easy

answer

n
r.

 o
f

a
n

s
w

e
rs

(b) UML approach

Figure 9.5.: Acquaintance

editor allows to set a clear and simple sequence of steps to accomplish each necessary action,
e.g. create a new instance of a concept. In the group evaluating the UML approach, all users
found the step sequences rather or very clear and simple, whereas in the other group, three
test users answered negatively. Otherwise, the participants in both groups gave the same
answers. Table 9.3 gives an overview of the answers in both groups. The difference in this
measure can be attributed to the fact that in the tree form approach, often a new window has
to be opened to see or maintain constructs or relationships, even in case of simple elements
because element details can not be represented in the tree.

Finally, Figure 9.6 illustrates how the participants of both groups perceived the effective-
ness of the approach. Whereas two of the users evaluating the tree form approach perceived
it as excellent and the other ten as adequate, in the group evaluating the UML approach, half
of the participants found the effectiveness excellent and the others adequate.

142

9.4. Formative Evaluation

0

10

2

inadequate adequate excellent

answer

n
r.

 o
f

a
n

s
w

e
rs

(a) Tree form approach

0

6 6

inadequate adequate excellent

answer

n
r.

 o
f

a
n

s
w

e
rs

(b) UML approach

Figure 9.6.: Overall effectiveness

The main reason for the generally more positive answers on all questions in the group eval-
uating the UML approach, is probably the available experience with UML as well as the fact
that the UML approach provides one overview for all elements and their relationships, while
the tree form approach has very limited possibilities for showing and maintaining relationships
between elements.

9.4. Formative Evaluation

This sections addresses our second evaluation. We discuss the methodology, the test users, the
tasks as well as the outcomes of the experiment.

143

9. Implementation and Case Study Evaluation

9.4.1. Methodology

With the second experiment, we evaluate whether our approach suffices for the needs of end
users in the Pharmainnova case study, again using the implemented prototype. The goal of
this formative experiment is to learn which detailed aspects of our approach are good and
bad, and how the overall approach can be improved.

A typical method to use for formative evaluation is a thinking-aloud test. It involves
having one user at a time use the tool for a given set of tasks while being asked to think
out loud, accompanied by an expert who observes the experiment. By verbalizing their
thoughts, the test users allow the observer to determine what they are doing and why they
are doing it. In doing so, the observer could derive which actions from the participant were
actually incorrect for what he wanted to achieve, and then guide the participant. Additionally,
the observer could make notes of remarks and feedback of the test users during the experiment.

To obtain the necessary measures, the participants were asked to fill in a questionnaire
about their experience with the approach after the experiment. Using directed questions on
the usability, effectiveness and efficiency of the approach, the participant’s satisfaction was
measured. Appendix A.12 gives the questions of the questionnaire. As the participants were
guided by the observer in completing the tasks correctly, we did not measure the correctness
of the results afterwards.

In the beginning of the experiment, the participants got a short introduction on ontologies,
UML and the tool, including a small test case to let them become acquainted with the tool and
the approach. While completing the tasks, the observer was available for answering specific
questions.

9.4.2. Test Users

To test whether our approach fulfills the needs of the target group, it is not necessary to have
a big group of test users. The more severe usability problems are typically detected by the
first few participants, and 80 % of all usability problems is detected with 4 or 5 participants
[Vir92]. The group of test users should be representative and cover the target population.
We conducted the experiment with five participants of which two were real end users,

namely employees of one of the Pharmainnova members. Three other participants were peo-
ple leading the e-invoicing project of Pharmainnova. Although they are not real end users
themselves, they are very well aware of the experience and the needs of the end users.
None of the participants had any experience with ontologies. It was totally new for them

to build or even just see an ontology, and they did not have any idea of the existing ontology
constructs and their intention. However, they were all experienced in the invoicing domain,
although one of them only little. Two of the participants were actually very experienced in

144

9.4. Formative Evaluation

invoicing. Hence all five participants were understanding the task domain. As regards UML,
one of the test users heard about UML but had no knowledge about the notation or about how
to model diagrams. The other four test users had some or much experience with UML. Thus,
generally our group of test users was representative and covered the target population.

9.4.3. Tasks

In the experiment, the participants were provided the tool OntoModel with the header-part
of the Pharmainnova ontology. This part of the ontology contains the different elements in
an invoice header, and their relationships. Next to the data about the invoice emitter and the
invoice receiver such as various address fields, contact data, internal code and tax number, an
invoice header contains some data about the invoice itself such as the currency, the invoice
number and the type of invoice.
Next to this part of the Pharmainnova ontology, the participants received a document de-

scribing a Pharmainnova partner’s invoice model in the form of a table. The table gave an
overview of the company’s invoice structure by describing all invoice fields with their name,
their format and in some cases an informal description of the field. All participants received
the same document9. The differences between the partner’s invoice structure and the model
of the Pharmainnova ontology consisted of a different language (the Pharmainnova ontology
is written in English whereas the partner’s invoice structure was written in Spanish), elements
that were available in one but not in the other model, elements that were structured or related
differently such as street and street number together in one field or in two separate fields, or
elements that were a special type of a specific element in the other model.
The experiment consisted of two tasks, which are described below.

First task Based on the table of the partner’s invoice structure, the participants adapted
the header-part of the Pharmainnova ontology until it reflected the partner’s invoice structure.
They changed the names or types of elements, deleted elements, and added new elements.

Second task After completing the first task, the header-parts of both the Pharmainnova
ontology and the partner’s ontology were depicted in the mapping mode of the tool, and the
participants were asked to model the semantic relationships between the two ontologies as
ontology mappings.

9.4.4. Outcomes

In this evaluation we measured the participants’ satisfaction by asking questions on the
usability, effectiveness and efficiency of the approach in the questionnaire. Additionally, we

9Note that not all Pharmainnova partners’ invoice models have the same complexity. We explicitly asked Phar-
mainnova to give us a document with a representative complexity.

145

9. Implementation and Case Study Evaluation

became feedback and remarks during the experiment by letting the test users think out loud.
All outcomes that are discussed below are based on the answers given by the users during or
after the experiment.

In general, the questions of the questionnaire were answered positively. The questions on
usability mostly got a negative answer from one participant. This can be attributed to the fact
that there was one participant that did not have any experience with UML. However, on the
question on the overall effectiveness of the approach, all participants so also the one without
UML experience, answered positively. We discuss the different outcomes below.

Table 9.4 gives the answers on the questions asking for the difficulty of completing the
different tasks. Four participants specified the difficulty of both tasks as 'low', whereas the

Task 1 low average high
4 1 0

Task 2 low average high
4 1 0

Table 9.4.: Difficulties needed to overcome in order to complete the different tasks

fifth participant answered twice 'average'. During the experiment it became clear that the
participant without UML experience found it more difficult to accomplish the tasks. However,
he did not find the difficulty high but average. As all participants were unexperienced with
ontologies, we believe that this could be a first positive result.

Figure 9.7 presents the participants’ answers on the question about the intuitiveness of our
visual approach to model ontologies. Although most found it rather intuitive, again one partic-

0

1

4

0

not at all not really rather yes for sure

answer

n
r.

 o
f

a
n

s
w

e
rs

Figure 9.7.: Intuitiveness of ontology modeling

ipant found it not really intuitive. A similar result we received on the question on how difficult

146

9.4. Formative Evaluation

it was to get acquainted with the given ontology. Figure 9.8 shows that two participants found
this very easy and two found it rather easy, but one found it rather difficult. A possible reason

0

1

2 2

very difficult rather difficult rather easy very easy

answer

n
r.

 o
f

a
n

s
w

e
rs

Figure 9.8.: Getting acquainted with the given ontology

for this is that it can be difficult to apply the UML concepts to the model of invoices, as was
indicated by one of the participants during the experiment. Another remark from a participant
was that it was difficult to understand that there are different ways to express the information
to appear in an invoice.
We could improve these issues by providing the user more guidance in modeling the

different kinds of information.

As for our visual approach for modeling ontology mappings, all participants perceived it
as intuitive. One answered to find it very intuitive. Figure 9.9 presents the results on this
question. The difference with the perceived intuitiveness for modeling ontologies themselves
can probably be explained by the fact that the additional visual constructs for mappings are
limited and mainly only consist of arrows with an icon.
Although the participants found the notation for mappings intuitive, they got confused

by all the arrows when several to many mappings were defined. They talked about several
possible improvements for the visualizations of the mappings. Two participants had the idea
of giving mapped element certain colors and leaving out the arrows. Another participant
thought of sticking to the way of dragging arrows, but he proposed to not display the arrows
but displaying the mapping in a list on the side of the window immediately after defining it.
A last recommendation from a user was to leave the concept of arrows as it is, but give the
user the possibility to hide an arrow, comparably with the possibility of hiding the attributes
of a class as provided in many existing UML tools.

Figure 9.10 gives the participants’ answers on the question whether they find the UML-
notation suitable for modeling ontologies. Three users found it 'rather suitable' whereas two
found it 'for sure suitable'. So also the user without experience with UML found the notation

147

9. Implementation and Case Study Evaluation

0 0

4

1

not at all not really rather yes for sure

answer

n
r.

 o
f

a
n

s
w

e
rs

Figure 9.9.: Intuitiveness of ontology mapping modeling

suitable.

0 0

3

2

not at all not really rather yes for sure

answer

n
r.

 o
f

a
n

s
w

e
rs

Figure 9.10.: Suitability of the UML-notation for modeling ontologies

Finally, Figure 9.11 presents the answers on the question how the participants perceived
the overall effectiveness of the approach. The answers, three times 'excellent' and two times
'adequate', show that even the participant who had more difficulties to complete the tasks as
he did not have any UML experience found the approach in general effective.
During the experiment, two participants recommended to provide a tool that hides all op-

tions that are rarely used, so the user can focus on the main and basic concepts. Although our
prototype implementation already hid many of these rarely used constructs in the main menu,
we learned that we should hide even more constructs when applying our approach. More ex-
perienced users should be able to extend the possibilities as they want.
We also noticed during the experiment that the users often wanted to rely on the known right-
click menu. However, our prototype only provided few options in this menu. When extending

148

9.5. Conclusion

0

2

3

inadequate adequate excellent

answer

n
r.

 o
f

a
n

s
w

e
rs

Figure 9.11.: Overall effectiveness of the approach

the prototype implementation, these right-click menus should be more complete to allow the
users to use functionalities they are used to.
The answers on the last question let us conclude our evaluation with a generally positive

result. The evaluation outcomes clearly show the advantage that persons with UML experience
have, and that persons without UML experience still are happy with the approach, although it
takes them some more time and effort to model ontologies. The participants gave us several
interesting ideas for improving our approach in the future.

9.5. Conclusion

We implemented our approach as a prototype called OntoModel, built on Eclipse. OntoModel
implements our UML profile for ontologies and ontology mappings based on their MOFmeta-
models. OWL ontologies can be imported, and ontologies as well as ontology mappings can
be modeled and exported in a textual syntax.
Using the prototype, we conducted two evaluations. First, a summative evaluation was

conducted to assess the overall quality of our approach by comparing it with the most impor-
tant other approach currently available for modeling ontologies, the tree form approach. The
outcomes of the evaluation show that generally, the UML approach was perceived as more in-
tuitive by the test users. We believe that the available UML experience of the test users takes
part in this result. However, we also believe that the few overview possibilities with the tree
form approach, and the many separate windows that have to be utilized to see or maintain the
various details and relationships of ontology elements, which is independent of the experience
with the approach, can give the user an unsatisfactory feeling.
The second evaluation we conducted was a formative evaluation, to assess whether our ap-

proach suffices for the needs of end users in the Pharmainnova case study. On some questions,
one participant gave a slightly negative answer whereas all others gave a positive answer. This

149

9. Implementation and Case Study Evaluation

can be explained by the fact that one participant, in contrast to all others, did not have any
UML experience. However, on questions like the one asking about the overall effectiveness
of the approach, all participants answered positively. The outcomes of this evaluation proof
the benefit that users have when they have UML experience, and that our approach is also
effective for users without UML experience, although they have more difficulties.
The two evaluations give a clear indication that our approach is a suitable solution to allow

employees of companies to model and maintain ontologies and hence benefit from semantic
technologies, especially when the users have some experience with UML. Additionally, the
second evaluation provided us with some possible improvements of the notation.

150

10. Related Work

In recent years, a considerable amount of effort is spent in approaching the visual modeling
paradigm for ontologies as well as in providing MOF support for ontologies. This chapter
introduces such approaches related to our work. Section 10.1 addresses existing ontology
support using MOF and Section 10.2 highlights existing work towards general support for
visual modeling of ontologies. Section 10.3 concludes the chapter.

10.1. Specific Ontology Support based on MOF Metamodels

In early 2003, the OMG requested aMOF-based metamodel and a UML profile for the purpose
of defining ontologies, called Ontology Definition Metamodel (ODM) [Obj03]. In answer to
this request, four proposals were submitted. [IBM03] defines stereotypes for representing
the new aspects introduced by ontologies in UML. In our opinion, the proposal has several
weaknesses. For example, OWL properties are visually modelled as UML classes instead of
mapping them to UML associations. Similarly, the different kinds of class constructors found
in OWL are reflected by associations, while we believe that an appropriate specialization of
UML classes is more appropriate. [Gen03] follows the RDF serialization of OWL documents
and represents the ontology in a graph-like notation that is close to the actual (ambigous) RDF
representation. Also various kinds of OWL properties are modeled as a hierarchy of UML
classes. Complex OWL class definitions, i.e. using union and other operators, are modeled
as comments associated to a class. [IKSL03] departs from the OMG request and introduces a
metamodel for the Open Knowledge Base Connectivity (OKBC) standard. [DST03] suggests
the OWL Full language, but neither provides a visual syntax nor introduces a metamodel.
The various proposals have been merged into one submission [Gro06b, CRH+06] that cov-

ers metamodels for RDF, OWL, Common Logic [Del06], and Topic Maps [GM05], as well as
transformations between some of them and a UML profile for RDF, OWL and Topic Maps.
At the moment of writing this document, the recommendation is undergoing the finalization
process for standardization. Two implementations accompany the proposal and support the
visual modeling of ontologies with import and export functionality for OWL: VOM (Visual
Ontology Modeler)1, commercially developed and maintained by Sandpiper inc., and IODT
(Integrated Ontology Development Toolkit)2, provided partially open-source by IBM.

1http://www.sandsoft.com/products.html.
2http://www.alphaworks.ibm.com/tech/semanticstk.

151

10. Related Work

While obviously the scope of the proposal is quite extensive, the metamodel for OWL
concentrates on its RDF serialization. Moreover, the OWL metamodel builds on the
metamodel for RDF, hence it can only be used in a combined manner. Our approach departs
from the OMG approach in two aspects. Firstly, we do not only support ontologies but also
other aspects of ontologies, namely rules and ontology mappings. Secondly, we focus on the
new version of OWL and provide an autonomous metamodel for it, which can be adapted or
extended according to general changes of the language specifications in the future.

[GDD07] describes another effort inspired by the OMG request for an Ontology Definition
Metamodel, although not officially submitted. The contribution consists of a metamodel for
OWL 1.0 with an accompanying UML profile, both designed following the MOF approach
but with different design considerations than our work and the ODM of OMG. While a
prototype implementation is given, the different parts of the approach are not integrated and
an external component is used for the OWL import and export.

As part of the research project REWERSE3 funded by the EU Commission and Switzer-
land within the Sixth Framework Programme, the rule language R2ML [WAL05] is being
developed. R2ML integrates OCL, SWRL and the Rule Markup Language (RuleML,
[WATB04]), but although it is meant for enriching ontologies with rules, it is not like SWRL
developed for use on top of OWL. For model transformation between R2ML and SWRL, a
MOF metamodel is defined4. Additionally, [LW06b] demonstrates a UML-like syntax for
R2ML called URML, which however does not consist of a UML profile but an extension of
the UML metamodel. Hence, existing UML tools can not be reused as in the case of UML
profiles, and it is questionable whether the notation is still intuitive for UML-users, as several
new visual constructs are introduced. [LW06a] presents Strelka, an editor for the proposed
visual language providing serialization into the R2ML XML format. The implementation
does not incorporate the MOF-based metamodel for R2ML.

To the best of our knowledge, our work presents the only currently available MOF-based
metamodel and accompanying UML profile combining ontologies, rules and ontology map-
pings. Moreover, we believe that our approach to abstract from RDF in the OWL metamodel
is necessary to provide a more adequate metamodel for OWL.

10.2. General Visual Syntaxes for Ontology Languages

The utility of a visual syntax for modeling languages has been shown in practice and visual
modeling paradigms such as the Entity Relationship (ER) model or UML are used frequently
for the purpose of conceptual modeling. Consequently, the necessity of a visual syntax for KR

3http://rewerse.net/.
4http://oxygen.informatik.tu-cottbus.de/R2ML/0.4/metamodel/R2MLv0.4.htm.

152

10.2. General Visual Syntaxes for Ontology Languages

languages has been argued for frequently in the past [Gai91, Kre98]. Particular representa-
tion formalisms such as conceptual graphs [Sow92] or Topic Maps are based on well-defined
graphical notations.
Description Logic-based ontology languages such as OWL, however, are usually defined in

terms of an abstract (text-based) syntax, and most care is spent on the formal semantics. The
earlier absence of a visual syntax5 has lead to several proposals. [Gai91] proposes a particular
visual notation for the CLASSIC description logic. Newer developments have abandoned the
idea of a proprietary syntax and propose to rely on UML class diagrams. [CP99] suggests
to directly use UML as an ontology language, whereas [BKK+01] proposes to predefine
several stereotypes such that a more detailed mapping from UML to the primitives offered by
the DAML+OIL description logic can be achieved. [BKK+01] further argue that the UML
metamodel should be extended with elements such as property and restriction such that UML
is more compatible with knowledge representation languages such as OWL.

The tool that gained the most visibility in the current ontology community in the past years
is Protégé. It supports visualization and editing of ontologies in RDF and OWL as well as rules
in SWRL in a tree form approach. Protégé is free and open source and enables users to load
and save ontologies and rules, edit and visualize classes, properties and rules, define logical
class characteristics, edit individuals and execute reasoners. Protégé is supported by a strong
community of developers and academic, government and corporate users. However, many
of its users dislike the fact that it still requires a significant knowledge of ontology and rules
modeling [DMB+06], and the imposed tree form still considerably restricts the visualization
options.
A UML back-end plug-in provides an import and export mechanism between UML class

diagrams and the Protégé knowledge model. However, as the UML notation is the standard
class diagram notation without any adaptation, only those ontology elements that can be
expressed in UML are supported.

An ontology editor applying the tree form approach of Protégé and allowing the user to
build ontologies using DAML+OIL is provided by OilEd [BHGS01], initially only intended
to demonstrate the use of the OIL language. It does not provide a full ontology development
environment in the sense that it supports migration and integration of ontologies or many
other activities that are involved in ontology construction, but is rather a simple ontology
editor. Although OilEd can still be downloaded and used, it is no longer maintained.

KAON [BEH+02], an open-source ontology management infrastructure, includes a graph-
ical ontology browser for creating, editing and maintaining ontologies called OI-Modeller.
The user interface appears to be a mix between simple 2D graph-tree visualisation based on

5Which can been seen as a direct result of the criticisms about the semantics of early diagrammatic semantic
networks [Woo75, Bra79].

