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Abstract— Zero-IF (direct conversion) receivers are very sen-
sitive to non-linearities of analog hardware. A phase and/or
amplitude imbalance between the inphase and quadrature signal
branch results in a base band signal deterioration known as I/Q
imbalance. Especially OFDM and the OFDM-based MC-CDMA
modulation technique are affected by this error. This paper
proposes a novel orthogonal quaternary MC-CDMA spreading
code scheme that uses the inherent mathematical symmetry to
mitigate 1/Q imbalance without additional computational cost.

I. INTRODUCTION

In MC-CDMA systems orthogonal spreading codes are used
to spread user symbols in the frequency domain. MC-CDMA
is usually proposed for synchronous downlink scenarios. In
a synchronous multi-user environment orthogonality can eas-
ily be restored using low-complexity equalization techniques
such as orthogonality restoring combining (ORC), equal gain
combining or MMSE combining. Accordingly, the following
considerations are based on a MC-CDMA downlink scenario
with I/Q imbalance due to non-ideal quadrature demodulation
in the receiver. [1] raised the question about the performance
of different spreading code sets under I/Q imbalance. This
question will be considered here for the MC-CDMA case.

The paper is structured as follows: Section II derives the
system model of I/Q imbalance in MC-CDMA systems in
fading environments. Section III states basic requirements for
spreading codes in MC-CDMA systems and investigates the
influence of I/Q imbalance. In section IV new quaternary
codes exhibiting good properties with respect to I/Q imbalance
are proposed. Section V gives numerical verification through
Monte Carlo simulations, followed by a concluding discussion
in section VI

IT. I/Q IMBALANCE MODEL

1/Q imbalance has been studied in various contexts, cf. [2],
[3], [1], [4]. The analytical model used in this paper was
adopted from [1] and modified accordingly. A non-ideal local

oscillator is described by:
wio(t) = Kie 70" 4 Kpel ot 1

The constants K7 and K- are functions of a given phase error
¢ and amplitude imbalance e:
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The image rejection ratio (IRR) is then given by:
K |?
IRR = |— 4
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This model assumes frequency-flat I/Q imbalance and absence
of a carrier frequency offset.

A. Single Carrier Modulation

If a single carrier signal with equivalent complex base band
signal z(t) is demodulated using the non-ideal oscillator given
by (1), the imbalanced base band signal z(t) results in the
receiver:

x(t) = K12(t) + Ka2*(t) 3)

The frequency domain representation is:
X(f) =K Z(f) + K22 (— f) (6)

As can be seen from these equations, I/Q imbalance results
in weighted self-interference. This is depicted in Fig. 1.

B. OFDM

If OFDM modulation is used, the subcarriers on mirror
frequencies interfere with each other. The DC carrier is
typically not used in OFDM systems. Since it also simpli-
fies the mathematical analysis, the DC carrier is considered
unused in this paper. The symbols Z, to be transmitted in
one OFDM symbol in the frequency domain are given by
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Fig. 2. 1I/Q imbalance in MC systems as mutual subcarrier interference in
the base band

7 = (Z_%,...,Z_l,O,Zl,...,Z%)T where N is the (even)
number of subcarriers. The unused DC carrier is denoted by
a zero. The cylic prefix usually used in OFDM systems does
not change the frequency domain properties and can hence
be neglected here. In the absence of intersymbol (ISI) and
intercarrier interference (ICI) induced by other sources than
I/Q imbalance, the following model for I/Q imbalance in
OFDM systems results:

X(f)=EK1Z(f) + K22(f)" @)
7 (})* denotes the inverted and conjugated vector
(Z% o Z27,0,Z2%,...,Z* x). This interference  of

2 . . . . 2
subcarriers is depicted in Fig. 2.

C. MC-CDMA

The OFDM model can easily be adopted for MC-CDMA.
The MC-CDMA downlink described here has a maximum
number of n users, which equals the spreading code length.
The number of subcarriers actually used depends on the
underlying OFDM system (see Section III-B). The users are
separated in the code domain by different spreading codes
C = (é),...,cn_1) of length n. Since the spreading codes
are orthogonal, C*C' = nI holds (assuming |C;;| = 1).
The symbols sent to different users are written as a column
vector Z = (2o, 21, ..., 2n_1)" . The resulting chip sequence is
given by CZ. This chip sequence is then transmitted over the
underlying OFDM subsystem. In the following discussion, the
channel noise has been omitted for clarity.
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1) I/Q imbalance, frequency-flat fading: (8) describes the
resulting imbalanced symbols after non-ideal demodulation
and despreading. The matrix D stands for the zero-padded
(unused DC carrier) IDFT. It has the property D~1D* = I.T
denotes the flipped identity matrix.

