
WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 1 of 82
Universität Karlsruhe (TH)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE
(WUSKAR)

CASE STUDY

INTEGRATION OF SAP CAMPUS MANAGEMENT
INTO A UNIVERSITY SOA

Heiko Schandua

Tomas Stiller

Christian Emig
Sebastian Abeck

Cooperation & Management (C&M)

Institute for Telematics
Universität Karlsruhe (TH)

wuskar@cm-tm.uka.de

Abstract
This case study depicts the integration of a legacy university resource planning system (URP)
into a Service-oriented Architecture (SOA). The idea is to add the functionality of generating
so-called Bologna-conforming Transcript of Records to SAP Campus Management (SAP CM). This
is done by adding Web service interfaces to SAP CM that are orchestrated in the SOA using the
Business Process Execution Language (BPEL). User Interaction is handled via a central
University Portal.

Keywords
SAP Campus Management (SAP CM), Service-oriented Architecture (SOA), WUSKAR, ABAP, SAP
Java Connector (JCo), Transcript of Records (ToR), Web service, University SOA (USOA), ToR
Service, XML, UML, BPMN, BPEL, Java, SOAP, WSDL, BAPI, RFM, Apache Jakarta Tomcat,
Apache Axis, Oracle Process Manager

Learning Goals
1. Understand how to add functionality to a legacy university resource planning system,

especially to SAP Campus Management (SAP CM).
2. Obtain an idea how to integrate functionality from a legacy URP system into a Service-

oriented Architecture (SOA).
3. Obtain a basic knowledge about ABAP and the SAP Java Connector (JCo) as technologies

needed for the integration process.
4. Learn about tools for the orchestration of Web services.
5. Understand how to integrate Business Process Management into a SOA-Portal.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197560983?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 2 of 82
Universität Karlsruhe (TH)

Major Sources
[AE+04] Sebastian Abeck, Christian Emig, Jochen Weisser: Fallstudie Transcript of

Records, Bericht zum Projekt „Werkstatt Unternehmenssoftware Karlsruhe“
(WUSKAR), Karlsruhe 2004.

[We05]

Jochen Weisser: University SOA – Building a Transcript of Records Service,
Studienarbeit, Universität Karlsruhe, 2005.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 3 of 82
Universität Karlsruhe (TH)

Table of Contents

0 INTRODUCTION ... 5
0.1 Motivation .. 5
0.2 Progression of the case study.. 5

1 ANALYSIS.. 8
1.1 Business Area ... 8

1.1.1 Involved Business Processes and Partners .. 8
1.1.2 Business Objects.. 10
1.1.3 Bologna-conforming Transcript of Records.. 13
1.1.4 Needs and Constraints ... 14

1.2 System Area.. 15
1.2.1 SAP R/3 and Campus Management .. 15
1.2.2 ABAP, RFMs and BAPIs .. 17
1.2.3 Business Framework and Business Object Types ... 18
1.2.4 Business Object Repository (BOR)... 18
1.2.5 Requirements... 19
1.2.6 Conclusion... 20

2 DESIGN... 21
2.1 General Architecture... 21
2.2 The SOA Part.. 22

2.2.1 User Portal ... 22
2.2.2 BPEL Process .. 26
2.2.3 Core Web services... 28

2.3 The Legacy System Part ... 32
2.3.1 SAP Java Connector .. 32
2.3.2 ABAP .. 33

3 IMPLEMENTATION, DEPLOYMENT AND USAGE... 39
3.1 Implementation ... 39

3.1.1 Component Layer – ABAP Interfaces... 39
3.1.2 Core Web services – JCo Web service.. 41
3.1.3 Composition Layer – The BPEL Process .. 45
3.1.4 Presentation Layer – Web based Portal as User Interface..................................... 48

3.2 Deployment .. 53
3.2.1 Software Requirements ... 53
3.2.2 Deployment of the ABAP Interfaces... 53
3.2.3 Deployment and Installation of the JCo Core Web services 54
3.2.4 Deployment of the BPEL process ... 56
3.2.5 Deployment of the Portal... 57

3.3 Usage .. 57
4 OUTLOOK .. 60
APPENDIX A WSDL schema of a core Web service.. 61
APPENDIX B Java Source Code ... 63
APPENDIX C ABAP Source Code.. 66
APPENDIX D SQL Statements for MySQL databases.. 68
APPENDIX E XSLT code for Generating the HTML ToR... 70
TABLES.. 73

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 4 of 82
Universität Karlsruhe (TH)

Abbreviations and Glossary .. 73
Index .. 78
Information and Exercise Slides.. 79
References ... 80

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 5 of 82
Universität Karlsruhe (TH)

0 INTRODUCTION

0.1 Motivation
Through the “Werkstatt Unternehmenssoftware Karlsruhe (WUSKAR)”, students of the
Universtität Karlsruhe (TH) should have the possibility to work with various actual software
products within the scope of this case study.

This case study deals with the European Higher Education Area and the so-called Bologna-
Process it initiated. In the past years political and economical events led to a change in the
German university landscape. On the one hand this is concerned with the coalescence of Europe
to a European Higher Education Area. With the introduction of a European Credit Transfer
System (ECTS) students should be enabled to easily study a semester abroad or completely
change universities without confronting problems with the accreditation of their achieved study
results. On the other hand this change has to deal with the business situation of the last years
causing an increasing cost pressure on the German university system. Possibilities of optimizing
the actual business processes without loosing quality of teaching and research have to be found.
Savings potentials therefore are, for example, located in the administration. SAP Campus
Management (SAP CM) is a system that supports universities' managing of their students in a high
quality but cost-effective way.

Some functionality of this legacy University Resource Planning system (URP system) should be
accessible not only for administrative staff but also for students and advisers. Due to security
and convenience reasons, the URP system should not be accessed directly in this case. The idea
to provide the necessary functionality is to integrate SAP CM in a Service-oriented Architecture
(SOA). This is done by adding Web service interfaces to SAP CM that are orchestrated in the
SOA using the Business Process Execution Language (BPEL). User Interaction is handled via a
central University Portal.

0.2 Progression of the case study
The reader of this WUSKAR case study will receive a basic overview about business processes in
a university and how they are supported by SAP Campus Management. To preserve the clearness
and to limit the complexity, the focus will be put on one central functionality: the provision of a
Bologna-conforming Transcript of Records (ToR).

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 6 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

• Orientation in Bologna subjects and ECTS

• Understanding the needs for a Transcript of Records

• Orientation in SAP Campus Management

• Overview about the Architecture (University SOA)

• Creation of ABAP Interfaces, Core Web services and User Portal

• Final Deployment and Usage
Information 1: Roadmap of the Case Study

Information 1 shows the progression of the case study. Each of these steps can be found in a
chapter below. The Orientation in Bologna subjects, the ECTS and the needs for a Transcript of
Records will be discussed in the analysis of the business area. The next headword is related to
the analysis of the system area. Therein the possibilities and restrictions of SAP CM will be
discussed in depth. With an overview of the University SOA it follows the Design Phase. The
creation of ABAP Interfaces, the Core Web services and the User Portal can be understood as
the Implementation Phase. Finally, this case study is topped off by the Deployment and Usage.

Business Processes in a University
(Administration, Faculties)

SAP Campus Management

University Karlsruhe
-Course offerings

-Examination
regulations

EU-Directives
-ECTS-Rules

-Formats

Use Cases
-Semester abroad

-Job Search
-Change of University

Deployment
-Installation

-Customizing

Reference
models

-Processes
-Data

Technical
Operations
-Issuing and

Checking of the ToR

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 2: Concrete Challenges of the Case Study University SOA

The concrete challenge one has to cope with is depicted in Information 2. The upper part shows
the business processes in a university. The used URP system - SAP CM - is shown in the lower
part of Information 2. Bringing together these two parts, business and system, is the major goal
of every WUSKAR case study and therefore also of this document. Not the concrete solution

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) INTRODUCTION Page 7 of 82
Universität Karlsruhe (TH)

stands in the foreground but rather the methodic and structured way to reach this solution. At
the end a participant of this case study should be able to master similar challenges on his own.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 8 of 82
Universität Karlsruhe (TH)

1 ANALYSIS
The analysis phase gives an overview of the business and the system area. First, in the business
area, the focus is on the universities. Then after the business area is introduced the legacy
system SAP CM plays an important role. SAP CM is a URP system and possibly fulfills the needs
and constraints resulting from the business area.

1.1 Business Area
In 1999 29 European ministers in charge of higher education decided to create a European
higher education area. The goal was to improve the mobility of the students and to raise the
transferability of qualifications.

Sorbonne 1998
• Unification of course units and degrees
• Enhancing mobility of students
• Comparison and equivalence of students
• Achieving flexibility by the use of credits
Bologna 1999
• Establishing the European higher education area by 2010

• Bachelor / master (two cycle degree)
• No more obstacles for semesters abroad

Prag 2001 and Berlin 2003
• Reinforcement of the intentions
• Exposing the importance of transferability of qualifications

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 3: Milestones of the Bologna Process

One close central aspect is the mobility of students. There should be no obstacles for a student
to study at a foreign university and qualifications such as examination results should be easily
transferred in both directions. The following parts analyze the business area to determine the
needs and constraints concerning this development.

1.1.1 Involved Business Processes and Partners
The university is responsible for many things concerning students’ education.

www.cm-tm.uka.de
C&M (Prof. Abeck)

<< Business Process >>

Educate students

<< business process >>

Consult a student

Give a course

Provide a Transcript of Records

Accomplish an examination

Accomplish an application procedure

. . .

Register a student

. . .

. . .

Information 4: Business Processes

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 9 of 82
Universität Karlsruhe (TH)

Some of these tasks need explicit user interaction. Others can be fully automated. Providing a
ToR can be implemented as a fully automated service. Once a person requests a ToR the needed
parts of information are collected and displayed automatically.

www.cm-tm.uka.de
C&M (Prof. Abeck)

business process

User interaction User interaction
User interaction

User interaction

Fully automated
service

(e.g. Transcript of
Records)

Fully automated
service

• A business process can consist of an interconnection of tasks
• Some tasks need user interaction
• Some tasks can be fully automated

Information 5: Consult a Student as a concrete Business Process

While remaining at the home university a student participates in course units, receives grades
and performs academic work. The home university collects information about these
accomplished courses and grades for the corresponding student. For some reasons it can become
necessary to have a list of actually fulfilled courses and grades, e.g. a student wants to do a
semester abroad or completely change to another university. Then the student requests a ToR at
his home university. This progress is modeled in Information 6.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 10 of 82
Universität Karlsruhe (TH)

H
om

e
U

ni
ve

rs
ity

H
om

e
U

ni
ve

rs
ity

Pa
rt

ne
r

U
ni

ve
rs

ity
Pa

rt
ne

r
U

ni
ve

rs
ity

St
ud

en
t

St
ud

en
t

Receive
Transcript of

Records

Receive
Transcript of

Records

MatriculationMatriculation Exmatriculate from
University

Exmatriculate from
University

Request Transcript of
Records

Request Transcript of
Records

Finalize UniversityFinalize University

Collect Information
about the Student

Collect Information
about the Student

Receive Transcript of
Records

Receive Transcript of
Records

Send Information to the
next University

Send Information to the
next University

Transcript
of Records

Transcript
of Records

Transcript
of Records

Get Grades and
perform

Academic Work
+

Get Grades and
perform

Academic Work

Get Grades and
perform

Academic Work
+

Receive further
Grades and

Performances

Receive further
Grades and

Performances

Send Transcript of
Records to the Student

Send Transcript of
Records to the Student

Collect Information
about the Student

Collect Information
about the Student

Grades and
Performances

Send Transcript of
Records to the Student

Send Transcript of
Records to the Student

Depends on where
the student is

studying at the
moment

Depends on where
the student is

studying at the
moment

yes

Change
University

no

no

Receive Grades
and

Performances

Receive Grades
and

Performances

Finish
University

yes

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 6: Appearance and Usage of the Transcript of Records

At least the student is interested in the transferability of the achieved study results. Therefore the
ToR has to record the individual achievements in a standardized form throughout the European
Higher Education Area. Furthermore a ToR is meaningful in other contexts as well. E.g. a
student consultant should have a ToR available to know the academic status of a student and to
offer better guidance.