153

10. Related Work

the TouchGraph library6 and the approach of both OilEd and Protégé. The difference with
our approach is not only the visual notation, but also the ontology export. The OI-Modeller
stores ontologies in a specific KAON formalism.

The ontology engineering environment OntoStudio7 combines the tree form approach with
some arrow-based approach. Ontologies can be imported or can be modeled in tree form.
With the import-function, existing data structures can be transferred into an ontology. These
data structures can be existing ontologies, or other kinds of data structures such as database
schemas. Using the export function, ontologies can be stored in the ontology formats OWL,
RDF(S) as well as F-Logic.
OntoStudio allows the visualization of ontologies by showing the concepts and their sub-

concepts in a graph. Additionally, the Graphical Rule Editor provides a means to formulate
rule constructs and model them graphically. Rule diagrams are converted into simple F-Logic
rules. Also F-Logic queries can be defined. The plugin OntoMap extends OntoStudio and
allows to construct dependencies between heterogenous constructed or imported ontologies
graphically using an arrow-based approach.
In the EU project NeOn8, OntoStudio is further developed as an open source toolkit,

of which the reference architecture is fully compatible with our metamodel. The toolkit
offers an Eclipse-based plug-in infrastructure, of which OntoModel will be one of the plug-ins.

[FW05] presents a visual approach for modeling OWL ontologies based on the Microsoft
Visio9 notation. The graphical notation is implemented as a commercial, simplified OWL
editor called SemTalk for using semantic web knowledge for process models. Due to the
specific notation, the approach lacks the flexibility in the sense of both reusing existing tools
and present user experience.

Finally, TopBraid Composer10 is an ontology development environment supporting RDF
Schema, OWL and SWRL. It creates customizable forms based on class definitions as its pri-
mary editing mechanism for ontologies. Syntax highlighting and auto-completion is provided
when editing complex class definitions and rules. Rules are executed with an internal rule
engine to infer additional relationships among resources. The class definitions of an ontology
can be created by importing UML class diagrams which are converted on a class-by-class
basis.
Topbraid Composer has two ways of visualization. Relationships among ontology resources

can be visualized as a graph, whereas class definitions can be illustrated in diagrams similar to
UML class diagrams. As for mappings between different ontology models, they can be visu-

6http://touchgraph.sourceforge.net/.
7http://www.ontoprise.de/.
8http://www.neon-project.org/.
9http://office.microsoft.com/visio/.
10http://www.topbraidcomposer.com/.

154

10.3. Conclusion

alized using the class diagram notation. A class box in between mappable elements contains
the textual syntax of the mapping.
Topbraid Composer does not support all ontology elements in the UML-like notation, and

users can still not rely fully on their UML-experience as several new notations are used.

10.3. Conclusion

This chapter discussed the primary existing approaches related to our work. We surveyed
several other MOF-based metamodels for ontology languages that were developed during the
last years. However, none provides an independent metamodel supporting the latest version
of OWL. Moreover, a combination of OWL with rules or ontology mappings is missing.
As for visual paradigms for ontologies, a very popular one is the tree form approach used

in several applications, although users ask for even more visualization. Some first UML-like
approaches, although not fully UML-compatible or not supporting the full ontology language
yet, appear to be prefered by the users. Our UML profile is the first and currently only avail-
able UML-based notation fully supporting OWL ontologies and moreover combining them
with SWRL rules and OWL ontology mappings.

155

10. Related Work

156

11. Conclusion and Outlook

11.1. Summary

Being aware of the identified support needs for companies in utilizing ontologies and of
the successful methodologies and technologies in software engineering, the central question
we posed in the beginning of this work was: How can ontology engineering be supported
using existing software engineering methodologies and technologies? In order to be able
to answer this question, we started with an in-depth analysis of the MDA as a successful
initiative in the field of software engineering to support model-driven engineering of systems.
In particular, we analyzed two of its main components, UML and MOF. Further we identified
and introduced the main existing languages for representing ontologies, rules and ontology
mappings.
To respond on our central question, we applied MDA for ontologies, to support both
model driven ontology development and automatic model transformations between different
ontology languages. In the following we summarize the outcomes of our work along the two
main questions into which we divided our central question, as well as the lessons we learned
from our work.

How can existing approaches in software engineering be applied to support the
use of different ontology languages by different partners? A broad range of different
ontology languages is currently available and thus we started with asking the partial ques-
tion: Which are the ontology languages to be supported? As a response on this question, we
decided to take the standardized and most well-known ontology language OWL as the main
language in our work. To support rule-extensions for OWL ontologies, we selected SWRL,
a rule language built to use on top of OWL. As a second language we chose the rule-based
ontology language F-Logic, not standardized but very known in many companies. We did
not want to limit our approach to these languages for rule-extended ontologies, but chose to
provide specific support for them with a general solution.
After we had answered this first partial question, we addressed the second partial question:
How can models defined in one language be automatically transformed to another language?
While answering this question, we also considered the third partial question already: How
can an extensible solution be provided, supporting the current semantic web area in which it
is not in every case clear yet which language will be the (de facto) standard in the future? As
an answer to this question, we developed a solution based on the metamodeling framework

157

11. Conclusion and Outlook

MOF. In the software engineering field, MOF is successfully used to enable the development
and interoperability of model and metadata driven systems. To benefit from this success story
in the field of ontology engineering, we presented MOF-based metamodels for OWL, SWRL
and F-Logic. Such a metamodel refers to a language, whereas the instances of the metamodel
are referred to as models. Here, models thus refer to concrete ontologies and rules. Next to a
full specification of the metamodels including OCL constraints and accompanied with UML
diagrams, we provided the language mappings from the metamodels to the respective lan-
guages by translating the terms of the metamodels to these of the formalism and so providing
semantics for the metamodels.
Both metamodels are defined in MOF, hence they can be applied in the MDA framework
to allow automatic transformations of F-Logic models to OWL and SWRL, and vice versa1.
In doing so, trading partners using different ontology languages are able to cooperate with-
out having to adapt their internal system or language in use. We provided some first model
transformations from the core part of an ontology from F-Logic to OWL.
Our application of MDA to ontologies and their formalisms directly supports the use of

different ontology languages by different partners. The modular approach of MOF provides
us with an extensible solution, where new modules for additional ontology languages can be
added in a straightforward manner when needed. As such, we answered both the second and
the third partial question.

How can existing approaches in software engineering be applied to support the
modeling of ontologies, rules and ontology mappings? This second main question
immediately lead us to a first partial question: Which requirements do users have that are
not familiar with textual syntaxes of ontology languages? As an answer to this question, we
found that employees need an approach that is abstracted away from specific ontology issues
as much as possible, and that moreover relies on an intuitive paradigm, preferably one which
they are already familiar with.
Next, we posed the second partial question: How can manual work be avoided, resulting in
fewer errors and hence improving overall quality? For easier modeling of ontologies, rules
and ontology mappings, we rely on a visual modeling paradigm. Visual syntaxes have shown
to bring benefits in many other areas. Visual modeling of ontologies in particular decreases
syntactic and semantic errors and increases readability.
After we answered the second partial question and decided to provide a solution based on the
visual modeling paradigm, the third partial question came up: How can we rely on model-
ing paradigms with which users are generally familiar? During the last decade, the visual
language UML became very known and since, it plays an important role for conceptual mod-

1The open world semantic of OWL does not fit together with the F-Logic semantics, and unrestricted transfor-
mations between both languages will not be possible. However, possible transformations in a certain extent
are desirable.

158

11.1. Summary

eling in many companies. Although first, several proposals came up for new particular visual
notations for ontology modeling, these ideas have been abandoned in favor of proposing to
rely on UML. The UML extension mechanism allows us to adapt the language for ontology
modeling. Utilizing UML methodology, tools and technology seems to be a feasible answer
to this partial question.
Further, we asked the partial question: How can shortcomings from existing approaches for
ontology engineering be considered? To respond to this question, we looked at a recent com-
parison between the main existing approaches. One important result of this evaluation was
that users prefer visual over nonvisual notations. This issue we addressed by answering the
former question. But moreover, users did not like having to cope with specific ontology as-
pects. This issue we addressed in our last question:
How can be abstracted away from specific ontology language aspects when modeling ontolo-
gies? Partially, this question was already answered after having decided to rely on the visual
modeling paradigm. Additionally, the UML profiling mechanism provides a very flexible way
of defining notations and allows to choose an abstraction level as necessary for the application
domain.
After having answered the five partial questions, we developed a UML profile for OWL on-
tologies as well as for SWRL rules and OWL ontology mappings as a solution for the sec-
ond main question. This profile is based on the previously defined metamodel for OWL and
SWRL, and a newly defined metamodel extension for ontology mappings.

Lessons Learned To show how our approach can be applied in practice, we implemented
a prototype called OntoModel. OntoModel currently supports model driven development of
ontologies by allowing the user to model ontologies and ontology mappings using the UML
syntax. With two evaluations that we conducted using this prototype, we have shown the prac-
ticability and usability of our approach as received by (end) users.
Through our work, we proved that existing methodologies and technologies in software engi-
neering can successfully be used to support the use of ontologies. By providing MOF based
metamodels for the primary ontology languages as well as some first transformations between
these metamodels, we showed how business partners using different ontology languages can
bring together their knowledge based on existing MDA applications. Furthermore, we showed
how employees can be supported in representing their company’s knowledge in the form of
ontologies, rules and ontology mappings by providing a visual notation based on UML.
We expect that our approach can contribute very well to the ability of companies to benefit
from semantic technologies. We can now use a large array of industrial strength tools that is
available for UML and other related OMG standards for the purpose of ontology development.
Besides graphical editors and model transformation tools, other kinds of utilities offer further
benefit. For example, we can utilize the Eclipse Modeling Framework to derive a Java API for
OWL directly from the metamodel. We hope that the interoperability with existing software
tools and applications will ease ontology development and thus contribute to the adoption of

159

11. Conclusion and Outlook

semantic technologies and their success in real-life applications.
Our work is a first step to bring the W3C vision of a Semantic Web technology and the OMG
vision of a Model Driven Architecture together. Both distinguish essentially the same levels of
data and metadata. While the primary purpose of this work is to enable ontology development
and maintenance with MDA technologies and tools, the bridge could also be exploited in the
other direction as much potential is created by the flow of capabilities of the semantic web
into the software development environment.

11.2. Open Questions and Future Directions

With the work we presented, we started to build a bridge between the semantic web area and
the software engineering community. A variety of issues are still open and several interesting
aspects can be explored in the future. In the following, we briefly discuss possible extensions
of our work.

Representation of context Ontologies are produced by individuals or groups in certain
settings for specific purposes. Therefore, they can almost never be considered as something
absolute in their semantics and are often inconsistent with ontologies created by other parties.
Each ontology can be viewed as valid in a certain context. In order to fully utilize ontology
networks, a solution exists in representing context information, including different real-word
interpretations and the inherent conceptual differences between them. Such context infor-
mation can then be filtered and used directly in the reasoning process. Contextualization is
currently heavily being researched [BGvH+03, GMF04]. Our presented metamodel could be
refined to deal with the explicit representation of such contexts.

Extended model transformations from F-Logic to OWL and SWRL, and vice versa
Our work provides model transformations from the taxonomy-part of an F-Logic ontology to
OWL. The full correspondence between the languages is not fully defined yet but is currently
being researched [MHRS06, MR07]. When these investigations come in a further stage and
allow to define semantically compatible mappings between the two languages, the transfor-
mations between the MOF-based metamodels could be extended to cover larger parts of the
two languages.

Ontology modularization support Similar to modules in software engineering, self-
contained and reusable ontology modules can be defined to improve clarity, reusability and
exensibility [dSM06]. Modules are significant components of ontologies that are defined and
managed independently from the ontology they are included in. In contrast to big and non-
modularized ontologies, modules are easy to understand. Moreover, they ease collaborative
ontology design and maintenance. Many formalisms for handling ontology modules have been

160

11.2. Open Questions and Future Directions

proposed [BS03, SK03, SP04]. However, they have their own limitations in some scenarios
[SR06, BCH06].
A future extension of our metamodel could support the definition and management of on-

tology modules. The modules themselves could be covered by a metamodel extension directly
built on the metamodel for ontologies and the metamodel for ontology mappings could be ex-
tended to define the connections between different modules. A first version of such metamodel
extension for modular ontology design is presented in [HRW+06].

Support for other rule languages While we consider SWRL as the most relevant rule ex-
tension for OWL, other rule languages may become relevant as well. DL-safe rules [MSS04]
are a decidable subset of SWRL. As every DL-safe rule is also a SWRL rule, DL-safe rules are
covered by our metamodel. Using additional constraints it can be checked whether a rule is
DL-safe. It should be noted that SWRL is not the only rule language which has been proposed
for ontologies. Other prominent alternatives for rule languages are mentioned in theW3CRule
Interchange Format Working Group charter [W3C05b], namely the Web Rule Language WRL
[ABdB+05], the rules fragment of the Semantic Web Service Language SWSL [GKM05], the
Rule Markup Language RuleML [WATB04] and the language R2ML [WAL05]. These lan-
guages differ in their semantics and consequently also in the way in which they model implicit
knowledge for expressive reasoning support. From this perspective, it could be desirable to
define different metamodels, each of which is tailored to a specific rules language.
From the perspective of conceptual modeling, however, different rule languages appear to

be very similar to each other. This opens up the possibility to reuse the SWRL metamodel
defined here by augmenting it with some features to allow for the modeling of language prim-
itives which are not present in SWRL. As a result, one would end up with a common meta-
model for different rule languages, similar to the common metamodel we provided for OWL
ontology mappings. An advantage of the latter approach would be a gain in flexibility.

Extended support for F-Logic In the scope of our work, the support for F-Logic is limited
to the definition of a MOF-based metamodel together with its language mappings, and initial
transformations to the metamodel for OWL and SWRL. We decided to focus on OWL in
our work and did neither provide a metamodel extension for F-Logic ontology mappings,
nor support F-Logic in the UML profile. Both are interesting possible extensions to allow
F-Logic users to benefit even more from the MOF-based approach for ontologies. How F-
Logic ontology mappings would be represented would first have to be researched as there is
no established approach for this yet.

Extended support for concrete OWL ontology mappings We considered an abstract
metamodel that was designed to cover a range of existing formalisms for specifying mappings,
however, the modular approach allows to extend the metamodel for additional constructs or
characteristics, or for additional formalisms in a straight-forward manner. In a first step, we

161

11. Conclusion and Outlook

linked the abstract metamodel to two concrete mapping formalisms [BGvH+03, HM05]. This
was done by creating specializations of the generic metamodel that correspond to individual
mapping formalism, by adding restrictions to the metamodel in terms of OCL constraints that
formalize the specific properties of the respective formalism. In order to be able to provide
support not only for the acquisition of mappings but also for their implementation in one of
the existing formalisms, two additional steps are to be taken. In a first step, a method can
be developed for checking the compatibility of a given graphical model with a particular
specialization of the metamodel. This is necessary for being able to determine whether a
given model can be implemented with a particular formalism. As specializations are entirely
described using OCL constraints, this can be done using an OCL model checker. In the second
step, we can develop methods for translating a given graphical model into an appropriate
mapping formalism. This task can be seen as a special case of code generation where instead
of executable code, we generate a formal mapping model that can be operationalized using
a suitable inference engine. In contrast to many existing proposals, this approach takes a
knowledge-level perspective on mapping modeling and supports an iterative development
process where the mapping model is refined in a stepwise manner and the decision for a
specific implementation formalism is only taken later in the process.

Our contributions provide a promising first step for the issues we just shortly addressed. In
the future, our work can be continued successfully in these directions.

162

A. Appendix

A.1. Detailed Overview of the OWL Metamodel

We describe the different metaclasses in the OWL metamodel in alphabetical order, on top of
the explanations of Chapter 4 starting on page 37. As in the UML specifications, we present
each metaclass according to the following specification conventions:

Description
An informal description of the metaclass.

Attributes, Associations and Generalizations
All attributes of the metaclass, ends of associations that start from the considered class, as
well as generalizations of the class are listed together with a short comment.

Constraints
Constraints are expressed in OCL. They define invariants for the metaclass that must be
fulfilled by all instances of that metaclass. The context of a constraint is always the considered
metaclass.

1 - Annotation
Description
An annotation to provide certain remarks to ontologies and their elements. Next to a more
general annotation, two specific types of annotations exist: label and comment.

Attributes, Associations and Generalizations

• URI: String[0..1] defines the URI of the annotation in case of a self-defined annotation.

• annotationValue: Constant[1] defines the mandatory value of the annotation.

Constraints

1. When an annotation is not a label or a comment, a URI must be defined:
not(self.oclIsTypeOf(Label) or self.oclIsTypeOf(Comment))
implies self.URI = 1

163

A. Appendix

2 - AntisymmetricObjectProperty
Description
An axiom that states that for a certain object property, it holds that when the pair (x,y) belongs
to its extension, then the pair (y,x) does not belong to its extension1.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be antisymmetric.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

3 - ClassAssertion
Description
A fact asserting an individual to a class.

Attributes, Associations and Generalizations

• individual: Individual[1] specifies the individual that is asserted to a class.

• class: Description[1] specifies the class to which the individual is asserted.

• Specializes class Fact.

Constraints
No constraints.

4 - ClassAxiom
Description
An abstract supertype for all types of class axioms.

Attributes, Associations and Generalizations

• Specializes class OWLAxiom.

Constraints
No constraints.

5 - Comment
1Note that the correct name for this relation would be 'Asymmetric'. However, the current OWL specifications
call it 'antisymmetric'.

164

A.1. Detailed Overview of the OWL Metamodel

Description
A specific type of annotation.

Attributes, Associations and Generalizations

• Specializes class Annotation.

Constraints

1. A comment does not have a URI:
self.URI = 0

6 - Constant
Description
A constant which can be typed or untyped. When typed, a constant consists of a string and a
datatype URI; when untyped, a constant has a string and a language tag.

Attributes, Associations and Generalizations

• languageTag: String[0..1] defines the language tag of an untyped constant.

• value: String[1] defines the string of a constant.

• URI: String[0..1] defines the datatype URI in case of a typed constant.

Constraints

1. A constant has either a language tag (untyped constant) or a URI (typed constant), but
can not have both:
(self.languageTag = 1 implies self.URI = 0) and
(self.URI = 1 implies self.languageTag = 0)

7 - DataAllValuesFrom
Description
A class description defining a class of the individuals which have only values of the specified
data range as values for the specified data property.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1..*] specifies the data property on which the re-
striction is defined. OWL allows more data properties to be specified in the restriction.

• range: DataRange[1] specifies the restricting data range.

165

A. Appendix

• Specializes class Description.

Constraints
No constraints.

8 - DataComplementOf
Description
A data range defined as the complement of another data range.

Attributes, Associations and Generalizations

• dataRange: DataRange[1] links the data range to its complement.

• Specializes class DataRange.

Constraints
No constraints.

9 - DataExactCardinality
Description
A class description defining a class of the individuals which have exactly the given number of
data values of the specified data range as values for the specified data property. Obviously the
cardinality may not be negative.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property on which the restric-
tion is defined.

