
WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) INTRODUCTION Page 1 of 78
Universität Karlsruhe (TH)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE
(WUSKAR)

CASE STUDY

USER PROVISIONING PROCESSES
IN IDENTITY MANAGEMENT

ADDRESSING SAP CAMPUS MANAGEMENT

Marwane El Kharbili
Thomas Mathes

Praharshana Perera

Heiko Schandua
Tomas Stiller
Kim Langer

Christian Emig
Sebastian Abeck

Cooperation & Management (C&M)

Institute for Telematics
Universität Karlsruhe (TH)

wuskar@cm-tm.uka.de

Abstract
This document is the report of the work of an ISWA working team on a “WUSKAR case study”.
This study tackles on the desire of meta directory synchronisation with a proprietary SAP R/3
system in the context of an identity management system. Early tasks concern identifying exact
desires and scenarios, modelling the synchronisation process, identifying what relevant data is
to be processed, as well as proposing templates for the matching and transformation process.
Intermediate tasks are related to the technical aspects of the case study, as well as problem task
division and progress management, regular review of strategic and technical choices.

Keywords
SAP Campus Management, (SAP CM), Meta Directory, Synchronization, LDAP, JNDI, LDIF, SAP
Java Connector (JCo), Java, BAPI, WUSKAR, BPMN, Identity Management (IdM)

Learning Goals
1. Learn how to synchronize an enterprise resource planning system with a meta directory.
2. Understand the idea behind directories in this context, especially LDAP-Directories.
3. Obtain knowledge about integration for SAP Systems like BAPI and the JCo.
4. Be able to set up a synchronization process.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197560988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) INTRODUCTION Page 3 of 78
Universität Karlsruhe (TH)

Major Sources
[C&M-I-ID] Cooperation & Management: IDENTITY MANAGEMENT IN THE

FOCUS OF APPLICATION INTEGRATION, Course Unit of the Lecture
INTERNET SYSTEMS AND WEB APPLICATIONS (ISWA),
http://www.cm-tm.uka.de/iswa, Universität Karlsruhe (TH), C&M (Prof.
Abeck).

[SAP-JCo]

Cooperation & Management, Heiko Schandua: Einführung zum SAP Java
Connector, Dokument im Rahmen der C&M Technologien und
Werkzeuge, Universität Karlsruhe (TH), C&M (Prof. Abeck), Mai 2005.

[EDUPERSON01] Official Homepage of Internet2/Educause eduPerson Working Group
http://www.educause.edu/eduperson/

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) INTRODUCTION Page 5 of 78
Universität Karlsruhe (TH)

Table of Contents

0 INTRODUCTION ... 6
0.1 Motivation .. 6
0.2 Progression of the Case Study .. 7

1 ANALYSIS.. 8
1.1 Business Area ... 8

1.1.1 Scenario... 8
1.1.2 Goals.. 8
1.1.3 Processes ... 9
1.1.4 Business Objects ... 11

1.2 System Area.. 12
1.2.1 Meta Directory .. 12
1.2.2 Legacy System .. 19
1.2.3 System Process .. 23

1.3 Exercises... 24
2 DESIGN... 26

2.1 Application Architecture .. 26
2.2 Interface of the Directory ... 28

2.2.1 LDAP Schema Design... 28
2.2.2 LDAP Communication.. 32

2.3 Interface to the Legacy System .. 34
2.4 The Synchronization Application ... 36
2.5 Exercises... 39

3 IMPLEMENTATION, DEPLOYMENT AND USAGE... 41
3.1 Implementation... 41

3.1.1 LDAP Side .. 41
3.1.2 Synchronizer Side ... 50
3.1.3 SAP Side ... 52

3.2 Increment Definition... 55
3.3 Deployment .. 57

3.3.1 Deployment Context ... 57
3.3.2 LDAP Side .. 57
3.3.3 SAP Side ... 59

3.4 Exercises... 60
4 OUTLOOK .. 61
APPENDIX A JAVA SOURCE CODE (JCO / LDAP)... 62
APPENDIX B BAPI INTERFACE DESCRIPTION... 72
APPENDIX C LDAP PLATFORM INSTALLATION AND CONFIGURATION.............. 73
TABLES ... 76

Abbreviations and Glossary .. 76
Index .. 77
Information and Exercise Slides.. 77
References ... 78

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 6 of 78 INTRODUCTION © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

0 INTRODUCTION

0.1 Motivation

(1) Identity Management (IdM) as a critical aspect of enterprise
systems and B2B processes

(2) Differents components of the system have same users

(3) Users have to be indentified by every component

(4) System must dispose of reliable authentification procedures

(5) Security of the information and its integrity must be guaranteed

(6) Wuskar case study : University Resource Planning system (URP)
has to be synchronized with a meta directory

Information 1: Introduction

User Identity Management (IdM) is an everyday concern among every working group whose
business processes are supported by an underlying information system, be it a small sized
company or a multinational company Users of the company’s systems can come from outside or
inside the organization. Thus access to the system’s information and applications has to be
managed efficiently. This access has to take into account the security of the information systems
as well as the integrity and exposal of sensitive information. The management of user identities
through multiple applications connected to one another sensibly complicates this task. Systems
that enable to manage this aspect often include building blocks such as: Password reset,
Password synchronization, Single sign-on, Access management software.

This concern is more specifically important to study in the context of EAI systems, because they
represent the most frequently occurring instance of heterogeneous systems having to cope with
multiple user identities. Our concern in this study is Identity Management, observed in a
specific context that is still to be specified.

In a University Resource Planning System (URP), data about students has to be kept up to date
with the currently valid credentials for each user. Though, different functional divisions or
departments of the university have each their own repository of information. For logical reasons
such as too big quantities of data from which just a small portion could be exploitable from
other counterparts, as well as for security reasons as some information has to be kept private to
a department or division. Should this information be exchanged, for cooperation reasons, for
example simply on request from a department, we would have to dispose of a secure process to
proceed to the migration of this information from one division to another, in a completely
transparent and secure way for overlaying processes.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) INTRODUCTION Page 7 of 78
Universität Karlsruhe (TH)

0.2 Progression of the Case Study

(1) Case study context presentation

(2) Who are the actors and what needs have they?

(3) Business process modeling

(4) Business objects modeling

(5) Application architecture

(6) Synchronization process

(7) Legacy systems and meta-directories

(8) Design and Implementation documentation
Information 2: Study Progress

In this case study, we are about to approach a system, which consists of a meta directory and a
SAP Campus Management system, coupled together through a synchronisation system. We want
to be able to synchronize the meta directory with the SAP system through a reliable process.
What a meta directory and what does exactly a synchronization process do, we are about to
discuss later in this document. Now that we have an idea about the studied system and the
desired functionality we are about to model, we’ll want to have the latter described and
specified. In order to do it we’ll first get familiarized with the context of the case study in a
more deepened way. We’ll then get to know, who the actors of our system are and have their
needs captured. We’ll also want to anticipate what possible scenarios will be likely to happen.
Furthermore we will identify concepts and processes, particularly the synchronisation process,
as well as our business objects. In a further design part we will define our application
architecture. We will have the frontiers of the system components defined, then we will
elaborate collaboration models for the designed components, and then we’ll have the system’s
internal interfaces presented and explained. We will examine the synchronization process with
its compound processes such as the transformation and mapping processes and how they are
going to cooperate together. Throughout the document we’ll have as well a closer look at SAP-
CM and meta directories. Ultimately we will show how all developed concepts can be
implemented.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 8 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

1 ANALYSIS

1.1 Business Area

1.1.1 Scenario
At a university, there are several different organization units, which have many different tasks.
To be able to handle these tasks, each of these organisations has an IT infrastructure of her own
which meets the requirements of the individual institutions. There for example is a student
office which must manage students. The students need the possibility of applying for
examinations. Furthermore the results of the examinations must be held tight digitally.
Secondly, there are the library, the canteen, different faculties and the administration. Each of
these organisations manages students and saves internally specific data with access rights of
these students. Any matriculated student can for example lend books in the library.
Or a student works as a help-scientist on a faculty and has additional access rights to special
data.

student data

legacy system

BP
BP

legacy system

BP
BP

student data

student data

student data

sync sync

library

i3v

HIS

sync

sync

Information 3: Decentralized Synchronization of the Student data

A problem consists in the fact that the data of the students is saved at different places in
different software systems. Since the data is saved redundantly, it is not possibly to manage the
access rights centrally. Through this it is very difficult to offer the opportunity to the students, to
authenticate with the same login data everywhere. To make this possible, the data must be
synchronized between the different systems. In this study we describe a part of concept which
offers the possibility of enlarging an available IT infrastructure so that the data can simply be
synchronized between the different systems.

1.1.2 Goals
The central and primary aim is to introduce a concept, with which it is possible to enlarge and
adapt an already available IT infrastructure in a way that IdM and single sign-on is easier to
establish. Because of the large size and the high complexity of this formulation, we only look at
the synchronization between the directory and legacy system. We primary describe a basic
concept, which is necessary for a central IdM infrastructure.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 9 of 78
Universität Karlsruhe (TH)

Student Objects in

SAP System

Student Entries

In LDAP

Transformation/Mapping

Student Objects in

Synchronization Process

Information 4: Scenario of the Synchronization Process

This concept has three fundamental goals.
First of all a structure for a primary meta directory has to be defined. This structure must be kept
general, so that all kinds of directories can be a component of the meta directory. As second, it
is shown, how one can access (read and write) data of the legacy system. As third a
transformation shall be realized between the data of the legacy system and the meta directory.
The main attention lies on describing the idea in principle and the proof of the concept with a
prototype application.

This concept shall be carried out at the example of a university with students as business objects
and SAP CM as legacy system. Therefore the meta directory consists of student, employee and
guest information and has to be synchronized with the data of SAP CM. In order to proof the
concept we will synchronize the student data of the two systems.

1.1.3 Processes
In this part of the document, we tackle on the modeling of the planned processes for the
application.

(1) How will data be extracted?

(2) And how will it be stored?

(3) What would be the operations realized between extraction of data
and its final storage?

Information 5: Main Concerns of Synchronization Process

In Information 5 we pose initial questions that have to be handled by the process modeling, and
will later guide us to a better design of the manipulation of data. Extraction and storage of data
are respectively the initial and last operations of the synchronization process. They are the end-
of process operations. What comes between has to operate on data while respecting the input
and output interfaces of the source (meta directory) and target (SAP CM) systems.

Now we should pose ourselves the following questions about the desired data flow operations:

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 10 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

(1) How could these operations be organized in workflow?

(2) How could we organize these tasks in processes

(3) What information could be needed internally by the process?
Information 6: Process Modeling Decisions

Information 6 lists some questions related to decisional content of the processes and their
organization. We have as well to define what information will be passed from one process to
another. Answers to these questions make the logical separation of the processes clearer. The
following process diagram proposes a simple answer to our questions.

In
te

rm
ed

ia
te

Tr

an
sf

or
m

at
io

n
In

pu
t

Tr
an

sf
or

m
at

io
n

O
ut

pu
t

Tr
an

sf
or

m
at

io
n

Input Data Extraction

Output Data Storage

+

+

Mapping ProcessTransformation Process
Required
Format?

Filtering Process Upstream Transformation

Downstream
Transformation

No
Yes

Meta
Directory

SAP
System

In
te

rm
ed

ia
te

Tr

an
sf

or
m

at
io

n
In

te
rm

ed
ia

te

Tr
an

sf
or

m
at

io
n

In
te

rm
ed

ia
te

Tr

an
sf

or
m

at
io

n
In

pu
t

Tr
an

sf
or

m
at

io
n

In
pu

t
Tr

an
sf

or
m

at
io

n
In

pu
t

Tr
an

sf
or

m
at

io
n

O
ut

pu
t

Tr
an

sf
or

m
at

io
n

O
ut

pu
t

Tr
an

sf
or

m
at

io
n

Input Data ExtractionInput Data Extraction

Output Data StorageOutput Data Storage

+

+

Mapping ProcessMapping ProcessTransformation ProcessTransformation Process
Required
Format?

Filtering ProcessFiltering Process Upstream TransformationUpstream Transformation

Downstream
Transformation
Downstream
Transformation

No
Yes

Meta
Directory

SAP
System

Information 7: Design of the Synchronization Process

In Information 7 we present a global model of the synchronization process. In this view we
distinguish three pools of processes and two separate processes. These latter are the “Output
Data Storage” and the “Input Data Storage” Processes. Both are end-of-flow processes and have
direct access to the manipulated persistent data. How this access is structured and realized will
be explained in the next chapter.

In the BPMN Model, the Data source is the meta directory and the data target is the URP
system. In the “Input Transformation” pool, we have two sub-processes, the “Filtering” process
and “Upstream Transformation” process, which are realized sequentially. The filtering process
does some filtering on input data so that it can be better processed in later stages, such as
elimination of irrelevant data or elimination of non synchronizing-exploitable data. The
“Upstream Transformation” process is optional and leads some pre-matching transformations
that may be needed before any mapping between the required data source and destination
formats.

As a next step, in the “Intermediary Transformation” pool, we’ll have two other processes, The
“Mapping Process and the “Transformation Process. The “Mapping Process” proceeds to the
necessary correspondence translations between legitimate source and target formats. The
“Transformation Process” is somewhat similar to the “Upstream Transformation Process” since

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 11 of 78
Universität Karlsruhe (TH)

it also processes transformations on the data flow that are required by the synchronization and
have to be fully specified for each instance of the synchronization. The two pools have been
separated since the Mapping and Transformation processes have been modeled as compulsory,
whereas the other processes in the two other pools are not always required and a
synchronization transaction will be validated even if none of these processes has been executed.

Finally, an optional step in the workflow, the “Downstream Transformation Process”, will be
executed when there is still need for transformation before the output data can be written in the
target repository.

1.1.4 Business Objects

EduPerson

StudentEmployee

Acedemic Non-Acedemic Guest

Employee Data

Study Data

Core Data

Teaching Data

is
a

is a

is
a

is a

is part of

1...*

1

is part of
1 1

is
a

belongs
tois part of

is part o
f

Research Data

1

1

1

1

1

1

1

1

1

is part of

Information 8: Business Object Diagram

The main focus of our case study is management and synchronization of student data objects
between a legacy system and a directory service, the SAP CM system and the LDAP directory
service But in a university directory service, where we manage data of different individuals
involved within the university, we do not only store information about students. We also need to
hold information on individuals like employees etc. Therefore, as business objects we consider
generally all the individuals involved within a higher educational institute.

In an abstract view, we can generally identify all the people who are involved within a
university as educational personal (EduPerson). They have common attributes like surname,
first name and address. One can go one step further down in the abstraction, where you find the
two main individuals in a university, students and employees. Although they have common
attributes, with respect to business aspects they are different from each other in many ways. For
example, employees have specific information on their contract with the university and their
salaries and number of hours they work and on the other hand, students have information
regarding their studies for example, current academic semester and information regarding their
registration with the university, for example matriculation number and date of matriculation.

We can specialize employees further, because in a university or in a higher educational institute
generally there is academic and non-academic staff. The academic staff is mainly involved in
teaching and research in the university. The non-academic staff is mainly involved in
administration operations in the university. An employee, who is a academic staff member, will

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 12 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

have information on his or her research projects and teaching modules and a non-academic staff
member may have information regarding her or his administrative operations. In many
universities there are guest professors, lectures and researches. They have come to a particular
university to work for a shorter period of time, information regarding them should also be
considered as business objects. Since their shorter period of stay at a university, they may have
special information regarding their contract with a university.

In this section we have tried to give an introduction conceptually to the business objects that we
must consider in designing our system. The meta directory should store information about all
the individuals within a university we have discussed above. The SAP system, on the other hand
basically offers the functionality to manage business process regarding students and their data.
Although information about various individuals is stored in the directory and the legacy system,
our main task is to synchronize student data between these two systems.

1.2 System Area

1.2.1 Meta Directory

(1) Specialized database optimized for reading, browsing and
searching

(2) Data generally read more than written to
(1) No transactions
(2) No rollback

(3) May be local or global
(1) Local : Directory services on a single machine
(2) Global : Internet Domain Name System (DNS)

Information 9: Introduction to Directories

A directory is a specialized database optimized for reading, browsing and searching. Directories
contain descriptive, attribute-based information and support advanced filtering capabilities. The
main difference between database management systems and directories is, that directories
generally do not support complicated transaction or roll-back schemes and directory updates are
very simple all-or-nothing changes if they are allowed at all. On the other hand directories are
tuned to give quick response to high-volume lookup or search operations.