1.1.2 Business Objects
A ToR consists of all relevant information a student needs to change universities. There is no
difference whether a student changes the university completely or does one semester abroad.
The information about a student and his examination results belong to the ToR just as the course
unit information and the organisation information do. Below the different business objects needed for
a ToR are analyzed. Information 7 gives an overview of the business objects a ToR consists of.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 11 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 7: Business Object Diagram

The student information contains two parts of interest – the student’s personal data and study
related information.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• A student
• A person matriculated at a university
• Identified through the following attributes

• Standing data
• Matriculation number
• Given name
• Surname
• Sex
• Date of birth
• Place of birth
• Street, house number (main

residence)
• City, country, postal code

(main residence)
• Phone, e-mail (main

residence)
• Nationality

• Study data
• Matriculation number
• Date of matriculation
• Field of study
• Awards

Information 8: Overview about the Student Information

A central aspect for later considerations will be the knowledge of the semantics of the single
entities to identify the right objects and clarify what is meant by the entities. That is why the
following listing is essential. Some identifiers of Information 8 are listed and explained as a
showcase and demonstration of the methodology.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 12 of 82
Universität Karlsruhe (TH)

• Given Name

o All given names should be mentioned here i.e. the first name as well as the
middle name etc.

• Home university
o The home university is the university where the student first matriculated. If a

student decides to change the university for a period of time, a distinction is
drawn between the home university and the partner university.

• Main residence
o The main residence is the address where the student can be contacted.

• Matriculation number
o A matriculation number identifies a person e.g. at a university. In Germany, the

matriculation number simply consists of numbers.
• Partner university

o Every university that wants its students to profit from ECTS establishes
partnerships with other universities. Within this partnership much information
is exchanged. Information about study programs, contents etc. Thus students
can change to these partner universities easily and with the use of ECTS.

• Student
o A student is someone matriculated at a university.

The examination information consists only of one set named Results of examinations in which the
examination results of each student can be found. Information 9 embodies this set in detail.
Because a student may have written more than one examination, there is possibly more than one
object containing a special result for one student. Each object represents one written
examination.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• Results of examinations
• Matriculation number
• Course unit code
• Local grade
• ECTS grade

Information 9: Overview about the Examination Information

The course unit information consists of one part which contains all information about a special
course. In this context the further information course unit duration and its ECTS credits are
sufficient.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• Needed information about a course unit
• Course unit code
• Course unit title
• Course unit duration
• ECTS credits

Information 10: Overview about the Course Unit Information

A further description of the single points in Information 9 and Information 10 is depicted in
Chapter 1.1.4. The course unit code is a unique identification number of a special course. Last but

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 13 of 82
Universität Karlsruhe (TH)

not least all necessary institution information containing university information and faculty
information are required for a ToR to determine where the student's university is, and how his
ECTS coordinator can be contacted.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• The organisation information again is split into two parts

• University information
• University name
• City
• Post code
• State

• Faculty information
• University name
• Faculty name
• Given name / surname

of the ECTS coordinator
• Telefon of the ECTS

coordinator
• Email / fax of the ECTS

coordinator
Information 11: Overview about the Organisation Information

1.1.3 Bologna-conforming Transcript of Records
A showcase body structure of a Transcript of Records is given in Information 12. The
previously analyzed object information recurs.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 12: An empty Transcript of Records

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 14 of 82
Universität Karlsruhe (TH)

The second page contains solely information about the local grading system and no personalized
information. Therefore it is not taken into further consideration. The decomposition of the first
page is revealed in the following listing.

• Organisation information
o Name of the sending / receiving institution
o Faculty
o ECTS coordinator

 maintained by employees of the university

• Student information
o Personal information
o Contact information
o Awards

 maintained by a student consultant

• Course unit information
o Course unit code
o Title and duration

 maintained by the administration of a faculty

• Examination information
o Grades of the course units

 stored by the examination office

1.1.4 Needs and Constraints
It follows from the analysis of the business area that the ToR is of particular importance. A
student should be able to receive his own ToR with little effort. To ensure access to a ToR the
analyzed object information has to be available and centralized accessible for a student's
request. A ToR must fulfil special conventions. Therefore information included about courses
and grades are of interest. The grading scale and explanations on the reverse side have no
individual use; rather they point out the central specialty, the usage of the European Credit
Transfer and Accumulation System (ECTS). This is a student-centered system based on the
student workload required to achieve the objectives of a programme - objectives preferably
specified in terms of the learning outcomes and competences to be acquired. This system has
been successfully tested and is used across Europe. Thus study programmes can easily be
compared for all students - local and/or foreign.. The main key features of the credit system are
outlined in Information 13.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• 60 Credits measure Workload of a one academic Year
• Get Credits after successful completion of the Work
• Workload consists of

• Lectures
• Seminars
• Independent an private Study
• Preparation of Projects
• Examinations
• …

Information 13: What is ECTS – key features

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 15 of 82
Universität Karlsruhe (TH)

The performance of the students is documented by a local and national grade. The ECTS
grading scale ranks the students on a statistical basis. Therefore, statistical data on student
performance is a prerequisite for applying the ECTS grading system. Grades are assigned
among students with a pass grade as follows in Information 14.

www.cm-tm.uka.de
C&M (Prof. Abeck)

• A best 10%
• B next 25%
• C next 30%
• D next 25%
• E next 10%

• Distinction between the grades ‚FX‘ and ‚F‘
• FX : some more work required
• F : considerable further work required

• Inclusion of failure rates in the Transcript of Records is optional
Information 14: What is ECTS – Grades

1.2 System Area
In the following a special University Resource Planning system (URP system) – SAP CM will be
analyzed. It is supposed to support the business processes from above. Often there are
heterogeneous software solutions at a university. Legacy systems are then combined to reach
widespread functionality. A single URP system that is extensible due to its modularity and
includes up to now a plurality of modules for various business processes will now be looked at.
Thus it is flexible for further needs.

To understand the requirements and design decisions, the technologies and existing
developments in the context of SAP CM are analyzed. Therefore technologies supporting
interfaces or extensibility are important.

Up to now SAP CM does not provide a ToR conforming to the Bologna requirements. However
the business processes pointed out the importance of a ToR.

1.2.1 SAP R/3 and Campus Management
Within the R/3 system SAP uses a client/server architecture. The presentation layer is the
interface to the user. It is achieved via the SAP GUI and required for all SAP applications. The
SAP GUI directly connects to a SAP R/3 server system. SAP R/3 itself is an application software
written in ABAP/4, a SAP native language. Roughly speaking it is related to COBOL and SQL.
Various modules can expand the functionality of the central component SAP R/3.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 16 of 82
Universität Karlsruhe (TH)

SAP R/3IM

PS

TR CO FI

MM

PP

QM PM HR

CM SD

SAP GUI

I N
 T

 E
 R

 N
 E

 T
I N

 T
 R

 A
 N

 E
 T

CM SD

SAP GUI

I N
 T

 E
 R

 N
 E

 T
I N

 T
 R

 A
 N

 E
 T

(1) Campus Management (CM)
(2) Sales and Distribution (SD)
(3) Materials Management (MM)
(4) Production Planning (PP)
(5) Quality Management (QM)
(6) Maintenance (PM)
(7) Human Resources (HR)
(8) Financial Accounting (FI)
(9) Controlling (CO)
(10) Treasury (TR)
(11) Project System (PS)
(12) Investment Management(IM)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 15: Client-Server-Architecture of SAP R/3

Now the focus will be on the SAP GUI. This is the interface for every user interaction.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 16: SAP GUI

All modules and each function can be used within the GUI from any client connected to the
internet and any user with a login. Furthermore the development workbench is integrated into
the GUI the starting point to develop new reports and function modules. Reports are
programmes written in ABAP. A function module can be created from a report very easily.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 17 of 82
Universität Karlsruhe (TH)

Therefore a special client administration assigns permission to single users or groups. Thus only
special accounts are authorized to develop new function modules.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 17: Development Workbench

In the workbench one can access every function module and every database available on the
server.

1.2.2 ABAP, RFMs and BAPIs
In general, function modules in SAP can be classified according to the following model.

• Function Modules in SAP can be divided into three nested Classes

www.cm-tm.uka.de
C&M (Prof. Abeck)

1) ABAP Function Module

2) RFC enabled Function Module (RFM)

3) BAPIs

1) ABAP Function Module

2) RFC enabled Function Module (RFM)

3) BAPIs

Information 18: Classification

1) The super class of all modularized, procedural ABAP code is presented by the ABAP function
modules which have to be created according to a strict encapsulation policy.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 18 of 82
Universität Karlsruhe (TH)

2) Function modules written in ABAP which can be used reasonably by other SAP systems or
various different applications are created as RFC enabled function modules (RFM).

3) The BAPIs are a certain form of these RFC enabled function modules. Besides the detailed
technical requirements, they have to satisfy further requirements regarding nomenclature and
the documentation of their interfaces and their operation methods.

Since it is possible that an existing BAPI cannot provide certain functionality, there is the
possibility of developing appropriate new BAPIs. In contrast to other developments, the
development of BAPIs has to meet high demands in order to fulfil the requirements. Besides a
BAPI Programming Guide, the creation is assisted by a wizard function, which simplifies the
creation of a BAPI from a function module.

1.2.3 Business Framework and Business Object Types
SAP developed the business framework to enable technical integration and integration of business
objects between different SAP components and non-SAP components.
The business framework provides an object oriented structure of the functionality in the business
components. Structuring of data and processes is ensured by the business object types. BAPIs -
figured in Information 19 - are central components of the business framework. They form a
standardized interface to the business objects.

• BAPI is an acronym for Business Application Programming Interface

• BAPIs are visible interfaces to other components (software)

• BAPIs allow integration of SAP functions

• BAPIs provide integration on a non-technical layer
• Stability of coupling
• Independence of used communication technologie

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 19: Business Application Programming Interface

1.2.4 Business Object Repository (BOR)

(1) SAP business object types and their methods are identified and
explained in the Business Object Repository (BOR)

(2) The BOR creates instances of business object types

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 20: SAP Business Object Repository (BOR)

The BOR is a good starting point for developing new applications or functions. Information
about the business object types, interfaces, key fields and BAPI methods can be found here. The
runtime environment of the BOR is able to receive requests from client applications and
therefore creating instances just in time.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 19 of 82
Universität Karlsruhe (TH)

1.2.5 Requirements
There are different methods of generating new functionality to the SAP system. The different
methods correspond to the functionality's purpose.

On principle this is done via a report. A report is nothing else than a small program written in
ABAP. Existing functionality can be used within a report. Furthermore new Functionality and
abstract data types can be developed as well as new modules. Another possibility is to directly
create a new function module. This function module has defined input and output parameters.
Thus the use of a function module is restricted to interacting with other programs and modules.

Some information is already available as business objects. Thus their interfaces are well defined
making the use of such business objects rather simple. This is because the input and output
syntax is also well defined for business objects. These interfaces are accessible via function
modules or BAPIs. Thus it is recommended to first search for existing BAPIs which cope with the
business objects and have increased integrity in further system releases. Further information
important in the context of a ToR can be collected, orchestrated or handed over by the use of a
report or self generated function module.

So, there are several possibilities to get the needed information:

1. Via SQL query directly accessing the database
2. Using existing function modules
3. Using existing BAPIs
4. Using business objects

Information 21 depicts these different possibilities. The way of retaining special information in
the SAP system depends on the kind of information needed i.e. whether there are existing
function modules or BAPIs or not. As an example Information 21 deals with student information
and examination information representing all business objects. The abstract about student
information and examination information is a showcase for the other objects as well. Deriving
from the analyzed possibilities the requirement is to find the appropriate way of developing the
missing functionality and of finding the needed information.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) ANALYSIS Page 20 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 21: Possibilities for getting a ToR within the SAP System

Some further requirements have to be met to fulfil the business analysis. It is not satisfactory to
supply the ToR in the SAP GUI. Presenting the ToR within the SAP GUI presents the following
problems:

1. Access Management
 Every student needs a license / account

2. Rights Management
 Special limited rights required for a student

3. Functional Restriction
 Student wants more functionality possibly supported by other systems

4. Thin Clients
 No installation of client software required. Only an internet browser is

mandatory.