• range: DataRange[0..1] specifies the restricting data range.

• cardinality: Integer[1] specifies the cardinality.

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality>=0

10 - DataHasValue
Description
A class description defining a class based on the existence of particular values for a data
property.

Attributes, Associations and Generalizations

166

A.1. Detailed Overview of the OWL Metamodel

• property: DataPropertyExpression[1] specifies the data property on which the restric-
tion is defined.

• value: Constant[1] specifies the restricting constant.

• Specializes class Description.

Constraints
No constraints.

11 - DataMaxCardinality
Description
A class description defining a class of the individuals which have at most the given number
of data values of the specified data range as values for the specified data property. Obviously
the cardinality may not be negative.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property on which the restric-
tion is defined.

• range: DataRange[0..1] specifies the restricting data range.

• cardinality: Integer[1] specifies the cardinality.

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality>=0

12 - DataMinCardinality
Description
A class description defining a class of the individuals which have at least the given number of
data values of the specified data range as values for the specified data property. Obviously the
cardinality may not be negative.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property on which the restric-
tion is defined.

• range: DataRange[0..1] specifies the restricting data range.

167

A. Appendix

• cardinality: Integer[1] specifies the cardinality.

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality>=0

13 - DataOneOf
Description
A data range which is defined through an enumeration of data values. Different types of data
values are allowed.

Attributes, Associations and Generalizations

• constants: Constant[1..*] defines the data values contained in the data range.

• Specializes class DataRange.

Constraints
No constraints.

14 - DataProperty
Description
A data property, which is a property holding between an individual and a data value.

Attributes, Associations and Generalizations

• Specializes class OWLEntity.

• Specializes class DataPropertyExpression.

Constraints
No constraints.

15 - DataPropertyAssertion
Description
A fact stating that a certain constant is the value of a specified individual through a specified
data property.

Attributes, Associations and Generalizations

• source: Individual[1] specifies the subject individual.

168

A.1. Detailed Overview of the OWL Metamodel

• target: Constant[1] specifies the value constant.

• property: DataPropertyExpression[1] specifies the data property that is instantiated.

• Specializes class Fact.

Constraints
No constraints.

16 - DataPropertyAxiom
Description
An abstact supertype of all types of data property axioms.

Attributes, Associations and Generalizations

• Specializes class OWLAxiom.

Constraints
No constraints.

17 - DataPropertyDomain
Description
An axiom defining the domain of a data property.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property of which the domain
is defined.

• domain: Description[1] specifies the description that is defined to be the domain of the
specified data property.

• Specializes class DataPropertyAxiom.

Constraints
No constraints.

18 - DataPropertyExpression
Description
An abstract supertype of a data property.

Attributes, Associations and Generalizations
No attributes, associations or generalizations.

169

A. Appendix

Constraints
No constraints.

19 - DataPropertyRange
Description
An axiom defining the range of a data property.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property of which the range is
defined.

• range: DataRange[1] specifies the data range that is defined to be the range of the
specified data property.

• Specializes class DataPropertyAxiom.

Constraints
No constraints.

20 - DataRange
Description
An abstract supertype of the different types of data ranges. This concerns datatype, data range
complement, data range restriction and datavalue enumeration.

Attributes, Associations and Generalizations
No attributes, associations or generalizations.

Constraints
No constraints.

21 - DataSomeValuesFrom
Description
A class description defining a class of the individuals which have at least some values of the
specified data range as values for the specified data property.

Attributes, Associations and Generalizations

• properties: DataPropertyExpression[1..*] specifies the data property on which the re-
striction is defined. OWL allows more data properties to be specified in the restriction.

• range: DataRange[1] specifies the restricting data range.

• Specializes class Description.

170

A.1. Detailed Overview of the OWL Metamodel

Constraints
No constraints.

22 - Datatype
Description
A simple datatype. A set of primitive datatypes is predefined, of wich rdfs:Literal is in
an exceptional position. Similar to owl:Thing which contains all individuals, rdfs:Literal
contains all data values.

Attributes, Associations and Generalizations

• Specializes class OWLEntity.

• Specializes class DataRange.

Constraints
No constraints.

23 - DatatypeRestriction
Description
A data range which is specified by defining a facet with a certain value on an existing data
range.

Attributes, Associations and Generalizations

• datatypeFacet: String[1] defines the facet of the restriction.

• restrictionValue: Constant[1] defines the facet’s value.

• dataRange: DataRange[1] specifies the data range on which the facet is applied.

• Specializes class DataRange.

Constraints

1. The facet of a datatype restriction may only have specific values:
self.datatypeFacet = 'length'
or self.datatypeFacet = 'minLength'
or self.datatypeFacet = 'maxLength'
or self.datatypeFacet = 'pattern'
or self.datatypeFacet = 'minInclusive'
or self.datatypeFacet = 'minExclusive'
or self.datatypeFacet = 'maxInclusive'
or self.datatypeFacet = 'maxExclusive'

171

A. Appendix

or self.datatypeFacet = 'totalDigits'
or self.datatypeFacet = 'fractionDigits'

24 - Declaration
Description
A declaration of an entity.

Attributes, Associations and Generalizations

• entity: OWLEntity[1] specifies the entity which is declared.

• Specializes class OWLAxiom.

Constraints
No constraints.

25 - Description
Description
An abstract supertype of all simple and complex class constructs. A complex class description
specifies the extension of an anonymous class.

Attributes, Associations and Generalizations
No attributes, associations or generalizations.

Constraints
No constraints.

26 - DifferentIndividuals
Description
A fact stating that several individuals are different.

Attributes, Associations and Generalizations

• differentIndividuals: Individual[2..*] specifies the individuals that are defined to be dif-
ferent. At least two individuals must be specified.

• Specializes class Fact.

Constraints
No constraints.

27 - DisjointClasses

172

A.1. Detailed Overview of the OWL Metamodel

Description
A class axiom defining that several classes are pair-wise disjoint.

Attributes, Associations and Generalizations

• disjointClasses: Description[2..*] specifies the class descriptions that are defined to be
disjoint.

• Specializes class ClassAxiom.

Constraints
No constraints.

28 - DisjointDataProperties
Description
An axiom stating that several data properties are disjoint.

Attributes, Associations and Generalizations

• disjointProperties: DataPropertyExpression[2..*] specifies the data properties that are
defined to be disjoint. At least two data properties must be specified.

• Specializes class DataPropertyAxiom.

Constraints
No constraints.

29 - DisjointObjectProperties
Description
An axiom stating that the extensions of several object properties are disjoint.

Attributes, Associations and Generalizations

• disjointProperties: ObjectPropertyExpression[2..*] specifies the object properties that
are defined to be disjoint. At least two object properties must be specified.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

30 - DisjointUnion
Description
A class axiom defining that one class is the union of a set of other classes, which are pair-wise

173

A. Appendix

disjoint.

Attributes, Associations and Generalizations

• disjointClasses: Description[2..*] specifies the disjoint class descriptions.

• unionClass: OWLClass[1] specifies the union class.

• Specializes class ClassAxiom.

Constraints
No constraints.

31 - EntityAnnotation
Description
A type of axiom defining annotations on entities.

Attributes, Associations and Generalizations

• entity: OWLEntity[1] specifies the entity on which the annotations are defined.

• entityAnnotation: Annotation[*] specifies the annotations on the entity.

• Specializes class OWLAxiom.

Constraints
No constraints.

32 - EquivalentClasses
Description
A class axiom defining that several classes are equivalent.

Attributes, Associations and Generalizations

• equivalentClasses: Description[2..*] specifies the class descriptions that are defined to
be equivalent.

• Specializes class ClassAxiom.

Constraints
No constraints.

33 - EquivalentDataProperties
Description
An axiom stating that several data properties are equivalent.

Attributes, Associations and Generalizations

174

A.1. Detailed Overview of the OWL Metamodel

• equivalentProperties: DataPropertyExpression[2..*] specifies the data properties that
are defined to be equivalent. At least two data properties must be specified.

• Specializes class DataPropertyAxiom.

Constraints
No constraints.

34 - EquivalentObjectProperties
Description
An axiom stating that the extensions of several object properties are equal.

Attributes, Associations and Generalizations

• equivalentProperties: ObjectPropertyExpression[2..*] specifies the object properties
that are defined to be equivalent. At least two object properties must be specified.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

35 - Fact
Description
An abstract supertype for all types of facts.

Attributes, Associations and Generalizations

• Specializes class OWLAxiom.

Constraints
No constraints.

36 - FunctionalDataProperty
Description
An axiom that states that a certain data property is functional.

Attributes, Associations and Generalizations

• property: DataPropertyExpression[1] specifies the data property that is defined to be
functional.

• Specializes class DataPropertyAxiom.

175

A. Appendix

Constraints
No constraints.

37 - FunctionalObjectProperty
Description
An axiom that states that a certain object property is functional.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be functional.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

38 - Individual
Description
An instance of a class.

Attributes, Associations and Generalizations

• Specializes class OWLEntity.

Constraints
No constraints.

39 - InverseFunctionalObjectProperty
Description
An axiom that states that a certain object property is inverse functional.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be inverse functional.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

40 - InverseObjectProperties
Description

176

A.1. Detailed Overview of the OWL Metamodel

An axiom stating that the extensions of two object properties are the inverse of each other.

Attributes, Associations and Generalizations

• inverseProperties: ObjectPropertyExpression[2] specifies the two object properties
that are defined to be inverse.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

41 - InverseObjectProperty
Description
An object property which is defined as the inverse of another object property.

Attributes, Associations and Generalizations

• inverseProperty: ObjectPropertyExpression[1] specifies the inverse object property of
the newly defined object property.

• Specializes class ObjectPropertyExpression.

Constraints
No constraints.

42 - IrreflexiveObjectProperty
Description
An axiom that states that a certain object property is irreflexive.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be irreflexive.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

43 - Label
Description
A specific type of annotation.

Attributes, Associations and Generalizations

177

A. Appendix

• Specializes class Annotation.

Constraints

1. A label does not have a URI:
self.URI = 0

44 - NegativeDataPropertyAssertion
Description
A fact stating that a certain constant is not the value of a specified individual through a
specified data property.

Attributes, Associations and Generalizations

• source: Individual[1] specifies the subject individual.

• target: Constant[1] specifies the value constant.

• property: DataPropertyExpression[1] specifies the data property that is instantiated.

• Specializes class Fact.

Constraints
No constraints.

45 - NegativeObjectPropertyAssertion
Description
A fact stating that a certain individual is not the value of another specified individual through
a specified object property.

Attributes, Associations and Generalizations

• source: Individual[1] specifies the subject individual.

• target: Individual[1] specifies the value individual.

• property: ObjectPropertyExpression[1] specifies the object property that is instanti-
ated.

• Specializes class Fact.

Constraints
No constraints.

178

A.1. Detailed Overview of the OWL Metamodel

46 - ObjectAllValuesFrom
Description
A class description defining a class of the individuals which have only instances of the
specified class description as values for the specified object property.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• class: Description[1] specifies the restricting class.

• Specializes class Description.

Constraints
No constraints.

47 - ObjectComplementOf
Description
A class description defining a class as the complement of another class.

Attributes, Associations and Generalizations

• class: Description[1] specifies the complementary class description.

• Specializes class Description.

Constraints
No constraints.

48 - ObjectExactCardinality
Description
A class description defining a class of the individuals which have exactly the given number
of individuals of the specified class as values for the specified object property. Obviously the
cardinality may not be negative.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• class: Description[0..1] specifies the restricting class. When no class description is
specified, the property restriction is unqualified and the restricting class is owl:Thing.

• cardinality: Integer[1] specifies the cardinality.

179

A. Appendix

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality >= 0

49 - ObjectExistsSelf
Description
A class description defining a class of the individuals that have themselves as values for the
specified object property.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• Specializes class Description.

Constraints
No constraints.

50 - ObjectHasValue
Description
A class description defining a class based on the existence of particular values for an object
property.

Attributes, Associations and Generalizations

• value: Individual[1] specifies the particular value that instance of the class can have for
the specified property.

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• Specializes class Description.

Constraints
No constraints.

51 - ObjectIntersectionOf
Description
A class description defining a class as the intersection of some other classes.

Attributes, Associations and Generalizations

180

A.1. Detailed Overview of the OWL Metamodel

• classes: Description[2..*] specifies the class descriptions in the intersection.

• Specializes class Description.

Constraints
No constraints.

52 - ObjectMaxCardinality
Description
A class description defining a class of the individuals which have at most the given number
of individuals of the specified class as values for the specified object property. Obviously the
cardinality may not be negative.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• class: Description[0..1] specifies the restricting class. When no class description is
specified, the property restriction is unqualified and the restricting class is owl:Thing.

• cardinality: Integer[1] specifies the cardinality.

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality >= 0

53 - ObjectMinCardinality
Description
A class description defining a class of the individuals which have at least the given number of
individuals of the specified class as values for the specified object property. Obviously the
cardinality may not be negative.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• class: Description[0..1] optionally specifies the restricting class. When no class de-
scription is specified, the property restriction is unqualified and the restricting class is
owl:Thing.

181

A. Appendix

• cardinality: Integer[1] specifies the cardinality.

• Specializes class Description.

Constraints

1. The cardinality must be nonnegative:
self.cardinality >= 0

54 - ObjectOneOf
Description
A class description defining a class by an enumerating its associated individuals.

Attributes, Associations and Generalizations

• individuals: Individual[1..*] specifies the individuals in the enumeration.

• Specializes class Description.

Constraints
No constraints.

55 - ObjectProperty
Description
An object property, which is a property holding between individuals.

Attributes, Associations and Generalizations

• Specializes class OWLEntity.

• Specializes class ObjectPropertyExpression.

Constraints
No constraints.

56 - ObjectPropertyAssertion
Description
A fact stating that a certain individual is the value of another specified individual through a
specified object property.

Attributes, Associations and Generalizations

• source: Individual[1] specifies the subject individual.

182

A.1. Detailed Overview of the OWL Metamodel

• target: Individual[1] specifies the value individual.

• property: ObjectPropertyExpression[1] specifies the object property that is instanti-
ated.

• Specializes class Fact.

Constraints
No constraints.

57 - ObjectPropertyAxiom
Description
An abstract supertype of all types of object property axioms.

Attributes, Associations and Generalizations

• Specializes class OWLAxiom.

Constraints
No constraints.

58 - ObjectPropertyDomain
Description
An axiom defining the domain of an object property.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property of which the do-
main is specified.

• domain: Description[1] specifies the description that is specified as the domain of the
object property.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

59 - ObjectPropertyExpression
Description
An abstract supertype of the two object property types, normal object properties and inverse
object properties.

Attributes, Associations and Generalizations

183

A. Appendix

No attributes, associations or generalizations.

Constraints
No constraints.

60 - ObjectPropertyRange
Description
An axiom defining the range of an object property.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property of which the
range is specified.

• range: Description[1] specifies the description that is specified as the range of the object
property.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

61 - ObjectSomeValuesFrom
Description
A class description defining a class of the individuals which have at least some instances of
the specified class description as values for the specified object property.

Attributes, Associations and Generalizations

• class: Description[1] specifies the restricting class.

• property: ObjectPropertyExpression[1] specifies the object property on which the re-
striction is defined.

• Specializes class Description.

Constraints
No constraints.

62 - ObjectUnionOf
Description
A class description defining a class as the union of some other classes.

Attributes, Associations and Generalizations

184

A.1. Detailed Overview of the OWL Metamodel

• classes: Description[2..*] specifies the class descriptions in the union.

• Specializes class Description.

Constraints
No constraints.

63 - Ontology
Description
An ontology consisting of axioms, eventually annotated and importing other ontologies.

Attributes, Associations and Generalizations

• URI: String[1] defines the URI of an ontology. A URI is mandatory for every ontology.

• importedOntology: Ontology[*] links the ontology to other ontologies which it imports.
Importing another ontology is optional, and the possible number of imported ontologies
is unlimited.

• ontologyAnnotation: Annotation[*] links the ontology to the annotations that are de-
fined on it. Annotations on ontologies are optional.

• ontologyAxiom: OWLAxiom[*] links the ontology to its axioms.

Constraints
No constraints.

64 - OWLAxiom
Description
An abstract supertype of all types of ontology axioms. This concerns class axioms, object
property axioms, data property axioms, declarations, facts and entity annotations.

Attributes, Associations and Generalizations

• axiomAnnotation: Annotation[*] links an axiom to its annotations. Annotations are not
mandatory for axioms.

Constraints
No constraints.

65 - OWLClass
Description
An atomic class. Two atomic classes are predefined: the universal class owl:Thing containing
all individuals, and the empty class owl:Nothing containing nothing.

185

A. Appendix

Attributes, Associations and Generalizations

• Specializes class OWLEntity.

• Specializes class Description.

Constraints
No constraints.

66 - OWLEntity
Description
An abstract supertype of all types of OWL entities. This concerns data type, OWL class,
object property, data property and indivdual.

Attributes, Associations and Generalizations

• URI: String[1] defines the URI of the entity.

Constraints
No constraints.

67 - ReflexiveObjectProperty
Description
An axiom that states that a certain object property is reflexive.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be reflexive.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

68 - SameIndividual
Description
A fact stating that several individuals are the same.

Attributes, Associations and Generalizations

• sameIndividuals: Individual[2..*] specifies the individuals that are defined to be the
same. At least two individuals must be specified.

186

A.1. Detailed Overview of the OWL Metamodel

• Specializes class Fact.

Constraints
No constraints.

69 - SubClassOf
Description
A class axiom defining that one class is a subclass of the other.

Attributes, Associations and Generalizations

• subClass: Description[1] specifies the subclass.

• superClass: Description[1] specifies the superclass.

• Specializes class ClassAxiom.

Constraints
No constraints.

70 - SubDataPropertyOf
Description
An axiom stating that the extension of one data property is a subset of the extension of
another data property.

Attributes, Associations and Generalizations

• subProperty: DataPropertyExpression[1] specifies the subproperty.

• superProperty: DataPropertyExpression[1] specifies the superproperty.

• Specializes class DataPropertyAxiom.

Constraints
No constraints.

71 - SubObjectPropertyOf
Description
An axiom stating that the extension of one or several object properties are subsets of the
extension of a certain other object property.

Attributes, Associations and Generalizations

• subProperties: ObjectPropertyExpression[1..*] specifying the subproperties. When
more subproperties are defined, they are ordered.

187

A. Appendix

• superProperty: ObjectPropertyExpression[1] specifying the superproperty.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

72 - SymmetricObjectProperty
Description
An axiom that states that a certain object property is symmetric.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be symmetric.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

73 - TransitiveObjectProperty
Description
An axiom that states that a certain object property is transitive.

Attributes, Associations and Generalizations

• property: ObjectPropertyExpression[1] specifies the object property that is defined to
be transitive.

• Specializes class ObjectPropertyAxiom.

Constraints
No constraints.

