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Abstract

“Automatic causal discovery” is a rather young research area, to which increasing atten-
tion is paid in recent years as more and better data have become available. Until the early
nineties, most researchers still shunned away from discussing formal methods for infer-
ring causal structure from purely observational statistical data without using controlled ex-
periments, i.e., interventions. The seminal works of Spirtes, Glymour, and Scheines [153]
and the works of Pearl [125] in the last fifteen years have established a promising basis
of learning causality from such data. Bayesian networks are used as a concrete vehicle,
where the corresponding directed acyclic graph can be interpreted causally. The test of
statistical (conditional) independence between observedrandom variables provides a pri-
mary tool for learning such causal graphs. The theory and thepractical applications of
their approach, however, are far from fully developed. The essential shortcomings are the
following. For the one thing, the test of independence is based on the strict assumption
of multivariate Gaussian distribution. Moreover, if very few independence relationships
are present, only few causal directions can be determined. The contribution of this thesis
includes a direct attempt to address these problems.

A so-called kernel-based test of independence is further developed, which is conducted
without making any specific assumption about the distribution. The kernel method maps
data into an appropriate feature space by a nonlinear transformation, where also the non-
linear relations in the original space can be captured by correlations in the feature space.
The singular values of the inherent covariance matrix provide a measurement of the mag-
nitude of statistical dependences, which serves as a very useful additional tool for learning
causal structures.

A new inference principle of determining the causal directions is developed for the case
when no statistical independence relations are present. The complexity of conditional
distributions gives hints on the causal direction in such situations that are rarely examined.

Experiments with many simulated and real-world data show that the proposed methods
surpass in certain aspects other state-of-the-art approaches to the same problem.



Zusammenfassung

“Automatisiertes Erkennen von kausalen Zusammenhängen” ist ein noch recht junges
Forschungsgebiet, das seit den letzten Jahren immer mehr Aufmerksamkeit bekommt, weil
mehr und bessere Daten zur Verfügung stehen. Bis zum Anfang der neunziger Jahre
zögerten noch die meisten Wissenschaftler sich mit dem Lernen von Ursache-Wirkungs-
Beziehungen anhand von statistischen Daten zu beschäftigen, die lediglich auf Beobach-
tungen beruhen, d.h. ohne Zuhilfenahme von Interventionen. In den vergangenen fünfzehn
Jahren sind vielversprechende Grundlagen für das maschinelle Learnen von Kausalstruk-
turen von Spirtes, Glymour und Scheines [153] sowie von Pearl[125] geschaffen worden.
Diese beruhen auf Bayesschen Netzen, bei denen der zugehörige gerichtete azyklische
Graph kausal interpretiert werden kann. Wichtigstes Hilfsmittel zum Lernen von solchen
Kausalgraphen bilden dabei Tests auf (bedingte) statistische Abhängigkeiten zwischen
den betrachteten Zufallsvariablen. Die Theorie und die praktische Umsetzung dieser An-
sätze sind allerdings bei weitem nicht ausgereift. Die wichtigsten Unzulänglichkeiten sind
folgende zu nennen: Zum einen basieren die Unabhängigkeitstests auf der starken An-
nahme multivariater Gauß-Verteilungen. Zum anderen lassen sich nur wenige kausale
Richtungen identifizieren, wenn wenige Unabhängigkeitsbeziehungen vorliegen. Der
Beitrag dieser Arbeit setzt gerade bei diesen beiden Nachteilen an.

Es wird ein sogenannter kern-basierter Unabhängigkeitstest weiter enwickelt, der ohne
die Annahme einer speziellen Verteilung auskommt. Die Kernmethode bildet Daten durch
eine nicht-lineare Transformation in einen geeigneten Merkmalsraum ab, in dem sich
auch ursprünglich nicht-lineare Zusammenhänge als Korrelationen im Merkmalsraum
manifestieren. Die Singulärwerte der Kovarianzmatrix liefern eine Quantifizierung der
Stärke der statistischen Abhängigkeiten, die sich sehr gutals zusätzliches Hilfsmittel zum
Lernen von Kausalstrukturen einsetzen ließ.

Es wird ein neues Inferenzprinzip entwickelt zum Schätzen vonKausalrichtungen für
den bisher kaum betrachteten Fall dass keine statistischenUnabhängigkeiten vorliegen.
Dabei liefert die Komplexität bedingter Verteilungen Hinweise auf die kausalrichtung.

Experimente mit simulierten und realen Daten zeigen, dass die vorgeschlagenen Metho-
den in mancher Hinsicht die aktuell bestehenden, anerkannten Ansätze zur Lösung des-
selben Problems übertreffen.
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1. Introduction and Motivation

The central aim of many studies in medicine, biology, sociology, and economics is the elucidation
of cause-and-effect relations among variables or events. In many real-life situations, randomized
controlled experiments or interventions cannot always be utilized to provide causal knowledge.
Methods for finding a causal structure from purely observational data are of special interest. The
first chapter introduces the framework of causal modeling and summarizes the seminal works
of Spirtes et al. [153] and Pearl [125], which showed that, under reasonable assumptions, it is
possible to get hints on causal relationships from non-experimental data.

1.1. Causal modeling framework

Since the early nineties, it has become popular to express causal relations by a graphical repre-
sentation, the so-called causal structure or causal graph.

Definition 1 (Causal Structure)A causal structure of a set of random variablesV is a directed
acyclic graph (DAG)G in which each node (vertex) corresponds to a distinct elementX or a set
of distinct elementsX := (X1, X2, . . .) of V, and each arrow (a directed edge) represents direct
causal relationship between the corresponding nodes.

For example, Fig. 1.1 illustrates a causal structure with7 nodes representing variablesX1, . . . , X7

and each arrow fromXi to Xj is interpreted as a direct causal influence ofXi onXj. When
talking about the relations in a DAG, we use the wording of family relations: if there is a link
from Xi to Xj, we say thatXi is a parent ofXi. Some authors [8, 68] call such a graph an
“acyclic digraph” instead of DAG. The corresponding undirected graph of a DAGG is called the
adjacency structure (or skeleton) ofG.

Regarding notations, we will normally not sharply distinguish between a single random vari-
able and a set of variables. The capitalized variablesX,Y, Z, . . . are used to depict a single
variable or a set of variables. A vertex inG normally corresponds to a random variable inV, but
it can also represent a set of variables, if necessary. Therefore,X,Y, Z, . . . are also used to depict
a vertice representing the corresponding variable or the set of variables. The context will make
clear whether variables or vertices are meant.

As a graphical representation, a DAG is capable of displaying cause-and-effect relationships
between variables intuitively and clearly. Furthermore, aDAG can handle uncertainty through
the established theory of probability on graphical models.A DAG G with the probabilistic in-
terpretation represents a probability distributionP . The primary link between the topology of a
DAG and the underlying probability distributionP is the independence relations between vari-
ables. We recall the formal definition of conditional independence.
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1. Introduction and Motivation

Figure 1.1.: Graphical representation of direct causal influences between7 variables by DAG,
i.e., causal structure.

Definition 2 (Independence Relation)Let X := (X1, . . . , Xm), Y := (Y1, . . . , Yn), Z :=
(Z1, . . . , Zk) be three disjoint subsets of the setV of all measured variables. Conditional onZ,
X, andY are independently related to each other if and only if

P (x1, . . . , xm, y1, . . . , yn|z1, . . . , zk) = P (x1, . . . , xm|z1, . . . , zk)P (y1, . . . , yn|z1, . . . , zk)

for all possible valuesxj ofXj, yi of Yi, andzl ofZl.

We use a notation of independence relations introduced by Dawid [46]: X ⊥⊥ Y |Z meaning
X andY are independent conditional onZ. If Z is empty,X andY are said to be marginally
(unconditionally) independent when their joint probability can be factorized in the same way:

X ⊥⊥ Y ⇔ X ⊥⊥ Y | ∅ ⇔ P (x, y) = P (x)P (y)

for all possible valuesx of X andy of Y . If X andY are not unconditionally or conditionally
independent, then they are said to be unconditionally or conditionally dependent, denoted as
X 6⊥⊥ Y or X 6⊥⊥ Y |Z respectively. One of the essential alternatives to relate the graphical
structures to the conditional independence relations is the so-called Markov condition [153, 125].

Definition 3 (Markov Condition) Let G be a DAG andP the joint distribution over a set of
variablesV. LetX⊆V be a variable or set of variables that is represented by a nodein G. The
pair (G, P ) satisfies the Markov condition if and only if, conditional onall of X ’s direct parents
in G, everyX is independent inP of every other variable or set of variables that is represented
by a node inG, excepting its descendants.

The pair(G, P ) which satisfies the Markov condition is called a Bayesian network [118]. The
Markov property can be found in many areas of research in order to approximate problems which
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1.1. Causal modeling framework

are too complex otherwise. For example, a (first order) Markov process assumes that knowing
a system’s current state is relevant to its future, but knowing how it got to its current state is
completely irrelevant. The intuition behind the Markov property for causal structures is that
ignoring a variable’s effects, all the relevant probabilistic information about a variable that can
be obtained from a model is contained in its direct causes. Therefore, the Markov condition is
used as a bridge principle linking the causal interpretation of a DAG to its probabilistic inter-
pretation. Variants of the Markov properties of causal structures have been discussed by many
philosophers [131, 163, 146, 135, 27]. Lauritzen [98] distinguished among the pairwise, local
and global Markov properties. However, it can be shown that all three Markov properties are
equivalent for a strictly positive probability distribution.

A more generally useful graphical relation in DAGs: d-separation [124] (“d” for “directed”
or “dependence”) turns out to be equivalent to the global Markov property of Bayesian net-
works [99], and hence also to the other Markov properties provided that the probability distribu-
tion is strictly positive.

Definition 4 (d-Separation) In a DAGG, two disjoint sets of nodesX andY are d-separated
by a set of nodesSXY (excludingX andY ), if and only if along every path between a node in
X and a node inY there is a nodeZ (distinct fromX andY ) satisfying one of the following two
conditions:
(1)Z is a collider on the path and none ofZ or its descendants are inSXY , or
(2)Z is not a collider andZ is in SXY .

A nodeZ in DAG is a collider on a path if two arrow heads meet atZ, i.e.,→Z←, otherwiseZ is
called a non-collider on the path. An unshielded collider onZ (also calledv-structure) in a DAG
G is a substructureX→Z← Y in G for three distinct nodes, whereX andY are not adjacent
to each other (see Fig. 1.7). IfX andY are adjacent, we call it a shielded collider. The cor-
responding adjacency structure is called unshielded or shielded triple respectively. Throughout
this thesis, collider can be unshielded or shielded, unlessexplicitly stated otherwise.

The notation of d-separation is, in particular, defined for two distinct nodesX andY . Def-
inition 4 implies that a path between two nodesX andY in G is blocked when one of the
conditions is fulfilled, and activated otherwise.X andY are d-separated by a setSXY , when all
paths between them are blocked, otherwise, we call thatX andY are d-connected. By choosing
d-separation to link DAGs to probability distributions, one assumes that the disjoint subsets of
variablesX⊂V andY ⊂V are independent conditional onZ⊆V\{X∪Y } in all of the distribu-
tionsP that a DAGG can represent, if verticesX andY are d-separated by a set of verticesZ in
G.

Given the Markov condition or the d-separation criterion, several different DAGs may deter-
mine the same set of conditional independence restrictionson the set of measured variables.

Definition 5 (Markov Equivalence) Two DAGsG1 andG2 on a set of nodes are Markov equiv-
alent if and only if
(1) G1 andG2 have the same adjacencies, and
(2) G1 andG2 have the same unshielded colliders.
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1. Introduction and Motivation

If no further assumptions are made, the Markov condition andd-separation are just mathematics
connecting DAGs and probability distributions and need notinvolve causation at all. One might
use this mathematical theory solely to produce a compact andelegant representation of indepen-
dence structures, i.e., Bayesian networks(G, P ). The probability distributionP can be specified
by the conditional distributions with respect to the corresponding DAGG. More specifically,
supposeN random variablesX1, . . . , XN are measured. We denote the joint distributionP by

P (X1, . . . , XN) or PX1...XN
,

which is described by the values

P (X1 = x1, . . . , XN = xN) or P (x1, . . . , xN) ,

where(x1, . . . , xN) runs over all possibleN -tuples. Since we assume that all probability mea-
sures are represented by densities,P is interpreted as a probability density throughout this thesis.
According to an iterated application of Bayes’ rule one may factorize the joint probability mea-
sure into

P (x1, . . . , xN) = P (x1)P (x2|x1) . . . P (xN |x1, . . . , xN−1) =
N∏

j=1

P (xj|anj) . (1.1)

The rightmost term in Eq. (1.1) is just a short notation, since anj := (x1, . . . , xj−1) denotes
the values of allj− 1 ancestorsANj := (X1, . . . , Xj−1) of Xj. Obviously, any reordering
Xπ(1), Xπ(2), . . . , Xπ(N), whereπ ∈ SN is a permutation, defines a distinct corresponding fac-
torization into some other conditional probability measures.

Furthermore, ifP satisfies the Markov condition with respect to a DAGG, the joint measure
can be decomposed into

P (x1, . . . , xN) =
N∏

j=1

P (xj|paj) , (1.2)

wherepaj depicts the tuple of values of allkj parentsPAj ⊆ V\{Xj} of Xj in G. If G can
be indeed interpreted causally, each termPπ(Xj|PAj) (j = 1, . . . , N ) formalizes the distribu-
tion of an effect given the values of all its direct causes. The conditional probability measures
P (Xj|PAj) for each nodeXj are called the Markov kernels corresponding toG. All theseN
Markov kernels together define uniquely a joint measure overtheN variables.

Definition 6 (Causal Model)A causal model is a pair(G,PG) consisting of a causal structureG
and a set of parametersPG compatible withG. The parametersPG assign a probability measure
P (Xj|PAj) (the so-called Markov kernel) to each nodeXj ⊆V, wherePAj ⊆V\{Xj} are the
parents ofXj in G.

In other words, a causal structure serves as a blueprint for forming a causal model, which speci-
fies how each variable is influenced by its parents in the structure. Due to the acyclicity, a DAG
entails an ancestral ordering on the variables. Typically,a DAG does not determine a unique total
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1.1. Causal modeling framework

ordering, but merely a partial ordering. If there are no valid (conditional) independence relations,
we only need to focus on complete acyclic causal graphsGcomplete

π which are defined by an ordering
π of the nodes and drawing arrows from each node to all its successors. In the general case, i.e.,
some (conditional) independence relations are valid, one can easily identify any causal graphG
as an proper subgraph embedded in a suitableGcomplete

π by checking for each nodeXj the set of
its parents inGcomplete

π which can be dropped without changing the Markov kernelsP (xj|paj) and
consequently the joint probability measureP . More generally, we may consider the factorization
of Eq. (1.2) as the special case whereG is the unique complete (fully connected) acyclic graph
that corresponds to the orderingX1, . . . , XN , i.e.,G has arrows from eachXi to everyXj with
i<j. Likewise, we callPπ(xj|anj) Markov kernels corresponding to an orderingπ.

Since a Bayesian network represents the joint distribution,learning Bayesian networks can
reveal insights into the underlying causal model that the observed data come from. But, the
causal model should have more power than only representing the underlying joint measure. The
principal quality and power that distinguish a causal structure from the graphical representation
of a closely related Bayesian network is the assigned abilityto exhibit causal knowledge from
data instead of merely representing dependences. In doing so, a causal model becomes suitable
for predicting the effect of potential interventions or actions in different circumstances. However,
there are some fundamental difficulties to interpret a Bayesian network causally (called causal
Bayesian network).

First, causality itself is yet not a well-understood concept. Whether a causal relation is a
property of the real world or rather a concept in our minds helping us to organize our perception
of the real world is a very philosophical question rather than a very scientific one. Even though
the intuitive meaning of cause and effect in real life often is quite clear (not always obvious),
there is a lack of widely accepted clear notation of cause-and-effect relationship in scientific
research. For these reasons, we preferably treat causalityas a primitive throughout this thesis.

Nevertheless, we propose to keep the concept of manipulation criterion [153] in mind, since
the main benefit of having causal knowledge is being able to predict the effect of a manipulation
or intervention. The manipulation criterion characterizes the causal influence ofXi onXj in the
manner that if one had a way of setting just the values ofXi and then measuringXj, the causal
influence ofXi onXj will be reflected as a change in the distribution ofXj. That is, there exist
statesx(1)

i andx(2)
i of Xi which can be set, formalized as the so-called do-calculus [125, 183],

such that
P (Xj |doXi =x

(1)
i ) 6= P (Xj |doXi =x

(2)
i ) . (1.3)

Roughly speaking, if one can manipulate something and something else changes, then the former
causally influences the latter. The impact of a manipulationor an intervention will spread in
the causal direction, but not opposite to the causal direction. If a Bayesian network does not
reflect the real causal directions, it cannot be used to simulate the impact of interventions and
consequently should not be interpreted causally.

By means of a real-life example, we clarifies the difference between the graphical representa-
tion of a Bayesian network and the causal structure. Suppose that the leftmost plot of Fig. 1.2 il-
lustrates the graphical representation of a Bayesian network for having Down’s syndrome (preva-
lence of trisomy 21) with maternal age, two blood markers, i.e., free ß-HCG (ß-human chorionic
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1. Introduction and Motivation

Figure 1.2.: Graphical representations for having Down’s syndrome (prevalence of trisomy 21):
sparse Bayesian network (leftmost), diagnostic model with wrong independence re-
lations (middle) and fully connected Bayesian network (rightmost).

gonadotrophin) and PAPP-A (pregnancy associated plasma protein-A), and nuchal translucency
(NT). It is well known that the risk of having a term pregnancywith Down’s syndrome in-
creases with maternal age and the blood markers and NT are highly correlated with Down’s
syndrome [151, 148]. The arrows in the Bayesian network can beinterpreted causally due to a
thought experiment of the hypothetical interventions: if Down’s syndrome really could be treated
with success, the measurement of blood markers and NT would change, but not maternal age. In
contrast, although a fully connected Bayesian network (rightmost plot) is also able to represent
the observed distribution perfectly (we will elaborate on the reason later), we cannot interpret it
causally, because it is not capable of simulating the impactof interventions.

Another problem of interpreting a Bayesian network causallyis the existence of potential
hidden common causes (confounders) of measured variables.For instance, if there is some
variable that is a cause of both maternal age and Down’s syndrome, e.g., a genetic factor, then
the arrow between them in the Bayesian network (leftmost plotof Fig. 1.2) is not an accurate
depiction of the causal relationships for Down’s syndrome.One possibility is to manage the
measuring so that the set of variablesV include all of the common causes of pairs inV, the so-
called causal sufficiency assumption. Unless explicitly stated otherwise, we assume throughout
this thesis that no common causes of any pair of variables in the graph is left out. Another more
general possibility to enable one to focus on the structure over the measured variables that results
from the presence of unmeasured variables without explicitly including them in the model is the
concept of ancestral graphs [133] permitting undirected and bi-directed edges, which indicates
sampling bias and confounding respectively.

1.2. Task of causal inference

The situation that we would like to focus on in this thesis is the following. An underlying process
generates entities that share the same causal structureG over a set of variablesV :={X1, X2, . . .}.
The entities may have different parameters, i.e, probabilitiesP(i)

G . We assume that each entity

independently samples the joint distributionP (i) defined by its causal model(G,P(i)
G ) to generate

data points(x(i)
1 , x

(i)
2 , . . .) of all variables in the model. Admittedly, one cannot be surethat in
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Figure 1.3.: The number of nodes against the natural logarithm of the number of possible DAGs
and Markov equivalence classes of DAGs.

the real world the observed data are indeed sampled from an “underlying model”. Nonetheless,
we assume in addition that the observed data fairly reflect the probabilities determined by the
underlying model, i.e., the relative frequencies from datais very close to the actual underlying
probabilities, provided that the sample size is large enough. Causal inference copes with the task
to estimate the underlying structure representing causal relationships from finite data.

In principle this task can be done by performing parameter learning for all possible structures,
and then selecting those structures for which the joint probability measure over the domain is
sufficiently close to the observed measure. Unfortunately,by following such brute force approach
we will be faced with the essential difficulties of structural learning. The space of all DAGs or
Markov equivalence classes of DAGs is extremely large. In fact, it is known [134, 156, 83,
111] that givenN labeled vertices the number of DAGs can be counted a recurrence equation.
Moreover, Gillispie et al. [68] wrote a computer program to count the equivalence classes of
DAGs up to10 nodes. Fig. 1.3 shows the natural logarithm of both numbers,which indicate a
super-exponential growth of possible structures in the number of nodes. For instance, there exists
nearly4.18×1018 different DAGs and approximately1.12×1018 different Markov equivalence
classes of DAGs with10 nodes.

The other problem of the brute force search strategy is that we may end up the search through
the structures with several equally good candidates. In particular, a Bayesian network over all
complete graphs can represent any probability measure overits domain, consequently represents
the observed measure exactly. Although such a causal model over complete graphs could be
considered as the generating model, it will not be a preferable answer, when the data could be
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sampled from a sparse network. Moreover, human beings generally prefer simple answers to
things. Therefore, some kind of simplicity principle (called Ockham’s razor) in causal infer-
ence is desirable. The simplicity of a causal model(G,PG) is primarily reflected in the causal
structure, i.e., the number of links in the DAGG. The parametersPG of a model, i.e., the set of
Markov kernels, provide an additional criterion for the simplicity.

To make the goodness of a candidate for the causal structure apparent, we consider the graphi-
cal representation of having Down’s syndrome (Fig. 1.2) as an example again. The blood markers
and NT are widely accepted as identification tests for Down’ssyndrome, because they are directly
influenced by Down’s syndrome. When modeling the medical diagnosis of having Down’s syn-
drome, trained physicians are usually inclined to provide conditional probabilities in diagnostic
directions, e.g.,P (Down’s Syndrome| Indicator). The shorthand “Indicator” stands for free ß-
HCG,PAPP-A, and NT. A model reflecting this might look like theone in the middle plot of
Fig. 1.2, which has some arrows opposite to directions in leftmost plot. However, according to
this diagnostic model, maternal age, free ß-HCG, PAPP-A, andNT are mutually independent,
which is inconsistent with the Bayesian network as shown in leftmost plot. If we would like to
correct the model (in the sense that the Bayesian network in the leftmost plot is the underlying
model) to be a generating model in form of a Bayesian network, one must add some extra struc-
ture making maternal age, blood markers, and NT dependent, for example the rightmost plot of
Fig. 1.2. Although the observed probability measure (actually any probability measure) can be
perfectly represented by such a fully connected DAG (rightmost plot), one would not consider
this structure as a good candidate for the underlying causalmodel, since there is a simpler struc-
ture (leftmost plot) which can represent the observed probability measure as well as the much
more complicated structure. This example makes a main feature of a good candidate for the
causal structure apparent, namely somewhat minimality in the structure with respect to links. In
other words, if for some reason one wishes to represent a hypothetical relation by a DAG with
some links directed opposite to the true causal direction, the total number of links in the hy-
pothetical DAG that correctly represents the independencerelations can not decrease, and most
likely it will increase.

From the viewpoint of parameterization, we expect that a good candidate for the causal model
(G,PG) should be stable or simple in the set of parametersPG, i.e., the set of Markov ker-
nels. Suppose the leftmost and rightmost plots of Fig. 1.2 are two Bayesian networks that
can correctly describe the observed joint probability measure. For the sake of simplicity, we
assume that the maternal age is given. The models based on theleftmost DAG have advan-
tage over the models based on the rightmost DAG, namely that the conditional probabilities
P (Indicator|Down’s Syndrome) (Markov kernel with respect to the leftmost structure) are more
stable than the conditional probabilitiesP (Down’s Syndrome| Indicator) (Markov kernel with
respect to the rightmost structure), in the sense that the latter would be changed and the former
would remain unchanged, if we could intervene or manipulatethe variable “Down’s Syndrome”.
This is because the conditional probabilities for the leftmost model reflect general properties
of the relation between Down’s syndrome and tests, and they are the ones that a developer of
tests can publish, whereas the conditional probabilities for the rightmost model are a mixture of
Down’s syndrome-test relations and prior frequencies of the Down’s syndrome. Due to Bayes’
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rule on conditionals, we have

P (Down’s Syndrome| Indicator) =
P (Indicator|Down’s Syndrome)P (Down’s Syndrome)

P (Indicator)
.

In other words, if a new drug is developed to prevent some pregnant women from Down’s Syn-
drome, i.e.,P (Down’s Syndrome) is changed, the distributionP (Down’s Syndrome| Indicator)
will consequently be changed, but the distributionP (Indicator|Down’s Syndrome) will remain
the same. We intend to utilize such inherent differences in properties of Markov kernels with
respect to different structures to make causal inference. This way we will have some simplicity
criterion even though the generating model indeed has a fully connected structure.

In summary, the task of causal inference is finding simple models that represent the observed
data, in the sense of requiring less links and having stable parameters. The underlying graphical
structure of such models provides a good candidate for the representation of causal relationships.

1.3. State-of-the-art causal inference algorithms

As mentioned previously, without restrictive assumptions, a brute force search over all possible
structures requires super-exponential time in the number of variables in the model. Over the
last years, a large amount of work has been dedicated to formulating reasonable assumptions
and feasible search strategies to identify a good causal structure. A detailed discussion of the
complexity of causal inference with different conceptionscan be found in [53].

In general, two basic search strategies, constraint-basedand model-based approaches, are typ-
ically employed. The constraint-based approaches mainly focus on the structure of the model,
while the model-based approaches take the parameters of themodel into account. The model-
based approaches often base the search strategy on a Bayesianscore. Therefore, it is also called
in many literature score-based search. Surely, a non-Bayesian model-based search can be de-
signed.

A Bayesian score-based search assigns a score to each candidate model, characterizing how
well that model describes the data, and maximizes this score[86, 59]. Cooper [38] and Chick-
ering et al. [30, 33] showed that given a complete dataset andno hidden variables, locating the
Bayesian network structure that has the highest posterior probability is NP-hard, which suggests
the use of heuristic strategies for finding close-to-optimum solutions. Particularly for purely dis-
crete networks, various search strategies for models with the maximum score are proposed, e.g.,
greedy search by Chickering [32], and MCMC by Herskovits [89].One of the challenges of
applying score-based methods is the assessment of informative priors on possible causal models
and on parameters for those models. On the one side, the ability to represent prior information is
a great advantage of score-based approaches. On the other side, the choice of priors is not trivial.
It is currently common to specify some form of non-informative priors on models, e.g., uniform
prior over all possible models. Even though non-informative priors typically require only a few
parameters to be specified, it is sometimes not obvious how toset them. In addition, there are
both theoretical and computational difficulties in calculating scores for models with hidden vari-
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1. Introduction and Motivation

ables, if a general framework, i.e., ancestral graphs [133], are used. Finally, it is noteworthy that
Cowell [41] showed that if a node ordering, e.g., the causal order, is given the score-based and
constraint-based learning for complete data (no missing values in observed data) are equivalent
under the assumption of no hidden variables, in the sense that both prefer the same structures as
output.

Constraint-based approaches [153, 125] carry out independence tests on the database and build
a Bayesian network in agreement with the obtained independence restrictions. They make weak
commitments as to the nature of causal relationships. The best-known example of this kind
of approaches is the so-called inductive causation (IC) algorithm [125]. The IC algorithm can
be broken into an adjacency phase and an orientation phase. The main drawback of IC is that
one makes binary decisions about the relations between variables in the adjacency phase when
conditional independence is tested. These decisions, which are based on some statistical test,
may be erroneous and affect the subsequent behavior of the algorithm, which makes the whole
algorithm unstable. Moreover, testing conditional independence, especially in a continuous do-
main, is a challenging task in its own right. Standard refinements of IC are the PC [152] and
FCI algorithms [153]. PC excludes hidden common causes, while FCI allows them. The usual
implementation of PC/FCI employs standard statistical testswhich are based upon partial cor-
relations (Fisher’s Z) in continuous domains andχ2-tests in discrete/categorical domains. The
limitations of both tests are obvious: the former relies on the strict assumption of a multivariate
Gaussian distribution and the latter leads to a combinatorial explosion of the contingency table,
especially if the cardinality of the conditioning set is large. Another shortcoming of such tests
is that without discretisizing or embedding data, hybrid models, i.e., models of both continuous
and discrete/categorical variables, can not be treated by PC/FCI at all.

A first attempt to modify PC by measuring dependences via mutual information is made by
Cheng et al. [28], the so-called BN-PC algorithm. Unfortunately, Chickering et al. [34] showed
that the “monotone faithfulness assumption” made by BN-PC could not be generally valid. Fur-
thermore, the current implementation of BN-PC can only be applied to purely discrete domains.
The essential difficulty is that usual methods for estimation of mutual information from continu-
ous data involve the explicit estimation of the densities, which is hard for high-dimensional data,
unless suitable smoothness assumptions are made.

For purely continuous domains, Margaritis [107, 109] proposed a distribution-free indepen-
dence test for structural learning via constraint-based approaches. His test of independence is
Bayesian, because it calculates the exact posterior probability of independence by using Bayesian
integration based on a sophisticated iterative procedure of discretization over observed domains.

Apart from the difficulty of testing independence, another weakness of constraint-based ap-
proaches is that there are some distinct DAGs that representexactly the same set of independence
relations, the Markov equivalence class. Some interestingempirical results for the size of Markov
equivalence classes with up to10 nodes can be found in [68]. A straightforward consequence is
that one cannot determine the causal direction between two dependent variablesX andY if only
these two are measured, because hypothetical DAGsX→Y andX←Y are Markov equivalent
to each other. This problem is traced back to the fact that although a cause normally changes the
probability of a direct effect when controlling the direct effect’s other causes, such a dependency
may be symmetric. Causation, however, is asymmetric even in case of two dependent variables.

10



1.4. Inductive causation

Kano et al. [96] have also recognized this problem and proposed a causal inference rule using
non-normality via structural equation models. They utilized the fact that linear causal relations
can induce non-Gaussian joint measures. The non-Gaussian measure would require nonlinear
relations for hypothetical models that are inconsistent with the generating causal order. Based
on this observation, their inference algorithm, the so-called LiNGAM algorithm [143], which
is based on independent component analysis (ICA) selects models for which linear cause-effect
relations are sufficient whenever such causal hypotheses are possible for an observed distribution.
However, the underlying idea is only justified for real-valued variables and how to extend their
algorithm to other kinds of domains is not straightforward.Note that LiNGAM is an algorithm
of non-Bayesian model-based approaches.

1.4. Inductive causation

Since we intend to propose new methods of constraint-based approaches for causal inference,
we would like to have a close look at the inference principle of a constraint-based approach, in
particular the details of the so-called inductive causation (IC) algorithm.

First, IC makes the Markov assumption. Any population produced by a Bayesian network
(output of IC) implies the independence relations entailed by the Markov condition. However,
it does not follow that the population induces exactly theseand no additional independence re-
lations in the population. The faithfulness [153] (also called stability by Pearl [125]) condition
formulates this converse principle.

Definition 7 (Faithfulness Condition) Let G be a DAG andP a probability distribution gen-
erated byG. The pair(G, P ) satisfies the faithfulness condition if and only if no conditional
independence implied byP holds unless entailed by the Markov condition applied toG.

The pair (G, P ) which satisfies both Markov and faithfulness conditions is called a faithful
Bayesian network. Because faithful Bayesian networks share the feature of simplicity in graphi-
cal structuresG, they are good candidates for causal structures. To see how the faithfulness con-
dition leads to simplicity of structures, we will once againconsider the causal relations among the
maternal age, Down’s syndrome and various diagnostic testsin the example of having Down’s
syndrome. In the case of the fully connected Bayesian networkas shown in the rightmost plot
of Fig. 1.2, the Markov assumption alone puts no restrictions on the distributions that this struc-
ture could produce, because one obtains no independence relations whatsoever from applying
the Markov condition or the d-separation criterion to the corresponding DAG. But in some of
the distributions that this structure could produce, maternal age might be independent of each
diagnostic test “by coincidence”. If the observed distribution induces indeed such independence,
this fully connected Bayesian network contradicts the faithfulness assumption and cannot be
accepted as a good candidate for the causal model.

Roughly speaking, faithfulness requires that the verified constraints are not implied by acci-
dent, but by the structure. If two effects, e.g., a direct influenceX→Y and an indirect influence
viaZ,X→Z→Y happen to exactly balance and thus cancel, then there might be no association
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1. Introduction and Motivation

Figure 1.4.: Graphical representation of av-structure (unshielded collider onZ). As a causal
structure,Z is the common effect of mutually independent causesX andY .

at all between causally connected variablesX andY . In such a case the population is unfaith-
ful to the graph that generated it. In other words, under faithfulness assumption, we can say
that whatever structure generated the data, it implies by d-separation exactly the independence
relations that are present in the population. Admittedly, it could happen that particular choices
of the parameters entail probability distributions which imply additional independence relations
not represented in the DAG. However, it can be shown that almost all probability distributions
described by Bayesian networks, in a measure-theoretic sense, imply a conditional independence
if and only if the DAG represents the corresponding d-separation [113].

If the probability distribution is perfectly known, i.e., without error, and the faithfulness as-
sumption is fulfilled, it can be shown that the constraint-based approaches yield the correct
Bayesian network [152, 169], i.e., the Markov equivalence class of DAGs. Note that such a
nice property is not guaranteed by the other approaches of optimizing a scoring function, as they
can get stuck at local optima. That is the reason why we preferthe constraint-based approach to
a score-based search. It should be mentioned that even though the faithfulness condition is not
explicitly used by a Bayesian score-based approach, one obtains an implicit preference for faith-
ful structures provided that the priors are strictly positive densities on the space of all conditional
distributions [113, 129].

From the algorithmic viewpoint, the Markov and faithfulness assumption leads in some situ-
ations to a unique causal structure. Suppose we have a population involving only three distinct
variablesX, Y , andZ. The only independence relation in this population isX ⊥⊥ Y (see the
first column of Tab. 1.1 for all non-trivial relations). The question is what structure might have
produced data with these independence restrictions. The graphs that satisfy the Markov condi-
tion share the feature that each has a direct link betweenX andZ and a direct link betweenY
andZ, i.e., 6 fully connected DAGs, 3 DAGs with only two arrows as shown in Fig. 1.7 and one
DAG as in Fig. 1.4. Adding faithfulness assumption reduces the set of ten to a singleton, i.e., the
so-calledv-structure as shown in Fig. 1.4. The so-called “explaining away” phenomenon [174]
gives a typical example of suchv-structures in real-life situations. This phenomenon is also
known as Berkson’s paradox, or “selection bias” in statistics. After all, thev-structure is the only
structure satisfying the given set of independence constraints, otherwise the Markov or faithful-
ness condition would be violated.

Having embedded such triples into a larger network, the consideration above leads to an essen-
tial strategy for learning structure byv-structure identification. Such kind of structural learning
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1.4. Inductive causation

Independence btw.X, Y andZ v-Structure Non-v-Structure

X ⊥⊥ Y Presentin Population Absent in Population
X ⊥⊥ Z Absent in Population Absent in Population
Y ⊥⊥ Z Absent in Population Absent in Population
X ⊥⊥ Y | Z Absent in Population Presentin Population
X ⊥⊥ Z | Y Absent in Population Absent in Population
Y ⊥⊥ Z | X Absent in Population Absent in Population

Table 1.1.: The configurations of all possible non-trivial independence relations between three
distinct nodesX, Y and Z imply the v-structure (Fig. 1.4) and non-v-structure
(Fig. 1.7) respectively, when Markov and faithfulness assumptions are made. All
structures have the adjacencyX−Z−Y .

is efficient, because the maximum number ofv-configurations is generally less than
(

N
3

)
, where

N is the number of nodes. For instance, a model with10 nodes can only have maximum 100
v-configurations (see [68]). The key properties for discovering structures among more than three
variables can be summarized as follows:

• Any two distinct variablesX andY are directly connected by an edge (with yet unknown
orientation) if and only if there exists no set of variablesSXY ⊆ V\{X ∪ Y } such that
X ⊥⊥ Y |SXY . This is due to the faithfulness condition that every edge inthe resulting
graph induces a dependence that cannot be screened off by conditioning on any subset of
variables. An induced dependence can always be screened offif the underlying relation is
indirect.

• For subgraphs of the formX→Z→Y ,X←Z→Y , andX←Z←Y , whereX andY are
nonadjacent, the dependence betweenX andY can only be screened off by conditioning
on subsets that containZ.

• For subgraphs of the formX→Z←Y , whereX andY are nonadjacent, conditioning on
any subset which containsZ will induce dependence betweenX andY .

Based on these thoughts, the IC algorithm conducts three mainsteps, which are itemized in
Fig. 1.5, to learn the causal structure. Fig. 1.6 demonstrates an example, where the underlying
true causal model has the structure as shown in Fig. 1.1. After the test of conditional indepen-
dence (step 1), the underlying skeleton as shown in the leftmost plot of Fig. 1.6 is obtained. In
the posterior orientation phase, step 2 provides a partially directed graph whose orientation is
only given by the detectedv-structures (Fig. 1.6, middle). The remaining edge can be directed
(Fig. 1.6, rightmost) in step 3, since the reverse directionwould produce newv-structures or
directed cycles. Note that the output in this example is not completely directed.

If the distributionP is indeed faithful to some graphG and we have a perfect way of deter-
mining SXY for all pairs(X,Y ), it is then guaranteed that IC produces a graph that is Markov
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1. Introduction and Motivation

Input: A set of variablesV.

Step 1: Connect verticesX−Y if and only if no set of variablesSXY ⊆V\{X∪Y } can be found
with X ⊥⊥ Y |SXY . This provides an undirected graphG, i.e., the underlying adjacency
structure.

Step 2: Orient a substructureX−Z−Y , whereX and Y are nonadjacent, into av-structure
X→Z←Y , if Z /∈SXY .

Step 3: Orient as many of the remaining undirected edges inG as possible whenever their direc-
tions follow from the assumption that neither additionalv-structures (apart from those found
in the previous step) nor directed cycles exist.

Output: A graphG.

Figure 1.5.: Three-step-scheme of the IC algorithm. Step 1 searches for the underlying adjacency
structure. Steps 2 and 3 orient the edges.

Figure 1.6.: Stepwise results of the IC algorithm for learning the structure as shown in Fig. 1.1.
Step 1 learned the adjacency structure. Step 2 identified thev-structures. Step 3
orientedX6→X7 due to the assumption that no additionalv-structures are present.
Step 3 further orientedX3→X7 andX4→X7 under the assumption that no directed
cycles are present. The final output is a partially directed graph.
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1.5. Thesis goal and outline

Figure 1.7.: A Markov equivalence class of three different structures.X ⊥⊥ Y |Z is the only
independence relation betweenX, Y andZ. The maximally oriented graph learned
by a constraint-based approach, e.g., IC, is an undirected structure, whereX andY
are nonadjacent (rightmost plot). It should be stressed that the representation of this
undirected structure (rightmost plot) excludes thev-structure (Fig. 1.4), because a
constraint-based approach represents suchv-structures explicitly. We call the struc-
ture as shown in the leftmost plot “fork”, and the structuresas shown in the middle
two plots “chain”.

equivalent to the original one. Even though IC leaves the details of the tests of conditional in-
dependence in step 1 unspecified, it is well-known that a testof independence can fail if it is
based on finite sample sizes. In addition, an error made in theearly phase of orientation can have
cascading effects in the orientation of the output. Due to this instability, the resulting structure is
sensitive to the order in which conditional independence relations are checked.

Step 3 of IC can be systematized in several ways. Meek [113] showed that the four rules
proposed by Verma et al. [170] are sufficient, so that repeated application will eventually orient
all edges that are common to the Markov equivalence class. Wecall such partially oriented graph
a maximally oriented graph. These four rules can be found in [125] p. 51. Note that rule 4 is
not required if the starting orientation is limited tov-structures. The first three rules, which are
actually needed for step 3 of IC are summarized in Appendix B.3.

The output of IC, a maximally oriented graph, is often not completely directed, e.g., the three
structures in Fig. 1.7 are equivalent with respect to the imposed independence constraints (see the
second column of Tab. 1.1) and thus indistinguishable by IC. In particular, if no independence can
be verified, the usual IC algorithm provides a fully connected and completely undirected graph
as output. In particular, IC is not capable of learning direction between two dependent variables,
when only these two are measured. In such cases, additional inference rules are desirable.

1.5. Thesis goal and outline

The goal of this thesis is to develop new techniques for recovering the causal relationships from
statistical data and demonstrate their utility by applyingthem to real-world problems. Aside of
the contributions of each individual chapter, the thesis introduces mainly two novel techniques
for learning causal structures: a so-called kernel dependence measure (Chapter 2 to 5), and an
inference rule via properties of Markov kernels (Chapter 6 to7). The former tool uses the main
ideas of a constraint-based approach and goes beyond it (as the magnitude of dependences is
used), while the latter is a non-Bayesian model-based approach. The reminder of the thesis
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1. Introduction and Motivation

document is structured as follows.
In Chapter 2, we first introduce the so-called kernel dependence measures. Based on the

kernel measures, Chapter 3 presents a kernel statistical test of independence. Such a statistical
hypothesis test is not only able to capture the conditional independence between continuous
variables, without assumption of a specific kind of distribution, but also to deal with hybrid
models containing both continuous and discrete/categorical variables in a straightforward way.

By means of the independence constraints obtained by the kernel tests, Chapter 4 elaborate
on the problems of inferring the causal structure and presents a so-called robust causal learning
(RCL) algorithm. RCL learns the graphical representation of data in favor of constraints of small
conditioning sets, under the reliability assumption of these constraints. Since the independence
relations are essential for learning directions in the structure, RCL is especially suited to learn
sparse models.

Chapter 5 copes with the problem of inferring causal structure using kernel dependence mea-
sures. First part of this chapter is spent on introducing an orientation heuristics under some
assumption about the magnitude of dependences measured by kernel methods. After that, a fast
kernel-based causal learning (KCL) algorithm is presented.KCL uses an auxiliary graph which
is obtained by the orientation heuristics to explore the adjacency structure by kernel test of inde-
pendence. The use of the degree of dependences radically reduces the search space of possible
DAGs. The algorithm is particularly suitable for dense models, since the degree of dependences
give some hints about the direction of edges without independence relations.

Chapter 6 strives for an inference principle, which goes beyond constraint-based approaches.
We aim at the challenging problem how to make causal inference between structures within
a Markov equivalence class. In particular, we try to infer causal direction between only two
dependent variables. The main idea is to capture the asymmetry between the causal and effect by
evaluating the plausibility or complexity of parameters ofa causal model, i.e., the set of Markov
kernels. The chapter introduces a first concept of plausibleMarkov kernels (plMK) via low-order
(first and second) statistical moments and presents the so-called plMK algorithm to discover the
causal order.

Chapter 7 introduces a kernel-based norm to define the complexity of Markov kernels and
shows its application to causal inference between only two dependent variables. In the last
chapter, the main results of this thesis are summarized and an outlook to future work is given.
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2. Kernel Dependence Measure

Conditional independence relationships between variablesplay a crucial role in constraint-based
approaches of structural learning. However, measuring independence or dependence is a non-
trivial problem currently unsolved in its generality. In this chapter, we will introduce the so-called
kernel dependence measures, which can generally capture both linear and nonlinear relation-
ships.

2.1. Linear and nonlinear dependence

In probability theory and statistics, correlation indicates the magnitude of a linear relationship
between two random variables. There are a number of different coefficients for different situa-
tions. The most popular is the Pearson correlation coefficient ρ, which is obtained by dividing
the covariance of two variables by the product of their standard deviations, namely

ρYX :=
Cov[X,Y ]√
Var[X]Var[Y ]

=
E[(X − E[X])(Y − E[Y ])]√

E[(X − E[X])2]E[(Y − E[Y ])2]
∈ [−1, 1] , (2.1)

where “E[ · ]”, “ Var[ · ]” and “Cov[ · ]” depict the expectation, variance and covariance of corre-
sponding random variables.

Suppose variableY is linearly related to standard normally distributed variableX ∝N (0, 1)
added with a standard normally distributed noiseε∝N (0, σ2

i ), i.e.,Y =X+ε. Throughout this
thesis,N (µ, σ2) denotes a normal (Gaussian) distribution with meanµ and varianceσ2 (standard
deviationσ>0). Fig. 2.1 illustrates the correlation coefficients betweenX andY in the case of
noises with different variances. It shows that the larger the variance of the noise, the noisier the
relation, the smaller the correlation coefficientρ. In such linear case, correlation is capable of
characterizing the dependence betweenX andY .

In general, dependences in nature can be generated by relationships of various forms. In a
nonlinear case, the correlation coefficient is not suited tomeasure the dependence, for instance,
samples based on the relationY = X2 + ε (see the first plot of Fig. 2.2 for one sample) or
Y =sin(πX)+ε (see the first plot of Fig. 2.3 for one sample). AlthoughX andY are obviously
strongly dependent in samples, the correlation coefficientis small. It is noteworthy that the cor-
relation coefficient of transformed data would be large if the nonlinear transform of the original
variable were known (see the second, the third and the fourthplot of Fig. 2.2 and Fig. 2.3).

In some situation, the correlation coefficient is not able tocapture dependences at all. To
make this apparent, we sampled data as shown in the first plot of Fig. 2.4. The original sample
(X0, Y0) is transformed by a rotation of angleω (in degree), denoted(Xω, Yω). The second and
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Figure 2.1.: Correlation coefficients indicate the strengthof linear relation between two variables
X andY . 100 data points ofX are sampled from the standard Gaussian distribution
N (0, 1). Y is linearly related toX, i.e.,Y =X+ε, with an independent Gaussian
noiseεi∝N (0, σ2

i ), where(σ1, σ2, σ3, σ4)= (0.01, 0.5, 1, 4) are the standard devia-
tions. The larger the varianceσ2

i of the noise, the noisier the relation, the smaller the
correlation coefficientρ.
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Figure 2.2.: Correlation coefficients are not suitable for measuring the strength of a quadratic
relation between two variables. 100 data points ofX are sampled from the standard
Gaussian distributionN (0, 1). Y is quadratically related toX, i.e.,Y =X2+ε with
a Gaussian noiseε∝N (0, 0.25). The correlation coefficient is small in the original
data (leftmost plot). However, if the functional formX2 of the quadratic relation
were known, the correlation coefficient of transformed data(X andX2) would be
large (second plot from left). The correlation coefficient would be also large with a
transform of similar polynomial function, e.g.,X3 orX4 (the last two plots).
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Figure 2.4.: An example of a nonlinear dependence, where thecorrelation coefficient vanishes,
although a strong dependence is present. The half of the total 100 data points ofY
is sampled fromε1 ∝ N (1, 0.01) and the other half fromε2 ∝ N (−1, 0.01). Data
points forX are sampled according to the distributionsP (X|Y <0), P (X|Y ≥0)∝
N (0, 1). (Xω, Yω) denotes the original data(X,Y ) transformed by a rotation of an-
gleω in an anticlockwise direction.X0 andY0 (leftmost plot) as well asX90 andY90

(second plot from right) are mutually independent, whereasX45 andY45 (second plot
from left) are strongly dependent. Theoretically, the correlation coefficient vanishes
for all ω. The rightmost plot visualizes the typical curve of the estimated correlation
coefficient (red line) forω∈ [0, 90], and a typical curve of the estimated kernel-based
dependence measures (blue line), which will be discussed inSection 2.6.
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the third plot of Fig. 2.4 visualize the transformed data(X45, Y45) and(X90, Y90). According to
the underlying model withP (X0|Y0 < 0) = P (X0|Y0 ≥ 0) (see Fig. 2.4 for description of the
generating model),X0 andY0 are independent. It is obvious thatXω andYω are independent for
ω=0, 90, 180, . . ..

In this example, it is easy to see that the correlation matrixρ0 of the data matrix

D0 :=

(
X0

Y0

)

is a unit matrix, namely

ρ0 :=

(
ρX0X0 ρX0Y0

ρY0X0 ρY0Y0

)
=

(
1 0
0 1

)
.

Further, it is well known that the rotation matrixRω of angleω in an anticlockwise direction has
the form of

Rω =

(
cos( π

180
ω) sin( π

180
ω)

− sin( π
180
ω) cos( π

180
ω)

)
.

Hence, data transformed by a rotation angleω can be calculated by
(
Xω

Yω

)
=: Dω = Rω D0 = Rω

(
X0

Y0

)
,

and the corresponding correlation matrixρω is given by

ρω = E [Rω (D0 − E[D0])(D0 − E[D0])
T RT

ω] = Rω ρ0R
T
ω = ρ0 .

This means that the correlation coefficient indeed vanishesfor all values ofω, while the depen-
dence actually vanishes only for few specific rotation anglesω=0, 90, 180, . . .. In this example,
correlation coefficient fails to capture the dependence completely. In other words, “uncorrelated”
does not mean “independent”. For this reason, it is not very surprising that the performance of
solving real-world problems by the PC/FCI algorithm is sometimes unsatisfactory, since it takes
only correlation, i.e., the linear dependences into account.

The examples as shown in Fig. 2.3 and Fig. 2.4 suggest that an appropriate nonlinear transform
with e.g., polynomialsX 7→ (X,X2, X3, . . .) of the original variable might be generally useful
for revealing various kinds of dependence. In various applications, however, it is very hard to find
the proper parameters. And a well-fitting transform, if possible, may cause high-dimensionality
of parameters, since we do not have a direct access to the underlying real relationship. In order
to transform the non-linear relationship into a linear one in the feature space, we will employ the
so-called kernel method [137] as the general framework.
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2.2. Positive definite kernel and RKHS

The idea of “kernelization” is to transform the original data with a “feature map” [3]. The kernel
method maps variables into an appropriate feature space by anonlinear transformation, where
the nonlinear dependences in the original space are captured by correlations between variables in
the feature space. Hence, the conditional independence in the original space has clear statistical
or probabilistic meaning in the feature space. Although theword “kernel” is traditionally used in
statistics in a different meaning, which does not impose positive definiteness, e.g., kernel density
estimation of Parzen window approach [122], “kernel” means“positive definite kernel” [10]
throughout this thesis.

Definition 8 (Positive Definite Kernel)A positive definite kernel on a nonempty setX is defined
by a symmetric functionk : X × X → IR such that for arbitraryn∈ IN andx(1), . . . , x(n) ∈X
the matrixK with (K)ij := k(x(i), x(j)) is positive definite, i.e.,

n∑

i,j=1

cicjk
(
x(i), x(j)

)
≥ 0

for all c1, . . . , cn∈ IR.

A popular positive definite kernel on a subsetX of IRm is the so-called Gaussian radial basis
function (RBF) kernel,

kσ(x, x′) = exp

(
−‖x− x

′‖2
2σ2

)
, (2.2)

with x, x′ ∈ X and parameterσ ∈ IR+. Every positive definite kernel defines a mapΦ from X
into a feature space, i.e., an RKHSH onX :

Φ : X → H
x 7→ k(x, ·) .

Here,Φ(x) denotes the function that assigns the valuek(x, x′) to x′∈X , i.e.,Φ(x)( ·)=k(x, ·).
Given the inner product

〈
k(x, ·), k(x′, ·)

〉
= k(x, x′), the feature spaceH is defined by the

completion of an inner product space spanned by the functionsk(x, ·)∈H for all x∈X . Due to
the reproducing property 〈

k(x, ·), f
〉

= f(x) (2.3)

for all f ∈H, positive definite kernelsk are also called reproducing kernels. In view of the map
Φ, the reproducing property amounts to

〈Φ(x),Φ(x′)〉 = k(x, x′) .

Therefore, the inner product spaceH onX constructed in this way is a possible instantiation of
the feature space associated with a kernelk. In some situation, we write(HX , kX ) explicitly to
make clear that the RKHSHX onX is induced bykX .
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2. Kernel Dependence Measure

The main benefit of mapping a random variablesX = (x(1), . . . , x(n)) on X into an RKHS
(HX , kX ), i.e.,X 7→ Φ(X), is that one can do linear statistics in the feature spaceHX . The
random variableΦ(X) (feature representation of random variableX) on the RKHSHX is useful
to represent the distribution ofX.

2.3. Cross-covariance operator and independence

Following the lines of Baker [12], Gualtierotti [80] and Fukumizu et al. [61], we introduce now
the cross-covariance operator, expressing correlations between variables in the feature space.

Suppose we have a random vector(X,Y ) taking values onX×Y. The base spacesX andY are
topological spaces. The measurability of spaces is defined with respect to the Borelσ-field. The
joint probability measure of(X,Y ) is denoted byPXY , and the marginal probability measure by
PX andPY . We make the following assumption for a kernel and a random variable throughout
this thesis.

Assumption 1 A positive definite kernelk and a random variableX on measurable spaceX
satisfy

EX [k(X,X)] <∞ .

Using the reproducing property of Eq. (2.3), it is easy to seethat Assumption 1 guaranteesHX
andHY are included inL2(PX) andL2(PY ), respectively, whereL2(µ) denotes the Hilbert space
of square integrable functions with respect to a measureµ (see [62], p. 6).

Definition 9 (Cross-Covariance Operator)Let (HX , kX ) and(HY , kY) be RKHSs of functions
on measurable spacesX andY, respectively, which satisfy Assumption 1. It is known that there
exists a unique operatorΣYX fromHX toHY such that

〈g,ΣYXf〉HY = EX,Y [f(X)g(Y )]− EX [f(X)] EY [g(Y )] = Cov [f(X), g(Y )] (2.4)

holds for allf ∈HX andg∈HY . It is called the cross-covariance operator.

As the operatorΣYX is a linear map on RKHSs (fromHX toHY), the above definition means
thatΣYX works as an analogue to the covariance matrix for finite dimensional random variables.
From the definition, it is obvious thatΣ∗YX = ΣXY , whereΣ∗ denotes the adjoint of an operator
Σ. If Y is equal toX, the positive self-adjoint operatorΣXX is called the covariance operator.
Furthermore, letPX andPY be the orthogonal projections which mapHX ontoR(ΣXX) and
HY ontoR(ΣY Y ), respectively.R(Σ) denotes here the range of an operatorΣ. It is known that
ΣYX has a representation of the form [12]

ΣYX = Σ
1/2
Y Y VYXΣ

1/2
XX , (2.5)

whereVYX : HX → HY is the unique bounded operator such that‖VYX‖ ≤ 1 and VYX =
PY VYXPX . ‖ ·‖ is used for the operator norm of a bounded operator, i.e.,‖V ‖=sup‖f‖=1 ‖V f‖.
To evaluate various nonlinear correlation through the covariance operator, the RKHS should be
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2.4. Conditional cross-covariance operator and conditional independence

“rich enough” to express such a variation of nonlinear functions. We make the following as-
sumption for RKHSs throughout this thesis.