There are many different ways to provide a directory service. A directory service may be local
or global. In the first case they provide services to a restricted context and in the latter case to a
much broader context, for example internet. Basically global services are distributed on many
machines, but they provide a uniform namespace which gives a uniform view of the data you
accessed. The Internet Domain Name System (DNS) is an example of a globally distributed
directory service.

LDAP
In our system for accessing directory services we are using LDAP which is an acronym for
Lightweight Directory Access Protocol. LDAP is a lightweight protocol for accessing directory
services. This runs over TCP/IP or any connection oriented service.

The information model of LDAP is based on entries. An entry is a collection of attributes that
has a globally unique Distinguished Name (DN). Using the DN we can refer to an entry
uniquely. Each attribute in an entry has a type and one or more values. The types are like

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 13 of 78
Universität Karlsruhe (TH)

strings, for example cn for common name, or mail for email address. The syntax of values is
based on the attribute type, for example, a mail attribute of an entry would contain the value
iswa.cm-tm.uka.de.

In LDAP the directory entries are arranged in a hierarchical tree-like structure. This tree-like
structure reflects the organizational and geographic boundaries. Information 10 below shows an
example LDAP directory tree using domain-based naming.

(1) LDAP = Leightweight Directory Access Protocol

(2) Runs over TCP/IP or any connection-oriented service

(3) Based on entries
(1) Collection of attributes
(2) Has a distinguished name (DN)

(4) Hierachical tree-like structure

dc = de dc = comdc = fr

dc = uni-karlsruhe

ou = Staffou = Student

uid = 1234

Organization

Organizational Unit

Person

Information 10: Introduction to LDAP

LDAP Schema

(1) Set of rules that describes what kind of data is stored

(2) Helps to maintain consistency and quality of data

(3) Object classes and attributes define schema rules

(4) A schema contains
(1) Required attributes
(2) Allowed attributes
(3) What attributes can store

Information 11: LDAP Schema

A directory has a schema similar to the schema of a relational database system. The schema
defines the content and the structure of the directory tree [S-SCHEMADES]. In an LDAP
directory, the schema is the collection of defined attributes and defined object classes to control
where which data is stored. As we have mentioned above an entry in a LDAP directory is a
collection of attributes and all the attributes which may be used for a specific type of object are
called Object Classes. A LDAP schema defines attributes and object classes giving you the

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 14 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

possibility to create new value types that may be stored in the directory and new object classes
to meet your needs. Within each object class you may designate that some attributes are
required, and that others are optional. You can also define and restrict information that can be
stored in attributes. In traditional database point of view you can think fields are similar to
attributes, tables are similar to object classes. Next we will explore the two concepts attributes
and Object classes in a LDAP schema.

Attributes

(1) Attributes have :
(1) Name: unique identifier
(2) Description: definition and intended usage
(3) Object identifier (OID) : globally unique sequence of integers
(4) Attribute syntax

(1) Data attributes can store – eg integer, string etc
(2) How comparisons are made

(5) Multi –or single valued ?
Information 12: Attributes

An attribute is a container that may be used to store a single type of information within the
directory. For example a student entry may have a matriculation number and a first name each
of them describes an individual attribute of the student. The schema allows to designate as many
types of attributes as needed. When defining an attribute the following aspects must be
specified.

• The attribute’s name: Although this is a straightforward concept, there are some
guidelines defining them. The name must not conflict with a standard attribute that is
already defined, therefore the best practice is to define the name beginning with the
name of the organization, for example “unikarlsruheFirstName”.

• Description: A one-sentence definition of the attribute’s intended usage
• Object Identifiers: Every attribute type is identified by globally unique string of integers

(the OID).
• Syntax used for type checking and for pattern matching
• Whether or not more than one value of this attribute is allowed per entry.

(Implementation dependent)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 15 of 78
Universität Karlsruhe (TH)

ObjectClasses

(1) Used to group information

(2) Define following rules
(1) Required attributes
(2) Allowed attributes

(3) Object classes can be derived from others

(4) Can extend attributes of other object classes

(5) Entries can have multiple object classes

(6) Three types of object classes
(1) Structural
(2) Auxiliary
(3) Abstract

(7) Object classes define:
(1) Name, OID, Description and Super class

Information 13: Object Classes

In LDAP each entry belongs to object classes that identify the type of the data represented by
the entry. Basically an object class specifies the mandatory and optional attributes that can be
associated with an entry of that class. The object classes for all objects in the directory form a
class hierarchy. The classes top and alias are at the root of the hierarchy. For example, the
eduPerson object class is a subclass of the Person object class, which in turn is a subclass of
top. When creating a new LDAP entry, all of the object classes to which the new entry
belongs, should be specified. There are three types of object classes:

• Structural: Indicates the attributes that the entry may have and where each entry may
occur.

• Auxiliary: Indicates the attributes that the entry may have.
• Abstract: Indicates a partial specification in the object class hierarchy; only structural

and auxiliary subclasses may appear as entries in the directory.

When defining an object class we must specify the following

• OID: Unique object identifier
• Name: Object class’s name
• Description: Object class’s description
• Obsolete: “true ” if obsolete, “false” or absent otherwise
• SUP: Names of superior object classes from which this object is derived
• Abstract: “true” if object class is abstract, “false” or absent otherwise
• Structural: “true” if object class is structural, “false” or absent otherwise
• Auxiliary: “true” if object class is auxiliary, “false” or absent otherwise
• Must: List of type names of attributes that must be present
• May: List of type name of attributes that may be present

As we have discussed the basics of LDAP and LDAP schema design, now we can introduce the
schema design aspects for our directory service.

eduPerson Schema

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 16 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

(1) Auxiliary object class for campus directories

(2) Facilitates interoperation in higher education

(3) Sponsored by EDUCAUSE and Internet2

(4) Defines attributes about individuals in higher education

(5) Supports inter-realm applications
(1) Controlled access to web pages or licensed resources
(2) Allowed attributes
(3) Example : Secure resource sharing of scientific research among

universities.

(6) Must be used with other person schemata (person, inetOrgPerson etc)

Information 14: eduPerson Schema

eduPerson is an auxiliary object class for campus directories designed to facilitate
communication among higher education institutions. It consists of attributes, about individuals
within higher education, along with recommendations on the syntax and semantics of the data
that may be assigned to those attributes. It is said that, if widespread agreement and
implementation of this object class in campus directories is achieved, a broad and powerful new
class of higher education applications can be deployed. For additional information refer to
[EDUPERSON01].

The key feature of eduPerson attributes are that they are intended to support inter-realm
applications such as controlled access to web pages or licensed resources. Many of these inter-
realm applications are just beginning to appear, for example Directory of Directories of Higher
Educational institutes. Most of them are related to instructional and research use, for example,
Web pages associated with a course at one university could be easily and securely opened to
students in another course in another university and scientific researchers could reserve
specialized computing resources at distance locations using local services.

Integrating eduPerson schema to your own directory the other person schemas must be used like
person, organizationalPerson and inetOrgPerson. Because other attributes that describe a person
generally and a person in an organization are in them. The eduPerson schema concentrates only
on specialized aspects of a person in the higher education and the other relevant attributes must
be used from the other schemas.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 17 of 78
Universität Karlsruhe (TH)

Attributes in eduPerson

(1) eduPerson defines following attributes
(1) eduPersonAffliation
(2) eduPersonPrimaryAffliation
(3) eduPersonOrgDn
(4) eduPersonOrgUnitDn
(5) eduPersonPrincipleName
(6) eduPersonNickName
(7) eduPersonEntitlement
(8) eduPersonPrimaryOrgUnitDn
(9) eduPersonScopedAffliation

(2) All these attributes are optional
Information 15: Attributes in eduPerson

In eduPerson schema all the attributes are prefaced with eduPerson and all the attributes are
optional, i.e. an eduPerson auxiliary object class contains all of the attributes as type MAY. Now
a brief introduction to the attributes in eduPerson object class is given.

LDAP ATTRIBUTE

NAME
ATTRIBUTE

CHARACTERISTIC
ATTRIBUTE
DEFINITION

ATTRIBUTE
VALUES

eduPersonAffliation Multi Value Specifies the persons
relationship(s) to the
institutions in broad
categories.

Examples: student,
faculty, employee

eduPersonPrimaryAffl
-iation

Single Value Specifies the
person’s
primary relationship
to the institution in
broad categories

Examples: student

eduPersonOrgDn Single Value The distinguished
name (DN) of the
directory entry
representing the
institution with
which the person is
associated

Example:
o=informatik, de=uni-
karlsruhe, de=de

eduPersonOrgUnitDn Multi Value The distinguished
name(s) of the
directory entries
representing person’s
Organizational Units

Example: ou=student,
o=informatik, de=uni-
karlsruhe, de=de

eduPersonPrincipleN-
ame

Single Value The “NetID” of the
person for the
purposes of inter-
institutional
authentication

Example:
person@uni-
karlsruhe.de

eduPersonNickName Multi Value Person’s nickname
or informal name

Example: Joe , Cath

eduPersonEntitlement Multi Value URI that indicates a Example: http://cm-

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 18 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

set of rights to
specific resources

tm.uka.de/contracts/
Perera

eduPersonPrimaryOr-
gUnitDN

Single Value The distinguished
name (DN) of the
directory entry
representing the
person’s primary
Organizational
Units(s)

Example: ou=student,
o=informatik, de=uni-
karlsruhe, de=de

EduPersonScopedAff-
Iation

Multi Value Specifies person’s
affiliation within a
particular security
domain

Example:
faculty@informatik.uni-
karlsruhe.de

Many institutes in USA have already agreed to implement the eduPerson object class and some
other institutes have said that they will do so when they implement an enterprise-wide directory.
In contrast some of the universities in UK have adopted the eduPerson schema by extending
some of its features for the social and operational requirements. Currently we could not acquire
precise information on institutes in Germany who have adopted this schema or used it for their
educational directories. In the next section we would like to introduce how we can use this
schema or adopt this schema to represent the meta directories in our system.

Analysis: “Is eduPerson sufficient?”
In order to use eduPerson schema to model student entries in our directory, we would definitely
like to perform a broader and a complete analysis of eduPerson by taking on discussions,
interviews, questionnaires with people who are involved in higher education and those who
develop software systems for academic work. But the time we have for our case study does not
allow us to go in such broader analysis. Therefore we have used and gained knowledge from an
analysis done by the company DAASI International on one of their projects (DEEP) Definition
of a European EduPerson based on a questionnaire [DEEP-A2]. Next we will present a short
description of the results of the analysis that are relevant to us. For more information please
refer to [DEEP-A2].

(1) eduPerson is not sufficient

(2) Majority of attributes in eduPerson are relevant

(3) Suggested enhancements to eduPerson
(1) Identity

(1) SocialSecurityNumber, unique_userid, studentnumber
(2) Information

(1) personTitle, position
(2) areaOfInterest, expertise, studyBranch
(3) birthDate, cv, gender
Information 16: Overview of the DEEP Questionnaire

For the question “Do you think the current eduPerson definitions are sufficient for the European
research community?“ only 11% of the participants saw eduPerson as sufficient and 38% of the
participants saw it insufficient and the rest no opinion. As we have already mentioned this case
study has also analyzed not only the eduPerson but the whole person schemas generally because
eduPerson in isolation cannot model a solution in modeling a person in higher education.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 19 of 78
Universität Karlsruhe (TH)

The results for the relevancy of attributes in all 4 schemas can be summarized as follows for
further details please refer to the literature stated above, because our discussion will continue
concentrating on eduPerson

• All attributes of object class person
• 8 of the 17 attributes of the object class organizationalPerson
• 18 of the 28 attributes of inetOrgPerson
• 7 of the 8 attributes of eduPerson

Although majority of the attributes of eduPerson are seen as relevant, but as we have seen
above, the schema itself is not sufficient to model people in higher educational institutes. Also
they have concluded that the attributes eduPersonOrgDN, eduPersonPrimaryAffiliation,
eduPersonOrgUnitDN, eduPersonAffiliation have been seen as highly relevant attributes.

In the next phase the participants answered the question “Which additional attributes would you
need?”. There were 20 different attributes and attributes relating to a persons information and
identity are as follows

1. Identity
• SocialSecurityNumber, unique_userid, studentnumber, fedID, netID

2. Information
• personalTitle, position
• areaOfInterest (together with classificationScheme), expertise, studyBrancg
• birthDate, cv, gender

The conclusion of this analysis in our view is eduPerson schema has relevant attributes but it is
not sufficient enough to use it in higher educational institutes in countries in Europe. One of the
main reasons is that, very important features in the European context like student number or
what we use in most of the German universities the matriculation number and birth date are
missing in eduPerson.

1.2.2 Legacy System

Legacy Systems in General

Student Objects in

SAP System
Student Entries

In Meta-DIrectory

Transformation/Mapping

Student Objects in

Synchronization Process

Information 17: Location of the Legacy System in our Scenario

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 20 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

A legacy system is an existing software solution that has been used for a very long time,
because an enterprise doesn't want to replace it. The reasons for this behaviour are different. For
example they are very large, complex and monolithic, so that it’s very complex to buy a similar
system with the same functionality and it is. Some of them require close to 100% availability, so
that it can’t be taken out of service. And sometimes the system works satisfactory, so that the
owner doesn’t see any reason to replace it. Mostly, they are problematic, because it is very
difficult to maintain, improve or expand them. The company, who developed the system has the
fundamental problem to understand and adapt the software. After some time there is a lack of
knowledge about the software. It's because the designers left the organisation and inadequate
documentation gets lost over the time.

On the other hand it is important to mention, that some of the legacy systems are very
successful over a long period of time. The developers had very much time to optimize and adapt
the software in a way that it exactly meets the demands of the users. The users know the
software and have a very good feeling of the advantages and disadvantages of the software. So
the fact that legacy systems are very old and still in use can also be seen in a positive way.
Although from the technical point of view it is designed and developed by very old methods and
programming languages, it is in use for many years. Because of this the users doesn’t have to
learn a new system and they don’t have to be coached for using the new software. The
replacement of an old and productive legacy system has a lot of drawbacks. For example is the
first version of a new software not working properly as well. An even with new programming
techniques and the use of a modular and service oriented architecture, the effort for developing
a similar system with the same functionality is also very high. And it can’t be expected that the
first version of a newly software will have the same functionality and availability of an
established and for many years used legacy system.

In this case study, we are primarily interested in the student data of SAP CM. Therefore, we will
first give a summary of the architecture of the legacy system SAP R/3. Then we briefly explain
the functionality of SAP CM and describe more exactly how the students are represented in SAP
CM. Here, it is important which data of the students is needed exactly, to be able to carry out the
synchronization successfully.

Architecture of SAP

Presentation

Business Logic

Data Storage

PC/SAP GUI

Applicationserver
SAP R/3

Database (Oracle)

Information 18: 3-Level Architecture of SAP R/3

SAP uses a client server architecture at their system. The system is divided in three layers. The
presentation, the business process and the database layer. TCP/IP is used for the transport. The
presentation is the interface to the user and is realized for all applications with a windows client,
the so-called SAP GUI. In this scenario, the business process logic as well as the database layer is
put down physically on the same server. The logic forms the interface between the presentation-

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 21 of 78
Universität Karlsruhe (TH)

and the database-layer. It takes on the requirements of the user from the presentation layer and
executes the instructions and evaluations. The data necessary to this is requested by the database
over an SQL interface. SAP is software which is written in a development environment of its
own. The SAP programming language ABAP/4 is a union of COBOL and SQL. The SAP R/3
system component forms the server-core-component of the architecture mentioned above to
which several optional modules can be docked.

In the context of our WUSKAR Project the SAP R/3 system is operated by the computer center
of the Universität Karlsruhe (TH).

SAP Campus Management

- Campus Management (CM)
- Sale (SD)
- Materials management (MM)
- Production planning (PP)
- Quality management (QM)
- Maintenance (PM)
- Human Resources (HR)
- Financial system (FI)
- Controlling (CO)
- Treasury (TR)
- Project system (PS)
- Investment management (IM)

Information 19: Different SAP modules

SAP offers a variety of modules. These are the heart of the system from a manager's viewpoint.
These modules may not all be implemented in a typical company but they are all related and are
listed above. One of these modules is SAP CM. SAP CM fulfils a variety of needs of the
universities. For example it offers the opportunity to manage students and employees of the
institution.