The solution to these problems can be found in a higher level, more flexible architecture. This
architecture uses the SAP system as an underlying (legacy) software system. Providing
functionality of the SAP system, orchestrating different functions to a new aggregated
functionality and supporting a user portal as well as various other possibilities are fulfilled
within this architecture. Furthermore the future integration of new functionality is simplified.
This is supported by a Service-oriented Architecture (SOA) and in our case a University SOA
(USOA). This is vital for further considerations.

1.2.6 Conclusion
The analysis of the system area depicted the approaches to develop missing functionality inside
SAP CM. Thus it seems basically possible to fulfil the needs and constraints from the business
area by the use of a SAP CM system. Further considerations how this can be done in particular
will be exposed in Chapter 2.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 21 of 82
Universität Karlsruhe (TH)

2 DESIGN
The design of the University SOA can be divided into two major parts, the legacy system and
the SOA. These two architectural parts will be discussed in detail in this chapter. But in a first
step, one has to obtain a general idea about the whole architecture that will be used to achieve a
USOA with SAP Campus Management (SAP CM) as the underlying Legacy System.

2.1 General Architecture
Roughly speaking, knowledge of the technologies which will be worked with is known.
Information 22 displays all specific layers of the Service-oriented Architecture. Since the
system to be used as a source of information is an SAP system, ABAP as SAP’s programming
language will certainly be used to build the interfaces for SAP CM. Remote Function Modules
(RFMs) will be essential to make these interfaces accessible for programs different to SAP, e.g.
for Java systems.
Concerning Java, the interface to SAP is the SAP Java Connector (SAP JCo) that operates as a
Middleware layer between the Core Web services and the ABAP Function Modules. Those Core
Web services are orchestrated in the SOA using a BPEL process representing the ToR Service.
Finally, the presentation layer and its user interaction is accomplished via a central University
Portal.

USOA Portal

ToRService

Registrating a student for
an examination

Generating a ToR

Consulting a Student in
Examination Problems

.

ToR Module

Oracle Database

www.cm-tm.uka.de
C&M (Prof. Abeck)

Presentation
layer

Functional
layer

Data layer

. . .

SAP Campus ManagementSAP Campus Management

ABAP
RFM

ABAP
RFM

ABAP
RFM

Component
Layer

(Legacy Systems)

Core Web
services

BPEL
processes

BP
control

Student Service

SAP Java Connector

Student ServiceStudent Service

SAP Java Connector Examination ServiceExamination Service Organisation ServiceOrganisation Service CourseUnit ServiceCourseUnit ServiceMiddleware

ExaminationDB

ExaminationDBAccessExaminationDBAccess

OrganisationDB

OrganisationDBAccessOrganisationDBAccess

Course
UnitDB

CourseUnitDBAccessCourseUnitDBAccess
ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

Information 22: DESIGN – General Architecture

The approach now used will be to make a top down design separated by the different SOA
layers that are depicted in Information 22. This is very important because the business processes
can be put in the foreground at first.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 22 of 82
Universität Karlsruhe (TH)

2.2 The SOA Part

2.2.1 User Portal
This subchapter describes the design of the university portal and also introduces the
technologies which are used to run such a portal. The portal itself should be able to support
various business processes such as obtaining a ToR, administrating personal information,
printing a study timetable, applying for examinations and so on. To reduce the complexity and
the bulk of information in this chapter, the focus will only lay on the support of one business
process namely getting a ToR.

Get ToR

Get ToR

St
ud

en
t

St
ud

en
t

St
af

f
St

af
f

Authenticate to SystemAuthenticate to System
+

Choose FormatChoose Format Download ToRDownload ToR

Authentication
successful?

Return
Error

Return
Error

Authenticate to SystemAuthenticate to System

+

Enter Matriculation
number

Enter Matriculation
number

Authentication
successful?

Return
Error

Return
Error

Matriculation
Number valid?

Choose FormatChoose Format Download ToRDownload ToR

Return
Error

Return
Error

no

no

no

yes

yes

yes

Choose “Academic
Information”? “Acquire
ToR” in System Menu

Choose “Academic
Information”? “Acquire
ToR” in System Menu

Choose “Student
Information”? “Acquire
ToR” in System Menu

Choose “Student
Information”? “Acquire
ToR” in System Menu

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 23: BPMN Process Model of the GUI for ToR queries

As can be seen in Information 23, the process of obtaining the ToR is embedded in a larger
framework where the retrieval of the ToR is only a part of the functionality. There is a
distinction between users, namely students and staff. This distinction is necessary, since
students can only obtain their own ToR while staff members, academic as well as non-
academic, have access to various students’ ToRs.

At first a user, no matter if a student or a staff member, has to authenticate to the system as
shown below.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 23 of 82
Universität Karlsruhe (TH)

Please enter your login name and
password!

Password

Login

Submit

1

Admin System

• Login

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 24: Login Screen

Naturally, this login can fail, so in this case the user has to provide a different login name or
password (Information left out at this point). If the user is a student and chooses to obtain
her/his ToR by following the links in the system to Acquire ToR, the only question she/he is
asked is which output format is desired. This is more convenient for the user, in contrast to
dictating the format at first hand.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Please select desired
output format!

Adobe Acrobat PDF

Postscript PS

HyperText Markup Language HTML

Submit

Admin System

• Personal
Information

• Academic
Information
• Acquire ToR
• ….

• Logoff

Information 25: Choose output format

The choice is given between the most common formats, though this list can be expanded or
reduced in the future. In case the user chooses, as it can be inferred in the Information,

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 24 of 82
Universität Karlsruhe (TH)

“HyperText Markup Language HTML”, she/he gets back an HTML page showing the complete
ToR. This example of an output ToR can be seen in the following Information.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Admin System

• Personal
Information

• Academic
Information
• Acquire ToR
• ….

• Logoff

Information 26: Display ToR (HTML page in this case)

The process Get ToR has now ended (see BPMN model), since the user (a student in this case)
could acquire the desired information. The case of the user not being a student, but a staff
member, is slightly different since an additional step, namely the choosing of the student whose
ToR should be retrieved, has to be considered. This can be accomplished by simply querying
the user for the student’s matriculation number, which is unique for a student at the whole
university. This requires following the links to Acquire ToR in the first place of course.

The following passage describes the technologies used to implement the portal as well as the
reasons which led to these choices.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 25 of 82
Universität Karlsruhe (TH)

(1) Apache Tomcat Servlet Container
(1) Can be used as stand-alone Web Server
(2) Holds and executes Servlets
(3) Fits in existing Framework, widely used

(2) Servlets
(1) Work according to Request-/Response Scheme
(2) Can execute Java Code
(3) Performance Advantages compared to CGI

(3) Java ServerPages JSP
(1) Used when a lot of HTML is needed
(2) Are compiled into Servlets

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 27: Apache Jakarta Tomcat

Apache Jakarta Tomcat itself is a Servlet container. It implements the Servlet and Java Server
Pages (JSP) specifications. It can be considered as a web server, as it does not need any
additional web server such as Apache Web Server to function. The reasons for using Tomcat are
that it fits into the existing framework of Java applications, its widespread utilization, its highly
developed code and the license under which it is distributed. There are no licensing costs, either.
Servlets are server-side Java programs which work according to a request-/response scheme.
They are used as extensions of web servers and require a Servlet container such as Tomcat to
run. While processing requests, any Java code can be executed, including e.g. database accesses.
The advantage of Servlets compared to CGI scripting languages is performance, since they stay
in the Java Virtual Machine’s memory until the shutdown of the server.
Java Server Pages technology is an extension of the Java Servlet technology. Servlets are
platform-independent, server-side modules that fit seamlessly into a Web server framework and
can be used to extend the capabilities of a Web server with minimal overhead, maintenance, and
support. Unlike other scripting languages, servlets involve no platform-specific consideration or
modifications; they are application components that are downloaded, on demand, to the part of
the system that needs them. Together, JSP technology and servlets provide an attractive
alternative to other types of dynamic Web scripting/programming by offering: platform
independence; enhanced performance; separation of logic from display; ease of administration;
extensibility into the enterprise; and, most importantly, ease of use.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 26 of 82
Universität Karlsruhe (TH)

(1) Apache Axis
(1) Open Source Framework
(2) Based on Java and XML
(3) Implements the Simple Object Access Protocol (SOAP)
(4) Fits into Apache Tomcat Framework

(2) SOAP
(1) Standard for exchanging XML based Messages
(2) Mostly RPC Messages
(3) Uses HTTP for Transportation

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 28: Apache Axis

Apache Axis is an open source framework and is based on Java and XML. It is a technology
enabling distributed communication among computer systems. To achieve this, the Simple
Object Access Protocol (SOAP) is implemented. The highly developed interoperability between
Axis and Tomcat justifies the use of this framework. SOAP is the state-of-the-art when
exchanging messages between Web service clients and Web services in a distributed computer
environment. It is based on a XML format and the most common message pattern is the remote
procedure call (RPC), meaning that a client requests a response to this message. Communication
is carried out using the hypertext transfer protocol (HTTP).

Another way to access Web services is to use the Web services Invocation Framework (WSIF).
It is a simple Java API for invoking Web services, no matter how or where the services are
provided. WSIF enables developers to interact with abstract representations of Web services
through their WSDL descriptions instead of working directly with the Simple Object Access
Protocol (SOAP) APIs, which is the usual programming model. With WSIF, developers can
work with the same programming model regardless of how the Web service is implemented and
accessed. WSIF allows stubless or completely dynamic invocation of a Web service, based upon
examination of the meta-data about the service at runtime. It also allows updated
implementations of a binding to be plugged into WSIF at runtime, and the calling service to
defer choosing a binding until runtime. Finally, WSIF is heavily based upon WSDL, so it can
invoke any service that can be described in WSDL [APACHE-WSIF].

2.2.2 BPEL Process
The BPEL process providing a Transcript of Records is described in detail in this subchapter.
Based on the following BPMN diagram which reveals the necessary steps obtaining a ToR the
BPEL process can be derived. The following paragraph describes this in detail.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 27 of 82
Universität Karlsruhe (TH)

Receive
ToR

request

Get basic
data of
student

Get
examination

results of
student

Get
corresponding

course
information

Get
information
about the
institution

Valid
student?

Student
data

Institution
data

Examination
results and
additional

course
information

No

Yes

Return
error

Create
ToR

Return
ToR

Lookup
student

Requested
ToR

BPEL web service (fully automated)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Core web services

Field of
study

Course unit
codes

Information 29: BPMN Internal Business Process – Get ToR

Every time the ToRService is called, which can happen out of various business processes, the
following activities are executed:
As it can be seen, after an incoming ToR request the ToRService executes a plausibility check
by looking up the matriculation number of the request. If the student who corresponds to the
matriculation number is a valid student, the core Web services are invoked to collect the
necessary information; otherwise an error is returned. The ToR is generated after all information
is available to the process. If every activity is successful a ToR in XML format is returned
[We05].

The ToRService uses several Web services that will be designed in the next chapter to collect all
information needed to generate a ToR. The necessary Web services offer their functionalities as
described in the corresponding WSDL documents using SOAP interfaces. The process internal
message flow is also done via SOAP. And last but not least the ToRService should provide the
requested ToR at its own SOAP interface.
Of course it is possible to implement the ToRService in Java, .NET or any other conventional
programming language. But in this project BPEL was used because of several reasons:

• BPEL programming is done in XML, which is a platform independent standard that can
be used easily to interchange data between heterogeneous applications

• Variables within a BPEL process are represented by XML objects
• A Message passing within a BPEL process is realized in SOAP so that at this point no

converting overhead arises
• It is possible to systematically generate BPEL code out of BPMN diagrams
• One of the specifications for operating this service was to use BPEL

Some parts of the analysis phases were done using BPMN. Reaching the design phase a
mechanism or concept is needed to generate BPEL code for the business processes out of a
BPMN representation in a mostly automatic way, because one main idea behind BPMN is to

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 28 of 82
Universität Karlsruhe (TH)

reduce the gap between the business process design and the implementation. The rest of this
subchapter illustrates how the BPMN graphs can be converted to BPEL code under the
precondition to maximize the automatically executable parts. The lack of available software
products, which can translate BPMN to BPEL in a way so that this code can be deployed or
even efficiently developed, causes a work-around [We05].