Assumption 2 Let1 denote the function with constant value1 onX . ThenHX+IR ·1 is dense
in L2(PX), where “+” means the sum of RKHSs.

The kernels that satisfy Assumption 2 are necessarily “characteristic”. The class of characteristic
kernels is in general useful for inference on probabilities. Fukumizu et al. [61, 62] used the
notation of “probability determining” for this class of kernels. Probability determining kernels
mean that the associated RKHS determines a probability by theexpectation ofk(x, ·). We
prefer the term “characteristic” because of the analogy with the characteristic function (see [63]
for more details).

TheL2(PX)-space is a rich class of functions including all bounded measurable functions,
such as the index function of a measurable set. Thus, under the above assumptions, the following
characterization of independence is easy to be proved (see [11], Theorem 2).

Theorem 1 Under Assumptions 1 and 2, the random variablesX andY are independent if and
only if the operatorΣYX vanishes. That is,

ΣYX = O ⇐⇒ X ⊥⊥ Y .

Many popular kernels satisfy Assumption 2. A famous class ofsuch kernels is given by the
so-called universal kernels, proposed by Steinwart [159].A simple criterion for the universality,
as well as various examples of universal kernels, are given by Steinwart [159].

Definition 10 (Universal Kernel) A positive definite kernelkX on a compact setX is called
universal if the associated RKHSHX is dense in the Banach space of bounded continuous func-
tions.

Since the Banach space of bounded continuous functions on a compact subsetX of IRm is dense
in L2(PX) for any probability measurePX onX , any universal kernel on a compact subset of
IRm, e.g., the Gaussian RBF kernel and Laplacian kernel, satisfiesAssumption 2, and thus can
be used to capture independence. Another important exampleis the Gaussian RBF kernel on
the entire Euclidean space. Assumption 2 holds also in this case, as shown by Lemma 4 in
Appendix A.1.

In summary, Gaussian RBF kernels can be used to capture the independence between random
variables either on a compact subset ofIRm or the entireIRm. The former fact has been shown
by Gretton et al. (see [75], Theorem 6), and the latter by Bach et al. [11] by a direct argument.

2.4. Conditional cross-covariance operator and
conditional independence

Following the lines of Fukumizu et al. [61], we define the conditional cross-covariance operator
and derive its relation to the conditional independence of random variables.
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2. Kernel Dependence Measure

Definition 11 (Conditional Cross-Covariance Operator)Let (HX , kX ), (HY , kY), (HZ , kZ)
be RKHSs on measurable spacesX , Y, Z, respectively. And let(X,Y, Z) be a random vector
onX×Y×Z. The conditional cross-covariance operator of(X,Y ) givenZ is defined as

ΣYX|Z := ΣYX − Σ
1/2
Y Y VY ZVZXΣ

1/2
XX , (2.6)

whereVY Z andVZX are the bounded operators in Eq. (2.5) forΣY Z andΣZX , respectively.

If Σ−1
ZZ exists, we sometimes rewriteΣYX|Z as

ΣYX|Z = ΣYX − ΣY ZΣ−1
ZZΣZX (2.7)

for convenience of calculation. Obviously,Σ∗YX|Z = ΣXY |Z . If X andY coincide, the positive
self-adjoint operatorΣY Y |Z is called the conditional covariance operator. The conditional cross-
covariance operator expresses the conditional covarianceof f(X) andg(Y ) givenZ in the feature
space, as shown in the following theorem, which generalizesthe result on conditional covariance
operator (see [62], Proposition 3). The same relation was proved by Fukumizu et al. (see [61],
Proposition 5) with more sophisticated assumptions. A simpler proof is given in Appendix A.2.

Theorem 2 Under Assumption 2,

〈
g,ΣYX|Zf

〉
HY

= EZ [Cov [f(X), g(Y ) |Z]]

for all f ∈HX andg∈HY .

As with the connection between vanishing of the cross-covariance operator and the marginal
independence, one would wish for an analogous relationshipbetween vanishing of conditional
cross-covariance operator, i.e.,ΣYX|Z =O and the conditional independence, i.e.,X ⊥⊥ Y |Z.
Unfortunately, Fukumizu et al. [61] show the equivalence

ΣYX|Z = O ⇐⇒ PXY = EZ

[
PX|Z ⊗ PY |Z

]
,

which means that the conditionΣYX|Z = O is weaker than the conditional independence ofX
andY givenZ, since

X ⊥⊥ Y |Z =⇒ PXY = EZ

[
PX|Z ⊗ PY |Z

]
6=⇒ X ⊥⊥ Y |Z .

Nevertheless, Fukumizu et al. [61] also show that ifZ is a part of eitherX andY , one ob-
tains the equivalence with the conditional independence. For notational simplicity, we define
the shorthands̈X := (X,Z) and Ÿ := (Y, Z). Due to the fact thatX ⊥⊥ Y |Z if and only if
(X,Z) ⊥⊥ (Y, Z) |Z (see [46], Lemma 4.1) we can characterize the conditional independence
X ⊥⊥ Y |Z by ΣŸ Ẍ|Z =O. To state the result more precisely, we need to introduce a technical
assumption on the kernels. To avoid detailed mathematical discussion, we restrict our attention
to the following class of spaces for the base spaces.

Assumption 3 The base space of a kernel admits a metric.

24



2.5. Hilbert-Schmidt dependence measure

The above assumption is satisfied by most of the sets that are used in our context, such as sub-
sets in the Euclidean space and discrete sets, while more general cases may be discussed. Under
Assumption 3, it is known (see [51], Lemma 9.3.2) that for a metric space the Banach space of
the bounded continuous functions is characteristic (or probability-determining). Since the Ba-
nach space is contained inL2(P ) for any probability measureP , it is easy to derive Theorem 3
in the same manner as Theorem 7 in [61]. Recall that for two RKHSsHX andHY onX andY,
respectively, the tensor productHX⊗HY is the RKHS onX×Y with the positive definite kernel
kX⊗kY (see [10] for details) where

(
kX ⊗ kY

)(
(x, x′), (y, y′)

)
:= kX (x, x′) kY(y, y

′) .

Note that if the two RKHSs both have Gaussian kernels, their direct product is also an RKHS
with a Gaussian kernel, which satisfies Assumptions 1 and 2.

Theorem 3 Let (HX , kX ), (HY , kY), and(HZ , kZ) be RKHSs on measurable spacesX , Y, and
Z, respectively, and let(X,Y, Z) be a random vector onX×Y×Z. We further definëX :=(X,Z)
andŸ :=(Y, Z). If kernelskX⊗kZ , kY⊗kZ , kZ , and(kX⊗kZ)⊗(kY⊗kZ) satisfy Assumptions 1, 2
and 3, we have

ΣŸ Ẍ|Z = O ⇐⇒ X ⊥⊥ Y |Z .

Fukumizu et al. (see [61], Corollary 9) have provedΣY Ẍ|Z = 0 ⇔ X ⊥⊥ Y |Z. Based on
this corollary, the proof of Theorem 3 is trivial. Since in generalΣẌY |Z 6= ΣXŸ |Z , we prefer a
definition which is inherently symmetric with respect to exchangingX andY .

2.5. Hilbert-Schmidt dependence measure

To derive dependence measures based on the previous results, we need to evaluate how far the
operator is from zero. Although there are other choices for measuring the “size” of an operator,
such as the largest eigenvalue or determinant (see e.g., [61]), we focus on the Hilbert-Schmidt
norm in this thesis. This norm, when applied to the cross-covariance operator, was proposed
by Gretton et al. [73] as an independence criterion. For our purpose, we extend it also to the
conditional cross-covariance operator.

Definition 12 (HS Norm of Operators) The Hilbert-Schmidt (HS) norm ofΣ: HX → HY is
defined, provided that the sum below is finite, by

‖Σ‖2HS :=
∞∑

i,j=1

〈ϕj,Σφi〉2HY ,

where{φi}∞i=1 and{ϕj}∞j=1 are complete orthonormal systems of separable RKHSsHX andHY ,
respectively.

An RKHS(HX , kX ) is separable, when the topological spaceX is separable andkX is continuous
onX×X [102]. It is easy to see that this definition generalizes the Frobenius norm on matrices,
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2. Kernel Dependence Measure

i.e., the trace of the squared matrix:‖Σ‖2HS = Tr(ΣΣ∗). The squared HS norms of the cross-
covariance and conditional cross-covariance operators will be our dependence measures. This is
justified by Theorem 1 and Theorem 3, which imply

∥∥ΣYX

∥∥2

HS
= 0 ⇐⇒ X ⊥⊥ Y ,

∥∥ΣŸ Ẍ|Z
∥∥2

HS
= 0 ⇐⇒ X ⊥⊥ Y |Z ,

under Assumptions 1, 2, and 3.

It is known that the absolute or square value of a correlationcoefficient is bounded from above
by 1 and indicates the strength of correlation. The sign indicates the manner of correlation.
In contrast, the value of a kernel dependence measure is always nonnegative and not bounded
from above by1. The value of the afore-introduced kernel measure eventually depends on the
choice of kernels. Fukumizu et al. [63] currently proposed anormalization of the (conditional)
cross-covariance operator that makes the afore-introduced dependence measure independent of
the choice of kernels. However, its computation requires even in the unconditional case already
regularization coefficients, which causes trouble for the empirical estimation in practical appli-
cations. Fortunately, various experiments later will showthat the issue of kernel choice is not
so crucial for our purpose as it seems to be, provided that a normalization factor for the kernel
measure is introduced, which makes the measures of unconditional and conditional dependence
comparable.

To motivate our normalization factor for the kernel measure, we show by means of graphical
models why the comparablilty of unconditional and conditional dependence is desirable. Sup-
pose a DAGG including variablesX, Y andZ is given. Imagine that the dependence between
variablesX andY is partly induced by a direct relation fromX to Y and partly by an indirect
relation overZ, e.g., via a pathX→Z→ Y . According to the d-separation criterion (see Def-
inition 4), conditioning onZ blocks the indirect connection fromX to Y via Z and changes
the dependence betweenX andY . When the connections betweenX andZ and betweenY
andZ are very weak, the dependence betweenX andY is dominated by the direction relation
between them. In such situation, one would expect that the conditional (givenZ) dependence
measure achieve almost the same value as the unconditional one. In particular, the measure of
unconditional (given empty set) and conditional (givenZ) dependence measure ofX andY
should have the same value, ifZ ⊥⊥ (X,Y ). Actually mutual information, a popular dependence
measure, fulfills this requirement automatically, becauseI(X,Y )= I(X,Y |Z) always holds for
Z ⊥⊥ (X,Y ). However, the norms‖ΣYX‖2HS and‖ΣŸ Ẍ|Z‖2HS constructed above do not coincide
in that case. To make the measure of unconditional and conditional dependence in some sense
comparable, we have to renormalize the afore-introduced dependence measure appropriately.
For this purpose, we show the following theorem.

Theorem 4 LetX, Y andZ be random variables with(X,Y ) ⊥⊥ Z. Then we have

ΣŸ Ẍ|Z = ΣYX ⊗ TZ ,
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2.6. Empirical estimation of Hilbert-Schmidt dependence measure

whereTZ : HZ → HZ is defined as

〈h2, TZh1〉 := EZ [h1(Z)h2(Z)] . (2.8)

for arbitrary h1, h2 ∈ HZ . Hence we obtain

∥∥ΣŸ Ẍ|Z
∥∥2

HS
= ‖TZ‖2HS ‖ΣYX‖2HS . (2.9)

The proof of this theorem can be found in Appendix A.3. Eq. (2.9) suggests to rescale the
dependence measure‖ΣŸ Ẍ|Z‖2HS by 1/‖TZ‖2HS. By means of this rescaling, the conditional
dependence measure equals the marginal one, if conditioning variableZ is independent ofX
andY .

Definition 13 (Kernel Dependence Measure)The kernel unconditional (marginal) and condi-
tional dependence measure can be defined by

HYX := ‖ΣYX‖2HS ,

HYX|Z :=
∥∥ΣŸ Ẍ|Z

∥∥2

HS
/βZ ,

respectively, where the scalarβZ := ‖TZ‖2HS > 0 makesHYX|Z and HYX comparable, in the
sense that(X,Y ) ⊥⊥ Z impliesHYX|Z = HYX .

It is straightforward to express the renormalization factor βZ = ‖TZ‖2HS in terms of kernels,
since the operatorTZ is given by

TZ =
∑

z∈Z
k( · , z)k(z, ·)PZ(z) ,

which implies
Tr(T 2

Z) =
∑

z,z′∈Z
k2(z, z′)PZ(z)PZ(z′) .

For notational convenience, we henceforth drop the double-dots on the variables for the indices
of the conditional cross-covariance operators. All conditional cross-covariance operators, e.g.,
ΣYX|Z for measuring conditional independence betweenX andY hereafter should be interpreted
with the implicit understanding that the conditioning variableZ is a part of bothX andY .

2.6. Empirical estimation of Hilbert-Schmidt
dependence measure

Since we need to estimate the dependence measures from a finite number of samples in practical
situations, we define the estimators and show the convergence to the population ones in this
section.
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2. Kernel Dependence Measure

Suppose(x(1), y(1), z(1)), . . ., (x(n), y(n), z(n)) is an independent and identically distributed
sample from the joint probabilityPXYZ . Definek̃(i)

X ∈HX by

k̃
(i)
X := kX

(
· , x(i)

)
− 1

n

n∑

i=1

kX
(

· , x(i)
)
,

andk̃(i)
Y ∈HY , k̃(i)

Z ∈HZ analogously.

First we consider an empirical estimator of‖ΣXY ‖2HS. By replacing the expectation with the
empirical average in Eq. (2.4), the squared norm‖ΣXY ‖2HS is approximated by

∥∥∥Σ̂(n)
YX

∥∥∥
2

HS
=

∞∑

l,m=1

〈
ϕm, Σ̂

(n)
YXφl

〉2

HY

=
1

(n− 1)2

∞∑

l,m=1

n∑

i,j=1

〈
k̃

(i)
X , ϕm

〉〈
k̃

(i)
Y , φl

〉〈
k̃

(j)
X , ϕm

〉〈
k̃

(j)
Y , φl

〉
,

where{φl}∞l=1 and{ϕm}∞m=1 are complete orthonormal systems ofHX andHY , respectively. Let
K̂ be the centralized kernel matrix (see e.g., [138]) defined as

K̂X :=

(
In −

1

n
1n1T

n

)
KX

(
In −

1

n
1n1T

n

)

where(KX)ij = kX (x(i), x(j)) is the kernel matrix, and1n = (1, . . . , 1)T is the vector with all
entries equal to1. The matrixK̂Y is defined analogously by usingy(i), y(j). Then, it is easy to
see that〈k̃(i)

X , k̃
(j)
X 〉=(K̂X)ij and〈k̃(i)

Y , k̃
(j)
Y 〉=(K̂Y )ij. We have

∥∥∥Σ̂(n)
YX

∥∥∥
2

HS
=

1

(n− 1)2

n∑

i,j=1

(
K̂Y

)

ji

(
K̂X

)

ij
=

1

(n− 1)2
Tr
(
K̂Y K̂X

)
.

K̂X , K̂Y are matrices of inner products between centered observations in respective feature
spaces. The trace of their product can, in some sense, be interpreted as a measure of similar-
ity between two kernel matriceŝKX andK̂Y measured by Frobenius inner product. It is easy to
see that the inner product is always nonnegative, due to the fact that kernel matrices are positive
definite. Another possible interpretation of the HS-norm for a cross-covariance operator is the
following. According to [24], one can representPXY andPXPY as Hilbert space vectors in fea-
ture space, then the kernel maximum mean discrepancy, i.e.,distance of the mean elements of
PXY andPXPY , in feature space (see [24] for details). An empirical estimator of the HS-norm
for a cross-covariance operator, which is also called the Hilbert-Schmidt Independence Criterion,
or HSIC by Gretton et al. [73], can be defined as follows.

Definition 14 (Empirical Unconditional Dependence Measure)An empirical estimate of the
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2.6. Empirical estimation of Hilbert-Schmidt dependence measure

Hilbert-Schmidt unconditional dependence measure is

Ĥ
(n)
YX :=

1

(n− 1)2
Tr
(
K̂Y K̂X

)
. (2.10)

Note that the normalization factor proposed in Section 2.5 is only used for the conditional
dependence measure. The unconditional dependence measurewill not be rescaled. As mentioned
previously, the absolute value of the empirical measures asdefined above actually depends on
the choice of kernels and is only bounded from below by 0 but not bounded from above. It is not
clear how to interpret the value of empirical dependence measures. Nevertheless, because of the
smoothness assumption implicitly made by kernels, this kernel measure captures the dependence
between two variables in a reasonable way.

As an example, we can calculate the empirical unconditionaldependence measure for the sam-
ple as shown in Fig. 2.4 by using Gaussian kernels. The rightmost plot shows that the estimators
are alway larger than zero for all rotation anglesω, and the empirical measure is nearly zero
whenω = 0 or ω = 90. The empirical kernel dependence measure reaches its maximum when
ω = 45. This behavior reflects the intuitive understanding of the underlying dependence. The
degree of dependence achieves its maximum whenω=45.

The next step is to show how to estimate the HS-norm of a conditional cross-covariance op-
erator, let̂Σ(n)

YX , Σ̂
(n)
Y Z , Σ̂

(n)
ZX , Σ̂

(n)
ZZ denote the empirical estimators corresponding to the respective

operators. Based on Eq. (2.7), the empirical conditional cross-covariance operator̂Σ
(n,ε)
YX|Z is de-

fined as

Σ̂
(n,ε)
YX|Z = Σ̂

(n)
YX − Σ̂

(n)
Y Z

(
Σ̂

(n)
ZZ + εI

)−1

Σ̂
(n)
ZX , (2.11)

whereε > 0 is a regularization constant that enables inversion.1 It is analogous to Tikhonov
regularization [77] or ridge regression [92]. The most natural unbiased estimator̂β(n)

Z for βZ is
given by a U-statistic

β̂
(n)
Z :=

n(n− 1)
∑
i6=j

kZ (z(i), z(j))
2

with z(i), z(j) ∈ Z. Henceforth, the corresponding estimator for the conditional dependence
measure can be defined as follows.

Definition 15 (Empirical Conditional Dependence Measure)An empirical estimate of the
Hilbert-Schmidt conditional dependence measure is

Ĥ
(n,ε)
YX|Z :=

β̂
(n)
Z

(n− 1)2
Tr
(
K̂Y K̂X − 2K̂Y K̂Z(K̂Z + εI)−2K̂ZK̂X

+K̂Y K̂Z(K̂Z + εI)−2K̂ZK̂XK̂Z(K̂Z + εI)−2K̂Z

)
. (2.12)

1The regularizer is required as the observed data are finite, whereas the feature space could be infinite-dimensional.
The regularization may be understood as a smoothness assumption on the eigenfunctions ofHZ . Our experi-
ments in Section 5.4.4 will give some numerical evidence that the empirical measures are insensitive toε, if it is
chosen in the interval[10−10, 10−2]. In our experiments, we always chose10−5.
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2. Kernel Dependence Measure

The estimatorŝH(n)
YX andĤ

(n,ε)
YX|Z are justified by the following two results on their statistical

consistency.

Theorem 5 (Fukumizu et al. [60])

Ĥ
(n)
YX −HYX = Op(n

−1/2) (n→∞) .

The notationOp(n
−1/2) means the convergence in probability (see [166] for more details) at

raten−1/2, which means for allε>0 there existsc>0 such that

P
(
n1/2

∣∣∣Ĥ(n)
YX −HYX

∣∣∣ > c
)
< ε

asn is sufficiently large.

Theorem 6 If the regularization parameterε in Eq. (2.12) satisfies

ε→ 0, ε n1/2 →∞ (n→∞) ,

then we have
Ĥ

(n,ε)
YX|Z −HYX|Z

P−→ 0 (n→∞) .

The letterP over the arrow indicates a convergence in probability. The proof of Theorem 6
is given in Appendix A.4. The above theorem shows that ifε tends to zero sufficiently slowly,
the empirical estimator̂H(n,ε)

YX|Z convergences toHYX|Z . For notational convenience, we will

henceforth omit the upper index of the empirical estimatorsand usêHYX andĤYX|Z to denote
the empirical estimators ofHYX andHYX|Z , respectively.

2.7. Computation of empirical Hilbert-Schmidt
dependence measure

Kernel matrices allow us to capture dependence in a non-parametric setting. On the other hand,
working with kernel matrices ofn data points implies not only the storage ofn2 entries, but also
theO(n3) complexity of matrix multiplication and inversion. A naiveimplementation would
requireO(n3) operations. If the sample sizen is large, the computation will be inefficient.

Fortunately, the problem of time and memory requirements oflarge matrices is not a new
one. Various methods have been developed to alleviate it. Ifthe number of possible values of
a variableX is smaller than the number of data pointsn, the rank of the kernel matrix̂KX is
smaller thann. Even when this is not the case, we may still have good low-rank approximations.
For a positive definite matrix̂K, e.g., kernel matriceŝKX , K̂Y or K̂Z in Eq. (2.10) or Eq. (2.12),
we can use an incomplete version of the Cholesky decomposition K̂ = LLT [55] whereL is a
lower triangular matrix determined uniquely by this equation. This may lead to considerably
fewer columns than the original matrix. Ifk columns are returned, the storage requirements are
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2.7. Computation of empirical Hilbert-Schmidt dependence measure

O(kn) instead ofO(n2), and the running time of many matrix operations reduces toO(nk2)
instead ofO(n3).

The other question is the choice of kernels. Actually, the choice of kernelskX andkY specifies
the sets of functions that we use for characterizing the dependence, via the correlation between
f ∈HX andg∈HY . While in general we can apply different kernels toX andY, for simplicity
we restrict ourselves in this thesis to the case where the twokernels are the same. Certainly,
the absolute values of both (marginal and conditional) dependence measures strongly depend on
the choice of kernels. However, every statistical measure of dependence between continuous
variables relies on explicit or implicit assumptions on properties of the probability distributions.
We believe that one of the most natural assumptions which still leads to a feasible dependence
measure is that dependence between continuous variablesX, Y should be considered greater
when correlations arise between smooth functionsf(x), g(y), but lesser when these correlations
are only seen for non-smoothf(x) andg(y). That kernel dependence measures embody this
assumption can be seen from the discussion in Section 4.2 in [76], which we now summarize. Let
φi(x) be thei-th eigenfunction of the integral operator with kernelkX (x, x′), and letϕj(y) be the
j-th eigenfunction corresponding tokY(y, y′). We consider the case whereCov(φl(X), ϕl(Y ))
is large for some value ofl, and small otherwise. In this case, subject to a mild condition on the
kernel spectrum (see Lemma 4 in [76]. This is satisfied for Gaussian kernels, for instance), the
spectral norm of the covariance operator decreases for increasingl. Since the spectral norm is the
largest singular value of the covariance operator, it follows that the HS norm likewise decreases.
In other words, as the nonlinear mapping required to obtain ahigh covariance becomes more
“complex”, the dependence as measured by kernels decreases(see [76] for more details, and for
a proof of the result).

If we choose identical Gaussian kernels (our default universal kernel) for each variable, the
computation has two free parameters: the regularization parameterε for the conditional depen-
dence measure of Eq. (2.11) and Eq. (2.12), as well as the width σ of the kernel in Eq. (2.2).
To see how the kernel widthσ influences the value of the dependence measure, we consider the
Fourier transform of an isotropic Gaussian kernelν(ω) = (πσ2) exp(−‖ω‖2/σ2). The feature
spaceFσ contains functions whose Fourier transform decays very rapidly. In the case of a too
largeσ2, all entries of kernel matrices are almost the same. Smallerσ2 means greater sensitivity
to dependence, although makingσ2 too small causes sensitivity to drop again, because an overly
smallσ2 leads to diagonal kernel matrices and our criteria become trivial. From the computa-
tional point of view, the smallerσ2, the more complexity, since the kernel matrices contain more
non-negligible eigenvalues. Admittedly, we have no principled way of choosingε andσ2. In
our experiments, unless otherwise noted, we used the regularizer ε= 10−5. In our experimental
work, it turned out that the evaluation of dependence criteria that we used for structural learn-
ing was reasonably robust, ifε is chosen sufficient small (see Fig. 5.10 in Section 5.4.4). We
set2σ2 = 1 in Eq. (2.2), since all variables are independently rescaled to have unit variance in
pre-processing.
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3. Kernel Statistical Test of
Independence

Causal inference by a constraint-based approach naturally includes inferring whether a causal
relation between two variables is present or not. This involves the choice of a cut-off value for
some kind of dependence measures, e.g., our kernel measures, which judges whether conditional
dependence between them is present or not. However, a straightforward threshold does not work
well in general, because the value of kernel dependence measures depends on the choice of
kernels and could theoretically be small even under dependency (see Theorem 8 in [76]). In this
chapter, we introduce statistical hypothesis tests to set the cut-off value in a principled way.

3.1. State-of-the-art tests of independence

Given some dependence measure, one wishes to make a decisionwhether two variables are de-
pendent or not. A principled way of deciding whether a hypothesis is true or not is the statistical
test. In such tests, there is a “null hypothesis” which corresponds to the state of independence
and an “alternative hypothesis” which corresponds to the opposite situation, i.e., state of depen-
dence. The goal is to determine, with high confidence, if the null hypothesis can be discarded
in favor of the alternative. The result of an independence hypothesis test may be negative, i.e.,
independent, or positive, i.e., dependent.

If the null hypothesis, i.e., state of independence, is the truth, the dependence measure from
sample should follow the null distribution, which can be simulated by random permutations
(see [71] for permutation tests). If the alternative is true, the dependence measure will be, in
the genetic case ,“large”. To specify a “large” measure, a threshold with riskα (the so-called
significance level, usuallyα=5%) is pre-specified.

The p-value is the probability that the sample could have been drawn from the population
being tested given the assumption that the null hypothesis is true. A p-value of0.02, for example,
indicates that one would have only a2% chance of drawing the sample being tested if the null
hypothesis was actually true. The further out the test statistic is in the tail, the smaller the p-value,
and the stronger the evidence against the null hypothesis infavor of the alternative. If the p-value
is larger than the significance level, the null hypothesis isaccepted, otherwise the null hypothesis
is rejected in favor of the alternative (see Figure 3.1).

Since the decision is made based on one sample, we can not be completely certain. If the
result of the hypothesis test does not coincide with the ground truth, which might not be known,
then an error has occurred. Statisticians speak of two sortsof statistical errors, classified as the
type I and II error. The typeI error, also known as a “false positive”: the error of rejecting a
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Figure 3.1.: One-sided statistical independence hypothesis test with a significance levelα=0.05.
If the p-value is larger than0.05, null hypothesis, i.e., state of independence, is
accepted, otherwise independence hypothesis is rejected.

Declared Non-Significant Declared Significant
(Accept Independence) (Reject Independence⇒ Dependence)

True Null Hypothesis True Negative False Positive
(State of Independence) (TypeI error)

True Alternative Hypothesis False Negative True Positive
(State of Dependence) (TypeII error)

Table 3.1.: TypeI and typeII error of independence hypothesis test.

null hypothesis when it is actually true. This is the error ofrejecting independence although
independence is true. The typeII error, also known as a “false negative”: the error of accepting a
null hypothesis when the alternative hypothesis coincideswith the ground truth. This is the error
of accepting independence when dependence is present. Tab.3.1 summarizes the situation in a
traditional form.

Based on the same fundamental concept of statistical tests, well-established statistical tests of
independence vary in the way of capturing dependences, i.e., the test statistics. The popularχ2

test is based on the contingency table for discrete/categorical domains. The Fisher’s Z test [56]
is based on partial correlations and therefore only justified for continuous domains under the
assumption that the variables are multivariate Gaussian distributed. Mutual information, which
is based on the entropy concept of Shannon [142], can be generally considered as a distribution-
free dependence measure. It can be shown (see [178], Appendix A) that mutual information
is proportional to theχ2 test based on maximum likelihood estimation, the so-calledlikelihood
ratioχ2 test. For this reason, a likelihood ratioχ2 test and a permutation test by means of mutual
information are expected to be similar in performance. The empirical estimation of (conditional)
mutual information on discrete/categorical domains is well established, while the estimation of
(conditional) mutual information on continuous domains isa non-trivial problem currently un-
solved in its generality, unless suitable assumptions of smoothness are made. We are of the
opinion that kernel methods provide a convenient tool to assume smoothness in an implicit way.
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3. Kernel Statistical Test of Independence

The extension of kernel dependence measures to high-dimensional data is straightforward.
A totally different method of testing independence on continuous domains is proposed by

Margaritis et al. [107, 109]. Their method is not based on a conventional hypothesis test but on
the calculation of probability of independence given data by the Bayesian approach. To deter-
mine whether two variables are (conditionally) independent, the Margaritis’ Bayesian method
discretized the domains by maximizing the posterior probability of dependence given the data.
If the probability of independence larger than1

2
, the independence is verified, otherwise depen-

dence. More precisely, the method determines the probability of dependence by calculating the
likelihoods of modeling the data as dependent with a joint multinomial distribution or as inde-
pendent with two marginal multinomial distribution. Margaritis’ Bayesian method is impressive
because it is the first practicable distribution-free learning of Bayesian network in continuous
domains, although it involves a sophisticated process of domain discretization.

Note thatχ2 test, Fisher’s Z test and Margaritis’ Bayesian method share the property of good
scalability with respect to sample size. They remain efficient, when the sample size becomes
large. Unfortunately, work with kernel matrices of a large number of data points, which is re-
quired for the computation of empirical kernel measures, will be inefficient. However, the power
of kernel measures is the ability of capturing linear and non-linear relations, without requiring
the specification of any kind of dependence model. Moreover,kernel measures can be applied
to discrete/categorical, continuous, vectorial, or even hybrid domains. For discrete domains, one
can use integers1, 2, . . . , d to specifyd different categories, if the categories can be ordered in
some intuitive sense. For strictly nominal-categorical domains, the natural way to represent the
d nominal alternatives, namelyd unit vectors in ad-dimensional Cartesian coordinate system

{(1, 0, . . . , 0)T, (0, 1, 0, . . . , 0)T, . . . , (0, 0, . . . , 0, 1)T} ⊂ IRd . (3.1)

Note that, in the binary case, the representations of integers {0, 1} or two-dimensional vectors
{(0, 1), (1, 0)} does not makes any difference at all.

3.2. Statistical test via kernel dependence measure

To design a statistical test of independence via kernel measure, we need the statistics of the
dependence measure if the null hypothesis is true, i.e., thenull distribution ofHYX or HYX|Z .
For this purpose, we employ the random permutation to simulate the state of independence.

Let us first consider the marginal caseHYX . To simulate the null distribution ofHYX under
independency, we apply a set of random permutationsπ := {π1, . . . , πm} to theX- or theY -
vector of the original data matrix(X,Y ), whereX = (x(1),. . . ,x(n))T and so on. The marginal
distributionP (X) or P (Y ) of the original data does not change in the shuffled data(X,Y πj)
with Y πj = (y(πj(1)),. . . ,y(πj(n)))T andπj ∈ π. However, the relation betweenX andY in the
original data is released. For each shuffled dataset(X,Y πj), we compute the empirical estimate
of the kernel dependence measureĤj with j= 1, . . . ,m. The null distribution of measureHYX

can be simulated by{Ĥ1, . . . , Ĥm}.
The way of using random permutations to simulate the null distribution of HYX|Z under con-
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3.2. Statistical test via kernel dependence measure

ditional independency from data matrix(X,Y, Z) is not straightforward. On the one side, the
random permutation should release the connection betweenX andY to simulate the indepen-
dency between them. On the other side, it has to keep the mutual relation betweenX andZ
and the relation betweenY andZ, sinceZ is tied to a specific value. Applying a random per-
mutationπj ∈ π to the two-dimensional(Y, Z)-vector of the original data matrix(X,Y, Z), the
conditional marginal distributionP (Y |Z) of shuffled dataset(X,Y πj , Zπj) remains indeed the
same as that of the original dataset(X,Y, Z), sinceP (y(i)|z(i))=P (y(πj(i))|z(πj(i))). But, the con-
ditional marginal distributionP (X|Z) changes, because the conditional probabilityP (x(i)|z(i)),
in general, does not equalP (x(i)|z(πj(i))). In particular, the conditional joint probabilities of
(X,Y πj |Zπj) and(X,Y πj |Z) are different:

P
(
x(i), y(πj(i)) | z(πj(i))

)
6= P

(
x(i), y(πj(i)) | z(i)

)
.

The only exception is the case when

z(πj(1)) =z(1), z(πj(2)) =z(2), . . . , z(πj(n)) =z(n) . (3.2)

Therefore, we have to restrict the set of random permutationsπ to those that satisfy the condition
of Eq. (3.2) to simulate the null distribution ofHYX|Z under the conditional independency. A
related observation in the context of the conditional copula is made by Patton (see [123], p. 534).

If Z is categorical, the condition of Eq. (3.2) restrictsπ to random permutations within the
same category ofZ. In the case of a real-valuedZ, the condition of Eq. (3.2) could be said to
hold if z(πj(i)) andz(i) are “similar” in some sense. This suggests the use of clustering techniques
to search for an appropriate partition of data points ofZ.

In our experiments, we applied the standard K-means clustering ton data points{z(1),. . . ,z(n)}
and chose the number of clustersnc so that n

nc
=3. Various experiments showed that the decision

of independence is robust with respect to the choice ofnc, if nc is not too large, i.e.,n
nc
>2. If the

number of clustersnc is chosen as large as the number of data pointsn, every distinct data point
builds a separate cluster and the condition of Eq. (3.2) restricts π to the identity. The null dis-
tribution of the dependence measures is degenerate, i.e., all its probability mass is concentrated
on one point. With such a choice ofnc, permutations can not provide any information about the
distribution of dependence measure under conditional independency.

Having chosen an appropriate parameternc (number of clusters of data points ofZ), the null
distribution of the conditional kernel measureĤYX|Z under conditional independencyX ⊥⊥ Y |Z
can be simulated by applying a set of random permutationsπ := {π1, . . . , πm} to the two-
dimensional(Y, Z)-vector of data matrix(X,Y, Z) within the same cluster of data points of
Z. Fig. 3.2 summarizes the three-step-schema of the hypothesis test by means of kernel depen-
dence measures. The parameterm describes the number of permutations to simulate the null
distribution. We chosem = 1000 in our experiments and set the significance levelα to 0.05,
unless explicitly stated otherwise.

Obviously, permutation tests are computationally time-consuming due to them replications.
An alternative kernel statistical test based on moment matching is currently proposed by Gretton
et al. [74]. Instead of computing the HS-norm of the operatordirectly, they designed a test statis-
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3. Kernel Statistical Test of Independence

Input: A data sample(X, Y, Z) with X =(x(1), . . . , x(n))T andY , Z is given analogously.

Step 1: Calculate the empirical estimation̂H0 of the dependence measureĤYX|Z for the original
sample.

Step 2: If Z is empty, randomly shuffle data vectorY . If Z is not empty, cluster vectorZ into
partitions in an appropriate way. Randomly shuffle the two-dimensional vector (Y, Z) with
respect toZ-clustersm times. Calculate the empirical estimation of the dependence measure
ĤYX|Z for each of them shuffled samples, saŷH1, . . . , Ĥm.

Step 3: For eacĥH0 from the first step, calculate its p-valuep in the null distribution estimated by
{Ĥ1, . . . , Ĥm} from the second step. Ifp≥ α, the independence hypothesisX ⊥⊥ Y |Z is
rejected; otherwise,X ⊥⊥ Y |Z is accepted.

Output: A verified constraintX 6⊥⊥ Y |Z or X ⊥⊥ Y |Z.

Figure 3.2.: Permutation test of (conditional) independence via kernel dependence measures.
Typically, we setm=1000 andα=0.05, unless explicitly stated otherwise.

tics based on entries of kernel matrices. But, for one thing, this alternative test is only designed
for unconditional cases. For the other thing, we expect thatthe permutation test outperforms
this alternative, particularly if the sample size is small (e.g., less than 200), since the estimation
of second moments of entries of kernel matrices tends to be unreliable (see [74] for numerical
experiments with text data). In practice, employing the incomplete Cholesky decomposition [55]
for the computation of kernel measures makes the permutation tests efficient (see Section 2.7 for
details).

3.3. Simulated experiments with kernel independence
test

It is known that there is yet no general good way to test independence, especially between con-
tinuous variables. Theoretically, the kernel dependence measure can capture both linear and
nonlinear dependences without assumptions of a specific dependence model. Therefore, the sta-
tistical test by means of the kernel measure provides a useful tool for handling the challenging
task of testing independence. In this section, we demonstrate some simulated experiments with
the kernel independence test, in particular some examples on continuous domains.
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Figure 3.3.: One dataset of(X1, X2, X3, X4, Y ) is sampled (of size200) from the functional
model, defined by Eq. (3.3). The first four plots visualize therelationship between
Xi (i = 1, . . . , 4) andY , respectively. One dataset of(X1, X2, Y ) is sampled (of size
200) from the functional model, defined by Eq. (3.4). The rightmost plot visualizes
the functional relationship between(X1, X2) andY .

3.3.1. Examples for kernel independence test on continuous
domains

First, we consider the following functional model:

yi = 0.1 exp(3x1i
) + (2x2i

− 1)2 + 10 sin(x3i
) + 0x4i

+ εi , i = 1, . . . , 200 (3.3)

whereX1, . . . , X4 and error termεi are randomly generated from a standard normal distribution.
VariableY has a nonlinear additive dependence on the first three variables and is independent
of the last one. A simulation was performed for statistical independence tests of the mutual de-
pendence betweenX1, . . . , X4 andY . The first four plots in Fig. 3.3 visualize the relationship
betweenX1, . . . , X4 andY . An experiment consisting of1000 replications shows that the de-
pendence relationX1 6⊥⊥ Y could be verified correctly in80.8% of all cases,99.4% for X2 6⊥⊥ Y ,
100% for X3 6⊥⊥ Y , and99.1% for X4 ⊥⊥ Y with a sample size of200.

The second example is also an artificial one, first introducedby Gu et al. [79]. (x1i
, x2i

),
i = 1, . . . , 200, are generated randomly from a uniform distribution in the unit square and set the
response to

yi = 40
exp {8 [(x1i

− 0.5)2 + (x2i
− 0.5)2]}

exp {8 [(x1i
− 0.2)2 + (x2i

− 0.7)2]} + exp
{
8
[
(x1i
− 0.7)2 + (x2i

− 0.2)2
]}

+ εi .

(3.4)
The errorsεi were drawn from a standard normal distribution. We tested the following inde-
pendence relations:X1 ⊥⊥ X2, X1 6⊥⊥ X2 |Y , and(X1, X2) 6⊥⊥ Y . 99.4% of 1000 replications
verifiedX1 ⊥⊥ X2 correctly,99.8% forX1 6⊥⊥ X2 |Y , and100% for (X1, X2) 6⊥⊥ Y . This example
makes one advantage of kernel test apparent, i.e., the kernel measures can be straightforwardly
applied to quantifying dependence between variables of different dimensions.

In summary, the results of both functional models showed that the kernel independence test re-
liably detected the nonlinear dependence using only a moderate sample size. The kernel measure
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3. Kernel Statistical Test of Independence

Figure 3.4.: Dynamic Bayesian network of a coupled time series.

provides a good alternative to capture the dependence between continuous variables.

3.3.2. Examples for kernel independence test on time series

Now, we consider a more challenging situation, namely time series. The difficulty of time series
is that the assumption of the i.i.d. sample could be violated, even though it is stationary. Due
to the additional temporal information, the causal direction is sometimes known in time-series
data. DAGs, which capture the fact that time flows forward, can be naturally used for for mod-
elling time-series data. Arcs within a time-slice can be directed or undirected, since they model
“instantaneous” dependence. If all arcs are directed, bothwithin and between slices, the model
is called “Dynamic Bayesian Networks” (DBN) [117].

In our experiments, we are interested in the case of a uni-directed influenceX→ Y between
two times seriesX=(. . . , Xt, Xt+1, Xt+2, . . .) andY =(. . . , Yt, Yt+1, Yt+2, . . .) with point t∈Z

in time. The graphical representation is given by a DBN as shown in Fig. 3.4. The indepen-
dence constraints(Yt+1 ⊥⊥ Xt+2 |Xt, Xt+1) and(Xt+1 6⊥⊥ Yt+2 |Yt, Yt+1) characterize the causal
directionX→ Y , because the dependence betweenYt+1 andXt+2 is spurious, whereas the de-
pendence betweenXt+1 andYt+2 is generated by the direct causal influence fromX to Y . The
spurious dependence can be screened off by conditioning on the cause(Xt, Xt+1), while the gen-
uine dependence induced by the direct causal influence cannot be screened off by conditioning
on the effect(Yt, Yt+1).1 We show a simulated experiment to demonstrate how well dependence
or independence is captured by kernel tests.

We sample chaotic time series from coupled Hénon maps [87]. The parameters for the coupled
Hénon maps are chosen as follows:

Xt+2 = 1.4 + 0.3Xt −X2
t+1 ,

Yt+2 = 1.4 + 0.1Yt − (1− γ) 0.4Y 2
t+1 − γ Xt+1Yt+1 . (3.5)

This specific choice of parameters guarantees the dynamics in the times seriesX=(X0, X1, . . .)

1Another well-known way to capture causality in bivariate time series is the so-called Granger causality [175, 72],
which utilizes the temporal properties and is expressed in terms of predictability. The standard test of Granger
causality developed by Granger [72] is based on a linear regression model. A test of Granger causality in kernel
formalism will be interesting line of further research.
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Figure 3.5.: Noiseless data sampled from coupled Hénon mapswith coupling parameterγ=0.5
as shown in Eq. (3.5) and sampling intervalk=5 (see text).

andY =(Y0, Y1, . . .), i.e., there exists no time stept so that for alli≥ t,Xi or Yi takes a constant
value.

BothX andY are dynamical systems of the second order. We start(X,Y ) with initial points
(X0, Y0) = (X1, Y1) = (0, 0) and collect data points forX andY everyk time steps, i.e.,X =
(. . . , Xt, Xt+k, Xt+2k, . . .) andY =(. . . , Yt, Yt+k, Yt+2k, . . .). The time stepk is called sampling
interval. The sampling intervalk simulates the situation in real applications, e.g., in the study
of biological data, where the exact time delay of influences might be unknown. This problem is
known as temporal aggregation in some literatures [17].

X andY are uncorrelated forγ=0, while they are synchronized forγ>0. Fig. 3.5 illustrates
the dynamics betweenX andY with coupling parameterγ=0.5 and sampling intervalk=5.

Fig. 3.6 illustrates datasets of sample size100 used in our experiments. All samples are added
with an independent normally distributed noiseN (0, 0.22). This noise simulated the noise of
measurements in practice. We conducted the experiments with 1000 replications for different
coupling factorsγ and different sampling intervalsk.

Tab. 3.2 shows the acceptance quota of independence hypothesis via the kernel independence
tests (permutation tests with significance levelα = 0.05). In the cases ofγ=0, i.e.,X ⊥⊥ Y , tests
achieved consistent results. In the dependent cases, i.e.,γ > 0, the underlying causal direction
could be in most cases correctly identified when the samplinginterval k is smaller than7. If
k≥7, i.e., a too large sampling rate, the dependences betweenXt+1 andYt and betweenYt+1 and
Xt vanish. Hence, the causal direction was not erroneously determined, but indeterminate. The
best performance was achieved fork=5. Interestingly, Yu et al. [182] found also that a sampling
interval of5 yielded the best results in their experiments with simulated biological data of time
series.
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 Sampling Interval = 1   γ = 0.1  Sampling Interval = 1   γ = 0.1  Sampling Interval = 1   γ = 0.4  Sampling Interval = 1   γ = 0.4

 Sampling Interval = 5   γ = 0.1  Sampling Interval = 5   γ = 0.1  Sampling Interval = 5   γ = 0.4  Sampling Interval = 5   γ = 0.4

 Sampling Interval = 9   γ = 0.4 Sampling Interval = 9   γ = 0.4 Sampling Interval = 9   γ = 0.1 Sampling Interval = 9   γ = 0.1

Figure 3.6.: Samples of100 data points from coupled Hénon maps with different couplingpa-
rametersγ as shown in Eq. (3.5) and different sampling intervalsk (see text).

Accepting Yt+1 ⊥⊥ Xt+2 |Xt,Xt+1 Accepting Xt+1 ⊥⊥ Yt+2 |Yt, Yt+1

γ (coupling) 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

k = 1 95.6 89.1 76.7 65.8 59.9 52.1 94.2 20.1 0 0 0 0

k = 3 93.5 88.9 89.6 83.3 77.8 64.9 93.3 1.3 0 0.1 0.2 0.2

k = 5 95.1 68.1 68.7 79.0 91.3 94.4 95.6 1.1 0 0.1 2.3 9.6

k = 7 94.5 90.1 80.9 79.8 89.6 97.4 95.1 2.4 5.0 33.8 52.2 59.9

k = 9 94.6 86.1 93.4 96.9 97.7 98.5 95.3 29.8 64.3 94.2 99.4 99.6

Table 3.2.: Kernel independence test on time series of coupled Hénon maps with different cou-
pling parametersγ as shown in Eq. (3.5) and different sampling intervalsk (see text).
The entries show how often (in percentage) the independenceis accepted.
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3.3. Simulated experiments with kernel independence test

Figure 3.7.: Graphical representation of the underlying model of the meander dataset. The gen-
erating model impliesX 6⊥⊥ Y andX ⊥⊥ Y |Z.

3.3.3. Numerical comparison of independence tests on continuous
domain

In order to provide some numerical evidence of the performance of various tests on continuous
domains, we conduct experiments with toy data generated by various functional models. Similar
models are originally used by Margaritis in [108].

Three independence tests, i.e., Fisher’s Z test under multivariate Gaussian assumption, Mar-
garitis’ Bayesian method [107, 109] and permutation test viakernel dependence measures, are
evaluated on the so-called Meander dataset, shown in the left plot of Fig. 3.8. It resembles a
spiral. This dataset is challenging because the joint distribution ofX andY givenZ changes
dramatically with the given value ofZ. The data were generated by the model and equations
shown in Fig. 3.7. According to the functional relation,X andY are conditionally independent
givenZ, however, unconditionally dependent, in fact strongly correlated as seen from the right
plot of Fig. 3.8.

We generated1000 datasets of different sample sizes and ran independence tests. Tab. 3.3
shows the results for samples size ranging from20 to 200. The dependence betweenX andY
can already be captured by the linear relation, as seen from the right plot of Fig. 3.8. For this
reason, all methods achieved very good performance at testing X 6⊥⊥ Y from merely20 data
points (see Fig. 3.9 for a sample of20 data points).

Testing conditional independenceX ⊥⊥ Y |Z is more challenging. Here, the kernel test clearly
outperforms other two methods. The Fisher’s Z test fails completely due to the incorrect mul-
tivariate Gaussian assumption. The Margaritis’ Bayesian method or the kernel test performs
better, as the sample size becomes larger and larger. The right plot in Fig. 3.10 shows the fre-
quencies of p-values of testingX ⊥⊥ Y |Z from 1000 datasets of sample size20 by the kernel
independence test, while the left plot shows the probabilities of independence by the Margaritis’
Bayesian method. The kernel independence test made significantly less errors than the Margari-
tis’ Bayesian method.

In order to gain more numerical evidence of performance in learning models with various
nonlinear relations, we sampled datasets of200 data points by models shown in Fig. 3.11. The
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3. Kernel Statistical Test of Independence
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Figure 3.8.: Three-dimensional plot of the Meander dataset(left) and projection of data alongZ

axis (right). The generating model is shown in Fig. 3.7.

Rejecting X ⊥⊥ Y Accepting X ⊥⊥ Y |Z
Sample Size 20 50 100 150 200 20 50 100 150 200

Fisher’s Z 100 100 100 100 100 0 0 0 0 0

Margaritis’ Bayesian 94.3 100 100 100 100 4.8 15.1 21.2 23.2 33.2

Kernel Dependence 99.9 100 100 100 100 35.1 49.7 67.0 75.3 79.9

Table 3.3.: Numerical comparison of various independence tests on continuous domains, i.e.,
Fisher’s Z test, Margaritis’ Bayesian method, and permutation test via kernel depen-
dence measures. The underlying model Meander is given by Fig. 3.7. One sample
is illustrated in Fig. 3.8. The experiments are conducted with 1000 replications. The
entries show how often (in percentage) the constraintX 6⊥⊥ Y andX ⊥⊥ Y |Z are
verified.
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3.3. Simulated experiments with kernel independence test
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Figure 3.9.: A sample of Meander dataset of size20. The underlying model as shown in Fig. 3.7
impliesX 6⊥⊥ Y andX ⊥⊥ Y |Z.
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Figure 3.10.: Experimental results of Margaritis’ Bayesianmethod and kernel test of indepen-
dence, whenX ⊥⊥ Y |Z is tested. Both methods are conducted with1000 repli-
cations. The left plot is the histogram of the resultingP (Independence) of all 1000
samples, obtained by the Margaritis’ Bayesian method. The independence hypoth-
esis is accepted in only4.8% of all cases. The right plot is the histogram of the re-
sulting p-values of all1000 samples, obtained by the kernel-based indepdence test.
The independence hypothesis is accepted in35.1% of all cases (see also Tab. 3.3).
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3. Kernel Statistical Test of Independence

Mk :=(fi, fj) f2 := 2 sin(x) f3 := ln(|x|) f4 := 1
x
5
+1 f5 := exp(x)

f1 := x M1 M2 M3 M4

f2 := 2 sin(x) − M5 M6 M7

f3 := ln(|x|) − − M8 M9

f4 := 1
x
5
+1 − − − M10

Table 3.4.:10 different pair of functions(fi, fj) with i, j=1, . . . , 5 define the functional models
M1, . . . ,M10, which are used to generate data by two models as shown in Fig.3.11.

Figure 3.11.: Graphical representation of a fork (left) anda collider (right) structure. Models
with a fork structure (non-v-structure) implyX 6⊥⊥ Y andX ⊥⊥ Y |Z, while models
with a collider structure (v-structure) implyX ⊥⊥ Y andX 6⊥⊥ Y |Z. The pairs of
functionsMk =(fi, fj) for both models are defined in Tab. 3.4.

left plot of Fig. 3.11 is a non-v-structure: fork structure, while the right plot is av-structure:
(unshielded) collider structure. Models of a fork structure imply the independence relations
X 6⊥⊥ Y andX ⊥⊥ Y |Z, while models of a collider structure imply the independence relations
X ⊥⊥ Y andX 6⊥⊥ Y |Z.

We definef1,...,5 in the same way as Margaritis proposed in [108] and use all pairs of the func-
tionsMk =(fi, fj), i.e.,10 different combinationsM1, . . . ,M10 as shown in Tab. 3.4, added by a
Gaussian noise as underlying ground-truth for the sampling. One sample of200 data points for
the fork structure (left plot in Fig. 3.11) withM1, . . . ,M10 (see Tab. 3.4) is visualized in Fig. 3.12
and Fig. 3.13. The performance of various independence tests1000 replications on these datasets
is summarized in Tab. 3.5. One sample of200 data points for the collider structure (right plot
in Fig. 3.11) withM1, . . . ,M10 (see Tab. 3.4) is visualized in Fig. 3.14 and Fig. 3.15. The per-
formance of various independence tests of1000 replications on these datasets is summarized in
Tab. 3.6.

One can see that all three methods make relatively few errorsat discovering independence,
i.e., X ⊥⊥ Y in a collider structure (see the left half of Tab. 3.6) andX ⊥⊥ Y |Z in a fork
structure (see the under half of Tab. 3.5). Only the Fisher’sZ test performed very bad in the case
of testing conditional independenceX ⊥⊥ Y |Z (see the first row of the under half of Tab. 3.5)
on data sampled by modelsM7 andM9. It is hard to evaluate the performance of these three
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3.3. Simulated experiments with kernel independence test
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Figure 3.12.: The underlying model is a fork structure (Fig.3.11, left), whereX andY have a
functional relationMk =(fi, fj) (see Tab. 3.4) withZ, respectively. The fork struc-
ture implies thatX andY are unconditionally dependent. The illustrated sample
contains200 data points.
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Figure 3.13.: The underlying model is a fork structure (Fig.3.11, left), whereX or Y has a
functional relationMk = (fi, fj) (see Tab. 3.4) withZ, respectively. The fork
structure implies thatX andY are independent, conditional onZ. The illustrated
sample contains200 data points.
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3. Kernel Statistical Test of Independence

Rejecting X ⊥⊥ Y

Mk =(fi, fj) M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Fisher’s Z 100 4.2 93.6 100 1.8 57.6 71.5 17.5 41.0 58.6

Margaritis’ Bayesian 100 2.0 42.5 100 2.0 27.6 100 1.7 4.0 18.6

Kernel Dependence 100 95.6 63.9 100 63.9 56.1 100 11.5 97.8 68.7

Accepting X ⊥⊥ Y |Z
Fisher’s Z 94.0 95.6 94.1 95.6 95.5 72.2 10.6 81.5 1.2 64.3

Margaritis’ Bayesian 97.0 97.6 97.9 98.7 97.0 97.9 98.9 98.3 98.7 98.8

Kernel Dependence 93.8 93.8 92.5 93.4 93.3 93.5 93.4 94.5 94.2 92.9

Table 3.5.: Numerical comparison of various independence tests, i.e., Fisher’s Z test, Margaritis’
Bayesian method, and test via kernel dependence measure, on continuous domains
sampled by a fork structure (Fig. 3.11, left). The parameterMk = (fi, fj) of models
is defined in Tab. 3.4. The entries show how often (in percentage)X 6⊥⊥ Y and
X ⊥⊥ Y |Z are verified after1000 replications of simulations.
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Figure 3.14.: The underlying model is a collider structure (Fig. 3.11, right), whereZ has a func-
tional relationMk = (fi, fj) (see Tab. 3.4) withX andY . The collider structure
implies thatX andY are unconditionally independent. The illustrated sample con-
tains200 data points.
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3.3. Simulated experiments with kernel independence test
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Figure 3.15.: The underlying model is a collider structure (Fig. 3.11, right), whereZ has a func-
tional relationMk = (fi, fj) (see Tab. 3.4) withX andY . The collider structure
implies thatX andY are dependent, conditional onZ. The illustrated sample
contains200 data points.