BAPI

SAP CM

Student Objects in

SAP System

BAPI of SAP

Student

Information 20: Access to the Business Object Student over BAPI

In order to offer an interface on higher abstraction level, SAP developed the Business
Framework. This framework offers an object oriented structure of the exchanged data between
the SAP system and the application, which accesses the framework. An integral component of
the framework is the so-called (BAPI) business application programmer interface. The BAPI
represents an object-oriented representation of business objects and put the application
developer of an SAP access component into the situation to import or export the demanded
business objects.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 22 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

In the context of our synchronization process we confine ourselves to the business object
student. These business objects are also represented in SAP CM. SAP CM makes therefore
different BAPIs available, with which one can access these student data. In the context of our
example the object student is imported through the synchronization process from the meta
directory over the BAPI into the legacy system. The BAPI makes the import of the student into
the SAP CM possible. Here the BAPI consequently makes the combination between the business
object student and the internal representation of the student in SAP CM possible.

BAPI Student Object

STUDENTADDITIONALDATA

STUDENT
STUDENTPERSONALDATA

STUDENTCHALLENGEDATA

STUDENTRESIDENCYDATA

STUDENTNUMBER

STUDENTSTATUSDATA

STUDENTCAMPUS

STUDENTORGUNIT

STUDENTFEEDDATA

STUDENTSTUDYDATA has

has

has has

Information 21: Overview of the Student Data Structure of the BAPI

In order to import the data from the meta directory into the SAP system, we use the BAPI
"BAPI_STUDENT_CREATEFORMDATA3". This BAPI is provided by SAP and described as
the BAPI, which has to be used for importing student objects. This BAPI offers all semantically
relevant information and attributes, which are assigned to a student. Through this, one can
deduce by which attributes a student is represented in SAP CM. In the following table depicts an
abstract description, which kind of information is assigned to a student at the BAPI.

Attribute Description
STUDENTNUMBEREXTERN Registration number of the student

Table Description
STUDENTPERSONALDATA Personal data of the student
STUDENTADDITIONALDATA Additional data of the student
STUDENTCHALLENGEDATA Handicap of the student
STUDENTRESIDENCYDATA Residence data of the student
STUDENTSTUDYDATA Studies data of the student
STUDENTFEEDATA Charges relevant data of the student
STUDENTORGUNIT unity, to which the student is assigned to (faculty)
STUDENTCAMPUS location, the student is assigned to
STUDENTSTATUSDATA Status attribute of the student

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) ANALYSIS Page 23 of 78
Universität Karlsruhe (TH)

1.2.3 System Process

C
he

ck
 P

ha
se

O
pe

ra
tio

n
Ph

as
e

M
on

ito
rin

g
Register synchronization event

OK? OK?yes
no

Log Log

LogLog

Check
Source

Check
Target

Rules
Setup

Ruled
Synchronization

Configuration

Default
Synchronization

Configuration

Source
Data

Extraction

Business
Operations

Target Data
Exchange

+

C
he

ck
 P

ha
se

C
he

ck
 P

ha
se

O
pe

ra
tio

n
Ph

as
e

O
pe

ra
tio

n
Ph

as
e

M
on

ito
rin

g
Register synchronization event

OK? OK?yes
no

Log Log

LogLog

Check
Source

Check
Target

Rules
Setup

Ruled
Synchronization

Configuration

Default
Synchronization

Configuration

Source
Data

Extraction

Business
Operations

Target Data
Exchange

+

Information 22: Ruled Synchronization & Event Registration

In Information 22: Ruled Synchronization & Event Registration we present another view of the
elaborated business process. There are three pools. The “Monitoring” pool contains the events
monitoring utilities. Their task is to catch events and messages that are sent from the system
sub-processes and make them available at the interaction layer. For a better understanding of
this task, see the integration layers diagram in the design phase. The “Register synchronization
event” catches the “Log” messages.

(1) In the “Check Phase” pool, we have a set of pre-operational processes. With initial
information about the data source repository, the “Check Source” performs an access
test to this source. If it is unsuccessful it goes directly to the end-event. It sends an
information “Log” message to the “Register synchronization event” process. If it is
successful, it performs a target data repository access test. Again, if the test is
unsuccessful, then the workflow is redirected to the end-of-process procedure. Else, the
initial event in the “Operation pool” is started.

(2) In this pool, the first process takes in charge the gathering of rules, if any. The system
must be able to work when there are no rules defined, with default behavior. Rules are a
set of parameters that can parameter the behavior of the synchronization process. These
rules are not compulsory, and will ideally be defined completely separately from the
core data flow processing. More explanations about the rules system will be given in the
“Synchronization” paragraph of the design phase.

(3) Then, provided the set of rules is gathered the synchronization core processes are
configured, either with rules or with default configuration. The synchronization core
processes are those presented in the first view of the business process model. They will
be presented with more details in the “Synchronization” part of the design phase.

(4) After the configuration of the core synchronization processes is done, source data is
extracted, then processed, then stored in the target repository. The “Source Data

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 24 of 78 ANALYSIS © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Extraction” and the “Target Data Storage” processes use some predefined interfaces
which description you’ll find in the synchronization part of the design phase.

(5) The “Business Operations” process is the process that executes the core synchronization
workflow. It is an iterative and complex (means composed of sub-processes) process.
Notice that after the synchronization configuration, the “Source Data Extraction” and
the “Target Data Storage” messages are sent to the “Register synchronization event”
process.

We have not taken security concerns into consideration in this process modeling yet.
Nevertheless they are part of the design. They may be realized in additional development
increments (an increment is a complete realization of a set of chosen system functionalities that
can be standalone delivered, and can be seen as implementation cycles of an application). At
this stage, the synchronization rules will have to be completed and we may need additional
monitoring or utility security processes.

1.3 Exercises

(1) Why do we use a centralized meta directory ?

(2) What operations will be led between the extraction of data and its
storage?

(3) What mechanisms enable the management of several contexts for the
synchronization process?

(4) Describe the difference between a directory and a database.

(5) What is defined by a schema in LDAP ?

(6) Why does the used BAPI combine the IT area with the business area ?
Information 23: Exercises

(1) Information 4: Scenario of the Synchronization Process

(2) Information 7: Design of the Synchronization Process

(3) Information 22: Ruled Synchronization & Event Registration

(4) Information 9: Introduction to Directories

(5) Information 11: LDAP Schema

(6)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 25 of 78
Universität Karlsruhe (TH)

2 DESIGN

2.1 Application Architecture

Information 24: Global Application Architecture

In Information 24 we give a complete view of the application architecture through a system
model. The label “Synchronization Control Process” relates to the upper layer control process
that provides workflow decision and security support to the “Synchronization Process” (see
Information 24: Global Application Architecture). The initial components are “Source Data
Objects” extracted from the “Source Data Repository”.
Through an “Access Interface” they will be passed to a set of components that form the “Core
Synchronization Process” primitives. These primitives are called “Data Flow Processing
Components”. A later stage is to go through another “Access Interface” into the Legacy System.
Note that here both architecture elements interacting with the end systems are both called
“Access Interface” because they are actually managed by the same components, as we’ll see in
the synchronization subsection later in this section. How these “Data Flow Processing
Components” are constructed and how they collaborate together is explained later in this design
section.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 26 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Wuskar Synchronization Process

System Integration

System Objects

Interaction Layer

Business Processes

<< Synchronization Process >>

Source and target data repositories

Clients with use rights

Upstream Business Objects

LDAP SAP

Mediator

<< Security Management >>

Transactions
History

Logs

Synchronization
Transactions Presentation

JCo WrapperLDAP
Wrapper

Synchronization
Rules

Downstream Business Objects

Information 25: Integration Layers Diagram

Information 25 gives a Layers diagram of the application. Several layers have been
distinguished. First, the “Interaction” layer” is the layer that takes in charge communication
with the application layer where it can for example display information about the
synchronization process and the ongoing operations. It can for example as well manage many
configurations for the synchronization or offer a GUI to build up a synchronization instance.
Possible services may be displaying a list of the available meta-directories according to the
rights of the current user of the application.

In the “Business Processes” layer will be located such processes as the “Core Synchronization
Process” itself or possibly a security management process. Two system components interfaced
between the “Interaction” layer and the “Business Processes” layer are the “Logs” component,
which stores all messages coming from underlying components and destined for the Interaction
layer. As well as the “Transactions History”, which stores information about the currently led
operations, which can be of use as a GUI view for the synchronization process administrator for
example.

One layer below we find the “System Objects” layer. It simply contains the transactional data
flow objects, which are to be processed by the overlying “Core Synchronization Process”
(CSP). Two types of instances are distinguished, the “Upstream Business Objects” and the
“Downstream Business Objects”. “Upstream Business Objects” are simply the source data
objects and respectively, “Downstream Business Objects” are target data object, which are the
result of the operations realized by the CSP. The mediator component is the entity that manages
these business objects, in the way that it takes care of their extraction and storage logics as well
as providing them to the CSP.

In the “System Integration” layer we have the two following components, the “LDAP Wrapper”
and the “JCo Wrapper” which are also interfaced with the base layer of “Data Repositories”.
They both respectively manage access and dialogue with end-of-system collaborators, namely
the meta-directory server and the URP system.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 27 of 78
Universität Karlsruhe (TH)

2.2 Interface of the Directory
In this section we present a conceptual description of the interface of our Directory. Since our
system deals with directory synchronization, we need a clearly defined interface to the student
data in the meta directory, which we access through LDAP, so that the synchronization process
or an application has a consistent interface to the data and it can easily access the student data
objects in the directory without considering the underlying implementation of the Directory
Information Tree (DIT).

First we will introduce the schema design for the LDAP, which ensures that applications have a
consistent interface to the data. Next we will describe the communication between the
synchronization application or any application with the LDAP server and finally we will
describe, how an application communicates with the directory through the interface.

2.2.1 LDAP Schema Design

(1) Ensure applications have a consistent interface to data

(2) Maintain consistency and quality of entries in the directory

(3) Use of the existing schema for campus directories eduPerson

(4) Schema design proposals, model schema with,
(1) organizationalPerson, inetOrgPerson and eduPerson
(2) organizationalPerson, inetOrgPerson and our own schema

deEduPerson
(3) organizationalPerson, inetOrgPerson, our own schema

kaEduPerson and eduPerson

(5) Designing our own schema deEduPerson
Information 26: Schema Design

To ensure that applications have a consistent interface to data and to maintain consistency and
quality of entries in the directory we need to define a schema for LDAP. The background and an
introduction to LDAP schemata and an analysis of an existing schema eduPerson, which defines
a schema for campus directories designed to facilitate communication among higher education
institutions are given in Chapter 1.2.1. The main task at this point is to design and specify a
schema to model information of individuals in our meta directory.

As we have already mentioned in Chapter 1.2.1, although some educational institutes, mostly in
USA, are using the eduPerson schema, the European institutes express that it is not sufficient to
represent persons in European institutes. In our opinion, the main reason for this may be the
differences in social and operational requirements in USA and in Europe.

In order to develop a schema for the representation of student objects in our directory we have
analyzed 3 proposals stated in Information 26.

We have discarded the first proposal because we have already seen in analysis that eduPerson
only is not sufficient enough. The main idea behind the second proposal is that we will discard
the eduPerson schema and develop our own schema to represent students. Though, this sounds a
good suggestion we loose some of the important attributes in eduPerson like eduPersonOrgDn
and we are going away from the international standards and we would not be able to benefit
from a standard schema that supports communication among higher educational institutes

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 28 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

internationally. So we have decided to stick to the last option, where we keep eduPerson schema
and develop our own schema edeEduPerson extending and using the other person schemas.

First we will describe the attributes that we have introduced in our schema deEduPerson and
next we will give a brief introduction of the attributes that we have taken from the other person
schemas including eduPerson, which gives us a vast flexibility especially in representing student
data in our meta directory.

deEduPerson Schema

(1) deEduPerson defines following attributes
(1) UserId (uid)
(2) Matriculation Number
(3) Field of Study
(4) Date of Matriculation
(5) Academic Semester
(6) Gender
(7) Date of Birth
(8) Nationality
(9) Person Title

(2) Only UserId is mandatory and all the other attributes are optional

(3) For students, UserId = Matriculation Number
Information 27: Attributes in deEduPerson

Information 27 shows the attributes that we have defined in our deEduPerson schema. In this
schema other than UserId all the other attributes are defined as optional. Therefore, when
implementing this schema, the attribute UserId should be defined. Now we will describe each
attribute in detail.

• UserId (uid)
One main drawback in eduPerson is, it does not define a unique id, which can identify a
person in an educational organization uniquely. We have first thought of having the
matriculation number, which we present next as the unique identifier, since it identifies
uniquely students in higher educational institutes in Germany. On the other our
directory should also hold information about professors, staff members, research
assistance and administrative personal, therefore, we cannot solely use matriculation
number as the unique identifier and we have defined UserId as the unique identifier
generally to identify all the personal including students uniquely. Therefore, this
attribute is defined as mandatory.

• Matriculation Number

A matriculation number uniquely identifies a student who is matriculated at a
university. This is a very important attribute related to European or German higher
educational institutes because every student is identified uniquely in these institutes
using her or his matriculation number. This is defined as an optional attribute, since we
have the UserId, which is used for unique identification. The student entries will have
the same value for the UserId as well the matriculation number.

• Field of Study

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 29 of 78
Universität Karlsruhe (TH)

This attribute identifies the main field of study and was missing in eduPerson schema,
especially in universities in Germany students are organized according to their main
field of study.

• Date of Matriculation

The date of matriculation defines the date in which the student is matriculated at the
university. In the administration point of view this is very important attribute that tracks
the whole history of the student stay at a certain university.

• Academic Semester

Academic semester identifies the current study semester of the student. This attribute
was missing in eduPerson. This attribute is required in German universities because
they have laws and rules governing the number of semesters that a student can study in
a particular university.

• Gender

This was one of the main attributes that was missing in eduPerson or in any person
schema. This attribute is very helpful in order to make statistical analysis of students
who are studying in a particular university or universities in a specific country.

• Date of Birth

In the analysis we have taken about eduPerson most of the people have suggested date
of birth as an attribute that describes a persons information. Therefore we have decided
to define it in our schema.

• Nationality

We have introduced this attribute to our schema especially considering the number of
international students who are studying in German universities. It is a very important
attribute to track person data of student in a particular university.

• Person Title

We have taken this attribute considering the suggestion given in the analysis we have
taken into consideration. It does also play an important role, when we extend or use our
schema to represent professors or staff members in an institute because they may have
different personal titles, for example “Professor, Doctor, diplom-Ing”.

Attributes Taken from Person Schemata Including eduPerson
Common attributes that define a person, for example first name, surname and email address, we
have taken from the person schemas and we also use the eduPerson schema which gives us the
possibility and flexibility to define some of the important attributes in eduPerson and in the
same time give us the possibility to confirm to international standards. The table below
describes briefly those attributes we have taken from the person schemas.