First of all it should be mentioned that there are two different categories of relevant tools for this
procedure: BPMN modelling tools to create the BPMN graph and BPEL design tool for
managing the specific BPEL aspects and concerns. Let’s begin with the ToR process that is
shown in Information 29, which was developed with the BPMN modelling tool Popkin’s
System Architect. At this point it is possible to map the information represented in the BPMN
graph by hand using the mapping rules defined in [BPMN1.0]. Some BPMN modelling tools
like Popkin’s System Architect offer functions to generate BPEL code out of BPMN
automatically. But there is one hitch. The generated code contains almost no information about
the SOAP interface of the orchestrated elements in it. This work can be machine supported
because all the needed information is listed in the Web service description if referring to Web
services that already exist [We05].

That is the point where a BPEL design tool like the Oracle BPEL Designer comes into play. The
alternative to using such a tool is to add the remaining information manually. This is not
efficiently practicable. Most of the design tools allow importing existing BPEL code which can
be generated by Popkin’s System Architect as described above. The BPEL code is parsed and
then displayed as a graph. Unfortunately this graph is not in BPMN notation but in a proprietary
one. Now the WSDL documents of the participating core Web services can be imported and
missing information like variables and messages can be added to the BPEL process.
Furthermore functionalities for testing and validating the created BPEL process as well as a
function for deploying the process to the used BPEL engine are available [We05].

2.2.3 Core Web services
This subchapter deals with the core Web services which encapsulate the access to SAP Campus
Management. When seeing Information 30 as a SOA classification the core Web services can be
considered as interface between the “Programming in the Large” and “Programming in the
Small”.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 29 of 82
Universität Karlsruhe (TH)

<<Core Web Service>>
StudentDBService

<<Core Web Service>>
StudentDBService

<<Core Web Service>>
Web Service Name

<<Core Web Service>>
Web Service Name

……… ………

Programming
in the Small

Programming
in the Large

….

www.cm-tm.uka.de
C&M (Prof. Abeck)

Oracle Database

SAP Campus ManagementSAP Campus Management

ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

ABAP
RFM

ToRService

USOA Portal

Generating a ToR

ToR Module

….....

Information 30: Core Web services – SOA classification

The task of the core Web services is to offer a specific functionality supported by a well
specified service interface. They are then being assembled to composite Web services in order
to directly support business processes. The challenge for software developers is no longer the
coding of the required functionality but the orchestration of already existing Web services to
executable business processes. This approach has commonly been referred to in relevant
literature as “Programming in the Large” whereas the development of core Web services is
known as “Programming in the Small” [EM+05].

As already seen in the last subchapter there are four core Web services which have to be
implemented:

• StudentDBService – Provides all standing data and all study relevant data of a student
• ExaminationDBService – Reads out all examination data of a student
• CourseUnitDBService – Offers all data corresponding to a specific course unit
• OrganisationDBService – Gives back all data of a specified organisation

The superior aims when designing these services were:

• Re-usability of the core Web services, so that it makes sense to use them in other
services than the ToRService as well

• Enabling uniform access to different database management or University resource
planning systems

• Modeling the scenario of distributed databases or URP systems all over the campus
which seems to be very close to reality

Most of the classes that implement a Web service can be generated automatically out of the
WSDL using appropriate tools. So the WSDL file for each core Web service has to be specified
in design phase only. In the implementation phase the Apache Axis tool WSDL2Java is used to
generate executable code. The complex types that represent a row in the corresponding database
are also described in the WSDL file [We05]. An example of such a WSDL is found in 3.2.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 30 of 82
Universität Karlsruhe (TH)

The following part of this subchapter works out the design of one exemplary core Web service,
the StudentDBService. The design of the other three services is described in detail in [We05].
Derived from the business analysis in Chapter 1 the StudentDBService should provide the
following functionality:

• It receives a matriculation number as input and returns all relevant standing data (as defined

in the business analysis in Chapter 1 before) and study data (also as defined in the business
analysis in Chapter 1 before) of the corresponding student. The data selection is optimized
for the composition of a Transcript of Records.

• This functionality is split into two operations, one does as described in the preceding

paragraph, the other one checks whether a student exists in the system. This is necessary for
generating error messages when using this Web service.

Both operations do need to be defined semantically or and syntactically. The following
information slide illustrates this.

• Each of the two operations has the following input and output fields:

www.cm-tm.uka.de
C&M (Prof. Abeck)

GetCompleteSet

IsStudent

Operation SemanticsSyntax

Input:
Matriculation number of the student

Output:
Set of all standing data (as defined from the business
view before) and study data (also as defined from
the business view before) of the student with this
matriculation number

Input:
long

Output:
SetofStudentDB

Input:
Matriculation number of the student

Output:
true: If student with this matriculation number exists
in system
false: If student with this matriculation number does
not exist in system

Input:
long

Output:
boolean

GetCompleteSet

IsStudent

Operation SemanticsSyntax

Input:
Matriculation number of the student

Output:
Set of all standing data (as defined from the business
view before) and study data (also as defined from
the business view before) of the student with this
matriculation number

Input:
long

Output:
SetofStudentDB

Input:
Matriculation number of the student

Output:
true: If student with this matriculation number exists
in system
false: If student with this matriculation number does
not exist in system

Input:
long

Output:
boolean

Information 31: StudentDBService and its semantic and syntactical definition

The operation GetCompleteSet returns the output type SetofStudentDB which is a structured type
and has to be specified as well. Information 31 shows this in detail. This specification is
definitely based on the results on the analysis of the business area in Chapter 1.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 31 of 82
Universität Karlsruhe (TH)

• The type SetofStudentDB is composed by two other structured types
described below:

www.cm-tm.uka.de
C&M (Prof. Abeck)

SetofStudyTable

SetofStandingTable

Type SemanticsSyntax

Matriculation number of the student
Date of matriculation
Field of study
Award

long
dateTime
string
string

Matriculation number of the student
Given name (all given names separated by spaces)
Surname
Sex (true is male, false is female)
Place of birth (name of the city)
Day of birth
Nationality
Street (main residence, see definition from business view)
House number (main residence, see above)
Postal code (main residence, see above)
City (main residence, see above)

long
string
string
boolean
string
dateTime
string
string
int
int
string

SetofStudyTable

SetofStandingTable

Type SemanticsSyntax

Matriculation number of the student
Date of matriculation
Field of study
Award

long
dateTime
string
string

Matriculation number of the student
Given name (all given names separated by spaces)
Surname
Sex (true is male, false is female)
Place of birth (name of the city)
Day of birth
Nationality
Street (main residence, see definition from business view)
House number (main residence, see above)
Postal code (main residence, see above)
City (main residence, see above)

long
string
string
boolean
string
dateTime
string
string
int
int
string

Information 32: StudentDBService – semantic and syntactical type definition

Now all necessary information is collected and the class model of the type SetofStudentDB can
be designed as shown below.

SetOfStudy
- matriculationnumber : long
- dateofmatriculation : Date
- fieldofstudy : String
- award : String

+ getMatriculationNumber() : long
+ setMatriculationNumber(long matnr)
+ getDateOfMatriculation() : Date
+ setDateOfMatriculation(Date daoma)
+ getFieldOfStudy() : String
+ setFieldOfStudy(String fiost)
+ getAward() : String
+ setAward(String awd)

www.cm-tm.uka.de
C&M (Prof. Abeck)

SetOfStanding
- matriculationnumber : long - givenname : String
- surname : String - sex : boolean
- dateofbirth : Date - placeofbirth : String
- street : String - housenumber : int
- city : String - codepostale : int
- nationality : String

+ getMatriculationNumber() : long + setMatriculationNumber(long matnr)
+ getGivenName() : String + setGivenName(String givnam)
+ getSurName() : String + setSurName(String surnam)
+ getSex() : boolean + setSex(boolean sx)
+ getDateOfBirth() : Date + setDateOfBirth(Date daobi)
+ getPlaceOfBirth() : String + setPlaceOfBirth(String plobi)
+ getStreet() : String + setStreet(String st)
+ getHouseNumber() : int + setHouseNumber(int hounu)
+ getCity() : String + setCity(String cy)
+ getCodePostale() : int + setCodePostale(int copo)
+ getNationality() : String + setNationality(String ny)

SetOfStanding
- matriculationnumber : long - givenname : String
- surname : String - sex : boolean
- dateofbirth : Date - placeofbirth : String
- street : String - housenumber : int
- city : String - codepostale : int
- nationality : String

+ getMatriculationNumber() : long + setMatriculationNumber(long matnr)
+ getGivenName() : String + setGivenName(String givnam)
+ getSurName() : String + setSurName(String surnam)
+ getSex() : boolean + setSex(boolean sx)
+ getDateOfBirth() : Date + setDateOfBirth(Date daobi)
+ getPlaceOfBirth() : String + setPlaceOfBirth(String plobi)
+ getStreet() : String + setStreet(String st)
+ getHouseNumber() : int + setHouseNumber(int hounu)
+ getCity() : String + setCity(String cy)
+ getCodePostale() : int + setCodePostale(int copo)
+ getNationality() : String + setNationality(String ny)

SetOfStudentDB

- standingData : SetOfStandingTable
- studyData : SetOfStudyTable

+ getStandingData() : SetOfStandingTable
+ setStandingData(SetOfStandingTable seofstata)
+ getStudyData() : SetOfStudyTable
+ setStudyData(SetOfStudyTable seofstuta)

Information 33: Components which encapsulate one return set of the StudentDBService

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 32 of 82
Universität Karlsruhe (TH)

Another component is the class StudentDBAccess that embodies the connection to SAP CM and
provides all needed methods to query information of the SAP system. As one can see, some
classes (e.g. JCO.Function) of the JCo already appear in the UML class diagram below.

www.cm-tm.uka.de
C&M (Prof. Abeck)

StudentDBAccess
- mConnection : JCO.Client
- mRepository : IRepository

- openSAPConnection()
- closeSAPConnection()
- createFunction(String name) : JCO.Function
- convertMatrNr(long matriculation_nr) : String
- getStudent(long MatrNr) : JCO.Function
- getStudydata(long MatrNr) : JCO.Function

+ isStudent(long matriculationnumber) : Boolean
+ getCompleteSet(long matriculationnumber) : SetOfStudentDB

StudentDBAccess
- mConnection : JCO.Client
- mRepository : IRepository

- openSAPConnection()
- closeSAPConnection()
- createFunction(String name) : JCO.Function
- convertMatrNr(long matriculation_nr) : String
- getStudent(long MatrNr) : JCO.Function
- getStudydata(long MatrNr) : JCO.Function

+ isStudent(long matriculationnumber) : Boolean
+ getCompleteSet(long matriculationnumber) : SetOfStudentDB

• This is the sole component of the StudentDBService that has to be
manually programmed

• Only those methods that are relevant for the ToRService are displayed

Information 34: Component that encapsulates the Access

to SAP Campus Management

Thus the next subchapter describes what the JCo is and does and how it can be used in this
context.