Accepting X ⊥⊥ Y Rejecting X ⊥⊥ Y |Z
Mk =(fi, fj) M1,...,10 M1 M2 M3 M4 M5 M6 M7 M8 M9 M10

Fisher’s Z 94.6 100 4.1 92.1 77.1 4.7 58.8 61.2 5.1 3.9 20.8

Margaritis’ Bayesian 98.1 91.4 3.9 10.9 84.8 3.1 9.1 75.0 2.1 3.7 6.7

Kernel dependence 94.1 100 92.0 60.7 100 96.0 51.7 100 18.7 93.6 46.9

Table 3.6.: Numerical comparison of various independence tests, i.e., Fisher’s Z test, Margaritis’
Bayesian method, and test via kernel dependence measure, on continuous domains
sampled by a collider structure (Fig. 3.11, right). The parameterMk = (fi, fj) of
models is defined in Tab. 3.4. The entries show how often (in percentage)X ⊥⊥ Y
andX 6⊥⊥ Y |Z are verified after1000 replications of simulations.
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3. Kernel Statistical Test of Independence

Figure 3.16.: Graphical representation of a 2-bit noisy OR with a noise levelr∈ [0, 1] as shown
in Eq. (3.6).

methods in testing dependence, i.e.,X 6⊥⊥ Y in a fork structure (see the upper half of Tab. 3.5)
andX 6⊥⊥ Y |Z in a collider structure (see the right half of Tab. 3.6). But the results indicate that
the fluctuation of the kernel-based approach within different models is significantly smaller than
that of the other two methods.

3.3.4. Numerical comparison of independence tests on discrete
domain

The kernel independence test can be straightforwardly applied to both continuous and discrete
variables. In order to give numerical evidence of the performance, we conduct experiments with
toy data on discrete domains. The data are sampled from logically linked models, namely noisy
OR gates. Such Boolean functions are simplified models for many intuitive causal relations in
real life. Note that one can easily get an AND gate by inverting inputs and outputs from an OR
gate, therefore the results of OR can be easily re-interpreted with reference to AND.

In general, an n-bitX1, . . . , Xn∈{0, 1} noisy OR gate (see Henrion [88]) can be characterized
by the conditional probabilities

P (Xn+1 =1 |x1, . . . , xn) = (1− r2)
(
1− rx1+...+xn

1

)
+ r2

with parametersr1, r2 ∈ [0, 1]. r1 can be interpreted as the probability of suppressing the input
1; r2 can be interpreted as the probability for a spontaneous inversion of the output. Ifr1 andr2
vanish, the OR gate is deterministic. For the sake of notational simplicity, we choser1 = r2 =: r
in our experiments, i.e.,

P (Xn+1 =1 |x1, . . . , xn) = (1− r)
(
1− rx1+...+xn

)
+ r . (3.6)

We use the shorthand ORr{X1, . . . , Xn} to depict a noisy OR gate with noise levelr∈ [0, 1].
We sampled data from a 2-bit noisy OR (Fig. 3.16) withX, Y as inputs andZ as output. The

underlying model impliesX ⊥⊥ Y andX 6⊥⊥ Y |Z. We sampled1000 datasets for each of the
noise levelsr=0, 0.1, 0.2, 0.3 and sample sizes20, 50, 100, 150, 200. Fig. 3.17 shows the noise
statistics in the term of percentage of erroneous outputs in1000 data points.
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Figure 3.17.: Noise statistics in the term of percentage of erroneous outputs in1000 data points
sampled by the 2-bit noisy OR gate as shown in Fig. 3.16. The plots illustrate
4 different noise levelsr = 0, 0.1, 0.2, 0.3 as shown in Eq. (3.6). Each box has
lines at the lower quartile, median, and upper quartile values of the percentage of
erroneous outputs. The whiskers are lines extending from each end of the box to
show the extent of the rest of the percentage. Outliers are the percentage beyond
the ends of the whiskers.

49



3. Kernel Statistical Test of Independence

Accepting X ⊥⊥ Y

Sample Size 20 50 100 150 200

Noisy OR χ2 MI KD χ2 MI KD χ2 MI KD χ2 MI KD χ2 MI KD

r = 0 94.0 97.4 88.0 94.7 96.3 90.8 95.6 95.9 92.5 94.3 93.7 92.4 94.1 94.3 91.8

r = 0.1 93.1 96.4 86.5 94.6 96.0 90.7 94.2 94.0 91.1 95.8 96.3 94.4 94.2 94.8 92.3

r = 0.2 93.6 96.9 86.9 94.9 96.1 91.3 96.3 96.1 93.1 95.7 95.7 93.5 93.6 94.0 91.4

r = 0.3 94.5 97.1 87.3 95.9 97.0 93.0 93.5 93.6 90.7 93.6 94.1 91.6 94.4 94.8 93.2

Noisy OR Rejecting X ⊥⊥ Y |Z
r = 0 24.8 54.8 23.5 94.5 97.7 91.9 100 100 98.0 100 100 100 100 100 100

r = 0.1 23.5 33.7 16.9 57.6 57.0 54.8 85.9 84.7 89.2 97.6 97.3 98.0 99.3 99.2 99.7

r = 0.2 14.9 18.9 8.9 25.1 22.7 22.5 39.8 40.7 40.5 56.2 57.2 60.0 71.6 72.5 74.8

r = 0.3 9.9 10.9 7.0 10.4 10.3 9.6 16.3 16.5 16.3 19.1 21.5 19.2 23.1 23.9 23.9

Table 3.7.: Numerical comparison of three different independence tests, i.e., likelihood ratioχ2

test, permutation test via mutual information (MI), and permutation test via kernel de-
pendence (KD) measure. The generating models are noisy OR gates with4 different
noise levelsr= 0, 0.1, 0.2, 0.3 as shown in Fig. 3.16 and Eq. (3.6). The experiments
are conducted with1000 replications. The entries show how often (in percentage) the
constraintX ⊥⊥ Y orX 6⊥⊥ Y |Z is verified.

We perform three independence tests i.e., likelihood ratioχ2 test, permutation test via mutual
information (MI) and permutation test via kernel dependence (KD) measure. A significance level
of 5% are used for all tests. In permutation tests via MI and KD, we used a repetition factor of
100. As seen from Tab. 3.7, their performance are very similar, in the sense that the levels of
typeI andII errors are almost the same. The larger the sample size and theless noisy the model,
the better the performance. The kernel-based method is slightly worse than the other two in the
case of20 data points. Taking the computational efficiency into account, the likelihood ratioχ2

test is clearly the winner in this example. The actual benefitof the kernel test does not lie in the
tests on discrete domains, but in tests on continuous or hybrid domains. Nonetheless, the kernel
independence test provides an alternative to the popular tests on discrete domains.

3.4. Real-world experiments with kernel independence
test

To demonstrate the effectiveness of statistical test of independence by means of kernel measures,
we demonstrate some real-world applications in this section.

50



3.4. Real-world experiments with kernel independence test
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Figure 3.18.: Data on 35 consecutive patients under treatment for heart failure with the drug
digoxin. Clearances are given in ml/min/1.73m2, urine flow inml/min.

3.4.1. Digoxin clearance

The study of the passage of drugs through the body is important in medical science. The right-
most 3d-plot of Fig. 3.18 shows a real-world dataset on35 consecutive patients under treatment
for heart failure with the drug digoxin [82] (see also [5] p. 323 and [52] p. 42 for the same
dataset). The renal clearances of digoxin, creatinine, andurine flow were determined simultane-
ously in each of the patients receiving digoxin, in most of whom there was prerenal azotemia.
The digoxin clearance is the amount of blood that in a given interval is cleared of digoxin. The
creatinine clearance is defined similarly and used as a measure of kidney function. Of medi-
cal interest is the hypothesis that digoxin clearance is independent of urine flow conditioning
on creatinine clearance. Halkin et al. [82] and Edwards [52]based their analysis on the (par-
tial) correlation coefficient. Recall that a partial correlation coefficient is calculated by the usual
correlation coefficients as defined in Eq. (2.1):

ρYX|Z =
ρYX − ρZY ρZX√

(1− ρ2
ZY )(1− ρ2

ZX)
. (3.7)

Tab. 3.8 shows the results of permutation test via kernel dependence measure in comparison
with correlation analysis. A visual inspection of the data,as shown in the first plot of Fig. 3.18,
indicates that the linearity assumption appears to be reasonable for the dependence between the
creatinine and digoxin clearances (Fig. 3.18, leftmost). Alinear relation between them was first
suggested by Jelliffe et al. [95] and later confirmed by various clearance studies, which revealed
a close relationship between creatinine and digoxin clearance in many patients. The ready ex-
planation is that both creatinine and digoxin are mainly eliminated by the kidneys. In agreement
with this explanation, both correlation analysis and kernel test indeed found the unconditional
and conditional dependence (first and second row of Tab. 3.8).

As one can see from Fig. 3.18, the relations between creatinine clearance and urine flow (sec-
ond plot) and between digoxin clearances and urine flow (third plot) are less linear than the rela-
tion between creatinine and digoxin clearance (first plot).The correlation analysis (see also [52]
p. 43) did not find the dependence between creatinine clearance and urine flow, while kernel test
did (third row of Tab. 3.8). Both partial correlation technique and test via the kernel measure
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3. Kernel Statistical Test of Independence

Correlation Analysis Kernel Dependence

Independence Hypothesis Measure p-Value Test Measure p-Value Test

Creatinine Clearance⊥⊥ Digoxin Clearance 0.7754 0.00 Reject 0.0625 0.00 Reject

Creatinine Clearance⊥⊥ Digoxin Clearance|Urine Flow 0.7584 0.00 Reject 0.0134 0.00 Reject

Creatinine Clearance⊥⊥ Urine Flow 0.3092 0.07 Accept 0.0212 0.01 Reject

Creatinine Clearance⊥⊥ Urine Flow|Digoxin Clearance 0.1914 0.40 Accept 0.0025 0.58 Accept

Digoxin Clearance⊥⊥ Urine Flow 0.5309 0.00 Reject 0.0254 0.00 Reject

Digoxin Clearance⊥⊥ Urine Flow|Creatinine Clearance 0.4847 0.02 Reject 0.0040 0.17 Accept

Table 3.8.: Correlation analysis and kernel independence test on digoxin clearance data. The
significance levelα=0.05 is chosen.

found that, given digoxin clearance, creatinine clearancewas not significantly related to urine
flow rate (fourth row of Tab. 3.8).

Moreover, both methods found that in these patients digoxinclearance was significantly related
to urine flow rate (fifth row of Tab. 3.8). This finding is consistent with the opinion of Halkin et
al. [82], who suspected that the elimination of digoxin might be subject to reabsorption, which
might give rise to a correlation with urine flow.

However, if the linear dependence model is wrong, a biased estimate of the partial correlation
and a biased test for independence via linear model may result. Test via kernel dependence mea-
sure accepted the hypothesis that, given creatinine clearance, digoxin clearance is independent of
urine flow, whereas the partial correlation did not confirm this hypothesis (sixth row of Tab. 3.8).
The finding that digoxin clearance is independent of urine flow controlling for creatinine clear-
ance is particularly of medical interest.

In summary, the results revealed that the test via kernel dependence measure is superior to cor-
relation analysis. This example makes it clear that, in practice, independence by kernel measures
does not necessarily require the independence by correlation analysis, although it is theoretically
apparent that non-vanishing of correlation implies non-vanishing of dependence by the kernel
measure.

3.4.2. Rats’ weights

A dataset of rats’ weights is studied first by Morrison [116],then by Mardia et al. [106] and by
Edwards [52]. The data stem from a drug trial, in which the weight losses of male and female
rats under3 drug treatments are studied.4 different kinds of rats of each sex are assigned at
random to each drug. Weight losses are observed after one andtwo weeks. There are thus24
observations (=4 rat× 2 gender× 3 drug) on variables: sex, drug, and weight loss after one and
two weeks. The data, which are visualized in Fig. 3.19 can be found in [52] p. 76. Both “sex”
and “drug” have categorical domains. The domain of variable“weight loss” is 2-dimensional,
since weight losses are characterized by distinct values after one week and after two weeks.

Models on hybrid domains (mixture of categorical and continuous variables of different di-
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3.4. Real-world experiments with kernel independence test

Omitting Drug C Including Drug C

Independence Hypothesis Kernel Measure p-Value Test Kernel Measure p-Value Test

Sex⊥⊥ Drug 0.0000 0.33 Accept 0.0856 0.80 Accept

Sex⊥⊥ Drug|Weight Loss 0.0049 0.46 Accept 0.0045 0.83 Accept

Sex⊥⊥Weight Loss 0.3545 0.14 Accept 0.3690 0.00 Reject

Sex⊥⊥Weight Loss|Drug 0.0049 0.99 Accept 0.0030 0.91 Accept

Drug⊥⊥Weight Loss 0.3545 0.08 Accept 0.2800 0.02 Reject

Drug⊥⊥Weight Loss|Sex 0.0049 0.91 Accept 0.0073 0.77 Accept

Table 3.9.: Kernel independence test on rats’ weight data. The right half of the table shows the
test results on the whole dataset, while the left half of the table shows the test results
on the dataset omitting drug C. This way, the effect of drug C isapparent.

mensions) can be treated in a sophisticated way by conventional methods (see e.g., [52] p. 76). In
contrast, the kernel measure can deal with categorical or high-dimensional variables in a straight-
forward way. More precisely, in conventional methods, variable “sex” has the value set{1, 2}
for {male, female}, and variable “drug” has the value set{1, 2, 3} for {drug A,drug B,drug C}
in [52]. The kernel methods use the assignment{(1, 0), (0, 1)} for the value set of sex and
{(1, 0, 0), (0, 1, 0), (0, 0, 1)} for the value set of drug. In the binary case, the vectorial assignment
makes no difference to the scalar assignment. In the case of aternary value set, the vectorial as-
signment is more suitable, since the scalar assignment makes a restrictive assumption about the
differences between the3 drugs. Note that testing independence between vectorial variables can
not be treated by conventional methods in a straightforwardway like kernel methods.

Tab. 3.9 summarizes the results of kernel tests of non-trivial independence relations between
“sex”, “drug” and “weight loss” in the case that drug C is omitted (12 data points) or included
(24 data points). Edwards (see [52] p. 78) suspected that there is no difference between drug A
and B with regard to weight loss, whereas drug C differs widely from them. One may expect this
finding intuitively from the plot of data as shown in Fig. 3.19. The result of kernel independence
test is consistent with this finding.

3.4.3. Doctor visits and age/gender

In some social and medical studies, an ensemble of associated hypotheses need to be tested.
As an example, we study the behavior of doctor visits, more precisely, we analyze the relation
between the age or gender of a person and the number of his/herdoctor visits in Germany. Such
studies are useful for countries with large public health sector where the incentive structures may
not promote efficient use of resources. By means of this example, we will show that the kernel
independence test provides more power than linear analysisin the so-called multiple testing.

The typical real-world data of this context provides a largenumber of subgroups (male over
50 who are poor-earning, etc.). The independence hypothesis can be tested on each of the sub-
groups. In particular, the underlying distributions of subgroups may differ from each other. Since
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Figure 3.19.: Data from drug trial on rats. The weight lossesafter one week and after two weeks
of 24 male and female rats under 3 drug (drug A, B and C) treatments are studied.
Drug A, B and C are randomly assigned to the rats.
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Figure 3.20.: Q-Q plot of p-values on doctor visit data: p-values of hypothesis tests on the rela-
tion between doctor visits and age (left plot), and between doctor visits and gender
(right plot). FDR is controlled at a level of5%. The vertical lines depict the cut-off
of rejecting independence. The multiple testing via kernelmeasure rejected more
independence hypotheses, i.e., detected more dependence,than the multiple testing
via correlation analysis.
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3.4. Real-world experiments with kernel independence test

a series of tests is conducted, each with a pre-specified significance levelα, the appropriate
threshold to declare a set of p-values significant becomes much more complex. This is known as
the “multiple testing” (or “multiple comparison”) problemin statistical tests. In the absence of
dependence, each test has a chance ofα to yield a significant result, and the chance of drawing
at least one false conclusion increases rapidly with the number of tests performed.

An elegant way to deal with this problem, which was first advocated for ecological studies
by Garcia [64, 65], is to control the proportion of significant results that are in fact typeI errors
(“false discoveries”), the so-called false discovery rate(FDR), instead of controlling the chance
of making even a single typeI error. A comprehensive overview of various versions of FDR
control can be found in [20, 168]. Storey presented in [160] aBayesian interpretation of the
FDR. Based on the FDR control, Benjamini et al. [18, 19, 21] developed the so-called multiple
testing method.

The dataset that we studied originally come from the German Socio-Economic Panel, 1995-
1999 [78], and are extracted by Winkelmann [177]. The observations include persons aged
20−60 associated with non-guest worker households in west Germany. Privately insured indi-
viduals (about6% of the entries) as well as observations with missing values are excluded from
the analysis. The final sample comprises32, 837 observations. The6 variables, which we are in-
terested in, are DOCTOR V ISITS (number of doctor vistis in last three months), YEAR (calendar
year of the observation, i.e.,1995, . . . , 1999), AGE (in years, the interval20− 60 is discretisized
into 2, . . . , 5 for 20 − 30, . . . , 50 − 60), GENDER (“0” for female and “1” for male), HEALTH

(self-assessment, “-1” for bad, “1” for good, otherwise “0”), and INCOME (logarithm of monthly
gross income, “-1” for low, i.e. smaller than7, “0” for middle, i.e., between7 and8, “1” for high,
i.e., larger than8).

After partitioning the dataset subject to YEAR, GENDER, HEALTH, and INCOME, we obtained
90 subgroups for the study of age difference in doctor visits. After partitioning the dataset subject
to YEAR, AGE, HEALTH, and INCOME, we obtained180 subgroups for the study of gender
difference in doctor visits. Fig. 3.20 visualizes the set ofresulting p-valuespπ(1)≤ . . .≤ pπ(i)≤
. . . ≤ pπ(m) of testing the set of90 or 180 independence hypotheses via correlation and kernel
measure.π is the permutation that sorts the p-values in an increasing order. The plot ofpπ(i)

versusπ(i) is called Q-Q (“Q” stands for quantile) plot of p-values (see[139, 90] for details).
Using the Q-Q plot of p-values, Benjamini et al. (see [19] p. 71) presented a so-called adaptive

procedure to control the FDR in multiple testing with independent test statistics. A graphical
implementation and a detailed computational example of this procedure can be found in [19].
Conducting the Benjamini’s procedure, a cut-off of p-values for decision of dependence can be
found when FDR is controlled at a level of5%. As one can see from Tab. 3.10, the test via kernel
measures provides more power than correlation analysis in the framework of multiple testing, in
the sense that significantly more dependences can be detected via the kernel dependence measure
than via the correlation coefficient.

In order to take a close look at the dependences detected by kernel methods, we illustrate the
Q-Q plots with different colors for different subgroups. A dependence can be observed over the
whole time period (1995-1999) studied (see first row of Fig. 3.21). Since a major health care
reform took place in 1997 in Germany, this finding supports the conjecture that an age/gender
difference in the number of doctor visits was insensitive tothe system reform. The dependence
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3. Kernel Statistical Test of Independence

Number of Rejected Hypotheses⇒ Dependence

Independence Hypothesis Number of All Hypotheses Correlation Coefficient Kernel Measure

Doctor Visits⊥⊥ Age 90 3 14

Doctor Visits⊥⊥ Gender 180 29 54

Table 3.10.: Multiple hypothesis testing by means of correlation and kernel measure on doctor
visit data. The level of FDR is controlled at5%. The kernel method has more
power in the sense that testing via the kernel measure detected significantly more
dependence than testing via correlation.

corresponds to the middle income group in most cases (see last row of Fig. 3.21).
The resulting subgroups, for which a gender difference in the behavior of doctor visits is

verified, indicate that men less often visit doctor than women. This tendency is, in particular,
present, if the person actually feels good or not so bad (see plot in row 3, column 2 of Fig. 3.21),
and is relatively young, i.e.,20−40 (see plot in row 2, column 2 of Fig. 3.21).

The resulting subgroups, for which an age difference in the number of doctor visits is veri-
fied, indicate a positive correlation in men and negative correlation in women (see plot in row
2, column 1 of Fig. 3.21). That means the older the men, the more often his doctor visits. And
the older the women, the less often her doctor visits. This tendency was observed, in particu-
lar, in subgroups of men of bad health or women of good health (see plot in row 3, column 1
of Fig. 3.21). We conjecture that this finding might be due to gynecologist visits of women in
younger years and the relatively bad health status of men in older years. The dependence corre-
sponds to a middle income group in most cases (see plot in lastrow of Fig. 3.21). We conjecture
that an extremely high or low income substantially influences the behavior of doctor visits.
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4. From Independence Relations to
Causal Structure

Having introduced the kernel-based tool of independence test, we move to the task of learning
the causal structure based on obtained independence relations. At a first glance, it would be
straightforward to incorporate the “oracle” (not necessarily kernel-based) which tells us of the
independence into the schema of the IC algorithm. In practice, the oracle does not always work
correctly, since we do not have direct access to the true population distribution and can only do
inference based on finite data points. In this chapter, we will elaborate on the question how to
get structural information by independence constraints, which might exhibit conflicts.

4.1. Logic of independence relations in DAG

Ideally, a good causal model should perfectly represent theunderlying probability distribution
of observed data. The term “perfectly” means that every independence relation induced by the
causal structure, i.e., a DAGG, is true in the underlying distributionP , and every independence
relation in the distributionP is induced by the topological property, i.e., d-separation, of G. In
other words, we search for a faithful Bayesian network(G, P ) (see Section 1.4), which satisfies
both Markov and faithfulness conditions.

In practice, the set of all possible independence relationsobtained by some test could be in-
compatible, in the sense that there is no faithful Bayesian network, whose corresponding DAG
represents all independence relations. To find a principledway of handling this problem, we take
a closer look at the link between independence relations andDAGs.

Some logical rules as shown in Fig. 4.1 are exploited explicitly in a probabilistic graphical
model, where independence is captured by d-separation in DAGs [154, 124, 67]. Note that
these rules are merely necessary conditions for a faithful representation of independence relations
by DAGs. Note that, to the best of our knowledge, how to complete these rules to a set of
sufficient conditions is unknown. The rules (A1)-(A4) characterize all independence assertions
that logically follow from a so-called semi-graphoid [126,124, 162]. Those relations satisfying
(A1)-(A5) are called graphoids. The logic rule (A5) does nothold universally [14, 15], but only
under additional conditions, e.g., the strict positivity of the probability distributionP , in the
sense thatP (X)=0 only forX=∅,1 is required by Spohn (see [155], Theorem 4). In addition,
if the faithfulness is fulfilled, (A6) and (A7) hold.

1We consider the general case where every node corresponds toa set of variables (instead of only a single variable),
which can be straightforwardly identified with a vectorial variable.X should be generally understood as a set of
variables.
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4.2. Conflicts of representing independence relations

(A1) Symmetry: (X ⊥⊥ Y |S) ⇒ (Y ⊥⊥ X |S) .
(A2) Decomposition: (X ⊥⊥ (Y1, Y2) |S) ⇒ (X ⊥⊥ Y1 |S) .
(A3) Weak Union: (X ⊥⊥ (Y1, Y2) |S) ⇒ (X ⊥⊥ Y1 | (S, Y2)) .
(A4) Contraction: (X ⊥⊥ Y1 |S) ∧ (X ⊥⊥ Y2 | (S, Y1)) ⇒ (X ⊥⊥ (Y1, Y2) |S) .
(A5) Intersection: (X ⊥⊥ Y1 | (S, Y2)) ∧ (X ⊥⊥ Y2 | (S, Y1)) ⇒ (X ⊥⊥ (Y1, Y2) |S) .
(A6) Weak Transitivity: (X ⊥⊥ Y |S) ∧ (X ⊥⊥ Y | (S,Z)) ⇒ (X ⊥⊥ Z |S) ∨ (Y ⊥⊥ Z |S) .
(A7) Chordality: (X ⊥⊥ Y | (Z1, Z2)) ∧ (Z1 ⊥⊥ Z2 | (X,Y )) ⇒ (X ⊥⊥ Y |Z1) ∨ (X ⊥⊥ Y |Z2) .

Figure 4.1.: Rules that characterize independence assertions that logically follow from the
Markov and faithful conditions.

4.2. Conflicts of representing independence relations

As mentioned previously, the independence relations observed from real data are not always
logically compatible. For one thing, the oracle which tellsus of the conditional independence
from finite data does not always work correctly. For the otherthing, the assumptions we made,
i.e., Markov, faithfulness, acyclicity and no-hidden-common-causes, etc., could be violated in
real-world data.

4.2.1. Relevant Independence constraints

An independence constraint (or just constraint) is an independence relationX ⊥⊥ Y |S or a de-
pendence relationX 6⊥⊥ Y |S with disjoint subsetsX,Y, S ⊆ V. The number of all possible
constraints is exponential in the number of variables inV. In practice, we have to restrict our-
selves to a subset of constraints. Let us first specify the relevant constraints with respect to an
undirected graph (adjacency structure)G.

Definition 16 (Relevant Constraints with respect to Undirected Graph) A constraintX ⊥⊥
Y |S or X 6⊥⊥ Y |S is relevant with respect to an undirected graphG overV, if the following
conditions are satisfied:
(1)X,Y ⊂V are two distinct nodes andS⊆V\{X∪Y } is a set of nodes inG.
(2) The conditioning setS satisfies the “necessary path condition”, which states that every node
in S occurs on an undirected path betweenX andY in G [158].

As a set of variables,X or Y could be empty. But, as a node,X or Y is non-empty, since nodes
representing empty sets are not allowed. As a set of nodes,S could be empty. We call the cardi-
nality of S, i.e., the number of nodes inS, the order of the constraint. The shorthandCk depicts
the class of constraints of orderk ∈ IN. If G is fully connected, all non-trivial constraints are
relevant. But, if some edges can be excluded, e.g., due to marginal independence, the necessary
path condition can reduce the number of constraints which need to be considered in exploring
structure. The other key point of the relevant constraints is that we intend to restrict ourselves to
the constraints of entire nodes, not parts of nodes, as the construction of nodes plays an important
role in our method. We will elaborate on this later.
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4. From Independence Relations to Causal Structure

(R1) (X 6⊥⊥ Z |S) ∧ (Y 6⊥⊥ Z |S) ∧ (X ⊥⊥ Y |S) ⇒ (X 6⊥⊥ Y | (S,Z)) .
(R2) (X 6⊥⊥ Z |S) ∧ (Y 6⊥⊥ Z |S) ∧ (X 6⊥⊥ Y |S) ⇒ (X 6⊥⊥ Z | (S, Y )) ∨ (Y 6⊥⊥ Z | (S,X)) .
(R3) (X 6⊥⊥ Y |Z1) ∧ (X 6⊥⊥ Y |Z2) ⇒ (X 6⊥⊥ Y | (Z1, Z2)) ∨ (Z1 6⊥⊥ Z2 | (X,Y )) .

Figure 4.2.: Implications from constraints of a lower orderto constraints of a higher order that
are induced by the rules in Fig. 4.1.

Speaking of relevant constraints with respect to a DAGG requires a pre-specified definition
or construction of nodes inG. Each node inG can correspond to a single variable, but in real-
world applications, we have also the situation that one nodecorresponds to a subset of measured
variablesV. How to construct meaningful nodes is a non-trivial problem. Since the construction
of nodes inG exhibits a clustering ofV, the task can also be understood as a kind of causally
meaningful clustering ofV. We will propose a constraint-based approach to exploring such a
clustering in association with structural learning in Section 4.3.

Now, we elaborate on the implications among constraints of different orders induced by a
faithful Bayesian network. The semi-graphoid rules (A1)-(A4) in Fig. 4.1 are satisfied by every
probability distribution, although the results of independence tests in practice are not necessarily
consistent with them. We consider only rules (A5)-(A7). Keeping the goal of structural learning
in mind, we rephrase them into three corresponding rules (R1)-(R3) as shown in Fig. 4.2 to
clarify the implications from constraints of a lower order to constraints of a higher order. More
precisely, rule (R1) or (R2) states a general way to get constraints of classCk+1 from constraints
of classCk, wherek denotes the cardinality ofS. Rule (R3) describes a logical implication from
constraint classC1 to constraint classC2. The derivation of (R1)-(R3) from (A5)-(A7) will be
apparent in the following sections.

Corresponding to (R1)-(R3), three conflicting situations can occur in real-world data i.e., the
constraints obtained from the empirical independence tests do not follow the logical rules. The
next sections will elaborate on these conflicts and propose ways of handling them.

4.2.2. Non-transitivity conflicts

The first conflicting situation, where the weak transitivityproperty (A6) is violated, can be ex-
emplified by the rats’ weight data introduced in Section 3.4.2. The independence constraints
betweenX, Y andZ obtained by the kernel test of independence are

(X 6⊥⊥ Z) ∧ (Y 6⊥⊥ Z) ∧ (X ⊥⊥ Y ) ∧ (X ⊥⊥ Y |Z) , (4.1)

whereX: SEX, Y : DRUG (including drug C),Z: WEIGHT LOSS(see the right half of Tab. 3.9).
If X andY are indeed unconditionally and conditionally independent, rule (A6) implies

(X ⊥⊥ Y ) ∧ (X ⊥⊥ Y |Z) ⇒ (X ⊥⊥ Z) ∨ (Y ⊥⊥ Z) .
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4.2. Conflicts of representing independence relations

The marginal independence betweenX andZ or betweenY andZ displays a conflict with the
constraints in Eq. (4.1) obtained by tests.

From another point of view, applying the equivalence(a⇒ b)≡ (¬b⇒¬a) to the weak tran-
sitivity property, the unconditional dependence betweenX andZ and the marginal dependence
betweenY andZ imply an unconditional or conditional dependence betweenX andY , because

(X 6⊥⊥ Z) ∧ (Y 6⊥⊥ Z) ⇒ (X 6⊥⊥ Y ) ∨ (X 6⊥⊥ Y |Z) .

The unconditional or conditional dependence betweenX andY contradicts the given constraints
in Eq. (4.1) as well.

Definition 17 (Non-transitivity Conflict) If constraints

(X 6⊥⊥ Z |S) ∧ (Y 6⊥⊥ Z |S) ∧ (X ⊥⊥ Y |S) ∧ (X ⊥⊥ Y | (S, Z)) (4.2)

for a triple of distinct nodesX,Y, Z⊂V and a set of nodesS⊆V\{X∪Y ∪Z} in G is obtained,
then a so-called non-transitivity conflict is present.

In the presence of a non-transitivity, (A6) or (R1) does not hold. Consequently, there are no
faithful Bayesian networks representing all these four constraints. The derivation above shows
also that the non-transitivity conflict can be resolved if weassume that one of the four constraints
is wrong. Now, the question is which one is more likely to be false.

In general, a constraint of low order is more reliable, because testing independence relations
with a large conditioning set is more difficult, given a certain number of data points. For this
reason, the following assumption of reliable constraints can be reasonably made.

Assumption 4 Let (X1, Y1), (X2, Y2) be two pairs of distinct nodes in a DAGG, Z⊆V\{X1∪
X2∪Y1∪Y2} a node inG, andS ⊆ V\{X1∪X2∪Y1 ∪Y2∪Z} a set ofk nodes inG. The
identification of constraintX1⊥⊥Y1 |S or X1 6⊥⊥Y1 |S is more reliable than the identification of
constraintX2⊥⊥Y2 | (S, Z) or X2 6⊥⊥Y2 | (S, Z).

Note thatX1 6= Y1 andX2 6= Y2, butX1 andX2 (or Y1 andY2) could denote the same node.
Effectively, we assume that the constraints (of orderk) on the left side of (R2) can be more
reliably tested than those (of orderk+1) on the right side, without checking the weak transitivity
property explicitly.

Assumption 4 introduces a partial order on constraints and prefers(X1 ⊥⊥ Y1 |S) ∈ Ck to
(X2 ⊥⊥ Y2 | (S, Z))∈ Ck+1, which can be incorporated to resolve the non-transitivityconflict as
shown in Eq. (4.2). Consequently, we conclude

(X ⊥⊥ Y |S) ∧ (X 6⊥⊥ Y | (S, Z)) , (4.3)

which indicates av-structure (Fig. 1.4), i.e., an unshielded collider onZ, according to Step 2 of
IC (Fig. 1.5).

In other words, accepting Assumption 4 in addition to Markovand faithfulness assumptions,
an unshielded collider onZ can be identified by three constraints of orderk (k: number of nodes
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4. From Independence Relations to Causal Structure

Figure 4.3.: Rats’ weight data represented by a DAG, if Assumption 4 is made.

in S)
(X 6⊥⊥ Z |S) ∧ (Y 6⊥⊥ Z |S) ∧ (X ⊥⊥ Y |S) . (4.4)

If S is empty, we need only marginal constraints (without any conditional constraints)

(X 6⊥⊥ Z) ∧ (Y 6⊥⊥ Z) ∧ (X ⊥⊥ Y ) (4.5)

to identify v-structures in the DAG. Based on this consideration, under Assumption 4 the con-
straints

(SEX ⊥⊥ DRUG) ∧ ((SEX 6⊥⊥ WEIGHT LOSS) ∧ (DRUG 6⊥⊥ WEIGHT LOSS) ,

obtained by kernel independence test on the afore-mentioned rats’ weight data lead to av-
structure as shown in Fig. 4.3, saying that SEX and DRUG influence the WEIGHT LOSSof rats.

It should be mentioned that a non-transitivity conflict could also be traced back to the fact that
the true distribution underlying the real-world data is indeed not faithful. Consider the simplest
example with an underlying causal structureX→Z→Y . If causation fails to be transitive, we
would then observe the exactly same constraints as shown in Eq. (4.1).

4.2.3. Non-intersection conflicts

Another uncertain situation, which often occurs in real-world data, can be exemplified by the
digoxin clearance data already discussed in Section 3.4.1.The independence constraints obtained
by kernel tests are

(X 6⊥⊥ Y ) ∧ (X 6⊥⊥ Z) , (4.6)

and
(X ⊥⊥ Y |Z) ∧ (X ⊥⊥ Z |Y ) , (4.7)

whereX: URINE FLOW, Y : DIGOXIN CLEARANCE, Z: CREATININE CLEARANCE (see
Tab. 3.8). If we make the Assumption 4 stating that the unconditional constraints can be tested
more reliably and thus are true, a non-v-structure (Fig. 1.7) would be reasonable for the set of
constraints obtained by tests. The question is how to represent the two conditional independence
constraints by a DAG, i.e., remove edgeX−Y or remove edgeX−Z. The two conditional
constraints in Eq. (4.7) are indeed not compatible. If we apply the rules of intersection and
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4.2. Conflicts of representing independence relations

decomposition to Eq. (4.7), we obtain two marginal independence relations:

(X ⊥⊥ Y |Z) ∧ (X ⊥⊥ Z |Y ) ⇒ (X ⊥⊥ (Y, Z)) ⇒ (X ⊥⊥ Y ) ∧ (X ⊥⊥ Z) .

The two marginal independence relations induced by the logic rules contradict the constraints in
Eq. (4.6). As a note aside, in the real data example of digoxinclearance, the kernel independence
test confirmedX 6⊥⊥ (Y, Z) with a p-value of0.007, i.e., urine flow is dependent of clearances.

Consequently, the intersection property (A5) is violated, if (X ⊥⊥ Y |Z) ∧ (X ⊥⊥ Z |Y ) and
one of the marginal dependences, i.e.,X 6⊥⊥ Y orX 6⊥⊥ Z, is true. Nonetheless, we need the all
marginal dependences betweenX,Y, Z to be true, i.e.,(X 6⊥⊥ Z) ∧ (Y 6⊥⊥ Z) ∧ (X 6⊥⊥ Y ),
otherwise the necessary path condition for the constraints(X ⊥⊥ Y |Z) and(X ⊥⊥ Z |Y ) would
be not fulfilled according to Definition 16.

Definition 18 (Non-intersection Conflict)If the constraints

(X 6⊥⊥ Z |S) ∧ (Y 6⊥⊥ Z |S) ∧ (X 6⊥⊥ Y |S) ∧ (X ⊥⊥ Y | (S, Z)) ∧ (X ⊥⊥ Z | (S, Y )) (4.8)

hold for distinct nodesX,Y, Z⊂V and a set of nodesS⊆V\{X∪Y∪Z} in G are obtained, then
a so-called non-intersection conflict is present.

As mentioned previously, the intersection property (A5) does not hold in general. Martín [110]
pointed out that the assumption of strict positivity of the joint density, under which the intersec-
tion property (A5) is valid [155], is actually too strong andnot necessary. He showed that the
intersection property only holds, whenY andZ are measurably separated conditionally onS.
The so-called “measurable separability” concept is introduced by Florens et al. [57] and provides
a sufficient assumption to make the intersection property valid [110].

A trivial example for violation of the intersection property is thatY andZ are related determin-
istically with each other (see [141, 66, 103] for more theoretical discussions about deterministic
relations between nodes), i.e.,Y andZ contain entire information about each other. The un-
certainty ofY (or Z) vanishes due to the knowledge ofZ (or Y ), then any node in the graph
is independent ofZ givenY and independent ofY givenZ. Then, testing conditional depen-
dences betweenX andY givenZ and betweenX andZ givenY cannot provide any evaluable
information about the dependence betweenX and(Y, Z). Note that we observed in many real-
world applications that the empirical kernel dependence measureĤY Z|S is indeed large when
non-intersection is present, which indicates, in general,a high degree of dependence betweenY
andZ givenS.

It should be stressed that the situation thatY andZ are deterministically related is a very spe-
cific case of non-intersection conflicts defined above. The condition of Eq. (4.8) is substantially
weaker, since it needs to hold for merely one nodeX in the graph. Essentially, it reveals some
symmetry of constraints betweenY andZ with respect to only one nodeX.

It is obvious that Assumption 4 cannot help us to prefer one ofthe constraints

(X ⊥⊥ Y | (S, Z)), (X ⊥⊥ Z | (S, Y )) ∈ Ck+1 ,

wherek is the number of nodes inS. To avoid speculating on which constraint might be more

63



4. From Independence Relations to Causal Structure

Figure 4.4.: Graphical representation of Digoxin clearance data.

Figure 4.5.: Graphical representation of Rats’ weight data.

reliable under some additional restrictive assumptions, we propose to group the nodesY andZ
to a new node representing the vectorial variable(Y, Z) in the model. The intuition behind the
grouping strategy is that the new node(Y, Z) shall represent some joint feature ofY andZ, since
Y andZ contain some equivalent information with respect toX. All constraints that involve
Y or Z, as shown in Eq. (4.8), will not be considered in exploring the structure. Therefore,
the grouping strategy is in fact very conservative, in the sense that we do not speculate on the
reliability of any of the incompatible constraints.

In the digoxin clearance data, the graphical output would bean undirected graph as shown
in Fig. 4.4. The output represents only the fact that urine flow and clearances are dependent.
Note that a constraint-based approach, in principle, cannot further specify the orientation of
edges between two dependent nodes. Since we intend to interpret the resulting graph causally,
the subsequent question is whether the resulting clusters of variables are meaningful. In this
real data example, grouping variable “digoxin clearance” and variable “creatinine clearance”
is intuitively more meaningful than grouping one of clearances with “urine flow”. The marginal
dependence measures, regardless of linear or kernel-based, between variable “digoxin clearance”
and variable “creatinine clearance” witnessed the highestdegree of mutual dependence in the
sample (see Tab. 3.8).

Another example of non-intersection can be found in rats’ weight data introduced in Sec-
tion 3.4.2. The kernel independence tests between variables SEX, DRUG (including drug C),
WEIGHT LOSSshowed that (right half of Tab. 3.9)

(SEX 6⊥⊥ WEIGHT LOSS) ∧ (DRUG 6⊥⊥ WEIGHT LOSS)

and
(SEX ⊥⊥ WEIGHT LOSS|DRUG) ∧ (DRUG⊥⊥ WEIGHT LOSS|SEX) .

To resolve this non-intersection conflict, Nodes SEX and DRUG should be merged to one node
“(SEX, DRUG)”, which represents a five-dimensional variable. The resulting graphical represen-
tation of rats’ weight data is shown in Fig. 4.5.

However, clustering of variables based on the symmetry of independence relations does not
necessarily group the variables with the highest degree of mutual dependence. As an example, we
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4.2. Conflicts of representing independence relations

MOM5 Maternal Regulates polarity of the EMS blastomere.

MEX3 Maternal Specifies the identities of the anterior AB blastomere and its descendants.

POP1 Maternal Blocks END-1, END-3 activation in mesoderm precursor cells.

PAL1 Maternal Homeodomain protein, Caudal ortholog.

HLH1 Mesoderm bHLH transcription factor. Required for proper bodywall muscle development

and function.

HND1 Mesoderm Hand bHLH transcription factor required for normal viability. Expressed in

embryonic mesodermal precursor cells generating (mostly)body wall muscles.

PHA4 Mesoderm FoxA transcription factor. Regulation of pharynx/foregutdevelopment.

TBX38 Mesoderm T box transcription factor. Notch-mediated mesoderm induction in descendants

of the ABa blastomere.

HLH25 Mesoderm Unknown.

END-1 Endoderm GATA transcription factor. Initiates endoderm differentiation.

END-3 Endoderm Paralogous to END-1.

ELT-2 Endoderm GATA transcription factor. Differentiation of the intestine.

ELT-7 Endoderm Paralogous to ELT-2.

Table 4.1.: Genes and groups involved in C. elegans and their function.

consider a small gene regulatory network of endoderm of Caenorhabditis elegans (short: C. ele-
gans) [16]. The time-lapse gene expression data of the earlyembryogenesis of C. elegans consist
of 42 measurements for13 genes. Genes were manually selected and prior knowledge wasused
to group the genes into maternally inherited, mesoderm related and endoderm related. Tab. 4.1
summarizes the genes used in the analysis. The dataset consisted of multiple measurements,
taken at pc+6min (3), pc+36min (4), fc+0min (3), fc+23min (4), fc+44min (3), fc+53min (3),
fc+66min (4), fc+83min (4), fc+101min (3), fc+122min (4), fc+143min (3) and fc+186min (3).
The term “pc” indicates pseudo-cleavage and “fc” the four cell stage. The number of measure-
ments at each time point is shown in parenthesis. Each time point coincides with a cell division.
The “fc+186min” is approximately at the 200 cell stage, the middle of the gastrulation. For an
extensive review of early C. Elegans development we refer to [104].

Symmetries of independence relations, like non-intersection conflicts, might be often expected
in a gene regulatory network, since different genes could have very similar behaviors within a
structure. The C. elegans data are real-valued and have a sample size of42 (without missing
values). The measurements of genes involved in endoderm is shown in Fig. 4.6. All non-trivial
independence constraints between END-1, END-3, ELT-2, andELT-7 are tested. The only inde-
pendence relations obtained by kernel test are the following 4 constraints:

(ELT-2⊥⊥ END-1|END-3) , (ELT-2⊥⊥ ELT-7 |END-3) (4.9)
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4. From Independence Relations to Causal Structure

Case No. / Time
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Figure 4.6.: Heatmap of endodermal data of C. elegans data with genes END-1, END-3, ELT-
2, and ELT-7. The gene names and the clustering results due toresolving a non-
intersection conflict (see text) are described on the left side of the plot.

Case No. / Time
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Figure 4.7.: Heatmap of mesodermal data of C. elegans with genes HLH1, HND1, PHA4,
TBX38, and HLH25. The gene names and the clustering results due to resolving
first a non-chordality conflict and then a non-intersection conflict (see text) are de-
scribed on the left side of the plot.
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4.2. Conflicts of representing independence relations

ĤXY END-3 ELT-2 ELT-7 ĤXY |END-1 ELT-2 ELT-7

END-1 0.0414 0.0149 0.0618 END-1 − −
END-3 − 0.0460 0.0689 END-3 0.0107 0.0103

ELT-2 − − 0.0470 ELT-2 − 0.0141

Table 4.2.: Empirical kernel dependence measure of genes inendoderm of C. elegans.

ĤYX HND1 HLH25 PHA4 TBX38

HLH1 0.0297 0.0062 0.0280 0.0101

HND1 − 0.0412 0.1305 0.0059

HLH25 − − 0.0314 0.0158

PHA4 − − − 0.0113

Table 4.3.: Empirical kernel dependence measures of genes involved in mesoderm of C. elegans.

and

(END-3⊥⊥ ELT-2 | (END-1,ELT-7)) , (END-3⊥⊥ ELT-7 | (END-1,ELT-2)) . (4.10)

Other20 non-trivial constraints exhibit (conditional) dependence between genes.
The constraints in Eq. (4.10) suggest the grouping of genes ELT-2 and ELT-7 to a new node

“(ELT-2,ELT-7)” in the final output. The marginal kernel dependence measures (see Tab. 4.2)
witnessed a similar degree of the mutual dependence betweenELT-2 and ELT-7 and the depen-
dence between END-1 and END-3. However, only ELT-2 and ELT-7share the symmetric feature
with respect to END-3, given END-1. The constraints proposeto consider END-1 and END-3
as separate nodes in the final output. Grouping of ELT-2 and ELT-7 is meaningful from the bio-
logical viewpoint, as some biologists have already done in their studies [105]. Note that, given
END-1, the conditional kernel dependence measure between ELT-2 and ELT-7 is slightly larger
than other conditional measures.

4.2.4. Non-chordality conflicts

Rule (A7) in Fig. 4.1 or rule (R3) in Fig. 4.2 describes a case of four separate nodes in a faithful
Bayesian network. Situations that are in conflict with this rule can be occasionally found in
real data. As an example, we use the data of mesoderm of C. elegans [16]. Five genes HLH1,
HND1, HLH25, PHA4, and TBX38 are studied in mesoderm. The dataare real-valued and have
a sample size of42 (without missing values). The measurements of genes involved in mesoderm
is shown in Fig. 4.7. The marginal kernel dependence measures between these five genes are
listed in Tab. 4.3.

After testing all possible subsets of four variables, a violation of the rule (A7) or (R3) is found
for the set of genes HLH1, HND1, HLH25, and PHA4. We obtained the following dependences
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4. From Independence Relations to Causal Structure

by means of the kernel independence test:

(HLH25 6⊥⊥ PHA4|HLH1) ∧ (HLH25 6⊥⊥ PHA4|HND1) .

At the same time the following independence were accepted bythe kernel test:

(HLH25⊥⊥ PHA4| (HLH1,HND1)) ∧ (HLH1 ⊥⊥ HND1 | (HLH25,PHA4)) .

These four constraints exhibit a conflicting situation, because they contradict rule (A7) or rule
(R3). If we take a closer look at the constraints, we will see that they reveal a symmetry in HLH1
and HND1 with respect to the dependence between HLH25 and PHA4. Note that it does not
necessarily imply that the constraints are also symmetric in HLH25 and PHA4 with respect to
the dependence between HLH1 and HND1, as the constraints

(HLH1 6⊥⊥ HND1 |HLH25) ∧ (HLH1 ⊥⊥ HND1 |PHA4)

were obtained from real data.

Definition 19 (Non-chordality Conflict) If the constraints

(X 6⊥⊥ Y |Z1) ∧ (X 6⊥⊥ Y |Z2) ∧ (X ⊥⊥ Y | (Z1, Z2)) ∧ (Z1 ⊥⊥ Z2 | (X,Y )) (4.11)

are obtained, a so-called non-chordality is present.

This kind of conflicts can actually be further divided into three distinct cases, which can be
treated in different ways. The first case is that the following constraints are present in addition to
the constraints in Eq. (4.11):

Non-chordality 1: (Z1 6⊥⊥ Z2 |X) ∧ (Z1 ⊥⊥ Z2 |Y ) . (4.12)

That means the constraints are only symmetric inZ1, Z2, and not symmetric inX,Y . To resolve
this conflicting situation, we propose to groupZ1 andZ2 to a new node representing the vectorial
variable(Z1, Z2). The constraintX ⊥⊥ Y | (Z1, Z2) survives after grouping.

Our data example above corresponds exactly to this case. Thegenes HLH1 and HND1 are
suggested to be merged to a new node in the DAG. A ready explanation from biological viewpoint
is that genes HLH1 and HND1 are both involved in the specification of muscle cell fates, as
opposed to the genes HLH25, PHA4, TBX38.

Other situations are that the constraints containingZ1 andZ2 are indeed symmetric inX and
Y . One case is

Non-chordality 2: (Z1 6⊥⊥ Z2 |X) ∧ (Z1 6⊥⊥ Z2 |Y ) , (4.13)

and the other case is

Non-chordality 3: (Z1 ⊥⊥ Z2 |X) ∧ (Z1 ⊥⊥ Z2 |Y ) , (4.14)
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4.2. Conflicts of representing independence relations

Basic Constraints
X 6⊥⊥ Y |Z1 X ⊥⊥ Y | (Z1, Z2)
X 6⊥⊥ Y |Z2 Z1 ⊥⊥ Z2 | (X, Y )

Additional Constraints
(Z1 6⊥⊥ Z2 |X)
(Z1 ⊥⊥ Z2 |Y )

(Z1 6⊥⊥ Z2 |X)
(Z1 6⊥⊥ Z2 |Y )

(Z1 ⊥⊥ Z2 |X)
(Z1 ⊥⊥ Z2 |Y )

Non-chordality Case 1 Case 2 Case 3

No Assumption

Assumption 4

Table 4.4.: Handling non-chordality conflicts by differentstrategies.

in addition to the constraints in Eq. (4.11). In both cases, we propose to merge nodesX andY
to a new node(X,Y ) and mergeZ1 andZ2 to (Z1, Z2). Tab. 4.4 summarizes the strategy for
these three cases of non-chordality conflicts. The main advantage of the grouping strategy is that
it makes no restrictive assumptions. However, as mentionedpreviously, the grouping strategy
is very conservative, since it does not make any statements about the constraints involved in the
conflict.

If we make Assumption 4, the first and the last case of the non-chordality conflicts can be re-
solved by preferring the constraints(Z1 ⊥⊥ Z2 |X), (Z1 ⊥⊥ Z2 |Y )∈C1 to (Z1 ⊥⊥ Z2 | (X,Y ))∈
C2, because we actually have a non-transitivity conflict in thefirst case due to

(Z1 ⊥⊥ Z2 |Y ) ∧ (Z1 ⊥⊥ Z2 | (X,Y )) ,

and two non-transitivity conflicts in the last case due to

(Z1 ⊥⊥ Z2 |X) ∧ (Z1 ⊥⊥ Z2 |Y ) ∧ (Z1 ⊥⊥ Z2 | (X,Y )) .

X, Y andZ1, Z2 are symmetric only in the second case. Without giving preference to either of
the constraints of the same order2

(X ⊥⊥ Y | (Z1, Z2)) and (Z1 ⊥⊥ Z2 | (X,Y )) ,

we can only groupX,Y andZ1, Z2 together to resolve the conflicts (middle column in Tab. 4.4)
as proposed above. But in the other two cases, under Assumption 4, we achieve more specific
structure (first and last column in Tab. 4.4).
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4. From Independence Relations to Causal Structure

4.3. Constraint-based clustering algorithm

For one thing, we have to cluster variables due to conflictingsituations of constraints. For
the other thing, the kernel test of independence is able to treat high-dimensional variables in
a straightforward way, which makes nodes representing vectorial variables in the DAG possi-
ble. Regardless of the possibility of a meaningful interpretation of the node construction in the
graph, we first introduce the possible partitions of the set of all measured variablesV, if a causal
structure overV is known.

Definition 20 (Manipulation-consistent Partition) Let G1 be a DAG withm1 nodesL1 :=
{Y1, . . . , Ym1}, i.e., a partition of the set of measured variablesV = {X1, . . . , XN}. A (coarse-
grained) partitionL2 :={Z1, . . . , Zm2} of V withZi⊆{Y1, . . . , Ym2} is manipulation-consistent
with L1, if there exists a DAGG2 withm2 nodes representing{Z1, . . . , Zm2}, in whichZi→Zj

(i 6=j) are present inG1 for all arrowsYk→Yl in G1 with Yk∈Zi andYl∈Zj.

The coarse-grained (m2 ≤m1) structureG2 is obtained by grouping nodes inG1. If all arrows
in the original DAGG1 indeed describe the potential effects of manipulation (seeEq. (1.3) for
manipulation criterion) between variables, all arrows in the coarse-grained structureG2 satisfy
the manipulation criterion and could also be interpreted causally.

A node in the causal structure is generally understood as a factor that causally explains the
associations measured over a single variable or a group of variables. The motivation of introduc-
ing factors represented by multiple variables is that models of complex phenomena often consist
of hypothetical entities called “unmeasurable factors”, which cannot be directly measured by
some single variable, but might be identifiable by a group of variables that describe different
aspects of this unmeasurable factor. Such factors measuredindirectly can play an important role
in understanding and predicting the dynamics of those phenomena. For instance, in social sci-
ence, questionnaires are designed to target specific indirect measurements, such as “stress”, “job
satisfaction”, and so on.

Silva et al. [144] proposed a formal framework: the so-called generalized measurement mod-
els, to represent the unmeasurable factors. They call them “latent factors”. Subsequently, Silva
et al. [145] presented a principled way to discover latent factors in linear models. The construc-
tion of latent factors provide also a partition of the set of all measured variables. Unlike their
approach, we propose to cluster the measured variables fromthe viewpoint of structural learning.
A manipulation-consistent partition of measured variables serves as an appropriate construction
of nodes in causal structure. The key point here is that it canoccur that a certain partition of vari-
ables makes the construction of faithful Bayesian networks possible, while the other partition
does not.

To make this apparent, we consider a coarse-grained structure G1 as shown in the right plot
of Fig. 4.8. It is obtained by grouping distinct nodesZ1 andZ2 in a “fine-grained” structureG0

(left plot) into a new node representing vectorial variable(Z1, Z2). A faithful Bayesian network
with respect to the fine-grained structure implies the relevant constraintX⊥⊥Y | (Z1, Z2), while
a faithful Bayesian network with respect to the coarse-grained structure requires the relevant
constraintX 6⊥⊥Y | (Z1, Z2). Given a probability distributionP , it could occur that the Bayesian
network(G0, P ) is faithful, but(G1, P ) not, or the other way around. Handling violations of the
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4.4. Constraint-based orientation algorithm

Figure 4.8.: A coarse-grained structureG1 (right plot) is obtained by merging distinct nodes
Z1 andZ2 of a fine-grained structureG0 (left plot) to a two-dimensional variable
Z := (Z1, Z2). Both describe consistent manipulation potentials (see Eq.(1.3) for
manipulation criterion), however, do not share the same feature with respect to the
independence relations betweenX andY conditional on(Z1, Z2).

properties implied by faithful Bayesian networks can help usto find an appropriate partition of
measured variables.