Attribute Object Class Description
Sn person Family name of the person
Cn person Common full name of the

person
homePostalAddress inetOrgPerson Home postal adress
homePhone inetOrgPerson Home telephone
postalAdress orgPerson Current postal adress
telephoneNumber person Current telephone number
Mail inetOrgPerson Preferred email adress
postalCode orgPerson Postal Code of current adress

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 30 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Street orgPerson Street of current adress
userPassword person Identifies entrys password
givenName inetOrgPerson Name which is not the surname

nor the middle name
eduPersonOrgDn eduPerson Distinguished name of the

directory entry representing the
institute with which the person is
associated

eduPersonOrgUnitDN eduPerson The distinguished names of the
directory entries representing the
persons organizational units

eduPersonAffliation eduPerson Persons relationship to the
university in broad categories

eduPersonPrimaryAffl
-iation

eduPerson Persons primary relationship to
the university

Student Objects in the Directory
As we have defined the deEduPerson schema to represent student entries in our meta directory,
we now present the valid Directory Information Tree (DIT) of student entries in the LDAP
server.

dc= de

dc= uni-karlsruhe

o = Informatiko = Physik

ou = Student ou = Student

Uid : 1281288
MatriculationNumb : 1281288
FieldofStudy : Informatik
DateofMatr : 15.10.2002
AcSemester : 7
Gender : Male
DofBirth: 10.10.1982
Nationality: German
Title: Mr
Sn : Kegel
Cn : Hans Kegel
Mail : Kegel@ira.uka.de
eduPersonOrgDn : dc=de, dc= uni-karlsruhe, o= Informatik
eduPersonOrgUnitDn : dc=de, dc= uni-karlsruhe, o= Informatik

ou = Student
eduPersonAffliation : Student, HIWI
eduPersonPrimaryAffliaton : Student
postalAdress : Karlsstr 18, 74889, Karlsruhe

Uid : 1281289
MatriculationNumb : 1281289
FieldofStudy : Physik
DateofMatr : 15.10.2003
AcSemester : 5
Gender : Male
DofBirth: 10.10.1985
Nationality: Russian
Title: Mr
Sn : Rhyzikov
Cn : Vladislav Rhyzikov
Mail : rhyzikovl@ira.uka.de
eduPersonOrgDn : dc=de, dc= uni-karlsruhe, o= Physik
eduPersonOrgUnitDn : dc=de, dc= uni-karlsruhe, o= Informatik

ou = Student
eduPersonAffliation : Student
eduPersonPrimaryAffliaton : Student
postalAdress : Kaisersstr 18, 74889, Karlsruhe

Information 28: DIT for Student Objects in the Directory

The DIT is diagrammatically represented in Information 28 above showing the naming of
entries and their object classes. The top node is de, with the unique DN dc=de, where dc
specifies a domain name. The first child node defines a sub domain uni-karlsruhe under the top
domain de with the unique DN as dc= uni-karlsruhe, dc=de. The university will have different

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 31 of 78
Universität Karlsruhe (TH)

faculties like Informatik, Economics and Physics. We identify these institutes as organizations
in our DIT, therefore, the parent node dc=uni-karlsruhe will have two child nodes in this example
o=Informatik and o=Physik. Each of these departments can be uniquely identified as
o=Informatik, dc=uni-karlsruhe, dc=de and o=Physik, dc=uni-karlsruhe, dc=de. Each of these
faculties will have organizational units, like students and staff. The parent nodes o=Informatik
and o=Physik each will have a child node ou=Student. This defines a person’s organizational
unit, which he is assigned to. A staff member at the university will have the value ou=Staff. The
actual student entries are under this node ou=Organizational Unit. Each child node of the parent
node ou specifies an entry for a student, which is of structural object class “deEduPerson” we
have specified earlier (see Chapter 1.2.1). Each student entry can be uniquely identified by the
DN uid=xxxxxxxxx, ou=AA, o=BB, dc=uni-karlsruhe,dc=de. For example the distinguished
name (DN) for a student with the uid=12812888 who studies Informatik can be identified by the
DN uid=12812888, ou=Student, o=Informatik, dc=uni-karlsruhe, dc=de.
The DIT of the LDAP gives client application, in our case the synchronization process the
possibility to access a student entry with its distinguished name (DN). Using this DN the
application can modify, update or remove entries in the LDAP DIT.

In the next section we will introduce how an application can generally communicate with a
LDAP server and the way in which an application can retrieve student data using a DN.

2.2.2 LDAP Communication

LDAP

Server

LDAP Client
Library

LDAP API

LDAP TCP/IP
Query

LDAP
Application

Information 29: LDAP Communication with an Application

Information 29 illustrates the communication of an application with the LDAP server. For this
purpose a LDAP client library, which implements LDAP server specific code is required. This
module should implement code specific to different LDAP providers. It has provider specific
implementation which supports retrieving, modifying, and removing data stored in the
directory. The communication between the client library and the LDAP server is realized using
TCP/IP, therefore the client application can be deployed on a remote machine. Above the LDAP
client library you have the LDAP API and any application that wants to connect to the LDAP
server can call generic methods in the LDAP API without considering the implementation
specific details. This layered architecture provides a high level logical view that hides physical
details to any application communicating with the LDAP server and provides the application
programmer the flexibility to concentrate only on logical and business aspects without
considering the physical implementations. Since our synchronization process is developed in

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 32 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

JAVA programming language, next we will describe the communication between a JAVA
application and a LDAP server.

JAVA Application

JNDI API

JNDI SPI

JNDI Naming Manager

Information 30: LDAP Communication with a Java Application

A Java application has the possibility to access the LDAP directory service using JNDI (Java
Naming and Directory Interface). JNDI is an API that supports accessing naming and directory
services in Java programs. The architecture of the JNDI provides a standard protocol-
independent API built on top of protocol-specific or provider implementations. JNDI provides
an API to Java applications to access LDAP directory services. It provides a service provider
interface (SPI), in order to actually interact with a particular LDAP server. A SPI is a set of
classes that implements various JNDI interfaces for a specific LDAP directory service. This
flexibility provides a generic interface for Java applications to access LDAP directory services
without considering provider specific details.

Next, we will illustrate, how a client application access a student entry in our LDAP DIT using
the distinguished name.

CLIENT

APPLICATION

InterfaceStudent
A
P
I

S
P
I

LDAP

Server

o=Phy

ou=student

UID = 123 UID = 234

ou=student

o=Inf

dc=uni-karlsruhe

dc=de

UID = 123

DIT

Uid=123,ou=Student, o=Phy,
dc=uni-karlsruhe, dc=de

Uid=123,ou=Student, o=Phy,
dc=uni-karlsruhe, dc=de

TCP/IP

Student data uid= 123 Student data uid= 123

Request DN

Information 31: Application Accessing Student Data with DN

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 33 of 78
Universität Karlsruhe (TH)

Information 31 illustrates the accessing of student entries stored in the directory by a client
application. The client application wants to get information of a student with the uid=123 from
the directory. An interface in the application defines the methods, which access the directory.
Through this interface the client calls a method requesting information of a specific student with
its distinguished name uid=123, ou=Student, o=Phy, dc=uni-karlsruhe, dc=de. The interface in
the client application calls generic methods in the LDAP API to retrieve the corresponding
information. The API in turn calls a provider specific method in the SPI, then the SPI request
the specific student entry using the same DN from the LDAP server. The LDAP server searches
the DIT and return the information of the student with the DN. In turn the LDAP API returns
this information of the student to the client application. In this way the client application can
request and retrieve information of a specific student using a DN.

2.3 Interface to the Legacy System
In general there are different ways to import data into an SAP system. Here we want to explain
the most common solution with our example. First we explain the different physical systems. As
second we describe the data flow and show the architecture of the interfaces.

Location of the software

SAP CM

SAP CM Java Middleware

TCP/IP
Host2 Host1

Information 32: Physical Separation of SAP and Middleware (Java/JCO)

The middleware uses Java with the SAP connector JCO. It is important to say, that the
individual systems can be located on different computers. Merely an IP based internet
connection must exist between the individual systems. TCP/IP is used as communication
protocol. Java/JCO communicates via an own proprietary protocol with the BAPI. This
communication is based on TCP/IP so that a simple internal connection can be used.

Data Flow between Middleware and SAP

SAP CM

SAP CM JavaBAPI JCO

student data

control information

export

import

Information 33: Data flow between Java and SAP

In our scenario the student objects become imported from Java over the BAPI into the SAP
system. At this new business objects are added when required into the SAP system. From the

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 34 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

perspective of the data flow, semantic information flows from the Middleware to the SAP
system. At this it has to be importantly held tight that in the ideal case exclusively data sets are
added in SAP. From SAP to Java only control information should flow, which gives the
information, if the import process was successful or not. This ideal data flow isn't always
realizable in the practice. E.g. it is possible, that an import without the student registration
number takes place. Then the SAP system would set it automatically. In this case the question
would be important, what kind of synchronization an import exactly represents. Because of the
simplicity, we don't look at these difficulties.

Interface between JCO and BAPI

BAPI JCO

import

export / import

export

Information 34: Technical Access Interface between JCO and BAPI

Between JCO and BAPI there are in principal two kinds of access methods. You can simply
import or export data. As third opportunity you can also combine the import and export method.
The transmitted data structure always depends on the interfaces the BAPI provides. In general
the BAPI has a certain set of attributes. Each attribute can be a basic data type or it can be some
kind of table, which includes a certain set of basic data types.

Architecture of BAPIs

1) ABAP Function Module

2) RFC enabled Function Module (RFM)

3) BAPIs

1) ABAP Function Module

2) RFC enabled Function Module (RFM)

3) BAPIs

Information 35: SAP Internal Structure of BAPIs, RFC and ABAP

Internally BAPIs consists of RFC enabled Function Modules and of ABAP Functions. The basic
programming language is ABAP. The ABAP function modules, which can be used by different
applications, are created as RFC enabled function modules. BAPIs are RFC enabled function
modules, which can be accessed from an outstanding application in order to access the data of
the SAP system. The BAPIs are a certain form of these RFC enabled function modules. Besides
the detailed technical requirements, they have to satisfy further requirements regarding
nomenclature and the documentation of their interfaces and their operation methods.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 35 of 78
Universität Karlsruhe (TH)

Syntactic Structure and Control Data of the Student Object
The syntactical structure describes the interface of the BAPI in greater detail. As mentioned
before the BAPI BAPI_STUDENT_CREATEFORMDATA3 has a certain set of attributes, with
different data types. Some of the data types are basic data types and some of them are kind of
tables, which have basic data types integrated.

In addition to the already mentioned attributes, the BAPI itself, also have special attributes,
which control the behavior of the BAPI. For example you can use it in order to start a test run,
for testing the application. In the table below you see information about the control attributes.

Attribute Description
STUDENTNUMBEREXTERN Registration number of the student

Table Description
TESTRUN Changing on simulation mode at writing BAPIs
UPDATEACCOUNTDATA Data item to the domain

Through this additional control attributes, you can see, whether an import was successful or not.
You can also use it in order to recognizing, which kind of error happened.

2.4 The Synchronization Application

Source Access Logic (LDAP) Target Access Logic (SAP)

Synchronization Driven Data Access Functionalities – [Mediator]

……………….. ………………..

Source Access Unit Functionalities Target Access Unit Functionalities

Access Unit Functionality ::
example :: Gets meta directory

schema

Access Unit Functionality ::
example :: Sets Student

matriculation number

S
ynchronization C

ontrol
Logics [R

ules]

Information 36: Design Phase – Synchronization: Data Access

In
Information 36, we give another view of how data access is performed. The source Access Unit
Functionalities build the set of base functionalities that can be combined together by
respectively the Source and Target Access Logic layers to perform elaborated dialogue with the
end-systems (meta-directory and the URP). One layer upper is the Mediator component that
coordinates data access, offers an interface to the Core Synchronization Process, and provides
necessary information to the Target Access Logic layers to perform their task (like access login
and password or target organizational unit for example). These Three layers are themselves
controlled through the transversal “Synchronization Control Logics” (“Rules”) layer, which can
control any of the components on the three layers.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 36 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Synchronizer
[Mediator]

Filter Mapper

Transformer

Data Reader
[LDAP Wrapper]Data Writer [JCo

Wrapper]

Operations
Agents

Data Agents

Synchronization
Rules

Security
Rules

Optional Configuration

Information 37: Refined Synchronization Components Interfacing Model

Information 37 offers a refined view of how the already presented components collaborate
together. For example the “Core Synchronization Process” components, the Transformer, the
Mapper and the Filter offer an interface to be controlled by the mediator. The “Synchronization
Rules” and “Security Rules” are components that permit configuration of the behaviour of the
mediator. The “Data Reader” and the “Data Writer” components are called “Extraction Agents”
and are exactly the “Target Access Logic” components that we’ve already seen, and which are
specific to end-system collaborators.

In the following, we’ll get to describe more practically our application architecture through
some UML class diagrams. First of all the packages diagram is the following:

Information 38: Packages Diagram

Information 38 delivers more information about how the Core Synchronization components are
splitted. We distinguish five elements.

The “SynchronizationRules” package contains utilities that allow for delivery and setup
information about synchronization procedures.
Example of a method: getMinAllowedRefreshTime(), delivers the minimum allowed lap time
between two calls to a meta-directory synchronization. The use of these rules is compulsory.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 37 of 78
Universität Karlsruhe (TH)

The “DataFormatRules” package contains utilities that deliver information about desired data
formats.
Example of a method: getStudentDestinationFieldList (), delivers the required fields to be
accessible in the target repository data object.

The “SystemInterfaces” package contains utilities that allow for accessing the end-system
collaborators.
Example of a method: storeResearcherNewInstitute(), stores a new attachment institute for a
researcher.

The “SynchroniserCase” package contains utilities that perform the Core Synchronisation
Process operations.
Example of a method: filterStudentInformation(), filters irrelevant information from the student
data object.

The “BusinessRules” package contains utilities that allow for managing how the Core
Synchronisation Process components operate. This package has been viewed as a further
development step and is unlikely to be developed as part of the initial increments.

Information 39: Synchronizer Classes

In Information 39: Synchronizer Classes are presented the SynchronizerCase classes. There are
three interfaces that correspond to the three base synchronization tools:

• The Mapper :takes in charge operations that seek to retain just data that can be stored in the

Student BAPI
• The Filter :contains operations whose goal is to process the needed operations on data in

order to make it exploitable from the Student BAPI
• The Transformer: allows for complex transformation on data structures, for example when a

complex structure is needed to be constructed, and/or some of its fields must be compute or
elaborated through specific mechanisms, in order to be accepted by the end-system, in our
case the tudent BAPI (one can imagine a non-trivial BAPI, that needs a table to be
constructed, some fields of which have to be computed and can not be deduced through
simple associations, between the values in the LDAP server and the required values in the
SAP BAPI).

• The Synchronizer contains the logic that makes the right flow of calls to the mechanisms
offered by the three base classes, seeking to make the storage of the synchronized data a
success.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 38 of 78 DESIGN © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Information 40: Data Format Rules

The Information 40: Data Format Rules shows the components of the DataFormatRules
package, the SourceRules class and the TargetRules class. Both classes can be consulted to
deliver information about the allowed or required operations before any call to the
SynchronizerCase Package classes.

Information 41: System Interfaces

The SystemInterface package contains the needed classes for accessing the data resources
(LDAP and BAPI).

Information 42: Business Rules

The BusinessRules Package contains respectively the mapping rules, the filtering rules and the
transforming rules. These are optional tools that can be used to easen the programming of the
synchronization process, in the way they can deliver mapping, filtering or transformation
logics,automatically, and thus we wouldn’t need to include this part of the logics in the
implementation code of the SynchronizerCase package classes. They are a sort of mapping,
filtering or transformation templates. An example to this would be that the MappingRuler class
could include a method that returns a list of student data elements that can be extracted from the
LDAP server, and that can be directly mapped to required values in the SAP student BAPI, also
indicating which are the target values to be matched with which source values.

2.5 Exercises

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) DESIGN Page 39 of 78
Universität Karlsruhe (TH)

(1) Explain how a java application communicate with a LDAP directory
service

(2) How will data from the source and in the target repositories be
accessed ?

(3) What utility classes are used and managed by the data
synchronizer ?

(4) How is the location of Java/JCO, Middleware and SAP R/3
organized in a typical synchronization scenario.

(5) Why do we also have to export data from the SAP system in the
context of our synchronization process ?

(6) What kind of data must be exported ? Why ?
Information 43: Exercises

(1) Information 30: LDAP Communication with a Java Application

(2) Information 36: Design Phase – Synchronization: Data Access

(3) Information 37: Refined Synchronization Components Interfacing Model

(4) Information 32: Physical Separation of SAP and Middleware (Java/JCO)

(5) Information 33: Data flow between Java and SAP

(6) Information 33: Data flow between Java and SAP

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 40 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

3 IMPLEMENTATION, DEPLOYMENT AND USAGE

3.1 Implementation

3.1.1 LDAP Side

JNDI vs. JLDAP
In this paragraph we will try to show why we have chosen which API in order to access the
LDAP server. Since we decided to implement the synchronization application in JAVA, we had
the choice between two APIs, JLDAP by NOVELL and JNDI by SUN. What exactly are those two
tools and how do they work? Moreover, why did we choose JNDI rather than the JLDAP?
These are the questions we’ll be trying to answer in this paragraph. Lightweight Directory
Services (LDAP) has already been introduced in this case study.

JLDAP
First we’ll get to know a little bit more about JLDAP, the Java development classes for LDAP,
from NOVELL. Since NOVELL is a major contributor to the OpenLDAP project, the JLDAP
foundation classes are indicated on the official website of the OpenLDAP project. LDAP
Classes for Java enable to write applications that access, manage, and update information stored
in NOVELL eDirectory or other LDAP-aware directories, such as NDS, Microsoft’s Active
Directory or OpenLDAP. JLDAP is designed to provide powerful, yet simple, access to LDAP
directory services. This API defines both asynchronous and synchronous interfaces to LDAP to
suit a wide variety of applications.

Brief Introduction
Operations are provided to authenticate, search for and retrieve information, modify
information, and add and delete entries from the tree. An LDAP server may return referrals if it
cannot completely service a request (for example if the request specifies a directory base outside
of the tree managed by the server). JLDAP offers the programmer three options: the
programmer can catch these referrals as exceptions and explicitly issue new requests to the
referred-to servers, the programmer can provide an object to establish a new connection to a
referred-to server, or the programmer can let the library automatically follow the referrals. In the
latter case, the programmer may also provide a re-authentication object, allowing automatic
referrals to proceed with appropriate credentials. If no such object is provided, referrals are
followed with anonymous credentials, and the protocol level of the original connection is used.
Before the client encodes and sends a string value to a server, the string values are converted
from the Java 16-bit Unicode format to UTF-8 format, which is the standard string encoding for
LDAPv3 servers. The integrity of double-byte and other non-ASCII character sets is fully
preserved.