188

A.2. Mappings between OWL and the OWL Metamodel

A.2. Mappings between OWL and the OWL Metamodel

The table below defines the mapping function ρ from OWL to the MOF-based OWL meta-
model which we defined in Chapter 4 starting on page 37. For each OWL element or partial
element presented in the functional-style syntax, the corresponding metamodel element is in-
dicated and its attributes and associations specified. In doing so, we partially fall back on the
OCL syntax. Attributes are indented, below the element to which they belong. The inverse
mapping from the metamodel to OWL can be derived directly from ρ. The following notations
are used in the definition of the mapping function:

• a represents an annotation URI;

• d represents a datatype URI;

• c, c1, ..., cn represent OWL class URIs;

• o, o1, ..., on represent object property URIs;

• r, r1, ..., rn represent data property URIs;

• i, i1, ..., in represent individual URIs;

• t1, t2, ..., tn represent ontology URIs;

• s, s1, ..., sn represent strings;

• x1, ..., xn represent axioms (standing for one of the specific types of axioms in OWL);

• n represents a nonnegative integer;

• l represents a language tag;

• f represents a datatype facet;

• g, g1, ..., gn represent constants.

When a partial construct can be of different types and the mapping function values of these
types are defined elsewhere in the table, we take the simplest of them for the sake of clarity
in introducing the main construct. Additionally, we do not introduce annotations within the
different constructs but specify them separately2. Thus whenever an annotation is used in
a construct, the function value for the annotation can be added to the function value of the
construct.

2Note that annotations are always optional.

189

A. Appendix

OWL Metamodel = ρ(OWL)
Ontologies
Ontology(t1 [Import(t2) Ontology
... Import(tn)] [x1 ... xn]) [ontologyAxiom = Set{ρ(x1), ..., ρ(xn)}]

[importedOntology = Set{ρ(t2), ..., ρ(tn)}]
URI = t1

Annotations
Annotation(a s) Annotation

annotationValue = ρ(s)
URI = a

Label(s) Label
annotationValue = ρ(s)

Comment(s) Comment
annotationValue = ρ(s)

Annotation(a s) (axiom)
(on an axiom) axiomAnnotation = ρ(Annotation(a s))
Annotation(a s) (ontology)
(on an ontology) ontologyAnnotation = ρ(Annotation(a s))
EntityAnnotation(c Annotation(a s)) EntityAnnotation

entity = ρ(c)
entityAnnotation = ρ(Annotation(a s))

Entities (in entity declarations)
Datatype(d) Datatype

URI = d
OWLClass(c) OWLClass

URI = c
ObjectProperty(o) ObjectProperty

URI = o
DataProperty(r) DataProperty

URI = r
Individual(i) Individual

URI = i
InverseObjectProperty(o) InverseObjectProperty

inverseProperty = ρ(ObjectProperty(o))

190

A.2. Mappings between OWL and the OWL Metamodel

OWL Metamodel = ρ(OWL)
Entity declarations
Declaration(Datatype(d)) Declaration

entity = ρ(d)
Declaration(OWLClass(c)) Declaration

entity = ρ(c)
Declaration(ObjectProperty(o)) Declaration

entity = ρ(o)
Declaration(DataProperty(r)) Declaration

entity = ρ(r)
Declaration(Individual(i)) Declaration

entity = ρ(i)
Constants
s [@ l] Constant

languageTag = l
value = s

sˆˆd Constant
value = s
URI = d

URIs
d Datatype

URI = d
c OWLClass

URI = c
o ObjectProperty

URI = o
r DataProperty

URI = r
i Individual

URI = i
Data ranges
DataComplementOf(d) DataComplementOf

dataRange = ρ(d)

DataOneOf(g1 ... gn) DataOneOf
constants = Set{ρ(g1), ..., ρ(gn)}

DatatypeRestriction(d f g) DatatypeRestriction
datatypeFacet = f
restrictionValue = ρ(g)
dataRange = ρ(d)

191

A. Appendix

OWL Metamodel = ρ(OWL)
Class descriptions
ObjectUnionOf(c1 c2 ... cn) ObjectUnionOf

classes = Set{ρ(c1), ρ(c2), ..., ρ(cn)}
ObjectIntersectionOf(ObjectIntersectionOf
c1 c2 ... cn) classes = Set{ρ(c1), ρ(c2), ..., ρ(cn)}
ObjectComplementOf(c1) ObjectComplementOf

class = ρ(c1)
ObjectOneOf(i1 ... in) ObjectOneOf

individuals = Set{ρ(i1), ..., ρ(in)}
ObjectAllValuesFrom(o c) ObjectAllValuesFrom

class =ρ(c)
property = ρ(o)

ObjectSomeValuesFrom(o c) ObjectSomeValuesFrom
class=ρ(c)
property = ρ(o)

ObjectExistsSelf(o) ObjectExistsSelf
property = ρ(o)

ObjectHasValue(o i) ObjectHasValue
value=ρ(i)
property = ρ(o)

ObjectMinCardinality(n o [c]) ObjectMinCardinality
cardinality = n
property = ρ(o)
[class = ρ(c)]

ObjectMaxCardinality(n o [c]) ObjectMaxCardinality
cardinality = n
property = ρ(o)
[class = ρ(c)]

ObjectExactCardinality(n o [c]) ObjectExactCardinality
cardinality = n
property = ρ(o)
[class = ρ(c)]

DataAllValuesFrom(r1 ... rn d) DataAllValuesFrom
properties = OrderedSet{ρ(r1), ..., ρ(rn)}
range = ρ(d)

DataSomeValuesFrom(r1 ... rn d) DataSomeValuesFrom
properties = OrderedSet{ρ(r1), ..., ρ(rn)}
range = ρ(d)

192

A.2. Mappings between OWL and the OWL Metamodel

OWL Metamodel = ρ(OWL)
DataHasValue(r g) DataHasValue

property = ρ(r)
value = ρ(g)

DataMinCardinality(n r [d]) DataMinCardinality
cardinality = n
property = ρ(r)
[range = ρ(d)]

DataMaxCardinality(n r [d]) DataMaxCardinality
cardinality = n
property = ρ(r)
[range = ρ(d)]

DataExactCardinality(n r [d]) DataExactCardinality
cardinality = n
property = ρ(r)
[range = ρ(d)]

Class axioms
SubClassOf(c1 c2) SubClassOf

subClass = ρ(c1)
superClass = ρ(c2)

EquivalentClasses(c1 c2 ... cn) EquivalentClasses
equivalentClasses = Set{ρ(c1), ρ(c2), ..., ρ(cn)}

DisjointClasses(c1 c2 ... cn) DisjointClasses
disjointClasses = Set{ρ(c1), ρ(c2), ..., ρ(cn)}

DisjointUnion(c1 c2 c3 ... cn) DisjointUnion
unionClass = ρ(c1)
disjointClasses = Set{ρ(c2), ρ(c3), ..., ρ(cn)}

Object property axioms
SubObjectPropertyOf(o1 o2) SubObjectPropertyOf

subProperties = ρ(o1)
superProperty = ρ(o2)

SubObjectPropertyOf(SubObjectPropertyOf
SubObjectPropertyChain(subProperties = OrderedSet{ρ(o1), ρ(o2), ..., ρ(on)}
o1 o2 ... on) on+1) superProperty = ρ(on+1)
EquivalentObjectProperties(EquivalentObjectProperties
o1 o2 ... on) equivalentProperties = Set{ρ(o1), ρ(o2), ..., ρ(on)}

193

A. Appendix

OWL Metamodel = ρ(OWL)
DisjointObjectProperties(DisjointObjectProperties
o1 o2 ... on) disjointProperties = Set{ρ(o1), ρ(o2), ..., ρ(on)}
InverseObjectProperties(o1 o2) InverseObjectProperties

inverseProperties = Set{ρ(o1), ρ(o2)}
ObjectPropertyDomain(o c) ObjectPropertyDomain

property = ρ(o)
domain = ρ(c)

ObjectPropertyRange(o c) ObjectPropertyRange
property = ρ(o)
range = ρ(c)

FunctionalObjectProperty(o) FunctionalObjectProperty
property = ρ(o)

InverseFunctionalObjectProperty(o) InverseFunctionalObjectProperty
property = ρ(o)

ReflexiveObjectProperty(o) ReflexiveObjectProperty
property = ρ(o)

IrreflexiveObjectProperty(o) IrreflexiveObjectProperty
property = ρ(o)

SymmetricObjectProperty(o) SymmetricObjectProperty
property = ρ(o)

AntisymmetricObjectProperty(o) AntisymmetricObjectProperty
property = ρ(o)

TransitiveObjectProperty(o) TransitiveObjectProperty
property = ρ(o)

Data property axioms
SubDataPropertyOf(r1 r2) SubDataPropertyOf

subProperty = ρ(r1)
superProperty = ρ(r2)

EquivalentDataProperties(EquivalentDataProperties
r1 r2 ... rn) equivalentProperties = Set{

ρ(r1), ρ(r2), ..., ρ(rn)}
DisjointDataProperties(DisjointDataProperties
r1 r2 ... rn) disjointProperties = Set{ρ(r1), ρ(r2), ..., ρ(rn)}
DataPropertyDomain(r c) DataPropertyDomain

property = ρ(r)
domain = ρ(c)

194

A.2. Mappings between OWL and the OWL Metamodel

OWL Metamodel = ρ(OWL)
DataPropertyRange(r d) DataPropertyRange

property = ρ(r)
range = ρ(d)

FunctionalDataProperty(r) FunctionalDataProperty
property = ρ(r)

Facts
SameIndividual(i1 i2 ... in) SameIndividual

sameIndividuals = Set{
ρ(i1), ρ(i2), ..., ρ(in) }

DifferentIndividuals(i1 i2 ... in) DifferentIndividuals
differentIndividuals = Set{
ρ(i1), ρ(i2), ..., ρ(in) }

ClassAssertion(i c) ClassAssertion
individual = ρ(i)
class = ρ(c)

ObjectPropertyAssertion(o i1 i2) ObjectPropertyAssertion
property = ρ(o)
source = ρ(i1)
target = ρ(i2)

NegativeObjectPropertyAssertion(o i1 i2) NegativeObjectPropertyAssertion
property = ρ(o)
source = ρ(i1)
target = ρ(i2)

DataPropertyAssertion(r i g) DataPropertyAssertion
property = ρ(r)
source = ρ(i)
target = ρ(g)

NegativeDataPropertyAssertion(r i g) NegativeDataPropertyAssertion
property = ρ(r)
source = ρ(i)
target = ρ(g)

195

A. Appendix

A.3. Detailed Overview of the SWRL Metamodel Extension

On top of the introduction of the MOF metamodel for SWRL in Chapter 5 starting on page
59, this appendix presents the descriptions of the different metaclasses of the metamodel
arranged in alphabetical order. As in the former appendix, we present them as in the UML
specifications, according to the following specification conventions:

Description
An informal description of the metaclass.

Attributes, Associations and Generalizations
All attributes of the metaclass, ends of associations that start from the considered class, as
well as generalizations of the class are listed together with a short comment.

Constraints
Constraints are expressed in OCL. They define invariants for the metaclass that must be
fulfilled by all instances of that metaclass. The context of a constraint is always the considered
metaclass.

1 - Antecedent
Description
The body of a rule. As a SWRL antecedent is interpreted as a conjunction of its atoms, a
non-empty antecedent holds if and only if all its atoms hold.

Attributes, Associations and Generalizations

• bodyAtoms: Atom[*] links the antecedent to its atoms. An antecedent can be empty.

Constraints
No constraints.

2 - Atom
Description
An atom in the body or head of a rule. An atom has a predicate symbol and some terms.

Attributes, Associations and Generalizations

• atomName: PredicateSymbol[1] specifies the predicate symbol.

• atomArguments: Term[*] specifies the terms in a specific order.

Constraints

196

A.3. Detailed Overview of the SWRL Metamodel Extension

1. When the predicate symbol of the atom is a description, the atom has exactly one argu-
ment and this argument must be an individual variable or an individual:
self.atomName.oclIsTypeOf(Description) implies
self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable))

2. When the predicate symbol of the atom is a datarange, the atom has exactly one argu-
ment and this argument must be a constant or a data variable:
self.atomName.oclIsTypeOf(DataRange) implies
self.atomArguments→size()=1 and
(self.atomArguments→at(1).oclIsTypeOf(Constant) or
self.atomArguments→at(1).oclIsTypeOf(DataVariable))

3. When the predicate symbol of the atom is an object property, the atom has exactly two
arguments and each of these is either an individual or an individual variable:
self.atomName.oclIsTypeOf(ObjectProperty) implies
self.atomArguments→size()=2 and
self.atomArguments→forAll(oclIsTypeOf(Individual) or
oclIsTypeOf(IndividualVariable))

4. When the predicate symbol of the atom is a data property, the atom has exactly two
arguments and the first argument must be an individual or an individual variable, and
the second argument must be a constant or a data variable:
self.atomName.oclIsTypeOf(DataProperty) implies
self.atomArguments→size()=2 and
(self.atomArguments→at(1).oclIsTypeOf(Individual) or
self.atomArguments→at(1).oclIsTypeOf(IndividualVariable)) and
(self.atomArguments→at(2).oclIsTypeOf(Constant) or
self.atomArguments→at(2).oclIsTypeOf(DataVariable))

5. When the predicate symbol of the atom is a built-in, the atom can have zero to many
arguments and all these arguments can be either a constant or a data variable:
self.atomName.oclIsTypeOf(BuiltIn) implies
self.atomArguments→forAll(oclIsTypeOf(Constant) or oclIsTypeOf(DataVariable))

3 - BuiltIn
Description
A SWRL built-in predicate. Built-ins are classified into seven modules, like built-ins for lists
or built-ins for comparisons.

Attributes, Associations and Generalizations

197

A. Appendix

• URI: String[1] identifies a built-in.

• Specializes class PredicateSymbol.

Constraints
No constraints.

4 - Consequent
Description
The head of a rule. As a SWRL consequent is interpreted as the conjunction of its atoms, a
non-empty consequent holds if and only if all its atoms hold.

Attributes, Associations and Generalizations

• headAtoms: Atom[*] links the consequent to its atoms. A consequent can be empty.

Constraints
No constraints.

5 - Constant (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class Term.

6 - DataProperty (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class PredicateSymbol.

7 - DataRange (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class PredicateSymbol.

8 - DataVariable
Description
A data variable, which is a variable for a data value.

Attributes, Associations and Generalizations

198

A.3. Detailed Overview of the SWRL Metamodel Extension

• Specializes class Variable.

Constraints
No constraints.

9 - Description (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class PredicateSymbol.

10 - Individual (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class Term.

11 - IndividualVariable
Description
An individual variable, which is a variable for an individual.

Attributes, Associations and Generalizations

• Specializes class Variable.

Constraints
No constraints.

12 - ObjectProperty (augmented definition of the metaclass in the OWL
metamodel)
Attributes, Associations and Generalizations

• Specializes class PredicateSymbol.

13 - PredicateSymbol
Description
A predicate symbol of an atom in a rule.

Attributes, Associations and Generalizations

No attributes, associations or generalizations.

199

A. Appendix

Constraints
No constraints.

14 - Rule
Description
A rule. Informally, the meaning of a rule can be described as: when the antecedent holds,
then so does the consequent. An empty antecedent is treated as trivially true, whereas an
empty consequent is treated as trivially false.

Attributes, Associations and Generalizations

• URI: String[0..1] specifies the URI to identify the rule. A URI is not mandatory for a
SWRL rule.

• ruleBody: Antecedent[1] links a rule to its antecedent.

• ruleHead: Consequent[1] links a rule to its consequent.

• Specializes class OWLAxiom.

Constraints

1. Only variables that occur in the antecedent may occur in the consequent of the rule:
self.ruleHead.headAtoms→atomArguments→forAll(t | t.oclIsTypeOf(Variable) im-
plies self.ruleBody.bodyAtoms→atomArguments→exists(t | true))

15 - Term
Description
An abstract supertype for all types of terms in a rule atom. This concerns data variables,
individual variables, constants and individuals. As the OWL specification uses constants to
represent data values, so does the metamodel for the sake of uniformity.

Attributes, Associations and Generalizations

No attributes, associations or generalizations.

Constraints
No constraints.

16 - Variable
Description

200

A.3. Detailed Overview of the SWRL Metamodel Extension

An abstract supertype for variable terms. This concerns data variables and individual
variables. Variables in SWRL rules are treated as universally quantified, with their scope
limited to a given rule.

Attributes, Associations and Generalizations

• name: String[1] specifies the name of the variable.

• Specializes class Term.

Constraints
No constraints.

201

A. Appendix

A.4. Mappings between SWRL and the SWRL Metamodel

As a consistent extension of Appendix A.2 starting on page 189, the table below defines
the values of the mapping function ρ for SWRL elements. The function ρ maps the SWRL
elements to elements of the metamodel. Each SWRL element is presented in the abstract
syntax and is followed by its corresponding metamodel element, its attributes and associations.
In doing so, we partially fall back on the OCL syntax. Attributes are indented, below the
element to which they belong. From the function ρ, the inverse mapping from the metamodel
to SWRL can be derived directly. The following notations are used in the definition of the
mapping function:

• d represents a datatype URI;

• u represents a random URI;

• b represents a built-in URI;

• c represents an OWL class URI;

• o represents an object property URI;

• r represents a data property URI;

• e, e1, ..., en represent terms (standing for one of the specific types of terms in SWRL);

• m1, ..., mt represent rule atoms (standing for one of the specific types of atoms in
SWRL).

When a partial construct can be of different types and the mapping function values of
these types are defined elsewhere by ρ, we take the simplest of them for the sake of clarity
in introducing the main construct. Moreover, we do no present an annotation in the rule
construct for the sake of clarity as the function value for the annotation can be taken from
Appendix A.2 and inserted in the function value of a rule.

202

A.4. Mappings between SWRL and the SWRL Metamodel

SWRL Metamodel = ρ(SWRL)
Rules
Implies([u] Rule
Antecedent(m1 ... mn) [URI = u]
Consequent()) ruleBody = Antecedent

bodyAtoms = Set{ρ(m1), ..., ρ(mn)}
ruleHead = Consequent

Implies([u] Rule
Antecedent() [URI = u]
Consequent(m1 ... mn)) ruleBody = Antecedent

ruleHead = Consequent
headAtoms = Set{ρ(m1), ..., ρ(mn)}

Implies([u] Rule
Antecedent(m1 ... mn) [URI = u]
Consequent(mn+1 ... mt)) ruleBody = Antecedent

bodyAtoms = Set{ρ(m1), ..., ρ(mn)}
ruleHead = Consequent
headAtoms = Set{ρ(mn+1), ..., ρ(mt)}

Atoms
c(e) Atom

atomName = ρ(c)
atomArguments = ρ(e)

d(e) Atom
atomName = ρ(d)
atomArguments = ρ(e)

o(e1 e2) Atom
atomName = ρ(o)
atomArguments = OrderedSet{ρ(e1), ρ(e2)}

r(e1 e2) Atom
atomName = ρ(r)
atomArguments = OrderedSet{ρ(e1), ρ(e2)}

sameAs(e1 e2) Atom
atomName = BuiltIn
URI = 'sameAs'

atomArguments = OrderedSet{ρ(e1), ρ(e2)}
differentFrom(e1 e2) Atom

atomName = BuiltIn
URI = 'differentFrom'

atomArguments = OrderedSet{ρ(e1), ρ(e2)}

203

A. Appendix

SWRL Metamodel = ρ(SWRL)
builtin(b) Atom

atomName = BuiltIn
URI = b

builtin(b e1 ... en) Atom
atomName = BuiltIn
URI = b

atomArguments = OrderedSet{ρ(e1), ..., ρ(en)}
Variable-terms
I-variable(u) IndividualVariable

name = u
D-variable(u) DataVariable

name = u

204

A.5. Detailed Overview of the F-Logic Metamodel

A.5. Detailed Overview of the F-Logic Metamodel

On top of the explanation of the MOF based metamodel for F-Logic in Chapter 6 starting
on page 65, we present the descriptions of the different metaclasses in this appendix, in
alphabetical order. In doing so, we follow the specification conventions as also used in the
UML specifications:

Description
An informal description of the metaclass.