Having the structural learning in mind, we formulate the variable partitioning problem: given
a set of variables, partition the variables into clusters (nodes) to make a representation of data
by a faithful Bayesian network possible. In many real-world applications, variables are reason-
ably pre-specified through experimental design, so that thetrivial clustering of variables, i.e.,
each distinct cluster corresponds to a single variable, is already a meaningful initial construction
of nodes. Sometimes, the prior knowledge, i.e., the meaningof variables, can help us to con-
struct nodes. Nevertheless, we come up with conflicts in exploring a faithful Bayesian network
representing the distribution. As showed above, we group variables by using some symmetric
properties of independence constraints without making restrictive assumptions. Fig. 4.9 sum-
marizes the so-called constraint-based clustering procedure. Our method utilizes the property of
independence relations of triples, instead of using dependence measures between pairs of vari-
ables. This differs from the approach taken by standard clustering algorithms and especially from
the recent work by Song et al. [149]. The procedure can be initially started with the trivial clus-
tering of variables, i.e., each node corresponds to a singlevariable. In real-world applications,
prior knowledge, e.g., the meaning of measured variables, can also be helpful to determine the
initial clustering of variables. It is obvious that the clustering algorithm converges, because after
each iteration the cardinality ofS is increased by1 or the number of nodes is decreased by1.
The algorithm converges fast, if the graph is sparse, since less fully connected triples need to be
checked. The output of the procedure is an appropriate clustering of variables depicting nodes, in
the sense that there are no non-intersection and no non-chordality conflicts between constraints
of orders up to some pre-specified integerk.

4.4. Constraint-based orientation algorithm

The identification ofv-structures is the essential strategy of constraint-basedapproaches. Under
Assumption 4, we use the constraints in Eq. (4.4) to identifyv-structures. This inference rule
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4. From Independence Relations to Causal Structure

Input: A set ofN nodes and an integerk.

Step 1: If a set of four distinct nodesX, Y, Z1, Z2 can be found that the condition in Eq. (4.11) is
satisfied, groupZ1 andZ2 to a new variable(Z1, Z2) and setN := N−1. If the condition
in Eq. (4.13) or Eq. (4.14) is additionally satisfied, groupX andY to a new variable(X, Y )
and setN :=N−1. Repeat step 1 so long as the set of nodes does not change.

Step 2: For i=0 to min{k, N−3}, if a triple of distinct nodesX, Y, Z and a set ofi nodesS (not
includingX, Y, Z) can be found that the condition in Eq. (4.8) is satisfied, groupY andZ to
a new node(Y, Z) and setN := N−1. If the set of nodes changes, goto Step 1, otherwise
continue.

Output: A set ofN ′∈ [2, N ] nodes.

Figure 4.9.: Constraint-based clustering procedure.

Figure 4.10.: Orientation using only marginal independence relations as shown in Eq. (4.15). The
bi-directed edge in the left plot is traced back to a collideronX2 and a collider on
Y2 and represents the conflicting information of orientation obtained byv-structure
identification. If acyclicity is assumed, a structure with latent common causeL is
explanation for the dependence betweenX2 andY2 (right plot).

for v-structures has consequences for the learning of the whole structure. For instance, if the
marginal independence constraints

X1 ⊥⊥ Y2 ∧ X2 ⊥⊥ Y1 ∧ X2 ⊥⊥ Y2 ∧ X1 6⊥⊥ Y1 ∧ X1 6⊥⊥ X2 ∧ Y1 6⊥⊥ Y2 (4.15)

are obtained, we infer twov-structuresX1 → X2 ← Y2 andX2 → Y2 ← Y1 due to Eq. (4.5).
Graphically, a collider onX2 and a collider onY2 as exemplified in the left plot of Fig. 4.10.
The bi-directed edge betweenX2 andY2 represents the conflicting information of orientation ob-
tained byv-structure identification. The resulting structure violates the assumption of acyclicity.
Making the assumption of acyclicity, both colliders leave the existence of a latent common cause
as the only explanation for the observed dependence betweenX2 andY2 (Fig. 4.10, right).

Combining the orientation information obtained by the inference rule as in Eq. (4.4) for all
possible triples(X,Y, Z) and all conditioning setsS, we can learn the orientation of the whole
structure. We implement this idea by a voting procedure, i.e., an identifiedv-structureX→Z←
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4.5. Robust causal learning algorithm (RCL)

Number of all non-trivial Marginal Independence Hypotheses accepted by Tests
0 1 2 3 0 1 2 3 4 5 6 · · ·

· · ·

Patterns of3 nodes Patterns of4 nodes · · ·

Table 4.5.: Possible patterns of3 or 4 nodes when only marginal independence relations are
known. The extension for structures of more than4 nodes is straightforward.

Y gives a respective vote toX→Z andZ←Y . Inconsistent voting results will be represented by
a bi-directed edges. Using this voting procedure, a patter can be found to represent all marginal
dependence relations. Tab. 4.5 illustrates the resulting patterns of3 and 4 nodes. A3-node
structure has6 non-trivial constraints, and3 of them are marginal. A4-node structure has24
constraints, and6 of them are marginal. Surprisingly, in many cases, most edges can be already
oriented by just using marginal independence constraints,even though we used only50% (3-node
structures) and25% (4-node structures) of all non-trivial constraints between variables. Actually,
we do not need many constraints to infer structures, if the constraints are consistent. However, the
highly redundant set of all possible constraints could leadto many conflicting situations, which
makes structural learning unreliable. A reasonable assumption like Assumption 4 is desirable.
That means the constraints of small order should be preferred.

We propose a constraint-based orientation procedure as shown in Fig. 4.11. This procedure
follows the strategy that the marginal constraints, i.e., the constraint classC0, should first be
considered and represented by the DAG. If no independence isobtained within the marginal
constraints, we obtain the fully connected and undirected structure. In this situation, constraint
classC1 would be taken into account to further detect orientation. If it fails, C2, C3, . . . , CN−1
could be successively considered, whereN the number of nodes involved in the fully connected
and undirected structure. Typically, we choose the fully connected undirected graphG of N
nodes as the initial structure. The parameterk can be typically set toN−3.

4.5. Robust causal learning algorithm (RCL)

Combining the clustering and orientation procedures, we propose the so-called robust causal
learning (RCL) algorithm as shown in Fig. 4.12 to find a faithfulBayesian network representing
observed data. The term “robust” refers to the strategy thatwe start with constraints of lower
orders and construct a structure representing as many reliable and compatible constraints as
possible. The result of this strategy is expected to be robust with respect to statistical fluctuations
of small samples. The user can directly bound the order of constraints that to be considered from
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4. From Independence Relations to Causal Structure

Input: A fully connected undirected graphG of N nodes and an integerk.

Step 1: For i=0 to min{k, N−3}

1.1 For all triple of distinct nodesX, Y, Z, if a set ofi nodesS (excludingX, Y, Z) can be
found that Eq. (4.4) is satisfied, remove the edgeX−Y and register one vote toX→Z and
Y →Z respectively.

1.2 OrientX−Y to X→ Y if there is at least one vote for this direction and no vote for the
opposite direction. OrientX−Y to X↔Y if there is at least one vote for both directions.

1.3 If G changes, goto Step 1, otherwise continue.

Step 2: If a fully connected undirected proper substructureG′ of N ′ < N nodes can be found in
G, restart this procedure withG′ of N ′ nodes and parameterk.

Output: A graphG with directed, bi-directed and undirected edges.

Figure 4.11.: Constraint-based orientation procedure.

above by some pre-specified integerk≤N−3. The most general choice ofk isN−3.
RCL starts with a fully connected graph. Based on the information from all constraints of class
C0, Step 1.1 learns a partially directed graph throughv-structure identification. After that, Step
1.2 searches for non-intersection conflicts with respect tothe underlying adjacency structure. If
two nodes are merged to a new node, RCL will be restarted with thenew set of fewer nodes,
otherwise, the constraints of classC1 will be considered to infer orientation for the remaining
undirected substructures. Having taken all constraints oforder up tok into account or having
oriented all edges involved in the graph, Step 2 of RCL checks for non-chordality conflicts.
Since Assumption 4 is made anyway by RCL, only the special case as specified by Eq. (4.13)
should be treated. Step 3 removes unnecessary edges with respect to the topology of the graph
learned by previous steps. For this purpose, we introduce the so-called relevant constraints with
respect to a given directed Graph with uni-, and bi-directededges.

Definition 21 (Relevant Constraints with respect to Directed Graph) A constraintX⊥⊥Y |S
is relevant with respect to a directed graphG overV, if the following conditions are satisfied:
(1)X,Y ⊂V are two distinct nodes andS⊆V\{X∪Y } is a set of nodes inG.
(2) The conditioning setS satisfies the “potential ancestor condition”, which states that every
nodeZ in S is potential ancestor ofX or Y in G, i.e., there exists at least one directed path from
Z toX or Y .

The motivation is that, ifX andY are connected in a directed graph, only conditioning on
potential ancestors ofX or Y can make them independent. An edgeX−Y in G is removed by a
constraintX ⊥⊥ Y |S, if the constraint satisfies the potential ancestor condition. In comparison
to the necessary path condition, the potential ancestor condition takes additionally the orientation
of G into account. The number of queries to the independence oracle can be reduced. Since our
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4.5. Robust causal learning algorithm (RCL)

Input: A set of variables and an integerk.

Step 0: Initialize a set of nodes by the trivial clustering ofN variables, i.e., every node corre-
sponds to a single variable. Initialize a fully connected undirected graphG of N nodes.

Step 1: For i=0 to min{k, N−3}

1.1 Run the constraint-based orientation procedure as shown in Fig. 4.11 with graphG and
integeri as input. It returns a patternG.

1.2 For all fully connected substructures with3 + i nodes inG, if a triple of distinct nodes
X, Y, Z and a set ofi nodesS (excludingX, Y, Z) can be found that the condition in Eq. (4.8)
is satisfied, merge nodesY andZ to a new node(Y, Z) and restart Step 1 with the new set
of N−1 nodes. Otherwise, continue.

Step 2: For all chordality structures of distinct nodesX, Y, Z1, Z2, i.e.,X−Z1−Y −Z2−X, if
conditions in Eq. (4.11) and Eq. (4.13) are satisfied forX, Y, Z1, Z2, merge nodesZ1 andZ2

to a new node(Z1, Z2), merge nodesX andY to a new node(X, Y ) and setN :=N−2. If
the set of nodes is changed, restart Step 0 with the new set of nodes, otherwise continue.

Step 3: Remove the edge betweenX andY , if a set of nodesSXY that satisfies the so-called
“potential ancestor condition” (see Definition 21) can be found such thatX ⊥⊥ Y |SXY .

Step 4: Orient the remaining undirected edges without creating newv-structures and directed cy-
cles: ifX→Z−Y (no link betweenX andY ), then directZ→Y ; and ifX→Y introduces
a directed cycle in the graph, then directX←Y .

Output: A patternG with directed, bi-directed and undirected edges.

Figure 4.12.: Robust causal learning algorithm (RCL).
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4. From Independence Relations to Causal Structure

mixed graphG could contain undirected edges we consider all undirected edges as bi-directed
ones to identify potential ancestors. Step 4 orients the remaining undirected edges under the
assumption that allv-structures are identified by previous steps and the underlying structure is
acyclic. The output of RCL is a pattern with uni-, bi- and un-directed edges. The bi-directed
edges could be traced back to a violation of the assumption ofno hidden-common-causes or
acyclicity.

RCL explores the non-intersection conflicts after resolving non-transitivity conflicts. That
means, if a triple that satisfies the condition of both non-transitivity and non-intersection, RCL
will orient the triple to av-structure under Assumption 4. The rats’ weight data is an example
(see discussions in Section 4.2.2 and Section 4.2.3). The output of RCL is then the structure as
shown in Fig. 4.3, and not that in Fig. 4.5.

Obviously, the computational complexity of RCL depends on thenumber of constraints that
are tested. RCL has to test all non-trivial constraints, if no conditional independence can be
obtained (worst-case scenario). The number of independence constraints increases exponentially
with respect to the number of nodes. Therefore, RCL is only computationally feasible if there
exists a sparse structure representing the data. The more conditional independence relations
occur in the low-order constraints, the faster RCL converges.

If there exists a faithful Bayesian network with the trivial clustering of variables representing
the data, i.e., very node corresponds to a single variable, RCLcoincides with the IC algorithm
and will find it. However, if the constraints obtained from data are highly incompatible, the
resulting structure could be less informative due to the strategy of merging nodes. Note that the
construction of nodes in the final output, i.e., the clustering of variables, is not alway unique, due
to different orders of merging nodes (see Section 4.6.4 for an example).

4.6. Real-world Experiments with RCL

We demonstrate some experiments of real-world data with RCL from different scientific fields.
In our experiments, if not explicitly stated otherwise, thekernel independence test is used due to
its general applicability. The real-world data are challenging, because the assumptions we made,
e.g., acyclicity, faithfulness, etc., are not necessarilyfulfilled. There might exist no faithful
Bayesian network at all to represent the observed data. However, RCL often generates faithful
structure on an appropriate clusters of variables.

4.6.1. College plans

Sewell et al. [140] investigated factors that influence the intention of high school students to
attend college. They measured five variables for10, 318 Wisconsin high school seniors: (SEX):
male, female; Socio-economic Status (SES): low, lower middle, upper middle, high; Intelligence
Quotient (IQ): low lower middle, upper middle, high; Parental Encouragement (PE): low, high;
and College Plans (CP): yes, no. This dataset is already discussed by Spirtes et al. [153] (with
constraint-based PC algorithm) and by Heckerman et al. [86](with the Bayesian score-based
method).
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Figure 4.13.: Stepwise results of RCL (usingχ2 test) applied to college plan data.

We ran RCL on this dataset. Because of the large sample size, we used likelihood ratioχ2

tests to check the independence constraints. Fig. 4.13 illustrates the stepwise results of RCL. We
started RCL with testing marginal independence relations andobtained two marginal indepen-
dence constraints, namely SEX ⊥⊥ IQ and SEX ⊥⊥ SES. This leads to an adjacency structure as
shown in the leftmost plot. The variables will not be merged,since no non-intersection or non-
chordality conflicts were detected. The second plot shows the resulting directed graph according
to the orientation procedure described in Fig. 4.11. After that, due to SEX ⊥⊥ CP|PE, the edge
between SEX and CP is unnecessary and thus removed, as shown in the third plot.

The remaining undirected edge between PE and CP can be oriented in PE→CP by Step 4 of
RCL, otherwise a newv-structure SEX→PE←CP would be created. The edge between IQ and
SES remains undirected. The final output of RCL (rightmost plot) coincides with the result of
the constraint-based PC algorithm (see [153] for discussions), but slightly differs from the result
of the score-based Bayesian approach (see [86] for discussions). Additionalχ2 tests showed that
all detected unshielded colliders on PE and CP display no non-transitivity conflicts. Thus, this
final output is a faithful Bayesian network that perfectly represents the data. This example shows
that if there indeed exists a faithful Bayesian network with the trivial clustering of variables, i.e.,
very node in graph corresponds to a single variable, RCL works like IC and find the faithful
representation.

4.6.2. Egyptian skulls

This dataset [164] consists of four measurements of male Egyptian skulls from five different his-
torical periods ranging from4000 B.C. to150 A.D. 30 skulls are measured from each time period,
i.e.,150 cases in total. The data are analyzed to determine if there are any differences in the skull
sizes between the time periods and if they show any changes with time. The researchers theo-
rize that a change in skull size over time is evidence for the interbreeding of the Egyptians with
immigrant populations over the years. The measurements of skulls are MB (maximal breadth),
BH (basibregmatic height), BL (basialveolar length), NH (nasal height). The predictor variable
is APPROXIMATE YEAR (approximate year of skull formation).

RCL converges after testing the marginal constraints, i.e., those inC0. The output as shown
in Fig. 4.14 represents all marginal constraints, in particular the marginal independence between
some of the measurements, e.g., between MB and BL and betweenBH and NH.
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4. From Independence Relations to Causal Structure

Figure 4.14.: Output of RCL on Egyptian skull data.

The twov-structures, which are identified by marginal constraints,is not confirmed by con-
ditional dependences. That means, two non-transitivity conflicts are present and resolved by
Assumption 4. One possible reason is that the underlying distribution is indeed not faithful. This
dataset is listed as an example for the software project TETRAD (containing the PC algorithm)
on its webpagehttp://www.phil.cmu.edu/projects/tetrad_examples. The output of RCL is consistent
with the output of PC. We used default parameters of TETRAD 4.3.8 and set significance level
α=0.05.

Note that the causal ground truth is actually not quite clearin this example. If we distinguish
between the real year (yet unknown) and the estimated year (based on the size variables: MB,
BH, BL and NH) the former should be considered as a cause of thesize variables (given that
the skull size has indeed changed over the years) and the latter as an effect of them. Due to the
fact that the kernel independence test detected marginal independence between MB, BH, and
between MB and NH, it is not very plausible to assert, based onthis dataset, a really significant
change in skull size over time.

4.6.3. Montana outlook poll

The data contain the outcomes in the Montana Economic Outlook Poll conducted in May1992,
with accompanying demographics for209 out of 418 poll respondents. After removing records
with missing values, the dataset has163 entries. More information about data can be found
at http://lib.stat.cmu.edu/DASL/Stories/montana.html. The Montana poll asked a random sample of
Montana residents whether the respondent feels his/her personal financial status is worse, the
same, or better than a year ago, and whether they view the state economic outlook as better
over the next year. Respondents are classified by age, income,political orientation, and area of
residence in the state.

The dataset contains the following7 discrete variables: AGE = 1 meaning under35, 2 meaning
35 to 45, 3 meaning55 and over; SEX = 1 meaning male,2 meaning female; yearly INCOME

= 1 meaning under $20K, 2 meaning $20 − 35K, 3 meaning over $35K; POLITICAL = 1 mean-
ing Democrat,2 meaning Independent,3 meaning Republican; AREA = 1 meaning Western,2
meaning Northeastern,3 meaning Southeastern Montana; FINANCIAL status =1 meaning worse,
2 meaning same,3 meaning better than a year ago; state economic OUTLOOK = 1 meaning better,
2 meaning not better than a year ago. We interpret the values numerically, since the difference of
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Figure 4.15.: Stepwise results of RCL on Montana data. The leftplot illustrates the structure
representing marginal constraints with a non-intersection conflict. The right plot
illustrates the final output of RCL. The output is a faithful Bayesian network repre-
senting the independence relations obtained by the kernel independence test.

values are somewhat meaningful.

We ran kernel independence tests. The left plot of Fig. 4.15 shows the adjacency structure
based on marginal constraints. The fully connected triples(FINANCIAL ,POLITICAL ,OUTLOOK)
and (AREA,POLITICAL ,OUTLOOK) are checked for non-intersection conflicts. The following
conditional independence is obtained for the former triple:

(OUTLOOK ⊥⊥ FINANCIAL |POLITICAL ) ∧ (OUTLOOK ⊥⊥ POLITICAL | FINANCIAL ) .

Therefore, Step 1.2 of RCL merged FINANCIAL and POLITICAL together to a new node contain-
ing both. Due to

(SEX ⊥⊥ AGE) ∧ (SEX 6⊥⊥ INCOME) ∧ (AGE 6⊥⊥ INCOME) ,

and

((FINANCIAL , POLITICAL )⊥⊥AREA) ∧ ((FINANCIAL , POLITICAL ) 6⊥⊥OUTLOOK) ∧ (AREA 6⊥⊥OUTLOOK) ,

we infer twov-structures (see Fig. 4.15, right). Bothv-structures can be confirmed by the condi-
tional dependences via the kernel independence test

(SEX 6⊥⊥ AGE | INCOME) ∧ ((POLITICAL , FINANCIAL ) 6⊥⊥ AREA |OUTLOOK) .

Thus, the output of RCL as shown in the right plot of Fig. 4.15 is indeed a perfect map of data,
i.e., a faithful Bayesian network.

In this example, we obtained the following constraints by means of the kernel independence
test:

FINANCIAL ⊥⊥ AREA (with a p-value of 0.013) (4.16)

and
POLITICAL 6⊥⊥ AREA (with a p-value of 0.504) (4.17)
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Figure 4.16.: Output of RCL on endodermal data of C. elegans. Thefully connected undirected
graph represents6 DAGs (3!=6 different orderings of3 nodes).

but
(POLITICAL , FINANCIAL ) ⊥⊥ AREA (with a p-value of 0.057) .

It is obvious that the decomposition property (A2) as definedin Fig. 4.1 is violated, when the
significance level is chosen to be0.05. Nonetheless, the constraints as shown in Eq. (4.16) and
Eq. (4.17) are not required by the resulting structure due toDefinition 16, since only indepen-
dence relations between entire nodes, not parts of a node, are considered. That is why (A2) or
(A3) need not be considered in this thesis. To modify our kernel measures so that the proper-
ties of decomposition (A2) and weak union (A3) are inherently fulfilled is an interesting line of
further research. Note that constraints via our kernel independence test always satisfy the prop-
erty of symmetry (A1) due to the design of the kernel measuresdescribed in Section 2.3 and
Section 2.4.

4.6.4. Caenorhabditis elegans

Biological regulatory networks appear to be composed of small, function-centered regulatory
sub-networks in which most of the regulation is exhibited between a small number of highly
interactive genes, with only limited input from the rest of the network. Therefore, it is interesting
to explore the relationships between a small number of genes. However, discovering biological
regulatory networks is challenging, because such applications concern small sample sizes and
noisy data.

In this experiment, we study the small gene regulatory networks of C. elegans again (see
Section 4.2.3 for data). First, we consider the endoderm in C.elegans. Having resolved the
non-intersection conflict by merging the genes ELT-2 and ELT-7 due to Eq. (4.10) to one node,
we obtained a structure of three nodes without non-trivial (conditional) independence relations.
The final output of RCL is then the fully connected undirected graph as shown in Fig. 4.16
representing the Markov equivalence class of DAGs (3!=6 different orderings of3 nodes).

The resulting structure generated for the endodermal data by RCL is not very informative,
but is consistent with our current understanding of the roles of these genes. END-1 and END-3
both belong to the GATA family of transcription factors and are the earliest endoderm specific
genes expressed [184]. Evidence points to END-3 being activated first with END-1 following
shortly after. Both subsequently trigger the expression of ELT-2 and ELT-7, GATA factors them-
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Figure 4.17.: Heatmap of maternal data of C. elegans with genes MOM5, MEX3, POP1,
and PAL1. The gene names and the clustering results due to resolving a non-
intersection conflict (see text) are described on the left side of the plot.
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Figure 4.18.: Heatmap of10 genes of metastatic melanoma data. The gene names and the clus-
tering results by means of independence tests via kernel measures and mutual infor-
mation (see text) are showed on the left and the right side of the plot respectively.
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Figure 4.19.: Output of RCL on maternal data of C. elegans.

selves [105].

Second, we consider another small gene regulatory network of C. elegans, namely maternal.
The measurements of genes are illustrated in Fig. 4.17. Due to the non-intersection conflict

(MOM5 ⊥⊥ POP1|PAL1) , (MOM5 ⊥⊥ PAL1 |POP1) ,

genes POP1 and PAL1 are merged to a new node in the structure. After that, no non-trivial
independence relations can be detected between nodes (POP1,PAL1), MOM5 and MEX3. The
output of RCL is a fully connected undirected graph as shown in Fig. 4.19.

Causal analysis of maternally inherited transcripts is difficult. Cause-and-effect relationships
are hard to identify, since a significant amount of transcripts has been placed in the egg ma-
ternally. The developing embryo eventually starts expressing its own transcripts, but the initial
amount supplied maternally skews the data so that causal analysis becomes difficult. One possi-
bility would be restricting the analysis to the later stages, where the ratio of maternal transcripts
becomes negligible compared to the ones of embryo. Unfortunately, selection of data points
does not improve the performance of RCL in this data sample. We conjecture that it is due to
the relatively small sample size, since it would remove at least half the measurements from the
dataset. Although the output of RCL as shown in Fig. 4.19 lacks directionality in the edges, it
resembles the factual knowledge on the genes [104, 49]: MEX-3 regulates levels of PAL-1 and
MOM5 acts downstream of POP1 and PAL1.

Through these two examples, we can see that, if no independence relations can be accepted,
RCL has to test all non-trivial independence constraints between nodes and is not able to infer
any direction of edges in the structure. Consequently, RCL willbe computationally infeasible if
the number of nodes is large.

The last small gene regulatory network of C. elegans is the network of mesoderm, which has
already been discussed in Section 4.2.4. If we first search for non-intersection conflicts, we have
to merge genes HND1 and PHA4 to a new node (HND1,PHA4), because

(HLH1 ⊥⊥ HND1 |PHA4) ∧ (HLH1 ⊥⊥ PHA4|HND1) .

Within the new set of4 nodes, no non-intersection and no non-chordality conflictscan be found.
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Figure 4.20.: Graphical representations of mesodermal data of C. elegans. If we first search for
non-chordality conflicts and then non-intersection conflicts, we will have the left
plot as the output. If we first search for non-intersection conflicts and resolve them,
no non-chordality conflicts can be further detected, thus weobtain the output as
shown in the right plot. Different orders of resolving conflicts can, in practice, lead
to different clustering results of variables.

Two marginal independence relations

(HLH1 ⊥⊥ HLH25) ∧ ((HND1,PHA4) ⊥⊥ TBX38)

and other4 marginal dependences between nodes are obtained. The rightplot of Fig. 4.20 is the
graphical representation of data.

On the other side, if we first search for non-chordality conflicts (see Section 4.2.4), the genes
HLH1 and HND1 will be merged to (HLH1,HND1). After that, a non-intersection conflict can
be further identified within the fully connected nodes (HLH1,HND1), PHA4 and HLH25, since

(HLH25⊥⊥ (HLH1,HND1)|PHA4) ∧ (HLH25⊥⊥ PHA4| (HLH1,HND1)) .

Therefore, we have to merge (HLH1,HND1) and PHA4 to a new node(HLH1,HND1,PHA4).
Within the new set of3 nodes, we obtained the following constraints by means of thekernel
independence test

((HLH1,HND1,PHA4)⊥⊥TBX38) ∧ ((HLH1,HND1,PHA4)6⊥⊥HLH25) ∧ (TBX38 6⊥⊥HLH25) ,

which indicates av-structure, i.e., the unshielded collider on HLH25. Thisv-structure is con-
firmed by the conditional dependence, i.e.,

(HLH1,HND1,PHA4) 6⊥⊥ TBX38 |HLH25 .

Therefore, the DAG as shown in the left plot of Fig. 4.20 is indeed faithful with respect to data
by means of kernel independence test.

Summing up, the output in the left plot of Fig. 4.20 is obtained by first searching for non-
chordality and then non-intersection conflicts, while the result in the right plot is obtained by
first searching for non-intersection conflicts. This example makes clear that, in practice, dif-
ferent orders of resolving conflicts could lead to differentclustering of variables, and different
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Figure 4.21.: Output of RCL on data of C. elegans.

construction of nodes could lead to different structures. Astructure that contains more informa-
tion, in the sense that more edges are directed, is desirable.

The mesodermal data proves to be the most complicated to analyze. This is due to different
cell lineages separating early and showing lineage specificgene expression patterns that become
overlaid in the microarray data. We recommend at this point to separate expression profiles of
genes according to their spatial distribution. Nevertheless, it is possible to observe fragments
of the pathways in the resulting structure. The structure still retains the coupling of HND1 and
PHA4, the connection between HLH1 and HND1 and a bi-directedconnection between HLH25
and HND1 which indicates a probable hidden common cause, in our case most likely MED-
1,2 [104].

For the sake of completeness, we ran RCL on the whole dataset of C.elegans containing all
13 genes as shown in Tab. 4.1. Prior knowledge was used to group the genes into maternally
inherited, mesoderm related and endoderm related. The nodes in the structure correspond to
the groups of genes, namely MATERNAL, MESODERM, and ENDODERM. Only one non-trivial
independence relation MATERNAL ⊥⊥ MESODERM|ENDODERM is detected. The final output of
RCL is shown in Fig. 4.21, which excludes ENDODERM being the common effect of MESODERM

and MATERNAL.
From a biological point of view, the result of RCL did not capture the essential relationships

between the groups of genes. The prior knowledge states thatMATERNAL influences ENDO-
DERM and MESODERM. The endodermal and mesodermal factors interact with each other. Ac-
tually, this fact can most likely be attributed to the temporal nature of the data. In the beginning
the maternal transcripts are the driving force of the development and are the primary causative
element for endodermal and mesodermal factors but later on the system switches to a more net-
worked state were the gene groups are starting to influence each other [104]. Further research
concerning the change of causal relationships over time is needed in order to properly deal with
this sort of data, i.e., time series.

The other point is that the factors MATERNAL, ENDODERM and MESODERMare represented
by a four- or five-dimensional variable. Given the same sample size, the independence constraints
represented by the graph in Fig. 4.21 are expected to be less reliable than those in Fig. 4.17,
Fig. 4.7 and Fig. 4.6. For this reason, a structure with nodesrepresented by low-dimensional
variables can be tested more reliably.

The resulting causal structure should never be seen as something definitive. Especially in bi-
ological systems it is often the case that functionally unrelated components show a high degree
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of correlation in their activity, which might induce a connection in the causal structure. Also the
feedback-driven nature of biological systems does not coincide with the acyclicity assumption
and thus tends to result in complications in the construction of the causal structure. The RCL
algorithm itself does not include information in the resulting structure to differentiate between
connections that cause or inhibit an event. In the case of twonodes only representing single
events, this can easily be extracted by a correlation analysis of the dataset. For nodes contain-
ing multiple variables it is not clear how to recover the typeof relationship between groups of
variables.

4.6.5. Metastatic melanoma

From the practical viewpoint, if more than4 variables are measured, we need an order of fully
connected substructures that are considered for exploringthe non-intersection conflicts by Step
1.2 of RCL (Fig. 4.12).

Assumption 5 Let G1 andG2 be two fully connected substructures in DAGG. If the weakest
marginal dependence between any two distinct variablesX1 andY1 involved inG1 is larger than
the weakest marginal dependence between any two distinct variablesX2 andY2 involved inG2,
then the adjacency structure corresponding toG1 is more reliable than the adjacency structure
corresponding toG2.

The intuition behind this assumption is that, given some appropriate measure of dependences,
the stronger the dependence between two variables can be measured, the more reliable a connec-
tion between the nodes representing the variables can be inferred. We propose to first consider
the more reliable adjacency structure correspondingG1 for exploring the conflicts among the
constraints, thenG2.

Now, we consider real data from biology, namely metastatic melanoma. Even though only4%
of observed skin cancer incidences are melanoma, it is responsible for almost80% of all deaths
attributed to this type of cancer. Only14% of patients with metastatic melanoma survive for5
years [114]. It is widely accepted that major risk factors ofmelanoma are genetic predisposition
and exposure to UV light.

We applied the RCL algorithm (with additional Assumption 5) tothe 31 gene expression
profiles generated in the study of metastatic melanoma [23].To restrict the number of genes we
concentrated on a small set likely connecting to a local regulatory network. In the expression
profiling study of Bittner et al. [23], WNT5A has been identifiedas a gene of interest involved
in melanoma. It was experimentally proved that increasing the level of WNTA5 (2) protein can
influence the cell’s metastatic potential [173]. Due to its implication in the metastatic spread of
melanoma cells, gene WNT5A was chosen in the regulatory network.

Methods for choosing the subset of10 genes involved in a small local network that includes
the activity of WNT5A is described in [97]. The network contains the10 most significant genes
which are narrowed down from587 genes: pirin (1), WNT5A (2), S100P (3), RET-1 (4), MMP-3
(5), PHO-C (6), MART-1 (7), HADHB (8), synuclein (9), and STC2(10). Tab. 4.6 summarizes
the genes and their function.
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1. pirin Implied in transcription activation and apoptosis.

2. WNT5A Secreted signaling protein.

3. S100P S100 calcium binding protein P.

4. RET-1 Reticulon-1 (RTN-1). Predominantly expressed in brain tissue.

5. MMP-3 Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of

extracellular matrix.

6. PHO-C Phospholipase C, Gamma 1 (PLCG1).

7. MART-1 Antigen that is specific to the melanocyte lineage, found in normal skin, the retina, and

melanocytes (Melan-A).

8. HADHB Subunit of the mitochondrial trifunctional protein.

9. synuclein May be involved in the regulation of dopamine release and transport.

10. STC2 Anti-hypocalcemic action on calcium and phosphate homeostasis.

Table 4.6.: Genes involved in metastatic melanoma data and their function.

The expression data was quantized to a ternary state{−1, 0, 1} indicating reduced, normal and
enhanced expression levels. Quantization smoothes errorsintroduced by noise and other factors
indirectly influencing measured expression levels. Fig. 4.18 visualizes the data of these10 genes
with three expression levels.

In the first run, we interpret the variables as continuous ones and use the empirical kernel
dependence measures (as defined in Definition 13 with Gaussian kernels) to quantify the degree
of dependence. Fig. 4.22 illustrates the stepwise results of RCL on the melanoma data. The
leftmost plot is the underlying adjacency structure induced by marginal constraints. We explore
non-intersection conflicts within fully connected substructures of this adjacency structure. To
resolve conflicts, following reconstruction of nodes are necessary:

(2 ⊥⊥ 1 | 8) ∧ (2 ⊥⊥ 8 | 1) ⇒ merge 1 and 8 to (1,8),

(5 ⊥⊥ 3 | 6) ∧ (5 ⊥⊥ 6 | 3) ⇒ merge 3 and 6 to (3,6),

(10 ⊥⊥ 2 | 7) ∧ (10 ⊥⊥ 7 | 2) ⇒ merge 2 and 7 to (2,7),

((3, 6) ⊥⊥ 5 | 10) ∧ ((3, 6) ⊥⊥ 10 | 5) ⇒ merge 5 and 10 to (5,10),

((5, 10) ⊥⊥ 9 | (3, 6)) ∧ ((5, 10) ⊥⊥ (3, 6) | 9) ⇒ merge 9 and (3,6) to (3,6,9).

We obtain a new set of5 nodes without non-intersection conflicts as shown in the second plot
(from left) in Fig. 4.22.

Based on this clustering of variables, we first test marginal independence between distinct
clusters of variables, i.e., the nodes in the graph. The resulting adjacency structure of these
nodes is shown in the second plot of Fig. 4.12. The third plot shows the result of inferringv-
structures after Step 1.1 of RCL. No non-chordality conflicts can be found by Step 2. Step 3
removes the unnecessary edge between(3, 6, 9) and(5, 10) due to((3, 6, 9) ⊥⊥ (5, 10) | (2, 7), 4)
with respect to the potential ancestor condition. All edgesare then directed. The final result
is shown in the rightmost plot. The bi-directed edges between (2, 7) and(3, 6, 9) and between
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Figure 4.22.: Stepwise results of RCL (by means of independence tests via kernel measures)
applied to metastatic melanoma data.

(2, 7) and(5, 10) could be traced back to latent common causes. Another explanation is that the
underlying model is indeed cyclic.

In the second run, we interpret the variables as categoricalones and use the mutual informa-
tion to measure dependences between variables. The magnitude of dependences measured by
mutual information differs from the magnitude measured by kernel methods. In particular, under
Assumption 5, the order on the fully connected substructures that are considered for exploring
non-intersection conflicts by Step 1.2 of RCL is different.

The leftmost plot of Fig. 4.23 is the underlying adjacency structure induced by marginal con-
straints (via mutual information). In comparison to the leftmost plot of Fig. 4.22 (with kernel
measures), the only difference is that tests via mutual information accept the constraint(3 ⊥⊥ 8)
with a p-value of0.056, while the test via kernel measure reject the constraint(3 ⊥⊥ 8) with a
p-value of0.044.

We explore non-intersection conflicts within fully connected substructures of this adjacency
structure. To resolve conflicts, following reconstructionof nodes are necessary:

(3 ⊥⊥ 2 | 7) ∧ (3 ⊥⊥ 7 | 2) ⇒ merge 2 and 7 to (2,7),

(9 ⊥⊥ (2, 7) | 10) ∧ (9 ⊥⊥ 10 | (2, 7)) ⇒ merge (2,7) and 10 to (2,7,10),

((2, 7, 10) ⊥⊥ 1 | 8) ∧ ((2, 7, 10) ⊥⊥ 8 | 1) ⇒ merge 1 and 8 to (1,8),

(5 ⊥⊥ 3 | 6) ∧ (5 ⊥⊥ 6 | 3) ⇒ merge 3 and 6 to (3,6),

(5 ⊥⊥ 9 | (3, 6)) ∧ (5 ⊥⊥ (3, 6) | 9) ⇒ merge 9 and (3,6) to (3,6,9).

We obtained a set of5 nodes as shown in the second plot (from left) of Fig. 4.23, which only
slightly differs from the clustering as shown in the second plot of Fig. 4.22 using kernel measures.
The only difference is that the gene STC2 (10) belongs to different clusters.

Step 2 of RCL detects no non-chordality conflicts. Step 3 removes the unnecessary edge
between(3, 6, 9) and(5) due to((3, 6, 9) ⊥⊥ 5 | (2, 7, 10), 4) with respect to the potential ancestor
condition. All edges are then directed. The final output of RCL by means of mutual information
is shown in the rightmost plot of Fig. 4.23.

Interestingly, the clustering results and final graphical outputs by means of the permutation
tests using mutual information and kernel measures as dependence measures are quite similar,
although mutual information interpreted the variables as categorical ones while kernel measures
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4. From Independence Relations to Causal Structure

Figure 4.23.: Stepwise results of RCL algorithm (by means of independence tests via mutual
information) applied to metastatic melanoma data.

Figure 4.24.: Outputs of PC applied to metastatic melanoma data. The left plot is the result, if we
consider the underlying domains categorical and use likelihood-ratioχ2 test. The
right plot is the result, if we consider the underlying domains continuous and use
Fisher’s Z test. The significance level is chosen to be0.05

interpreted them as continuous ones. We conjecture that it is due to the ternary domains. More
precisely,4 genes, i.e., RET-1 (4), PHO-C (6), MART-1 (7), HADHB (8), haveonly two expres-
sion levels in the31 cases observed (see Fig. 4.18). The similar results achieved by different
measures showed that the constraint-based clustering procedure (Fig. 4.9) is reasonably robust
with respect to the order of checking conflicts.

Note that the conventional constraint-based PC algorithm does not handle probable violations
of the faithfulness assumption at all. In conflicting situations, the output of PC depends on the
order of checking independence. For comparison, we performed PC on the metastatic melanoma
data with likelihood-ratioχ2 and Fisher’s Z test (see Fig. 4.24 for outputs). Interestingly, we
can observe that the outputs of PC contains the edges betweenvariables which are clustered to
a node by RCL and the edges between sets of variables which are represented by nodes in the
outputs of RCL are mostly absent.

It is indeed difficult to evaluate the performance of RCL on sucha biological dataset, because
the ground truth is not completely known. Nonetheless, the causal interpretation gained from
the resulting structure can partly be confirmed by prior knowledge of biologists or are consistent
with other studies.

Genes pirin (1) and HADHB (8) are identified as the start pointof causal chain by RCL (see
Fig. 4.22 and Fig. 4.23). The gene pirin (1) is a transcription factor and believed to have influence
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4.6. Real-world Experiments with RCL

on apoptosis [2, 121]. Datta et al. [45] suggested in their study to control the level of WNT5A
(2) directly or through pirin (1), since they believe that controlling the influence of WNT5A (2)
in the regulation can reduce the chance of melanoma metastasizing. For pirin (1) it is possible
to image a role as a regulatory element of the other nodes in the structure. Gene HADHB (8)
is part of a mitochondrial protein complex responsible for oxidation of fatty acids [120]. The
regulatory role of HADHB (8) is unknown and thus it is possible that its connections are due to
non-functional dependences.

Gene WNT5A (2) is a secreted signaling protein whose deregulation plays a central role in can-
cer progression [128]. RNAi evidence points towards a connection of WNT5A (2) and MART-1
(7) [150].

Gene MMP-3 (5) belongs to a family of secreted proteins that breakdown the protein com-
ponents of the extra cellular matrix. This detachment from the matrix allows cancer cells to
migrate and develop metastasis distant from the primary tumor. It is well known that multiple
members of the MMP family are involved in this process [42, 181]. Gene STC2 (10) plays a
role in the maintenance of the calcium homeostasis. Deregulation of calcium levels is believed
to help cancer cells achieve their anti-apoptotic property[127].

The remaining nodes of the structure contain genes expressed in brain tissue, i.e., RET-1 (4),
dealing with energy metabolism, i.e., S100P (3), PHO-C (6),and a dopamine release synuclein
(9). Both RET-1 (4) and synuclein (9) are primarily expressed in neural tissue, which makes
the connection between them likely. However, the functional role of RET-1 (4) is yet unknown.
It could be that the causal connections to those genes are dueto non-functional correlations in
activity. Alternatively, it is imaginable that the connection between(2, 7)/(2, 7, 10) and(3, 6, 9)
is actually traced back to a hidden common cause (maybe a transcription factor) controlling both
nodes.

In summary, the structure serves as a good example for the discriminative power of the RCL
algorithm. Even on data of small sample size, it is possible to extract meaningful causal relation-
ships which are kept separate from genes not likely to participate in the functional network.
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5. From Magnitude of Dependences to
Causal Structure

The main shortcoming of learning causal structure from independence relations is that it cannot
learn anything, if no (conditional) independence can be verified. Further, a reliable test on inde-
pendence constraints is of utmost importance. It is, however, not guaranteed when the sample
size is small or the conditioning set is large. In this chapter, we will propose to make use of
the magnitude of dependences measured by kernels to get hints about the causal structure, even
when no conditional independence is present.

5.1. Problems of learning structure via independence
tests

If we had direct access to the true distribution, we would always make the correct decision
about the independence in the population. In practice, the decision is made based on sample,
the observed data may not be very representative of the population and therefore leads us to an
incorrect decision. As mentioned previously (Tab. 3.1), The errors made by independence tests
can be classified as typeI andII error. The common way of controlling errors made by a single
hypothesis test is using significance levelα (usually5%) to control the typeI error. Under a
fixed level of typeI error, one tries to keep the typeII error level as low as possible. Therefore, it
could happen that typeII error cannot be kept to a low level, when typeI error is controlled to a
pre-specified levelα. It is very difficult to handle the trade-off between the level of type I andII
error, which is utmostly important for learning structure from independence constraints.

In particular, if the sample size is small, statistical tests will be unreliable. Note that the term
“small” is relative and depends on the size of the model, because data, even when considered as
“large”, might often be small with respect to the number of joint states of variables with a large
domain.

As an example, we describe a real dataset, which was used to study food products for palata-
bility by Street et al. [161] (seehttp://lib.stat.cmu.edu/DASL/Datafiles/tastedat.htmlfor data). The
experiment involved the effects on palatability of a coarseversus fine screen (large “pieces” ver-
sus small “pieces”) and of a low versus high concentration ofa liquid component. The dataset
consists of16 cases and three variables, i.e., SCORE: total palatability score for 50 consumers:
general Foods employed a7-point scale from−3 (terrible) to+3 (excellent) with0 representing
“average”; LIQUID: liquid level (0: “low”, 1: “high”); and SCREEN: screen type (0: “coarse”,1:
“fine”). The sample size of data is16, which is quite small, since we have28 possible states of
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5.1. Problems of learning structure via independence tests

variables (7 points×2 liquid level×2 screen type).
We ran hypothesis tests of non-trivial independence relations between three variables. Tab. 5.1

summarizes the results of tests based on correlation analysis and kernel dependence measures.
As seen from the table, tests provided the same set of independence relations.

Correlation Analysis Kernel Dependence Resampling-based

Independence Hypothesis Measure p-Value Test Measure p-Value Test Multiple Test

Liquid ⊥⊥ Screen 0.0000 0.596 Accept 0.0000 0.601 Accept Accept

Liquid ⊥⊥ Screen|Score 0.0710 0.336 Accept 0.0019 0.328 Accept Reject

Liquid ⊥⊥ Score -0.2475 0.365 Accept 0.0156 0.500 Accept Reject

Liquid ⊥⊥ Score|Screen -0.4093 0.133 Accept 0.0144 0.438 Accept Reject

Screen⊥⊥ Score 0.7965 0.000 Reject 0.1145 0.000 Reject Reject

Screen⊥⊥ Score|Liquid 0.8221 0.001 Reject 0.0639 0.004 Reject Reject

Table 5.1.: Correlation analysis and kernel independence test on taste score data.

In order to see whether the observed sample may be representative of the population or not,
we amplify the original sample of size16 by subsamples of size17, 24, 32, 48, 80, 144. The
subsamples are resampled with replacement from the original data. For each of the6 subsample
sizes, we sampled100 subsamples and calculated the p-value for each of the100 subsamples by
means of the kernel measure. Thus, we obtained a set of100 p-values for every independence
hypothesis. The set of100 p-values is reordered from small to large. Fig. 5.1 shows theso-called
Q-Q plots (“Q” stands for quantile) of the set of reordered100 p-values with difference colors
for different subsample sizes.

In the case of obvious independence, i.e., LIQUID ⊥⊥ SCREEN (top left plot of Fig. 5.1), the
Q-Q plot of p-values is close to the diagonal line, since the p-values are somewhat uniformly
distributed in[0, 1]. The form of the Q-Q plot of p-values does not significantly change, as the
size of subsamples increases. In the case of an obvious dependence, e.g., SCREEN 6⊥⊥ SCORE

(top right plot), the Q-Q plot is very close to the lower line,which means that almost all of the
hypotheses on100 subsamples would be rejected. The larger the size of subsamples, the closer
the Q-Q plot to the lower line, the more likely the dependence.

The ambiguous case is more interesting, i.e., the non-significant dependence between LIQUID

and SCORE (top middle plot). As the subsample size increases, more andmore tests will reject
the independence hypothesis, i.e., the Q-Q plot of p-valuesvaries from the diagonal position
to the lower line. Consequently, LIQUID and SCORE would be dependent, if we could observe
more data points, although the independence test on the original sample did not detect significant
dependence. Resampling-based hypothesis tests, e.g., witha resampling size48, would revise
the set of constraints. The revised constraints in the last column of Tab. 5.1 lead to av-structure
between LIQUID, SCREENand SCORE, as shown in Fig. 5.2. Note as aside, a resampling-based
hypothesis test via correlation achieved the same results as shown in the last column of Tab. 5.1.

It is clear that a weak dependence can always be verified as a significant one, if the resampling
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Figure 5.1.: Q-Q plot of p-values of a resampling-based kernel independence test on taste score
data. The upper row shows the tests of unconditional constraints using different
sizes of resampling (different colors). The original sample size is16. The lower row
shows the tests of conditional constraints.

Figure 5.2.: Taste score data represented by a DAG, given theindependence constraints obtained
by a resampling-based kernel independence test (last column of Tab. 5.1).
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5.2. Identifying colliders via magnitude of dependences

size is large enough. The choice of resampling size actuallyhandles the trade-off between type
I andII error implicitly. Our simulated experiments gave numerical evidence of power increase
by such resampling-based hypothesis test (see Section C.1 inAppendix C for the procedure
and some experiments). We believe that the resampling-based hypothesis test is a better way to
balance the typeI andII error than a direct choice of the level of merely typeI error, in particular,
if the sample size is extremely small. However, there is yet no principled way to choose the
resampling size. Further, such multiple testing is obviously extremely time-consuming.

An alternative way to avoid rejecting too many dependences is a direct use of the magnitude
of dependences measured by kernels for learning causal structure. In the example of taste score
data, we have

ĤLiquid, Screen< 10−30 ≈ 0 and ĤLiquid, Screen|Score= 0.0019 � 0 ,

which could be interpreted as indicator for an unshielded collider on SCORE, in the spirit of the
criterion as in Eq. 4.3. Or, analogous to the condition as in Eq. 4.4 or Eq. 4.5, the magnitude of
dependences

ĤLiquid, Score= 0.0156� 0 , ĤScreen, Score= 0.1145� 0 , and ĤLiquid, Screen< 10−30 ≈ 0

can also serve as an indicator for an unshielded collider on SCORE. Following sections will
systematically elaborate on the question how to use the magnitude of dependences to infer the
causal structure.

5.2. Identifying colliders via magnitude of dependences

We first describe some criteria that may give evidence of a collider in the structure. As a start,
we consider an unshielded tripleX−Z−Y (X andY nonadjacent). The identification ofZ
as an unshielded collider in the structure establish an essential basis part of a constraint-based
approach. Under faithfulness assumption, conditioning onZ should induce dependence between
X andY , i.e.,Z activates the path between them. Only the empty set blocks the path betweenX
andY . By means of kernel dependence measures,ĤYX≈0 andĤYX|Z�0 strongly indicate that
Z is the common effect of probably independentX, Y . This leads to the following criterion.

Criterion 1 Given variablesX,Y, Z, if the ratio
ĤYX|Z
ĤYX

is very large,Z is a strong candidate for
being a collider on the path betweenX andY .

Graphically,X→Z andZ← Y can be inferred. In this case, variablesX andY are probably
independent, i.e., an unshielded collider onZ.

Since we believe that̂HYX andĤYX|Z quantify the magnitude of dependences in a reasonable
sense (with an appropriate choice of kernels), we dare to go astep further and extract hints on
direction in a shielded tripleX−Y −Z−X, i.e., a fully connected adjacency structure.
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5. From Magnitude of Dependences to Causal Structure

Criterion 2 Given variablesX,Y, Z, if

ĤYX|Z

ĤYX

>
ĤZX|Y

ĤZX

and
ĤYX|Z

ĤYX

>
ĤZY |X

ĤZY

,

thenZ is a weak candidate for being a collider on the path betweenX andY .

Graphically,X→Z andZ← Y can be inferred. In this case, variablesX andY are probably
dependent, i.e., a shielded collider onZ.

We unify Criterion 1 for unshielded collider identification and Criterion 2 for shielded collider
identification into a so-called “λ-collider condition”.

Definition 22 (λ-Collider Condition) For any triple(X,Y, Z) with the substructureX−Z−Y ,
whereX andY may be adjacent or nonadjacent, variableZ is a candidate for being a collider
betweenX andY , if and only if

ĤYX|Z > λ ĤYX (5.1)

with appropriateλ>0.

If the collider is indeed unshielded, i.e.,ĤYX≈0, one would expect that the inequality holds for
a very largeλ, say larger than some pre-specified constantλ1. In the case of a shielded collider,
λ is chosen to be, sayλ2, based on Criterion 2

λ2 := ρ · max

{
ĤZX|Y

ĤZX

,
ĤZY |X

ĤZY

}
with ρ≥1 . (5.2)

λ1 should be chosen sufficiently large and it is clear thatλ1� λ2. In our implementation, we
choseλ1 := 100. Given observed sample,λ2 can be calculated empirically. The parameterρ is
used to avoid the uncertainty of probable sample errors. In our experiments, we choseρ=1.2.

To ensure the numerical stability of the scores in Eq. (5.2),we add a very small regularization
constantε to the kernel matrices that are used to compute the scoreĤYX by

1

(n− 1)2
Tr((K̂Y + εI)(K̂X + εI)) ,

whenĤYX appears in the denominator. In our experiments, we setε=10−5 throughout the thesis.
It is crucial to use the ratio, not the difference, of conditional and unconditional measure for

the criteria, because the fact that one of the unconditionaldependences is close to zero, i.e., one
of the three ratios is significantly larger than other two, isessential for the decision of a collider
structure. Under the faithfulness assumption, one can actually identify an unshielded collider
onZ, if marginal constraintsX ⊥⊥ Y ∧ X 6⊥⊥ Z ∧ Y 6⊥⊥ Z can be indeed verified, instead of
all non-trivial constraints as shown in the first column of Tab. 1.1 (see Section 4.2.2 for more
discussions). This means unconditional measuresĤZX , ĤZY � ĤYX ≈ 0 would be sufficient to
make the decision for a collider onZ.
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5.3. Orientation heuristics via collider identification

The situation will be more apparent if mutual information, apopular dependence measure, is
used. For a triple(X,Y, Z), the following equation holds in general [179]:

I(X,Y )− I(X,Y |Z) = I(X,Z)− I(X,Z|Y ) = I(Y, Z)− I(Y, Z|X) =: I(X,Y, Z) .

Note that the quantityI(X,Y, Z), the mutual information among triple(X,Y, Z), could be pos-
itive or negative. The difference of unconditional and conditional mutual information, i.e.,
I(X,Y, Z), reflects a joint property of the triple (see also [132] for more details), which can-
not provide any information about the structure among them.In contrast, the three ratios are not
equal to each other, i.e.,

I(X,Y |Z)

I(X,Y )
6= I(X,Z|Y )

I(X,Z)
6= I(Y, Z|X)

I(Y, Z)
.

This is due to
I(X,Y, Z)

I(X,Y )
6= I(X,Y, Z)

I(X,Z)
6= I(X,Y, Z)

I(Y, Z)
.

In these ratios, the magnitude of unconditional dependences plays an essential role.
The reason why we use kernel dependence measures, not mutualinformation, is in part the

practical implementation, in particular, on continuous domains. In the limit of infinite sam-
pling, HS-norm of the conditional cross-covariance operator provides a general distribution-free
tool to capture dependences. Having chosen a kernel such that functions being less smooth
correspond to larger RKHS-norms, large dependence measureswill then indicate correlations
between smooth functions. A finite cut-off value for dependence measures corresponds to ne-
glecting correlations if they are small or if they occur onlyon complex (not sufficiently smooth)
functions (see Section 2.7 for more discussions), which is certainly a reasonable indicator for
independence. Criterion 2 takes the quantitative information about dependence measured by ker-
nels into account and makes, in fact, some implicit assumption, via the choice of kernels, on the
prior probability distribution of the transition probabilities that occur in nature. Only extensive
experiments with real-world data can really decide whetherthe assumption behind our criteria
provide useful hints or not, because, if the true model is indeed fully connected, all joint prob-
ability distributions can, in principle, be generated. Then, it will be very hard to find a reliable
principled way to prefer one of them.

5.3. Orientation heuristics via collider identification

Theλ-collider condition (Definition 22) shows that Criterion 1 and Criterion 2 can be considered
as two related conditions of increasing strength and correspond to different degrees of reliability.
It is reasonable to expect that the weaker the assumption, i.e., the larger the value ofλ, the
fewer collider structures will be erroneously identified. This suggests that the collider structures
identified byλ1 have priority over those byλ2. Note that we do not intend to interpret the ratios
ĤYX|Z/ĤYX , ĤZX|Y /ĤZX , andĤZY |X/ĤZY as scoring functions for the evidence of being a
collider, since only the comparison of the ratios gives hints on being a collider, not the value of
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Input: An adjacency structureG.