Overview of JLDAP
The central LDAP class is LDAPConnection. It provides methods to establish an authenticated
or anonymous connection to an LDAP server, as well as methods to search for, modify,
compare, and delete entries in the directory.
The LDAPConnection class also provides fields for storing settings that are specific to the
LDAP session (such as limits on the number of results returned or timeout limits). An
LDAPConnection object can be cloned, allowing objects to share a single network connection
but use different settings (using LDAPConstraints or LDAPSearchConstraints).

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 41 of 78
Universität Karlsruhe (TH)

A synchronous search conducted by an LDAPConnection object returns results in an
LDAPSearchResults object, which can be enumerated to access the entries found. Each entry
(represented by an LDAPEntry object) provides access to the attributes (represented by
LDAPAttribute objects) returned for that entry. Each attribute can produce the values found as
byte arrays or as Strings.

Overview of LDAP API Use
• An application generally uses the LDAP API in four steps.
• Construct an LDAPConnection. Initialize an LDAP session with a directory server. The

LDAPConnection.connect() call establishes a handle to the session, allowing multiple
sessions to be open at once, on different instances of LDAPConnection.

• Authenticate to the LDAP server with LDAPConnection.bind().
• Perform some LDAP operations and obtain some results. The synchronous version of

LDAPConnection.search() returns an LDAPSearchResults which can be enumerated to
access all entries found. The asynchronous version of LDAPConnection.search() returns an
LDAPSearchListener, which is used to read the results of the search.
LDAPConnection.read() returns a single entry.

• Close the connection. The LDAPConnection.disconnect() call closes the connection.

Asynchronous & Synchronous Operations with JLDAP
There are both synchronous and asynchronous versions of the LDAP protocol operations in this
API.

• Synchronous methods do not return until the operation has completed.
• Asynchronous methods take a listener parameter (either LDAPResponseListener or

LDAPSearchListener) and return a listener object which is used to enumerate the responses
from the server. A loop is typically used to read from the listener object, which blocks until
there is a response available, until the operation has completed.

• An LDAPResponseListener may be shared between operations, for multiplexing the results.
In this case, the object returned on one operation is passed in to one or more other
operations, rather than passing in null.

Notice about LDAP referrals: An LDAP referral contains a list of one or more URLs. To
process an LDAP referral, the service provider uses the information in these URLs to create
connections to the LDAP servers to which they refer. Multiple LDAP or LDAPS URLs in a
single referral are treated as alternatives, each followed until one succeeds. The complete URL
(including any query components) is used.
You set up referrals by creating referral entries in the directory that contain the "REF" attribute.
This attribute contains one or more referral URLs (usually LDAP or LDAPS URLs)

Directory Services Markup Language – DSML
Directory Services Markup Language, or DSML, an OASIS specification, enables developers to
express LDAP functions and retrieve data in XML. DSML version 2 (DSMLv2) represents
LDAP directory operations and their results by XML request/response operations. Common
DSML operations include searching for specific directory objects and returning selected
attribute values. This is very interesting when developing using XML and SOAP, DSML makes
it very easy to integrate with the directory using the tools you know. Thus LDAP services can
be integrated within an SOA (Service Oriented Architecture. It is supported by the

JNDI
JNDI stands for Java Naming and Directory Interface. It is a product developed by SUN. Many
aspects distinguish JNDI from other LDAP programming tools under JAVA. We’ll first have a

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 42 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

look at how it is designed and its properties, and then try to justify the choice made to use JNDI
rather than other tools.

Brief Introduction
The Java Naming and Directory Interface (JNDI) is an application programming interface (API)
that provides naming and directory functionality to applications written using the Java

programming language. It is defined to be independent of any specific directory service
implementation. Thus a variety of directories - new, emerging, and already deployed - can be
accessed in a common way. Thus it is very different in its conception than the JLDAP. JNDI
provides a way of connecting to various kinds of services that are indexed in a registry. JNDI is
modeled on LDAP (Lightweight Directory Access Protocol) and usually associated with LDAP.
But importantly, JNDI also forms the backbone of other important APIs, including RMI, EJB,
JMS, and CORBA.

Overview of JNDI
JNDI allows applications to access various naming and directory services via a common
interface. Like JDBC (Java Database Connectivity), JNDI is not a service, but a set of
interfaces. It allows applications to access many different directory service providers using a
standardized API. Just as with JDBC, the JDK contains the JNDI interfaces but does not include
a JNDI service provider although Sun Microsystems provides adapters for connecting to existing
directory service providers, such as LDAP. However, one can use one of several free or open
source JNDI providers in the J2SE (Java 2 Platform, Standard Edition) applications.

Information 44: JNDI Architecture

In the Information 44: JNDI Architecture, it is shown that the JNDI architecture consists of an
API and a service provider interface (SPI). Java applications use the JNDI API to access a
variety of naming and directory services. The SPI (Service Providers Interface) enables a
variety of naming and directory services to be plugged in transparently. Thereby it allows Java
applications using the JNDI API to access their services. It is therefore very adaptable and the
implementation possibilities make it very flexible and to be integrated in heterogeneous
contexts where many directory and naming services co-exist.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 43 of 78
Universität Karlsruhe (TH)

JNDI in J2EE and J2SE
The Sun documentation for JNDI indicates the following:
“The JNDI is included in the Java 2 SDK, v1.3 and later releases. It is also available as a Java
Standard Extension for use with the JDK 1.1 and the Java 2 SDK, v1.2. It extends the v1.1 and
v1.2 platforms to provide naming and directory functionality.
To use the JNDI, you must have the JNDI classes and one or more service providers. The Java 2
SDK, v1.3 includes three service providers for the following naming/directory services:
Lightweight Directory Access Protocol (LDAP)
Common Object Request Broker Architecture (CORBA) Common Object Services (COS) name
service
Java Remote Method Invocation (RMI) Registry”
[S-JNDI]

(1) javax.naming

(2) javax.naming.directory

(3) javax.naming.event

(4) javax.naming.ldap

(5) javax.naming.spi
Information 45: Packages of JNDI

The JNDI is divided into five packages:

• javax.naming: package contains classes and interfaces for accessing naming services.

• javax.naming.directory: The javax.naming.directory package extends the javax.naming

package to provide functionality for accessing directory services in addition to naming
services. This package allows applications to retrieve attributes associated with objects
stored in the directory and to search for objects using specified attributes.

• javax.naming.event: As the naming/directory service plays an increasingly important role in

the computing environment, the need to provide administration and monitoring tools to help
manage changes in the service also increases. For such tools and other applications, the
traditional request/response style of interaction needs to be augmented with an
asynchronous notification model that allows applications to register interest in changes in
the service. The javax.naming.event package contains classes and interfaces for supporting
event notification.

• javax.naming.ldap: This package contains classes and interfaces for using features that are

specific to the LDAPv3 that are not already covered by the more generic
javax.naming.directory package. In fact, most JNDI applications that use the LDAP will
find the javax.naming.directory package sufficient and will not need to use the
javax.naming.ldap package at all. This package is primarily for those applications that need
to use "extended" operations, controls, or unsolicited notifications.

• javax.naming.spi: This package provides the means by which developers of different

naming/directory service providers can develop and hook up their implementations so that
the corresponding services are accessible from applications that use the JNDI.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 44 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Service Providers and Naming Services
Notice about service providers: JNDI can be implemented in almost any hierarchical naming
structure. An implementation of JNDI for a particular environment is called a Service Provider.
And to use JNDI in a particular environment you need the Service Provider for that
environment.

Notice about naming services: we just talked about naming services, so let’s just shortly tell
what it is and what the use of it is. Finding resources is of particular importance in large-scale
enterprise environments, where the applications you build may depend on services provided by
applications written by other groups in other departments. A well-designed naming
infrastructure makes such projects possible -- and the lack of one makes them impossible. In
fact, many business-process reengineering efforts begin with the design and implementation of a
robust, enterprise-wide naming and directory infrastructure. A naming service maintains a set of
bindings.

Name service
requestor

…

…
..

URIName

Naming Convention

Name

Name

URI

URI

Naming Service
Object

Object

Object
Binding 1

Binding 1

Binding 3

Name service
requestor

…

…
..

URIName

Naming Convention

Name

Name

URI

URI

Naming Service
Object

Object

Object
Binding 1

Binding 1

Binding 3

Information 46: Naming Service Example

JNDI was not designed to replace existing technology; instead, it provides a common interface
to existing naming services (JNDI presents an abstraction over all these different services), it is
since very different from JLDAP. Let's begin by taking a look at some of these services. Some
types of Naming services other than LDAP are:

• COS (Common Object Services) Naming: The naming service for CORBA applications;

allows applications to store and access references to CORBA objects.
• DNS (Domain Name System): The Internet's naming service; maps people-friendly names

(such as www.etcee.com) into computer-friendly IP (Internet Protocol) addresses in dotted-
quad notation (207.69.175.36). Interestingly, DNS is a distributed naming service, meaning
that the service and its underlying database is spread across many hosts on the Internet.

• NIS (Network Information System) and NIS+: Network naming services developed by Sun
Microsystems. Both allow users to access files and applications on any host with a single ID
and password.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 45 of 78
Universität Karlsruhe (TH)

Directory Services Markup Language - DSML
JNDI allows as well to work with DSML. The official JNDI documentation specifies that JNDI
includes a service provider for DSML. The JNDI/DSML v2.0 service provider enable access to
DSML v2.0 services that are implemented as a Web service over SOAP/HTTP 1.1 or as a static
document (DSML file).

Security on the LDAP
To access the LDAP service, the LDAP client first must authenticate itself to the service. The
LDAP client must tell the LDAP server who is going to be accessing the data so that the server
can decide what the client is allowed to see and do. If the client authenticates successfully to the
LDAP server, then when the server subsequently receives a request from the client, it will check
whether the client is allowed to perform the request. This process is called access control.
The LDAP standard has proposed ways in which LDAP clients can authenticate to LDAP
servers (RFC 2251 and RFC 2829).

• The LDAP standard proposes several authentication possibilities:
• Anonymous authentication – is a non-authenticated access to the server, lets the LDAP

client only read public data.
• Root DN Authentication – is the privileged user. He has modifying access rights on all data.
• Unencrypted password – The password is transmitted unencrypted on the network. Is

ideally used on a sub-network protected by a firewall and where data is not sensitive.
• Password + SSL or TLS – session between a server and a client, the password is encrypted.
• Certificates + SSL – Simple Authentication and Security Layer (SASL) – enables to call for

more elaborated key-based authentication mechanisms (OTP, Kerberos...)

Another security aspect of the LDAP service is the way in which requests and responses are
exchanged between the client and the server. Many LDAP servers support the use of secure
channels to communicate with clients, for example to send and receive attributes that contain
secrets, such as passwords and keys. With LDAP servers SSL is often used for this purpose.

Notice about client requirements: The LDAP service provider uses the Java Secure Socket
Extension (JSSE) software for its SSL support. The JSSE is available as part of the Java 2 SDK,
v1.4.

Conclusion
As we have seen, there are pretty much a reasonable amount of differences between the JLDAP
and the JNDI. We have tried to put in perspective the stakes of using the JNDI and have
identified some properties that make the balance lean to the JNDI side. Of course this choice has
to be put in the perspective of a complete, flexible and configurable implementation of the
synchronisation application. Which as we’ll see is not the case in this implementation report,
since we have decided to program a demonstration application that shows how a single dump of
an LDAP server student information content, could be properly extracted and migrated to the
SAP system.

LDAP Wrapper Functionalities
The LDAP Wrapper provides the functionality to any client application, in our system the
Synchronizer application, to access data stored in the LDAP Server without considering any
implementation detail. It encapsulates physical aspects from the logical and business aspects
and provides a consistent interface to the Synchronizer application. Therefore, the Synchronizer
can easily access student data stored in the LDAP Server by using the functionalities provided
by the LDAP Wrapper. Now we will briefly introduce the functionalities of the LDAP Wrapper.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 46 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

JNDIInterface

connectToServer()

getEduPersonAll()

getEduPersonWithDn()

setEduPerson()

(1) connectToServer(): Establish a connection with the LDAP Server

(2) getEduPersonAll(): Retrieves all the objects stored in the directory

(3) getEduPersonWithDn(): Retrieves a specific object using it‘s DN

(4) setEduPerson(): Specifies which type of objects should be retrieved
Information 47: JNDI Wrapper

The LDAP Wrapper or the interface to the LDAP Server provides four functionalities. First it
allows the Synchronizer application to establish a connection with the LDAP server. It gives the
application the possibility to define parameters at run time, so that it can define the server it
would like to establish a connection with as well as its root DN. It also provides the
functionality to retrieve all the objects of a particular type, for example students, in the
directory. This is one of the main functions in our system, since we have to synchronize student
data stored in an LDAP directory and the SAP System. After establishing the connection with
the server the Synchronizer application can use this method to retrieve all the student objects in
the directory. Additionally we provide two more methods in our LDAP Wrapper, one of them
provides the functionality for any application to access a specific object in the directory using its
DN. For example using the DN, “UserId=123123123,ou=Student,o=Informatik,dc=uni-
karlsruhe,dc=de”, the application can retrieve a specific student object in the directory with the
specific DN. As we have already mentioned in earlier chapters, our directory does not have only
student information, rather it has information regarding all the people involved with the
university. Therefore, we must provide the client application the possibility to define at run-time
which type of objects (students or staff) it would like to retrieve or manipulate. The last method
in the LDAP Wrapper provides this functionality, so that an application can define at run-time,
which objects in the directory it would like to deal with.

The LDAP Wrapper functionalities, establishing a connection with the LDAP Server and
accessing objects in the directory are realized using JNDI and in the next section we will present
a brief overview of the implementation of the LDAP Wrapper using JNDI.

Implementation of LDAP Wrapper using JNDI
In this section, we will briefly describe the implementation of the LDAP Wrapper we have
introduced in the above section. The implementation of the LDAP Wrapper is mainly realized
using JNDI and here we will present some of the core functionalities of JNDI we have
employed in order to access the student information in the directory.

Establishing a Connection with the LDAP Server
There are several ways in which a connection is created. The most common way is from the
creation of an initial context. In JNDI all naming operations are relative to a context. The initial
context implements the Context interface in JNDI (This interface represents a naming context,
which consists of a set of name-to-object bindings. It contains methods for examining and
updating these bindings) and provides the starting point for resolution of names. When the
initial context is constructed, its environment is initialized with properties defined in the
environment parameter passed to the constructor. When you create an initial context by using

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 47 of 78
Universität Karlsruhe (TH)

the LDAP service provider, a connection is set up immediately with the target LDAP server
named in the environment properties.

public void connectToServer()

{

String ldapServerName = “localhost“;

String rootdn = “cn=Manager,dc=uni-karlsruhe,dc=de“;

String rootpass = “*******“;

String rootdn = “dc=uni-karlsruhe,dc=de“;

Properties env = new Properties();

env.put(Context.INITIAL_CONTEXT_FACTORY,"com.sun.jndi.ldap.LdapCtxFactory");

env.put(Context.PROVIDER_URL, "ldap://" + ldapServerName + "/" + rootContext);

env.put(Context.SECURITY_PRINCIPAL, rootdn);

env.put(Context.SECURITY_CREDENTIALS, rootpass);

try {

dircontext = new InitialDirContext(env);

} catch (NameAlreadyBoundException nabe) {

System.err.println("value has already been bound!");

}

}

Initilize Environment

Create Environment

LDAP Server Parameters

Obtain initial context using the environment/connect to server

Information 48: Connecting to LDAP Server

Our LDAP Wrapper establish a connection with the server by creating an InitialDirContext and
InitialDirContext is an initial context which implements the Context interface and additionally it
also implements the DirContext (The directory service interface, containing methods for
examining and updating attributes associated with objects, and for searching the directory). First
it initializes an environment with its environment properties. In our case we initialize the
environment with four parameters that are defined in the Context interface. The first parameter
INITIAL_CONTEXT_FACTORY holds the name of the environment property for specifying
the initial context factory to use. The value of the property should be the fully qualified class
name of the factory class that will create an initial context. Since we access an LDAP directory
service it is "com.sun.jndi.ldap.LdapCtxFactory". The second parameter PROVIDER_URL
holds the name of the environment property for specifying configuration information for the
service provider to use. The value of the property should contain a URL string (e.g.
"ldap://localhost:389"). The third parameter SECURITY_PRINCIPAL holds the name of the
environment property for specifying the identity of the principal for authenticating the caller to
the service, in our system it is the root DN ("cn=Manager,dc=uni-karlsruhe,dc=de") and the last
parameter SECURITY_CREDENTIALS holds the name of the environment property for
specifying the credentials of the principal for authenticating the caller to the service. The value
of the property depends on the authentication scheme. For example, it could be a hashed
password, clear-text password, key, certificate, and so on.