Attributes, Associations and Generalizations
All attributes of the metaclass, ends of associations that start from the considered class, as
well as generalizations of the class are listed together with a short comment.

Constraints
Constraints are expressed in OCL. They define invariants for the metaclass that must be
fulfilled by all instances of that metaclass. The context of a constraint is always the considered
metaclass.

1 - BuiltIn
Description
A built-in feature, including several comparison predicates, the basic arithmetic operators,
and so forth.

Attributes, Associations and Generalizations

• Specializes class PredicateSymbol.

Constraints
No constraints.

2 - Conjunction
Description
A conjunction of formulas.

Attributes, Associations and Generalizations

• Specializes class Formula.

• connectedFormulas: Formula[2..*] specifies two or more formulas of the conjunction.

Constraints

205

A. Appendix

1. A conjunction can not combine rules or queries:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

3 - Constant
Description
A term to name objects. A constant can be seen as a functional term with zero arguments.

Attributes, Associations and Generalizations

• Specializes class FunctionalTerm.

Constraints

1. A constant is a functional term with zero arguments:
self.arguments→size()=0

4 - Disjunction
Description
A disjunction of formulas.

Attributes, Associations and Generalizations

• Specializes class Formula.

• connectedFormulas: Formula[2..*] specifies two or more formulas of the disjunction.

Constraints

1. A disjunction can not combine rules or queries:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

5 - Equivalence
Description
An equivalence relation between two formulas.

Attributes, Associations and Generalizations

• Specializes class Formula.

• connectedFormulas: Formula[2] specifies exactly two formulas for the equivalence
connective.

Constraints

206

A.5. Detailed Overview of the F-Logic Metamodel

1. An equivalence construct can not combine rules or queries:
self.connectedFormulas→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

6 - Exists
Description
An existential quantifier, which is modeled as a partial formula.

Attributes, Associations and Generalizations

• Specializes class Formula.

• containedFormula: Formula[1] specifies the formula in which the variables are de-
clared existentially.

• boundVariables: Variable[1..*] links the formula to the variables it declares. At least
one variable must be specified.

Constraints

1. When an existential quantifier has defined a variable as one of its bound variables, then
this variable must be defined as bound to that quantifier:
self.boundVariables→forAll(v : Variable | v.isBoundToExists=self)

7 - FAtom
Description
An F-atom which is a simplified F-molecule containing either a simple term as host and
exactly one method, or a combined host object with zero methods.

Attributes, Associations and Generalizations

• Specializes class FMolecule.

Constraints

1. An F-atom is an F-molecule with a simple term as host object and exactly one method,
or an InstanceOf- or SubClassOf-atom as host object with zero methods:
(self.host.oclIsTypeOf(Term) and self.methods→size()=1) or
(not self.host.oclIsTypeOf(Term) and self.methods→size()=0)

8 - FLogicOntology
Description
An F-Logic ontology containing facts, rules and queries.

Attributes, Associations and Generalizations

207

A. Appendix

• ontologyFormulas: Formula[*] defines the facts, rules and queries which are in the
ontology.

Constraints

1. The only subtypes of the class Formula that can be directly in an ontology, are
F-molecules (and so F-atoms), P-atoms, rules and queries:
self.ontologyFormulas→forAll(oclIsTypeOf(FMolecule) or oclIsTypeOf(Rule) or
oclIsTypeOf(Query) or oclIsTypeOf(PAtom))

9 - FMolecule
Description
An F-molecule which combines several F-atoms. An F-molecule consists of a host object
and one or more method applications or signatures. The metamodel defines an F-atom as a
special type of an F-molecule.

Attributes, Associations and Generalizations

• Specializes class Formula.

• host: HostObject[1] specifies the first part of the F-molecule.

• methods: Method[*] specifies the set of methods of the F-molecule. It is possible to
define zero methods.

• Specializes class MethodValue.

Constraints
No constraints.

10 - ForAll
Description
A universal quantifier, which is modeled as a partial formula.

Attributes, Associations and Generalizations

• Specializes class Formula.

• containedFormula: Formula[1] specifies the formula in which the variables are de-
clared universally.

• boundVariables: Variable[1..*] links the formula to the variables it declares. At least
one variable must be specified.

208

A.5. Detailed Overview of the F-Logic Metamodel

Constraints

1. When a universal quantifier has defined a variable as one of its bound variables, then
this variable must be defined as bound to that quantifier:
self.boundVariables→forAll(v : Variable | v.isBoundToForAll=self)

11 - Formula
Description
An abstract supertype for all types of formulas in F-Logic. Not all subtypes are directly
contained into an ontology. Some of the supertypes are logical connectives and quantifiers,
so partial formulas that are used in rules and queries.

Attributes, Associations and Generalizations
No attributes, associations or generalizations.

Constraints
No constraints.

12 - FunctionalTerm
Description
A functional term, which is a term that has other terms as arguments. A constant in F-Logic
is specified as a functional term without arguments, so is represented as a subclass.

Attributes, Associations and Generalizations

• arguments: Term[*] specifies the arguments of the functional term in a specific order.
A normal functional term must have at least one argument but as the subtypes do not
need at least 1 argument, the multiplicity is set to '*'.

• Specializes class Term.

Constraints

1. A functional term that is not a constant, must have at least one argument:
self→forAll(not oclIsTypeOf(Constant) implies self.argument→size()>0)

13 - HostObject
Description
An abstract type of all types of host objects of F-molecules and F-atoms.

Attributes, Associations and Generalizations

209

A. Appendix

No attributes, associations or generalizations.

Constraints
No constraints.

14 - Implication
Description
An implication between two formulas.

Attributes, Associations and Generalizations

• Specializes class Formula.

• antecedent: Formula[1] specifies the first argument of the implication.

• consequent: Formula[1] specifies the second argument of the implication.

Constraints

1. An implication can not combine rules or queries:
self.antecedent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query)) and
self.consequent→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

15 - InstanceOf
Description
An assertion defining that one term representing an instance, belongs to the other representing
a class. This statement is used as host object in F-molecules, or as F-atom.

Attributes, Associations and Generalizations

• instance: Term[1] specifies the term representing the instance in the statement.

• class: Term[1] specifies the term representing the class in the statement.

• Specializes class HostObject.

Constraints
No constraints.

16 - Method
Description
An abstract type for all types of methods in F-molecules and F-atoms. This concerns single-
or multi valued method applications, and single- or multi valued method signatures.

Attributes, Associations and Generalizations

210

A.5. Detailed Overview of the F-Logic Metamodel

• name: Term[1] specifies the name of the method.

• parameters: Term[*] specifies optional method parameters.

Constraints
No constraints.

17 - MethodValue
Description
An abstract supertype for the different types of method values. This concerns terms and
F-molecules.

Attributes, Associations and Generalizations
No attributes, associations or generalizations.

Constraints
No constraints.

18 - MultiValuedApplication
Description
A method application with multiple values.

Attributes, Associations and Generalizations

• value: MethodValue[1..*] specifies the values of the method application.

• Specializes class Method.

Constraints
No constraints.

19 - MultiValuedSignature
Description
A method definition with multiple values.

Attributes, Associations and Generalizations

• value: MethodValue[1] specifies the value of the method signature which is a class.

• Specializes class Method.

Constraints
No constraints.

211

A. Appendix

20 - Negation
Description
A negation of another formula.

Attributes, Associations and Generalizations

• Specializes class Formula.

• connectedFormula: Formula[1] specifies the formula of the negation.

Constraints

1. A negation can not be defined on a rule or a query:
self.connectedFormula→forAll(not oclIsTypeOf(Rule) and not oclIsTypeOf(Query))

21 - PAtom
Description
A predicate symbol followed by one or more terms.

Attributes, Associations and Generalizations

• Specializes class Formula.

• predicate: PredicateSymbol[1] specifies the predicate symbol of the P-atom.

• parameters: Term[*] specifies the ordered list of terms. A predicate symbol without
term is possible. When the predicate symbol is a built-in, at least one term must be
specified.

Constraints

1. If the predicate is a built-in, it must have at least one parameter:
self.predicate.oclIsTypeOf(BuiltIn) implies self.parameters→size()>0

22 - PredicateSymbol
Description
A predicate symbol of a P-atom.

Attributes, Associations and Generalizations

• name: String[1] specifies the name of the predicate.

212

A.5. Detailed Overview of the F-Logic Metamodel

Constraints
No constraints.

23 - Query
Description
A query, asked on an F-Logic program of rules and facts.

Attributes, Associations and Generalizations

• name: String[0..1] defines the name of a query. A name for a query is not mandatory
in F-Logic.

• Specializes class Formula.

• containedFormula: Formula[1] defines the formula of the query.

Constraints

1. A query is an implication formula with empty head, and can have a universal quantifier
in front:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(Implication) implies
self.containedFormula.oclAsType(Implication).consequent→isEmpty)
and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication)
and self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).consequent→isEmpty)

2. The formula in the body of the query can be any formula except a rule or a query. The
following constraint defines this for queries without a universal quantifier:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Query)

3. A similar constraint is defined for queries with universal quantifier:
self.containedFormula.oclIsTypeOf(ForAll) implies
not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and not self.containedFormula.oclAsType(ForAll).containedFormula.
oclAsType(Implication).antecedent.oclIsTypeOf(Query)

213

A. Appendix

24 - Rule
Description
A rule consisting of a head and a body.

Attributes, Associations and Generalizations

• name: String[0..1] defines the name of a rule. A name for a rule is not mandatory in
F-Logic.

• Specializes class Formula.

• containedFormula: Formula[1] defines the formula of the rule.

Constraints

1. A rule is an implication formula and possibly has a universal quantifier in front:
(self.containedFormula.oclIsTypeOf(Implication) or
self.containedFormula.oclIsTypeOf(ForAll))
and
(self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclIsTypeOf(Implication))

2. The head of a rule is a conjunction of facts or is just one fact (F-molecule or P-atom).
The following constraint defines this for rules without a universal quantifier:
self.containedFormula.oclIsTypeOf(Implication) implies
self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction)
or self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(FMolecule)
or self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(PAtom)

3. A similar constraint is defined for rules with universal quantifier:
self.containedFormula.oclIsTypeOf(ForAll) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(FMolecule) or
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(PAtom)

4. When the head of a rule is a conjunction, the combined formulas may only be facts.
The following constraint defines this for rules without a universal quantifier:
self.containedFormula.oclIsTypeOf(Implication) implies
(self.containedFormula.oclAsType(Implication).consequent.oclIsTypeOf(Conjunction)
implies self.containedFormula.oclAsType(Implication).consequent.
oclAsType(Conjunction).connectedFormulas→forAll(oclIsTypeOf(FMolecule) or
oclIsTypeOf(PAtom)))

214

A.5. Detailed Overview of the F-Logic Metamodel

5. A similar constraint is defined for rules with universal quantifier:
self.containedFormula.oclIsTypeOf(ForAll) implies
(self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclIsTypeOf(Conjunction) implies
self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
consequent.oclAsType(Conjunction).connectedFormulas→forAll(
oclIsTypeOf(FMolecule) or oclIsTypeOf(PAtom)))

6. The body of a rule can be any formula except a rule or a query. The following constraint
defines this for rules without a universal quantifier:
self.containedFormula.oclIsTypeOf(Implication) implies
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Rule)
and
not self.containedFormula.oclAsType(Implication).antecedent.oclIsTypeOf(Query)

7. A similar constraint is defined for rules with universal quantifier:
self.containedFormula.oclIsTypeOf(ForAll) implies
not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Rule) and
not self.containedFormula.oclAsType(ForAll).containedFormula.oclAsType(Implication).
antecedent.oclIsTypeOf(Query)

25 - SingleValuedApplication
Description
A method application with one value.

Attributes, Associations and Generalizations

• value: MethodValue[1] specifies the value of the method instance.

• Specializes class Method.

Constraints
No constraints.

26 - SingleValuedSignature
Description
A method definition with one value.

Attributes, Associations and Generalizations

• value: MethodValue[1] specifies the value of the method signature.

215

A. Appendix

• Specializes class Method.

Constraints
No constraints.

27 - SubClassOf
Description
An assertion defining that one class is a subclass of another one. The subclass-statement is
used as host object in F-molecules, or as F-atom.

Attributes, Associations and Generalizations

• subclass: Term[1] specifies the term representing the subclass in the statement.

• superclass: Term[1] specifies the term representing the superclass in the statement.

• Specializes class HostObject.

Constraints
No constraints.

28 - Term
Description
An abstract supertype for the different types of terms in F-Logic. This concerns variables,
functional terms and constants.

Attributes, Associations and Generalizations

• name: String[1] specifies the name of the term.

• Specializes class HostObject.

• Specializes class MethodValue.

Constraints
No constraints.

29 - Variable
Description
A variable term. To distinguish between constants and variables, every variable has to be
bound to a logical quantifier.

Attributes, Associations and Generalizations

216

A.5. Detailed Overview of the F-Logic Metamodel

• isBoundToExists: Exists[0..1] specifies the existential quantifier that declares the vari-
able.

• isBoundToForAll: ForAll[0..1] specifies the universal quantifier that declares the vari-
able.

• Specializes class Term.

Constraints

1. A variable must be bound to exactly one universal quantifier or existential quantifier:
(self.isBoundToExists=1 or self.isBoundToForAll=1)
and
(self.isBoundToForAll=1 implies self.isBoundToForExists=0)

2. When a variable is bound to a quantifier in one direction, then this quantifier must have
the variable defined as one of its bound variables in the other direction:
(self.isBoundToExists=1 implies
self.isBoundToExists.boundVariables→exists(v: Variable | v = self)) and
(self.isBoundToForAll=1 implies
self.isBoundToForAll.boundVariables→exists(v: Variable | v = self))

217

A. Appendix

A.6. Mappings between F-Logic and the F-Logic Metamodel

We define the mapping function φ from F-Logic to its MOF-metamodel in the following table.
The table shows how φ maps each F-Logic element or partial element to an element of the
metamodel with specific values for attributes and associations. We partly rely on OCL in
presenting the mapping function, and we indent attributes, below the element to which they
belong. From φ, the inverse mapping from the metamodel to F-Logic can be derived directly.
We use the following notations:

• c represents a constant;

• v, v1, ..., vn represent variables;

• f represents a function symbol;

• p represents a predicate symbol;

• b represents a built-in predicate;

• s represents a string;

• t, t1, ..., tn represent terms in general (standing for one of the specific types of terms in
F-Logic);

• d, d1, ..., dn represent methods (standing for one of the specific types of methods in
F-Logic);

• a, a1, ..., an represent method values (standing for one of the specific method values in
F-Logic);

• h represents a host object for an F-molecule or F-atom (standing for one of the specific
types of host objects);

• o1, ..., on represent ontology formulas (standing for one of the specific formulas that can
be directly in an F-Logic ontology: Query, Rule, P-atom, F-molecule, F-atom);

• m, m1, ..., mn represent formulas (standing for one of the specific types of formulas,
including ontology formulas, connective formulas and quantifier formulas).

When a partial construct can be of different types and the mapping function values of these
types are defined elsewhere in the table, we take the simplest of them for the sake of clarity in
introducing the main construct.

218

A.6. Mappings between F-Logic and the F-Logic Metamodel

F-Logic Metamodel = φ(F-Logic)
F-Logic ontologies
o1. ... on FLogicOntology

ontologyFormulas = Set{φ(o1), ..., φ(on) }
Rules and queries
m1 ← m2 Rule

containedFormula = Implication
antecedent = φ(m2)
consequent = φ(m1)

RULE s : m1 ← m2 Rule
name = s
containedFormula = Implication
antecedent = φ(m2)
consequent = φ(m1)

FORALL v1 ... vn m1 ← m2 Rule
containedFormula = ForAll
containedFormula = Implication
antecedent = φ(m2)
consequent = φ(m1)

boundVariables = Set{
Variable
name = v1
isBoundToForAll = self.containedFormula

...
Variable
name = vn
isBoundToForAll = self.containedFormula

}
RULE s : Rule
FORALL v1 ... vn m1 ← m2 name = s

containedFormula = ForAll
containedFormula = Implication
antecedent = φ(m2)
consequent = φ(m1)

boundVariables = Set{
Variable
name = v1
isBoundToForAll = self.containedFormula

...
Variable
name = vn
isBoundToForAll = self.containedFormula

}
219

A. Appendix

F-Logic Metamodel = φ(F-Logic)
← m Query

containedFormula = Implication
antecedent = φ(m)
consequent = null

QUERY s : ← m Query
name = s
containedFormula = Implication
antecedent = φ(m)
consequent = null

FORALL v1 ... vn ← m Query
containedFormula = ForAll
containedFormula = Implication
antecedent = φ(m)
consequent = null

boundVariables = Set{
Variable
name = v1
isBoundToForAll = self.containedFormula

...
Variable
name = vn
isBoundToForAll = self.containedFormula

}
QUERY s : Query
FORALL v1 ... vn ← m name = s

containedFormula = ForAll
containedFormula = Implication
antecedent = φ(m)
consequent = null

boundVariables = Set{
Variable
name = v1
isBoundToForAll = self.containedFormula

...
Variable
name = vn
isBoundToForAll = self.containedFormula

}

220

A.6. Mappings between F-Logic and the F-Logic Metamodel

F-Logic Metamodel = φ(F-Logic)
Logical connectives
m1 AND m2 AND ... AND mn Conjunction

connectedFormulas = Set{
φ(m1), φ(m2), ..., φ(mn)}

m1 OR m2 OR ... OR mn Disjunction
connectedFormulas = Set{
φ(m1), φ(m2), ..., φ(mn)}

m1 → m2 Implication
antecedent = φ(m1)
consequent = φ(m2)

m1 ← m2 Implication
antecedent = φ(m2)
consequent = φ(m1)

m1 ↔ m2 Equivalence
connectedFormulas = Set{φ(m1), φ(m2)}

NOT m Negation
connectedFormula = φ(m)

Logical quantifiers
EXISTS v1 ... vn m Exists

containedFormula = φ(m)
boundVariables = Set{
Variable
name = v1
isBoundToExists = self

...
Variable
name = vn
isBoundToExists = self

}
FORALL v1 ... vn m ForAll

containedFormula = φ(m)
boundVariables = Set{
Variable
name = v1
isBoundToForAll = self