Step 1: Voting procedure for colliders.

1.1 Check for all substructuresX−Z−Y (X andY may be adjacent or nonadjacent), whether
Z is a candidate for being a collider betweenX andY on the basis of Criterion 1 with a
sufficiently largeλ1. If yes, directionsX → Z and Z ← Y obtain a vote, respectively.
Based on the voting results, orient edges according to the majority principle.If the result is
balanced, leave the edge undirected. The resulting graph isG1.

1.2 The same voting procedure as in Step 1.1 on the basis of Criterion 2 withλ2 as in Eq. (5.2).
The resulting graph isG2.

Step 2: Orient the edges inG with orientation information fromG1. Then orient the remaining
undirected edges inG with orientation information fromG2.

Output: a graphG with undirected or directed edges.

Figure 5.3.: Orientation procedure A (OPA) by a majority vote.

ratios itself. Such a “two-λ-scheme” guarantees that an unshielded collider or a collider with
weakly dependent parents can be first identified by very reliable Criterion 1, and prevented from
getting (probably) wrongly re-oriented through the less reliable Criterion 2.

If we consider a fully-connected adjacency structure of triple(X,Y, Z) isolated from the whole
network, theλ-collider condition can only be justified by hand-waving arguments. However, if
we consider a network with more than three variables, we can use criterion 1 or criterion 2 for all
triples of measured variables. If Criterion 1 or Criterion 2 identifiesZ as a collider betweenX
andY , we register this as a vote for orientationsX→Z andY →Z, respectively. After having
checked all possible triples, we infer the orientation of each edge by a majority vote. A similar
voting procedure is proposed in Section 4.4. The differenceis that we orient the edges here by
the majority principle. Consequently, the resulting graph contains no bi-directed edges.

Combining the voting procedure with the two-λ-scheme, we present an orientation heuristics
without testing independence, called orientation procedure A (short: OPA), as shown in Fig. 5.3.
Actually, OPA assumes that a certain pattern of marginal andconditional dependences makes
some of the orderings of a triple more likely. The voting procedure considers this preference for a
particular structure significant only if the evidence provided by many distinct triples is consistent.
The detailed pseudocode of OPA can be found in Appendix B.1. Note that the resulting graph of
OPA is not necessarily completely directed, since the voting results can be balanced.

The main advantage of OPA is that it works even for a fully connected adjacency structure.
OPA as a heuristics, however, has the main shortcoming that asmallλ (e.g.,λ2 used in Step 1.2)
sometimes leads to wrong votes. Hence, the voting majority could be unreliable.1

1The way that our method makes use of the quantitative information about the strength of dependence has some
analogy to the “monotone faithfulness principle” and BN-PCalgorithm proposed by Cheng et al. [28]. It states
that blocking a previously active path that connects two nodes decreases the mutual information. Chickering et
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5.4. Simulated experiments with orientation heuristics

To make the orientation more reliable, we propose to incorporate the information about proba-
bly absence of edges, i.e., if the HS-norm̂HYX betweenX andY is smaller than some threshold,
say10−4). A slightly modified version of OPA, called orientation procedure B (short: OPB), is
proposed in Fig. 5.4. OPB, instead of the majority principle,orients edges only by a unanimous
vote, i.e., no dissenting votes. In the case of a mixed votingresult, i.e., at least one vote for both
directions, we mark the edge with a bi-directed edge. Undirected edge depicts no votes for both
directions. The output of OPB is a mixed graph with un-, uni-,and bi-directed edges. Actually,
the output of PC sometimes contains also bi-directed edges or even directed cycles (see Fig. 2
in [44] for example, a so-called “pinwheel” structure). They can be interpreted as an indicator for
violation of assumptions. A possible interpretation of bi-directed edges obtained by our voting
procedure will be discussed in Section 5.4.2.

To take the adjacency structure, i.e., absence of edges, into account, Step 1 of OPB (Fig. 5.4)
infers structure by unshielded collider identification. Having identified all unshielded colliders,
Step 2 of OPB orients as many of the remaining undirected edges as possible whenever their
directions follow from the assumption that neither additional unshielded colliders nor directed
cycles exist.2 For this purpose, orientation rule 1, 2, 3 for obtaining a maximally oriented pattern
(Fig. B.1 in Appendix B.3) can be applied. After that, it could happen that some edges remain
undirected. Step 3 of OPB uses the orientation heuristics again to identify shielded colliders,
with respect to the given partially directed graph. The detailed pseudocode of OPB can be found
in Appendix B.2.

5.4. Simulated experiments with orientation heuristics

Some experiments are conducted on simulated data, which aresampled from functional or
logically-linked models. The kernel dependence measures can not only be used to infer the
orientation of edges, but also infer the absence or presenceof edges by just thresholding the
measure. The output will give hints about how reasonable is the magnitude of dependences mea-
sured by kernels. Apart from graphical representations, the detailed statistics of edges are useful
to give numerical evidence how reliably can the kernel measures specify the set of necessary
arrows.

5.4.1. Simulated data from noisy OR gates

We present experiments with six different OR gates as definedin Eq. (3.6). “2-Bit-IndDet” and
“3-Bit-IndDet” are deterministic OR gates with2 and 3 independent input bits, respectively;
“2-Bit-IndPro” and “3-Bit-IndPro” are probabilistic OR gates with 2 and3 independent inputs;

al. [34] showed, however, that this principle could not generally be valid. For networks with many nodes one will
usually find several nodes that violate it. Nonetheless, BN-PC will be conducted for performance comparison.

2In a mixed graph, a pair of consecutive edges meeting at a vertex Z on a path form a collider if both edges have
an arrowhead atZ, i.e.,→Z←,↔Z↔,↔Z←,→Z↔. A directed cycle is a directed pathX → · · · → X on
which every edge is of the form→ or↔ and all the edges→ have the same orientation.
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Input: An adjacency structureG.

Step 1: Unshielded collider identification.

1.1 Check for all substructuresX−Z−Y , whereX andY are nonadjacent, whetherZ is a
candidate for being a collider betweenX andY on the basis of Criterion 2. If yes, directions
X→Z andZ←Y obtain a vote, respectively.

1.2 Orient every edge inG into→, if there is at least one vote for this direction and no vote for
the reverse direction←. If there are votes for both directions, mark the edge bi-directed. If
both directions obtained no votes, leave the edge undirected.

Step 2: The same orientation procedure as shown in Step 3 of IC (Fig. 1.5).

Step 3: Shielded collider identification.

3.1 The same voting procedure as in Step 1.1 for all substructuresX−Z−Y −X.

3.2 The same orientation procedure as in Step 1.2 for all remaining undirected edges.

Output: A mixed graphG with un-, uni- and bi-directed edges.

Figure 5.4.: Orientation procedure B (OPB) by a unanimous vote.

whereas the probabilistic OR gates “2-Bit-DepPro” and “3-Bit-DepPro” were fed with2 and3
dependent inputs, respectively. The parameters of these models are summarized in Tab. 5.2.

To give some intuition of the value of kernel dependence measures, we randomly picked out
three samples of200 data points, one for each of the three 2-bit OR gates. As seen from Tab. 5.3,
the ratioĤX1X2|X3/ĤX1X2 achieves always the maximum within rows andX3 can be thus iden-
tified as a collider betweenX1 andX2. The kernel measures describe exactly the fact that con-
ditioning on the output, the inputs become dependent. The ratios for OR gates with independent
inputs, i.e., 2-Bit-IndDet and 2-Bit-IndPro, are extremely large, which indicates an unshielded
collider onX3. In 2-Bit-DepPro, no conditional independence is present, but Criterion 2 is still
applicable and indicates a shielded collider onX3.

We compared OPB with PC, BN-PC and various score-based Bayesianmethods (see Ap-
pendix C.2 for details about these methods), based on1000 replications of the experiments with
respective200 data points sampled from these six OR gates. In the case of OPB,we use cut-off
value10−4 for thresholding kernel dependence measureĤYX and remove the edge betweenX
andY . The detailed statistics of1000 replications can be found in Tab. C.3 and Tab. C.4 in
Appendix C.2. Tab. 5.4 summarizes the resulting graph of algorithms in the majority case.3

3The PC algorithm allows no latent variable, thus its output normally contains only directed “→” and undirected
“−” edges. FCI, which allows latent common causes, has additionally the “X◦→ Y ” arrow, meaningY is not
an ancestor ofX, i.e.,X potentially causesY (common cause not ruled out). The undirected edge “X−Y ” in
the output of FCI is often graphically represented by “X◦−◦Y ” in many literatures. For the sake of simplicity,
we use the notation of “X−Y ” throughout this thesis.
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5.4. Simulated experiments with orientation heuristics

2-Bit-IndDet 2-Bit-IndPro 2-Bit-DepPro 3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro

X1 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6 P (X1) = 0.6

X2 P (X2) = 0.5 P (X2) = 0.5 (1−X1)0.1 P (X2) = 0.5 P (X2) = 0.5 (1−X1)0.1

X3 OR0{X1,2} OR0.2{X1,2} OR0.2{X1,2} P (X3) = 0.4 P (X3) = 0.4 OR0.2{X1,2}
X4 − − − OR0{X1,2,3} OR0.2{X1,2,3} OR0.2{X1,2,3}

Table 5.2.: Parameters of models linked by2/3-bit deterministic and probabilistic OR gates.
P (Xi) is shorthand forP (Xi = 1). OR0{X1,...,i} denotes a deterministic OR gate
with X1, . . . , Xi as inputs; OR0.2{X1,...,i} denotes the noisy OR gate as in Eq. (3.6)
with r=0.2. (1−X1)0.1 depicts a variable whose value is with probability0.1 given
by an inverse ofX1 and with probability0.9 by uniform noise.

ĤX2X3|X1
/ ĤX2X3 ĤX1X3|X2

/ ĤX1X3 ĤX1X2|X3
/ ĤX1X2

2-Bit-IndDet 0.0709/0.0377 = 1.8790 0.1285/0.0651 = 1.9732 0.0321
7.1182×10−6 = 4502.8

2-Bit-IndPro 0.0605/0.0454 = 1.3316 0.0409/0.0350 = 1.1665 0.0096
1.3740×10−5 = 698.49

2-Bit-DepPro 0.0656/0.0311 = 2.1050 0.0756/0.0461 = 1.6411 0.0305/0.0015 = 20.0435

Table 5.3.: Estimated kernel dependence measures of a random sample from2-bit OR gates (see

Tab. 5.2). In all cases, ratio
ĤX1X2|X3

ĤX1X2

achieves the maximum, which is taken as a hint

thatX3 is the output,X1 andX2 are inputs.
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5. From Magnitude of Dependences to Causal Structure

2-Bit-IndDet 2-Bit-IndPro 2-Bit-DepPro 3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro

True Model

OPB

PC

BN-PC

Exhaustive Search

Greedy Search

MWST+Greedy Search

MWST+K2

MCMC

Table 5.4.: The underlying true model and outputs generatedby different algorithms (see Ap-
pendix C.2 for details about algorithms). The first row illustrates the generating
models in graphical representation (see Tab. 5.2 for parameters). Rows2 to 9 show
graphical outputs of algorithms or combinations of algorithms. Each graph consists
of at most4 nodes, which are represented by circles:X1: top left,X2: top right,X3:
bottom left,X4: bottom right.
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5.4. Simulated experiments with orientation heuristics

As seen from Tab. 5.4, both constraint-based and score-based Bayesian methods achieved
quite good results in learning 2-bit OR. In learning 3-bit OR, the constraint-based algorithms
seem often to perform better than score-based Bayesian methods. In learning 2-Bit-DepPro and
3-Bit-DepPro, OPB detected the connection betweenX1 andX2 (Tab. 5.4, row OPB). whereas
PC wrongly removed the edge in both cases (Tab. 5.4, row PC). Had PC detected the dependence
betweenX1 andX2 correctly, it would not have been able to orient any edge. Theresult would
be a fully connected and undirected graph. In contrast, although all dependences are correctly
captured (actually, no conditional independence is verified) by thresholding kernel measures,
OPB provides useful hints about orientation in the structure. Both PC and OPB have left edges
undirected in 3-Bit-DepPro. OPB performs slightly better than PC in the sense that the former
oriented as many edges as PC, but no edges are wrongly removed.

5.4.2. Simulated data from models with hidden common causes

The issue of hidden common causes is not the main concern of this thesis. Recall that we usually
made the assumption of causal sufficiency, i.e., all the common causes of measured variables are
measured. Nonetheless, we would like, by means of some simulated examples, to explore what
happens when OPB is applied to situations when the causal sufficiency does not hold.

We study five generating causal structures as shown in the first row of Tab. 5.5. For some
reason, variableL contained in each structure, which is a common cause ofY1 andY2 or a
common cause ofY1, Y2, andY3, cannot be measured. The second row of Tab. 5.5 shows the
voting procedure of OPB in the case thatL is not observed, when the true adjacency structure is
known. the expected outputs of OPB is shown in the third row ofTab. 5.5.

The latent variableL in the first two models as shown in column 1 and 2 in Tab. 5.5 cannot
be indicated by OPB, since no conflicts will be generated in thevoting procedure of the collider
identification by leavingL out. In contrast, the latent variableL in models as shown in column
3 to 5 can be, in principle, identified, because the collider identification causes conflicting orien-
tation information. Note that, if we groupX2 andX3 in the model in column 4 to one variable,
we would have the same model in column 3. For this reason, we omit the model in column 3 in
our simulations and demonstrate experiments with models incolumn 4 and 5. The variables are
linked by OR gates.

We define the first model, graphically presented in row 1 column 4 of Tab. 5.5, by a 2-Bit-
IndDet OR gate (defined in Tab. 5.2) withX1 andL as inputs andY1 as output, and a 3-Bit-
IndDet OR gate (defined in Tab. 5.2) withX1,X2, andL as inputs andY2 as output. The second
model, graphically presented in row 1 column 5 of Tab. 5.5, isdefined by three 2-Bit-IndPro OR
gate (defined in Tab. 5.2) withL andXi (i=1, 2, 3) as inputs andYi as output. We generated200
data points from both models and performed OPB on data without measuring variableL.

As the statistics of the resulting structures in Tab. 5.6 andTab. 5.7 showed, OPB correctly
detected the spurious associations betweenYi andYj (i, j = 1, 2, 3) in the majority cases and
oriented the edges between them bi-directed. As expected, the result of the model without noise
(76.5% in the first row of Tab. 5.6) is more reliable than that with noise (ca. 43% in the first
three rows of Tab. 5.7). Note that, in the second model (Tab. 5.5, row 1 column 5), conditional
independence betweenYi andYj is erroneously detected in26− 27% of the cases (see first three
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5. From Magnitude of Dependences to Causal Structure

Truth

Voting

Result

Table 5.5.: Five different generating models (first row) containing a common causeL, which is
not measured. The corresponding skeleton of the observed variables is oriented by
the voting procedure of OPB. The second row visualizes the number of votes on the
basis of collider identification for each edge. The third rowshows the final output of
OPB.

rows of Tab. 5.7). That means, the most errors occur in thresholding independence measures,
rather than in the orientation step. Although the examples suggest that bi-directed edges in the
output of OPB could be traced back to hidden common causes, conflicting voting results do not
automatically indicate hidden variables. For instance, itmay happen that the underlying model
is indeed cyclic.

5.4.3. Simulated data from Asia network

In this experiment, we apply our criteria to a larger networkand focus on the “voting triples”.
We use the Asia network, an expert-designed causal network with logical links, to sample data.
This model was first introduced by Lauritzen et al. [100] who have specified reasonable transi-
tion properties for each variable given its parents. Due to deterministic relationships between
variables, learning structure from independence constraints have various problems (see [180] for
more details and discussions).

The underlying structure (Fig. 5.5) expresses the following known qualitative medical knowl-
edge. DYSPNOEA may be due to tuberculosis (TUB), LUNG cancer (together TUB/LUNG) or
BRONCHITIS, or none of them, or more than one of them. A recent visit to ASIA increases the
chances of tuberculosis, while SMOKING is known to be a risk factor for both lung cancer and
bronchitis. The results of a single chest X-RAY do not discriminate between lung cancer and
tuberculosis, and neither does the presence or absence of DYSPNOEA.

We fist consider the simpler situation: the true adjacency structure is known. We test OPB on
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5.4. Simulated experiments with orientation heuristics

Correct Pattern • • • − • • → • • ← • • ↔ •
Y1 ↔ Y2 3.5 0.6 12.6 6.8 76.5
X1 → Y1 0.0 11.6 79.2 6.6 2.6
X2 → Y2 0.0 2.5 87.8 7.4 2.3
X3 → Y2 0.0 2.6 90.8 4.8 1.8
X1 X2 95.3 1.7 1.7 0.9 0.4
X1 X3 95.3 2.0 1.2 1.0 0.5
X1 Y2 92.9 0.0 1.8 3.4 1.9
X2 X3 94.5 3.9 1.0 0.6 0.0
X2 Y1 94.7 0.1 0.7 3.9 0.6
X3 Y1 96.4 0.0 0.7 2.5 0.4

Table 5.6.: OPB is applied to causal models with a hidden common causeL (Tab. 5.5, column 4).
The variables are linked by a 2-Bit and a 3-Bit OR gate (see text). “•” is a placeholder
for an observed variable. The entries are percentages of1000 replications having the
considered patterns as output.

Correct Pattern • • • − • • → • • ← • • ↔ •
Y1 ↔ Y2 26.6 1.7 13.7 14.5 43.5
Y1 ↔ Y3 26.9 2.2 13.4 13.7 43.7
Y2 ↔ Y3 27.3 2.2 13.5 13.1 43.9
X1 → Y1 0.0 17.4 72.5 6.8 3.3
X2 → Y2 0.0 15.0 74.5 5.5 5.0
X3 → Y3 0.0 16.4 74.3 5.4 3.9
X1 X2 95.3 1.0 1.4 1.3 1.0
X1 X3 94.9 1.6 1.2 1.2 1.1
X1 Y2 97.4 0.0 1.2 0.9 0.5
X1 Y3 97.2 0.2 0.6 1.1 0.9
X2 X3 95.5 1.2 0.9 1.3 1.1
X2 Y1 96.6 0.0 1.4 1.1 0.9
X2 Y3 96.2 0.1 1.2 1.5 1.0
X3 Y1 97.0 0.0 1.3 1.1 0.6
X3 Y2 96.6 0.0 1.2 0.9 1.3

Table 5.7.: OPB is applied to causal models with a hidden common causeL (Tab. 5.5, column 5).
The variables are linked by three 2-Bit noisy OR gates (see text). “•” is a placeholder
for an observed variable. The entries are percentages of1000 replications having the
considered patterns as output.
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5. From Magnitude of Dependences to Causal Structure

Figure 5.5.: Graphical representation of medical knowledge by Asia network. Each node has
two possible states representing responses “yes” and “no”.In total, the underlying
domain contains28 =256 possible states.

Figure 5.6.: Stepwise results of OPB (Fig. 5.4) with the prior knowledge of the true adjacency
structure (leftmost plot). The middle plot illustrates theresult after Step 1 of OPB.
The rightmost graph illustrates the result after Step 2 of OPB. Step 3 of OPB cannot
further orient the remaining undirected edges.

the true adjacency structure (Fig. 5.6, leftmost). Tab. 5.8shows the statistics after1000 repli-
cations for the11 involved “voting triples”, which are required for recovering the orientation
of the 8 arrows in Fig. 5.5. To test the sensitivity of the empirical dependence measures to
changes in sample size, we conducted the experiments for datasets of a sample size of200 or
400. As seen from Tab. 5.8, the frequency with which one of the three ratios achieves the max-
imum is quite robust with respect to the sample size. Extensive statistics of the orientation of
the8 edges by OPB can be found in Tab. C.5 in Appendix C.3. Taking ratios andλ of different
levels into account, Fig. 5.6 shows the stepwise results of OPB. Based on the correct corre-
sponding skeleton (Fig. 5.6, leftmost), step 1 of OPB (Fig. 5.4) detected two unshielded colliders
TUB→ TUB/LUNG← LUNG and TUB/LUNG→DYSPNOEA← BRONCHITIS (see middle plot
of Fig. 5.6). The undirected edge TUB/LUNG− X-RAY can be further directed by Step 2, since
it is implied by the first detected collider (see rule 1 in Fig.B.1 and Fig. B.2 in Appendix B.3).
The three remaining undirected edges (Fig. 5.6, rightmost)are due to the limitations of methods
are based on collider identification. The rightmost plot is what such methods can maximally
achieve.
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5.4. Simulated experiments with orientation heuristics

(X, Y, Z) Sample Size (mX ,mY ,mZ) (rX , rY , rZ) Voting Result

(ASIA, TUB, TUB/LUNG) 200 (1.0188, 0.7812, 1.2038) (39.5, 0.1,60.4) no voting

400 (1.0143, 0.7446, 1.1928) (42.2, 0.3,57.5)

(TUB, LUNG, TUB/LUNG) 200 (1.0409, 1.2553, 206.4190) (0.3, 1.7,98.0) TUB→ TUB/LUNG

400 (1.0305, 1.2254, 250.4862) (0.1, 0.4,99.5) LUNG→ TUB/LUNG

(TUB, TUB/LUNG, X-RAY) 200 (0.7453, 0.0002, 0.2982) (84.4, 3.3, 12.3) no voting

400 (0.7414, 0.0005, 0.2584) (97.2, 1.6, 1.2)

(TUB, TUB/LUNG, DYSPNOEA) 200 (0.8132, 0.2252, 1.6511) (0.5, 26.7,72.8) no voting

400 (0.7512, 0.1276, 1.2778) (0.1, 18.9,81.0)

(SMOKING, LUNG, BRONCHITIS) 200 (0.8555, 0.9747, 0.8748) (38.1,58.8, 3.1) no voting

400 (0.5286, 0.9918, 0.8560) (36.3,62.4, 1.3)

(SMOKING, LUNG, TUB/LUNG) 200 (1.4851, 0.0117, 0.0335) (98.2, 1.0, 0.8) no voting

400 (1.5176, 0.0054, 0.0273) (100, 0, 0)

(SMOKING, BRONCHITIS, DYSPNOEA) 200 (0.8134, 0.0908, 0.2650) (97.3, 2.7, 0) no voting

400 (0.8091, 0.0536, 0.2500) (100, 0, 0)

(LUNG, TUB/LUNG, X-RAY) 200 (0.0241, 4.3×10−6, 0.2595) (2.2, 0,97.8) no voting

400 (0.0267, 7.3×10−6, 0.2492) (0.2, 0,99.8)

(LUNG, TUB/LUNG, DYSPNOEA) 200 (0.0175, 0.0078, 1.2523) (0.4, 1.0,98.6) no voting

400 (0.0248, 0.0039, 1.2235) (0, 0.2,99.8)

(BRONCHITIS, TUB/LUNG, DYSPNOEA) 200 (0.9260, 1.0527, 4.4805) (1.8, 24.5,73.7) BRONCHITIS→ DYSPNOEA

400 (0.9781, 1.0576, 6.6893) (0.2, 19.4,80.4) TUB/LUNG→ DYSPNOEA

(TUB/LUNG, X-RAY, DYSPNOEA) 200 (0.0640, 0.2373, 1.2188) (8.2, 0.5,91.3) no voting

400 (0.0270, 0.2477, 1.2165) (3.6, 0,96.4)

Table 5.8.: Empirical kernel dependence measures of data generated from Asia network. The

shorthandmX , mY or mZ depicts the median of
ĤZY |X
ĤZY

,
ĤZX|Y
ĤZX

or
ĤYX|Z
ĤYX

, respec-
tively. The shorthandrX , rY or rZ depicts the percentage of cases, where value
ĤZY |X
ĤZY

,
ĤZX|Y
ĤZX

or
ĤYX|Z
ĤYX

achieves the maximum. All entries are calculated on the basis
of 1000 replications and for a sample size of200 or 400. The last column shows the
voting according to Step 1.1 of OPB (Fig. 5.4).
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5. From Magnitude of Dependences to Causal Structure

Figure 5.7.: Result of OPA+K2 (K2 with initial ancestral order induced by OPA on a complete
adjacency structure) algorithm in graphical representation. The detailed statistics of
structures detected by OPA+K2 is collected in Tab. C.6 in Appendix C.3.

Now, let us consider a more challenging situation, i.e., testing our orientation heuristics on a
skeleton with redundant edges. As an extreme case, we took the complete adjacency structure and
ran OPA (Fig. 5.4) to learn orientation without any information about the adjacency structure.
As seen from Tab. C.5 in Appendix C.3, apart from unnecessary edges, three edges, namely
ASIA→ TUB, SMOKING→ LUNG and SMOKING→ BRONCHITIS, are often wrongly directed
and the other5 arrows can be discovered correctly.

Based on the resulting ancestral order by OPA, we could use other techniques to prune unnec-
essary edges, since hypothesis tests have problems due to deterministic relations between vari-
ables. More discussions about these problems of learning Asia network can be found in [180].
Setting an appropriate cut-off value for thresholding kernel dependence measure is also very dif-
ficult due to the small sample size. For purely discrete (in particular, binary) domains, K2 [40] is
a well-known score-based Bayesian approach for this purpose, if an initial ordering of variables
is given. The power of such score-based Bayesian approaches can efficiently take a very large
number of data points into account and make pruning of edges accurate.

Since the output of OPA can contain undirected edges, the ancestral order given by the ouput
is sometimes not unique. We start K2 with an initial ancestral order induced by OPA. If the
order induced by OPA is not unique, we chose one of them randomly. The so-called OPA+K2
performs well in learning Asia network from sampled data. The output (Fig. 5.7) contains no
undirected edges and the missing arc from ASIA to TUB is probably due to the weak depen-
dency between them in datasets of such small sample sizes. Although the edges from SMOK-
ING to LUNG and BRONCHITIS have the wrong orientation, the result contains no unnecessary
edges. OPA+K2+OPB (learning adjacency structure by starting K2 with the initial ancestral or-
der induced by OPA and then re-orienting the corresponding adjacency structure of the result of
OPA+K2 by OPB) would revise both wrong directed edges into undirected.

Tab. C.6 in Appendix C.3 summarizes how often an arrow is detected by OPA+K2 after1000
replications. An extensive comparison of well-known constraint-based and Bayesian algorithms
with respect to the Asia network is provided by Leray et al. (see [101] Fig. 2 for experimental
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5.4. Simulated experiments with orientation heuristics

results). We can see that OPA+K2 performs better than K2 combined with other initialization
of causal orders, which indicates that OPA provides quite reliable causal ordering. Furthermore,
OPA+K2 is competitive with other Bayesian methods and PC. The performance of PC is unsat-
isfactory in the sense that several edges are completely missing. Repeated experiments with a
sample size from500 to 5000 show that3−5 from the total8 edges are always missing. This
result is actually traced back to the independence test of PC.Actually, with regard to the sample
size, the result obtained by OPA+K2 is better than all12 algorithms listed in Fig. 2 in [101]
concerning the so-called “editing measures”,4 since our result has an editing measure of merely
3. Most notably, the result of such a hybrid algorithm can be reliably achieved with datasets of
moderate sample sizes.

The experiments with Asia network showed that OPA is reasonably robust with respect to
redundant edges. On the other hand, the given adjacency structure influences the reliability of
the orientation heuristics. A fixed cut-off value for thresholding dependence measure does not
work well in a complex network. The combination of learning orientation in the structure by
our orientation heuristics and pruning edges by a score-based Bayesian approach alleviates the
problem.

5.4.4. Simulated data from functional models

In this section, we focus on the quantitative comparison of marginal and conditional dependence
measures on continuous domains. We sampled datasets from a model as shown in Fig. 5.8.X
is sampled from a gamma distributionG(2, 2). Y is a quadratic function ofX added with an
independent Gaussian noise:

Y ∝
(
X

10

)2

+N (0, κ) .

VariableZ is a function ofX andY :

Z ∝ cos(πX) + ln(|Y |) +N (0, 0.01) .

One can imagine thatX influencesZ like a “seasonal” cycle, whereasY adds a logarithmic bias.
The mutual dependence betweenX andY decreases asκ> 0 increases. Fig. 5.9 illustrates the
dependence betweenX andZ with the change ofκ from 10−3 to 102.

We generated200 data points from functional models withκ∈{10−3, 10−2, 10−1, 1, 10, 102}.
We chose one random sample and computed the empirical conditional cross-covariance operators
and the HS norms. We chose different regularization constants ε from 10−10 to 1 to compute the
measures according to Eq. (2.11) and Eq. (2.12). Fig. 5.10 visualizes the resulting ratios of
dependence measures of this example. We can observe that if the regularizerε is not too large,
the ratios are insensitive to the choice ofε in [10−10, 10−2]. Thus, we set regularizerε = 10−5

throughout this thesis.
Tab. 5.9 summarizes the dependence measures for this example. For most values ofκ, Crite-

4Editing measure [101] is defined as the length of the minimal sequence of operators needed to transform the
original graph into the resulting one. Operators are edge-insertion, edge-deletion and edge reversal.
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5. From Magnitude of Dependences to Causal Structure

Figure 5.8.: A functional model with shielded collider structure. (s1, s2) takes the values from
{(±1,±1)} and induces both positive and negative dependence. In the first experi-
ment, we set(s1, s2)=(+1,+1).
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Figure 5.9.: Toy data sampled from a functional model of three continuous variables (Fig. 5.8)
with 6 different parametersκ. VariableX is the “seasonal” cyclic influences of
variableZ. The smallerκ is, the clearer the “seasonal” effect ofX on Z can be
recognized.
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Figure 5.10.:200 data points sampled from a functional model of three continuous variables with

differentκ. “Line Z” visualizes the values of ratio
ĤYX|Z
ĤYX

, computed with different

regularizersε from 10−10 to 1, “Line Y” illustrates the values of ratio
ĤZX|Y
ĤZX

, and

“Line X” corresponds to the values of ratio
ĤZY |X
ĤZY

.
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κ ĤZY |X / ĤZY ĤZX|Y / ĤZX ĤYX|Z / ĤYX

0.001 1.3053×10−5

0.0363 = 0.0004 3.8863×10−5

0.0572 = 0.0007 0.0300/0.0674 = 0.4447
0.01 3.6994×10−5

0.0371 = 0.0010 0.0004/0.0560 = 0.0077 0.0292/0.0671 = 0.4348
0.1 0.0075/0.0331 = 0.2258 0.0012/0.0276 = 0.0436 0.0238/0.0468 = 0.5077
1 0.0182/0.0200 = 0.9122 0.0020/0.0012 = 1.7367 0.0072/0.0051 = 1.4014

10 0.0186/0.0224 = 0.8326 0.0019/0.0025 = 0.7564 0.0028/0.0022 = 1.3019
100 0.0188/0.0226 = 0.8317 0.0018/0.0025 = 0.7006 0.0026/0.0020 = 1.3238

Table 5.9.: Empirical kernel dependence measures for one sample of the functional model of

three continuous variables as shown in Fig. 5.8.
ĤYX|Z
ĤYX

in most cases (exceptingκ=1)
achieves the maximum, which indicatesZ being a collider betweenX andY .

rion 2 identified the correct colliders, expecting the caseκ = 1, where the voting for a collider
is obviously not consistent with the generating model. Notethat ĤZY |X (κ = 0.01, 0.001) or
ĤZX|Y (κ= 0.001) lies below the pre-specified cut-off values10−4 for dependence, so that the
conditional dependence would not be captured.

To demonstrate that the above conclusion is not only based onsome particular sampling, we
replicated our experiments1000 times with datasets of size200 sampled from each of the24
functional models:

y = s1(
x

10
)2 + εy and z = cos(πx) + s2 ln(|y|) + εz

with different combinations of(s1, s2)∈{(±1,±1)} andκ∈{10−3, 10−2, 10−1, 1, 10, 102}. The
4 different values of(s1, s2) induce all combinations of negative and positive correlations.1000
replications (see Tab. 5.10 for results) show that our method yields the same results for various
combinations of(s1, s2). We conjecture that the voting for a collider agrees with thegenerating
causal structure for most values ofκ and the majority of the samples. Whenκ is in a small
interval close to1, however, we mainly obtain wrong votes.

5.5. Kernel-based causal learning algorithm (KCL)

We have shown so far that our orientation heuristics via kernel dependence measures can provide
some good initial information about the orientation in the structure. On the other side, if we can
learn somewhat good adjacency structure, the performance of our orientation heuristics can be
improved. For this reason, we combine the statistical test of independence with the orientation
heuristics, and propose a kernel-based causal learning algorithm (KCL).

Like IC, the KCL algorithm can be broken into two phases: an adjacency phase and an orien-
tation phase. In the adjacency phase, a complete undirectedadjacency structure over all variables
is initially constructed and the edgesX−Y are removed if some setSXY ⊆V\{X∪Y } can be
found such that the constraintX ⊥⊥ Y |SXY can be verified. In search forSXY , the orienta-
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5.5. Kernel-based causal learning algorithm (KCL)

κ (s1, s2) ĤZY |X / ĤZY ĤZX|Y / ĤZX ĤYX|Z / ĤYX % Correct

0.001 (+1, +1) 0.0002± 0.0001 0.0009± 0.0006 0.3387± 0.0571 100%

(−1, +1) 0.0002± 0.0001 0.0009± 0.0006 0.3387± 0.0572 100%

(+1,−1) 0.0002± 0.0001 0.0023± 0.0009 0.3473± 0.0578 100%

(−1,−1) 0.0002± 0.0001 0.0024± 0.0009 0.3473± 0.0576 100%

0.01 (+1, +1) 0.0006± 0.0003 0.0040± 0.0018 0.3482± 0.0582 100%

(−1, +1) 0.0006± 0.0003 0.0040± 0.0019 0.3480± 0.0586 100%

(+1,−1) 0.0009± 0.0005 0.0034± 0.0014 0.3623± 0.0598 100%

(−1,−1) 0.0009± 0.0004 0.0034± 0.0015 0.3621± 0.0588 100%

0.1 (+1, +1) 0.1576± 0.0576 0.0285± 0.0164 0.4594± 0.0755 100%

(−1, +1) 0.1559± 0.0588 0.0283± 0.0167 0.4603± 0.0764 100%

(+1,−1) 0.1685± 0.0630 0.0334± 0.0219 0.4916± 0.0780 100%

(−1,−1) 0.1660± 0.0635 0.0318± 0.0196 0.4889± 0.0787 100%

1 (+1, +1) 0.9465± 0.0941 1.7120± 0.7932 1.5100± 0.4535 42.0%

(−1, +1) 0.9412± 0.0936 1.6951± 0.7907 1.4904± 0.4027 43.1%

(+1,−1) 0.9546± 0.0936 1.7367± 0.7764 1.5463± 0.4314 44.1%

(−1,−1) 0.9531± 0.0943 1.7064± 0.7728 1.5221± 0.3886 46.4%

10 (+1, +1) 1.0077± 0.0920 2.1533± 0.8812 2.4537± 0.9278 66.4%

(−1, +1) 1.0095± 0.0930 2.1714± 0.8729 2.4462± 0.9289 66.1%

(+1,−1) 1.0112± 0.0952 2.1949± 0.9827 2.4753± 0.9742 65.9%

(−1,−1) 1.0113± 0.0948 2.1937± 1.0127 2.4610± 0.9544 65.7%

100 (+1, +1) 1.0100± 0.0924 2.1577± 0.8712 2.4623± 0.9302 66.5%

(−1, +1) 1.0102± 0.0925 2.1610± 0.8649 2.4645± 0.9307 66.6%

(+1,−1) 1.0115± 0.0948 2.1936± 0.9999 2.4841± 0.9864 66.1%

(−1,−1) 1.0115± 0.0948 2.1929± 1.0046 2.4862± 0.9882 65.8%

Table 5.10.: Experiments with200 data points sampled from each of24 functional models
(Fig. 5.8) with6 differentκ and4 different (s1, s2). Shorthands “m ± σ” denote
the medianm and standard deviationσ after 1000 replications. The last column

shows how often (in percentage)
ĤYX|Z
ĤYX

achieves the maximum, which indicatesZ
being a collider betweenX andY .
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5. From Magnitude of Dependences to Causal Structure

tion heuristics OPA presented in Fig. 5.3 is performed to learn an auxiliary graph without any
independence decision. We reduce the search space ofSXY by the potential ancestor condition
(Definition 21) with respect to the auxiliary graph.

The auxiliary graph is used in the following iterative scheme. We apply the orientation heuris-
tics to an adjacency structure and check the relevant conditioning subsets according to the poten-
tial ancestor condition with respect to the auxiliary graph. If some conditional independence is
verified by the kernel independence test, the correspondingedge will be removed. Hence, a new
adjacency structure is obtained for the next iteration. Theiterative loop with arcs progressively
removed converges if no more edges can be removed. Consequently, the absence of an edge in
the final output represents the presence of conditional independence, but not vice versa.

Once the adjacency structure over all observed variables has been estimated by the first phase,
the orientation phase OPB (Fig. 5.4) is begun. The first step of the orientation is to examine
unshielded triples, i.e.,X−Z−Y , and consider whether to orient them as an unshielded colliders
onZ via the voting procedure by a unanimous vote. Once all such unshielded triples have been
checked, a series of orientation rules (see Fig. B.1 in Appendix B.3) is applied to orient any edges
whose directions are implied by previous directions. If there are still remaining undirected edges,
we examine all shielded triples and identify the colliders of them via the voting procedure by a
unanimous vote again. The complete scheme of KCL is shown in Fig. 5.11. Fig. 5.12 illustrates
stepwise results of learning the causal structure as shown in Fig. 1.1, when KCL is applied.

Due to the potential ancestor condition and the auxiliary graphG learned by OPA, the number
of hypothesis tests in the adjacency phase can be reduced, since only these constraints will be
tested, which are consistent with the directed auxiliary graph. The orientation phase (step 2 of
KCL) will terminate in the worst-case scenario (complete skeleton) after

(
N
3

)
calls (evaluating

all triples).
The final output of KCL is represented by three kinds of edges: “−” (undirected) meaning

no evidence for both directions; “→” (directed) meaning consistent evidence for one direction;
“↔” (bi-directed) meaning evidence for both directions. The bi-directed edges in the output
of our KCL indicate conflicting voting results, which might betraced back to any violation of
assumptions. The presence of hidden common causes in the true model is one possibility of such
violation. Note that a bi-directed edge in a maximal ancestral graph [133] is explicitly used to
represent the presence of a hidden common cause.

Note that, having taken the degree of dependence into account, the orientation of KCL is, on
the one hand, less sensitive to the typeI errors, because KCL does not use the conditional set
SXY that is found by hypothesis tests to infer the orientation. On the other hand, due to step 2.4
in the orientation step, KCL is able to provide some orientation even in the complete adjacency
structure (maybe due to a high level of typeI error of hypothesis tests).

5.5.1. Some implementation issues of KCL

As discussed in Section 4.2, learning structure from independence constraints has many problems
in practice. In particular, as the number of variables increases, the number of possible non-trivial
independence constraints grows exponentially. Only a small set of all possible constraints can
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5.5. Kernel-based causal learning algorithm (KCL)

Input: Data of a set of variablesV.

Step 1: Learning adjacency structure.

1.1 Test unconditional independence: Initialize G by a complete undirected graph. For
all edges between variablesX andY , test the unconditional independence hypothesisX⊥⊥Y
via kernel dependence measures based on data. Remove edgeX−Y in G, if the hypothesis
is accepted. The result is a skeleton (an undirected graph)G.

1.2 Construct auxiliary graph: Orient skeletonG by OPA (Fig. 5.3), providing an auxiliary
graphG.

1.3 Test conditional independence: Choose an edge between variablesX andY . Test the
conditional independence hypothesisX ⊥⊥Y |SXY for all potential subsetsSXY via kernel
dependence measures, subject to the potential ancestor condition and auxiliary graphG. For
several potential subsetsSXY , the constraint withSXY of small cardinality should be first
tested. If the independence is accepted, remove the edge betweenX andY and change all
directed edges into undirected edges, providing a skeletonG, then goto step 1.2. Otherwise,
repeat step 1.3 for another edge inG. If all edges are checked, change all directed edges into
undirected edges, providing a skeletonG and continue.

Step 2: Learning orientation in structure by OPB (Fig. 5.4).

2.1 Unshielded colliders: Apply the collider condition of Eq. (5.1) to a unshielded triple
X−Z−Y . If the collider condition is satisfied forZ, register one vote forX→Z andZ←Y
respectively. Based on the voting results of all possible triples inG, orient undirected edges
into directed or bi-directed edges by a unanimous vote.

2.2 Non-colliders: Orient all substructuresX→Z−Y (X andY nonadjacent) intoX→Z→
Y .

2.3 Acyclicity: Orient all edgesX−Y into X→Y , if a directed path fromX to Y exists inG.

2.4 Shielded colliders: Apply the collider condition to substructureX−Z−Y (X andY
adjacent) orX → Z−Y (X andY adjacent). If the collider condition considersZ as a
collider, register one vote forX → Z and forZ ← Y . Based on the voting results of all
possible triples inG, orient the remaining undirected edges into directed or bi-directed edges
by a unanimous vote.

Output: A mixed graphG with un-, uni- and bi-directed edges.

Figure 5.11.: Kernel-based causal learning algorithm (KCL).
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5. From Magnitude of Dependences to Causal Structure

Figure 5.12.: Stepwise results of learning the structure asshown in Fig. 1.1, when KCL is ap-
plied.

actually be tested. How to control the potential errors of these tests is essential to the performance
of KCL.

A constraint-based approach, in principle, removes an edgebetweenX andY when some set
SXY ⊆ V\X∪Y can be found which makesX andY independent. Thus, an edge is removed
when conditional independence is accepted by at least one test. An edge is present in the resulting
structure when the conditional independence hypothesis betweenX andY are rejected in every
test. A test which wrongly yields a dependence (a typeI error) betweenX andY has no impact
on the resulting adjacency structure as long as there is another test yielding the absence, while
a typeII error does. For this reason, a straightforward implementation automatically tends to
remove too many edges, if typeII error is not kept to an extremely low level. This phenomenon
can be often observed by outputs of PC/FCI. For this reason, to keep the level of typeII error made
by independence tests as low as possible is essential to the performance of learning adjacency
structure.

Our dependence measures benefit from the power of kernel-based approaches and can detect
additional dependence in which the data are uncorrelated, yet have some more complex nonlin-
ear dependence that simple correlation does not detect. However, unless the sample sizes are
excessively large, the conditional independence tests of two variables conditional on a large set
of other variables are in general not reliable. The number oferrors of any statistical test increases
when the sample is small or the cardinality of the conditioning set is large (see [153], p. 116).
The kernel-based independence test suffers from the same problem, i.e., the dependence measure
tends to be very small when the cardinality of conditioning set is large.

Instead of limiting the the cardinality of the conditioningset directly, we handle the problem
in an implicit and flexible way: if the differences between the original estimator̂H0 and the
simulated valueŝH1, . . . , Ĥnp

are too small, e.g., smaller than10−8, the independence hypothesis
will be rejected in favor of dependence. This way, we avoid the arbitrariness of setting an upper-
bound on the cardinality of the conditioning set when testing conditional independence. When
sample size is small or the conditioning set is large, our independence test will be unreliable and
dependence will be assumed: lack of support for independence implies dependence. Thus, if our
test rejects an independence hypothesis, it does not mean that the data are against independence,
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5.6. Real-world experiments with KCL

but that there is no evidence in the data for it.
Another problem is that a naive search of every conditioningsetSXY that makesX andY

independent is inefficient (too many tests) and inaccurate (conditioning on too many variables).
The PC algorithm provides a simple strategy for selectingSXY as follows. The in-degree of the
structure (maximum number of direct parents in graph) can bechosen to be bounded from above
by some constant and one begins to test independence with conditioning sets of small cardinality.
Thus, the PC-style selection is to first takeSXY with small cardinality into account and then the
subsets with larger cardinality, since testing conditional independence with smaller conditioning
set is more reliable. If the underlying model is indeed sparse, PC will be efficient.

In addition to the PC-style selection, using the orientationinformation of the auxiliary graph
learned by OPA, the potential ancestor condition can reducethe search space ofSXY . The
reduction avoids unnecessary independence tests, which could lead to a typeII error.

Another critical issue of learning adjacency structure is the order of testing conditional in-
dependence, in particular if conflicting constraints can beobtained. One typical example is the
non-intersection conflict (Definition 18). As an example, weconsider the digoxin clearance data,
which are already discussed in Section 4.2.3. The constraints verified by kernel independence
tests in the digoxin clearance data are

(X ⊥⊥ Y |Z) ∧ (X ⊥⊥ Z |Y ) ,

whereX: URINE FLOW, Y : DIGOXIN CLEARANCE, Z: CREATININE CLEARANCE (see
Tab. 3.8). The resulting adjacency structure depends on whetherX ⊥⊥ Y |Z or X ⊥⊥ Z |Y
is first tested. The PC algorithm does not address this problem.

Unlike RCL as shown in Section 4.5, KCL uses the kernel dependence measures to handle
the conflicting constraints. In agreement with Assumption 5, we propose to first test the inde-
pendence of pairs(Xi, Xj) with largerĤXiXj

, because we are of the opinion that the screening-
off effect induced by conditioning on a set of variables can be more reliably detected, if the
magnitude of marginal dependence is strong. The weaker the magnitude of marginal depen-
dences, the less reliable the conditional independence test. In the digoxin clearance data, we
haveĤYZ>ĤYX>ĤZX (see Tab. 3.8). The resulting structure would be

URINE FLOW − CREATININE CLEARANCE− DIGOXIN CLEARANCE

stating that digoxin clearance is independent of urine flow given creatinine clearance.

5.6. Real-world experiments with KCL

It is clear that the assumptions we made, e.g.,λ-collider condition, could be violated in real-world
data. Therefore, our intention was not to seek special data that would fit our algorithm, but rather
to analyze how well KCL really performs on various kinds of data. In particular, KCL is able to
learn structure when no independence relations are present. For the sake of evaluation, we prefer
such data and variables where common sense provides some obvious prior information about
the causality. Since we intend to compare KCL to the conventional constraint-based PC/FCI,
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5. From Magnitude of Dependences to Causal Structure

Figure 5.13.: Outputs learned by PC (left), FCI (middle), andKCL (right) from ceramic surface
data.

it suggests itself to examine the datasets, which are listedas examples for its software project
TETRAD on its webpage. In addition, we perform the BN-PC algorithm, WinMine toolkit for
data on purely categorical domains and the LiNGAM algorithmfor data on purely continuous
domains.5

5.6.1. Ceramic surface

The influence on sintered bodies of the variation of nano powder content on sintered bodies
was investigated by researchers of Research Center Karlsruhe, Germany. The nano powder was
added to a powder mixture in different ratios (0%−70%), from which sintered ceramic parts were
fabricated. The ceramic parts were sintered at four different temperature levels:1300◦C, 1350◦C,
1400◦C and 1450◦C. The mixture ratios and temperatures are chosen independently. Using
an optical scanning device, the surface roughness of these parts is characterized by roughness
averageRa as well as roughness depthRISO

z andRDIN
z , depending on ISO or DIN standards.Ra,

RISO
z ,RDIN

z are defined in DIN EN ISO 4287, DIN 4768 (1990) and DIN 4762 (1989), respectively.

The dataset contains80 measurements. We know that the NANO CONTENT and sintering
TEMPERATURE influence the SURFACE ROUGHNESSof sintered parts and not vice versa. In
our experiments, we used different vectors to characterizethe SURFACE ROUGHNESS: Ra,RISO

z ,
RDIN

z , (Ra, R
ISO
z ), (Ra, R

DIN
z ), (RISO

z , RDIN
z ), and(Ra, R

ISO
z , RDIN

z ).

In all 7 different vectorial definitions of SURFACE ROUGHNESS, KCL identified SURFACE

ROUGHNESSas the common effect. Remark that this is an obvious advantageof KCL against
PC, since the former can be extended to multidimensional domains in a straightforward way.
The result of PC (Fig. 5.13, left) is less specific and plausible than KCL (Fig. 5.13, right). In the
case of PC, we interpreted the SURFACE ROUGHNESSas a one-dimensional variable:Ra, RISO

z

orRDIN
z . All the three constructions yielded the same output (Fig. 5.13, left).

5Seehttp://www.phil.cmu.edu/projects/tetrad_examplesfor datasets. We used default parameters of TETRAD 4.3.8 andset
significance levelα = 0.05. BN-PC [28] is a constraint-based algorithm using mutual information as indepen-
dence measure and implemented in BNT Structure Learning Package by Leray et al. [101], and online available
at http://banquiseasi.insa-rouen.fr/projects/bnt-slp. WinMine toolkit [31] is a Bayesian approach using a non-informative
prior on the structures and online available athttp://research.microsoft.com/d̃max/winmine/tooldoc.htm. LiNGAM [143] is
a recently developed algorithm for learning structures on continuous domains. We used the version 1.4.2, which
is online available athttp://www.cs.helsinki.fi/group/neuroinf/lingam.
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Figure 5.14.: Outputs learned by PC, FCI, BN-PC, and KCL (from leftto right) from Montana
outlook poll data.

5.6.2. Montana outlook poll

We tested KCL on the data of Montana outlook poll, which are already discussed in Section 4.6.3.
All constraint-based algorithms detected a more or less similar adjacency structure (Fig. 5.14),
since we conjecture that various independence tests achieves consistent results in purely cate-
gorical domains. Both PC/FCI (Fig. 5.14, first and second plot from left) and KCL (Fig. 5.14,
rightmost) provided no obviously wrong arrow. Variables SEX, AGE, and AREA are in fact not
identified as effects of any other variable, which is in agreement with our prior knowledge. The
result of KCL is more plausible, in the sense that PC/FCI erroneously excluded the relation be-
tween AGE and FINANCIAL . It is noteworthy that the output of KCL some has bi-directed edges,
which indicate conflicting orientation information.

Since this dataset contains only categorical variables, itis justified to run BN-PC algorithm.
The result (Fig. 5.14, third plot from left) has the same corresponding skeleton as that of KCL
(Fig. 5.14, rightmost). The arrow from AGE to INCOME is correctly detected by BN-PC, whereas
the output of KCL is less specific in the orientation of this edge. It contains, however, obviously
wrong arrows from FINANCIAL to AGE. The causal direction from OUTLOOK to FINANCIAL

also seems to be less plausible. We do not speculate on the causal direction between POLITICAL

and AREA. In addition, we ran score-based Bayesian algorithms with greedy search or MCMC
and WinMine toolkit on this data. They returned as output, unfortunately, a trivial graph without
any edges and found no structure in the data.

5.6.3. Egyptian skulls

We perform PC/FCI and KCL on the Egyptian skulls data, which are already discussed in Sec-
tion 4.6.2. The output of KCL (Fig. 5.15, rightmost) is consistent with the output of RCL
(Fig. 4.14). In comparison to the output of PC/FCI, the output of KCL has one edge more
and is completely directed. This experiment confirms our observation that KCL/RCL tends to
draw more edges than PC/FCI.

5.6.4. Cheese data

As cheese ages, various chemical processes take place that determine the taste of the final prod-
uct. In a study of cheddar cheese from the LaTrobe Valley of Victoria, Australia [13] samples
of cheese were analyzed for their chemical composition and were subjected to taste tests. The
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Figure 5.15.: Outputs learned by PC (left), FCI (middle), andKCL (right) from Egyptian skulls
data.

Figure 5.16.: Outputs learned by PC (left), FCI (middle), andKCL (right) from cheese data. Note
that the undirected edges in output of PC and FCI have sightly different meanings,
although we chose the same representation.

dataset contains concentrations of various chemicals in30 samples of mature cheddar cheese
and a subjective measure of taste for each sample. Overall TASTE scores were obtained by com-
bining the scores from several tasters. The variables ACETIC, H2S, and LACTIC represent the
concentrations of acetic asid, hydrogen sulfide, and lacticacid, respectively.

The causal graphs obtained by PC, FCI, and KCL are shown in Fig. 5.16. The output of KCL
is the most specific one. The detected causal knowledge that TASTE is only an effect and not a
cause of any other variable is in agreement with the ground truth. Note that, although the kernel-
based approach detects no independence, KCL is able to offer some causal information. Due
to our lack of chemical understanding, we do not speculate onthe plausibility of the influences
among the various chemicals detected by KCL, i.e., from ACETIC and LACTIC to H2S. The
edge between ACETIC and LACTIC cannot be oriented. This example shows that, in spite of the
fully connected skeleton, KCL can learn orientation in the structure by means of the magnitude
of dependences, whereas RCL cannot learn anything from the independence relations.

Since all domains in this dataset are real-valued, LiNGAM algorithm could be applicable.
LiNGAM converged with no-error-report and returned a graphwithout any edges as output.
Hence, LiNGAM provided no information about the causal structure. We conjecture that this
might be due to the fact that the statistical Wald tests [172]for pruning edges in LiNGAM may
not be suitable for such a small sample size.
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Figure 5.17.: Outputs learned by PC (left), FCI (middle), andKCL (right) from smoking and
cancer data.

5.6.5. Smoking and cancer

The smoking and cancer data [58] contain the numbers of CIGARETTES (hundreds per capita)
sold in43 states in the US and the District of Columbia in1960, together with death rates per
hundred thousand population from various forms of cancer, i.e., BLADDER cancer, LUNG cancer,
K IDNEY cancer, and LEUKEMIA . The fact that Nevada and the District of Columbia are outliers
in the distribution of cigarette consumption contributes to the difficulty of the analysis. The
ready explanation for the outliers is that cigarette sales are increased by tourism (Nevada) and
commuting workers (District of Columbia).

It is generally accepted that the consumption of cigarettesis a cause of various forms of can-
cer, not vice versa. As seen from the right plot in Fig. 5.17, KCL discovers CIGARETTESas the
common cause of BLADDER, LUNG, K IDNEY, and LEUKEMIA , which confirms the common-
sense understanding of the causal influences. The causal direction between CIGARETTES and
LEUKEMIA in the output of KCL remains indeterminate. Due to our lack of medical understand-
ing, we do not speculate on the plausibility of the orientation from LEUKEMIA to other forms
of cancer. Interestingly, KCL contains some bi-directed edges between BLADDER, LUNG, and
K IDNEY, which might be due to some common hidden causes of BLADDER, LUNG, and KID-
NEY. Obviously, KCL detects more dependences among observed variables and provides thus
a considerably more complex structure than PC/FCI. The outputs of PC/FCI (Fig. 5.17, left and
middle) contain significantly fewer edges and is less specific. In particular, the orientations from
LUNG (by PC) and KIDNEY (by PC/FCI) to CIGARETTESare obviously wrong.