After the environment is initialized with its properties, it is passed to the constructor of the
InitialDirContext, where we obtain an initial context which allows us to perform naming
operations and automatically set up a connection with the target LDAP server.

Since we have described how we obtain an initial context to perform naming operations, now
we will introduce how we access information in the directory using the initial context.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 48 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Searching the Directory
One of the most useful features that a directory service offers is its search service. You can
compose a query consisting of attributes of entries that you are seeking and submit that query to
the directory. The directory then returns a list of entries that satisfy the query. In our system, we
also need to search the directory, since we are synchronizing student data between the directory
and another system, often we need the query “Retrieve all student objects in the directory”.
These student objects may be placed under different sub-trees, for example students in different
faculties. Therefore, the search should give us all the student objects without considering where
they reside in the directory. Now we will briefly explain how we realize this directory search
using JNDI.

The DirContext interface in JNDI provides several methods for searching the directory, with
progressive degrees of complexity and power. Since the initial context (InitialDirContext) we
obtain, when we connect to the server implements the DirContext interface, we can use the
initial context to perform the required search. Although it provides several search methods, in
our discussion we will only introduce the search method we have employed to search all the
student objects.

SearchControls ctls = new SearchControls();

ctls.setSearchScope(SearchControls.SUBTREE_SCOPE);

String filter = "(deEduPersonMatrNum=*)";

try

{

NamingEnumeration answer = dircontext.search("", filter, ctls);

}catch(javax.naming.NamingException ne)

{

System.out.println(ne.toString());

}

Initialize search controls

Set search controls

Set search filter

Perform Search

Information 49: Searching the Directory

The search method we have employed from the DirContext API requires three parameters. The
first parameter defines the name of the target context in which to perform the search. Here we
have defined it as “”, i.e. the search starts from the root of the initial context (“dc=uni-
karlsruhe,dc=de”) we have specified. For example, if we set this parameter as “o=Informatik”,
then the search starts from “o=Informatik”in the directory tree. The second parameter is in the
form of a search filter. A search filter is a search query expressed in the form of a logical
expression. Since we are searching only student entries in the directory, our search filter
"(deEduPersonMatrNum=*)" specifies that the qualifying entries must have an attribute
deEduPersonMatrNum. The third parameter is of the type SearchControl, which controls search
aspects such as, attributes to return, scope of search and maximum number of entries to return.
We have used this parameter to define the scope of the search, the constant SUBTREE_SCOPE
specify that the search be performed in the entire sub tree. The search results we get are
collected in a NamingEnumeration for further processing.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 49 of 78
Universität Karlsruhe (TH)

3.1.2 Synchronizer Side

Information 50: The Synchronizer Class Implementation

The implemented synchronization application has been made by programming the
“Synchronizer.java” class. This class executes the fundamental following operations:

• Instanciates a new ldap wrapper
• Instanciates a new student LDAP data mapping object (“class Student.java”), which is our

student data persistence class
• Connects to the LDAP server
• Calls the extraction of all students data
• Instanciates a new mapper
• Operates mapping operations on the extracted data
• Instanciates a new SAP wrapper
• Iterates through the extracted mapped objects and calls the SAP import wrapper to store

each one of these mapping objects

Here are UML Class Diagrams for the LDAP and the SAP wrapper classes, for a better
understanding of the provided functionalities:

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 50 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Information 51: The LDAP Export Wrapper Class Implementation

Information 51: The LDAP Export Wrapper Class Implementation is a class diagram
representing the LdapInterfaceImpl class.

Information 52: The SAP Import Wrapper Class Implementation

Information 52: The SAP Import Wrapper Class Implementation is a class diagram of the
StudentImport class, which is responsible for the storage of data in the SAP student BAPI

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 51 of 78
Universität Karlsruhe (TH)

3.1.3 SAP Side

Reasons for Using a Java/JCo Wrapper in General

Complex interface

SAP R/3

Simple interface

BAPI - Wrapper

IdM

BPEL

Information 53: Advantages of a Java/JCO – Wrapper

Why is it meaningful to integrate a Wrapper Interface in order to write data into a SAP R/3
legacy system. Or what problems can one have, if he does not use such a Wrapper interface. As
you can think, there are many reasons do implement the architecture this way.

Specific Access Rights have to be taking into Account
In order to write data into an existing legacy system, the necessary access rights have to be
granted to the middleware application. Because of this there are several configuration files,
which have to be stored inside the wrapper. This can possibly be done through a configuration
file, which can be read from the Wrapper class. There is a lot of data needed for the
configuration. For example the Wrapper needs the information, where the BAPI - Server is
located. And the login data is very important. There may also be different configuration files
between different legacy systems or different business scenarios. All this different kind of
configuration mechanism can be implemented inside the Wrapper. Because of this the interface
to the legacy system is more or less the same for the application developer, so that he can
concentrate on the core development.

Transaction Behavior
The interfaces to a legacy system can be seen as database similar. Because of this some of them
also have methods, which are very similar to the transaction model of relational databases. After
writing data into a BAPI, this has to be committed, and if an error happened or if some of the
data have unexpected values, it has to be rolled back. Inside the application this complexity of
access methods are disturbing and increases the effort of the core development very much.

Complexity of Interfaces
The interfaces are sometimes very complex. And it can be a very time consuming task to realize
this task. There are several special boundary conditions, which have to be taken into account in
order to offer a read and write interface. For every legacy system the developers need special
knowledge. There are several people, who have certain knowledge of the different legacy
system. With a wrapper module, one can define the interfaces for one legacy system.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 52 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Afterwards a different developer with different knowledge can do this for another legacy
system.

Abstraction of Legacy System specific Problems
Through the Wrapper, the access of the legacy system becomes much easier. Some of the legacy
system specific problems does not touch the application logic in principal. All of the specific
problems of one legacy system are hided between the interfaces of the Wrapper. For example
the data, which have to be imported or exported, belongs to different BAPIs. Although this data
only represents one business object inside the application logic. Or the application has to be
notified in real-time, if some of the data flags inside the legacy systems changes.

Abstraction of Synchronization Logic
If data in a user scenario is stored redundantly, the synchronization process needs to know what
flags and attributes have changed, since the last synchronization. This kind of status monitoring
and saving what has changed, should also be done inside the Wrapper. For example, the
application programmer only writes or updates data of an existing business object in SAP. The
Wrapper then checks, what has to be updated and which attributes have to be left with the same
value.

Exchange of the Legacy System
The Wrapper can be exchanged with another Wrapper. This offers a very good flexibility, if
someone wants to use the same application with a different legacy system. One can simply
exchange the Wrapper with another Wrapper, who has interfaces to this legacy system. In this
case the new Wrapper has to transform the relevant data in a way, that it is compatible to the
attribute types of the new legacy system. The transformation from the attribute types of the old
legacy system to the attribute types of the new legacy system has to be done inside the new
Wrapper. Except that nothing else has to be changed inside the application logic.

Wrapper Framework for fast Prototyping
After getting some knowledge of the architecture of the legacy system interface an the way how
to access them from the middleware, one has a good starting point for developing a general
framework to access other kind of legacy system interfaces. With a certain type of legacy
system Wrapper Framework, one can very fast develop a prototype for software solutions,
which access the legacy system.

Better Representation of the needed Business Objects
The Wrapper can represent the specific business objects in a better way. For example each
Wrapper imports a business object, which is needed in the application logic. It doesn’t matter
how the data is imported into the legacy system. From the point of an application developer,
there is only the object he wants to integrate. This improves the modularity and the object
oriented design of the application.

Maintenance
The object oriented design, the attributes of the used business objects and the hided interfaces to
the legacy system decreases the complexity of the software and makes it easier to understand.
So it is easier for an unknown developer to understand and adapt the behavior of the system.
Because of this maintenance become much easier and faster. The effort for adapting the
software to new versions of the legacy system decreases and the maintenance cost is much
lower than before.

Process Sequence before the Import

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 53 of 78
Universität Karlsruhe (TH)

Instantiation Set Attributes Validate Attributes Import

Information 54: Process Sequences at the Import

Before the real import the application developer has to set some special attributes in order to
define the relevant information for the import. In order to do this, there has to be a sequence of
tasks, which have to be done in order to realize this.

First the Wrapper class has to be instantiated by the core java application. This instantiation
should be a representation of the business object that has to be imported. This can be for
example, the equivalent object to the SAP BAPI. It possibly has the same attributes and it should
have a method, which offers the opportunity to set a minimum set of attributes, which are
needed for the import process.

If the type of values, which have to be set, are very complex, some kind of validation method
can be very helpful in order to avoid a wrong import. During the import into the legacy system,
there also must be a validation. So one can first drive a test run in order to see whether the
import data is syntactically correct or not. This concept has the advantage, that the validation
itself doesn’t have to be implemented.

At the end, the import itself has to be done and the return values of it has to be return back to
core java application in order to give back the control information whether the import was
successful or not.

Used BAPI’s
There are at least 2 BAPI’s, which have to be used in the context of our import process. First of
all we have to start the BAPI, BAPI_STUDENT_CREATEFROMDATA3 in order to import the
student. After a successful import of this student information, we have to commit this student
data by the BAPI BAPI_TRANSACTION_COMMIT. This commit BAPI is BAPI, which have to be
used for a lot of other BAPI’s. It can be seen as a similar function to the SQL-statement commit.
If one needs to set additional information through another BAPI, which belongs to the newly
created student, one can first create this student, set the additional data and afterwards finish it
through a commit. In some cases, this can be very important. For example if you have to
guarantee that creating a student and setting additional data has to be an atomic operation.

ABAP Implementation
The two BAPI’s BAPI_STUDENT_CREATEFROMDATA3 and BAPI_TRANSACTION_COMMIT has to
be called sequentially inside a logical function module. If you call two different BAPIs remotely
over the JAVA/JCO interface, you don’t have a logical function module. If you do so, then the
creation of the students does not have a corresponding commit. That means that the students
won’t be created inside the SAP R/3 system. In order to realize this, we have to develop a remote
possible function module, which calls both functions. We named this BAPI
Z_CM_STUDENT_PROVISIONING. Inside this function we first call
BAPI_STUDENT_CREATEFROMDATA3 and then BAPI_TRANSACTION_COMMIT. The relevant
source code of the Z_CM_STUDENT_PROVISIONING implementation can be found in the
Appendix.

JCO Implementation

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 54 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

Connect
getFunction

Template
(BAPI)

setImportData execute

Information 55: JCO Implementation, Access to SAP R/3

The JCO – implementation first connects to the BAPI server. After the connection the Java/JCO
middleware has to log in to SAP R/3. Afterwards one have to get the Function Template (The
used BAPI). After receiving the function template, the needed attribute have to be set. After
setting the needed attribute, the middleware has to start the execution has to take place.

3.2 Increment Definition
In this paragraph we will present the chosen set of designed functionalities that we have decided
to implement, in order to obtain a first version oft the application, this is what will be called, the
first increment.

What is critical in the application is the way it interacts with the two end systems, namely the
LDAP server and the SAP system. This is why our first concern was to obtain a first functional
version of the LDAP (JNDI) and SAP (JCo) wrappers. We wanted thus to perform a minimal
task and to be able to offer a demonstration of a subset of the initially designed functionalities.

Functionally spoken, the demonstration application performs a dump of the LDAP content
about students, and stores it in the Student BAPI of the SAP system, provided some minimal
mapping operations. Here is a description of the use case that the demonstration application
performs:

Name of Increment Student Data Dump
Short Description A simple dump of all available student data from the LDAP

server into the SAP student BAPI
Pre-Conditions LDAP server connection can be opened with valid credentials,

SAP connection can be opened with valid mandant and
credentials

Post-Conditions The LDAP data about students in all departments is also
available on the student BAPI of the SAP system

Main Flow As according to Information 56: First Increment
Exception Flow The provided credentials are not valid. No data will be stored

in the student BAPI. Both states of the LDAP server and of the
SAP BAPI stay as before the execution of the flow.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 55 of 78
Universität Karlsruhe (TH)

Meta
Directory

Meta
Directory

DBDB

Student BAPISA
P System

SA
P C

lient

LDAP/JNDI Wrapper

SynchronizerStudent Data persistence

SAP/JCo Wrapper

Mapper

(1)

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9) (10)
(11)

Information 56: First Increment Main Flow

Information 57: Activity Diagram for first Increment presents the execution of the Main Flow in
an intuitive manner. It lets the several steps of the mini-synchronization be ordered and the
interaction between the different implemented entities be shown. The steps where many arrows
are gathered by an oval shape are representing internal data flows.

Call for synchronization

Open LDAP connection

Extract student info

Store data in persistence objects

Perform content mapping

Open connection to SAP

Store student data

Call for synchronization

Open LDAP connection

Extract student info

Store data in persistence objects

Perform content mapping

Open connection to SAP

Store student data

Information 57: Activity Diagram for first Increment

The upper diagram (Information 57: Activity Diagram for first Increment) supports the chart
Information 56: First Increment Main Flow that describes the main flow of the implemented use
case. It is a UML activity diagram, and we can see how straight-forward the execution is. It is to
note that the execution of a mapping is optional since it depends on the incompatibility of data
between the LDAP and the BAPI data. For example, a call to the mapper will be executed only
if it is desired that some content provided from the LDAP server shall not be inserted in the SAP
BAPI, or if some of the input data to the BAPI is lacking in the extracted data from the LDAP

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 56 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

server. As you can see, the current implementation of the synchronization process is as simple
as it can get.

3.3 Deployment

3.3.1 Deployment Context

Meta
Directory

BAPI

DB

LDAP
Server

SAP
System

SYSTEM – Selbständiger Rechner

Synnchronisationsanwendung

Extract list of all
students

Enter list of all
students

Meta
Directory

Meta
Directory

BAPI

DB

LDAP
Server

SAP
System

SYSTEM – Selbständiger Rechner

Synnchronisationsanwendung

Extract list of all
students

Enter list of all
students

Information 58: System Implementation of Demo Application

In Information 58: System Implementation of Demo Application we present the fairly simple
deployment architecture of the demonstration application. Some observations have to be made:

• Although the SAP client and the LDAP server are installed on the same machine they do not

communicate directly but do it over a TCP/IP communication layer.
• The SAP system is installed on a Unix machine and acts as a server for the SAP client

installed on the demonstration machine.
• There is no GUI or what so ever to execute the application, it has then to be directly called

from the XP command console, by executing the “Synchronizer.java” file of the
“SynchronizerCase” Package.

3.3.2 LDAP Side

Creation of LDAP Content (LDIF)
In this section, we give a brief overview of how we created entries in LDAP. We have used
LDAP Data Interchange Format (LDIF) files, in order enter content to the LDAP. LDIF is used
to represent LDAP entries in a simple text format. The basic format of an entry in LDIF file is
shown in Information 59: LDIF.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 57 of 78
Universität Karlsruhe (TH)

(1) LDAP Data Interchange Format

(2) Represent LDAP entries in a simple text format

(3) Used to build directory content in LDAP

Basic Form Example

#comment

dn: <distinguished name >

<attrdescription>: <attrvalue>

<attrdescription>: <attrvalue>

........

#student john white

dn: sn=white,o=cs,dc=org

sn: white

cn: john

........