=K Z+ K. CID 'D*C*z*
= K17+ K;CHIC* 7+

= K17+ K,CHC*z* (8)
Again, c* describes the inverted and conjugated spreading
code matrix C' = ( <0, ..., ck—1). It follows from (8) that

I/Q imbalance results in multiple access interference (MAI),
which properties are described by CH C'. This matrix describes
the correlation between spreading codes and the time-inverted
and conjugates spreading codes. Frequency-flat fading results
in the attenuation of all subcarriers, given by a multiplication
with a random fading coefficient h. This leads to the following
model:

ZF=hK,Z+h*K,C"C*z* )

2) I/Q imbalance, frequency-selective fading: H is a square
matrix which models the Rayleigh fading channel in the
frequency domain. In the absence of ISI, H is diagonal.
The Rayleigh distributed fading coefficients are the diagonal
elements, denoted by random variables h;.

dlag(H) = (h17h27h3, ...,hn)

With an equalizer matrix G (e.g. G = H~! for ORC) we
arrive at the following model:

=K, CED'\GHDCZ+ K,CY D *GH*D*C*Z* (11)

This describes the I/Q imbalance model in a MC-CDMA
system with a frequency domain channel H. The I/Q-MAI
matrix is now given by C* D=1G H*D*C*. The correspond-
ing interference profile can be described by calculating the
expected value E{|C” D='GH*D*C*|}, where the absolute
value is to be taken over the elements of the matrix. Hence,
the I/Q-MAI depends on spreading mechanism, channel and
equalizer approach. The interfering symbol is distorted by the
conjugated channel.

(10)

III. COMPLEX SPREADING CODES FOR MC-CDMA
DOWNLINK

As shown mathematically, I/Q imbalance leads to MAI
This I/Q-MAI depends on the spreading code properties, as
described by C' C in the case of frequency flat fading in
(9). Conventionally, real Walsh-Hadamard codes are used as
spreading codes. In general, the following criteria have to be
considered when searching for a good MC-CDMA spreading
code set:

« orthogonality of column (row) vectors, C#C = nl,

« equal spreading of information to all subcarriers (cf. [5]),
meaning equal magnitude of all entries in the spreading
code matrix (without loss of generality |C;;| = 1),

+ PAPR performance (cf. [6], [5]),



o low complexity of the spreading operation,
« and additionally, considered here, performance under 1/Q
imbalance.

It is important to note that even mathematically equivalent
Hadamard matrices (in the case of real Hadamard matrices:
row or column permutation, multiplication of rows or columns
by +1) exhibit different properties with regard to these criteria.
Only matrices which can be derived from each other by
column permutation are equivalent with respect to multi-user
communication.

A. Minimizing I/Q-MAI

(8) will be used as a basis for our analysis. As the I/Q-
MALI magnitude measured by the Frobenius norm is always
the same in one given orthogonal spreading code set C, the
goal can only be to minimize the effects of I/Q imbalance over
the system load.

|CHCH||p =n (12)

(12) describes this property of the I/Q-MAI, the proof can be
found in the appendix. One remaining degree of freedom is the
distribution of the I/Q-MAI. Minimum I/Q-MAI between two
given spreading codes ¢; and ¢, means that these spreading
codes are orthogonal to their time inverted and conjugated
counterparts and to each other, ¢; ¢1 =0, ¢ ¢ =0, &3 ¢ =
0, ¢3 &1 = 0. For any given load, an active user in the system
should interfere with a minimum of other active users in the
system. This leads to the definition of an I/Q-optimal spreading
code set C:

\CHC*| =nI (13)
An active user interferes only with one other user and not with
oneself. This way, if no other distortion is present, [/Q-MAI
can be mitigated up to half load.