2.3 The Legacy System Part

2.3.1 SAP Java Connector

www.cm-tm.uka.de
C&M (Prof. Abeck)

(1) The SAP Java Connector (JCo) is a Middleware connecting ABAP
and Java applications

(2) JCo enables the interaction and communication between Java
components and SAP applications in both directions

(3) JCo is a bundle of Java classes which have to be imported into a
Java program

Information 35: SAP JAVA CONNECTOR – Overview

The SAP Java Connector (JCo) is a versatile solution for connecting to business partners which
are running a Java and not a SAP system. It enables the readout of data from a SAP system for
integrating this data into systems other than SAP as well as exhibiting the ability to develop a
simplified front end for certain SAP functions. Further simplification of communication is

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 33 of 82
Universität Karlsruhe (TH)

achieved by masking out codepages, data type conversions and details of RFC to a great extent.
All of the JCo functions are optimized for communication with SAP. Moreover, JCo is platform
independent since it is based on Java and may be used along with a valid SAP license.
The general architecture of JCo appears as follows.

www.cm-tm.uka.de
C&M (Prof. Abeck)

SAP
JCo

JCo Java API

Middleware Interface

JNI Layer

RFC Middleware

RFC Library

SAP System

Java Application

Information 36: JCo Architecture

Starting from a
1) Java application, a Java method is routed to the
2) JCo API (Application Programming Interface) and another
3) Middleware interface. This interface is used to mediate between the JCo API and the
4) RFC middleware. At this point, the method is converted to a RFC (ABAP) call with the use of
the
5) JNI (Java Native Interface) layer and the help of an
6) RFC Library and finally sent to the
7) SAP system.
The same steps in reverse are taken when a RFC call is converted to a Java method which is then
routed to the Java application, so the JCo can be seen as bidirectional, not unidirectional.

Recapitulating, the JCo gives the Core Web services the ability to communicate with a SAP
system. Hence the task of the JCo is to act as a middleware layer between the component layer
(SAP R/3) and the Core Web services. In addition the switch-over to the following chapter can
be done easily. It will describe in detail the ABAP components used by the JCo and for this
reason used by the Core Web services too. To obtain further information about syntax, classes
and methods of the JCo refer to [C&M-JCo].

2.3.2 ABAP
As already seen in Chapter 1 ABAP is the technology to work with when one wants to build
interfaces for a SAP R/3 system. Those interfaces are called Remote Function Modules (RFMs) or
Business Application Programming Interfaces (BAPIs) if they are already filled with business logic.
Within the scope of this case study, focus will only be on the RFMs because they are easier to
program and they do not need a very detailed documentation. Later on, every RFM can be
upgraded to a BAPI, but this is not the task here.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 34 of 82
Universität Karlsruhe (TH)

The main entry point for the creation of RFMs within the SAP GUI is the so-called Function
Builder that can be accessed via the transaction code SE37. It can be used to show, create or
delete function modules and BAPIs.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 37: Creation of a function group

Before one can build one's own function modules a new function group has to be created. This
is necessary for the hierarchical organization and the grouping within the SAP system. The
following steps will lead to a successful creation:

• Select Springen FGruppenverwaltung Gruppe anlegen.
• Enter the name of the function group and a short description text. The name should always

begin with the letter Z. This is the customer name space. Otherwise this ABAP program can
get lost trough a release update.

• Then, choose Sichern.
• As the last step, asks to select the package name. In the WUSKAR environment at the

Universität Karlsruhe (TH), this will always be Z001.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 38: Creation of a function group – part two

Information 22 and 23 depict all those steps to create an individual function group. Once the
disk symbol for the finishing of this process is selected, the new function group exists and can
be used when programming new ABAP function modules. To do so, the Function Builder is

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 35 of 82
Universität Karlsruhe (TH)

again selected, a new function name (e.g. Z_CM_STUDY_DATA_GET) is entered and Anlegen is
clicked. A screen very similar to the following will appear.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 39: Creation of a function module – ABAP source code editor

The first step will be to specify the import and export parameters of the function module.
Therefore the corresponding tab pages must be selected and the needed parameters entered.
There is the possibility of marking import parameters as “optional”, then they must not be filled
when using the function module. Furthermore, if the module should have to export much
structured information, the use of tables which can contain more than one row and are therewith
a very flexible way to return complex result data is possible. In normal cases, it is strongly
recommended to use already existing function modules and BAPIs within user function modules.
The other way would be to directly access the databases of the SAP system. This is possible but
may cause many problems. Database structures may for example change through a release
update or especially writing data may cause inconsistency within the whole database. To
prevent those entire problems one should be able to identify the right function modules. Again
the Function Builder is crucial. It can be used to search for function modules and afterwards to
analyze them.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 36 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 40: Searching for existing function modules

Nearly every BAPI that is available within SAP CM is named beginning with BAPI_STUDENT.
Similarly the names of the normal function modules begin with HRIQ. Taking these two strings
as search strings and clicking on the magnifier symbol, one will obtain a very long list of all
those BAPIs or function modules. Every entry is endorsed by a short description text that can be
utilized to acquire a first idea about which functionality this module provides. To receive a
deeper view, double clicking the labelling of the relevant function module or BAPI will lead to a
screen view corresponding to the following slide.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 37 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 41: Analyzing function modules – import and export parameters

The documentation of the function module as well as the import and export parameters and also
the source code can be analyzed now. This is of utmost importance in realizing how a function
module or BAPI works exactly.

Having this knowledge about existing function modules and BAPIs in mind, the new function
modules necessary for the support of the StudentDBService can be designed now. As seen in
the design of the StudentDBService in Chapter 2.2.3 this core Web service has two operations,
isStudent and GetCompleteSet. The operation GetCompleteSet can logically be divided into two
parts, one part for the standing data of the student and one part for the study relevant data. Three
ABAP function modules can be designed as interfaces for SAP CM as the conclusion of this
separation. In each of these function modules, the student is identified by his matriculation
number as a unique identifier:

• One named Z_CM_IS_STUDENT providing the check if a specified student does exist in
the system

• A second one named Z_CM_STUDENT_GET offering all standing data of a specified
student

• And a last one named Z_CM_STUDY_DATA giving back all study relevant data of a
student

While analyzing existing function modules of the SAP system, four modules can be identified
which can provide a functionality that can used by the three new function modules mentioned
above. They are named HRIQ_STUDENT_NUMBERS_GET, BAPI_STUDENT_GETDETAIL3,
BAPI_STUDENT_ADDRESS_GETDETAIL and HRIQ_STUDENT_STUDIES_GET_RFC. They
implement the following functionality within SAP CM:

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) DESIGN Page 38 of 82
Universität Karlsruhe (TH)

• HRIQ_STUDENT_NUMBERS_GET reads the matriculation number of a student and
returns the SAP-internal object ID of this student. This so-called object ID is a number
value used to represent objects within SAP CM (and a student is an object). If the student
does not exist in the system, the object ID as return value will be 0. This fact can be
used to realize the function module Z_CM_IS_STUDENT.

• BAPI_STUDENT_GETDETAIL3 needs the SAP-internal object ID as input value and then
returns most of all standing data of this student. This is very useful for
Z_CM_STUDENT_GET.

• Also useful for Z_CM_STUDENT_GET is the function module
BAPI_STUDENT_ADDRESS_GETDETAIL. As input value the object ID is necessary. The
output will be all address data of a student.

• Last but not least the function module HRIQ_STUDENT_STUDIES_GET_RFC is of great
importance for Z_CM_STUDY_DATA. It reads out the study-relevant data of a student
such as course of studies, matriculation date and so on.

Summarizing all necessary information for the implementation of the ABAP function modules
are collected now and a step-over to the next chapter can be triggered.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 39 of 82
Universität Karlsruhe (TH)

3 IMPLEMENTATION, DEPLOYMENT AND USAGE

3.1 Implementation
The implementation phase as well as the design phase is fragmented into subchapters separated
by the layers worked out in the general architecture. The approach in Chapter 2 was to do the
design top down. This was motivated focusing on the business processes and their support from
the topmost layer till inside deep ABAP code. In contrast the implementation will be done
bottom up. Then the system view stands in the foreground and the implementation of the
components as well as the implementation of the generic and aggregated Web services in each
case can be used to build upon. This means, for example, to be able to implement the core Web
services, the ABAP components have to be already implemented. It is the same with the
aggregated BPEL Web service which uses the core Web service which should already be
available.

3.1.1 Component Layer – ABAP Interfaces
The component layer is represented by the ABAP interfaces integrated and implemented within
SAP CM. ABAP interface stands in this case for RFMs that are implemented with ABAP. It is not
possible to use another programming language because extensions to the SAP module Campus
Management are restricted to ABAP as the programming language. Contrarily other SAP modules
like Human Resources (HR) in combination with SAP NetWeaverTM also support the Java Stack as
a second programming environment.

Because this is a WUSKAR case study and the “proof of concept” principle is ostensible, the
implementation and design of the ABAP components was restricted to the integration of one core
Web service (the StudentDBService) which has already been described in the last chapter. To
appropriately support the functionality of this core Web service, three RFMs were designed and
can be implemented as depicted below.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Z_CM_IS_STUDENT
HRIQ_STUDENT_NUMBERS_GET

matriculation
number

call function (matriculation number)

return (SAP-internal object ID)

SAP-internal
object ID

Information 42: IMPLEMENTATION – ABAP function module Z_CM_IS_STUDENT

Information 42 shows the information flow within the function module Z_CM_IS_STUDENT
which provides a check whether a student exists or not. This is done by calling the function

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 40 of 82
Universität Karlsruhe (TH)

module HRIQ_STUDENT_NUMBERS_GET that maps the matriculation number of a student to a
SAP-internal object ID (refer to Chapter 2.3.2 to get know what an object ID is). Thus
Z_CM_IS_STUDENT does not really contain any own functionality, it simply encapsulates the
functionality of HRIQ_STUDENT_NUMBERS_GET and makes it available for remote access.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Z_CM_STUDENT_GET
HRIQ_STUDENT_
NUMBERS_GET

matriculation number,
language

student personal data,
student address data

call function (matriculation number)

return (SAP-internal object ID)

BAPI_STUDENT_GETDETAIL3

BAPI_STUDENT_
ADDRESS_GETDETAIL

call function (SAP-internal object ID, language)

call function (object ID, language)

return (student personal data)

return (student address data)

Information 43: ABAP function module Z_CM_STUDENT_GET

The information flow of the second function module named Z_CM_STUDENT_GET is shown in
Information 43. First the matriculation number as an input value is mapped to the SAP-internal
object ID. Using this object ID, two BAPIs that deliver all standing data of a student are invoked
and the adequate extract of their result data is returned.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 41 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Z_CM_STUDY_DATA_GET
HRIQ_STUDENT_
NUMBERS_GET

matriculation number,
language

student study data

call function (matriculation number)

return (SAP-internal object ID)

HRIQ_STUDENT_
STUDIES_GET_RFC

call function (SAP-internal object ID, language)

return (student study data)

Information 44: ABAP function module Z_CM_STUDY_DATA

Z_CM_STUDY_DATA provides the study-relevant data of a student. To accomplish this, the
matriculation number is again translated into the object ID. Then the function module
HRIQ_STUDENT_STUDIES_GET_RFC is invoked and the necessary data is returned. The concrete
operational sequence is shown in Information 44 above.

As one can see, all three RFMs first use the same function module to map the matriculation
number to the object ID. Then they use different function modules to implement their
functionality. Hence they are independent and can be used alone/individually too.

One important point during and after the implementation of the ABAP interfaces is the testing of
their correctness. This can only be done by entering some test data into the accordant screens
within the SAP GUI. Once these data are saved, the ABAP function modules can be tested by
opening and running them in the Function Builder. As input values the just used test data could
be taken. To also verify how the function modules react to incorrect input values, some non-
existing data should be used. There is no other feasible way of testing the implementation of
ABAP function modules that use existing functions of SAP CM.

All three function modules together have a total amount of about 80 LOC. Their source codes
can be found in APPENDIX C.