Information 59: LDIF

The slappadd command in LDAP is used to add the respective content in the LDIF file to the
directory. The content for organizations, organizational roles and students are added to the
directory using LDIF files. The LDIF we have used to insert a student to the directory is shown
in Information 60.

dn: deEduPersonMatrNum=125125125,ou=Student,o=Informatik,dc=uni-karlsruhe,dc=de
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
objectclass: deTestEduPerson
objectclass: eduPerson
cn: Johannes Jacob
sn: Kegel
deEduPersonUserId: 125125125
deEduPersonMatrNum: 125125125
deEduPersonNationality: German
deEduPersonFieldofStudy: Informatik
deEduPersonAcademicSemester: 11
deEduPersonGender: Male
deEduPersonTitle: Herr
deEduPersonBirthDate: 1980-5-25
deEduPersonMatriDate: 2000-4-20
deEduPersonMaritalStatus: Married
mail: kegel@ira.uka.de
givenName: Johannes Jacob Friedrich
homePhone: +491762226
homePostalAddress: obere BergStr 18, 77777, Heidelberg
postalAddress: obere BergStr 18, 77777, Heidelberg
postalCode: 77777
street: obere BergStr 18
telephoneNumber: +4917878878
eduPersonAffiliation: Student
eduPersonPrimaryAffiliation: Student
eduPersonOrgDn: o=Informatik,dc=uni-karlsruhe,dc=de
eduPersonOrgUnitDn: ou=Student,o=Informatik,dc=uni-karlsruhe,dc=de

Information 60: Inserting a Student Entry to the Directory / LDIF

The above LDIF file shows how we have inserted a student to the directory. As you can see at
the top it defines the “dn” and then the object classes it is using for this entry. There we have
specified “eduPerson” and “deEduPerson”, since we are using both of them. The attributes we
have specified are defined in the object classes that are defined at the top in the LDIF file.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 58 of 78 IMPLEMENTATION, DEPLOYMENT AND USAGE © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

3.3.3 SAP Side

Use of the Students’ BAPI
The Java/JCO Wrapper is a class which primary represents the business object student. Any
instance of the class StudentImport can be seen as a student, which has to be integrated into to
the SAP system. These objects have a certain set of attributes. These attributes are equivalent to
the attributes of the BAPI, which is used for the import. The Wrapper guarantees that the set of
attributes are always enough and in the right data types, so that it can be imported successfully.
In order to realize this, it offers some methods for setting the values of the attributes. The
meaning and the list of attributes of the BAPI are described in chapter 2.

Below, you can see the available methods with a description of the class StudentImport.

Method name and
attributes

Attributes Method description

StudentImport - Default Constructor: The constructor does
nothing except the instantiation of an
object of the class StudentImport. If one
call import_data after using this
constructor, the import would fail.

StudentImport firstName, lastName Constructor with a minimum data_set.
The constructor instantiates the object and
sets the minimum number of attributes
needed for the import.

Connect Connection to the SAP BAPI Server. Here
the server and login data of the BAPI is
hard coded inside the method.

getRepository This method is used for loading the later
called remote function module.

setImportData This method sets the import data during
the BAPI-Call. It uses the attributes,
which are set before the call import_data.
If a needed attribute wasn’t set, then this
method uses default attributes.

execute This methods executes and ends the
import.

disconnect This is used for disconnecting to the BAPI
Server.

import_data This is the global import method, which
execute following 5 class internal
methods.
 Connect();
 getRepository();
 setImportData();
 execute();
 disconnect();

setDefault This method sets default attributes to the
business object student. It can be used in
the first development step for testing the
connection to the SAP R/3 system.

It is important to mention that the SAP R/3 system has some restriction in setting your own
matriculation number. Of course you can’t set a number, which already exists inside the system.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 59 of 78
Universität Karlsruhe (TH)

And it is also not possible to set a matriculation number inside some number areas. At least it is
important to mention that, if the matriculation number is not set, SAP sets it on its own.

3.4 Exercises

(1) What would be the advantages of using the JNDI API rather than
NOVELL’s JLDAP foundation classes to interact with the
openLDAP server?

(2) Can you recall the sequence of operations executed by the
synchronizer class, in the presented minimal synchronization
demonstration application?

(3) What steps should an import have in general ?

(4) Why does the SAP R/3 system has the BAPI
BAPI_TRANSACTION_COMMIT ?

Information 61: Exercises

(1) Information 44: JNDI Architecture

(2) Information 56: First Increment Main Flow

(3) Information 54: Process Sequences at the Import

(4) Information 54: Process Sequences at the Import

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 60 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

4 OUTLOOK
In this case study we primary concentrate on the import of student data from the meta directory
to the SAP R/3 system. This is, because we want to introduce a basic concept how one can solve
this problem in general. In the next step this one way import should be extended the other way
round. That means the user should have the opportunity to export data from the SAP R/3 legacy
system to meta directory. Inside this analysis one can get a lot of experience and knowledge,
how one can write date from the legacy system into a LDAP meta directory. After getting good
knowledge in this field, the next step would be to adapt this two synchronization functionality in
a way that a complete synchronization process is possible. There has to be introduces an event
mechanism in order to get the information whether something changed inside the SAP R/3 or
inside the LDAP directory during very less time. Finally the whole things should be
synchronized in a way that the data can be stored completely redundantly and in a way that it
doesn’t matter where someone integrates additional data and additional students, and the
framework should synchronize this student data automatically.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 61 of 78
Universität Karlsruhe (TH)

APPENDIX A JAVA SOURCE CODE (JCO / LDAP)

/*
 * Created on 31. Januar 2006
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package SystemInterface;

import com.sap.mw.jco.*;
import java.lang.String;
/**
 * @author Thomas Mathes
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */

public class StudentImport
{
 public static JCO.Client myClient;
 public static JCO.Repository myRepository;
 public static JCO.Function myFunction;
 public static JCO.Function myFunction2;

 public static String g_firstName;
 public static String g_lastName;

 public static IFunctionTemplate ft;
 /**
 *
 */
 public StudentImport ()
 {
 super();
 setDefault();
 // TODO Auto-generated constructor stub
 System.out.println("reaching for SAP system...");
 }

 public static void setDefault ()
 {
 g_lastName = "Default LastName";
 g_firstName = "First Name";
 // TODO Auto-generated constructor stub
 System.out.println("reaching for SAP system...");
 }

 public StudentImport (String firstName, String lastName)
 {
 super();
 // TODO Auto-generated constructor stub
 g_firstName = firstName;
 g_lastName = lastName;
 System.out.println("reaching for SAP system...");
 }

 public static void Connect()
 {
 myClient = JCO.createClient("223", "ABAP3", "ABAP3", "DE",
 "rzdb10.rz.uni-karlsruhe.de", "00");
 try

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 62 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

 {
 myClient.connect();
 System.out.println(myClient.getAttributes().getHost());
 System.out.println(myClient.getAuthorizationTraceID());
 }
 catch (Exception e)
 {
 System.out.println("An exception occured while

accessing SAP System...");
 e.printStackTrace();
 System.exit(1);
 }
 }

 public static void getRepository()
 {
 myRepository = new JCO.Repository("myRepository", myClient);

 try
 {

Ft = myRepository.getFunctionTemplate ("
Z_CM_STUDENT_PROVISIONING ");

 if (ft == null)
 {

System.out.println("BAPI:
Z_CM_STUDENT_PROVISIONING nicht gefunden");

 }
 else
 {

System.out.println("BAPI:
Z_CM_STUDENT_PROVISIONING gefunden");

 myFunction2 = ft.getFunction();
 }
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }

 public static void setImportData()
 {
 JCO.ParameterListmyImport = myFunction2.getImportParameterList();

myImport.getStructure("STAMMDATEN").setValue(g_firstName,
"FIRST_NAME");

myImport.getStructure("STAMMDATEN").setValue(g_lastName,

"LAST_NAME");

myImport.getStructure("STAMMDATEN").setValue("DE",
"CORRESP_LANGUAGE");

myImport.getStructure("STAMMDATEN").setValue("DE",

"CORRESP_LANGUAGE_ISO");

 myFunction2.setImportParameterList(myImport);
 }

 public static void execute()
 {
 myClient.execute(myFunction2);
 }

 public static void disconnect()
 {

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 63 of 78
Universität Karlsruhe (TH)

 myClient.disconnect();
 }

 public static void import_data()
 {
 Connect();
 getRepository();
 setImportData();
 execute();
 disconnect();
 }

/*
 * Created on 26 janv. 2006
 *
 * TODO To change the template for this generated file go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
package SynchronizerCase;

import java.util.Iterator;
import java.util.Properties;
import java.util.Vector;

import javax.naming.NamingEnumeration;
import javax.naming.directory.Attributes;
import javax.naming.directory.BasicAttribute;
import javax.naming.directory.BasicAttributes;
import javax.naming.directory.SearchResult;

import SystemInterface.StudentImport;
import SystemInterface.*;

/**
 * @author lordmarwanus
 *
 * TODO To change the template for this generated type comment go to
 * Window - Preferences - Java - Code Style - Code Templates
 */
public class Synchronizer {

private DeEduPerson adep;
private Student student;
private Properties prop;
private Vector vecser;
private Vector vecstu;
private Mapper studentmapper;

 private void getStudentsFromLDAP()
 {
 LdapInterface linterface = new LdapInterfaceImpl();
 linterface.setEduPerson(new Student());
 linterface.connectToServer("localhost","cn=Manager,dc=uni-
karlsruhe,dc=de","secret", "dc=uni-karlsruhe,dc=de");
 vecstu = linterface.getEduPersonAll();
 }

 public void synchronize()
 {
 this.getStudentsFromLDAP();
 //this.studentmapper = new Mapper();
 //this.studentmapper.setStudentList(vecstu);
 //this.studentmapper.mapTypes("sn-cn");

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 64 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

 Iterator it = vecstu.iterator();
 while (it.hasNext())
 {
 Student tmpstudent = (Student) it.next();
StudentImport myImport = new StudentImport(tmpstudent.getGivenName(),
tmpstudent.getSurname());
myImport.import_data();
 }
}

 public Vector getStudentList(){
 return this.vecstu;
 }

public DeEduPerson getSyncDeEduPerson(){
return this.adep;
}

public void setSyncDeEduPerson(DeEduPerson adep){
this.adep = adep;
}

public Student getSyncStudent(){
return this.student;
}

public void setSyncStudent(Student student){
this.student = student;
}

public static void main(String args[])
{
System.out.println("Starting Import");
(new Synchronizer()).synchronize();
System.out.println("End Import");
}
}

/*
 * LdapInterface.java
 *
 * Created on 1. Februar 2006, 11:27
 *
 */

package SystemInterface;

import java.util.*;
/**
 * @author Praharshana
 */

/**
 * LDAP Wrapper class, provides the interface to the LDAP Directory
 */

public interface LdapInterface {

 // Establish a connection with the LDAP Server
 public void connectToServer(String ldapServerName,String rootdn,String
 rootpass,String rootContext);

 // Get an eduPerson object in the directory using a DN

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 65 of 78
Universität Karlsruhe (TH)

 public Object getEduPersonWithDN(String dname);
 // Get all the objects in the directory
 public Vector getEduPersonAll();

 // specifiy which type of objects, should be retrieved
 public void setEduPerson(DeEduPerson deperson);

}

/*
 * LdapInterfaceImpl.java
 *
 * Created on 1. Februar 2006, 11:36
 *
 */

package SystemInterface;

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.NamingException;
import javax.naming.NameAlreadyBoundException;
import javax.naming.directory.*;
import javax.naming.*;
import java.util.*;

/**
 *
 * @author Praharshana
 */
/**
 * LdapInterfaceImpl implements the LdapInterface using JNDI
 */
public class LdapInterfaceImpl implements LdapInterface {

 public DirContext dircontext;
 public DeEduPerson deEduPerson;

 public void setEduPerson(DeEduPerson deperson)
 {
 deEduPerson = deperson;
 }

 public void connectToServer(String ldapServerName,String rootdn,String
 rootpass,String rootContext)
 {
 Properties env = new Properties();

 env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.ldap.LdapCtxFactory");
 env.put(Context.PROVIDER_URL,
 "ldap://" + ldapServerName + "/" + rootContext);
 env.put(Context.SECURITY_PRINCIPAL, rootdn);
 env.put(Context.SECURITY_CREDENTIALS, rootpass);

 try {
 dircontext = new InitialDirContext(env);
 } catch (NameAlreadyBoundException nabe) {
 System.err.println("value has already been bound!");
 } catch (Exception e) {
 System.err.println(e);
 }
 }

 private Object getEduPerson(Attributes attributes)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 66 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

 {
 return deEduPerson.getEduPersonFromLDAPServer(attributes);
 }

 public Object getEduPersonWithDN(String dname)
 {
 return null;
 }

 public Vector getEduPersonAll()
 {
 Vector students = new Vector();
 SearchControls ctls = new SearchControls();
 ctls.setSearchScope(SearchControls.SUBTREE_SCOPE);
 String filter = "(deEduPersonMatrNum=*)";
 try
 {
 NamingEnumeration answer = dircontext.search("",
 filter, ctls);
 while (answer.hasMore())
 {

 SearchResult sr = (SearchResult)answer.next();
 Attributes attr = sr.getAttributes();
 Student student = (Student)getEduPerson(attr);
 students.add(student);
 }
 }catch(javax.naming.NamingException ne)
 {
 System.out.println(ne.toString());
 }
 return students;
 }

}

/*
 * DeEduPersonImpl.java
 *
 * Created on 22. Januar 2006, 22:22
 *
 */

package SystemInterface;

import javax.naming.directory.*;
/**
 *
 * @author Praharshana
 */
/**
 * Interface DeEduPerson for the objects in LDAP
 */
public interface DeEduPerson {

 // Retrieves a specific type of object in the directory
 public Object getEduPersonFromLDAPServer(Attributes attributes);

}

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 67 of 78
Universität Karlsruhe (TH)

/*
 * Student.java
 *
 * Created on 22. Januar 2006, 22:31
 *
 */

package SystemInterface;

import javax.naming.directory.*;
/**
 *
 * @author Praharshana
 */
/**
 * Class Student, which represent the Student objects
 * in LDAP and implements DeEduPeron interface
 */
public class Student implements DeEduPerson
{
 private String deEduPersonUid;
 private String eduPersonOrgUnitDN;
 private String homePhone;
 private String givenName;
 private String deEduPersonNationality;
 private String deEduPersonBirthDate;
 private String postalCode;
 private String eduPersonAffiliation;
 private String deEduPersonGender;
 private String mail;
 private String cn;
 private String telephoneNumber;
 private String street;
 private String deEduPersonMatrNum;
 private String deEduPersonMatriDate;
 private String postalAddress;
 private String surname;
 private String deEduPersonTitle;
 private String deEduPersonMaritalStatus;
 private String homePostalAddress;
 private String deEduPersonAcademicSemester;
 private String eduPersonPrimaryAffiliation;
 private String eduPersonOrgDN;
 private String deEduPersonFieldofStudy;

 public String getUid()
 {
 return deEduPersonUid;
 }

 public String getEduPersonOrgUnitDN()
 {
 return eduPersonOrgUnitDN;
 }

 public String getHomePhone()
 {
 return homePhone;
 }

 public String getGivenName()
 {
 return givenName;
 }

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 68 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

 public String getNationality()
 {
 return deEduPersonNationality;
 }

 public String getBirthDate()
 {
 return deEduPersonBirthDate;
 }

 public String getPostalCode()
 {
 return postalCode;
 }

 public String getEduPersonAffiliation()
 {
 return eduPersonAffiliation;
 }

 public String getGender()
 {
 return deEduPersonGender;
 }

 public String getEmail()
 {
 return mail;
 }

 public String getCommonName()
 {
 return cn;
 }

 public String getTelephoneNumber()
 {
 return telephoneNumber;
 }

 public String getStreet()
 {
 return street;
 }

 public String getMatriculationNumber()
 {
 return deEduPersonMatrNum;
 }

 public String getMatriculatedDate()
 {
 return deEduPersonMatriDate;
 }

 public String getPostalAdress()
 {
 return postalAddress;
 }

 public String getSurname()
 {
 return surname;
 }

 public String getTitle()
 {

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 69 of 78
Universität Karlsruhe (TH)

 return deEduPersonTitle;
 }

 public String getHomePostalAdress()
 {
 return homePostalAddress;
 }

 public String getAcademicSemester()
 {
 return deEduPersonAcademicSemester;
 }

 public String getFieldOfStudy()
 {
 return deEduPersonFieldofStudy;
 }

 public String getMaritalStatus()
 {
 return deEduPersonMaritalStatus;
 }

 public Object getEduPersonFromLDAPServer(Attributes attributes)
 {

 Student student = new Student();
 try
 {
 student.eduPersonOrgUnitDN
 = attributes.get("eduPersonOrgUnitDN").get().toString();
 student.homePhone
 = attributes.get("homePhone").get().toString();
 student.givenName
 = attributes.get("givenName").get().toString();
 student.deEduPersonNationality
 = attributes.get("deEduPersonNationality").get().toString();
 student.deEduPersonBirthDate
 = attributes.get("deEduPersonBirthDate").get().toString();
 student.postalCode
 = attributes.get("postalCode").get().toString();
 student.eduPersonAffiliation
 = attributes.get("eduPersonAffiliation").get().toString();
 student.deEduPersonGender
 = attributes.get("deEduPersonGender").get().toString();
 student.mail
 = attributes.get("mail").get().toString();
 student.cn
 = attributes.get("cn").get().toString();
 student.telephoneNumber
 = attributes.get("telephoneNumber").get().toString();
 student.street
 = attributes.get("street").get().toString();
 student.deEduPersonMatrNum
 = attributes.get("deEduPersonMatrNum").get().toString();
 student.deEduPersonMatriDate
 = attributes.get("deEduPersonMatriDate").get().toString();
 student.postalAddress
 = attributes.get("postalAddress").get().toString();
 student.surname
 = attributes.get("sn").get().toString();
 student.deEduPersonTitle
 = attributes.get("deEduPersonTitle").get().toString();
 student.deEduPersonMaritalStatus
 = attributes.get("deEduPersonMaritalStatus").get().toString();
 student.homePostalAddress

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 70 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

 = attributes.get("homePostalAddress").get().toString();

 student.deEduPersonAcademicSemester
 = attributes.get("deEduPersonAcademicSemester").get().toString();
 student.eduPersonPrimaryAffiliation
 = attributes.get("eduPersonPrimaryAffiliation").get().toString();
 student.eduPersonOrgDN
 = attributes.get("eduPersonOrgDN").get().toString();
 student.deEduPersonFieldofStudy
 = attributes.get("deEduPersonFieldofStudy").get().toString();

 }
 catch(javax.naming.NamingException e)
 {
 }

 return student;
 }

}

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 71 of 78
Universität Karlsruhe (TH)

APPENDIX B BAPI INTERFACE DESCRIPTION

FUNCTION Z_CM_STUDENT_PROVISIONING.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(MATRNR) TYPE BAPISTUDENT_HEAD-STUDENTNUMBER OPTIONAL
*" VALUE(STAMMDATEN) TYPE BAPISTUDENT_PERSONAL
*" EXPORTING
*" VALUE(RETWERT) TYPE BAPIRET2_T
*"--

DATA:
 retu type bapiret2_t.