Although the output of KCL is fully connected, one independence relation is accepted by the
kernel test:

CIGARETTES⊥⊥ LEUKEMIA |BLADDER, LUNG,K IDNEY ,

if we conducted tests for all possible non-trivial independence constraints. The output of RCL
will be a graph with overall undirected edges excepting the connection between CIGARETTES

and LEUKEMIA . Due to the auxiliary graph learned by the orientation heuristics and the potential
ancestor condition, this independence constraint was not tested and thus not considered by KCL.
Consequently, the edge between CIGARETTESand LEUKEMIA will not be removed in the final
output of KCL.

Since this dataset contains only purely continuous variables, we ran the LiNGAM algorithm.
Like the cheese data in Section 5.6.4, LiNGAM converged withno errors. But, the output of
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LiNGAM, a completely unconnected graph, gave again no hintsabout the causal structure.

5.6.6. Brain size and IQ

Monozygotic (MZ) twins share numerous physical, psychological, and pathological traits. In
vivo brain image acquisition and analysis make it possible to determine quantitatively whether
twins share neuroanatomical traits and whether neuroanatomical measures correlate with brain
size. Using magnetic resonance imaging and computer-basedimage analysis techniques, mea-
surements of the BRAIN VOLUME (cm3), CORPUSCOLLASUM surface area (cm2), CORTICAL

SURFACE area (cm2) were obtained in10 pairs of MZ twins. HEAD CIRCUMFERENCE(cm),
body WEIGHT (kg), and full-scale IQ (intelligence quotient) were also measured. Tramo et
al. [165] used GENOTYPE (Pair Identifier), BIRTH ORDER, and SEX (1: Male, 2: Female) as
between-subject factors to examine neuroanatomic similarities in MZ twins and their relation-
ship to head size and IQ.

If we applied the constraint-based approaches to Brain Size and IQ data, the result of PC/FCI
(Fig. 5.18, left and middle) indicates merely some correlation between BRAIN VOLUME, COR-
PUS COLLASUM and CORTICAL SURFACE, as well as the relation between GENOTYPE and
SEX. As discussed in Section 5.1, it is difficult to detect significant dependences by statistical
tests in the relatively large network from a sample with20 data points. Therefore, it is helpful
to amplify the original data and run the so-called resampling-based multiple test to balance the
errors of hypothesis tests. More precisely, we resampled (with replacement)100 subsamples of
200 data points and conducted the usual kernel test as describedin Fig. 3.2 for each subsample.
Then, we obtained a set of100 p-values (one for each subsample) for each independence hypoth-
esis. Instead of the sophisticated procedure as described in Fig. C.1 in Appendix C, we used here
a simplified version of multiple testing via the median of theset of100 p-values due to computa-
tional feasibility. If the median of the set of100 p-values larger thanα=0.05, the independence
hypothesis will be accepted, otherwise rejected. By means ofthis simplified resampling-based
multiple testing, we ran KCL on this dataset.

The result of KCL (Fig. 5.18, right) reveals the genetic influences on the size and shape of
the human forebrain and its gross morphologic subdivisions. The fact that BIRTH ORDER and
SEX is not detected as effect of these neuroanatomic measures isalso consistent with our prior
knowledge. Due to our lack of medical understanding, we do not speculate on the plausibility of
the causal interpretation of the arrow from IQ to body WEIGHT and the three bi-directed edges,
which indicate hidden common causes.

In this experiment, the relations among BRAIN VOLUME, CORPUSCOLLASUM, CORTICAL

SURFACE are less interesting than the effect of various factors on them. As expected, the result
in [165] indicated a strong similarity of BRAIN VOLUME, CORPUSCOLLASUM, and CORTICAL

SURFACE in MZ twins. These brain measures are tightly correlated with one another and with
HEAD CIRCUMFERENCE. In order to make the resulting structure more task-oriented, i.e., rep-
resenting causal relationships between more interesting factors, we cluster the set of measured
variables into groups of variables by prior knowledge, i.e., the meaning of variables, and learn the
structure among these vectorial variables. Each group of variables (called latent factors, see Sec-
tion 4.3 for more discussions) is represented by a single node in the final output. We performed
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Figure 5.18.: Outputs learned by PC (left), FCI (middle), andKCL (right) from brain size and
IQ data.

Figure 5.19.: Outputs learned by KCL from brain size and IQ data with different clusterings of
variables.

KCL with three different clusterings of variables:

BRAIN := (BRAIN VOLUME, CORPUSCOLLASUM, CORTICAL SURFACE)

HEAD-BRAIN := (HEAD CIRCUMFERENCE, BRAIN VOLUME, CORPUSCOLLASUM, CORTICAL SURFACE)

GENETIC-PRENATAL := (GENOTYPE, BIRTH ORDER, SEX)

The results based on the first two clusterings (Fig. 5.19, left and middle) are positive in the
sense that GENOTYPE, BIRTH ORDER, and SEX are identified as causes. The output of the
last clustering (Fig. 5.19, rightmost) is an undirected graph. The undirected structure excludes
collider structures on GENETIC-PRENATAL, the output indicates the plausible fact that condi-
tioning on GENETIC-PRENATAL makes every pair of the three measurements HEAD-BRAIN,
IQ, HEAD-BRAIN independent and at least two of these three measurements aredirect effects
of GENETIC-PRENATAL. The obviously false hypothesis that GENETIC-PRENATAL could be a
common effect of any pair of them is correctly excluded. Thisexample shows that it seems that
an appropriate clustering of variables, i.e., a meaningfulconstruction of nodes in the output, is
essential for discovering useful structures representingdata. Note that PC/FCI and LiNGAM
cannot treat the multi-dimensional variables at all.
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5. From Magnitude of Dependences to Causal Structure

Figure 5.20.: Outputs learned by PC (left), FCI (middle), andKCL (right) from US crime data.

5.6.7. US crime data

The US crime data [167] are crime-related and demographic statistics for47 US states in1960.
The data were collected from the FBI’s Uniform Crime Report and other government agencies to
determine how the variable crime rate depends on the other variables measured in the study. The
dataset consists of14 variable: CRIME rate: the number of offenses reported to police; YOUNG

MALE: the number of males of age14−24; STATES: binary indicator variable for Southern states;
EDUCATION: the number of years of schooling for persons of age25 or older; EX60: 1960 per
capita expenditure on police by state and local government;EX59: 1959 per capita expenditure
on police by state and local government; YOUNG LABOR: Labor force participation rate per1000
civilian urban males age14−24; MALE: the number of males per1000 females; POPULATION:
State population size; NON-WHITE: the number of non-whites; U1: unemployment rate of urban
males of age14−24; U2: unemployment rate of urban males of age35−39; ASSETS: value
of transferable goods and assets or family income; POVERTY: the number of families earning
below1/2 the median income.

It is remarkable that the output of PC (Fig. 5.20, left) contains 4 bi-directed edges, which
are traced back to the conflicting conditional independenceinformation. PC may fail partially
due to failure of assumptions (e.g., relationships are nonlinear, the true model is cyclic, etc.) or
because the sample is not large enough and some statistical decisions are inconsistent. If the
resulting adjacency structure after independence tests iscorrect, bi-directed edges in the output
of PC could also be due to latent common causes. Since PC excludes hidden common causes, it
is probably better to consider the result of FCI more justified. However, if we wish to find out the
causal relationships between crime rate and other factors,the results of PC/FCI (Fig. 5.20, left
and middle) are both unsatisfactory, although they providesome plausible connections between
the expenditure on police and crime rate, some relationships among demographic statistics. The
result of KCL (Fig. 5.20, right) is more complex and does not really provide more evaluable
causal information about crime rate as well, since it contains many undirected edges.

Regarding the meaning of variables, it is obvious that some variables must be strongly re-
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5.6. Real-world experiments with KCL

Figure 5.21.: Output learned by KCL from US crime data, given prior knowledge about the vari-
able clustering.

lated. In order to better understand the phenomenon of crimerate, we propose to introduce an
appropriate clustering of variables. We reconstruct a demographic and geographic factor, called
DEMO-GEOGRAPHIC (comprising POPULATION, NON-WHITE, MALE, YOUNG MALE, and
STATES), a factor called EXPENDITURE (containing EX59 and EX60), a factor called EMPLOY-
MENT (containing YOUNG LABOR, U1, and U2), and a factor WEALTH (containing ASSETS

and POVERTY). The variable CRIME remains unchanged. The output of KCL, in which each
node corresponds to a factor, is shown in Fig. 5.21. The variable CRIME is reasonably detected as
the effect of distinct factors and factor DEMO-GEOGRAPHICis not an effect of any other factors.
The result suggests to consider factor EMPLOYMENT as a cause of WEALTH and EXPENDITURE

and factor WEALTH as a cause of EXPENDITURE, which seems to be plausible.

5.6.8. US economy data

One of the interesting fields for our method is learning causal relationships from economic data.
We conducted KCL on US economy data from January 1959 to June 2005 (Federal Reserve
Systemhttp://www.economagic.com/). The dataset of size559 collects money supply M1, money
supply M2, REAL INCOME (disposable personal income), INDUSTRIAL PRODUCTION, UNEM-
PLOYMENT RATE, OIL PRICE, 90-day treasury bills (90B), 90-day commercial paper interest
rates (90P), spread (difference of 90B and 90P) by the month.We group money supply M1 and
money supply M2 to a 2-dimensional factor MONEY SUPPLY. The variable INTERESTRATES

consists of 90B, 90P and spread. Fig. 5.22 illustrates the output of KCL based on the clustering
of variables.

Due to the complexity of the US economy, we do not speculate onthe correctness of the
model found by KCL, since this goes beyond the scope of this thesis. Nevertheless, it seems
to be plausible that the real economic activity (MONEY SUPPLY, REAL INCOME, INDUSTRIAL

PRODUCTION) is considered as a cause of the indicator on the labor market(UNEMPLOYMENT
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5. From Magnitude of Dependences to Causal Structure

Figure 5.22.: Output learned by KCL from US economy data, given prior knowledge about the
variable clustering.

RATE) and the indicator on the financial market (INTERESTRATES). The indicators of real eco-
nomic activity influence the price level of commodity market(OIL PRICE). The two undirected
edges exclude the unshielded collider on REAL INCOME, which represents the fact that INDUS-
TRIAL PRODUCTION and MONEY SUPPLY is conditionally independent, given REAL INCOME.
It should be mentioned that the data are actually given in theform of time series and the result of
KCL did not take into account the temporal aspect of the measurement at all.
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6. Discovering Causal Order by
Properties of Conditionals

We have so far showed that independence relations between variables are helpful for casual
inference. If no (conditional) independence relations arepresent, the magnitude of dependences
can be used to infer causal structure. However, both methodsneed at least three variables and
are not capable of giving preference to either of the possible causal hypotheses, if only two
dependent variables are measured. Thus, an additional inference rule, which is able to supply
some evidence of the statistical asymmetry between cause and effect, would be desirable.

6.1. Motivational example

Imagine the situation that only two dependent variablesX andY . The approaches which are
based on independence relations or dependence measures canprefer neitherX→Y norX←Y
(assuming no confounders). Our intention is to take a close look at the dependence, which
is described by the Markov kernels (introduced in Section 1.1), i.e., {P (X), P (Y |X)} and
{P (Y ), P (X|Y )}, with respect to different causal directions. Having assumed some plausible
properties of Markov kernels of a natural causal relationship in the real world, one can indeed
find some evidence of the underlying causal direction.

To motivate our idea we consider a generating modelX→ Y , where causeX is binary and
effectY is real-valued. A convenient assumption about the conditional distribution of the effect
given the cause is that it follows a Gaussian distributionN (µX , σ

2) with the same variance but
different expectations for each of both values ofX (Fig. 6.1, left). The marginal distribution of
the effectY could then be bimodal as shown in the right plot of Fig. 6.1.

A ready explanation of the relation betweenX andY is thatX shifts the expectation ofY and
labels different classes ofY . Having the causal hypothesisX→ Y in mind, the bimodality of
P (Y ) has a very natural explanation. In other words, presenting the joint distribution of(X,Y )
in terms of conditionals{P (X), P (Y |X)} require less information (only the first and second
moments ofX andY ), whereas using{P (Y ), P (X|Y )} more than the first two moments ofY
are required. Actually this idea is also a motivation for studying Gaussian mixture models: if
the distribution of variableY can be decomposed into a mixture of some Gaussian-distributed
variables, it is likely that the decomposition correspondsto different ensembles that stem from
different populations.
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6. Discovering Causal Order by Properties of Conditionals
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Figure 6.1.: An intuitive example for inferring causal direction via properties of conditional dis-
tributions. The generating model is that a binaryX effects a real-valuedY by shift-
ing its expectation. The conditional probabilitiesP (Y |X) is Gaussian distributed
(left plot).The corresponding marginal distributionP (Y ) is bi-modal (right plot).

6.2. Plausible Markov kernel assumption

The motivational example in the last section showed that a dependence between two variables
could be interpreted by different models. If one of the modelis able to represent the data with
simpler conditionals, one tends to intuitively consider this model as the underlying causal struc-
ture. To further explain why we expect that the shape of conditionals is more likely to be simple
with respect to the true causal structure, we start with a thought experiment.

Imagine a classical system whose time evolution is determined by a Markov chain (first order
Markov process) in discrete timet∈Z. SupposeXt is the set of variables describing the system
configuration at timet and we assume that the variables at at timet directly influence only the
variables at timet+1, i.e., we exclude instantaneous influence among variables within the same
time step.

Now, we restrict our attention to one step in system change between two time stepst andt+1
and rewrite the sets ofN variablesXt andXt+1 by C := (C1, . . . , CN) andE := (E1, . . . , EN),
respectively. Fig. 6.2 illustrates a graphical representation evolvingC andE over two time slices.
The undirected edges indicates spurious dependences amongCi, which are generated byXt−1.
Since the time order coincides with the causal order, the asymmetry between past and future
necessarily corresponds to the asymmetry between cause andeffect. Hence, the arrows fromCi

(“Cause”) toEj (“Effect”), as shown in Fig. 6.2, could be interpreted causally.

Given the causal structure as shown in Fig. 6.2, the Markov condition implies that, given all
direct causes{C1, . . . , CN}, effects{E1, . . . , EN} become stochastically independent, i.e.,

P (E1, . . . , EN |C1, . . . , CN) =
N∏

j=1

P (Ej|C1, . . . , CN) . (6.1)
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6.2. Plausible Markov kernel assumption

Figure 6.2.: Two time layers of a first order Markov stochastic process. The first layer represents
the configuration of relevant variables at timet and the second layer the configuration
of them at timet+1. The value of every variable at timet influences the values of
itself and its neighbors at timet+1. The undirected edges representing spurious
dependences induced by influences at timet−1.

It is easy to see that the conditionals of backward time do notfollow the analogue statement, i.e.,

P (C1, . . . , CN |E1, . . . , EN) 6=
N∏

j=1

P (Cj|E1, . . . , EN) , (6.2)

otherwise the faithfulness assumption would be violated. Using the d-separation criterion, it is
apparent that conditioning on any subset of{E1, . . . , EN} cannot, in a faithful Bayesian network,
make any subsets of{C1, . . . , CN}mutually independent. The present dependences can only be
canceled out by accident. In other words, if one wishes to reverse a causal link, then the total
number of links can not decrease.

This difference between forward and backward time can be understood as an asymmetry of
simplicity in parameters of causal models. The hypothetical causal model of forward time, is
featured by a factorization into natural conditionals, which is not possible for the hypothetical
causal model of backward time. The next question is how to formalize such an intuitive simplicity
concept.

Suppose the number of direct parents in the underlying causal model is bounded from above
by some finite numberk, that means every effectEj is influenced by at mostk causes. Fig. 6.2
shows a situation ofk=3. Then the conditional probability, which is consistent with the causal
directionC→E, can be written in an exponential form as

P (E |C) = P (E1, . . . , EN |C1, . . . , CN) = exp
( N∑

j

fj(Ej, Cj1 , . . . , Cjk
)
)
,

whereCj1 , . . . , Cjk
arek direct parents ofEj in graph withji ∈ {1, . . . , N}. Functionfj depends

on at mostk+1 variables, i.e.,Ej and{Cj1 , . . . , Cjk
}. The other conditional probability, which
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6. Discovering Causal Order by Properties of Conditionals

is opposite to the causal direction, can be calculated as:

P (C |E) = P (C1, . . . , CN |E1, . . . , EN) = exp
( N∑

j

f ′j(Cj, Ej1 , . . . , Ejk′ )
)
,

whereEj1 , . . . , Ejk′ with ji ∈ {1, . . . , N} are variables that functionf ′j depends on. If the gen-
erating model is faithful, we expectk′≥ k. In the structure as shown in Fig. 6.2, we have even
k�k′=N .

Summing up,P (E|C) can be represented by functions of lower order (smaller number of input
variables) thanP (C|E). A function with lower order is smoother. This idea will be formalized
by the so-called plausible Markov kernel assumption.

Assumption 6 Let π1, π2 be two distinct orders on the set of variablesV := {X1, . . . , XN}.
Mk1 andMk2 denote the corresponding set of Markov kernels (as introduced in Section 1.1)
with respect toπ1 andπ2. If π1 is consistent with the ancestral ordering entailed by the under-
lying causal structure onV (called causal order), whereasπ2 is inconsistent, thenMk1 is more
plausible thanMk2, in the sense that the functions inMk1 are smoother than those inMk2.

In other words, all Markov kernels inMk1 describe cause-and-effect relationship and represent
the “physics” of a natural causal mechanism, whereas Markovkernels inMk2 are mixtures of
cause-and-effect relations and prior probabilities of causes. We expect that the functions inMk2

is less smooth than those inMk1. A first attempt is made to justify this assumption from a thermo-
dynamic viewpoint by D. Janzing and A. Allahverdyan [93, 4].A related framework to capture
asymmetry of relationships between variables by means of Bayesian networks is presented by
Comley et al. [37].

The question now is how to evaluate the plausibility of Markov kernels. In practice, there is a
quite common agreement that the shape of some well-known densities, e.g., Gaussian or gamma
distributions, is rather smooth. In contrast, a mixture of two Gaussians, in particular when it is
obviously bimodal, is considered as less smooth. Section 6.1 showed that common sense gives
us in some situations an intuitive idea about which distributions would be considered natural and
which one might demand an additional explanation as being a mixture of “more natural” and
“smoother” distributions. Nevertheless, quantifying andcomparing smoothness of probabilities
from finite data is a non-trivial problem.

6.3. Plausible Markov kernels via low-order interactions

We propose to use the constrained entropy maximization subject to statistical moments of low-
order for evaluating the smoothness of conditional probabilities from finite data without estimat-
ing the density directly. More precisely, given a hypothetical causal orderπ := (X1, . . . , XN),
we define the set of smoothest Markov kernelsMkπ :={P (X1), . . . , P (XN |X1, . . . , PN−1)} via
entropy maximization subject to the first and second moments.

The idea is the following. Given statistical moments, one isrequired to pick one distribu-
tion from the set of distributions satisfying the given moments. A natural choice is to pick the
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6.3. Plausible Markov kernels via low-order interactions

distribution with maximum entropy, which corresponds to smooth distributions. If one restricts
the constraints for entropy maximization to only very few “simple” functions, e.g., the first and
second moments, the maximum entropy method aims to take the simplest or smoothest distri-
bution, which contains no unwanted non-smooth and complex structure. We refer to Collins
et al. [36] and Dowson et al. [48], who described a mathematical framework of the maximum
Shannon entropy approach to assign a probability distribution on the basis of a limited number
of moments.

6.3.1. Smoothest Markov kernel of cause

Suppose causeX is a vectorial variableX :=(X(1), . . . , X(n)) with possible valuesx∈X ⊆ IRn.
The smoothest Markov kernelPX is the following (joint) distribution that maximizes the entropy
functionH(X) of X subject to the given first and second moments.

maximizePX
H(X) := −∑x P (x) ln (P (x)) (Entropy ofPX)

subject to P (x) ≥ 0 ∀x ∈ X (Non-negativity)∑
x P (x) = 1 (Normalization)∑
x xP (x) = µ (1st moment)∑
x x

(i) x(j) P (x) = αij ∀ i, j = 1, . . . , n (2nd moment)

Hereµ denotes the vector of empirical mean andα≡(αij) the empirical covariance matrix ofX.
Note that the entropy maximization can also be rewritten as amaximum likelihood estimation
within an exponential family of distributions having polynomials of degree two in the exponent.
This is basically the well-known convex duality between entropy maximization and maximum
likelihood (see e.g. [6]).

6.3.2. Smoothest Markov kernel of effect given single cause

To determine the smoothest Markov kernelPY |X of effectY := (Y (1), . . . , Y (m)) with its single
causeX := (X(1), . . . , X(n)), we maximize the entropy of the conditional distribution ofY
givenX constrained by the mean vector ofY , the within-block covariance ofY itself and the
cross-covariance ofY with X. Hence, the smoothest Markov kernel ofY is the solution of the
following optimization.

maximizePY |X H(Y |X) := −∑x

∑
y P (x)P (y|x) ln(P (y|x)) (Entropy ofPY |X)

subject to P (y|x) ≥ 0 ∀ (x, y) ∈ X × Y (Non-negativity)∑
y P (y|x) = 1 ∀x ∈ X (Normalization)∑
x

∑
y y P (x)P (y|x) = µ (1st moment)∑

x

∑
y y

(i) y(j) P (x)P (y|x) = αij (2nd moment)∑
x

∑
y y

(k) x(l) P (x)P (y|x) = βkl (2nd mixed moment)
∀ i, j, k = 1, . . . ,m and l = 1, . . . , n

In this context, the value of causeX and its distributionPX is given. µ ∈ IRm denotes the
empirical mean ofY , α ≡ (αij) ∈ IRm×m the empirical within-block covariance ofY andβ ≡
(βkl)∈ IRm×n the empirical cross-covariance ofX andY .
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6. Discovering Causal Order by Properties of Conditionals

Actually, we need not take account of the non-negativity condition in the optimization explic-
itly, because the logarithms in the objective function imply this condition. In the continuous
limit, one could take the limit of the discrete optima. It should be mentioned that, given the ob-
served first and second moments, the optimization forPY |X in general is not necessarily feasible.
An example will be demonstrated in Section 6.4.2.

6.3.3. Smoothest Markov kernel of effect given multiple causes

Our definition of the smoothest Markov kernels can be straightforwardly generalized to multiple
causes{X1, . . . , Xj−1} by treating them formally as one variableANj = (X1, . . . , Xj−1) in the
optimization, although they appear in the hypothetical causal structure as separate nodes.

Joint distributionP (ANj) of all causesXi on setXi (i = 1, . . . , j) is given, e.g., it can be
iteratively calculated by the optimizations described in Section 6.3.1 and Section 6.3.2. Further,
µi (expectation ofXi) andβij (expectation ofXiXj) are known. Then the smoothest Markov
kernel is the conditional probability measure

P (Xj|X1, . . . , Xj−1) = P (Xj|ANj)

that maximizes the conditional entropy

H(Xj|X1, . . . , Xj−1)

subject to the constraints

E[Xi] = µi and E[XiXj] = βij ∀ i ≤ j .

It can be shown that the optimization leads to a distributionof the form

P (xj|anj) = exp
(
γ (anj) + θ0xj + xj

j∑

i=1

θixi

)
(6.3)

with appropriate Lagrange multipliersγ(anj) andθi. If j=1, AN1 is then empty (see e.g., [48]
for unconditional distributions and [9] for conditional distributions). We assignP (x1|an1) =
P (x1) and obtain

P (x1) = exp
(
γ + θ0x1 + θ1x

2
1

)
.

Due to the existence of awkward normalization constantsγ(anj), namely one for eachj−1-
tuple anj, it is typically difficult or impossible to obtain all Lagrange multipliers analytically,
if the value set ofANj becomes very large or even infinite. Fortunately, the optimization is
strictly convex [25], which ensures a unique solution (if solvable) and numerical feasibility for
a finite domain and computational efficiency if the cardinality of the domain is not too large.
Although variables in general might be either continuous ordiscrete, for the sake of simplicity,
we henceforth assume that all domains are discrete and finite. For a continuous domain, the
only change required under this assumption is a suitable discretization with a sufficiently small
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6.4. Examples of smoothest Markov kernels

scale. The resulting discrete values are called supports ofthe continuous domain. A visualization
of the probability measure divided into small enough intervals gives a good intuition of the
shape of density on a continuous domain. Note that nominal-categorical variables ofd nominal
alternatives can be treated as shown in Eq. (3.1).

In summary, given an ancestral orderπ := (X1, . . . , XN) as well as the first and second mo-
ments of variables, the set of the smoothest Markov kernels

Mkπ := {P (X1), P (X2|X1), . . . , P (XN |X1, . . . , XN−1)}

can be, in turn, calculated according to the constrained optimization problems above.

6.4. Examples of smoothest Markov kernels

To give some intuition of the smoothest Markov kernels we present some examples. In some
special cases one can solve the optimizations even in a closed form.

6.4.1. Numerical solution on continuous domain

It is well known that the solution of Eq. (6.3) for continuousvariables on an unbounded real-
valued range leads to a Gaussian conditional. But, when thereis certain restriction on the possible
value of variables, it is not trivial to see which propertiesthe smoothest Markov kernels would
have. Despite of that, we numerically compute the solution on bounded continuous range to give
a bit more intuition about our notion of smoothness.

We divided continuous domains into small enough intervals of equal width. Supposing thatX
andY have respective supports{x1, . . . , xn}⊂X and{y1, . . . , ym}⊂Y, the smoothest Markov
kernelP (X) in numerical implementation is represented by vectors

A≡(ai) ∈ IRn with ai := P (X=xi) ∈ [0, 1]

subject to
∑n

i=1ai =1. And the smoothest Markov kernelP (Y |X) in numerical implementation
is given by matrices

B≡(bij) ∈ IRn×m with bij := P (Y =yj|X=xi) ∈ [0, 1]

subject to
∑n

i=1bij =1 for everyj. This way, we can numerically compute the smoothest Markov
kernel.

Fig. 6.3 visualizes examples of the smoothest Markov kernels P (X) with the constraint pa-
rameters as listed in Tab. 6.1, one- (Fig. 6.3, plot A, B, and C) or multidimensional (Fig. 6.3, plot
D, E, and F). Fig. 6.4 visualizes examples of the smoothest Markov kernelsP (Y |X) with the
constraint parameters as shown in Tab. 6.2. We observe that having imposed the pre-specified
constraints of the first two moments, the smoothest Markov kernels gain indeed a “smooth”
shape. Actually, they are truncated exponential distributions of order up to2.
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6. Discovering Causal Order by Properties of Conditionals

Figure 6.3.: Examples of the smoothest Markov kernelP (X) for causeX with a scalar range
(plot A, B, and C) and a two-dimensional range (plot D,E, and F).The constraints
for first and second moments are given in Tab. 6.1.

Figure 6.4.: Examples of the smoothest Markov kernelP (Y |X) of effectY given causeX. X,Y
are both scalar variables. The constraints for first and second moments are given in
Tab. 6.2.
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6.4. Examples of smoothest Markov kernels

Plots in Fig. 6.3 A B C D E F

X [0, 1] [0, 1] [0, 1] [0, 1]× [0, 1] [0, 1]× [0, 1] [0, 1]× [0, 1]

µX 0.60 0.20 0.28

(
0.20
0.60

) (
0.20
0.60

) (
0.58
0.60

)

αX 0.48 0.08 0.10

(
0.05 0.15
0.15 0.48

) (
0.06 0.13
0.13 0.38

) (
0.56 0.40
0.40 0.49

)

Table 6.1.: Constraint parameters for plots in Fig. 6.3.X is assumed to be a scalar variable in
columns A, B, C, and a two-dimensional vector in columns D, E, F.The first row
shows the ranges, the second shows the postulated first moments, the last row the
postulated second moments (from top to bottom).

Plots in Fig. 6.4 X µX αX Y µY αY βXY

A [0, 1] 0.64 0.43 [0, 1] 0.55 0.32 0.36

B [0, 1] 0.65 0.55 [0, 1] 0.45 0.35 0.38

C [−1, 1] 0.65 0.55 [−1, 1] 0.45 0.35 0.36

Table 6.2.: Constraint parameters for examples A, B, and C as shown in Fig. 6.4.X andY are in
all three cases scalars. The first three columns show the value range ofX, its first and
second moment (from left to right). The next three columns show the value range of
Y , its first and second moment. The last column shows the mixed second moment of
X andY .
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6. Discovering Causal Order by Properties of Conditionals

6.4.2. Analytical solution on hybrid (binary and real-valued) domain

An interesting example is the smoothest Markov kernel on thehybrid domain, namely binaryX
(x∈{±1}) and real-valuedY (y∈ IR). In such case, the optimization has a closed-form solution.

For hypothetical causal order “X→Y ”, the smoothest Markov kernel ofX is just the observed
relative frequencies. The smoothest Markov kernelsP (Y |X) are Gaussian conditionals with a
single variance and two different expectations. In other word, the smoothest Markov kernel
presents a linear shift of the expected values by a multiple of X. We denote the kernels below
with Q to distinguish from those of the reversed causal order, which are denoted byR.

Q(x−1) = p and Q(x+1) = 1− p
Q(Y |x−1) ∝ N

(
µ−1, σ

2
)

and Q(Y |x+1) ∝ N
(
µ+1, σ

2
)
.

For the other hypothetical causal order “Y →X”, the smoothest Markov kernel is a Gaussian
distribution for the continuous causeY and a hyperbolic tangent function for the binary effect
X.

R(Y ) ∝ N
(
µ, σ2

0

)

R(x−1|Y ) =
1

2
− 1

2
tanh(λy + ν) and R(x+1|Y ) =

1

2
+

1

2
tanh(λy + ν) ,

whereλ, ν ∈ IR are chosen such that the constraints are satisfied. The derivations are provided
in Appendix A.5. Note that the joint measures induced by smoothest Markov kernels subject to
different hypothetical causal orders are different, sincefor Y →X, causeY exhibits a unimodal
distribution, whereas for the reversed directionX→Y the smoothest Markov kernels can lead to
a bimodal distribution for effectY as its marginal distribution. This agrees with the motivational
example in Section 6.1.

It is noteworthy that it is possible that there exist noλ, ν in the expressions forR that satisfy
the desired constraints of the first two moments. For example, let X → Y be the generating
model given by Markov kernelsQ(x±1) = 1

2
andQ(Y |x±1)∝N (µ±1, σ

2) with very smallσ2,
i.e., the two Gaussians are highly separated. The observed data lead to the constraintsE[X] =
E[Y ] = 0 and E[X2] = E[Y 2] = E[XY ] = 1. One can easily check that there is no kernel
P (X|Y ) satisfying these constraints. The infeasibility here is due to the fact that the empirical
distribution ofY (having almost only the values±1 as its value set) differs strongly from the
supposed “smoothest” Gaussian distributionN (0, 1) for the wrong hypothetical causal model.
A pragmatic way to handle infeasible constraints is therefore to consider them as hints that the
true distribution differs so strongly from the supposed smoothest one that the corresponding
causal hypothesis should be rejected. Note that in the case of two binary variablesX,Y , i.e.,
σ2 = 0, our inference rule will be indifferent for both hypothetical causal order, which we will
show through a more general statement for binary domains in Section 6.4.3 later.
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6.4. Examples of smoothest Markov kernels

6.4.3. Analytical solution on binary domain

For binary domains, the meaning of the smoothest Markov kernel cannot be visualized by a
“smooth” shape. It is another kind of simplicity. Without loss of generality, we henceforth
assign{0, 1} as the value set of a binary variable. We can further simply the solution of Eq. (6.3)
for a binary variableXj and eliminate Lagrange multipliersγ(anj) in Eq. (6.3) to specify the
smoothest Markov kernel in a convenient and elegant form, since we have

P (Xj=1 | anj)

1−P (Xj=1 | anj)
=exp(θ0xj+xj

j∑

i=1

θixi) ⇒ P (Xj=1 | anj)=
1

2

(
1+tanh(λ+

j−1∑

i=1

λixi)
)

with

λ =
1

2
(θ0 + θj) and λi =

1

2
θi for i = 1, . . . , j−1 .

The kernel can be interpreted in the following way. The influence of each ancestorXi (i<j) on
Xj can be characterized by the parameterλi. If λi is negative,Xi has a repressive effect on the
occurrence ofXj (independent of the value assignment of the other ancestors). If λi is positive,
Xi is conducive toXj. Such a unique separation into repressive and conductive variables is a
feature of the simplest cause-and-effect relationship. More precisely, one has to ask whether the
map

(x1, . . . , xj−1) 7→ P (Xj =1 |x1, . . . , xj−1)

is simple, since smoothness of the functionxj 7→P (xj|x1, . . . , xj−1) does not make sense for a
fixed (x1, . . . , xj−1) in contrast to a real-valued variable or discrete variable on a large domain.
Note that this simplicity feature of the smoothest Markov kernels makes already sense if two
ancestors are present.

More generally, the simplicity feature of the smoothest Markov kernels can be naturally con-
sidered as part of a hierarchy of exponential models (see e.g., [7] for an information geometry
approach for exponential hierarchies of unconditional distributions) as follows. We may repre-
sent every strictly positive Markov kernel of a binary variableXj with ancestorsANj by

P (Xj =1 | anj) =
1

2

(
1 + tanh

(
fj(anj)

))

with the function

fj (anj) = λ+

j−1∑

i1=1

λi1xi +

j−1∑

i1,i2=1

λi1i2xi1xi2 + · · · · · ·+
j−1∑

i1,...,ij−1=1

λi1...ij−1xi1 . . . xij−1 ,

since the “tanh” function is invertible in the open interval(−1, 1). We defineK(j)
k as the set

of conditional probability distributionsP (Xj|ANj) for which all coefficientsλ in fj with more
thank indices vanish and shall drop the superscriptj when this will lead to no confusion. We
obtain the hierarchy

K0 ⊂ K1 ⊂ . . . ⊂ Kj−1 .
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6. Discovering Causal Order by Properties of Conditionals

Figure 6.5.: Graphical representation of an OR gate withn−1 independent input bits.

One can easily prove that the constrained entropy maximization defined above leads to terms
in Kk if the set of constraints is extended by terms up to momentsE[Xi1Xi2 . . . Xik ] of orderk.
We therefore consider the above hierarchy as a straightforward definition of the complexity of
Markov kernels and observe that the “smoothest” kernels arein K1 which is the first non-trivial
class, since for all kernels inK0 the variablesANj do not influenceXj at all.

We defineMX1,...,Xn

1 as the set of joint measures on(X1, . . . , Xn) for which all Markov kernels
P (xj|anj) are inK(j)

1 . The asymmetry of the setM1 with respect to a reordering of variables is
decisive for the applicability of our approach to binary domains. The next subsection elaborates
on this by means of Boolean functions OR/AND as models for elementary causal mechanism.

6.4.4. Identifying causal order of OR/AND gates by Markov kernels

The Boolean functions OR/AND are ideal simplified models for many elementary causal rela-
tions in real life where an effect depends on several respective sufficient or necessary conditions.
For instance, a plant grows if a sufficient amount of water, light, and fertilizer is available and it
dies if at least one of these necessary conditions is not satisfied.

Remarkably, the Markov kernels describing OR/AND gates are both in the closure of class
K1. To see this, we study an OR gate in detail. LetX1, . . . , Xn−1 be the binary variables that
correspond to the input bits of an OR gate andXn the output (see Fig. 6.5).

The conditional probabilities ofXn can be written as

P (Xn=1 | ann) := 1−
n−1∏

i=1

(1− xi) .

Defining

Pk (Xn =1 | ann) :=
1

2

(
1 + tanh

(
− k + 2k

n−1∑

i=1

xi

))
,

we have
lim
k→∞

Pk (xn|ann) = P (xn|ann) ,

i.e.,P (Xn|ANn)∈K(n)
1 .

136



6.4. Examples of smoothest Markov kernels

Suppose the joint distributionP (X1, . . . , Xn) is generated by an OR gate when the inputs
X1, . . . , Xn−1 are randomly chosen according to the uniform distribution,i.e.,P (xj|anj)= 1

2
for

all j < n andanj ∈ {0, 1}. Clearly the joint measureP is inMX1,...,Xn

1 . Now we consider an
ordering of the variables where the output is not at the end. Without loss of generality, we choose
the orderX2, . . . , Xn, X1. We have

P (X1 =1 |x2, x3, . . . , xn−1, Xn =1) =

{
1 forx2 = x3 = . . . = xn−1 = 0
1
2

otherwise
(6.4)

and
P (X1 =1 |X2 = . . . = Xn = 0) = 0 . (6.5)

Note that the eventXn = 0 andXi = 1 for somei ∈ {2, . . . , n−1} does not occur and the
corresponding conditional probabilities need not to be specified. We will show that there is no
Markov kernel in the closure ofKn−3 that satisfies Eq. (6.4). We are particularly interested in the
Markov kernel ofX1 since it depends onn−1 variables and is therefore the natural candidate for
being the most complex Markov kernel. We write

P (X1 =1 |x2, . . . , xn) =
1

2

(
1 + tanh

(
f(x2, . . . , xn

))
,

wheref is an appropriate function. Define a functionf̃ with n−2 arguments by

f̃ (x2, . . . , xn−1) := f (x2, . . . , xn−1, xn =1) .

If the kernel of Eq. (6.4) was in the closure ofMn−3, there existed a sequencefk with polyno-
mials of degreen−3 and a corresponding sequencef̃k of degreen−3 such thatf̃k(x2, . . . , xn−1)
tended to infinity forx2 =x3 = . . .=xn−1 =0 and to zero otherwise. Elementary linear algebra
arguments show that the space of polynomials of degreen−3 would then contain the elementg
with

g (x2, . . . , xn−1) =

{
1 forx2 = x3 = . . . = xn−1 = 0
0 otherwise

This is however not true since the unique functiong satisfying these constraints is given by

g (x2, . . . , xn−1) =
n−1∏

i=2

(1− xi) ,

which is a polynomial of degreen−2. The lower bound on the degree is tight because there is
indeed a sequence of polynomials of degreen−2 that induce Markov kernels which satisfy the
constraints of Eq. (6.4) and Eq. (6.5) in the limit. The sequence(fk)k∈IN of functions, given by

fk (x2, . . . , xn) := k
(
2 (xn − 1) +

n−1∏

i=2

(1− xi)
)
,
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6. Discovering Causal Order by Properties of Conditionals

tends to−∞ for xn =0 and the induced conditional probability satisfies therefore the constraint
in Eq. (6.5). Moreover, the condition of Eq. (6.4) is also satisfied.

This shows that an OR gate induces a joint measure that is inM1 when considered with respect
to the correct generating causal order. By inverting input and output one can instantly see that
this is true also for an AND gate. The remarks show that forn≥4 the setM1 is not invariant with
respect to a reordering ofn variables and kernels inK1 can lead to joint distributions defining
kernels which are inKn−2 but not inKn−3. This implies that our inference proposal can in
principle identify the output of an OR/AND gate as the effect and its random inputs as causes
whenever the number of inputs is at least3. Of course, the number of data points in the sample
should be large enough to allow a reliable estimation of the joint measure.

This theoretical result is actually not very surprising. The intuition behind the result is that
reversing at least one of the arrows in the causal model as shown in Fig. 6.5 generates dependence
among the inputs, which can only be canceled out by accident.This dependence can only be
described by sophisticated high-order terms of inputs. This is why the concatenated entropy
maximization leads to conditionals that, in turn, generatedifferent joint measures when different
orders are chosen in the maximization procedure. It will be apparent later that this difference
among the joint measures is essential for our inference rule.

Based on independence relations, the constraint-based approach, e.g., PC, is also capable of
distinguishing output from inputs, if the inputs of OR/AND gates are indeed independent. Our
hope is that the evidence of high-order terms (non-smoothness or non-simplicity) will survive
when the inputs are dependent in a simple manner, because such noisy OR gates have many of
the properties of linear systems (see [124, 29, 70] for more discussions). Although it is hard to
generally justify Assumption 6, in the sense that the majority of natural causal relationships have
such properties of simplicity, numerical experiments in Section 6.8 will show that there are some
real life cases where our assumption appears to be reasonable.

6.5. plMK causal order discovery algorithm

Having defined the smoothest Markov kernels, we move to the issue of model selection. The
idea is that we evaluate the goodness of fit to finiten data points by means of the joint measures
implied by the corresponding smoothest Markov kernels withrespect to different hypothetical
causal orders. For this purpose, we introduce maximum likelihood and minimum distance esti-
mation to select models.

One possible approach to prefer one of the hypothetical causal orders is the maximum like-
lihood method. The method assigns an orderπ to be causal, if its derived smoothest Markov
kernels lead to a joint measure that has the maximum log-likelihood scorelπ given data. We
briefly describe the case of estimating the causal directionbetween only two observed variables
X,Y . The joint measuresQ andR induced by the smoothest Markov kernels corresponding
to two hypothetical causal orders are given. Based on then observed data points(xi, yi), we
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6.5. plMK causal order discovery algorithm

calculate the respective log-likelihood scores

lX→Y :=
n∑

i=1

ln
(
Q(xi, yi)

)
and lY→X :=

n∑

i=1

ln
(
R(xi, yi)

)

and prefer the causal order with larger log-likelihood. Theextension to more than two hypothet-
ical orders is trivial.

We shall interpret the maximum score merely as showing that the set of Markov kernels with
respect to that particular causal order seem to be the closest to the smoothest one. Note that
we do not expect at all that the calculated joint measures is agood approximation for the true
probabilities, it is more likely that the joint measures could all be rejected with high level of
confidence. The task is nonetheless to decide which measure provides the best fit.

Another possibility to check which joint measure fits betterto the observed data is the concept
of minimum distance estimate as described by Devroye et al. [47]. To explain the idea, we first
consider the situation with two distinct resulting joint measuresQ andR. The set

A = {(x, y) ∈ X × Y : Q(x, y) > R(x, y)}

is defined as the Scheffé set [136] for an ordered pair of distributions(Q,R). Moreover,

µn(A) :=
1

n

n∑

i=1

1A
(
(xi, yi)

)
,

where1A denotes the characteristic function of a setA. Then,µn(A) is the observed relative
frequency for the setA aftern observations. By preferring the measure for which the probability
of A is closer to the observed relative frequency we have a good chance to prefer the measure
that has the smaller maximum variation distance to the true distribution. In the selection problem
with two candidates, we say thatQ wins againstR when

dX→Y :=

∣∣∣∣∣
∑

A
Q− µn (A)

∣∣∣∣∣ <

∣∣∣∣∣
∑

A
R− µn (A)

∣∣∣∣∣ =: dY→X . (6.6)

Our inference rule assigns the causal hypothesis that corresponds to the so-called “Scheffé tour-
nament” winner as “true”.

For a selection problem withink alternativesPπ, we run a competition, the so-called “Scheffé
tournament”, withk(k − 1)/2 matches among them, one for each ordered pair. For eachPπ,
we total the number of wins and declare the measurePπ with the maximum number of wins the
tournament winner. If there is more than one winner, repeat the competition within the winners
so long as no winners can be eliminated any more. In the end, weconsider the tournament
winners most plausible, supported by the given datasetD and hence interpret the corresponding
orders, induced byπ, as causal.

In comparison to the maximum log-likelihood method, the advantage of the minimum distance
method is that it is less sensitive to small deviations between true and hypothetical probabilities
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Input: An n×N data matrixD with n sample vectors ofN variables{X1, . . . , XN}.

Step 1 Calculate the mean (the first moment) of each column of dataD and the mean of the
product of each pair of columns (the second moment) ofD, including the product with itself.

Step 2 Compute the smoothest Markov kernelsP (Xπ(1)), . . . , P (Xπ(N)|Xπ(1), . . . , Xπ(N−1))
with respect to each possible hypothetical orderπ on {X1, X2, . . . , XN}. Calculate the
corresponding joint measurePπ(X1, . . . , XN ) according to Bayes’ rule as in Eq. 1.1.

Step 3 Conduct the Scheffé tournament within the resulting joint measures and findout the orders
π corresponding to the tournament winners. (Or: Calculate the log-likelihoodscores for the
resulting joint measures and find out the ordersπ with the largest scores.)

Output: An order or a class of orders of{X1, . . . , XN}.

Figure 6.6.: plMK causal order discovery algorithm.

if both measures differ within a region of small probability, although in all our experiments the
estimated causal directions coincide. Because the difference of the minimum distance between
the true and wrong causal models are much more significant than that of the log-likelihood scores,
we prefer in the following the minimum distance estimation to the maximum likelihood method.
Now, we summarize the ideas and describe the plMK causal order discovery algorithm as shown
in Fig. 6.6, under the plausible Markov kernel (short: plMK)assumption.

6.6. Experiments with data on binary domains

Section 6.4.4 showed some theoretical consequences of the smoothest Markov kernels on binary
domains, which claimed that plMK is capable of discovering OR/AND gates with independent
inputs. Simulated experiments shall explore how robust plMK behaves with regard to noises and
sample sizes.

6.6.1. Simulated noisy OR data

We sampled data of sample sizes ranging from20 to 200 from three 3-bit noisy OR gates as
shown in Tab. 5.2 and ran plMK algorithm to learn the causal ordering of the four variables
{X1, X2, X3, X4}. In this experiment, the output of plMK is6 orderings of them. The last
variable in the orderings is always the same. The ordering ofthe first three is arbitrary. We
transform the resulting order of variables into a partiallydirected graph to make the evaluation
comparable with other algorithms. The graph is fully connected, since plMK is not capable of
removing unnecessary edges.

To evaluate plMK regarding different samples, we introducethe following scoring system
for all directions in the structure. Suppose plMK identifiedX4 as the output. We assign the
probability score100% to the directionXi→X4 and0% toXi←X4 (i∈{1, 2, 3}). For for the
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6.6. Experiments with data on binary domains

Model 3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro

Sample Size 20 50 100 150 200 20 50 100 150 200 20 50 100 150 200

X1→X2 49.1 51.5 52.3 50.4 48.3 50.4 48.0 48.7 48.4 47.4 50.4 49.4 52.1 51.2 52.8

X1←X2 50.9 48.5 47.7 49.6 51.7 49.6 52.0 51.3 51.6 52.6 49.6 50.6 47.9 48.8 47.2

X1→X3 49.4 51.2 52.5 51.2 50.8 49.7 48.3 47.1 47.4 46.0 50.5 49.3 51.9 55.8 61.6

X1←X3 50.6 48.8 47.5 48.8 49.2 50.3 51.7 52.9 52.6 54.0 49.5 50.7 48.1 44.2 38.4

X1→X4 69.9 85.8 92.4 95.8 97.4 62.5 71.3 76.5 78.2 79.0 53.6 64.2 66.4 60.5 58.3

X1←X4 30.1 14.2 7.6 4.2 2.6 37.5 28.7 23.5 21.8 21.0 46.4 35.8 33.6 39.5 41.7

X2→X3 50.7 49.5 49.2 49.8 51.2 49.0 50.3 48.3 48.9 48.6 50.1 50.1 49.7 54.6 58.8

X2←X3 49.3 50.5 50.8 50.2 48.8 51.0 49.7 51.7 51.1 51.4 49.9 49.9 50.3 45.4 41.2

X2→X4 69.9 85.8 92.4 95.8 97.4 61.8 72.8 77.8 79.7 81.7 53.2 64.8 64.3 59.4 55.4

X2←X4 30.1 14.2 7.6 4.2 2.6 38.2 27.2 22.2 20.3 18.3 46.8 35.2 35.7 40.6 44.6

X3→X4 69.9 85.8 92.4 95.8 97.4 62.7 72.6 79.5 80.8 83.1 53.2 64.8 64.6 54.7 46.7

X3←X4 30.1 14.2 7.6 4.2 2.6 37.3 27.4 20.5 16.9 10.0 46.8 35.2 35.4 45.3 53.3

Table 6.3.: Statistics of outputs learned by plMK on data sampled from noisy 3-bit OR gates
as shown in Tab. 5.2. The entries in the rows ofXi ← X4 (i = 1, 2, 3) show how
often (in percentage)X4 is correctly identified as the output of OR gates. An entry
of 50% indicates an indeterminate edge by plMK, while a score of100% indicates a
deterministic orientation by plMK.

other directionsXi→Xj (i, j ∈{1, 2, 3} andi 6= j), we assign the probability score50%, since
we do not have any information to prefer some of them. Tab. 6.3shows the average score for all
possible arrows in the fully connected structure after1000 replications of sampling. A score of
50% indicates an indeterminate edge by plMK, while a score of100% indicates a deterministic
orientation by plMK.

The larger the sample size, the better the plMK algorithm performed. In comparison to
Tab. C.4 in Appendix C.2, we can see that the performance of the plMK algorithm (in the case of
sample size of200) is competitive with the constraint-based PC algorithm. A main shortcoming
of plMK is that it is only feasible for a small number of variables. Otherwise the number of hypo-
thetical causal orders and the dimension of the joint probability vector would lead to intractable
computational problems. For this reason, we propose in the following to combine the plMK with
PC to get the advantages of both approaches.

6.6.2. Personal income data

We study the relationships between annual personal income and various demographic factors.
The data come from the US current population survey (CPS). Onedataset is transformed from
CPS1995 with altogether149, 642 records. The binary version contains entries for112, 164
persons with age at least16. The other dataset contains data from CPS2001 for 13, 803 per-
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6. Discovering Causal Order by Properties of Conditionals

Data CPS 1995 CPS 2001
Scheffé Match Distance (×10−3) Winner Distance (×10−3) Winner

(P4, P1) d4 = 0.2324 < 1.6186 = d1 P4 d4 = 0.1530 < 5.1513 = d1 P4

(P4, P2) d4 = 0.2324 < 1.6183 = d2 P4 d4 = 0.1530 < 5.1417 = d2 P4

(P4, P3) d4 = 0.2324 < 1.6189 = d3 P4 d4 = 0.1530 < 5.1715 = d3 P4

(P3, P1) d3 = 1.4718 < 1.4729 = d1 P3 d3 = 3.6131 < 3.6681 = d1 P3

(P3, P2) d2 = 1.2952 < 1.2963 = d3 P2 d3 = 1.6253 < 1.6788 = d2 P3

(P2, P1) d2 = 4.1082 < 4.1092 = d1 P2 d2 = 10.679 < 10.701 = d1 P2

Table 6.4.: Results of the Scheffé tournaments on CPS data.

sons, age 16 and over, resident in the Pacific Division of United States. The “Pacific Division”
comprises the states of Alaska, California, Hawaii, Oregon,and Washington. Both datasets
were transcribed by D. Freedman of the Statistics Department, UC Berkeley and are available at
http://www.stat.berkeley.edu/∼census.

The variables that we consider includeX1: SEX (gender),X2: I-STATUS (immigrant status),
X3: E-LEVEL (educational level), andX4: INCOME (annual personal income). For our purpose,
variables were transformed into binary ones, which stand for male or female, whether being
native born in the US or not, whether having more than a Bachelor’s degree or less, whether
having an annual income of more than $50, 000 or less.

We know that gender can only affect the other variables but itcannot be an effect of them.
Furthermore, we assume that income is rather an effect of theothers than a cause even though we
cannot completely exclude causal arrows in the backward direction. For both datasets the causal
hypotheses generated by the plMK algorithm were indeed consistent with this prior knowledge
and assumptions.

The plMK algorithm has generated4 different joint measuresPi with i=1, . . . , 4 correspond-
ing to orderings where the variableXi is at the end. As reported in Tab. 6.4, in both datasets
(CPS 1995 and 2000)P4 is the winner of the Scheffé tournaments between pairs of measures.
Although the absolute differences between log-likelihoodscores are not very large,P4 has the
largest score in both datasets. Fig. 6.7 visualizes the graphical structure corresponding toP4. The
undirected edges depict yet unspecified causal relations. The plMK algorithm identified personal
INCOME as the effect in both datasets. It is remarkable that structures with the variable SEX at
the end have obtained no wins at all (see Tab. 6.5).

6.7. Combining plMK with constraint-based algorithm

The intention behind the plausible Markov kernel assumption is not replacing conventional ap-
proaches that use independence relations. It rather shouldprovide additional hints on the ori-
entation of structure. Our inference rule can distinguish between causal structures that generate
the same set of independence constraints, whereas PC is efficient if the underlying network is
indeed sparse. To benefit both advantages, we suggest to combine PC and plMK. A pre-selection
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6.7. Combining plMK with constraint-based algorithm

Data CPS 1995 CPS 2001

SEX as last variable in the ordering 0 0

I-STATUS as last variable in the ordering 6 12

E-LEVEL as last variable in the ordering 12 6

INCOME as last variable in the ordering 18 18

Table 6.5.: Total wins of the4 distinguishable classes of causal orders on CPS data by the Scheffé
tournaments.

Figure 6.7.: Graphical representation of output generatedby plMK when applied to CPS data.
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Figure 6.8.: Output generated by PC on CPS 2001.

of causal hypotheses through PC reduces the search space (possible orderings of variables) for
plMK. The conventional approach tends to prefer directed graphs with small numbers of arrows.
The plMK algorithm can additionally prefer those models where the corresponding Markov ker-
nels are simple.

Now we study the demographic data in Section 6.6.2 again. We first start with the PC algorithm
(with χ2 test andα = 0.05). Fig. 6.8 visualizes the result for CPS 2001, which containsonly
directed edges. The output is in agreement with the output ofplMK saying that INCOME is the
effect of the other variables.

The left plot of Fig. 6.9 shows the result for CPS 1995. Additional correlations between SEX

and E-LEVEL and between I-STATUS and E-LEVEL are observed om CPS 1995. Due to the
additional dependences the resulting graph is more complexcompared to CPS 2001 and PC is
incapable of making any statement about the orientation of the causal connection between E-
LEVEL and INCOME. This means that a causal arrow from INCOME to E-LEVEL cannot be
excluded. The plMK algorithm is here more specific since its output states that INCOME is the
effect of all other variables, i.e., no arrow from INCOME to E-LEVEL is allowed.

Note, however, that the plMK is in other respects less specific than PC since it cannot distin-
guish (in the case of4 binary variables) between different structures having thesame variable at
the end. Recall, for instance, that the results of plMK (see Fig. 6.7) did not show that SEX is not
an effect of any other variables, the latter statement is only consistent with the class of preferred
causal structures. Combining PC with plMK we may then orient the edge from E-LEVEL to
INCOME as done in Fig. 6.9, right. This shows that a combination of PCand plMK leads to a
completely determined causal structure, which states thatINCOME is not a cause of any other
variable and SEX/I-STATUS is not the effect of any other variable. This is consistent with our
prior knowledge and assumptions.