3.1.2 Core Web services – JCo Web service
The implementation of the core Web services is achieved by using Java as the programming
language. It also may be possible to implement them in .NET or other conventional
programming languages as long as they provide a SOAP interface.
All core Web services are Java Servlets. The usage of Apache Axis as a SOAP engine in addition
to Apache Jakarta Tomcat as a Servlet container simplifies the implementation of the services.
Regular Java classes with at least one public method are automatically transformed into Web
services with SOAP interfaces. All as public declared methods together form the SOAP
interface of the service. But this procedure also causes problems, because BPEL and the Oracle
Process Manager are very prudish with the WSDL files and the SOAP messages. It is advisable

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 42 of 82
Universität Karlsruhe (TH)

to create the WSDL first and then auto-generate the Java stub and skeletons with a tool like
WSDL2Java of the Apache Axis framework. This tool takes a description of a Web service
written in WSDL and emits Java artifacts used to access the Web service [We05].
This procedure is done for all four core Web services. Three of them receive their data from
underlying MySQL databases. APPENDIX D contains the SQL statements used to fill those
databases. The fourth one takes the data from SAP CM using the JCo. It is named
StudentDBService and was already designed in detail in Chapter 2. Information 45 displays the
class model of this Web service. The other Web services use nearly the same class model;
merely some classes are named differently. Thus Information 45 gives a good overview of the
implementation of all four web services.

www.cm-tm.uka.de
C&M (Prof. Abeck)

StudentDBService : interface

StudentDBServiceLocator

StudentDBServiceSoapBindingStub

java.rmi.Remote org.apache.axis.client.Service

javax.xml.rpc.Service

StudentDBServiceSoapBindingImpl

+ . . .

StudentDBServiceSoapBindingImpl

+ . . .

org.apache.axis.wsdl.Skeleton org.apache.axis.wsdl.Skeleton

StudentDBServiceSoapBindingSkeleton

StudentDBServicePT : interface

StudentDBAccess

- mConnection : JCO.Client
- mRepository : IRepository

- openSAPConnection()
- closeSAPConnection()
- createFunction(String name) : JCO.Function
- convertMatrNr(long matriculation_nr) : String
- getStudent(long MatrNr) : JCO.Function
- getStudydata(long MatrNr) : JCO.Function

+ isStudent(long matriculationnumber) : Boolean
+ getCompleteSet(long matriculationnumber) : SetOfStudentDB

StudentDBAccess

- mConnection : JCO.Client
- mRepository : IRepository

- openSAPConnection()
- closeSAPConnection()
- createFunction(String name) : JCO.Function
- convertMatrNr(long matriculation_nr) : String
- getStudent(long MatrNr) : JCO.Function
- getStudydata(long MatrNr) : JCO.Function

+ isStudent(long matriculationnumber) : Boolean
+ getCompleteSet(long matriculationnumber) : SetOfStudentDB

Information 45: Class Model of the StudentDBService

Only the class with the bold border, namely StudentDBAccess, has to be programmed
manually. All other classes can be generated automatically by Apache Axis. The following three
information slides depict some source code snippets taken from the StudentDBAccess class.
Since it uses the JCo as its Middleware layer to interact with SAP CM, the focus will be put on
the JCo-specific operations and classes.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 43 of 82
Universität Karlsruhe (TH)

import com.sap.mw.jco.*;
[…]

private JCO.Client mConnection;
[…]

private void openSAPConnection() throws Exception {
String clientSAP = "211";
String login = "STUDENT";
String passwort = "******";
String lang = "DE";
String server ="rzdb10.rz.uni-karlsruhe.de";
String sysnum = "00";
try {

System.out.print("Verbinde mit SAP ... ");
mConnection = JCO.createClient (clientSAP, login, passwort, lang, server, sysnum);
mConnection.connect();
System.out.println("verbunden !");
System.out.println("---------------------------------");

} catch (Exception e) {
System.out.println(e.fillInStackTrace());

}
}

www.cm-tm.uka.de
C&M (Prof. Abeck)

(1) Source code to establish a connection to SAP Campus
Management

Create connection object

Connect this object to SAP CM

Define connection object

Import JCo classes

Information 46: Source code snippet of StudentDBAccess – JCO.createClient()

Information 46 illustrates the method that establishes a connection to SAP CM. At first all JCo
classes are imported by the import com.sap.mw.jco.* command. Then an object of the class
JCO.Client that will later represent the connection to SAP CM is declared. Next, the connection
parameters are set up with several variables. After this the connection object (named
mConnection) is instantiated using the method JCO.createClient(). Once the object instance is
configured with all parameters, the real connection establishment to the SAP system is invoked
by the connect() method.

private IRepository mRepository;
[…]

private JCO.Function createFunction(String name) throws Exception {
try {

mRepository = new JCO.Repository ("myRepository", mConnection);
IFunctionTemplate ft = mRepository.getFunctionTemplate(name.toUpperCase());
if (ft == null) return null;
return ft.getFunction();

} catch (Exception ex) {
throw new Exception ("Das JCO.Function-Objekt kann nicht erzeugt werden.");

}
}

www.cm-tm.uka.de
C&M (Prof. Abeck)

(1) Source code to create a JCo function template using the class
JCO.Repository

Create Repository object

Build function template

Get function object and return this object

Define interface object

Information 47: Source code snippet of StudentDBAccess – JCO.Repository

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 44 of 82
Universität Karlsruhe (TH)

Now that the connection is built up, Information 47 shows the method implemented to create an
object representing a function module within the SAP system. As the input parameter the name
of this function module is passed and an object representing the function module within Java is
returned when exiting the method. Explained step by step this means at first an interface object
of the type IRepository that represents the complete SAP function repository is built by using the
JCO.Repository class. This is necessary because the metadata of all RFMs one wants to use must
be available to the JCo and this is accomplished by creating a JCO.Repository object. For sure the
IRepository variable named mRepository in this case has to be previously declared. Then the
repository interface is used by the method getFunctionTemplate() to get an IFunctionTemplate
interface containing all the metadata (parameters and exceptions) for a specific RFM. The JCo
retrieves the metadata only once and caches it to optimize performance. Last but not least a
JCO.Function object is instantiated by the getFunction() method. This function object not only has
the metadata, but also the actual parameters for the execution of the RFM. The relationship
between a function template and a function in the JCo is similar to that between a class and an
object in Java. The code shown above encapsulates the creation of a function object. Creating a
new function object for each individual execution is very positive, thus building a separate
method. This way it is assured that the parameters do not contain any leftovers from the
previous call, like table rows that should not really be sent (back) to SAP.

public boolean isStudent(long matriculationnumber) throws Exception {
boolean valid = false;
try {

this.openSAPConnection();
String rfm = "Z_CM_IS_STUDENT";
JCO.Function isstudent = null;
try {

isstudent = this.createFunction(rfm);
} catch (Exception ex) { ex.printStackTrace(); System.exit(1); }
if (isstudent == null) { System.exit(1); }
isstudent.getImportParameterList().setValue(

this.convertMatrNr(matriculationnumber),"MATRNR");
try {

mConnection.execute(isstudent);
String obj_id = isstudent.getExportParameterList().getString("IS_STUDENT");
String ref_obj_id = "00000000";
if (! obj_id.equals(ref_obj_id)) { valid = true; }

} catch (JCO.Exception e) { }
this.closeSAPConnection();

}
catch (Exception e) { System.out.println(e.fillInStackTrace()); }
return valid;

}

www.cm-tm.uka.de
C&M (Prof. Abeck)

(1) Source code for the method isStudent to check whether a student
exists or not

Set function parameters

Execute function

Get return value from SAP CM

Create function object

Interpret SAP CM return value

Information 48: Source code snippet of StudentDBAccess –

getImportParameterList() / getExportParameterList()

Information 48 displays the source code of the method isStudent() which implements the check
whether a student exists in the SAP system or not. The method is one of the two public methods
of the StudentDBService. First of all a connection to SAP R/3 is established with the usage of the
method named openSAPConnection() that was already depicted and described in Information 46.
Then an object instance for the function module Z_CM_IS_STUDENT is created using the method
createFunction already explained above in detail. To set the parameters of the function module,
the methods getImportParameterList() and setValue() are used. getImportParameterList() accesses the
import parameter list, setValue() is used to set the value of a scalar parameter, passing the value

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 45 of 82
Universität Karlsruhe (TH)

as the first, and the name as the second argument. Many overloaded versions of setValue() exist
in the JCo, in order to support several data types. The JCo will do its best to convert any value
passed to the data type appropriate for the field, and an exception is thrown if the conversion
fails. To prevent an exception in this case, a method (namely convertMatrNr) is called receiving
the matriculation number (which is the only parameter for Z_CM_IS_STUDENT) of type Long as
input value and returning the same one as a set of eight characters which is necessarily for SAP
CM. Afterwards the execute() command passing the function object as the parameter performs
the remote procedure call. Once this is done, the return values can be accessed by the
getExportParameterList() method in the same way this is done by getImportParameterList() for the
import parameters. The method getString() receives the name of the export parameter of the RFM
as input parameter and returns the concrete value. This concrete return value of
Z_CM_IS_STUDENT is the SAP-internal object ID of the specified student. It is interpreted by
comparing it with the zero-valued object ID. Getting true as a result means no student could be
found. Otherwise, the student does exist in the system. As a last step the connection to SAP CM
is closed.

Including all methods, the StudentDBService has a total amount of about 330 LOC. In
comparison the other Web services each has less code because they do not need to implement
the complex access to SAP CM. The complete source code for the StudentDBService can be
found in APPENDIX B.

3.1.3 Composition Layer – The BPEL Process
In the design part for the BPEL process, the business process modeling of obtaining a ToR is
depicted with all necessary steps. The decision for BPEL is exposed and further needed tools
and the design are pointed out. Now the implementation of the BPEL code will be examined.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 49: IMPLEMENTATION PHASE - BPEL Code for the ToRService

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 46 of 82
Universität Karlsruhe (TH)

Information 49 depicts the BPEL process for the ToRService. It should be mentioned that the
displayed code is fragmentary. Most of the attributes, variables and assigns are omitted for
better readability. Manifesting by the surppressJoinFailure attribute, the complete error handling
is also left out.

As mentioned above to complete the BPEL code, which was generated out of BPMN
(Information 29), and to make it executable, the Oracle BPEL Designer was used. The whole
BPEL process is shown in Information 50 with its four scopes.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 50: The ToRService modelled with the Oracle BPEL Designer

Scopes are helpful to handle errors individually in subject to the location they occur. An
example for an easy error handling is shown in Information 51. The scope in which an error
emerges is aborted. A catchAll causes the error value to be written to a specific variable.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 47 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 51: Example of a simple Error Handling

After receiving a ToR request from the portal, a plausibility check is performed. This is the first
scope. Basically the StudentDBService is invoked which tells the ToRService if the assigned
matriculation number corresponds to a valid student. After that the result is written in a variable
that is visible in other scopes, too.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 52: The Scope in which the Plausibility Check is performed

As it can be seen in Information 52 if the plausibility check returns false the scopes named
InvalidStudentBranch is executed, which only contains an empty tag because nothing has to be
done. In the other case the ValidStudentBranch is executed and the necessary information is
collected.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 48 of 82
Universität Karlsruhe (TH)

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 53: The Scope in which the ToR-relevant Information is collected

First of all some scope internal variables are initialized. Then two parallel sequences are
executed. In contrast to the corresponding BPMN graph of Information 29 messages can not be
easily passed from one branch to another. So the OrganizationDBService is executed after the
StudentDBService because it needs the information about the field of study to collect
information about the respective faculty. After that both results are written to a global variable.
Thus they can be used in other branches. The second sequence queries all the performed
examinations of the student by invoking the ExaminationDBService. Then it iterates through all
these results to gain the corresponding course information using the CourseUnitDBService. Of
course the results are also written to a global variable [We05].

Concluding this scope a ToR has to be generated out of the gained information. At this point
various approaches are possible. The first approach does this using the assign tag of BPEL.
Because the BPEL specification says that in the TO tags inside of assign tags cannot contain
XPath expressions this approach is impossible. So it is impossible to handle dynamical indexing
into arrays which means that the content of the course unit tags of the XML ToR cannot be
filled out at runtime. But this had to be done at runtime because the number of examination
results is not known until runtime. So another approach has to be taken. One idea is to do the
transformation using another Web service. But to stay in the XML technology in this context
XSLT is used. A XSLT program can be invoked using a special XPath expression, so it is not
necessary to invoke the XSLT processor like an external Web services. When the ToR is
generated it is returned to the caller and the process terminates. As a BPEL engine, which is
needed to run this BPEL process, the Oracle Process Manager was installed. Its deployment and
use is described later on.