1) Frequency flat fading: Frequency flat fading over all sub-
carriers does not disturb the code symmetry in the frequency
domain. The channel matrix can then be written as H = hl
which leads to (assumed here ORC with G = H~!, K; treated
as channel influence) the following model:

oy - h* H A o«

z:z+KgiC Cc*z (14)
As can be seen from (14), I/Q-optimal spreading codes offer
an advantage in flat fading scenarios. If a spreading code set
satisfies (13), [/Q-MAI can be totally avoided up to half load.
E.g., the Hadamard matrix

1 1 1 -1
1 1 -1 1
Crg = 1 21 1 ] (15)
-1 1 1 1
is orthogonal (C¥ C = nI) and 1/Q-optimal since
0 0 0 4
~ 0 4 0
ClhioCrq = 040 0 (16)
4 0 0 0
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As can be seen from the I/Q-MAI matrix, user 1 and 2 do
not interfere with each other or themselves. If the system is
filled in the correct order, I/Q imbalance cancels itself up to
half load (here: 2 users).

2) Frequency selective fading: Frequency selective fading
destroys the code orthogonality and I/Q optimality. The equal-
izer restores orthogonality to a certain extent but has an almost
unpredictable effect on the I/Q-MAI. As simulations indicate,
in Rayleigh fading channels all orthogonal codes seem to
perform alike with respect to I/Q imbalance. However, an
AWGN (or flat fading) channel can be regarded as a Rician
fading channel with infinite Rice factor (strength of line-
of-sight component). The direct path profits from the code
structure and does not result in additional I/Q-MAI. Section
V delivers simulation results supporting this thesis.

B. Frequency interleaving

To improve frequency diversity, frequency interleavers are
used to separate correlated chips in the frequency domain.
Frequency interleaving has to be taken into account when
designing spreading codes as it affects the frequency code
symmetry. A frequency interleaver can be described as a
permutation 7 of the chip vector C'Z with a corresponding
real permutation matrix P,. The inverse permutation matrix
is then P, = P_!. Hence, the I/Q-MAI model is given by
7).

=K\ Z+ K, CHP'D'D*PrC*7*. (17)

The I/Q-optimality criterion for a code matrix C' and a
frequency interleaver Py is then:

ICEP-'P. C*| = nl (18)

If we use an I/Q-optimal code set as defined in (13), (18)
is satisfied when I P, = Pﬁf . This means that the interleaver
matrix has to be rotationally symmetric. E.g., a standard square
block interleaver given by (19) (row-wise writing, column-
wise reading) is rotationally symmetric.

1 2 n
1+n 24n 2n (19)
I+n—1n 2+ nm—1)n .. n?

For other sizes, the interleaver has to be designed accordingly.
Further research is required here. See [7] for lower bounds on
the existence and construction of block interleavers.

IV. USE OF COMPLEX HADAMARD MATRICES IN
COMMUNICATION SYSTEMS

A complex Hadamard matrix C' of size n is defined as
a square matrix with unimodular entries of arbitrary phase
and mutually orthogonal columns (CHC = nI). An im-
portant example is the scaled Fourier matrix. [8] contains
an introduction and a list of the known complex Hadamard
matrices. A subset of the complex Hadamard matrices are the
Butson-type Hadamard matrices [9]. A Butson-type Hadamard
matrix H(q,n) of size n is a square matrix whose entries are
powers of the g-th root of unity. H(2,n) is then the set of



the well-known real Hadamard matrices. Complex Hadamard
matrices can be used as orthogonal spreading codes in MC-
CDMA systems. However, the complexity of the algorithm
used for the linear transform has to be considered in a practical
implementation.

A. Examples of I/Q-optimal quaternary complex Hadamard
codes

In [10], the use of Butson-type complex Hadamard matrices
H(4,n) was proposed for use in MC-CDMA systems. Com-
pared to H(2,n) Hadamard matrices, the additional degree
of freedom offers potentially better PAPR and correlation
properties. The matrix entries H;; € {1,—1,j,—j} allow
for efficient spreading without multiplication. [10] used a
H (4, 2) matrix with three free parameters as a starting point to
construct H (4, 2%) matrices using the Kronecker construction.
The construction is given here for reference:

Un=QUi=U10Up1=U1® U1 (0)
i=1
H1 o H1M3

=l L)
M2 — 243

This set contains the standard H (2, n) Hadamard matrices as
the special case 1 U = M3 1. Of these H(4,2%)
matrices, none are I/Q-optimal. There are however I/Q-optimal
quaternary codes related to these codes of order 4.
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B. Examples of I/Q-optimal Butson-type Hadamard matrices
H(4,4)

Since MC-CDMA spreading codes are typically short, all
H(4,4) matrices have been evaluated with respect to 1/Q
imbalance in a computer search in [11]. 2048 of them are
I/Q-optimal and non-equivalent in a multi-user context. They
can be constructed by