...
Variable
name = vn
isBoundToForAll = self

}

221

A. Appendix

F-Logic Metamodel = φ(F-Logic)
F-atoms
t1:t2 FAtom

host = InstanceOf
instance = φ(t1)
class = φ(t2)

t1::t2 FAtom
host = SubClassOf
subclass = φ(t1)
superclass = φ(t2)

t1[t2 ⇒ t3] FAtom
host = φ(t1)
methods = φ(t2 ⇒ t3)

t1[t2 ⇒⇒ t3] FAtom
host = φ(t1)
methods = φ(t2 ⇒⇒ t3)

t1[t2 → a1] FAtom
host = φ(t1)
methods = φ(t2 → a1)

t1[t2 � {t3, t4, ..., tn}] FAtom
host = φ(t1)
methods = φ(t2 � {t3, t4, ..., tn})

F-molecules
h[d1; ...; dn] FMolecule

host = φ(h)
methods = Set {φ(d1), ..., φ(dn)}

Methods
t1 ⇒ a1 SingleValuedMethodSignature

name = φ(t1)
value = φ(a1)

t1 ⇒⇒ a1 MultiValuedSignature
name = φ(t1)
value = φ(a1)

t1 → a1 SingleValuedApplication
name = φ(t1)
value = φ(a1)

t1 � {a1, a2, ..., an} MultiValuedApplication
name = φ(t1)
value = Set{φ(a1), φ(a2), ..., φ(an)}

222

A.6. Mappings between F-Logic and the F-Logic Metamodel

F-Logic Metamodel = φ(F-Logic)
t1@(t2, ..., tn)⇒ a1 SingleValuedMethodSignature

name = φ(t1)
parameters = Set{φ(t2), ..., φ(tn)}
value = φ(a1)

t1@(t2, ..., tn)⇒⇒ a1 MultiValuedSignature
name = φ(t1)
parameters = Set{φ(t2), ..., φ(tn)}
value = φ(a1)

t1@(t2, ..., tn)→ a1 SingleValuedApplication
name = φ(t1)
parameters = Set{φ(t2), ..., φ(tn)}
value = φ(a1)

t1@(t2, ..., tn)� {a1, a2, ..., an} MultiValuedApplication
name = φ(t1)
parameters = Set{φ(t2), ..., φ(tn)}
value = Set{φ(a1), φ(a2), ..., φ(an)}

P-atoms
p PAtom

predicate = PredicateSymbol
name = p

p(t1, ..., tn) PAtom
predicate = PredicateSymbol
name = p

parameters = OrderedSet{φ(t1), ..., φ(tn)}
Built-ins
b(t1, ..., tn) PAtom

predicate = BuiltIn
name = p

parameters = OrderedSet{φ(t1), ..., φ(tn)}
Terms
c Constant

name = c
f (t1, ..., tn) FunctionalTerm

name = f
arguments = OrderedSet{φ(t1), ..., φ(tn)}

v Variable
name = v

223

A. Appendix

A.7. Detailed Overview of the OWL Ontology Mappings
Metamodel Extension

Next to introducing the OWL ontology mapping extension for the OWL metamodel in
Chapter 7 starting on page 91, this appendix presents an alphabetically ordered overview of
the different metaclasses of the metamodel extension according to the following specification
conventions as also used in the UML specifications:

Description
An informal description of the metaclass.

Attributes, Associations and Generalizations
All attributes of the metaclass, ends of associations that start from the considered class, as
well as generalizations of the class are listed together with a short comment.

Constraints
Constraints are expressed in OCL. They define invariants for the metaclass that must be
fulfilled by all instances of that metaclass. The context of a constraint is always the considered
metaclass.

1 - Containment
Description
A semantic relation to define that the source element is contained in the target element.

Attributes, Associations and Generalizations

• direction: String[1] specifies in which direction the containment is defined between the
mappable elements. Possible values for this attribute are 'sound' and 'complete'.

• Specializes class SemanticRelation.

Constraints
No constraints.

2 - Equivalence
Description
A semantic relation to define that two mappable elements are equivalent.

Attributes, Associations and Generalizations

• Specializes class SemanticRelation.

224

A.7. Detailed Overview of the OWL Ontology Mappings Metamodel Extension

Constraints
No constraints.

3 - MappableElement
Description
An abstract supertype for all types of mappable elements, which are elements that are mapped
to each other in mapping assertions.

Attributes, Associations and Generalizations
No attributes, associations or generalizatons.

Constraints
No constraints.

4 - Mapping
Description
A set of mapping assertions between two ontologies.

Attributes, Associations and Generalizations

• domainAssumption: String[1] specifies the relationship between the connected do-
mains. Possible values are 'overlap', 'soundContainment', 'completeContainment' and
'equivalence'.

• inconsistencyPropagation: Boolean[1] specifies whether inconsistencies are preserved
across mapped ontologies.

• uniqueNameAssumption: Boolean[1] specifies whether names in the mappings are
unique.

• URI: String[0..1] specifies an identification for the mapping. To assure a general meta-
model, we do not define the URI to be mandatory.

• sourceOntology: Ontology[1] links the mapping to its source ontology.

• targetOntology: Ontology[1] links the mapping to its target ontology.

• elementMappings: MappingAssertion[*] links a mapping to its mapping assertions.

Constraints
No constraints.

5 - MappingAssertion
Description

225

A. Appendix

A concrete mapping between two mappable elements.

Attributes, Associations and Generalizations

• sourceElement: MappableElement[1] links the mapping assertion to its source ele-
ment.

• targetElement: MappableElement[1] links the mapping assertion to its target element.

• relationType: SemanticRelation[1] specifies the type of mapping relation between the
two elements.

Constraints
No constraints.

6 - OntologyQuery
Description
A query is a more expressive mappable element.

Attributes, Associations and Generalizations

• Specializes class MappableElement,

• queryAtoms: Atom[1..*] links the query to its atoms. A query contains at least one
atom.

• distinguishedVariables: Variable[*] specifies the variables that are returned by the
query.

Constraints

1. A variable can only be a distinguished variable of a query if it is a term of one of the
atoms of the query:
self.distinguishedVariables→forAll(v: Variable |
self.queryAtoms→exists(a: Atom | a.atomArguments→exists(v | true)))

7 - Overlap
Description
A semantic relation to define overlap between two mappable elements.

Attributes, Associations and Generalizations

• Specializes class SemanticRelation.

226

A.7. Detailed Overview of the OWL Ontology Mappings Metamodel Extension

Constraints
No constraints.

8 - OWLEntity (augmented definition of the metaclass in the OWL meta-
model)
Attributes, Associations and Generalizations

• Specializes class MappableElement.

9 - SemanticRelation
Description
An abstract supertype of all types of semantic relations in mappings.

Attributes, Associations and Generalizations

• negated: Boolean[1] specifies the negated version of the different semantic relations of
mappings. When no value for this attribute is specified, the default value is 'false'.

• interpretation: String[1] specifies whether the mapping assertion is to be interpreted
intentionally or extensionally. Possible values are 'intensional' and 'extensional'. By
default, the attribute value is set to 'intensional'.

Constraints
No constraints.

227

A. Appendix

A.8. Mappings between C-OWL and the Ontology Mapping
Metamodel

As a consistent extension of Appendices A.2 stand A.4, the table below defines the values of
the mapping function ρ for OWL ontology mapping elements in the language C-OWL. The
function ρmaps the C-OWL elements to elements of the metamodel. Each C-OWL element is
presented and is followed by its corresponding metamodel element, its attributes and associa-
tions. In doing so, we partially fall back on the OCL syntax. Attributes are indented, below the
element to which they belong. From the function ρ, the inverse mapping from the metamodel
to C-OWL can be derived directly. The following notations are used in the definition of the
mapping function:

• o1 and o2 represent an ontology;

• m1, ..., mn represent a mapping assertion;

• e1, ..., e2 represent a mappable element.

228

A.8. Mappings between C-OWL and the Ontology Mapping Metamodel

C-OWL Metamodel = ρ(C-OWL)
Mappings
(o1, o2, m1 ... mn) Mapping

domainAssumption = 'everlap'
inconsistencyPropagation = false
uniqueNameAssumption = false
sourceOntology = ρ(o1)
targetOntology = ρ(o2)
elementMappings = Set{ρ(m1), ..., ρ(mn)}

Mapping assertions

e1
�−→ e2 MappingAssertion

relationType = Containment
direction = 'sound'
negated = false
interpretation = 'intensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1

−→ e2 MappingAssertion

relationType = Containment
direction = 'complete'
negated = false
interpretation = 'intensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1
≡−→ e2 MappingAssertion

relationType = Equivalence
negated = false
interpretation = 'intensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1
∗−→ e2 MappingAssertion

relationType = Overlap
negated = false
interpretation = 'intensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1
⊥−→ e2 MappingAssertion

relationType = Overlap
negated = true
interpretation = 'intensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

229

A. Appendix

A.9. Mappings between DL-Safe Mappings and the Ontology
Mapping Metamodel

As a consistent extension of Appendices A.2 stand A.4, the table below defines the values
of the mapping function ρ for OWL ontology mapping elements in the language DL-Safe
Mappings. The function ρ maps the elements to elements of the metamodel. Each element
of DL-Safe Mappings is presented and is followed by its corresponding metamodel element,
its attributes and associations. In doing so, we partially fall back on the OCL syntax. At-
tributes are indented, below the element to which they belong. From the function ρ, the inverse
mapping from the metamodel to DL-Safe Mappings can be derived directly. The following
notations are used in the definition of the mapping function:

• o1 and o2 represent an ontology;

• m1, ..., mn represent a mapping assertion;

• e1, ..., e2 represent a mappable element;

• a1, ..., an represent an atom;

• s1, ..., sn, t1, ..., tn represent a string.

230

A.9. Mappings between DL-Safe Mappings and the Ontology Mapping Metamodel

DL Safe Mappings Metamodel = ρ(DL-Safe Mappings)
Mappings
(o1, o2, m1 ... mn) Mapping

domainAssumption = 'equivalence'
inconsistencyPropagation = true
uniqueNameAssumption = false
sourceOntology = ρ(o1)
targetOntology = ρ(o2)
elementMappings = Set{ρ(m1), ..., ρ(mn)}

Mapping assertions
e1 � e2 MappingAssertion

relationType = Containment
direction = 'sound'
negated = false
interpretation = 'extensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1
 e2 MappingAssertion
relationType = Containment
direction = 'complete'
negated = false
interpretation = 'extensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

e1 ≡ e2 MappingAssertion
relationType = Equivalence
negated = false
interpretation = 'extensional'

sourceElement = ρ(e1)
targetElement = ρ(e2)

Queries
Q({s1, ..., sn}, {t1, ..., tn}) = a1 ∧ ... ∧ an OntologyQuery

queryAtoms = Set{ρ(a1), ..., ρ(an)})
distinguishedVariables = Set{
Variable
name = s1

...
Variable
name = sn

}

231

A. Appendix

A.10. Mappings between the Metamodel and the UML Profile

In the table below we define the correspondences between the metamodel for OWL, SWRL
and OWL mappings which we defined in Chapters 4 and 7 on the one hand, and the profile we
defined in Chapter 8 on the other hand.
The first two columns represent the metamodel classes and attributes (including associa-

tions). In doing so, a meta attribute always belongs to the metaclass defined just before the
attribute. The third and last column represents the value for the metamodel elements under the
mapping function ψ, which maps them to elements of the UML profile. The mapping function
value for an attribute is added to the value for the metaclass. Whereas Chapter 8 presented
the profile with its visual notations, the last column in this table presents the profile using
the UML metamodel elements and the additional stereotypes and tags we defined on it in the
profile. Names of classes in the UML metamodel are written upper case, whereas attributes or
associations in the UML metamodel are written lower case. Additionally, UML metamodel
attributes are indented below the UML metamodel class to which they belong. When a stereo-
type is written with a UML element name, this means our profile applies this stereotype to
that specific UML element.
A metaclass name written in italics denotes an abstract class of which we map an attribute

which is applicable to all the subclasses. In this way, we do not need to define the function
value of this attribute for each subclass. Naturally, no function value is defined for the abstract
class itself.
Although the table only introduces ψ, the mapping in the other direction from the profile to

the metamodel can directly be derived from ψ.
For the elements for which our profile provides different notations, the function denotes

which one is the default notation. Consequently, this means that when we would map a UML
diagram that uses the alternative notations to the metamodel and back, we would get a slightly
different UML diagram. The difference would be that all constructs that were depicted using
the alternative notation before, are depicted in the default notation after the round-trip map-
ping. Otherwise, round-trip mapping under the function ψ always results in the same diagram.
Our profile provides a compact notation for class descriptions. This alternative notation,

as well as notations with icons, are not included in the mapping function ψ in this table. For
the alternative notation for restrictions on data properties, namely as class attributes, instead
of applying the mapping function to all different combinations, we only include it for the
construct DataHasValue. A similar approach we took for the different predicate symbols
in rule atoms with variables. Except for the built-ins which are new in the rule part, the
mapping function values for all predicate symbols are given earlier in the table. As the value
for variables is given explicitly, this can be combined with the values for the different predicate
symbols to obtain all different combinations of predicate symbols with terms.
In the table, we follow the structure of the metamodel-chapters, and sometimes rely on the

OCL syntax to define elements.

232

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

Ontologies
Ontology Package <<Ontology>>

URI = String s name = s
importedOntology = o Dependency <<OWLImport>>

supplier ψ(o)
ontologyAnnotation = a ψ(a)

ontologyAxiom = a PackageableElement ψ(a)
Annotations
Annotation Comment <<ExplicitAnnotation>>

annotationValue = body = ψ(c)
Constant c
URI = String s Tag type = s

Label Comment <<Label>>
Comment Comment <<Comment>>
Constant

languageTag = String s1 s2[@s1]
value = String s2
URI = String s1 s2 'ˆˆ' s1
value = String s2

Entities
OWLEntity

URI = String s name = s
Datatype (default) Class <<Datatype>>

<<Primitive>>
(alternative) DataType

OWLClass Class <<OWLClass>>
ObjectProperty Class <<ObjectProperty>>
DataProperty Class <<DataProperty>>
Individual InstanceSpecification
Declaration ψ(e)

entity = OWLEntity e
EntityAnnotation ψ(e)

entity = ψ(a)
OWLEntity e
entityAnnotation =
Annotation a

233

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

Data ranges
DataComplementOf ψ(d) <<DataComplementOf>>

dataRange =
DataRange d

DatatypeRestriction ψ(d)
dataRange = attribute 1 = Property
DataRange d name = 'datatypeFacet'
datatypeFacet = String s defaultValue = s
restrictionValue = attribute 2 = Property
Constant c name = 'restrictionValue'

defaultValue = ψ(c)
DataOneOf Class

constants = Dependency
Constant Set { c1, ..., cn} supplier = Connector

<<DataOneOf>>
Dependency
supplier =
InstanceSpecification c1

...
Dependency
supplier =
InstanceSpecification cn

Class descriptions
ObjectUnionOf Class

classes = Dependency
Description Set supplier = Connector
{d1, d2, ..., dn} <<ObjectUnionOf>>

Dependency
supplier = ψ(d1)

Dependency
supplier = ψ(d2)

...
Dependency
supplier = ψ(dn)

234

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

ObjectIntersectionOf Class
classes = Dependency
Description Set supplier = Connector
{d1, d2, ..., dn} <<ObjectIntersectionOf>>

Dependency
supplier = ψ(d1)

Dependency
supplier = ψ(d2)

...
Dependency
supplier = ψ(dn)

ObjectComplementOf Class
class = Dependency
Description d <<ObjectComplementOf>>

supplier = ψ(d)
ObjectOneOf Class

individuals = Dependency
Individual Set {i1, ..., in} supplier = Connector

<<ObjectOneOf>>
Dependency
supplier = ψ(i1)

...
Dependency
Supplier = ψ(in)

ObjectAllValuesFrom Class
class = Association
Description d <<ObjectAllValuesFrom>>
property = name = o.entityURI.name
ObjectProperty- memberEnd = ψ(d)
Expression o

ObjectSomeValuesFrom Class
class = Association
Description d <<ObjectSomeValuesFrom>>
property = name = o.entityURI.name
ObjectProperty- memberEnd = ψ(d)
Expression o

235

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

ObjectHasValue Class
value = Association
Individual i <<ObjectSomeValuesFrom>>
property = name = o.entityURI.name
ObjectProperty- memberEnd = Class
Expression o Dependency

<<ObjectOneOf>>
memberEnd = ψ(i)

ObjectExistsSelf Class
property = Association
ObjectProperty- <<ObjectExistsSelf>>
Expression o name = o.entityURI.name

memberEnd = self
ObjectExactCardinality Class

cardinality = Association
Integer n <<ObjectCardinality>>
class = name =
Description d o.entityURI.name
property = lowerValue = n
ObjectProperty- upperValue = n
Expression o memberEnd = ψ(d)

ObjectMaxCardinality Class
cardinality = Integer n Association
class = Description d <<ObjectCardinality>>
property = name =
ObjectProperty- o.entityURI.name
Expression o lowerValue = 0

upperValue = n
memberEnd = ψ(d)

ObjectMinCardinality Class
cardinality = Integer n Association
class = Description d <<ObjectCardinality>>
property = name =
ObjectProperty- o.entityURI.name
Expression o lowerValue = n

upperValue = *
memberEnd = ψ(d)

236

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

ObjectExactCardinality Class
cardinality = Integer n Association
property = <<ObjectCardinality>>
ObjectPropertyExpression o name =

o.entityURI.name
lowerValue = n
upperValue = n
memberEnd = Class
<<OWLClass>>
name = owl:Thing

ObjectMaxCardinality Class
cardinality = Integer n Association
property = <<ObjectCardinality>>
ObjectPropertyExpression o name =

o.entityURI.name
lowerValue = 0
upperValue = n
memberEnd = Class
<<OWLClass>>
name = owl:Thing

ObjectMinCardinality Class
cardinality = Integer n Association
property = <<ObjectCardinality>>
ObjectPropertyExpression o name =

o.entityURI.name
lowerValue = n
upperValue = *
memberEnd = Class
<<OWLClass>>
name = owl:Thing

DataAllValuesFrom Class
range = DataRange d Association
properties = <<DataAllValuesFrom>>
DataPropertyExpression p name = p.entityURI.name

memberEnd = ψ(d)
DataSomeValuesFrom Class

range = DataRange d Association
properties = <<DataSomeValuesFrom>>
DataPropertyExpression p name = p.entityURI.name

memberEnd = ψ(d)

237

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

DataHasValue Class
property = attribute = Property
DataPropertyExpression p name = p.entityURI.name
value = Constant c defaultValue = ψ(c)

DataExactCardinality Class
cardinality = Integer n Association
range = DataRange d <<DataCardinality>>
property = name =
DataPropertyExpression p p.entityURI.name

lowerValue = n
upperValue = n
memberEnd = ψ(d)

DataMaxCardinality Class
cardinality = Integer n Association
range = DataRange d <<DataCardinality>>
property = name =
DataPropertyExpression p p.entityURI.name

lowerValue = 0
upperValue = n
memberEnd = ψ(d)

DataMinCardinality Class
cardinality = Integer n Association
range = DataRange d <<DataCardinality>>
property = name =
DataPropertyExpression p p.entityURI.name

lowerValue = n
upperValue = *
memberEnd = ψ(d)

DataExactCardinality Class
cardinality = Integer n Association
property = <<DataCardinality>>
DataPropertyExpression p name =

p.entityURI.name
lowerValue = n
upperValue = n
memberEnd = Class
<<Datatype>>
name = rdfs:Literal