3.1.4 Presentation Layer – Web based Portal as User Interface
The Design of the Portal already depicted the usability and reasons for using Jakarta Tomcat and
Apache Axis. So far JSP supports the creation of dynamic Web pages that leverage existing

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 49 of 82
Universität Karlsruhe (TH)

business systems. JSP technology separates the design of the interface from content generation,
enabling designers to change the overall page layout without altering the underlying dynamic
content

Using some code fragments of the JSP pages, the way the JSP pages are used and how the
implementation assists the claimed tasks will be explained. Not every detail of the
implementation will be mentioned here to avoid redundancy and only an overview will be
given.

Java sever pages (JSPs) are HTML pages with embedded Java code. When a client calls this
HTML page this code is automatically transformed into servlets on the server-side. The byte
code of this servlets then runs in the Java Virtual Machine (JVM). A servlet is similar to an
applet that is executed on the server-sided. It extends the classes javax.servlet.Servlet or
javax.servlet.http.HttpServlet and is executed in a servlet container that needs to be initialized and
managed [RW05].

Important methods of a servlet are:

• doGet(): Method, e.g. processing HTTP requests from a client browser
• doPost(): Method, e.g. processing SOAP requests
• init(): Initializing the servlet, invoked by a servlet container
• destroy(): Method, to determine the servlet by the servlet container

Information 54 depicts the instantiation of a RequestDispatcher. RequestDispatcher defines an
object that receives requests from the client and sends them to any resource. This can be a
HTML file a servlet or a JSP file on the server. The object created by the servlet is used as a
wrapper around a server resource located at a particular path or given by a particular name. The
resource is defined by a leading forward slash that represents the root node.

(1) RequestDispatcher dispatcher =
getServletContext().getRequestDispatcher("/student.jsp");

(2) dispatcher.forward(request, response);

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 54: The Request Dispatcher

In our context the servlets can be used in various ways. First use is that of a forwarded value.
Information 55 depicts the forwarding of the desired format the ToR will be supplied with.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 50 of 82
Universität Karlsruhe (TH)

<html>
<link rel="stylesheet" type="text/css" href="style.css">
<body>

<center><h1>Please select desired output format!
</h1></center>

<form action="displayXML.jsp" method="post">
<table border="0" cellpadding="8" cellspacing="8">

<tr>
<td><input type="radio" name="format" value="html"> HTML</td>

</tr>
<tr>

<td><input type="radio" name="format" value="pdf"> Adobe Acrobat PDF</td>
</tr>
<tr>

<td><input type="radio" name="format" value="ps"> Postscript PS</td>
</tr>
<tr>

<td><input type="radio" name="format" value="plain"> Plain XML (Debug)</td>
</tr>
<tr>

<td><input type="submit" value=" Submit "></td>
</tr>

</table>
</form>

</body>
</html>

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 55: Choosing the desired Format of the Transcript of Records

This value can be reused within the displayXML.jsp. The value is handed over as a string and
responsible for the distinction of cases.

<%@ page language="java" contentType="text/html" %>
<%@ page import="javax.xml.transform.*"%>
<%@ page import="javax.xml.transform.stream.*"%>
<%! String FS = System.getProperty("file.separator"); %>
<%
String format = request.getParameter("format");

if (format.equals("pdf")) {
[…]

} else if (format.equals("html")) {
//set files to use
String xmlFile = "ToR.xml";
String xslFile = "ToRTemplate.xsl";

// get the real path for xml and xsl files;
String ctx = getServletContext().getRealPath("") + FS;
xslFile = ctx + xslFile;
xmlFile = ctx + xmlFile;

// transform to HTML
TransformerFactory tFactory = TransformerFactory.newInstance();
Transformer transformer = tFactory.newTransformer(new StreamSource(xslFile));
transformer.transform(new StreamSource(xmlFile), new StreamResult(out));

} else {
[…]

}
%>

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 56: Converting XML into HTML

Furthermore another use of JSPs is depicted in Information 56. With the use of the packages
javax.xml.transform and javax.xml.transform.stram generic APIs for processing transformation

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 51 of 82
Universität Karlsruhe (TH)

instructions and performing a transformation from source to result are defined. For transforming
the XML file of the ToR a new TransformerFactory is instantiated.
Information 57 depicts an exemplary XML file used for conversion. Some passages are left out
because only the structure is of importance and the complete listing would hamper clarity.

<?xml version="1.0" encoding="UTF-8"?>
<!-- ToR.xml -->

<TranscriptOfRecords xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ToRSchema.xsd">
<!-- Information about the Student and the University -->
<Header>

<SendingInstitution>
<InstitutionName>University of Karlsruhe</InstitutionName>
<FacultyDepartmentName>Computer Science</FacultyDepartmentName>
<ECTSDepartmentalCoordinator>

<Surname>Meier</Surname>
<GivenName>Markus</GivenName>
<Telephone>+49 721 608-12345</Telephone>
<Fax>+49 721 608-12345</Fax>
<EMail>ects@uka.de</EMail>

</ECTSDepartmentalCoordinator>
</SendingInstitution>
<Student>

<Surname>Huber</Surname>
<GivenName>Simone</GivenName>
<DateOfBirth>1978-12-07</DateOfBirth>
<PlaceOfBirth>Karlsruhe</PlaceOfBirth>
<Sex>false</Sex>
<DateOfMatriculation>1998-07-31</DateOfMatriculation>
<MatriculationNumber>1255779</MatriculationNumber>

</Student>
<ReceivingInstitution>

<InstitutionName>University of Strassbourg</InstitutionName>
<FacultyDepartmentName>Computer Science</FacultyDepartmentName>
<ECTSDepartmentalCoordinator>

<Surname>Binoche</Surname>
<GivenName>Juliette</GivenName>
<Telephone>+33 01337439520</Telephone>
<Fax>+33 01337439520</Fax>
<EMail>ects@strassbourg.fr</EMail>

</ECTSDepartmentalCoordinator>
</ReceivingInstitution>

[…]
</Header>

</TranscriptOfRecords>

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 57: An abstract of an exemplary Transcript of Records in XML

Information 58 depicts the XSL file structuring the output of the factory. Due to this XML the
HTML file is generated to yield the ToR. A showcase for the dynamic code generation is
figured by the xsl:for-each statement. For each block in the XML file a row of a HTML table is
generated containing the necessary columns. Every value of the XML document can be
addressed by its corresponding XPath expression.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 52 of 82
Universität Karlsruhe (TH)

<?xml version="1.0" encoding="ISO-8859-1"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">

<html>
<head>
<title>ECTS - EUROPEAN CREDIT TRANSFER</title>
</head>
<body>
[…]

<tr> <td colspan="3">NAME OF SENDING INSTITUTION: <xsl:value-of
select="//Header/SendingInstitution/InstitutionName" /></td></tr>

[…]
<xsl:for-each select="//TableOfGrades/CourseUnit">
<tr>

<td height="22"><xsl:value-of select="CourseUnitCode"/></td>
<td height="22"><xsl:value-of select="CourseTitle"/></td>
<td height="22"><xsl:value-of select="CourseDuration"/></td>
<td height="22"><xsl:value-of select="LocalGrade"/></td>
<td height="22"><xsl:value-of select="ECTSGrade"/></td>
<td height="22"><xsl:value-of select="ECTSCredits"/></td>

</tr>
</xsl:for-each>
[…]
</body>
</html>
</xsl:template>
</xsl:stylesheet>

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 58: Adressing parts of the XML Transcript of Records via XPath Expressions

So far the XML file can be transformed into HTML. Obtaining this XML file is solved via Web
services. Information 59 depicts how to invoke a Web service inside the Jakarta Tomcat servlet
container.

<html>
<body>

<%@ page import = "org.apache.axis.client.Call" %>
<%@ page import = "org.apache.axis.client.Service" %>
<%@ page import = "org.apache.axis.encoding.XMLType" %>
<%@ page import = "org.apache.axis.utils.Options" %>
<%@ page import = "org.apache.soap.rpc.Response" %>

<%@ page import = "javax.xml.rpc.ParameterMode" %>

<% String endpoint = "http://localhost:9700/orabpel/default/ToRService/1.6.8";
out.println(endpoint);
Service service = new Service();
Call call = (Call) service.createCall();
call.setTargetEndpointAddress(new java.net.URL(endpoint));
call.setOperationName("ToRService");
call.addParameter("matriculationNumber",XMLType.XSD_LONG,ParameterMode.IN);

call.setReturnType(XMLType.XSD_ANYTYPE);

Object params[] = new Object[1];
params[0]=(Object) new Long("2");

Object[] ret = call.invoke(params);

out.println("result: " + ret);

%>
</body>
</html>

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 59: JSP code for invoking the ToR Service

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 53 of 82
Universität Karlsruhe (TH)

The SOAP classes of Apache Axis are used to communicate with Web services. The import of
these classes is depicted as well as the usage. First the endpoint that specifies the used Web
service is defined. An instance of a service is created and the endpoint is assigned. Further steps
are to name and specify the operation, parameters and return types.

After that, the method ToRService can be invoked.

3.2 Deployment
This chapter describes how to install the ToRService and all obligatory components and Web
services on a system with Microsoft Windows XP Home / Professional Edition. A CD-ROM
containing all source code and other files that were addressed in this document can be found
enclosed with this document. The term $CD-ROM embodies the absolute path to the folder where
the content of this CD-ROM is located. This CD is structured as follows:

• The folder Documents contains this document, the corresponding slides, two technology
documents explaining ABAP and the JCo and other continuative material.

• The directories java respective bpel contain the core Web services and the ToRService.
• The gui_tor directory embodies all JSP files building the USOA portal as well as the

XSLT template for the ToR.
• In the dbs folder the files to create the three databases are included.
• The config directory includes several configuration files e.g. for Tomcat that had to be

edited to run the ToRService.

3.2.1 Software Requirements
To run the ToRService and the USOA Portal the following software has to be installed:

• Java 2 Platform Standard Edition SDK (Version 1.4.2)
• Apache Jakarta Tomcat (Version 5.0.28)
• Apache Axis (Version 1.1)
• MySQL Database Server (Version 4.1.10a)
• BPEL Process Manager from Oracle (Version 2.1.1)
• SAP Java Connector (Version 2.1.5)
• Microsoft .NET Framework (Version 1.1)

The software can be found in the folder $CD-ROM\External-Software.

3.2.2 Deployment of the ABAP Interfaces
Software Used version
Java J2SE JDK 1.4.2
SAP Java Connector 2.1.5
Microsoft .NET Framework 1.1

Table 1: Used software

This subchapter deals with the installation procedure of the ABAP interfaces. Because the ABAP
function modules are built in the ABAP Workbench which is directly located in the SAP system,
there is no real deployment required. Within SAP CM the function modules are already
deployed. But on the remote machines accessing those function modules some additional
software needs to be installed.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 54 of 82
Universität Karlsruhe (TH)

Basic requirement for the usage of the JCo is the installation of an actual Java JDK, preferably
version 1.4.2. The program can be found at $CD-ROM\External_Software\j2sdk_1.4.2-07_windows-
i586-p.exe. This can be done very easily using the built-in installer program. C:\j2sdk1.4.2_07\ is
used as the installation folder in this document. Additionally this directory has to be set as
JAVA_HOME in the environment variables.

The JCo itself can be downloaded at the SAP Marketplace under service.sap.com. It is best to
always use the newest version of the JCo. The given installation guideline only refers the
version 2.1.5. The corresponding installation file can be found at $CD-
ROM\External_Software\sapjco-ntintel-2.1.5.zip. Since this version, under Windows the installation
of the Microsoft .NET Framework is required. The easiest way to do this is the Microsoft Windows
Update function. Therein the selection Optional Software Updates offers the necessary installation
files. Unzip sapjco-nintel-2.1.5.zip to C:\sapjco. This folder contains two DLL files named
librfc32.dll and sapjcorfc.dll. They must be copied into the directory C:\Windows\System32 (or
analogous).

For testing purposes, set the environment variables to CLASSPATH=.;C:\sapjco\sapjco.jar and
PATH=%PATH%;C:\j2sdk1.4.2_07\bin;C:\sapjco. Now a first connection to the SAP R/3 can be
established. Therefore edit the C:\sapjco\demo\Example1.java. Compile the File with javac
Example1.java and run javac Example1.