—Hi1Ms  H2fs  H3Hs —H4fs
Uiq1 _ —H1 M2 —H3 Ha (22)
—H1ps  —H2is p3Hs  Hafds
M1 M2 H3 Ha
and
—JH3Ma  JH3Ms  —JHIHM3  JH1H3H4
U. — H2 4 H2 s H1p2 H1f2 g
vz —M3fta  p3Us5 Hip3 — 13 [
JHapa  Jpops  —JHif2  —JH1H2/4

with 1, p2, 13, U4, M5, € {]-a 717‘7‘3 7;7}
C. Construction of higher order I/Q-optimal codes

To construct I/Q-optimal spreading codes of higher order,
rotationally symmetric I/Q-optimal codes (CI = IC) can be
used. The Kronecker product of such a matrix with itself
is again rotational symmetric and I/Q-optimal (24, proof in
appendix). -

(CoC)H(C® ) =nT (24)

64 out of the 2048 H(4,4) 1/Q-optimal matrices introduced
are rotationally symmetric [11].
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64—-QAM, AWGN, 0.5dB and 5° Mismatches
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Fig. 3. Comparison of non-I/Q-optimal and 1/Q-optimal Hadamard codes in
the AWGN channel

64-QAM, Rice factor 5, 0.5dB and 5° Mismatches
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Fig. 4. Comparison of non-1/Q-optimal and 1/Q-optimal Hadamard codes,
rice-fading, AWGN

V. NUMERICAL RESULTS

Fig. 3 shows an MC-CDMA system up to half load with
a non-I/Q-optimal H(2,16) standard Hadamard code and an
H(4,16) 1/Q-optimal complex Hadamard code. Hence the
spreading code length is 16, equaling the maximum number
of users. Each user uses a 64-QAM signal constellation. As
can be seen from the figure, the H(4,16) I/Q-optimal code
performs better for any load. I/Q imbalance is eliminated due
to the code structure.

Fig. 4 shows the same MC-CDMA system, this time in a
Rice fading scenario with a Rice factor (the ratio of the signal
power in the dominant path to the power of the scattered paths)
of 5. The I/Q-optimal code still performs better.

Fig. 5 compares the performance of an I/Q-optimal and non-
optimal Hadamard spreading code depending on the strength
of the LOS path. As can be seen from the figure, the error
floor resulting from I/Q-MALI is significantly lowered by using
I/Q-optimal codes.
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Fig. 5. BER over Rice factor, standard MMSE combining

VI. CONCLUSION AND FUTURE WORK

This paper establishes the connection between spreading
codes in MC-CDMA systems and performance under 1/Q
imbalance. It was shown that various orthogonal spreading
codes exhibit different performance under I/Q imbalance.
Orthogonal spreading codes with good properties with respect
to I/Q imbalance and an allocation scheme with optimal
performance were proposed. The proposed scheme offers max-
imum gain over other codes in scenarios with frequency flat
fading. Since the effect is based on mathematical symmetry,
using I/Q-optimal codes results in a performance gain without
additional computational costs or loss of frequency diversity.
I/Q imbalance is a key problem in high speed (16-QAM an
above) MC-CDMA direct conversion systems, especially when
using low-cost direct-conversion transceivers. Optimizing the
spreading codes in this respect has to be considered in addition
to compensating the effects in the base band (cf. [12]). An
example of I/Q-optimal spreading codes has been given to
demonstrate the performance gain. Future work will examine
all known Butson-type Hadamard matrices with respect to I/Q
imbalance and other criteria given in section III. Furthermore,
a stochastic model for I/Q imbalance in MC-CDMA systems
incorporating the influence of spreading codes will be devel-
oped. [13] and [14] are a first steps towards this goal.

APPENDIX
PROOFS

Proof: (13). Let C be a complex Hadamard matrix of size
n X n. For the Frobenius norm ||A||r = /Tr(AAf) holds.
The matrix trace satisfies Tr(AB) = Tr(BA) and (AB)H =
BH AH  Hence:

[lexgen(i
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I

_ Proof: (24). Let C be a rotationally symmetric I =

1C') complex Hadamard matrix. Then, by using the properties
of the Kronecker product:

Co) I(Co0)

s Co0)i(Ce0)

s (CH oot (CcreC)

s (e e (o)

S nl@nl

n*l
n%I
n?I
n%I

n?
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