*---- Aufrufen des BAPI zur Ermitteln der Studentenstammdaten
 CALL FUNCTION 'BAPI_STUDENT_CREATEFROMDATA3'
 EXPORTING
 STUDENTPERSONALDATA = STAMMDATEN
 STUDENTNUMBEREXTERN = MATRNR
 TABLES
 RETURN = retu.

*---- Aufrufen des BAPI zur Ermitteln der Studentenadressdaten
 CALL FUNCTION 'BAPI_TRANSACTION_COMMIT'.

 RETWERT = retu.

ENDFUNCTION.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 72 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

APPENDIX C LDAP PLATFORM INSTALLATION AND
CONFIGURATION

Many commercial solutions are available to build an LDAP directory. However most products
are either very expensive or not standard compliant. Therefore we are using OpenLDAP, an
opensource LDAP server designed for UNIX platforms. Luckily we could find a Windows
release of OpenLDAP because our system is running on the Windows environment. This
Windows release of OpenLDAP is available at http://lucas.bergmans.us/hacks/openldap/. In the
next section we will give a brief introduction of the installation and configuration of
OpenLDAP for Windows.

OpenLDAP Installation
The OpenLDAP installer for windows can be downloaded from:
http://download.bergmans.us/openldap. Launch the installer, accept license and you must
choose target installation directory, here we have used the default directory: c:\openldap.

The installer automatically builds a valid configuration. The OpenLDAP startup files are stored
in c:\openldap\var and the data files are in c:\openldap\var\openldap-data.

OpenLDAP Configuration
Before launching the LDAP server we have to customize it for our organizational requirements.
The main LDAP configuration file is slapd.conf in the default directory c:\openldap. We have to
update this file according to our requirements. The changes to be done to the slapd.conf file are
listed below.
An example configuration file, what we have specified in our configuration is shown below.

ucdata-path C:/openldap/ucdata
include C:/openldap/etc/schema/core.schema
pidfile C:/openldap/var/slapd.pid
argsfile C:/openldap/var/slapd.args
database bdb
suffix "dc=uni-karlsruhe,dc=de"
rootdn "cn=Administrator,dc=uni-
karlsruhe,dc=de"
rootpw ourpassword
directory C:/openldap/var/openldap-data
index objectClass eq

Information 62: Configuration File Example

1. Specify the Unicode data directory, by default c:\openldap\ucdata.
2. Choose the needed LDAP schemas. The core schema is mandatory but here we have to

specify the schemas we use, for example eduPerson
3. Configure the path for OpenLDAP pid and args startup files. The first contains the server

pid, the second includes command line arguments
4. Choose the database type, by default bdb (Berkeley DB).
5. Specify the server suffix. All entries in the directory will have this suffix, which represents

the root of the directory tree. For example, with suffix "dc=uni-karlsruhe,dc=de", the fully
qualified name of all entries in the database will end with : dc=uni-karlsruhe,dc=de.

6. Define the name of the administrator entry for the server, named the rootdn, along with its
password rootpw. This is the super user of the server. The rootdn name must match the

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) OUTLOOK Page 73 of 78
Universität Karlsruhe (TH)

suffix defined above. As stated, all entry names must end with the suffix, and the rootdn is
an entry.

Using your LDAP server

Start the server

To start the LDAP server you can either double click slapd.exe executable in c:\openldap or
launch it from the command line. Here you won’t get any messages but you must leave the
command window open for further steps. If you want debug information, you can use the –d
option. In the command like this command will look like

C:>slapd –d 1

Testing your server

The OpenLDAP command line tools can be used to test the server. The following command
executes a search query on the server:

ldapsearch -x -s base (objectclass=*) namingContexts

Type this command in a windows command window positioned in the OpenLDAP installation
directory. For more information on search syntax, try:
ldapsearch --help.

Insert some Content in Meta Directory:
In order to insert the first entries in the database, create an init.ldif file and add the following
content (according to the configuration specified in slapd.conf):

dn: dc=uni-karlsruhe,dc=de

objectclass: top

objectclass: dcObject

objectclass: organization

o: uni-karlsruhe

dc: de

dn: cn=Manager,dc=uni-karlsruhe,dc=de

objectclass: organizationalRole cn: Manager

Information 63: Initial LDIF file (init.ldif)

Create this file directly in OpenLDAP installation directory or anywhere after adding the
installation directory to the system PATH.
Load entries in directory (adjust slapd.conf and init.ldif files path as needed):
slapadd -f slapd.conf -l init.ldif

Install your LDAP service:

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 74 of 78 OUTLOOK © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

In order to have the server always available, register OpenLDAP as a Windows service. To
achieve this, just use the simple command:
slapd install

And to remove the service:
slapd remove

OpenLDAP daemon parameters can be modified by creating registry keys. Create a .reg file
with the following content en register keys by double clicking on it:

REGEDIT4 // Muss ANGEPASST werden :: PRAHARSHANA
[HKEY_LOCAL_MACHINE\SOFTWARE\OpenLDAP]
@="c:\\openldap"
[HKEY_LOCAL_MACHINE\SOFTWARE\OpenLDAP\Parameters]
"DebugLevel"=dword:00000000
"ConfigFile"=".\\slapd.conf"
"Urls"="ldap:///"

Information 64: OpenLDAP Daemon Parameters Modification

The first key contains OpenLDAP installation path. DebugLevel is used to change trace level,
ConfigFile is the configuration file path and URLs matches the syntax of the -h command line
option.
For example, set URLs to ldap://localhost:port/ to set a different listen port.

For more detailed information about this installation process, you may find this URL helpful:
http://mguessan.free.fr/nt/openldap_en.html.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) TABLES Page 75 of 78
Universität Karlsruhe (TH)

TABLES

Abbreviations and Glossary

Abbreviation
or Term

Full Name and/or
Term Description

ABAP Advanced Business Application Programming
Programming language for the development of applications for SAP systems.

BAPI Business Application Programmer Interface
It is a special interface of SAP R/3, which represents a business object and
allows the application developer to import or export this business object from
and into the SAP R/3 legacy system.

BPMN Business Process Modeling Notation
Important specification in the context of Business Process Modeling (BPM)
developed by the Business Process Management Initiative (BPMI).

DIT Directory Information Tree
The LDAP naming model defines how entries are identified and organized.
Entries are organized in a tree-like structure called the Directory Information
Tree. Entries are arranged within the DIT based on their distinguished name

EAI Enterprise Application Integration
EAI (Enterprise Application Integration) is a business computing term for the
plans, methods, and tools aimed at modernizing, consolidating, and
coordinating the computer applications in an enterprise. Typically, an
enterprise has existing legacy applications and databases and wants to
continue to use them while adding or migrating to a new set of applications
that exploit the Internet, e-commerce, extranet, and other new technologies.
EAI may involve developing a new total view of an enterprise's business and
its applications, seeing how existing applications fit into the new view, and
then devising ways to efficiently reuse what already exists while adding new
applications and data.

eduPerson An LDAP object class authored and promoted by the EDUCAUSE/Internet2
eduPerson Task Force to facilitate the development of inter-institutional
applications. The eduPerson object class focuses on the attributes of
individuals.

Identity
Management (IdM)

Identity management involves all aspects of managing users (digital entities)
in the enterprise application environment. This includes how users are
created, how they are granted access privileges, how their access to
applications is controlled and managed, and how these events are tracked and
reported.

JCo SAP Java Connector
A Java-based middleware, acting as a bridge between ABAP and Java.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 76 of 78 TABLES © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

LDAP Lightweight Directory Access Protocol
LDAP is designed to provide access to directories supporting the X.500
models, while not incurring the resource requirements of the X.500 Directory
Access Protocol (DAP). This protocol is specifically targeted at management
applications and browser applications that provide read/write interactive
access to directories. When used with a directory supporting the X.500
protocols, it is intended to be a complement to the X.500 DAP [IETF-
RFC2251].

LDAP Schema An LDAP schema defines a set or rules that specifies the types of objects that
a directory may contain and the required and optional attributes that entries
of different types should have. It may also specify the structure of the
namespace and the relationship between different types of objects.

Legacy System A legacy system is an antiquated computer system or application program
which continues to be used because the user (typically an organization) does
not want to replace or redesign it.

Meta directory

A meta directory is the primary operational repository used by a meta
directory service [BG-GLOS].

Wrapper

A Wrapper is a library which hides a complex interface to a system and
offers a simple and scenario spcific interface to the application developer.

Index
ABAP 35
BAPI 21
BPMN 10
Directory Information Tree 31
EAI 6
eduPerson 15
Identity Management (IdM) 6

JCO 34
LDAP 12
LDAP Schema 14
Legacy System 9
Meta Directory 9
Wrapper 52

Information and Exercise Slides
Information 1: Introduction... 6
Information 2: Study Progress... 7
Information 3: Decentralized Synchronization of the Student data .. 8
Information 4: Scenario of the Synchronization Process .. 9
Information 5: Main Concerns of Synchronization Process ... 9
Information 6: Process Modeling Decisions ... 10
Information 7: Design of the Synchronization Process... 10
Information 8: Business Object Diagram.. 11
Information 9: Introduction to Directories .. 12
Information 10: Introduction to LDAP ... 13
Information 11: LDAP Schema... 13
Information 12: Attributes... 14
Information 13: Object Classes ... 15
Information 14: eduPerson Schema .. 16
Information 15: Attributes in eduPerson... 17
Information 16: Overview of the DEEP Questionnaire .. 18
Information 17: Location of the Legacy System in our Scenario ... 19
Information 18: 3-Level Architecture of SAP R/3.. 20

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

© C&M (Prof. Abeck) TABLES Page 77 of 78
Universität Karlsruhe (TH)

Information 19: Different SAP modules ... 21
Information 20: Access to the Business Object Student over BAPI ... 21
Information 21: Overview of the Student Data Structure of the BAPI 22
Information 22: Ruled Synchronization & Event Registration ... 23
Information 23: Exercises ... 24
Information 24: Global Application Architecture ... 26
Information 25: Integration Layers Diagram .. 27
Information 26: Schema Design.. 28
Information 27: Attributes in deEduPerson... 29
Information 28: DIT for Student Objects in the Directory.. 31
Information 29: LDAP Communication with an Application... 32
Information 30: LDAP Communication with a Java Application... 33
Information 31: Application Accessing Student Data with DN.. 33
Information 32: Physical Separation of SAP and Middleware (Java/JCO) 34
Information 33: Data flow between Java and SAP ... 34
Information 34: Technical Access Interface between JCO and BAPI .. 35
Information 35: SAP Internal Structure of BAPIs, RFC and ABAP .. 35
Information 36: Design Phase – Synchronization: Data Access ... 36
Information 37: Refined Synchronization Components Interfacing Model................................ 37
Information 38: Packages Diagram... 37
Information 39: Synchronizer Classes .. 38
Information 40: Data Format Rules .. 39
Information 41: System Interfaces .. 39
Information 42: Business Rules .. 39
Information 43: Exercises ... 40
Information 44: JNDI Architecture ... 43
Information 45: Packages of JNDI.. 44
Information 46: Naming Service Example.. 45
Information 47: JNDI Wrapper ... 47
Information 48: Connecting to LDAP Server ... 48
Information 49: Searching the Directory... 49
Information 50: The Synchronizer Class Implementation .. 50
Information 51: The LDAP Export Wrapper Class Implementation .. 51
Information 52: The SAP Import Wrapper Class Implementation ... 51
Information 53: Advantages of a Java/JCO – Wrapper .. 52
Information 54: Process Sequences at the Import ... 54
Information 55: JCO Implementation, Access to SAP R/3... 55
Information 56: First Increment Main Flow.. 56
Information 57: Activity Diagram for first Increment .. 56
Information 58: System Implementation of Demo Application.. 57
Information 59: LDIF.. 58
Information 60: Inserting a Student Entry to the Directory / LDIF .. 58
Information 61: Exercises ... 60
Information 62: Configuration File Example.. 73
Information 63: Initial LDIF file (init.ldif) ... 74
Information 64: OpenLDAP Daemon Parameters Modification... 75

References
[AE+04] Sebastian Abeck, Christian Emig, Jochen Weisser: Fallstudie Transcript of

Records, Bericht zum Projekt „Werkstatt Unternehmenssoftware
Karlsruhe“ (WUSKAR), Karlsruhe 2004.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY USER PROVISIONING PROCESS

Page 78 of 78 TABLES © C&M (Prof. Abeck)
Universität Karlsruhe (TH)

[BG-GLOS] Burton Group: Concepts and Definitions (Glossary), Version 2.0,
September 2005.

[BPI-BPMN1.0] Business Process Management Initiative (BPMI): Business Process
Modeling Notation (BPMN), Version 1.0, BPMI.org, May 2004.

[C&M-ABAP]

Cooperation & Management, Tomas Stiller: Einführung in ABAP,
Dokument im Rahmen der C&M Technologien und Werkzeuge,
Universität Karlsruhe (TH), C&M (Prof. Abeck), Mai 2005.

[C&M-I-ID] Cooperation & Management: IDENTITY MANAGEMENT IN THE
FOCUS OF APPLICATION INTEGRATION, Course Unit of the Lecture
INTERNET SYSTEMS AND WEB APPLICATIONS (ISWA),
http://www.cm-tm.uka.de/iswa, Universität Karlsruhe (TH), C&M (Prof.
Abeck).

[C&M-JCo]

Cooperation & Management, Heiko Schandua: Einführung zum SAP Java
Connector, Dokument im Rahmen der C&M Technologien und
Werkzeuge, Universität Karlsruhe (TH), C&M (Prof. Abeck), Mai 2005.

[DEEP-A2] DAASI International Ltd, Deliverable A.2 of the Project "Definition of an
European EduPerson" (DEEP), October 2002.

[EDUPERSON01] Official Homepage of Internet2/Educause eduPerson Working Group
http://www.educause.edu/eduperson/

[OPENLDAP-2.3] OpenLDAP Software 2.3 Administrator's Guide
http://www.openldap.org/doc/admin23/

[OPENLDAP1.0] OpenLDAP for Win32 Documentation/FAQ
http://lucas.bergmans.us/hacks/openldap/doc

[S-SCHEMADES] Skills 1st LTD, Andrew Findlay: LDAP Schema Design, February 2005.

[S-JNDI] http://java.sun.com/products/jndi/tutorial/getStarted/overview/index.html

[SS05] Heiko Schandua, Tomas Stiller: Werkstatt Unternehmenssoftware
Karlsruhe (WUSKAR), Case Study University SOA, Team Study Thesis,
University of Karlsruhe (TH), C&M (Prof. Abeck), 2005.