The examples showed that the conventional PC works quite well on binary domains. The
improvement of plMK in this respect is limited. However, thetypical application of plMK is
inference on hybrid models consisting of both continuous and discrete domains, in particular,
plMK could make inference in case of only two dependent variables.
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Figure 6.9.: Output generated by PC (left) and by PC+plMK (right), when applied to CPS 1995.

Figure 6.10.: Graphical representation of relation between age and marriage status (M-Status),
which is confirmed by output of plMK.

6.8. Experiments with data on continuous domains

In this section, we demonstrate some real-world experiments to infer causal order between only
two dependent variables, a case that cannot be treated by learning from independence relations
or dependence measures.

6.8.1. Demographic data

We study the causal relation between the age of a person and her/his marriage status (M-Status).
For this purpose, we use data from CPS 1995 and 2001 again, which are already discussed in
Section 6.6.2. Only the cases with age16 or over are considered.

The variable M-STATUS has the binary value of “never married” or else, while AGE is an
integer. The observed correlations are strong,0.4995 for CPS1995 and0.5238 for CPS2001.
We assume that the age of a person causally determine his/hermarriage status, not vice versa (see
Fig. 6.10). The outputs of plMK learned from CPS1995 and CPS2001 are indeed consistent with
this prior knowledge. As one can see from the Tab. 6.6, the log-likelihood scores with respect
to the correct causal direction are always larger than that of the reversed one. The conducted
Scheffé tournament also confirmed this result.

Another example we studied was the causal relation between SEX and annual personal IN-
COME, based on the CPS data. We assume that the gender of a person (binary) influences his/her
personal income (real-valued), not vice versa (see Fig. 6.11). The outputs learned by plMK from
CPS1995 and2001 data are, however, not consistent with this prior knowledge, since the con-
ducted Scheffé tournament did not yield the desired results. But if we took the logarithm of the
continuous values of INCOME, plMK preferred the correct causal direction. The log-likelihood
scores provided qualitatively the same results. In our calculation, the untransformed as well as
log-transformed continuous domains are discretized into round5, 000 intervals. The observed
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Log-likelihood scores Distance measure based on Scheffé set
Data AGE→M-STATUS M-STATUS→AGE AGE→M-STATUS M-STATUS→AGE

CPS 1995 −5.1374× 105 −5.1440× 105 0.0264 0.0577

CPS 2001 −6.3056× 104 −6.3145× 104 0.0209 0.0537

Table 6.6.: Experimental results for data from the CPS 1995 and 2001. Maximum likelihood esti-
mation and Scheffé tournament both prefer the causal structure as shown in Fig. 6.10.

Figure 6.11.: Graphical representation of relation between gender (sex) and income, which is
confirmed by output of plMK.

correlation rose from0.2112 to 0.2502 in CPS1995 and from0.2828 to 0.2998 in CPS2001 by
the use of log-transformation.

Tab. 6.6 summarizes the results of the Scheffé tournament based on the original and log-
transformed data. This partially negative result indicates that more flexible notions of plausible
conditionals are desirable. In other words, the family of conditionals that are considered smooth
should be large enough to contain, e.g., log-normal distributions but small enough to not contain
mixtures of those.

It should be mentioned hat the concept of plausible Markov kernels has also its limitation. Sup-
pose an underlying modelX→Y with Markov kernelsQ(x±1)= 1

2
andQ(Y |x±1)∝N (µ±1, σ

2)
with sufficiently largeσ2. Such situation is featured by a weak correlation betweenX andY .
The inference rule of plMK will in fact run into difficulties,unless there are a large number of
data samples to recognize the mixture of distributions. Thefollowing example shows why this is
not very surprising.

The left plot of Fig. 6.12 is the Gaussian mixture0.5N (−1, 1.5) + 0.5N (1, 1.5), which cor-
responds to a correlation coefficient of about0.5 when the Gaussian components are labeled by a

with original domain with log-transformed domain
Data SEX→ INCOME INCOME→SEX SEX→ INCOME INCOME→SEX

CPS 1995 0.1047 0.1041 0.0523 0.0535

CPS 2001 0.1567 0.1543 0.0151 0.0156

Table 6.7.: Experimental results for data from the CPS 1995 and 2001. Scheffé tournament both
prefer the causal structure as shown in Fig. 6.11. The first two columns are results
for the original continuous domain of INCOME and the last two are results with the
log-transformed domain.
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Figure 6.12.: Recognizability of mixture of two Gaussian distributions.

binary variable. The mixture is still unimodal and the shapediffers only slightly from the Gaus-
sian distribution. That is why our inference rule requires large samples for small correlations.
The plateau in the right plot of Fig. 6.12 can already be takenas a hint for a mixture of ensembles,
although the distribution is also unimodal. The correlation coefficient is about0.7. This shows
that the bimodal case corresponds to very large correlations.

Summing up, as long as the sample size or the underlying distribution allows us a reliable
identification of mixture, the plausibility of Markov kernels in such hybrid models might help us
to guess the “true” causal direction. The larger the sample size, the stronger the correlation, the
better will our inference rule work.

Furthermore, we should mention the following potential objection against the inference rule
of plMK. Given an effect variableY that is in a linear way influenced by a very large number of
causesX1, . . . , Xn. Then the marginal distribution ofY is approximately Gaussian despite our
claim that the distribution of the effect should typically be less smooth. However, this is a mis-
understanding of our idea since the task is rather to identify dominant causes. In real life, every
cause is influenced by further causes. If the latter influencethe former such that the contribution
of each single variable is small we would rather consider thesuperposition of all these small
influences as background noise and set the influenced variable at the beginning of the causal
order. According to such a viewpoint, we should prefer variables whose marginal distribution
is stable (like, for instance, Gaussians or gamma distributions) as those that correspond to the
causes, i.e., the variables at the beginning of the causal order. To develop a notion of simplicity
that would also consider other stable distributions (apartfrom Gaussians) as “extremely smooth”
with state-of-the-art machine learning methods could be interesting. The next chapter provides a
kernel-based approach.

In principle, LiNGAM can also be used for causal inference between only two variables. How-
ever, the current version of LiNGAM is yet only applicable tocontinuous variables and cannot
handle discrete, vectorial or hybrid domains. Our plMK algorithm can treat them straightfor-
wardly. It should be mentioned that if the observed variables are in fact multivariate Gaussian-
distributed, neither plMK nor LiNGAM can provide any information about causal relationships
among them.
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6. Discovering Causal Order by Properties of Conditionals

Figure 6.13.: Graphical representation of relation between date and temperature, which is con-
firmed by output of plMK.

Variables DATE: (X, Y ) TEMPERATURE(◦C)
Value set {(x, y)|x2 + y2 = 1} ⊆ IR2 [−23, 25] ⊆ IR

1st moment (0.0022,−0.0009) 5.7053

2nd moment

(
0.5019 0.0000
0.0000 0.4981

)
84.6079

2nd mixed moment (−3.9702,−1.4548)

Table 6.8.: Value sets and observed statistical moments forthe temperature dataset of Furtwan-
gen.

6.8.2. Temperature data

Another example is an experiment with a meteorological dataset on continuous domains. We
examined the causation between two variables, namely DATE (dates of the year) and TEMPER-
ATURE (daily average temperatures). Common sense tells us that theseasonal cycle is a cause of
temperature variation (see Fig. 6.13 for the graphical representation), not vice versa.

A dataset of daily average temperatures in Furtwangen (BlackForest, Germany) of25 years
(from Jan. 1, 1979 to Jan. 31, 2004) with 9162 entries was analyzed. The dataset contains also
the temperatures at7 am,2 pm and6 pm o’clock every day, as well as the daily maximum and
minimum. Each day begins and ends at 6pm.

Due to the cyclic property of dates of the year, we assign the unit circle, a proper subset of
IR2, to the value set of variable DATE (X,Y ) with date∈{(x, y)|x2+y2 =1}. This value set can be
parameterized, for example, byx=cos

(
2π
366
k
)

andy=sin
(

2π
366
k
)

with k=1, . . . , 366 (maximum
days per year). Note that we take the natural representationof data as a priori knowledge. Ac-
tually, a more natural representation of the date would be todistinguish between leap year and
non-leap years and divide the angle into366 values only for the former case. However, here we
neglected leap years for reasons of convenience.

The first moment of DATE is a two dimensional vector and states the expectations inX and
Y . The second mixed moment of DATE is also a two dimensional vector, which defines cross-
covariance between(X,Y ) and TEMPERATURE. The second moment of DATE is a symmetric
matrix, which fixes the within-block covariance of(X,Y ). Tab. 6.8 summarizes all the statistical
features from the data which we need for the entropy maximization described in Section 6.3.1
and Section 6.3.2.

Using these constraints we computed the plausible Markov kernels for both hypothetical causal
directions. Note that in all plots the variable DATE is parameterized by the integerk. Because
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Figure 6.14.: The smoothest Markov kernelsQ(DATE) andQ(TEMPERATURE|DATE) for the
hypothetical causal order DATE→TEMPERATURE.
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Figure 6.15.: Joint measureQ of the smoothest Markov kernels with respect to the causal order
DATE→TEMPERATURE. The plot on the left is a 3D illustration of the probability
density; isolines of the density are drawn on the right. The green points on the right
indicate the 9162 observed temperature values within a period of 25 years. The
density above provides a better fit to the data than the density for the wrong causal
direction in Fig. 6.17.
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Figure 6.16.: Smoothest Markov kernelsR(TEMPERATURE) andR(DATE|TEMPERATURE) for
the hypothetical causal order TEMPERATURE→DATE.

0
100

200
300

−20

0

20
0

1

2

3

x 10
−4

DateTemperature

P
ro

ba
bi

lit
y

0 100 200 300

−20

−10

0

10

20

Date

T
em

pe
ra

tu
re

Figure 6.17.: Joint measureR of the smoothest Markov kernels with respect to the hypothetical
causal order TEMPERATURE→ DATE. As in Fig. 6.15, the left plot is a 3D plot
of the computed density, the right plot shows its isolines and the green points are
again the observed temperature values. The elliptic isolines indicate areas of higher
probability even though the observed values do not show clustering in these areas.
Accordingly, the joint density for the true causal direction in Fig. 6.15 provides a
better fit.
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6.8. Experiments with data on continuous domains

of the non-uniform sampling of DATE (there are often only 365 days in the year and in the
real dataset there is one year with more observations for thedays in January), the plausible
Markov kernel of the cause DATE in DATE → TEMPERATURE differs slightly from the usu-
ally expected uniform distribution (Fig. 6.14, left). For the effect variable TEMPERATURE in
DATE→TEMPERATURE, the plausible Markov kernel (Fig. 6.14, right) has a conditional expec-
tation in a sinusoidal form, which traces back to the cyclic property of the cause DATE, and a
Gaussian-shaped function for every given value of DATE, which is basically due to the fact that
the Gaussian distribution maximizes the entropy given its variance.

In the case of the other hypothetical causal direction TEMPERATURE→ DATE, the cause
variable TEMPERATURE has a Gaussian distribution (Fig. 6.16, left). For the effect variable
DATE in TEMPERATURE→ DATE, we obtain a strange and non-intuitive shape for its most
plausible Markov kernel (Fig. 6.16, right).

Then we calculated the joint distributions from these plausible Markov kernels based on both
hypothetical causal directions.

Q(DATE, TEMPERATURE) = Q(TEMPERATURE|DATE)Q(DATE) ,

R(DATE, TEMPERATURE) = R(DATE|TEMPERATURE)R(TEMPERATURE) .

Fig. 6.15 (left) visualizes the resulting joint distributionQ and Fig. 6.17 (left) visualizesR. Our
computation is based on a discretization of one day for the variable DATE and one degree for
the variable TEMPERATURE. Fig. 6.15 (right) and Fig. 6.17 (right) display the isolines of both
joint distributions with the observed temperature values.We note thatQ andR have different
numbers of modes and that this qualitative difference between both distributions appeared to be
with respect to changes in the discretization.

Our calculation of the log-likelihood scores of the most plausible joint distributionQ andR
shows that for given data the “true” causal direction DATE→ TEMPERATURE achieves a log-
likelihood score of−8.0900×104, whereas the other direction gets a lower log-likelihood score
of −8.1031×104. If we run the Scheffé tournament,Q wins clearly with

dDATE→TEMPERATURE = 0.0156

against
dTEMPERATURE→DATE = 0.0780 .

The joint measure of the true causal direction provides a better fit for the data than that of the
wrong causal order. It is worth to mention that we repeated our experiments also with the mea-
sured temperatures at7 am,2 pm and6 pm as well as daily maximum and minimum in the place
of the daily average temperature to test the causal hypothesis. Our inference rule yielded in all
cases the correct causal direction, as desired.
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7. Discovering Causal Direction by
Complexity Measure of
Distributions

Causal inference by means of plausible Markov kernels uses the properties of conditional distri-
butions. The motivation is that statistic dependences between cause and effect which are gen-
erated by natural causal mechanism should typically lead to“simple or smooth” expressions
for P (effect|cause) but will not necessarily generate simple expressions forP (cause|effect). In
last chapters, we showed a first attempt for evaluating the smoothness or simplicity of the true
measure. How to quantify the smoothness and simplicity of a conditional distribution in a more
general framework is our main concern. In this chapter, we propose to measure the complexity
of a distribution by a Hilbert space seminorm of the logarithm of the density. The function is
an element of an RKHS and its seminorm can therefore be computed by usual kernel methods.
In contrast to common machine learning applications, this complexity measure plays not only
the role of a regularizer used to avoid overfitting of describing finite data points. It is rather
considered as an interesting quantity in its own right sinceit should provide hints on the causal
direction. For this purpose, it is essential to choose a definition of complexity measure which is
well-behaved in some respects.

7.1. Defining complexity measure by Hilbert space
seminorms

Before we introduce the complexity measure for conditional densities, we define it for uncondi-
tional densities. Let us ignore for the moment the sampling issue and assume that the densityPX

of some random variableX (probably vectorial) is perfectly known. For the sake of convenience
and in order to avoid some technical problems, we assume thatthe value setX of X is finite.
Now, we introduce a complexity measure on the space of densities onX as follows.

Definition 23 (Complexity of Marginals) LetX be a probability space,X be a random vari-
able onX , and PX a density onX . Furthermore, letH be a Hilbert space of real-valued
functions onX containing the set of constant functions. Then we define the complexity ofPX as

C(PX) := min
{
‖φ‖2

∣∣∣φ ∈ H with PX(x) = exp(φ(x)− ln zφ)
}

152



7.1. Defining complexity measure by Hilbert space seminorms

with the partition functionzφ :=
∑

x exp
(
φ(x)

)
. Here‖.‖ denotes a seminorm onH given by

‖φ‖ :=
√
B(φ, φ) ,

whereB denotes a positive definite (but not necessarily strictly positive) bilinear formB : H×
H → IR.

In the following, we will use the following terminology: we call two vectorsv, w∈H orthog-
onal ifB(v, w)=0. For a subspaceV we define

V ⊥ := {w | B(w, v) = 0 ∀v ∈ V } .

SinceV andV ⊥ may have non-trivial intersection, we avoid the term “orthogonal complement”.
The term “orthogonal” will always refer to the bilinear formB unless something else is explicitly
stated. An orthogonal projectionR is said to be an projection ontoV ⊥ if RH⊆V ⊥ andRw=
w−v for somev∈V that minimizes‖w−v‖. We have

C(P ) = ‖Q(lnP )‖2 , (7.1)

whereQ denotes the projection onto1⊥. This is due to‖φ‖= ‖Q(φ − zφ1)‖= ‖Q(lnP )‖. We
show the following lemma.

Lemma 1 (Additivity) LetH1 andH2 be spaces of functions onX1 andX2, respectively. Fur-
thermore, letC1 andC2 be complexity measures on the densities onX1 andX2, respectively,
defined by the corresponding seminorms inH1 andH2. Assume that a complexity measureC on
the density onX is based on the seminorm ofH :=H1⊗H2 that satisfies the embedding property
‖a⊗1‖ = ‖a‖ = ‖1⊗a‖, where1 denotes the function taking the constant value1. Then we
have the following additivity rule: LetP be defined by a product of densitiesP1 andP2, i.e.,
P (x1, x2)=P1(x1)P2(x2) for all x1 andx2. Then the complexity of the product measure satisfies
C(P )=C1(P1)+C2(P2).

Proof LetQ,Q1, Q2 denote the projections onto the space of functions orthogonal to 1 for the
spacesH,H1,H2, respectively. Then we have

‖Q(lnP1 ⊗ 1 + 1⊗ lnP2)‖2 = ‖Q1(lnP1)⊗ 1 + 1⊗Q2(lnP2)‖2
= ‖Q1(lnP1)‖2 + ‖Q2(lnP2)‖2 ,

where the last equality is due to Pythagoras’ theorem after taking into account that the vectors
Q1(lnP1)⊗ 1 and1⊗Q2(lnP2) are mutually orthogonal. �

Now we move to the definition of the complexity of conditionalprobabilities:

Definition 24 (Complexity of Conditionals) LetX andY be the respective value sets of ran-
dom variablesX andY , andPX,Y be a joint density onX × Y. LetPY |X be the corresponding
conditional density. We define the complexity ofPY |X as

C(PY |X) := min
{
‖φ‖2

∣∣∣φ ∈ H with PY |X(y|x) = exp(φ(x, y)− ln zφ(x))
}
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7. Discovering Causal Direction by Complexity Measure of Distributions

with the partition functionzφ(x) :=
∑

y exp
(
φ(x, y)

)
.

Similarly to the reformulation of Definition 23 in Eq. (7.1),the definition of the complexity of a
conditional density can also be given in a more explicit form:

C(PY |X) = ‖(id⊗Q2)(lnPY |X)‖2 , (7.2)

where “id” denotes the identity map andQ2 is as in the proof of Lemma 1. Under the assump-
tions of Definition 24, we have:

Lemma 2 (Consistency)LetX andY be stochastically independent with respect to the joint
densityP , i.e.,PY |X =PY . LetC be a complexity measure based on a seminorm inH=HX⊗HY

satisfying the embedding property in Lemma 1. Then we haveC(PY |X)=C2(PY ).

Proof Let φ be some function onX×Y such thatPY |X(y|x)=exp(φ(x, y)−ln zφ(x))=PY (y).
We choose an arbitrary valuey0 and setf(x) :=φ(x, y0)−lnPY (y0) andg(y) := lnPY (y). Then
we haveφ(x, y)=f(x)+g(y). Thus

‖(id⊗Q2)(φ)‖2 = ‖(id⊗Q2)(f ⊗ 1 + 1⊗ g)‖2 = ‖Q2(g)‖2 .

Therefore, we concludeC(PY |X)=C2(PY ). �

Lemma 2 is essential, if one intends to compare the complexity of marginal densities to that
of conditional densities. The following causal inference principle stands behind such a compar-
ison: having factorized a joint densityPX,Y into PY |XPX andPX|Y PY based on both possible
hypothetical causal orders, one calculates the sums of the complexitiesC(PY |X)+C(PX) and
C(PX|Y )+C(PY ) with respect to the different hypotheses. The intention is to consider the sums
as the “total complexity” of the causal modelsX→Y andX←Y respectively and to prefer the
causal direction that corresponds to the smaller total complexity. For doing so, it is crucial to
makeC(PY ) andC(PY |X) comparable. An essential property of the complexity measure is that
we have

C(PY |X) + C(PX) 6= C(PX|Y ) + C(PY )

in the generic case. The following lemma provides some deeper understanding why this is the
case.

Lemma 3 (Relation to Complexity of Partition Function) Under the assumptions of Defini-
tion 24, the following inequalities hold:

C(PX,Y ) ≥ C(PY |X) + C(PX) + C(R)− 2
√
C(PX)C(R) ,

C(PX,Y ) ≤ C(PY |X) + C(PX) + C(R) + 2
√
C(PX)C(R) ,

whereR is the following measure onX: SetR(x) := c·zf (x) with an appropriate normalization
factor c and the partition functionzf (x) =

∑
y exp(f(x, y)) which is derived fromf := (id⊗

Q2)(lnPY |X).

Proof Write
P (y|x) = exp

(
f(x, y)− ln zf (x)

)
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7.1. Defining complexity measure by Hilbert space seminorms

wheref satisfies by definition(id⊗Q2)(f)=f . Furthermore, we set

P (x) = exp
(
g(x)− ln z

)

with Q1(g) = g and normalization constantz. We observe thatf is orthogonal to all functions
that depend only onx since the latter have the formh⊗1 (whereh is an arbitrary function). We
have

lnPX,Y = lnPX + lnPY |X = (− ln zf + g)⊗ 1 + f − ln z .

Due to the above remarks we havef ⊥ (− ln zf +g)⊗1. To compute the complexity ofPX,Y ,
we observe

C(PX,Y ) = ‖Q(f + (− ln zf + g)⊗ 1 + ln z (1⊗ 1))‖2
= ‖f +Q1(− ln zf + g)⊗ 1‖2 .

Since the projected term is still orthogonal tof (note that it is a function that depends only onx)
we have

C(PX,Y ) = ‖f‖2 + ‖Q1(− ln zf + g)‖2 = ‖f‖2 + ‖Q1(ln zf ) + g‖2 . (7.3)

By elementary geometry we obtain

‖Q1(− ln zf ) + g‖2 ≥ ‖Q1(ln zf )‖2 + ‖g‖2 − 2‖Q1(ln zf )‖ ‖g‖ ,
‖Q1(− ln zf ) + g‖2 ≤ ‖Q1(ln zf )‖2 + ‖g‖2 + 2‖Q1(ln zf )‖ ‖g‖ .

HavingC(R)=‖Q1(ln zf )‖2, we finally conclude

C(PX,Y ) ≥ C(PY |X) + C(PX) + C(R)− 2
√
C(PX)C(R) ,

C(PX,Y ) ≤ C(PY |X) + C(PX) + C(R) + 2
√
C(PX)C(R) .

�

Note that in high dimensional spaces the angle between two vectors is typically close to90
degree. Therefore, it is likely that the vectorsQ1(ln zf ) andg in Eq. (7.3) satisfyB(ln zf , g)≈0.
We then have

C(PX,Y ) ≈ C(PY |X) + C(PX) + C(R) .

In other words, the complexity of the joint density is typically the sum of the complexities of
the conditional densities and the complexity of a measure defined by the partition function. The
basic idea behind our inference rule is that simple causal mechanism may generate conditional
densitiesPY |X which are simple up to a rather complexX-dependent normalization constant,
i.e., the partition function. Note that the joint density could be complex even whenPX is simple
due to the additional complexity of the partition function.
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7. Discovering Causal Direction by Complexity Measure of Distributions

7.2. Calculation of seminorm using kernel methods

We have shifted the problem of defining the complexity of densities into the definition of semi-
norms. We will rewrite our definition such that seminorms canbe calculated in an implicit way.
With the so-called “kernel trick” different seminorms can be chosen by simply replacing the
kernel (see [137, 22]).

Let k1, k2: (X ×Y)× (X ×Y) → IR be positive definite symmetric kernels andX ×Y the
probability space under consideration. LetHj for j = 1, 2 be the Hilbert spaces given by the
completion of the spans of the functionskj((x, y), .) with the inner product

〈
kj

(
(x, y), .

)
, kj

(
(x′, y′), .

)〉
= kj

(
(x, y), (x′, y′)

)
. (7.4)

Hilbert spaces defined this way are usually referred to as RKHSs. We assume thatH2 is a
subspace ofH1. The vectorφ in Definition 23 and Definition 24 can be approximated by

φ(x, y) :=
n∑

j=1

cjk
(
(xj, yj), (x, y)

)
=
〈 n∑

j=1

cjk
(
(xj, yj), .

)
, k
(
(x, y), .

)〉
(7.5)

with appropriate coefficientscj and points(xj, yj).
We define our seminorm by

‖φ‖ := ‖R(φ)‖H1 ,

whereR is the projector onto the subspace orthogonal toH2 with respect to the inner product
in H1. The idea of using such a seminorm is that the spaceH2 contains simple functions (for
instance polynomials of low degree) that should not contribute to the complexity measure at
all. This corresponds to the use of conditionally positive definite kernels in semiparametric
models [147, 171]. LetPY |X be a conditional density, given by

PY |X(y|x) = exp
( n∑

j=1

c
(1)
j k1

(
(xj, yj), (x, y)

)

+
n∑

j=1

c
(2)
j k2

(
(xj, yj), (x, y)

)
− ln zc(x)

)
(7.6)

with the appropriate partition functionzc(x). The complexityC(PY |X) is then defined by the

minimum of
∑n

j,j′=1 c
(1)
j c

(1)
j′ k1

(
(xj, yj), (xj′ , yj′)

)
, i.e., the square of the norm of the shortest

component inH1, see Eq. (7.4), over all vectorsc := (c
(1)
1 , . . . , c

(1)
n , c

(2)
1 , . . . , c

(2)
n ) ∈ IR2n for

which Eq. (7.6) holds. The vector with coefficientsk1((xj, yj), (x, y)) andk2((xj, yj), (x, y))
with j=1, . . . , n can be interpreted as the vector of sufficient statistics of an exponential model.

The framework introduced can also be considered as a method of density estimation with ker-
nel methods. To make this method tractable in practice, there are some issues of implementation
to be addressed. The choice of kernelsk1 andk2 will be discussed in the next section. Givenk1

andk2 described in the next section, our remarks above specified the choice of points(xj, yj) for
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j = 1, . . . , n in the range. Our experiments show that the seminorm is not sensitive against the
choice ofn, if n is not too small and the points(xj, yj) are somewhat evenly distributed over the
whole range. The results of all our experiments in this chapter are based on the choice ofn=7
for unconditional (one-dimensional) cases andn= 49 for conditional (two-dimensional) cases.
The7 points for each dimension are chosen equidistantly in percentile over the whole observed
range. For a binary case,n=2.

To ensure that the embedding property‖a⊗1‖ = ‖a‖ = ‖1⊗a‖ is satisfied we proceed as
follows. We choose the kernelk1 as the product

k1

(
(xj, yj), (xj′ , yj′)

)
= k

(1)
X (xj, xj′) k

(2)
Y (yj, yj′) .

Thus, the corresponding RKHSs have the formH2 :=HX
2 ⊗HY

2 andH1 :=HX
1 ⊗HY

1 . We choose
the kernelsk(2)

X andk(2)
Y and the domainsX andY such thatHX

2 andHY
2 contain the constant

functions and normalizek(1)
X andk(1)

Y such that the constant functions1 on X andY satisfy
‖1‖HX

1
=1 and‖1‖HY

1
=1, respectively.

To this end, we define the matrixKX := k
(1)
X (xj, xj′) and calculate its inverseK−1

X . Let
c :=(K−1

X )1 be the vector of coefficients of the constant function1. This yields the normalization
condition〈c |KX c〉 = 1, i.e., the sum of all entries ofK−1

X are1. The same procedure is also
applied tok(1)

Y . The seminorm ofa⊗1 is given by the Hilbert space norm of its component in
(HX

2⊗HY
2 )⊥. LetRX andRY be the orthogonal projections onto(HX

2 )⊥ and(HY
2 )⊥, respectively.

Due toRY (1) = 0 the relevant component ofa⊗1 is given byRX(a)⊗1. The Hilbert space
norm of this function is given by‖RX(a)‖HX

1
which coincides with the seminorm ofa. Similar

arguments apply to1⊗a.

7.3. Estimating densities from finite data with kernels

To calculate the complexity of a density we first use regularized maximum likelihood estimation
to fit the observed data points using exponential models. A general framework for applying the
kernel approach to exponential families can be found in [26]. Without regularizer, the method
works as follows. Introducing the mapψ: X×Y→H1 with

ψ(x, y) := k1

(
(., .), (x, y)

)

we define the family of conditional densitiesPφ(y|x) = exp(〈φ|ψ(x, y)〉− ln zφ(x)). For N
observed data points(xi, yi), the maximum likelihood estimation selectsφ by

max
φ∈H1

{ 1

N

N∑

i=1

(
〈φ|ψ(xi, yi)〉 − ln zφ(xi)

)}
. (7.7)
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In order to avoid overfitting we include a regularizer and then obtain the expression

max
φ∈H1

{ 1

N

N∑

i=1

(
〈φ|ψ(xi, yi)〉 − ln zφ(xi)

)
− ε‖φ‖

}
. (7.8)

The regularizer, the norm itself and not its square (as opposed to our complexity measure), is
in agreement with the choice in [6]. The authors of [6] propose to use a value ofε that is
proportional to1/

√
N . In our experiments, we choseε = 1/

√
N . Note, as an aside, that the

regularized maximum likelihood estimation for unconditional densities can also be interpreted
as maximizing the entropy of the density subject to the expectations ofψ(X,Y ) coinciding with
the observed means ofψ(X,Y ) up to an error ofε (see [6]).

For the sake of numerical stability, we normalize the observed data forX,Y respectively.
The data are linearly transformed such that the points±1 of the normalized data have the same
percentiles as±3 of a standard normal distribution, respectively. Thus the normalized data points
with continuous range will be located mostly in the interval[−1, 1]. A normalized binary variable
then takes values±1. We choose a discretization of0.1 to count the relative frequencies and
calculate the sum in optimization. For the experiments described in the next section we use a
sum of the Gaussian kernel

kσ

(
(x, y), (x′, y′)

)
= exp

(
− ‖(x, y)− (x′, y′)‖2

2σ2

)

to define the spaceH1 and a polynomial kernel

ka,b,ã,b̃

(
(x, y), (x′, y′)

)
=
(〈x ·x′〉

a
+ b
)(〈y ·y′〉

ã
+ b̃
)2

,

to defineH2. The additional scaling parametersa, b, ã, b̃ are used to ensure a numerically stable
training. We choosea, b, ã, b̃ so that the entries ofka,b,ã,b̃ take the value between[−1, 1]. Since
the normalized data have the value mostly between−1 and1, we choosea = ã = 2 andb =
b̃= 1

2
, if x, y are one-dimensional. The formulation of both kernels for the unconditional case is

straightforward. Assuming that the range of random variables is compact, the spaceH2 (induced
by a Gaussian kernel) contains the spaceH1 (induced by a polynomial kernel).

The idea behind the choice of kernels is the following: ifx andy are one-dimensional, the
second kernel induces a space of functions spanned by the monomials1, x, xy, xy2, y, y2. We
consider these as sufficiently smooth such that they should not contribute to the complexity mea-
sure. In particular, we can then obtain Gaussian distributions whose expectations and variance
changes linearly with the given variableX. The Gaussian kernel and the polynomial kernel in-
duces, on the one hand, enough flexibility to fit various global and local structure of density.
On the other hand, the density estimated this way is smooth. For a discussion of smoothing
properties of Gaussian and polynomial kernels we refer to [115, 147].

Our experience suggest that we have to learn appropriate valuesσ for the Gaussian kernel by
optimizing Eq. (7.8), otherwise we could not obtain reasonable fits. Clearly, we cannot directly
compare the complexity values corresponding to kernels with different values forσ. However,
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7.4. Experiments with simulated and real-world data

we may define the complexity by the minimum over all seminormssquared within some given
family of RKHSs. Denoting byHi the Hilbert space given by the kernelki we may defineC(P )
by C(P ) := infi∈I{Ci(P )}, whereCi refers to the complexity measure defined by the seminorm
in Hi. In order to ensure additivity with respect to product measures in product spaces for the
redefinedC we need to define a family of spaces byH(1)

i ⊗H(2)
j and optimize over all pairs(i, j).

Due to a combinatorial explosion such an optimization will only be feasible for a small setI and
few tensor components. In the experiments described in the next section we have therefore used
the sameσ for the Hilbert spaces forX andY .

If we run the optimization procedure in Eq. (7.8) over all Hilbert spaces (i.e., all reasonable
valuesσ) the procedure will choose the vectorφ from the Hilbert space that leads to the smallest
norm among all those that yield the same value in the non-regularized optimization given by
Eq. (7.7). We shall therefore consider the optimum of Eq. (7.8) over all kernels taken from a
given family as an estimation of the minimal norm of the density over all Hilbert spaces under
consideration. Since the optimization problem withσ is no longer convex, one should choose
the start value ofσ properly. In our experiments we chose200 equidistant starting values in the
range(0, 2

3
). The value which leads to the maximum of Eq. (7.8) will then betaken as the start

value of a subsequent optimization via gradient descent.

7.4. Experiments with simulated and real-world data

Some simulated experiments show the intuitive meaning of our complexity measure, while the
real-world examples show that this complexity measure could be helpful for inferring the causal
direction between two variables.

7.4.1. Unconditional densities

We first sampled1000 data points from various unconditional distributions as shown in Fig. 7.1.
The underlying densityP1 follows a standard normal distribution;P2, P3, P4, P5 are various mix-
tures of2 Gaussians;P6, P7, P8 are mixtures of3, 4, 5 Gaussians respectively.P9 is a mixture
of a Gaussian and a gamma distribution.P10 follows a single gamma distribution andP11, P12

are mixtures of2, 3 gamma distributions respectively. As expected, we see thatthe complexity
of a single Gaussian is0. A single gamma distribution has a very small complexity value. The
measure increases as the number of components increases. This holds even for the unimodal
mixtureP2, P11, P12.

Moreover, we examined the smoothness (complexity) of a real-world temperature dataset
(Daily average temperatures from 1979 through 2004, Furtwangen, Germany) with9162 en-
tries. The estimated density (see Fig. 7.2) has a complexityof 0.0265, which suggests that the
density of temperatures is more complex than a single normalor gamma distribution. We ob-
serve slightly larger complexity values for a gamma distribution than for a Gaussian. We leave
the question open whether this property is desirable.
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Figure 7.1.:12 toy data sets sampled by distributionsP1, . . . , P12 (see text). The dots indicate the
observed relative frequencies, the solid lines the estimated densities. The calculated
complexity values are shown below each plot.
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Figure 7.2.: Daily average temperatures from 1979 through 2004, Furtwangen, Germany. The
dots indicate the observed relative frequencies, the solidlines the estimated density.
The calculated complexity value is shown below the plot.
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P2 P3 P4 P9

Pi(Y |X = x1) N (−1, 1) N (−2, 1) N (−3, 1) N (8, 1)
Pi(Y |X = x2) N (1, 4) N (2, 4) N (3, 4) G(9, 0.5)

C(PX) 0.0000 0.0000 0.0000 0.0000
C(PY |X) 0.0000 0.0000 0.0000 0.0004

C(PY ) 0.1724 0.1332 0.4320 0.1415
C(PX|Y ) 0.0234 0.0000 0.0000 0.0000

Table 7.1.: Complexity of conditional densities in binary mixture models.

7.4.2. Conditional densities

The main motivation behind this complexity measure is to develop a tool for causal inference
based on observed data by quantifying smoothness of conditional distributions. Intuitively, hav-
ing observed a bimodal distribution after large sampling, one would prefer to interpret the ob-
servation as a mixture of two populations. It is rather implausible to assume that a probability
density with such a shape should stem from a homogeneous statistical ensemble. There is a
broad variety of applications where the detection of mixtures is crucial for data analysis (see
e.g. [43, 54, 112]).

If we define a density on a binary variableX and a continuous variableY by

P (y) = 0.5P (y |X = x1) + 0.5P (y |X = x2) ,

where both conditionalsP (y|X = xi) are Gaussian, the total complexity of the modelX → Y
is zero since the kernelk2 induces such a density. Note that due to our choice of kernel the
complexity of the density of a binary variable is always0. We checked on randomly generated
data with1000 points whether this result is also obtained in finite sampling. We furthermore
confirmed that the modelX → Y was also preferred when the conditionalP (Y |X = x2) was
the gamma distribution andP (Y |X = x1) was a Gaussian. In a similar way, we defined joint
densities onX andY corresponding to the mixture modelsP2, P3, P4, P9 in Fig. 7.1 by using
a binary variableX to indicate which one of the two pure ensembles is taken. The complexity
values in Tab. 7.1 show that we indeed obtained the expected results.

Since the causal inference problem was the motivation for the construction of our complexity
measure, its performance with respect to some real-world data is the best criterion for judging
whether it seems appropriate or not. We performed experiments with datasets from the Current
Population Survey (CPS) 2001 (see Section 6.6.2 for data) on the relation between sex (binary
variable) and income (continuous variable) in the US. Statistical methods show that income and
gender are indeed correlated. Common sense tells us that we can exclude that the personal
income influences the gender, whereas the reverse causal direction makes sense. We found that
the density of the income marginalized over both genders is more complex than the density for
both genders separately.

First we intended to check to what extent the complexity measure recognizes mixtures as more
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7. Discovering Causal Direction by Complexity Measure of Distributions

complex. We found
C(PIncome|Sex=“male”) < C(PIncome) ,

and the same forPIncome|Sex=“female”. Note that left side of the inequality can also be consideredas
the complexity of an unconditional density since we assigned a specific value to the conditioning
variable.

However, to check the performance of our causal inference principle we have to compute the
total complexity of both hypothetical causal directions. Using one subsample of10% of the data
points from13, 803 entries, we found the following complexity values:

C(PSex) = 0.0000 , C(PIncome|Sex) = 0.4632 ,

and
C(PIncome) = 0.6725 , C(PSex|Income) = 0.0000 ,

i.e., the sum of the first two values (corresponding to the true causal direction) is indeed smaller
that the sum of the last two.

Using the same dataset, we consider another example where a continuous variable causally
influences a binary variable. We examine the continuous variable “Age” and the binary variable
marriage status (short “M-Status”, it takes the two values:“never married” or “married, widowed,
divorced or separated”). A10% subsample leads to the following results:

C(PAge) = 0.0023 , C(PM-Status|Age) = 0.0012 ,

and
C(PM-Status) = 0.0000 , and C(PAge|M-Status) = 0.0164 .

The sum of the first two values (corresponding to the true causal direction) is smaller than the
sum of the last two. Our causal inference rule would then favor the causal hypothesis that the
age should be a cause of marriage status of a person, not vice versa.

We repeated these experiments using different subsamples of 10% of the whole dataset. All
subsamples yielded the same result with regarding to both causal hypotheses. However, the
complexity values were slightly different for different samples. Therefore, we should not overrate
the meaning of the absolute value of the complexity measure.Its relevance consists rather in
allowing us to compare complexity values for different causal directions.

The third example that we tested is a data set of handwritten numerals [119] containing PCA
components of the pixel vectors for the symbols “0”-“9”. We considered the symbols “0” and
“1” and interpreted them as the values of a binary random variableX. For each symbol there are
200 instances. We chose a PCA coefficient as a continuous random variableY . We assume that
X is the cause ofY because the person first had the intention to write the digit “1” or “0” and
wrote it afterward. Hence the PCA coefficientY is the effect.

We applied our inference rule to several coefficients. Theircorrelation withX attained, among
others, the valuesρ = 0.8661, −0.8079, 0.3233, 0.5674, 0.1086, −0.0601, −0.2547. For the
cases with strong correlations we obtained results that were consistent with the ground truth, i.e.,
C(PX)+C(PY |X)<C(PY )+C(PX|Y ). When the correlation coefficient was0.3 or smaller, we
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7.4. Experiments with simulated and real-world data

have also observed several failures of the causal inferencerule sinceC(PY ) andC(PY |X) are
extremely small for these cases. This is because a density ishard to recognize as a mixture of
two distributions if they are not sufficiently different.

In summary, experiments with real-world and simulated datashow that mixtures of two sim-
ple distributions like Gaussians and gamma distributions are recognized as more complex than
the corresponding conditional probability given the binary variable that labels the mixed com-
ponents. Moreover, the complexities of conditionals that correspond to the true causal direction
were in major cases of our limited examples smaller than the complexity of the wrong causal
direction. Note that the information of causal directions can be helpful for e.g., feature selec-
tion [81]. It should be stressed that the intuitive relevance of the absolute value of complexity
should not be overrated.
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8. Summary and Outlook

This thesis coped with the problem of learning causality andproposed two different approaches
that can be served as a basis (independent or combined together) for automatically building in-
telligent systems for reasoning under uncertainty. The potential application of such influence
diagrams (causal structures) is that they can be used to planor design a strategy of future inter-
ventions or manipulations.

In the spirit of the conventional constraint-based IC algorithm, we first proposed two kernel-
based versions of collider identification to learn causal structure. The so-called RCL algorithm is
based on kernel hypothesis tests of independence, while theso-called KCL algorithm addition-
ally takes the magnitude of dependences into account. In RCL, we prefer constraints with small
conditioning sets and explicitly treat the violations of transitivity and intersection properties of
a faithful Bayesian network. RCL is particularly suitable for learning spare networks. In KCL,
we restrict the number of potential conditioning sets for the independence test by learning an
auxiliary graph via kernel dependence measures. In our approach, TypeII error of hypothesis
tests and its impact on learning the adjacency structure canbe kept at a low level. The impact
of the potential typeI error on learning causal directions is alleviated by using the magnitude
of dependences measured by kernels. RCL and KCL takes nonlinearrelationships into account
and refines the IC algorithm in a computationally tractable way and provides unifying methods
for learning causal structure over different kinds of (evenhybrid) domains. Various experiments
showed that our methods are reliable in case of small sample sizes.

In association with this work, several open problems have been suggested for further research.
First, regarding the issue of measuring dependence, Fukumizu et al. [63] recently defined the
kernel dependence measure with other normalization which makes the measure asymptotically
independent of the choice of kernels. It is an intriguing direction to explore the possibility of
improving the performance of structural learning via this measure, although there are still some
numerical problems in the implementation. Moreover, mutual information is the most popular
dependence measure that is able to capture nonlinear relationships. Thus, it is natural to ask the
question how it relates to the kernel measure. A first result proved by Gretton et al. [75] showed
that the HS-normHYX approximates the mutual informationI(X,Y ) to first order near indepen-
dence. A recent paper of Fukumizu et al. [63] gave some insights into the connection between
mutual information and his normalized kernel measure. In spite of these works, a general relation
between kernel measure and mutual information is not established yet.

In respect of statistical tests, a more efficient test statistics, rather than generating null distri-
bution by random permutations, could be useful. In this direction, Gretton et al. [74] recently
made a first attempt for the tests in unconditional cases. An efficient and reliable test statistics
for conditional cases would be desirable.

One of the main challenges of constraint-based approaches is to represent independence rela-
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tions verified by some statistical test in a simple and robustway, e.g., a faithful Bayesian network.
In order to make such faithful representation possible, we proposed in RCL a strategy of variable
clustering to handle conflicting information among these relations. Various real-world experi-
ments showed that an appropriate clustering of variables ishelpful for constructing a causally
meaningful structure. It raises an interesting question how to evaluate the clustering from the
point of view of causal relationships. Silva et al. [145] didsome work in a linear framework
in this direction. Our constraint-based clustering algorithm, which is causal-structure-oriented,
provides an entirely different approach to deal with the problem of causal clustering. Nonethe-
less, the causal clustering is still a not well-studied problem, although clustering itself is very
active research field in machine learning.

As seen from various experiments with simulated data, constraint-based approaches outper-
formed currently popular score-based Bayesian approaches in many of our examples. Never-
theless, a Bayesian approach in principle has some advantages that our RCL or KCL does not
have. For instance, a Bayesian approach can straightforwardly incorporate prior knowledge. A
Bayesian approach can be efficiently implemented and is well scalable with respect to the sample
size. A related work of detecting collider candidates via a Bayesian scoring function is done by
Steck [157]. Bayesian scoring function can also be used to detect independence [107, 109]. In
addition, a Bayesian approach can in principle be applied to searching over a number of different
latent variable models within Markov equivalent classes [86]. Therefore, modifying RCL/KCL
to incorporate prior knowledge (combining with experimental data or using temporal information
of time series) is a useful direction of further research. More reliable identification of colliders
via a well-justified scoring function based on kernel dependence measure would be interesting.
A more ambitious goal is to explore the theoretical possibility for discovering latent variables or
even learning ancestral graphs [133] in a kernel-based way.

Another practical issue of further work is to make RCL/KCL efficient for learning on a huge
network or from a huge dataset. Some techniques of estimating HS norm by randomly selecting
or sampling a subset of Gram matrix entries [1, 50] to measureindependence in a huge dataset
are discussed by Jugelka et al. [94]. Unfortunately, it sometimes provides unsatisfactory results,
particularly in the case of close-to-independence (see [94] for experiments).

Beyond independence, the last two chapters of this thesis dealt with the problem of causal
inference when there are no independence relations are detected, i.e., a fully connected adjacency
structure. In particular, if only two dependent variables are measured, approaches based on
independence relations or dependence measures will fail. Our model-based approach assumes
that the conditionals that are consistent with the correct causal order should be of a smooth shape
or simple, since such conditionals describe indeed the present natural causal mechanism. The
so-called plausible Markov kernel assumption.

Our first attempt to capture the plausibility of conditionaldistributions is to introduce the
smoothest Markov kernel by maximizing the conditional entropy subject to the observed first and
second moments. The intuition behind this attempt is to define a simple cause-effect interaction
that is “as linear as possible”. The “most linear” effect on the binary variable is therefore to
generate the desired correlation such that the conditionaldistribution has maximal uncertainty.
This way, we captured the potential “simplest” influence among the variables considered by the
smoothest Markov kernels.
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8. Summary and Outlook

Experiments with simulated and real-world data indicated that the so-called plMK algorithm
can provide useful hints on the causal direction without using independence relations and depen-
dence measures. In other words, plMK provided a tool to select causal hypotheses which are
Markov equivalent and thus indistinguishable by a constraint-based approach. Unfortunately,
plMK is only computationally efficient for domains of small cardinality, because the method
took the domain information directly into account. For these reasons, we proposed to use a
constraint-based approach, e.g., PC, for preselecting hypothetical causal graphs and then apply
plMK to small subsets of variables for directing remaining undirected edges.

The essential shortcoming of the concept of the smoothest Markov kernel is the fact that such
this simplicity criterion for conditional distributions,in general, depends on the representation of
data (expecting for binary domains). To represent, for example, dates of the year on a unit circle
requires an intuitive understanding about what representation of the data is natural. Likewise, the
shape of the distribution of a real-valued variable could bechanged by using logarithmic scaling
of the data. An important pre-decision is the choice of the most “natural” scaling. Our hope is
that for a large causal network criteria on the simplicity ofMarkov kernels could be developed
that are not too sensitive under such rescaling operations as long as they are in some sense not
too unreasonable.

Nevertheless, this notion of simplicity that uses entropy maximization subject to the two mo-
ments should rather be considered as a first attempt instead of the right one. In order to establish
a more general framework to construct complexity measures for conditional probabilities, we
proposed a kernel method to estimate the complexity of distributions from finite sampling. The
complexity measure is based on an RKHS seminorm of logarithm of the distribution. Since the
optimization of Eq. (7.8) requires calculating the partition function, the method presented is com-
putationally rather expensive. Evaluating conditionals with general continuous domains or with
more than two random variables seems (from the current perspective) to be feasible only after a
coarse discretization. In spite of this shortcoming, experiments showed this complexity measure
could provide hints on the causal direction between only twovariables where a constraint-based
approach fails. Moreover, kernel methods seem to be quite flexible for designing better complex-
ity measures for further research.

In summary, this thesis focused on two aspects of learning causality from statistical data:
learning by independence constraints and learning by properties of conditional distributions. The
respective assumptions took in these two approaches are faithfulness assumption and plausibility
of Markov kernels. Actually, both assumptions can be related via some kind of simplicity prin-
ciple on Markov kernels of the desirable structure. The faithfulness requires simplicity (roughly
speaking, minimum links) in the structure, which means thateach Markov kernels depends on
minimum number of variables, while the plausibility requires that each link represents a simple
Markov kernel.

Although the experimental results obtained so far seem quite promising, we do not intent to
claim that these principles (in particular the specific definition of plausible Markov kernels which
allow a space of functions spanned by certain simple monomials) is universally valid, since
we do not expect that all real-life causal relationships always exhibit such property. Different
applications may require different dependence and complexity measure. A final judgment on the
performance of these inference rules actually requires a large number of real-world examples.

166



Nevertheless, we are of the opinion that kernel methods provide a promising tool for designing
appropriate dependences or complexity measures.

Note that, in most experiments in this thesis, we used the prior knowledge to judge the quality
of structures. Actually, evaluating the output of a structural learning algorithm in respect of the
causal interpretation still remains an open problem. In real-world applications, the final judgment
lies in the usability of the causal structure for designing interventions or manipulations.

167



A. Appendix

A.1. Denseness of RKHS given by Gaussian RBF
kernels

Lemma 4 The RKHSHσ given by the Gaussian RBF kernelkσ defined in Eq. (2.2) is dense in
L2(P ) for any probability measureP on IRm.

Proof For notational simplicity, the proof is given only form=1. The extension to the general
case is trivial (see [63], Theorem 2). First we show that the functionx 7→ e

√
−1ωx (ω ∈ IR) is

approximated by a function inHσ with respect to theL2(P )-norm in an arbitrary accuracy.
Let f be a function inL2(IR) and its Fourier transform bẽf(u). Because it is known [69] that

the condition ∫
|f̃(u)|2eσ2

2
u2

du <∞

implies f ∈ Hσ, we see that the functionx 7→ e−
1

2τ2 x2

e−
√
−1ωx ∈ Hσ for τ > σ/

√
2 and any

ω∈ IR. From the bounded convergence theorem, we have

EPX

[∣∣e
√
−1ωx − e

√
−1ωxe−

1
2τ2 x2∣∣2

]
→ 0 (τ →∞) .

Thus, it suffices to show that any functionf ∈L2(P ) can be arbitrarily approximated inL2(P )
by a function in the linear hull of the class{e−

√
−1ωx | ω∈ IR}.

Let f be an arbitrary function inL2(P ). We can assumef is continuously differentiable with
a compact support, because those functions are dense inL2(P ). Let ε>0 be an arbitrary positive
constant andM = supx∈IR |f(x)|. Take an interval[−A,A] with a positive numberA so that
it contains the support off andP ([−A,A]) > 1− ε/4M2. By the standard theory of Fourier
inversion (see [130], TheoremII.8), we know that the series of periodic functions

fN(x) =
N∑

n=−N

cne
π
√
−1

A
nx

converges uniformly tof(x) on [−A,A] asN goes to infinity, wherecn is given by the Fourier
coefficient

cn =
1

2A

∫ A

−A

f(x) e−
π
√
−1

A
nx dx .

It follows that |f(x) − fN(x)|2<ε/2 on [−A,A] for sufficiently largeN , and the periodicity of
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fN(x) ensures
sup
x∈IR
|fN(x)|2 < (M +

√
ε/2)2 < 2M2 .

We obtainEP [|f−fN |2] < ε, which completes the proof. �

A.2. Proof of Theorem 2

The conditional covariance operator can be considered as a special case of a conditional cross-
covariance operator (see Definition 11), whenX equalsY . Furthermore, the operatorΣY Y |Z
captures the expectation of the conditional variance of a random variable. This is shown in the
following theorem, proved by [62].

Theorem 7 Under Assumption 2 we have

〈
g,ΣY Y |Z g

〉
HY

= EZ

[
VarY |Z [g(Y )|Z]

]

for all g ∈ HY .

Based on this property of the conditional covariance operator, we attempt to prove Theorem 2,
an analogous expression for conditional cross-covarianceoperatorΣYX|Z (X does not equalY ).

First, we use the polar identity to compute the conditional cross-covariance operator in terms
of the conditional covariance operator. Let(HU , kU) and (HZ , kZ) be respective RKHSs on
measurable spacesU andZ, (U,Z) a random vector onU×Z, andΣUU |Z a conditional covariance
operator. Thus, due to the polarization identity and Theorem 7, we have

〈
g̃,ΣUU |Z f̃

〉
HU

=
1

4

(〈
(g̃ + f̃),ΣUU |Z(g̃ + f̃)

〉
−
〈
(g̃ − f̃),ΣUU |Z(g̃ − f̃)

〉)

=
1

4
EZ

[
VarU |Z

[
(g̃ + f̃)(U)|Z

]
− VarU |Z

[
(g̃ − f̃)(U)|Z

]]

=
1

4
EZ

[ (
VarU |Z [(g̃(U)|Z] + 2Cov[f̃(U), g̃(U)|Z] + VarU |Z [(f̃(U)|Z]

)

−
(
VarU |Z [(g̃(U)|Z]− 2Cov[f̃(U), g̃(U)|Z] + VarU |Z [(f̃(U)|Z]

) ]

= EZ

[
Cov

[
f̃(U), g̃(U)|Z

]]

for arbitrary functionsf̃ , g̃∈HU .
Now we setU :=(X,Y ) and define the kernel by a direct sum of reproducing kernels [10, 137]:

kU(u, u
′) = kU

(
(x, y), (x′, y′)

)
:= kX (x, x′) + kY(y, y

′)

The RKHS corresponding to this kernel is spanned by functionskX (x, ·) depending only onx
and functionskY(y, ·) that only depend ony. In a straightforward way, we may consider this
space as a space of functions with the domainX ×Y, i.e., the domain ofU . For f ∈ HX and

ii



A.3. Proof of Theorem 4

g∈HY , we observe that̃f := f⊕0 andg̃ :=0⊕g are elements inHU , where0 denotes the zero
function. We may write

EZ

[
Cov

[
f(X), g(Y )|Z

]]
= EZ

[
Cov

[
f̃(U), g̃(U)|Z

]]
= 〈g̃,ΣUU |Z f̃〉HU

Using Eq. (2.4), it is easy to check that

〈g̃,ΣUU f̃〉HU = 〈g,ΣYXf〉HY ,
〈g̃,ΣUZh〉HU = 〈g,ΣY Zh〉HY ,
〈h,ΣZU f̃〉HZ = 〈h,ΣZXf〉HZ ,

for any f̃ , g̃∈HU andh∈HZ . Due to the representation of conditional cross-covariance opera-
tors in Eq. (2.6) and Eq. (2.7), we have therefore

〈g̃,ΣUU |Z f̃〉HU = 〈g,ΣYX|Zf〉HY .