238

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

DataMaxCardinality Class
cardinality = Integer n Association
property = <<DataCardinality>>
DataPropertyExpression p name =

p.entityURI.name
lowerValue = 0
upperValue = n
memberEnd = Class
<<Datatype>>
name = rdfs:Literal

DataMinCardinality Class
cardinality = Integer n Association
property = <<DataCardinality>>
DataPropertyExpression p name =

p.entityURI.name
lowerValue = n
upperValue = *
memberEnd = Class
<<Datatype>>
name = rdfs:Literal

Axioms
OWLAxiom

axiomAnnotation = a ψ(a)
Class axioms
SubClassOf (default) Dependency

<<SubClassOf>>
subClass = Description d1 client = ψ(d1)
superClass = Description d2 supplier = ψ(d2)

(alternative) Generalization
specific = ψ(d1)
general = ψ(d2)

DisjointClasses Two-way Dependency
disjointClasses = <<DisjointClasses>>
Description Set {d1, d2} client = ψ(d1)

supplier = ψ(d2)

239

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

DisjointClasses Connector <<DisjointClasses>>
disjointClasses = Dependency
Description Set {d1, d2, ..., dn} supplier = ψ(d1)

Dependency
supplier = ψ(d2)

...
Dependency
supplier = ψ(dn)

DisjointUnion ψ(c)
unionClass = OWLClass c Dependency
disjointClasses = supplier = Connector
Description Set {d1, d2, ..., dn} <<DisjointUnion>>

Dependency
supplier = ψ(d1)

Dependency
supplier = ψ(d2)

...
Dependency
supplier = ψ(dn)

EquivalentClasses (default) Two-way Dependency
equivalentClasses = <<EquivalentClasses>>
Description Set {d1, d2} client = ψ(d1)

supplier = ψ(d2)
(alternative) Two-way
Generalization
specific = ψ(d1)
general = ψ(d2)

EquivalentClasses Connector
equivalentClasses = <<EquivalentClasses>>
Description Set Dependency
{d1, d2, ..., dn} supplier = ψ(d1)

Dependency
supplier = ψ(d2)

...
Dependency
supplier = ψ(dn)

240

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

Object property axioms
SubObjectPropertyOf (default) Dependency

subProperties = <<SubObjectProperty>>
ObjectPropertyExpression o1 client = ψ(o1)
superProperty = supplier = ψ(o2)
ObjectPropertyExpression o2 (alternative) Generalization

specific = ψ(o1)
general = ψ(o2)

SubObjectPropertyOf (alternative) Generalization
subProperties = general = ψ(on+1)
ObjectProperty- specific = ψ(o1)
Expression Set {o1, ..., on} ...
superProperty = specific = ψ(on)
ObjectProperty-
Expression on+1

EquivalentObject- (default) Two-way Dependency
Properties equivalent- <<EquivalentObjectProperties>>

Properties = client = ψ(o1)
ObjectProperty- supplier = ψ(o2)
Expression Set (alternative) Two-way
{o1, o2} Generalization

specific = ψ(o1)
general = ψ(o2)

EquivalentObject- Connector
Properties equivalent- <<EquivalentObjectProperties>>

Properties = Dependency
ObjectProperty- supplier = ψ(o1)
Expression Set Dependency
{o1, o2, ..., on} supplier = ψ(o2)

...
Dependency
supplier = ψ(on)

241

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

DisjointObjectProperties Two-way Dependency
disjointProperties = <<DisjointObjectProperties>>
ObjectProperty- client = ψ(o1)
Expression Set supplier = ψ(o2)
{o1, o2}

DisjointObjectProperties Connector
disjointProperties = <<DisjointObjectProperties>>
ObjectProperty- Dependency
Expression Set supplier = ψ(o1)
{o1, o2, ..., on} Dependency

supplier = ψ(o2)
...
Dependency
supplier = ψ(on)

InverseObjectProperties Two-way Dependency
inverseProperties = <<InverseObjectProperties>>
ObjectProperty- client = ψ(o1)
Expression Set {o1, o2} supplier = ψ(o2)

ObjectPropertyDomain (default) Class
property = Object- <<ObjectProperty>>
PropertyExpression o name = o.entityURI.name
domain = Description d1 Dependency

<<ObjectPropertyDomain>>
supplier = ψ(d1)

Dependency
ObjectPropertyRange <<ObjectPropertyRange>>

property = Object- supplier = ψ(d2)
PropertyExpression o (alternative) ψ(d1)
range = Description d2 Association

name = o.entityURI.name
memberEnd = ψ(d2)

FunctionalObjectProperty ψ(o) <<Functional>>
property = Object-
PropertyExpression o

InverseFunctional- ψ(o) <<InverseFunctional>>
ObjectProperty property = Object-

PropertyExpression o

242

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

TransitiveObjectProperty ψ(o) <<Transitive>>
property = Object-
PropertyExpression o

ReflexiveObjectProperty ψ(o) <<Reflexive>>
property =
ObjectProperty-
Expression o

IrreflexiveObjectProperty ψ(o) <<Irreflexive>>
property =
ObjectProperty-
Expression o

SymmetricObjectProperty ψ(o) <<Symmetric>>
property =
ObjectProperty-
Expression o

AntisymmetricObjectProperty ψ(o) <<Antisymmetric>>
property =
ObjectProperty-
Expression o

Data property axioms
SubDataPropertyOf (default) Dependency

subProperty = <<SubDataProperty>>
DataProperty- client = ψ(p1)
Expression p1 supplier = ψ(p2)
superProperty = (alternative) Generalization
DataProperty- specific = ψ(p1)
Expression p2 general = ψ(p2)

EquivalentDataProperties (default) Two-way Dependency
equivalent- <<EquivalentDataProperties>>
Properties = client = ψ(p1)
DataProperty- supplier = ψ(p2)
Expression Set (alternative) Two-way
{p1, p2} Generalization

specific = ψ(p1)
general = ψ(p2)

243

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

EquivalentDataProperties Connector
equivalentProperties = <<EquivalentDataProperties>>
DataProperty- Dependency
Expression Set supplier = ψ(p1)
{p1, p2, ..., pn} Dependency

supplier = ψ(p2)
...
Dependency
supplier = ψ(pn)

DisjointDataProperties Two-way Dependency
disjointProperties = <<DisjointDataProperties>>
DataProperty- client = ψ(p1)
Expression Set supplier = ψ(p2)
{p1, p2}

DisjointDataProperties Connector
disjointProperties = <<DisjointDataProperties>>
DataProperty- Dependency
Expression Set supplier = ψ(p1)
{p1, p2, ..., pn} Dependency

supplier = ψ(p2)
...
Dependency
supplier = ψ(pn)

FunctionalDataProperty ψ(p) <<Functional>>
property = Data-
PropertyExpression p

DataPropertyDomain (default) Class <<DataProperty>>
property = Data- name = p.entityURI.name
PropertyExpression p Dependency
domain = <<DataPropertyDomain>>
Description d1 supplier = ψ(d1)

Dependency
DataPropertyRange <<DataPropertyRange>>

property = Data- supplier = ψ(d2)
PropertyExpression p (alternative) ψ(d1)
range = DataRange d2 Association

name = p.entityURI.name
memberEnd = ψ(d2)

244

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

Facts
DifferentIndividuals Connector

differentIndividuals = <<DifferentIndividual>>
Individual Set { i1, i2} end = ψ(i1)

end = ψ(i2)
DifferentIndividuals Connector

differentIndividuals = <<DifferentIndividual>>
Individual Set Dependency
{ i1, i2, ..., in} supplier = ψ(i1)

Dependency
supplier = ψ(i2)

...
Dependency
supplier = ψ(in)

SameIndividual Connector <<SameIndividual>>
sameIndividuals = end = ψ(i1)
Individual Set { i1, i2} end = ψ(i2)

SameIndividual Connector <<SameIndividual>>
sameIndividuals = Dependency
Individual Set { i1, i2, ..., in} supplier = ψ(i1)

Dependency
supplier = ψ(i2)

...
Dependency
supplier = ψ(in)

ClassAssertion (default) InstanceSpecification
individual = Individual i name = i.entityURI.name
class = OWLClass c classifier = c.entityURI.name

(alternative) InstanceSpecification
name = i.entityURI.name
Dependency <<ClassType>>
supplier = ψ(c)

ClassAssertion InstanceSpecification
individual = Individual i name = i.entityURI.name
class = Description d Dependency <<ClassType>>

supplier = ψ(d)

245

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

ObjectProperty- ψ(i1)
Assertion Association

property = name = o.entityURI.name
ObjectPropertyExpression o memberEnd = ψ(i2)
source = Individual i1
target = Individual i2

NegativeObject- ψ(i1)
PropertyAssertion Association <<Not>>

property = name = o.entityURI.name
ObjectPropertyExpression o memberEnd = ψ(i2)
source = Individual i1
target = Individual i2

DataProperty- InstanceSpecification
Assertion name = i.entityURI.name

property = attribute = Property
DataPropertyExpression p name = p.entityURI.name
source = Individual i defaultValue = ψ(c)
target = Constant c

NegativeData- InstanceSpecification
PropertyAssertion name = i.entityURI.name

property = attribute = Property <<Not>>
DataPropertyExpression p name = p.entityURI.name
source = Individual i defaultValue = ψ(c)
targetValue = Constant c

246

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

Rules
Rule Package <<Rule>>

URI = String u Tag URI = u
ruleBody = Antecedent a PackageableElement = ψ(a)
ruleHead = Consequent c PackageableElement = ψ(c)

Antecedent ψ(a1) <<Precondition>>
bodyAtoms = ...
Atom Set = {a1, ..., an} ψ(an) <<Precondition>>

Consequent ψ(a1) <<Postcondition>>
headAtoms = ...
Atom Set = {a1, ..., an} ψ(an) <<Postcondition>>

Atom InstanceSpecification <<Built-in>>
atomArguments = name = u
OrderedSet {t1, ..., tn} Association
atomName = BuiltIn p name = '1'
URI = String u supplier = ψ(t1)

...
Association
name = 'n'
supplier = ψ(tn)

Terms
Variable InstanceSpecification <<Variable>>

name = String s name = s

247

A. Appendix

Meta class Meta attribute Profile construct =
ψ (Meta element)

Mappings
Mapping Class <<MappingDefinition>>

domainAssumption = attribute = Property
String s name = 'domainAssumption'

defaultValue = s
inconsistencyPropagation = attribute = Property
Boolean b1 name =

'inconsistencyPropagation'
defaultValue = b1

uniqueNameAssumption = attribute = Property
Boolean b2 name =

'uniqueNameAssumption'
defaultValue = b2

URI = String u name = u
sourceOntology = Dependency
Ontology o1 <<SourceOntology>>

supplier = ψ(o1)
targetOntology = Dependency
Ontology o2 <<TargetOntology>>

supplier = ψ(o2)
elementMappings = Dependency <<Mapping>>
MappingAssertion Set = supplier = ψ(m1)
{m1, ..., mn} ...

Dependency <<Mapping>>
supplier = ψ(mn)

MappingAssertion r-Iconed Dependency
relationType = client = ψ(e1)
SemanticRelation r supplier = ψ(e2)
sourceElement =
MappableElement e1
targetElement =
MappableElement e2

248

A.10. Mappings between the Metamodel and the UML Profile

Meta class Meta attribute Profile construct =
ψ (Meta element)

Queries
OntologyQuery (when belonging to source ontology)

Package <<SourceQuery>>
(when belonging to target ontology)
Package <<TargetQuery>>

queryAtoms = Atom Set PackageableElement ψ(a1)
{a1, ..., an} ...

PackageableElement ψ(an)
distinguishedVariables = PackageableElement ψ(v1)
Variable Set {v1, ..., vn} <<Distinguished>>

...
PackageableElement ψ(vn)
<<Distinguished>>

249

A. Appendix

A.11. Questionnaire for the Summative Evaluation

A.11.1. A - Task Observation

A-1. Which editor did you use during the experiment?

Protégé OntoModel

A-2. How would you rate your previous experience with the editor used in the test?

beginner moderate expert NA/DK

A-3. How would you rate your previous experience in ontology engineering?

beginner moderate expert NA/DK

A-4. How would you rate your previous experience in modeling with UML?

beginner moderate expert NA/DK

A-5. How would you rate your previous experience in modeling in general?

beginner moderate expert NA/DK

A-6. If applicable, which modeling approaches did you use already before the experi-
ment?

Protégé: yes / no
OntoModel: yes / no
Topbraid: yes / no
Rational Software Architect: yes / no
Others (fill in):

250

A.11. Questionnaire for the Summative Evaluation

A-7. How was your understanding of the tasks in the experiment?

very bad bad good very good

A-8. How were the difficulties you needed to overcome during the experiment in order
to complete task 1?

low average high

A-9. How were the difficulties you needed to overcome during the experiment in order
to complete task 2?

low average high

A-10. How were the difficulties you needed to overcome during the experiment in or-
der to complete task 3?

low average high

A-11. How did you find the support in the two tasks provided by the experimenter?

very inadequate inadequate good very good

A.11.2. B - Usability

B-1. Did you find the approach for modeling ontologies intuitive?

not at all not really rather yes for sure

251

A. Appendix

B-2. Please indicate how difficult you found to get acquainted with the given ontol-
ogy.

very difficult rather difficult rather easy very easy

B-3. Please indicate how difficult you found to understand the different ontology con-
structs.

very difficult rather difficult rather easy very easy

B-4. Are you satisfied with the choice of specific notations for the different ontology
elements?

not at all not really rather yes for sure

B-5. What was the main obstacle that you found during the tasks?

A.11.3. C - Effectiveness and Efficiency

C-1. Did you find the approach allows to set a clear and simple sequence of steps to
accomplish each necessary action, e.g. create a new instance of a concept?

not really rather yes for sure

C-2. How was the overall effectiveness of the ontology modeling approach?

inadequate adequate excellent

252

A.11. Questionnaire for the Summative Evaluation

253

A. Appendix

A.12. Questionnaire for the Formative Evaluation

A.12.1. A - Task Observation

A-1. How was your understanding of the tasks in the experiment?

very bad bad good very good

A-2.How did you find the support in the two tasks provided by the experimenter?

very inadequate inadequate good very good

A-3. How would you rate your previous experience in ontology engineering?

beginner moderate expert NA/DK

A-4. How would you rate your previous experience in modeling with UML?

beginner moderate expert NA/DK

A-5. How would you rate your previous experience in modeling in general?

beginner moderate expert NA/DK

A-6. How would you rate your previous experience in the invoicing domain?

beginner moderate expert NA/DK

A-7. If applicable, which modeling approaches did you use already before the experi-
ment?

Protégé: yes / no
OntoModel: yes / no

254

A.12. Questionnaire for the Formative Evaluation

Topbraid: yes / no
Rational Software Architect: yes / no
Others (fill in):

A-8. How were the difficulties you needed to overcome during the experiment in order
to complete task 1?

low average high

A-9. How were the difficulties you needed to overcome during the experiment in order
to complete task 2?

low average high

A.12.2. B - Usability

B-1. Did you find the visual modeling of ontologies intuitive?

not at all not really rather yes for sure

B-2. Did you find the visual modeling of ontology mappings intuitive?

not at all not really rather yes for sure

B-3. Do you find the UML-notation suitable for modeling ontologies?

not at all not really rather yes for sure

255

A. Appendix

B-4. Please indicate how difficult you found to get acquainted with the Pharmainnova
ontology using the visual model.

very difficult rather difficult rather easy very easy

B-5. Was the visual model helpful to understand the different ontology constructs?

not at all not really rather yes for sure

B-6. Are you satisfied with the choice of specific notations (box, arrow, ...) for the
different ontology elements?

not at all not really rather yes for sure

If not, which notations do you recommend?

B-7. What was the main obstacle that you found during the tasks?

B-8. Please, briefly list any suggestion to improve usability.

256

A.12. Questionnaire for the Formative Evaluation

A.12.3. C - Effectiveness and Efficiency

C-1. Did you find the approach allows to set a clear and simple sequence of steps to
accomplish each necessary action, e.g. create a new instance of a concept?

not really rather yes for sure

C-2. How was the overall effectiveness of the approach?

inadequate adequate excellent

C-3. Please write a list with approximately the five most repeated operations during
the experiment.

257

A. Appendix

258

Bibliography

[ABdB+05] J. Angele, H. Boley, J. de Bruijn, D. Fensel, P. Hitzler, M. Kifer, R. Krumme-
nacher, H. Lausen, A. Polleres, and R. Studer. Web Rule Language (WRL).
http://www.w3.org/Submission/WRL/, September 2005. W3C Member
Submission.

[BBN99] M. Biezunski, M. Bryan, and S. Newcomb. Topic Maps: Information Technol-
ogy – Document Description and Markup Languages. ISO/IEC 13250, http:
//www.y12.doe.gov/sgml/sc34/document/0129.pdf, December 1999.

[BCH06] J. Bao, D. Caragea, and V. Honavar. Modular Ontologies - A Formal Investiga-
tion of Semantics and Expressivity. In R. Mizoguchi, Z. Shi, and F. Giunchiglia,
editors, Asian Semantic Web Conference 2006, volume 4185 of LNCS, pages
616–631. Springer, 2006.

[BCM+03] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Appli-
cations. Cambridge University Press, New York City, New York, 2003.

[Bec04] D. Beckett. RDF/XML Syntax Specification. http://www.w3.org/TR/2004/
REC-rdf-syntax-grammar-20040210/, February 2004.

[BEH+02] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A.Maedche, B. Motik, D. Oberle,
C. Schmitz, S. Staab, L. Stojanovic, N. Stojanovic, R. Studer, G. Stumme,
Y. Sure, J. Tane, R. Volz, and V. Zacharias. KAON - Towards a large scale
Semantic Web. In K. Bauknecht, A. M. Tjoa, and G. Quirchmayr, editors, E-
Commerce and Web Technologies, volume 2455 of LNCS, pages 304–313, Aix-
en-Provence, France, September 2002. Springer.

[BG04] D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. http://www.w3.org/TR/rdf-schema/, February 2004.

[BGS+03] F. Budinsky, T. J. Grose, D. Steinberg, R. Ellersick, E. Merks, and S. A. Brodsky.
Eclipse Modeling Framework: A Developer’s Guide. Addison Wesley Profes-
sional, 2003.

[BGSSH06] S. Brockmans, A. Geyer-Schulz, R. Studer, and P. Hitzler. Visual Ontology
Modeling for Electronic Markets. In T. Dreier, R. Studer, and C. Weinhardt,

259

Bibliography

editors, Information Management and Market Engineering, pages 85–99, Karl-
sruhe, Germany, September 2006. Universitätsverlag Karlsruhe.

[BGvH+03] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and H. Stuckenschmidt.
C-OWL: Contextualizing Ontologies. In D. Fensel, K. Sycara, and J. Mylopou-
los, editors, The Semantic Web - ISWC 2003, volume 2870 of LNCS, pages 164–
179. Springer, October 2003.

[BHGS01] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OilEd: a Reason-able On-
tology Editor for the Semantic Web. In F. Baader, editor, Proceedings of KI2001,
volume 2174 of LNCS, pages 396–408, Vienna, September 2001. Springer.