In summary, we conclude

〈g,ΣYX|Zf〉HY = EZ [Cov [f(X), g(Y )|Z]] ,

which completes the proof of Theorem 2. �

A.3. Proof of Theorem 4

It is sufficient to prove that we have

〈
g̈,ΣŸ Ẍ|Z f̈

〉
HY⊗HZ

=
〈
g̈, (ΣYX ⊗ TZ) f̈

〉
HY⊗HZ

,

for all f̈ ∈HX⊗HZ andg̈∈HY⊗HZ of the formf̈ := f⊗h1 andg̈ := g⊗h2. TZ is defined by
Eq. (2.8). Recall that for two RKHSsHX andHZ onX andZ, respectively, the tensor product
HX⊗HZ is the RKHS onX×Z with the positive definite kernelkX⊗kZ [10]. The same applies
toHY⊗HZ . We find

〈
(g ⊗ h2) ,ΣŸ Ẍ|Z (f ⊗ h1)

〉
HY⊗HZ

= EZ

[
Cov

[
f(X)h1(Z), g(Y )h2(Z) |Z

]]

= EZ

[
Cov

[
f(X), g(Y )

]
h1(Z)h2(Z)

]

= Cov
[
f(X), g(Y )

]
EZ

[
h1(Z)h2(Z)

]

= 〈g,ΣYXf〉HY 〈h2, TZ h1〉HZ .

The first equality uses the definition of̈X and Ÿ as well as the facts thatf ∈ HX , g ∈ HY ,
h1, h2∈HZ . The second equality usesZ ⊥⊥ (X,Y ) and that for every specific given value ofZ,
the variablesh1(Z) andh2(Z) reduce to constants. The second statement of this theorem follows
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then directly from the definitions of‖ΣYX‖2HS and‖ΣŸ Ẍ|Z‖2HS. �

A.4. Proof of Theorem 6

The following proof is based on the similar idea to the proof of Lemma 7 and Lemma 10 in [62].
However, we cannot directly use their convergence proofs since the latter refer to the convergence
of traces of conditional covariance operators and we have toshow convergence of traces of the
squares of the conditional cross-covariance operators. Moreover, our dependence measure uses
an appropriate renormalization.

First of all, according to the definition of the renormalization factorβZ in Eq. (2.8) and its
estimatorβ̂(n)

Z in Eq. (2.10), Hoeffding’s inequality [91] implies that

∣∣β̂(n)
Z − βZ

∣∣ = Op(n
−1/2) . (A.1)

Furthermore, we have
∥∥ΣYX|Z

∥∥2

HS
−
∥∥Σ̂(n,ε)

YX|Z
∥∥2

HS

=
(∥∥ΣYX|Z

∥∥
HS
−
∥∥Σ̂(n,ε)

YX|Z
∥∥

HS

)(∥∥ΣYX|Z
∥∥

HS
+
∥∥Σ̂(n,ε)

YX|Z
∥∥

HS

)
. (A.2)

If we could show that the first term converges to zero as in order Op(ε
−1n−1/2), then the second

term is consequently bounded inn. Thus, it remains merely to proof the convergence of the first
term. Due to the triangle inequality, it is clear that

∥∥ΣYX|Z
∥∥

HS
−
∥∥Σ̂(n,ε)

YX|Z
∥∥

HS
≤

∥∥ΣYX|Z − Σ̂
(n,ε)
YX|Z

∥∥
HS
.

Using the definitions in Eq. (2.6) and Eq. (2.11) ofΣYX|Z andΣ̂
(n,ε)
YX|Z , respectively, the right-hand

side is bounded from above by

∥∥ΣYX − Σ̂
(n)
YX

∥∥
HS

+
∥∥ΣY Z(ΣZZ + εI)−1ΣZX − Σ̂

(n)
Y Z(Σ̂

(n)
ZZ + εI)−1Σ̂

(n)
ZX

∥∥
HS
.

The first summand converges to zero as in orderOp(n
−1/2) (see [60], Lemma 5). The second

term has the form ∥∥AB−1C − Â(n)B̂
−1
(n)Ĉ(n)

∥∥
HS

(A.3)

if we use the shorthandsA := ΣY Z , B := ΣZZ + εI, C := ΣZX , andÂ(n), B̂(n), Ĉ(n) for the
respective estimators fromn data points.

Due to the triangle inequality, the term in Eq. (A.3) is then bounded from above by
∥∥(A− Â(n))B̂

−1
(n)Ĉ(n)

∥∥
HS

+
∥∥A(B−1 − B̂−1

(n))C
∥∥

HS
+
∥∥AB̂−1

(n)(C − Ĉ(n))
∥∥

HS
. (A.4)

The first and the third term converge to zero at speedε−1n−1/2, because of the fact that‖Â(n) −
A‖HS =Op(n

−1/2), ‖Ĉ(n) − C‖HS =Op(n
−1/2) and the spectra of̂B(n) andB are both bounded
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from below byε. Note thatĈ(n) is uniformly bounded inn since the operators themselves
converge even in HS-norm. It remains therefore to analyze the convergence of the second term
in Eq. (A.4). We have

∥∥A(B−1 − B̂−1
(n))C

∥∥
HS

=
∥∥AB−1/2(B1/2B̂−1

(n)B
1/2 − I)B−1/2C

∥∥
HS

≤
∥∥AB−1/2

∥∥∥∥B−1/2C
∥∥∥∥B1/2B̂−1

(n)B
1/2 − I

∥∥
HS

=
∥∥AB−1/2

∥∥∥∥B−1/2C
∥∥∥∥B̂−1/2

(n) BB̂
−1/2
(n) − I

∥∥
HS
, (A.5)

where the last equality follows from the fact that the spectrum of B̂−1/2
(n) BB̂

−1/2
(n) coincides with

that ofB1/2B̂−1
(n)B

1/2. Since we have the bounds

∥∥B−1/2C
∥∥ =

∥∥(ΣZZ + εI)−1/2Σ
1/2
ZZVZX

∥∥ ≤ 1

and ∥∥AB−1/2
∥∥ =

∥∥VY ZΣ
1/2
ZZ(ΣZZ + εI)−1/2

∥∥ ≤ 1 ,

the second term in (A.5) is then bounded from above by

∥∥B̂−1/2
(n) BB̂

−1/2
(n) − I

∥∥
HS

=
∥∥B̂−1/2

(n) (B − B̂(n))B̂
−1/2
(n)

∥∥
HS

≤
∥∥B̂−1

(n)

∥∥∥∥B − B̂(n)

∥∥
HS
. (A.6)

Using the upper boundε−1 for the spectrum of̂B−1
(n), the last term of Eq. (A.6) is bounded from

above by
ε−1
∥∥B − B̂(n)

∥∥
HS

Due to‖B−B̂(n)‖HS =Op(n
−1/2) we have shown that the left-hand side of Eq. (A.2) converges

to zero as in orderOp(ε
−1n−1/2).

Let us summarize the results above to study the convergence of H
(n,ε)
YX|Z .

∣∣∣Ĥ(n,ε)
YX|Z −HYX|Z

∣∣∣

=
∣∣∣β̂(n)

Z

∥∥Σ̂(n,ε)
YX|Z

∥∥2

HS
− βZ

∥∥ΣYX|Z
∥∥2

HS

∣∣∣

≤
∥∥Σ̂(n,ε)

YX|Z
∥∥2

HS

∣∣β̂(n)
Z − βZ

∣∣+ βZ

∣∣∣
∥∥Σ̂(n,ε)

YX|Z
∥∥2

HS
−
∥∥ΣYX|Z

∥∥2

HS

∣∣∣ . (A.7)

Due to Eq. (A.1), the first term of Eq. (A.7) is of orderOp(n
−1/2) and the second term con-

verges in probability at the rate ofOp(ε
−1n−1/2). In summary, we have a convergence speed of

Op(ε
−1n−1/2) in probability, which completes the first part of our proof.

For the other part of Theorem 6, we show thatΣ
(ε)
YX|Z converges toΣYX|Z in HS-norm for
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ε→0. We have
∥∥∥ΣYX|Z − Σ

(ε)
YX|Z

∥∥∥
2

HS

=
∥∥∥Σ1/2

Y Y VY Z

(
I − Σ

1/2
ZZ

(
ΣZZ + εI

)−1
Σ

1/2
ZZ

)
VZXΣ

1/2
XX

∥∥∥
2

HS

=
∥∥∥Σ1/2

Y Y VY Z

(
ε(ΣZZ + εI)−1

)
VZXΣ

1/2
XX

∥∥∥
2

HS

= Tr
(
Σ

1/2
XXVXZ

(
ε(ΣZZ + εI)−1

)
VZY ΣY Y VY Z

(
ε(ΣZZ + εI)−1

)
VZXΣ

1/2
XX

)

= Tr
(√

ε(ΣZZ + εI)−1/2VZY ΣY Y VY Zε(ΣZZ + εI)−1VZXΣXXVXZ

√
ε(ΣZZ + εI)−1/2

)

The last equality follows from the fact thatTr(B∗TB)=Tr(TBB∗) for any positive trace class
operatorT and bounded operatorB.

With a complete orthogonal system{φi}∞i=1 for HZ subject toΣZZφi =λiφi with eigenvalues
λi≥0, the equation above can be rephrased as follows:

∞∑

i,j=1

〈
φi,
√
ε(ΣZZ + εI)−1/2VZY ΣY Y VY Z

√
ε(ΣZZ + εI)−1/2φj

〉
HZ

〈
φj,
√
ε(ΣZZ + εI)−1/2VZXΣXXVXZ

√
ε(ΣZZ + εI)−1/2φi

〉
HZ

=
∞∑

i,j=1

ε

λi + ε

ε

λj + ε
〈φi, VZY ΣY Y VY Zφj〉HZ 〈φj, VZXΣXXVXZφi〉HZ (A.8)

The absolute value of each summand in Eq. (A.8) is bounded from above by
∣∣∣〈φi, VZY ΣY Y VY Zφj〉HZ 〈φj, VZXΣXXVXZφi〉HZ

∣∣∣ ,

which does not depend onε, and due to the Cauchy-Schwartz inequality the infinite sum ofthese
terms ∞∑

i,j=1

∣∣∣〈φi, VZY ΣY Y VY Zφj〉HZ 〈φj, VZXΣXXVXZφi〉HZ
∣∣∣ ,

is bounded from above by

( ∞∑

i,j=1

〈φi, VZY ΣY Y VY Zφj〉2HZ

)1/2( ∞∑

i,j=1

〈φj, VZXΣXXVXZφi〉2HZ

)1/2

,

which is finite becauseVZY ΣY Y VY Z andVZXΣXXVXZ are Hilbert-Schmidt. Thus, from the
dominated convergence theorem, the limitε→ 0 commutes with the infinite sum in Eq. (A.8).
Since each summand of pair(i, j) in Eq. (A.8) converges to zero forε→0, the HS-norm between
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Σ
(ε)
YX|Z andΣYX|Z converges to zero forε→0. This results in

∣∣∣H(ε)
YX|Z −HYX|Z

∣∣∣ = |βZ |
∣∣‖Σ(ε)

YX|Z‖2HS − ‖ΣYX|Z‖2HS

∣∣→ 0 (ε→ 0) ,

which completes the proof of Theorem 6. �

A.5. Plausible Markov kernels between binary and
real-valued variable

Here we derive the plausible Markov kernels of the causationbetween a binary variableX with
x∈{−1,+1} and a real-valued variableY with y∈ IR. For the sake of simplicity, we denotex±1

for the casesX =±1. Assuming a hypothetical causal directionX→ Y , the plausible Markov
kernelQ(X) is determined only through the constraint of its first momentµX . Note that the
second moment ofX is the constant1. Defining

Q(x+1) =
1

2
(1 + µX) =: q ,

we have

Q(x−1) =
1

2
(1− µX) = 1− q .

To determine the plausible Markov kernelQ(Y |X) we maximize the entropy functionH

H(Y |X) = qH(Y |x+1) + (1− q)H(Y |x−1) (A.9)

subject to the constraints

q E+1 + (1− q) E−1 = µY (A.10)

q E+1 − (1− q) E−1 = βXY (A.11)

q (E+1)
2 + (1− q) (E−1)

2 + qVar+1 + (1− q) Var−1 = αY (A.12)

HereµY is the first moment ofY , βXY the second mixed moment ofX andY , αY the second
moment ofY . These values are known.E±1 denote the expectations of the conditional variable
(Y |x±1) andVar±1 the variances of(Y |x±1), respectively. These values are yet to be determined.
However,E±1 can be uniquely determined from Eq. (A.10) and Eq. (A.11):

E+1 =
µY + βXY

1 + µX
,

E−1 =
µY − βXY

1− µX
.
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Therefore only one more constraint remains to be satisfied:

qVar+1 + (1− q) Var−1 =: σ2 (A.13)

where

σ2 = βY −
(
q (E+1)

2 + (1− q) (E−1)
2)

= βY −
(
µY + βXY

)2

2(1 + µX)
−
(
µY − βXY

)2

2(1− µX)
.

Hereσ2 can be calculated directly from all known values. The maximization of the function
in Eq. (A.9) with satisfying the constraint in Eq. (A.13) obviously has the unique solution that
Q(Y |x+1) andQ(Y |x−1) are both Gaussian:

Q(Y |x+1) ∝ N (E+1,Var+1) and Q(Y |x−1) ∝ N (E−1,Var−1) .

Otherwise it would be inconsistent with the well known fact that a normal distribution maximizes
the entropy for given expectation and variance. The maximalentropy ofQ(Y |X) of Eq. (A.9) in
such case can be formulated as follows:

H(Y |X) =
1

2
ln (2πe) +

q

2
ln (Var+1) +

1− q
2

ln (Var−1) (A.14)

since the entropies of both Gaussian distributions are1
2
ln (2πeVar+1) and 1

2
ln (2πeVar−1) re-

spectively. Substituting Eq. (A.13) into Eq. (A.14), to achieve the maximum the first-order
derivative must vanish and the second-order derivative should be negative, so that we obtain

Var+1 = Var−1 = σ2

which meansH(Y |X) achieves its maximum if and only if

Q(Y |x−1) ∝ N
(
µ−1, σ

2
)

and Q(Y |x+1) ∝ N
(
µ+1, σ

2
)
.

The Markov kernelsR(Y ) andR(X|Y ) for the other causal directionX → Y can also be
determined analytically. Firstly, it is known that for fixedfirst (µY ) and second moment (αY ), the
Gaussian distributionN (µY , αY − (µY )2) maximizes the differential entropy of the real-valued
variableY . To determineR(X|Y ) we maximize the entropy function

H(X|Y ) = −
∫

(R(x+1|y) ln (R(x+1|y)) +R(x−1|y) ln(R(x−1|y))) R(y) dy
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subject to the constraints

R(x+1|y) +R(x−1|y) = 1 ∀y ∈ IR (A.15)∫
(R(x+1|y)−R(x−1|y)) R(y) dy = µX (A.16)

∫
y (R(x+1|y)−R(x−1|y)) R(y) dy = βXY (A.17)
∫

(R(x+1|y) +R(x−1|y)) R(y) dy = αX ≡ 1 (A.18)

HereµX andαX are the known first and second moments ofX. Eq. (A.18) holds trivially.
Through the substitution of Eq. (A.15) in Eq. (A.16) and Eq. (A.17) only the following two
constraints remain:

∫
(2R(x+1|y)− 1) R(y) dy = µX (A.19)

∫
y (2R(x+1|y)− 1) R(y) dy = βXY (A.20)

By introducing two positive Lagrange multipliersλ andν the solution ofR(X|Y ) must be of
the form

R(x−1|y) =
e−(λy+ν)

eλy+ν + e−(λy+ν)
=

1

2
− 1

2
tanh(λy + ν) ,

R(x+1|y) =
eλy+ν

eλy+ν + e−(λy+ν)
=

1

2
+

1

2
tanh(λy + ν) .

Together with Eq. (A.19) and Eq. (A.20) the unknownsλ andµ should satisfy the following
equations system

∫
tanh(λy + ν)R(y) dy = µX

∫
y tanh(λy + ν)R(y) dy = βXY

whereR(y)∝N (µY , αY −(µY )2). Solving this nonlinear system, we will be able to determine
λ andµ, and thereforeR(X|Y ) for every givenµX andβXY .

In summary, we obtain a closed-form solution for the causation between a binary and a real-
valued variable. For one causal directionX→Y , we have plausible Markov kernels in the form
of

Q(x−1) =
1

2

(
1− µX

)
and Q(x+1) =

1

2

(
1 + µX

)

Q(Y |x−1) ∝ N
(
µ−1, σ

2
)

and Q(Y |x+1) ∝ N
(
µ+1, σ

2
)
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where

µ−1 =
µY − βXY

1− µX
, µ+1 =

µY + βXY

1 + µX
and σ2 = αY −

(
µY + βXY

)2

2 (1 + µX)
−
(
µY − βXY

)2

2 (1− µX)
.

For the other causal directionY →X, the plausible Markov kernels have the form

R(Y ) ∝ N
(
µY , αY −

(
µY
)2)

R(x−1|y) =
1

2
− 1

2
tanh(λy + ν) and R(x+1|y) =

1

2
+

1

2
tanh(λy + ν) .

Having computed these plausible Markov kernels, the corresponding joint distributions

Q(X,Y ) = Q(Y |X)Q(X) (with respect to causal directionX→Y )

R(X,Y ) = R(X|Y )R(Y ) (with respect to causal directionY →X)

can be calculated. The question is whetherQ could equalR under certain conditions, because if
the equationQ=R holds, the causal directions (X→ Y andY →X) can no longer be distin-
guished from one another, based on our “principle of plausible Markov kernels”. However, one
may verify that whenever there exists correlation betweenX andY , our method with most plau-
sible Markov kernels leads always to different joint distributions. This is because the marginal
distribution ofY based on the causal directionX→ Y is a convex sum of two Gaussian distri-
butions which have different expected values for non-vanishing correlation betweenX andY .
This distribution cannot coincide with the marginal distribution ofY based the causal direction
Y →X since the latter is Gauss distributed.
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B.1. Pseudocode of Orientation Procedure A

Given a adjacency structureGinput, the main procedureFixOrientation is applied to all possible
distinct triples(Xa, Xb, Xc) from variablesX1, . . . , XN . If edgesXa−Xc andXc−Xb are present
in Ginput, the procedureFixOrientation focuses on the undirected subgraphXa−Xc−Xb (Xa

andXb possibly adjacent) and calls the procedureProposeCollider to test whetherXc can be
accepted as a candidate for being a common effect ofXa andXb. This is done on the basis of
Criteria 1 and 2 in turn.

The essential data structure during the subroutines are partially directed graphs onN nodes,
stored asN×N -matrices. An undirected edgeXa−Xb is represented by an entry “1” at the
positions(a, b) and(b, a) of the representing matrix. A directed edgeXa→Xb corresponds to a
negative entry at position(a, b) and a “0” at(b, a). “0” at both positions(a, b) and(b, a) indicates
the absence of the edge betweenXa andXb. During the voting procedure it is decreased or
increased by1, depending on whether the current vote agrees or disagrees with the current value
at the corresponding position of the matrix. The negative value quantifies the current evidence for
one direction. If “0” is reached during counting, the entries at the positions(a, b) and(b, a) are
both reset to “1”, i.e., there is again no evidence for eitherof both directions. The given adjacency
structureGinput is stored in the matrixM0. If one intends to incorporate prior causal knowledge
such as temporal ordering,M0 can be used to store it. However, the following procedures need
to be slightly modified. The matrixMi represents voting according to assumptioni=1, 2. After
all these votes are counted, the main procedure performs theorientation. First, the arrows are
directed using the votes inM1, then the votes inM2 are used to direct the remaining edges if the
majority principle leads to a definite direction. This results in a (partially) directed graphGoutput.

The procedureGraph2Matrix encodes the graph into a matrix, where the entry of a negative
integer indicates a directed edge, the entry “1” indicates an undirected edge and the entry “0”
indicates an absence of an edge. The inverse procedureMatrix2Graph is straightforward and
thus omitted.

B.1.1. Procedure FixOrientation

Input: An undirected graphGinput with edges−;
Output: A (partially) directed graphGoutput with edges→,−.
(1) InitializeM0,M1,M2 := Graph2Matrix(Ginput) .

// Initialize M0,1,2 with the input skeleton. M0 will remain unaffected. M1,2 will count the votes.

(2) for a, b, c = 1 toN
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// Check for all possible distinct ordered triples (Xa, Xb, Xc) taken from X1, . . . , XN whether they represent colliders.

if M0(Xa, Xc) = 1 andM0(Xb, Xc) = 1 // For all substructures Xa−Xc−Xb in M0.

thenfor i = 1, 2
Criterion := i ;
Mi := ProposeCollider(Criterion, Mi , CandidateXa−Xc−Xb) ;

// Update Mi by adding a vote for Xa → Xc and Xc ← Xb, respectively,

// if Criterion i considers Xc as a collider candidate

endfor ;
endif ;

endfor .
(3) for i, j = 1 toN // Given the skeleton in M0, use the voting results in M1,2 in turn to direct all edges with

// unbalanced results. M1 has priority over M2. Store these orientations in M0.

Case:M0(i, j) = 1 andM1(i, j) ≤ −1 // If M0 contains Xi−Xj and M1 contains Xi→Xj .

setM0(i, j) := −1 andM0(j, i) := 0; // Direct Xi→Xj in M0.

Case:M0(i, j) = 1 andM2(i, j) ≤ −1 // If M0 contains Xi−Xj and M2 contains Xi→Xj .

setM0(i, j) := −1 andM0(j, i) := 0 , // Direct Xi→Xj in M0.

endfor .
(4) Goutput = Matrix2Graph(M0). // Decode the resulting matrix M0 into graph Goutput as output.

B.1.2. Procedure ProposeCollider

Input: (i) A matrixMin with integer entries≤ 1 representing a partially directed graph;
(ii) A substuctureXa−Xc−Xc;
(iii) An integer i = 1, 2 determining which of the criteria is taken.

Output: matrixMout with integer entries≤ 1 representing a (partially) directed graph .
(1) InitializeMout := Min and ProposeAccepted:=false .
(2) Case: Criterion= 1 // Collider test by the λ-collider condition with a very large λ=100 .

computehc := ĤXaXb|Xc
/ĤXaXb

;
if hc ≥ 100 then ProposeAccepted:=true , endif ;

Case: Criterion= 2 // Collider test by the λ-collider condition with a smaller λ .

computehc := ĤXaXb|Xc
/ĤXaXb

, hb := ĤXaXc|Xb
/ĤXaXc

, ha := ĤXbXc|Xa
/ĤXbXc

;
if hc ≥ max{hb, ha} then ProposeAccepted:=true , endif ;

(3) if ProposeAccepted // A vote for Xa→Xc and Xb→Xc, respectively.

for i = a, b
Case:Mout(i, c) = 1 andMout(c, i) = 1 // If Mout contains the undirected edges Xa,b−Xc.

setMout(i, c) := −1 andMout(c, i) := 0 ; // Orient Xa,b→Xc.

Case:Mout(i, c) ≤ −1 andMout(c, i) = 0 // New vote coincides with orientation stored in Mout.

setMout(i, c) := Mout(i, c)− 1 ;
// Leave the orientation untouched and increase counter for Xi→Xc by −1.

Case:Mout(i, c) = 0 andMout(c, i) < −1
// New vote is opposite to the current orientation stored in Mout.

setMout(c, i) := Mout(c, i) + 1 ;
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// Leave the orientation untouched and decrease counter for Xc→Xa,b by −1.

Case:Mout(i, c) = 0 andMout(c, i) = −1
// If Mout contains the opposite orientation Xc→Xa,b with a counter of −1.

setMout(i, c) := 1 andMout(c, i) := 1 ; // Reset to an undirected edge Xa,b−Xc.

endfor ;
endif .

B.1.3. Procedure Graph2Matrix

Input: An undirected or (partially) directed graphG of X1, . . . , XN with edges→,−;
Output: AnN ×N matrixM with entries “−1”, “ 0”, and “1”;
(1) InitializeM(i, j) := 0, i, j = 1, . . . , N . // Start with a matrix of all-over zero.

(2) for i, j = 1 toN
Case:Xi−Xj , setM(i, j) := 1; // Undirected edge.

Case:Xi→Xj , setM(i, j) := −1; // Directed edge.

endfor .

B.2. Pseudocode of Orientation Procedure B

In analogy to orientation procedure A in Appendix B.1, the proceduresFixOrientation* , Pro-
poseCollider* andGraph2Matrix* of orientation procedure B are designed to infer the orien-
tation for the final output by a unanimous vote. The resultinggraph contains→ meaning the
direction is supported by a unanimous vote,− meaning no votes are obtained for both direc-
tions, and↔ meaning at least one vote is obtained for both directions. Weconduct the voting
procedureProposeCollider* for all substructuresXa−Xc−Xb, whereXa andXb are nonad-
jacent.1 The final voting results are stored inM and the binary matrixL memorizes whether
an orientationXi→Xj ever obtained a vote or not. Based on the information fromM andL,
the main procedureFixOrientation* performs the orientation. The procedureMatrix2Graph*
decodes orientation information from the matrixM andL into a mixed graph with un-, uni- and
bi-directed edges.

B.2.1. Procedure FixOrientation*

Input: An undirected graphGinput with edges−;
Output: A (partially) directed graphGoutput with edges→,−,↔.
(1) InitializeM0,M := Graph2Matrix(Ginput) . InitializeL as zero matrix.

// Initialize M0, M with the input skeleton. M0 will remain unaffected. M will count the votes.

(2) for a, b, c = 1 toN
// Check for all possible distinct triples (Xa, Xb, Xc) taken from X1, . . . , XN whether they represent colliders.

1The extension of the procedures for identifying unshieldedcolliders to shielded colliders is straightforward and
thus omitted. We just need to apply procedures to shielded triplesXa−Xc−Xb, whereXa andXb are adjacent,
instead of unshielded triples.

xiii



B. Appendix

if M0(Xa, Xc) = 1, M0(Xb, Xc) = 1 andM0(Xa, Xb) = 0
// M0 contains the subgraph Xa−Xc−Xb, where Xa and Xb are nonadjacent.

// If the procedure is applied to fully connected triples, the condition M0(Xa, Xb) = 1 should be used.

(M,L) := ProposeCollider*(M , CandidateXa−Xc−Xb , L) ;
// Update M by adding the votes for the arrows Xa → Xc and Xc ← Xb, identified by ProposeCollider*.

// L memorizes whether a vote was ever given to a direction or not.

endif ;
endfor .

(3) for i, j = 1 toN
// Given the skeleton M0, use the voting information from M and L to direct edges in M0.

Case:M0(i, j) = 1, M0(j, i) = 1, M(i, j) ≤ −1, L(i, j) = 1 andL(j, i) = 0
// M0 contains Xi−Xj , M contains Xi→Xj , The opposite orientation Xi←Xj obtained no votes.

setM0(i, j) := −1, M0(j, i) := 0; // Direct Xi→Xj in M0.

Case:M0(i, j) = 1, M0(j, i) = 1, L(i, j) = 1 andL(j, i) = 1
// M0 contains Xi−Xj , both directions Xi→Xj and Xi←Xj obtained at least one vote.

setM0(i, j) := −1, M0(j, i) := −1; // Direct Xi↔Xj in M0.

endfor .
(4) Goutput = Matrix2Graph*(M0). // Decode the resulting matrix M0 into graph Goutput as output.

B.2.2. Procedure ProposeCollider*

Input: (i) A matrixMin with integer entries≤ 1 representing a partially directed graph;
(ii) A triple (Xa, Xc, Xb);
(iii) A matrix L with entries “0” and “1” indicating whether an orientation obtained

at least one vote.
Output: matrixMout with integer entries≤ 1 representing a (partially) directed graph .
(1) InitializeMout := Min and ProposeAccepted:=false .
(2) Computehc := ĤXaXb|Xc

/ĤXaXb
, hb := ĤXaXc|Xb

/ĤXaXc
, ha := ĤXbXc|Xa

/ĤXbXc
;

if hc ≥ max{hb, ha} then ProposeAccepted:=true , endif ; // Collider test.

(3) if ProposeAccepted // A vote for Xa→Xc and Xb→Xc, respectively.

for i = a, b
Case:Mout(i, c) = 1 andMout(c, i) = 1 // If Mout contains the undirected edges Xa,b−Xc.

setMout(i, c) := −1 andMout(c, i) := 0 ; // Orient Xa,b→Xc.

Case:Mout(i, c) ≤ −1 andMout(c, i) = 0
// New vote coincides with orientation stored in Mout.

setMout(i, c) := Mout(i, c)− 1 ;
// Leave the orientation untouched and increase counter for Xi→Xc by −1.

Case:Mout(i, c) = 0 andMout(c, i) < −1
// New vote is opposite to the current orientation stored in Mout.

setMout(c, i) := Mout(c, i) + 1 ;
// Leave the orientation untouched and decrease counter for Xc→Xa,b by −1.

Case:Mout(i, c) = 0 andMout(c, i) = −1
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// If Mout contains the opposite orientation Xc→Xa,b with a counter of −1.

setMout(i, c) := 1 andMout(c, i) := 1 ; // Reset to an undirected edge Xa,b−Xc.

endfor ;
endif .

B.2.3. Procedure Matrix2Graph*

Input: AnN ×N matrixM with entries “−1”,“ 0”, and “1”;
Output: A (partially) directed graphG of X1, . . . , XN with edges−,→,↔;
(1) Initialize a graphG with no edges.
(2) for i, j = 1 toN

Case:M(i, j) = 1, andM(j, i) = 1 , setXi−Xj in G ; // Undirected edge.

Case:M(i, j) = 1, andM(j, i) = 0 , setXi→Xj in G ; // Directed edge.

Case:M(i, j) = −1, andM(j, i) = −1 , setXi↔Xj in G ; // Bi-directed edge.

endfor .

B.3. Orientation Rules to Make Graphs Maximally
Oriented

A partially directed graph is given. The orientation of the given graph is limited tov-structures.
Under the assumption that there are no additionalv-structures and directed cycles in the structure,
rules as shown in Fig. B.1 (see [125], p. 51) are sufficient to make the given partially directed
graph maximally oriented, in the sense that all edges that are common to the Markov equivalence
class are oriented. Fig. B.2 visualizes these three rules.

Input: A graphG with directed (limited tov-structures) or undirected edges.

While no more edges can be oriented:

Rule 1: For each uncoupled meetingX→Z−Y (X andY nonadjacent), orientZ−Y into Z→Y .

Rule 2: For eachX−Y such thatX→Z→Y , orientX−Y into X→Y .

Rule 3: For each uncoupled meetingZ1−X−Z2 (Z1 andZ2 nonadjacent) such thatZ1 → Y ,
Z2→Y , X−Y , orientX−Y into X→Y

Output: A graphG with directed or undirected edges.

Figure B.1.: Orientation rules to make a given partially directed (limited tov-structures) graph
maximally oriented, under the assumption that there are no additionalv-structures
and directed cycles in the structure.
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Figure B.2.: A partially directed (limited tov-structures) graph is given. We assume that there
are no additionalv-structures and directed cycles in the structure. The plotsdescribe
three substructures, which can be further oriented by orientation rules 1, 2, and 3 as
shown in Fig. B.1).
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C.1. Numerical evidence of power increase of multiple
testing

A procedure of multiple testing on a set of associated hypotheses is proposed by Benjamini et
al. [19]: the so-called adaptive procedure of FDR control based on independent test statistics. In
our setting, we have a set ofm subsamples resampled from the original sample. An indepen-
dence hypothesis is tested on each subsample and provides a set ofm p-values. It is clear that
them p-values are highly dependent. To relax the precondition ofindependent test statistics,
Benjiamini et al. proposed in [21] a general correction factor for dependent test statistics. How-
ever, our experiments showed that this modification is stilltoo conservative for our purpose of
structural learning. For this reason, we employ permutation techniques to conduct the indepen-
dence test. The whole multiple independence testing procedure is summarized in Fig. C.1 with a
pre-specified parameterm. In our experiments, we chosem=100. Step 1 runs a multiple test on
the original sample. Step 2 runs multiple tests on shuffled samples byk random permutations. If
some FDRq < 0.5 can be found, Step 3 rejects the independence hypothesis. This procedure is
extremely time-consuming, but it increases the power of a statistical test.

To give some intuition how the resampling-based multiple testing procedure works, we con-
sider an example. A dataset of100, 000 data points is sampled from an OR gate with noiser=0.3
(see Fig. 3.16 and Eq. (3.6) for the definition of OR gates) andresample100 subsamples of size
100 from the original100, 000 data points. Note that the subsamples are nearly independent of
each other because of100� 100, 000. Fig. C.2 illustrates the Q-Q plots of p-values given by
testingX ⊥⊥ Y (left plot) andX 6⊥⊥ Y |Z (right plot). Here we used the likelihood ratioχ2 test.
The red dots in plots are the p-valuesp(0)

1 ≤ . . .≤ p
(0)
100 for 100 subsamples. The lines of various

colors present the p-valuesp(i)
1 ≤ . . . ≤ p

(i)
100 of 10 shuffled data samples. Our test states that,

having accepted an FDR of up to0.5, if one can always reject more hypotheses in the original
sample than any of the shuffled samples, the independence hypothesis should be rejected. Graph-
ically, if, in the subfield, the p-value line of original data(red dots in the plots) is more strongly
right-skewed than those of shuffled data (lines of various colors in the plots), the independence
hypothesis should be rejected, otherwise accepted. In Fig.C.2, the left plot suggests accepting
independence, while the right plot suggests rejecting independence.

To give some numerical evidence of power increase of multiple testing, we show experiments
with 1000 artificial datasets sampled by noisy OR gates. The same datasets are used in Sec-
tion 3.3.4 for experiments with single testing. Here, we replace a singleχ2 test by the resampling-
based multipleχ2 tests. The subsamples are obtained by resampling with replacement (5-fold
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Input: An independence hypothesisX ⊥⊥ Y |Z and a data sample(X, Y, Z).

Step 1 Resamplem subsamples from the original sample. For each subsample, conduct the in-
dependence hypothesis test and record the p-value. Sort the resultingset of p-values in an
increasing order, i.e.,p(0)

1 ≤p
(0)
2 ≤ . . .≤ p

(0)
m .

Step 2 Permute the original data randomly to simulate data under independency. Conduct Step 1
for simulated datasets and obtain a set ofm p-values. Repeat step 2 fork times (we chose
k=10) and obtaink sets of p-valuesp(1)

1 ≤ . . .≤p
(1)
m , . . ., p

(k)
1 ≤ . . .≤p

(k)
m .

Step 3 For a given FDRq, conduct the adaptive procedure as described in [19] p. 71, and cal-
culate the number of rejectionsr(0)

q , r
(1)
q , . . . , r

(k)
q for the sets of p-valuesp(0)

1 , . . . , p
(0)
m ,

p
(1)
1 , . . . , p

(1)
m , . . ., p

(k)
1 , . . . , p

(k)
m , respectively. If there is someq ∈ (0, 0.5) that r

(0)
q >

max{r(1)
q , . . . , r

(k)
q }, reject the independence hypothesis, otherwise accept the independence

hypothesis.

Output: Accepting or rejectingX ⊥⊥ Y |Z.

Figure C.1.: Resampling-based multiple independence hypothesis test with random permuta-
tions.
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Figure C.2.: Multiple statistical independence hypothesistests are conducted on noisy OR data.
The plots are Q-Q plots of the set of p-values obtained by multiple testing. Red dots
visualizes reordered p-values of original data. Lines of various colors represents
reordered p-values of simulated data under independency. The left plot indicates
X ⊥⊥ Y and the right plot indicatesX 6⊥⊥ Y |Z.
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C.1. Numerical evidence of power increase of multiple testing

Accepting X ⊥⊥ Y

Original Sample Size 20 50 100 150 200

χ2 Test Single Multiple Single Multiple Single Multiple Single Multiple Single Multiple

r = 0 94.5 90.8 94.9 92.1 93.9 92.0 94.7 92.8 95.7 93.3

r = 0.1 92.7 90.0 93.8 92.3 94.2 92.4 93.7 91.0 95.3 92.9

r = 0.2 93.7 89.4 95.2 92.4 94.8 92.4 94.8 91.5 95.8 94.5

r = 0.3 93.4 89.5 94.2 91.7 93.8 90.6 96.0 93.3 94.2 91.7

Noisy OR Rejecting X ⊥⊥ Y |Z
r = 0 25.2 71.2 94.4 100 100 100 100 100 100 100

r = 0.1 23.6 54.1 57.0 72.6 87.5 92.8 96.6 97.9 99.2 99.7

r = 0.2 15.4 40.2 23.6 38.3 42.2 58.3 61.6 61.5 70.9 81.0

r = 0.3 11.5 29.8 11.4 20.8 13.8 23.7 16.9 27.7 22.1 35.7

Table C.1.: Numerical comparison of a singleχ2 test is replaced by resampling-based multiple
χ2 tests on discrete domains. The multiple tests use the subsample size of5-fold of
the original sample size. The generating models are noisy ORgates with4 different
noise levelsr=0, 0.1, 0.2, 0.3 as shown in Fig. 3.16 and Eq. (3.6). The entries show
how often (in percentage) the constraintX ⊥⊥ Y orX 6⊥⊥ Y |Z is verified after1000
replications.

the original sample size) from the original sample.

The results of experiments with theχ2 test on discrete domains show that a multiple test
makes slightly more typeI errors (upper half of Tab. C.1), but significantly less typeII errors
than a single test (lower half of Tab. C.1). The improvement ismost impressive at small samples
with less noise. When a single test is conducted, a strict control of type I error is achieved at
the cost of an increase of typeII error. In contrast, a multiple test benefits from the readiness to
assume a bit more risk of makingI errors and can keep the typeII error to a lower level.

To show the power of a multiple test on continuous domains, weapply the single, multiple
kernel test of independence to the Meander data (see Fig. 3.7for the generating model). A
multiple kernel test can further significantly improve the performance of a single kernel test, in
the sense that typeI error is strongly reduced without an increase of typeII error (Tab. C.2). It is
noteworthy that the resampling process on continuous domains might be more natural, if some
noises on the original data points were incorporated.

Based on results of the simulation, we expect that the multiple testing procedure offers greater
power than a single test and can keep both typeI andII error to a relatively low and well-balanced
level. Unfortunately, this procedure is extremely time-consuming in practice.
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Kernel Test Single Multiple
Rejecting X 6⊥⊥ Y 99.9 100

Accepting X ⊥⊥ Y |Z 34.8 99.2

Table C.2.: Numerical comparison of single and multiple kernel independence tests on continu-
ous domains (see Fig. 3.7 for the generating model). The entries show how often (in
percentage) the constraintX 6⊥⊥ Y orX ⊥⊥ Y |Z is verified after1000 replications.

C.2. Comparison of learning algorithms on categorical
domains

Apart from the constraint-based PC [153] and BN-PC [28] algorithm there are other algorithms
that could be used for causal learning, particularly on purely discrete domains. One large class is
score-based Bayesian approaches proposed and described by [84, 86, 39, 118, 176]. It should be
emphasized that algorithms for finding Bayesian networks arenot necessarily developed for the
purpose of modeling causal relationships. The goal is oftenmerely to represent the dependence
by simple structures.

The methods that we have tested are: conventional PC, information-theory-based BN-PC,
Bayesian approaches using BDe (Bayesian Dirichlet equivalent) metric via exhaustive search,
Greedy Search/Hill-climbing [32], and MCMC (Markov Chain Monte Carlo) [89]. We study here
networks containing only3−4 variables, which cause the search space of DAGs to be reasonably
small. Exhaustive search is then tractable, allowing the computation of the posterior probability
for all the DAGs. Consequently the global optimum can be determined. Other search methods do
not guarantee to find the global optimum but are much more efficient. The well-known K2 [40]
can actually not be used to find the causal structure, since aninitial causal ordering of variables
must already be given. K2 is then only able to decide which arrows can be dropped without
violating the Markov condition. Heckerman et al. [85] proposed to apply the maximum weight
spanning tree algorithm (MWST) [35] to initialize K2. We callit “MWST+K2”. Note that
an initial order can also optionally be specified for greedy search. We call this combination
“MWST+Greedy Search”. All these methods are summarized and implemented by Murphy,
Leray and Francois.1, respectively.

Since most of these algorithms are limited to discrete domains, we restrict our comparison
to datasets (sample size200) generated by 2/3-bits deterministic/noisy OR gates (see Tab. 5.2
for parameters). Tab. C.3 and Tab. C.4 collect the statistics of structures detected by all afore-
mentioned algorithms after1000 replications. The entries are percentages of detected arcsbe-
tween two variables(Xi, Xj) within rows. For(Xi, Xj), “• •” depicts the absence of an edge
betweenXi andXj; “•−•” depicts a present but undirected edge between them; “•→•” and
“•←•” denote “Xi→Xj” and “Xi←Xj”, respectively.

1The BayesNet Toolbox and the BNT Structure Learning Packageare online available athttp://bnt.sourceforge.netand
http://banquiseasi.insa-rouen.fr/projects/bnt-slp
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C.3. Statistics of experiments with Asia Network

2-Bit-IndDet 2-Bit-IndPro 2-Bit-DepPro

True Model
• • •→• •←• •−•
100 0 0 0
0 100 0 0
0 100 0 0

• • •→• •←• •−•
100 0 0 0
0 100 0 0
0 100 0 0

• • •→• •←• •−•
0 100 0 0
0 100 0 0
0 100 0 0

OPB
• • •→• •←• •−•
96.7 0.2 0 3.1
0 99.7 0 0.3
0 99.7 0.2 0.1

• • •→• •←• •−•
96.7 0 0.4 2.9
0 95.2 0.4 4.4
0 95.2 0.2 4.8

• • •→• •←• •−•
12.6 0.1 0 87.3
0 98.1 0 1.9
0 98.1 0.1 1.8

PC
• • •→• •←• •−•
93.9 0 0 6.1
0 93.9 0 6.1
0 93.9 0 6.1

• • •→• •←• •−•
96.5 0 0 3.5
0 94.1 0 5.9
0 94.1 0 5.9

• • •→• •←• •−•
96.8 0 0 3.2
0 94.2 0 5.8
0 94.2 0 5.8

BN-PC
• • •→• •←• •−•
93.7 0 6.3 0
0 93.7 6.3 0
0 93.7 6.3 0

• • •→• •←• •−•
96.3 0 3.7 0
0 82.2 17.8 0
0 82.2 17.8 0

• • •→• •←• •−•
72.0 0.1 27.9 0
0.1 71.4 28.5 0
0 71.4 28.6 0

Exhaustive Search
• • •→• •←• •−•
98.5 0.4 0.5 0.6
0 99.2 0.2 0.6
0 99.1 0.2 0.7

• • •→• •←• •−•
99.3 0.1 0.2 0.4
0 89.0 6.8 4.2
0 91.7 3.5 4.8

• • •→• •←• •−•
99.4 0.1 0.2 0.3
0 88.9 6.5 4.6
0 91.0 4.3 4.7

Greedy Search
• • •→• •←• •−•
69.1 16.2 14.7 0
0 83.1 16.9 0
0 82.7 17.3 0

• • •→• •←• •−•
81.5 10.4 8.1 0
0 68.4 31.6 0
0 70.0 30.0 0

• • •→• •←• •−•
80.6 10.6 8.8 0
0 66.5 31.5 0
0 68.1 31.9 0

MWST+Greedy Search
• • •→• •←• •−•
97.2 2.5 0.3 0
0 99.0 1.0 0
0 97.9 2.1 0

• • •→• •←• •−•
98.7 1.3 0 0
0 94.6 5.4 0
0 89.4 10.6 0

• • •→• •←• •−•
98.9 1.1 0 0
0 94.1 5.9 0
0 88.2 11.8 0

MWST+K2
• • •→• •←• •−•

0 100 0 0
0 100 0 0
0 0 100 0

• • •→• •←• •−•
39.7 60.3 0 0
0 100 0 0
0 0 100 0

• • •→• •←• •−•
40.6 59.4 0 0
0 100 0 0
0 0 100 0

MCMC
• • •→• •←• •−•
69.1 16.2 14.7 0
0 83.1 16.9 0
0 82.7 17.3 0

• • •→• •←• •−•
77.9 11.3 10.8 0
0 75.9 24.1 0
0 74.1 25.9 0

• • •→• •←• •−•
77.4 11.1 10.5 0
0 75.0 25.0 0
0 74.4 25.6 0

Table C.3.: The underlying true model: 2-bit OR gates (first row, see Tab. 5.2 for parameters)
and the structures generated by different algorithms (rows2 to 9). 200 data points are
sampled from each model. The entries are percentages of1000 replications having
the considered patterns (“• •”: no edge; “•−•”: an undirected edge; “•→•” or
“•←•”: a directed edge) as output.

C.3. Statistics of experiments with Asia Network

For the sake of notational convenience, we denoteX1: ASIA, X2: TUB, X3: SMOKING, X4:
LUNG, X5: BRONCHITIS, X6: TUB/LUNG, X7: X-RAY, X8: DYSPNOEA in the following two
tables. Tab. C.5 summarizes how often an arrow is detected by OPB after1000 replications,
given the true skeleton (Fig. 5.6, leftmost). Tab. C.6 summarizes how often an arrow is detected
by OPA+K2 (K2 with a initial causal order detected by OPA) after1000 replications.
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3-Bit-IndDet 3-Bit-IndPro 3-Bit-DepPro

True Model

• • •→• •←• •−•
100 0 0 0
100 0 0 0
0 100 0 0

100 0 0 0
0 100 0 0
0 100 0 0

• • •→• •←• •−•
100 0 0 0
100 0 0 0
0 100 0 0

100 0 0 0
0 100 0 0
0 100 0 0

• • •→• •←• •−•
0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0
0 100 0 0

OPB

• • •→• •←• •−•
74.0 8.0 2.8 15.2
76.8 8.2 2.7 12.3
0 98.6 0.5 0.9

76.8 4.7 3.9 14.6
0 96.0 3.0 1.0
0 94.8 3.9 1.3

• • •→• •←• •−•
71.8 5.0 9.7 13.5
74.3 4.9 12.4 8.4
0.1 91.0 7.1 1.8
71.9 4.8 11.5 11.8
0 93.8 4.4 1.8
0 96.4 1.2 2.4

• • •→• •←• •−•
11.1 2.2 2.7 84.0
1.5 51.3 19.4 27.8
1.1 47.2 25.4 26.3
1.5 67.0 10.1 21.4
0.2 62.5 12.6 24.7
0.2 1.8 2.4 95.6

PC

• • •→• •←• •−•
98.5 0 0 1.5
98.1 0 0 1.9
0 100 0 0

97.4 0 0 2.6
0 100 0 0
0 99.8 0.2 0

• • •→• •←• •−•
96.8 0.5 0 2.7
98.5 0.2 0 1.3
3.7 96.2 0 0.1
97.1 0.1 0 2.8
0.9 99.0 0.1 0
0.3 99.5 0.2 0

• • •→• •←• •−•
69.8 12.2 5.9 12.1
29.3 47.2 6.9 16.6
18.7 55.8 6.0 19.5
20.4 54.9 10.5 14.2
7.9 61.7 10.5 19.9
5.4 11.5 23.3 59.8

BN-PC

• • •→• •←• •−•
97.5 0.4 2.1 0
97.8 0.6 1.6 0
0 74.2 25.8 0

96.8 0.7 2.5 0
0 65.9 34.1 0
0 48.7 51.3 0

• • •→• •←• •−•
96.9 0.7 2.4 0
97.0 0.3 2.7 0
0.6 31.3 68.1 0
97.6 0.2 2.2 0
0.8 39.8 59.4 0
0 47.2 52.8 0

• • •→• •←• •−•
71.6 9.9 18.5 0
28.5 23.8 47.7 0
20.2 27.0 52.8 0
19.3 29.4 51.3 0
8.1 32.4 59.5 0
4.9 12.6 82.5 0

Exhaustive Search

• • •→• •←• •−•
99.3 0.1 0.2 0.4
99.2 0 0.2 0.6
0 100 0 0

98.8 0.5 0.4 0.3
0 100 0 0
0 100 0 0

• • •→• •←• •−•
98.8 0.2 0.5 0.5
99.4 0.5 0.1 0
2.8 49.5 40.0 7.7
98.7 0.5 0.7 0.1
0.9 60.5 30.3 8.3
0.4 61.1 30.6 7.9

• • •→• •←• •−•
74.6 10.7 11.2 3.5
35.6 49.8 10.3 4.3
24.3 62.2 8.6 4.9
34.3 54.0 8.5 3.2
14.3 69.3 10.7 5.7
11.8 30.2 46.5 11.5

Greedy Search

• • •→• •←• •−•
90.1 4.4 5.5 0
93.1 2.7 4.2 0
0 75.2 24.8 0

93.1 3.1 3.8 0
0 69.0 31.0 0
0 64.5 35.5 0

• • •→• •←• •−•
97.5 1.3 1.2 0
97.4 1.8 0.8 0
2.5 32.4 65.1 0
95.6 2.0 2.4 0
1.0 42.4 56.6 0
0.5 47.2 52.3 0

• • •→• •←• •−•
25.3 36.0 38.7 0
50.9 17.2 31.9 0
33.7 26.2 40.1 0
44.9 19.5 35.6 0
25.8 25.8 48.4 0
1.3 41.2 57.5 0

MWST+Greedy Search

• • •→• •←• •−•
97.4 2.5 0.1 0
97.7 2.0 0.3 0
0 94.4 5.6 0

94.8 2.5 2.7 0
0 82.9 17.1 0
0 78.1 21.9 0

• • •→• •←• •−•
98.7 0.9 0.4 0
99.3 0.5 0.2 0
2.5 68.5 29.0 0
91.7 4.0 4.3 0
0.9 24.5 74.6 0
0.5 32.2 67.3 0

• • •→• •←• •−•
43.8 46.4 9.8 0
50.5 37.5 12.0 0
33.9 50.1 16.0 0
44.8 24.2 31.0 0
25.6 39.8 34.6 0
1.1 41.8 57.1 0

MWST+K2

• • •→• •←• •−•
34.1 65.9 0 0
66.3 33.7 0 0
0 100 0 0

34.9 0.1 65.0 0
0 0 100 0
0 0 100 0

• • •→• •←• •−•
96.4 3.6 0 0
95.9 4.1 0 0
3.0 97.0 16.0 0
92.4 0.1 7.5 0
0.9 0.7 98.4 0
0.5 0.2 99.3 0

• • •→• •←• •−•
9.8 90.2 0 0
44.6 55.4 0 0
26.1 73.9 16.0 0
38.0 0.1 61.9 0
17.4 0.2 82.4 0
0 41.6 58.4 0

MCMC

• • •→• •←• •−•
86.8 6.2 7.0 0
86.0 6.7 7.3 0
0 99.6 0.4 0

86.7 6.0 7.3 0
0 99.3 0.7 0
0 99.4 0.6 0

• • •→• •←• •−•
91.7 3.4 4.9 0
90.8 3.5 5.7 0
5.8 43.8 50.4 0
89.5 5.4 5.1 0
1.9 48.8 49.3 0
0.7 51.3 48.0 0

• • •→• •←• •−•
37.4 29.8 32.8 0
31.5 42.7 25.8 0
22.9 46.6 30.5 0
31.8 42.6 25.6 0
13.7 52.1 34.2 0
9.8 38.6 51.6 0

Table C.4.: The underlying true model: 3-bit OR gates (first row, see Tab. 5.2 for parameters)
and the structures generated by different algorithms (rows2 to 9). 200 data points are
sampled from each model. The entries are percentages of1000 replications having
the considered patterns (“• •”: no edge; “•−•”: an undirected edge; “•→•” or
“•←•”: a directed edge) as output.
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C.3. Statistics of experiments with Asia Network

The orientation procedure A (OPA as in Fig. 5.3) is applied to the fully connected skeleton.
Variable Pair (X1, X2) (X2, X6) (X3, X4) (X3, X5) (X4, X6) (X5, X8) (X6, X7) (X6, X8)

Correct Orientation •→• •→• •→• •→• •→• •→• •→• •→•
•→• 16.4 95.8 6.6 20.2 94.3 88.7 75.5 95.5

•←• 65.0 2.0 72.2 56.4 0.7 5.7 13.9 3.7

•−• 18.6 2.2 21.2 23.4 5.0 5.6 10.6 0.8

The orientation procedure B (OPB as in Fig. 5.4) is applied to the true skeleton.
•→• 0.2 97.7 15.7 0.4 97.2 77.7 93.6 92.6

•←• 0.1 0.1 29.3 44.6 0.6 16.6 4.2 6.5

•−• 99.7 2.2 55.0 55.0 2.2 5.7 2.2 0.9

Table C.5.: Statistics of arcs detected by OPA and OPB.400 data points are sampled from the
Asia network. The entries are percentages of1000 replications having the considered
patterns (“• •”: no edge; “•−•”: an undirected edge; “•→•” or “ •←•”: a directed
edge) as output.
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C. Appendix

Variable Pair (X1,X2) (X1,X3) (X1,X4) (X1,X5) (X1,X6) (X1,X7) (X1,X8)

Correct Pattern •→• • • • • • • • • • • • •
• • 81.0 94.9 97.1 89.2 96.9 95.4 97.6
•→• 12.4 3.8 1.9 6.9 2.8 4.3 2.3
•←• 6.6 1.3 1.0 3.9 0.3 0.3 0.1
•−• 0 0 0 0 0 0 0

Variable Pair (X2, X3) (X2, X4) (X2, X5) (X2, X6) (X2, X7) (X2, X8) (X3, X4)

Correct Pattern • • • • • • •→• • • • • •→•
• • 96.7 92.8 90.1 0 78.4 94.1 23.3
•→• 2.7 4.8 9.1 99.1 19.2 5.7 4.7
•←• 0.6 2.4 0.8 0.9 2.4 0.2 72.0
•−• 0 0 0 0 0 0 0

Variable Pair (X3, X5) (X3, X6) (X3, X7) (X3, X8) (X4, X5) (X4, X6) (X4, X7)

Correct Pattern •→• • • • • • • • • •→• • •
• • 3.5 85.4 99.1 94.4 93.2 0 76.1
•→• 26.2 0.1 0 2.5 6.0 98.7 19.5
•←• 70.3 14.5 0.9 3.1 0.8 1.3 4.4
•−• 0 0 0 0 0 0 0

Variable Pair (X4, X8) (X5, X6) (X5, X7) (X5, X8) (X6, X7) (X6, X8) (X7, X8)

Correct Pattern • • • • • • •→• •→• •→• • •
• • 80.6 98.0 99.0 0 20.3 30.2 98.0
•→• 18.5 0 0.4 92.0 77.5 69.8 2.0
•←• 0.9 2.0 0.6 8.0 2.2 0 0
•−• 0 0 0 0 0 0 0

Table C.6.: Statistics of detected arrows by OPA+K2.400 data points are sampled from the
Asia network. The entries are percentages of1000 replications having the considered
patterns (“• •”: no edge; “•−•”: an undirected edge; “•→•” or “ •←•”: a directed
edge) as output.
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