[BHHS06] S. Brockmans, P. Haase, P. Hitzler, and R. Studer. A Metamodel and UML
Profile for Rule-extended OWL DL Ontologies. In Y. Sure and J. Domingue,
editors, The Semantic Web: Research and Applications, volume 4011 of LNCS,
pages 303–316, Budva, Montenegro, June 2006. Springer.

[BHS06a] S. Brockmans, P. Haase, and H. Stuckenschmidt. Formalism-Independent Spec-
ification of Ontology Mappings - A Metamodeling Approach. In R. Meersman
and Z. Tari, editors, OTM 2006 Conferences, volume 4275 of LNCS, pages 901–
908, Montpellier, France, October 2006. Springer.

[BHS06b] S. Brockmans, P. Haase, and R. Studer. A MOF-based Metamodel and UML
Syntax for Networked Ontologies. In International Semantic Web Conference
2006 Workshop Proceedings, Athens, Georgia, November 2006.

[BKK+01] K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski,
and M. Aronson. Extending UML to Support Ontology Engineering for the
Semantic Web. In M. Gogolla and C. Kobryn, editors, UML 2001 - The Unified
Modeling Language. Modeling Languages, Concepts, and Tools, volume 2185
of LNCS, pages 342–260, Toronto, Canada, October 2001. Springer.

[BKK+02] K. Baclawski, M. M. Kokar, P.A. Kogut, L. Hart, J. Smith, J. Letkowski, and
P. Emery. Extending the Unified Modeling Language for Ontology Develop-
ment. Software and Systems Modeling, 1(2):142–156, 2002.

[BMW+07] J.-S. Brunner, L. Ma, C. Wang, L. Zhang, D. C. Wolfson, Y. Pan, and K. Srinivas.
Explorations in the Use of Semantic Web Technologies for Product Information
Management. In P. Patel-Schneider and P. Shenoy, editors, Proceedings of the
Sixteenth International World Wide Web Conference (WWW 2007), Banff, Al-
berta, Canada, May 2007. Association for Computing Machinery (ACM).

[BPSM+06] T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible
Markup Language (XML) 1.0. http://www.w3.org/TR/REC-xml/, Septem-
ber 2006.

260

Bibliography

[Bra79] R.J. Brachman. On the Epistemological Status of Semantic Nets. In N.V. Find-
ler, editor, Associative Networks: The Representation and Use of Knowledge by
Computers, pages 3–50, New York, June 1979.

[BS03] A. Borgida and L. Serafini. Distributed Description Logics: Assimilating Infor-
mation from Peer Sources. Journal of Data Semantics, 1:153–184, 2003.

[BVEL04] S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual Modeling of OWL
DL Ontologies using UML. In F. van Harmelen, S. A. McIlraith, and D. Plex-
ousakis, editors, The Semantic Web - ISWC 2004, volume 3298 of LNCS, pages
198–213, Hiroshima, Japan, November 2004. Springer.

[CDL01] D. Calvanese, G. De Giacomo, and M. Lenzerini. A Framework for Ontology
Integration. In I. Cruz, S. Decker, J. Euzenat, and D. McGuinness, editors, Pro-
ceedings of the Semantic Web Working Symposium, pages 303–316, Stanford,
CA, July 2001.

[CDL02] D. Calvanese, G. De Giacomo, and M. Lenzerini. Description Logics for In-
formation Integration. In A. Kakas and F. Sadri, editors, Computational Logic:
Logic Programming and Beyond, volume 2408 of LNCS, pages 41–60. Springer,
July 2002.

[Che76] P. P. Chen. The Entity-Relationship Model - Toward a Unified View of Data.
ACM Transactions on Database Systems, 1(1):9–36, 1976.

[CP99] S. Cranefield and M. Purvis. UML as an Ontology Modelling Language. In
Intelligent Information Integration, volume 23 of CEUR Workshop Proceedings,
Stockholm, Sweden, July 1999.

[CPL+05] D. K. W. Chiu, J. K. M. Poon, W. C. Lam, C. Y. Tse, W. H. T. Sui, and W. S.
Poon. How Ontologies can Help in an E-Marketplace. In Proceedings of the
13th European Conference on Information Systems, Information Systems in a
Rapidly Changing Economy, ECIS 2005, Regensburg, Germany, May 2005.

[CRH+06] R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall.
The Object Management Group Ontology Definition Metamodel. In C. Calero,
F. Ruiz, and M. Piattini, editors, Ontologies for Software Engineering and Tech-
nology, pages 217–248. Springer, 2006.

[Del06] H. Delugach. Information technology - Common Logic (CL) - A framework
for a family of logic-based languages. ISO/IEC FDIS 24707, Internet:http:
//cl.tamu.edu/docs/cl/24707-31-Dec-2006.pdf, December 2006.

261

Bibliography

[DMB+06] M. Dzbor, E. Motta, C. Buil, J. Gomez, O. Görlitz, and H. Lewen. Develop-
ing ontologies in OWL: An observational study. In B. Cuenca Grau, P. Hitzler,
C. Shankey, and E. Wallace, editors, Proceedings of OWL: Experiences and Di-
rections 2006, volume 216 of CEUR Workshop Proceedings, Athens, Georgia,
November 2006.

[dSM06] M. d’Aquin, M. Sabou, and E. Motta. Modularization: a Key for the Dynamic
Selection of Relevant Knowledge Components. In Workshop on Modular On-
tologies, Athens, Georgia, November 2006.

[DST03] DSTC. Ontology Definition MetaModel Initial Submission. http://www.omg.
org/docs/ad/03-08-01.pdf, August 2003.

[FHK+97] J. Frohn, R. Himmeröder, P.-T. Kandzia, G. Lausen, and C. Schlepphorst.
FLORID: A Prototype for F-Logic. In W. A. Gray and P. Larson, editors, Pro-
ceedings of the Thirteenth International Conference on Data Engineering, page
583, Birmingham UK, April 1997. IEEE Computer Society.

[Fow03] M. Fowler. UML Distilled: A Brief Guide to the Standard Object Modeling Lan-
guage. Addison-Wesley Longman Publishing Co., Inc., Boston, Massachusetts,
2003.

[Fra03] D. S. Frankel. Model Driven Architecture. Wiley Publishing, Inc., Indianapolis,
Indiana, 2003.

[FW05] C. Fillies and F. Weichhardt. Semantically correct Visio Drawings. In A. Gmez
Prez, editor, Proceedings of the 2nd European Semantic Web Conference, vol-
ume 3532 of LNCS, Heraklion, Crete, May 2005. Springer.

[Gai91] B. R. Gaines. An Interactive Visual Language for Term Subsumption Languages.
In J. Mylopoulos and R. Reiter, editors, Proceedings of the 12th International
Joint Conference on Artificial Intelligence, pages 817–823, Sydney, Australia,
August 1991. Morgan Kaufmann.

[GDD07] D. Gašević, D. Djurić, and V. Devedžić. MDA-based automatic OWL ontology
development. International Journal on Software Tools for Technology Transfer
(TTT), 9(2):103–117, 2007.

[Gen03] Gentleware. Ontology Definition Meta-Model. http://www.omg.org/docs/
ad/03-08-09.pdf, August 2003.

[GKM05] B. Grosof, M. Kifer, and D. L. Martin. Rules in the Semantic Web Services
Language (SWSL): An Overview for Standardization Directions. In Proceedings
of the W3C Workshop on Rule Languages for Interoperability, Washington, DC,
April 2005.

262

Bibliography

[GM05] L. M. Garshol and G. Moore. Topic Maps - Data Model. ISO/IEC 13250-2,
http://www.isotopicmaps.org/sam/sam-model/, December 2005.

[GM06] B. Cuenca Grau and B. Motik. OWL 1.1 Web Ontology Language - Model-
Theoretic Semantics. http://owl1-1.cs.manchester.ac.uk/semantics.
html, November 2006.

[GM07] B. Cuenca Grau and B. Motik. OWL 1.1 Web Ontology Language - Mapping
to RDF Graphs. http://owl1-1.cs.manchester.ac.uk/rdf\ mapping.
html, February 2007.

[GMF04] R. Guha, R. McCool, and R. Fikes. Contexts for the Semantic Web. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proceedings of the In-
ternational Semantic Web Conference, volume 3298 of LNCS. Springer, Novem-
ber 2004.

[GMPS07] B. Cuenca Grau, B. Motik, and P. Patel-Schneider. OWL 1.1 Web Ontol-
ogy Language - XML Syntax. http://owl1-1.cs.manchester.ac.uk/xml\
syntax.html, February 2007.

[Gro05a] Object Management Group. MOF QVT Final Adopted Specification. http:
//www.omg.org/docs/ptc/05-11-01.pdf, November 2005.

[Gro05b] Object Management Group. Unified Modeling Language: Superstructure.
http://www.omg.org/docs/formal/05-07-04.pdf, July 2005.

[Gro06a] Object Management Group. Object Constraint Language. http://www.omg.
org/docs/formal/06-05-01.pdf, May 2006.

[Gro06b] Object Management Group. Ontology Definition Metamodel. http://www.
omg.org/cgi-bin/doc?ad/2006-10-11, October 2006.

[HEC+04] L. Hart, P. Emery, B. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
and M. Dutra E. Kendall. OWL Full and UML 2.0 Compared. http://www.
itee.uq.edu.au/\simcolomb/Papers/UML-OWLont04.03.01.pdf,
March 2004.

[HKS06] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistable SROIQ. In
Proceedings of the 10th International Conference on Principles of Knowledge
Representation and Reasoning (KR 2006), pages 57–67, Lake District, UK, June
2006. AAAI Press.

[HM05] P. Haase and B. Motik. A Mapping System for the Integration of OWL-DL
Ontologies. In Proceedings of the ACM-Workshop: Interoperability of Hetero-
geneous Information Systems (IHIS05), Bremen, Germany, November 2005.

263

Bibliography

[HPSB+04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http:
//www.w3.org/Submission/2004/SUBM-SWRL-20040521/, May 2004.

[HRW+06] P. Haase, S. Rudolph, Y. Wang, S. Brockmans, R. Palma, J. Euzenat, and
M. d’Aquin. D1.1.1 Networked Ontology Model. Technical Report D1.1.1,
Universität Karlsruhe (TH), November 2006.

[IBM03] IBM. Ontology Definition Metamodel (ODM) Proposal. http://www.omg.
org/docs/ad/03-07-02.pdf, August 2003.

[IKSL03] Sandpiper Software Inc. and Stanford University Knowledge Systems Lab-
oratory. UML for Knowledge Representation - A Layered, Component-
Based Approach to Ontology Development. http://www.omg.org/docs/ad/
03-08-06.pdf, March 2003.

[JK06] F. Jouault and I Kurtev. On the Architectural Alignment of ATL and QVT. In
Proceedings of SAC ’06, Dijon, France, April 2006.

[KC04] G. Klyne and J. J. Carroll. Resource Description Framework (RDF): Concepts
and Abstract Syntax. http://www.w3.org/TR/rdf-concepts/, February
2004.

[KLW95] M. Kifer, G. Lausen, and J. Wu. Logical Foundations of Object-Oriented and
Frame-Based Languages. Journal of the Association for Computing Machinery,
42(4):741–843, July 1995.

[Kre98] R. Kremer. Visual Languages for Knowledge Representation. In Proceed-
ings of 11th Workshop on Knowledge Acquisition, Modeling and Management
(KAW’98), Banff, Canada, April 1998. Morgan Kaufmann. http://ksi.cpsc.
ucalgary.ca/KAW/KAW98/kremer/.

[LW06a] S. Lukichev and G. Wagner. UML-Based Rule Modeling with Fujaba. In
B. Westfechtel and H. Giese, editors, Proceedings of 4th International Fujaba
Days 2006, Bayreuth, Germany, September 2006.

[LW06b] S. Lukichev and G. Wagner. Visual Rules Modeling. In A. Voronkov and I. Vir-
bitskaite, editors, Proceedings of Sixth International Conference Perspectives of
Systems Informatics, volume 4378 of LNCS, pages 467–673, Novosibirsk, Rus-
sia, June 2006. Springer.

[MB02] S. J Mellor and M. J. Balcer. Executable UML: A Foundation for Model Driven
Architecture. Addison Wesley Professional, 2002.

264

Bibliography

[MHRS06] B. Motik, I. Horrocks, R. Rosati, and U. Sattler. Can OWL and Logic Program-
ming Live Together Happily Ever After? In I. F. Cruz, S. Decker, D. Alle-
mang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and L. Aroyo, editors, In-
ternational Semantic Web Conference, volume 4273 of LNCS, pages 501–514,
Athens, Georgia, November 2006. Springer.

[MKW04] S. J. Mellor, S. Kendall, and A. Uhl D. Weise. MDA Distilled. Addison Wesley
Longman Publishing Co., Inc., Redwood City, California, 2004.

[MR07] B. Motik and R. Rosati. A Faithful Integration of Description Logics with Logic
Programming. In Proceedings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI2007), pages 477–482, Hyderabad, India, January
2007. Morgen Kaufmann.

[MSS04] B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with Rules.
In S. A. McIlraith, D. Plexousakis, and F. van Harmelen, editors, The Semantic
Web - ISWC 2004, volume 3298 of LNCS, pages 549–563, Hiroshima, Japan,
November 2004. Springer.

[Mv03] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Language
Overview. Internet:http://www.w3.org/TR/owl-features/, August
2003.

[Nie93] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1993.

[Obj03] Object Management Group. Ontology Definition Metamodel - Request For Pro-
posal. http://www.omg.org/docs/ontology/03-03-01.rtf, March 2003.

[Obj06] Object Management Group. Meta Object Facility (MOF) Core Specification.
http://www.omg.org/docs/formal/06-01-01.pdf, January 2006.

[Ont06] Ontoprise. F-Logic-Programs. http://www.ontoprise.de/documents/
tutorial flogic.pdf, January 2006.

[PSHM07] P. F. Patel-Schneider, I. Horrocks, and B. Motik. OWL 1.1 Web Ontology
Language - Structural Specification and Functional-Style Syntax. Ihttp://
owl1-1.cs.manchester.ac.uk/syntax.html, February 2007.

[Sch02] W. Schnotz. Wissenserwerb mit Texten, Bildern und Diagrammen. In L. J. Issing
and P. Klimsa, editors, Information und Lernen mit Multimedia und Internet,
pages 65–81. Belz, PVU,Weinheim, Germany, third, completely revised edition,
2002.

[SK03] H. Stuckenschmidt and M. C. A. Klein. Integrity and Change in Modular On-
tologies. In G. Gottlob, editor, 18th International Joint Conference on Artificial
Intelligence (IJCAI), pages 900–908, Acapulco, Mexico, August 2003.

265

Bibliography

[Sow92] J. F. Sowa. Conceptual Graphs Summary. In P. Eklund, T. Nagle, J. Nagle,
and L. Gerholz, editors, Conceptual Structures: Current Research and Practice,
pages 3–52. Ellis Horwood, New York, 1992.

[SP04] Evren Sirin and Bijan Parsia. Pellet: An OWL DL Reasoner. In Description
Logics, 2004.

[SR06] J. Seidenberg and A. Rector. Web Ontology Segmentation: Analysis, Classifi-
cation and Use. In C. Goble and M. Dahlin, editors, Proceedings of the World
Wide Web Conference (WWW), Edinburgh, UK, June 2006. ACM Press.

[SS89] M. Schmidt-Schauss. Subsumption in KL-ONE is Undecidable. In R. J. Brach-
man, H. J. Levesque, and R. Reiter, editors, Proceedings of the First Interna-
tional Conference on the Principles of Knowledge Representation and Reason-
ing (KR-89), pages 421–431, Toronto, Canada, May 1989. Morgan Kaufmann.

[SSW05] L. Serafini, H. Stuckenschmidt, and H. Wache. A Formal Investigation of Map-
ping Languages for Terminological Knowledge. In Proceedings of the 19th
International Joint Conference on Artificial Intelligence - IJCAI05, Edinburgh,
UK, August 2005.

[SU05] H. Stuckenschmidt and M. Uschold. Representation of Semantic Mappings. In
Y. Kalfoglou, M. Schorlemmer, A. Sheth, S. Staab, and M. Uschold, editors, Se-
mantic Interoperability and Integration. Dagstuhl Seminar Proceedings, volume
04391, Germany, 2005. IBFI, Schloss Dagstuhl.

[TBMM04] H. S. Thompson, D. Beech, M. Maloney, and N. Mendelsohn. XML Schema
Part 1: Structures Second Edition. http://www.w3.org/TR/xmlschema-1/,
October 2004.

[TF05] S. Tessaris and E. Franconi. Rules and Queries with Ontologies: a Unifying Log-
ical Framework. In I. Horrocks, U. Sattler, and F. Wolter, editors, Proceedings of
the 2005 International Workshop on Description Logics (DL2005), volume 147
of CEUR Workshop Proceedings, Edinburgh, Scotland, UK, July 2005. CEUR-
WS.org.

[TV56] A. Tarski and R. Vaught. Arithmetical Extensions of Relational Systems. Com-
positio Mathematica, 13:81–102, 1956.

[Ull88] J. D. Ullman. Principles of Database & Knowledge-Base Systems Volume 1:
Classical Database Systems. W.H. Freeman & Company, 1988.

[vHPSH01] F. van Harmelen, P. F Patel-Schneider, and I. Horrocks. Reference Description of
the DAML+OIL Ontology Markup Language. http://www.daml.org/2001/
03/reference.html, March 2001.

266

Bibliography

[Vir92] R. A. Virzi. Refining the test phase of usability evaluation: How many subjects
is enough? Human Factors, 34(4):457–468, 1992.

[Vol04] R. Volz. Web Ontology Reasoning with Logic Databases. Phd thesis, Universität
Karlsruhe (TH), Karlsruhe, Germany, http://www.ubka.uni-karlsruhe.de/cgi-
bin/psview?document=2004/wiwi/2, February 2004.

[W3C05a] Accepted Papers of the W3C Workshop on Rule Languages for Interoperability,
Washington, DC, April 2005. http://www.w3.org/2004/12/rules-ws/accepted.

[W3C05b] W3C. Rule Interchange Format Working Group Charter. http://www.w3.
org/2005/rules/wg/charter, 2005.

[WAL05] G. Wagner, A.Giurca, and S. Lukichev. R2ML: A General Approach for Mark-
ing up Rules. In F. Bry, F. Fages, M. Marchiori, and H. Ohlbach, editors, Princi-
ples and Practices of Semantic Web Reasoning, volume 05371 of Principles and
Practices of Semantic Web Reasoning, 2005.

[WATB04] G. Wagner, G. Antoniou, S. Tabet, and H. Boley. The Abstract Syntax of
RuleML - Towards a General Web Rule Language Framework. In Web Intel-
ligence 2004, pages 628–631, Beijing, China, September 2004.

[WK04] J. Warmer and A. Kleppe. Object Constraint Language 2.0. MITP Verlag, 2004.

[Woo75] W.A. Woods. What’s in a link: Foundations for semantic networks. In D.G.
Bobrow and A.M. Collins, editors, Representation and Understanding: Studies
in Cognitive Science, pages 35–82, 1975.

267