3.2.3 Deployment and Installation of the JCo Core Web services
Software Used version
MySQL Database Server 4.1.10a
Apache Jakarta Tomcat 5.0.28
Apache Axis 1.1

Table 2: Used software

The deployment of the four core Web services as well as the installation of necessary software
components are subject of this subchapter.

The start can be done with the necessary databases. After downloading the MySQL Database
Server at dev.mysql.com/downloads or using the package $CD-ROM\External_Software\mysql-
noinstall_4.1.10a-win32.zip it can be unpacked to the desired installation directory. In this
document the installation path is C:\mysql. Changing to the folder C:\mysql\bin and executing the
command mysqld --console causes the database server to start. The following command creates
the three databases of Chapter 3.1.2 and fills in some test values: mysql < $CD-
ROM\USOA\tor\dbs\create_dbs.sql [We05].

Now the Apache Jakarta Tomcat installer can be downloaded under jakarta.apache.org or copied
from $CD-ROM\External_Software\jakarta-tomcat_5.0.28.exe. As installation path C:\tomcat is used
in this document. The installation can be validated by entering http://localhost:8080 into a
browser. Of course the corresponding service to Tomcat has to be started before. Because
Tomcat needs to process JSPs, some JVM tools either the JAVA_HOME variable has to be set
correctly or the package tools.jar has to be placed in C:\tomcat\common\lib. Additionally the jars at
$CD-ROM\USOA\tor\java\libs should be placed in C:\tomcat\common\lib.

After downloading Apache Axis under ws.apache.org/axis or using $CD-
ROM\External_Software\axis_1.1.zip, it can be deployed using the installation description of the
respective version. The folder webapps\axis of the Axis distribution has to be placed to
C:\tomcat\webapps\. The packages jaxrpc.jar and saaj.jar have to be copied from
C:\tomcat\webapps\axis\WEB-INF\lib to C:\tomcat\common\lib and after that Tomcat has to be

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 55 of 82
Universität Karlsruhe (TH)

restarted. This installation can also be validated by entering http://localhost:8080/axis/happyaxis.jsp
into a browser. If some packages are missing, Axis shows on this page where they can be found.
To be able to use the JCo within Axis, the package sapjco.jar also has to be copied to
C:\tomcat\webapps\axis\WEB-INF\lib. Last but not least the value of the parameter sendMultiRefs
must be set to false in the configuration file C:\tomcat\webapps\axis\WEB-INF\server-config.wsdd to
enable good communication with the BPEL engine. This configuration file can be found in
$CD-ROM\USOA\tor\config\tomcat\webapps\axis\WEB-INF and has to be copied to the appropriate
location.

The next step will be the deployment of the four core Web services including the one JCo Web
service. A detailed description how to deploy Web services to Axis in general can be found
under [RW05]. The Web services themselves are located at $CD-
ROM\USOA\tor\java\classes\de\cm\services. Using the corresponding deployment and
undeployment descriptors deploy.wsdd and undeploy.wsdd, they can be easily deployed into Axis.
This can be done by changing to the folder C:\tomcat\webapps\axis\WEB-INF\classes and entering
the command java -cp "%AXISCLASSPATH%" org.apache.axis.client.AdminClient –l
http://localhost:8080/axis/services/AdminService deploy.wsdd inside the shell. To deploy the four
Web services in one step, the usage of the batch file $CD-ROM\USOA\tor\java\classes\deploy.bat is
recommendable. Before doing so, the content of the folder $CD-ROM\USOA\tor\java\classes has to
be copied to a special tomcat directory, namely C:\tomcat\webapps\axis\WEB-INF\classes.
After a successful deployment of the core Web service, their access points within Axis should be
seen when typing http://localhost:8080/axis/services into the browser.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 60: The deployed four Core Web services

The service URLs of the basic configuration are:

• http://localhost:8080/axis/services/StudentDBServiceP
• http://localhost:8080/axis/services/ExaminationDBServiceP
• http://localhost:8080/axis/services/CourseUnitDBServiceP
• http://localhost:8080/axis/services/OrganisationDBServiceP

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 56 of 82
Universität Karlsruhe (TH)

To start the RemoteClient and test the core Web services the batch file $CD-
ROM\USOA\tor\RunRemoteClient.bat has to be executed into a shell and in the property file at $CD-
ROM\USOA\tor\java\src\de\cm\clients, the service URLs of the core Web services has to be set
correctly. Furthermore all the request parameters can be adjusted in this property file [We05].

3.2.4 Deployment of the BPEL process
Software Used version
Oracle BPEL Process Manager 2.1.1

Table 3: Used software

Now that the core Web services are running, the installation of the ToRService can begin. After
downloading the Oracle Process Manager at http://www.oracle.com or using the file $CD-
ROM\External_Software\orabpel_2.1.1_win32.exe the installation can be executed using the installer
program. In this document, the installation path is C:\orabpel. Go to the Start Menu and click on
Programs>Oracle BPEL Process Manager>Start BPEL PM Server to start the Process Manager. The
installation can be validated by connecting to the BPELConsole. This is done by entering
http://localhost:9700/BPELConsole into the Internet Explorer. A login is done with the default
password bpel. In the BPELConsole a click at Deploy new Process and the selection of the
ToRService at $CD-ROM\USOA\tor\bpel\bpel_ToRService_1.6.8.jar deploys the ToRService.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 61: The deployed ToRService in the Oracle Process Manager

The service URL is http://localhost:9700/orabpel/default/ToRService.
Concluding it should be mentioned that the ToRService can of course be run on any other BPEL
engine too. But this requires adaptations in the package structure and respectively in the
deployment descriptor [We05].

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 57 of 82
Universität Karlsruhe (TH)

3.2.5 Deployment of the Portal
Software Used version
Java J2SE JDK 1.4.2
Apache Jakarta Tomcat 5.0.28

Table 4: Used software

Installing the JDK has been described in Chapter 3.2.3. In this case it is assumed that the Apache
Jakarta Tomcat and the Web services are running on the same machine. Thus the JDK needed for
the Apache Jakarta Tomcat is already available. Furthermore a servlet container is needed to run
Apache Axis and support the JCo. Therefore the Apache Jakarta Tomcat is installed using the
description in the mentioned chapter. Obviously the portal could be installed on a different
computer. For simplification reasons and the facility of inspection it has been chosen to install
this software on the same computer.

To use the portal the implementation of the GUI is necessary. The JSP pages of the GUI, found
at $CD-ROM\USOA\tor\gui_tor, have to be moved to the Tomcat directory C:\tomcat\webapps\. Now
the GUI is accessible by entering http://localhost:8080/gui_tor into a browser. The login screen
should appear.

3.3 Usage
This chapter describes the usage of the GUI and how to obtain the ToR as a user.
Apache Jakarta Tomcat can be accessed via port 8080. So every user with permission to access
this port on the computer can browse to http://IP:8080/gui_tor where IP is the IP number of the
computer. Information 62 depicts the login screen of the deployed GUI. This is the first page the
user is confronted with.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 62: Login Screen of the deployed GUI

After accessing the GUI with a login name and password, the menu of the GUI appears. To
view the possibilities for a student within the GUI, the login name has to be student_test. To
view the staffs’ possibilities the login name staff_test must be chosen. These accounts are for

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 58 of 82
Universität Karlsruhe (TH)

testing purpose only. Information 63 depicts the students’ menu on the left hand side and a
frame for further content on the right. The top frame is for representation and identification.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 63: Menu of the GUI

By clicking Acquire ToR the desired output format can be chosen. The following information
slide depicts the HTML version of the ToR.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 64: The HTML Transcript of Records within the GUI

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) IMPLEMENTATION, DEPLOYMENT AND USAGE Page 59 of 82
Universität Karlsruhe (TH)

Some different functionalities appear logging in as staff. By entering a matriculation number it
is possible to view a ToR for a specific student. Obviously this function is not available for a
student.

www.cm-tm.uka.de
C&M (Prof. Abeck)

Information 65: Further Options for Staff

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 60 of 82
Universität Karlsruhe (TH)

4 OUTLOOK
The goal of this document was to depict the integration of a legacy university resource planning
system (URP) into a Service-Oriented Architecture (SOA). This goal was attained by adding
new Web service interfaces to SAP CM that were orchestrated in the SOA using BPEL.
Furthermore additional functionality was developed to support the provision of a so-called
Bologna-conforming ToR. The focus was placed on the methodology of the integration process.
As a further step, a central university portal was developed to handle user interaction.

The SOA as described before facilitates the appropriation of various functionalities deriving
from different software systems without confronting a user with specific characteristics of each
system. Because different functions are used, the user does not need to login multiple times and
a single-sign-on strategy is obtainable. Additionally the installation of further client programs
can be omitted.

Thus the first step for a service-oriented integration process is completed and the portal can be
arbitrarily enriched with further functionality. In the course of this modularization, the
hierarchical structure and the business-oriented point of view, single entities can be easily
exchanged, updated and maintained.

The following central step that is indispensable within live operation is the identity
management. Numerous systems in a heterogeneous software environment come with their own
user directory. The user directories are often different from system to system and rarely
homogeneous. Most of them pursue different approaches in Rights Management, Access
Management and all too often they also cover special function related tasks. Having a SOA in
mind there is a lack of a methodology to centralize the access to the user directory. The question
remains whether this identity management is to be rolled out and thereby be completely placed
in the SOA, whether the authentication is always bounded to the communication between the
SOA and the legacy system or as a third possibility a combination is utilized.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 61 of 82
Universität Karlsruhe (TH)

APPENDIX A WSDL schema of a core Web service
<?xml version="1.0" encoding="UTF-8"?>
<!-- StudentDBService.wsdl -->
<!-- @author weisser@cm-tm.uka.de -->

<definitions name="urn:StudentDBService"
 targetNamespace="urn:stud.services.cm.de" xmlns:tns="urn:stud.services.cm.de"
 xmlns:typns="urn:stud.services.cm.de"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

<!-- type definitions -->
<types>
 <xsd:schema targetNamespace="urn:stud.services.cm.de"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:complexType name="SetOfStandingTable">
 <xsd:all>
 <xsd:element name="matriculationNumber" type="xsd:long"/>
 <xsd:element name="surName" type="xsd:string"/>
 <xsd:element name="givenName" type="xsd:string"/>
 <xsd:element name="sex" type="xsd:boolean"/>
 <xsd:element name="placeOfBirth" type="xsd:string"/>
 <xsd:element name="dateOfBirth" type="xsd:dateTime"/>
 <xsd:element name="nationality" type="xsd:string"/>
 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="houseNumber" type="xsd:int"/>
 <xsd:element name="codePostale" type="xsd:int"/>
 <xsd:element name="city" type="xsd:string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="SetOfStudyTable">
 <xsd:all>
 <xsd:element name="matriculationNumber" type="xsd:long"/>
 <xsd:element name="dateOfMatriculation" type="xsd:dateTime"/>
 <xsd:element name="fieldOfStudy" type="xsd:string"/>
 <xsd:element name="award" type="xsd:string"/>
 </xsd:all>
 </xsd:complexType>
 <xsd:complexType name="SetOfStudentDB">
 <xsd:all>
 <xsd:element name="standingData" type="typns:SetOfStandingTable"/>
 <xsd:element name="studyData" type="typns:SetOfStudyTable"/>
 </xsd:all>
 </xsd:complexType>
 </xsd:schema>
</types>

<!-- message declarations -->
<message name="IsStudentRequestMessage">
 <part name="matriculationNumber" type="xsd:long"/>
</message>
<message name="IsStudentResponseMessage">
 <part name="validFlag" type="xsd:boolean"/>
</message>
<message name="GetCompleteSetRequestMessage">
 <part name="matriculationNumber" type="xsd:long"/>
</message>
<message name="GetCompleteSetResponseMessage">
 <part name="studentSet" type="typns:SetOfStudentDB"/>
</message>

<!-- port type declarations -->
<portType name="StudentDBServicePT">
 <operation name="isStudent">
 <input message="tns:IsStudentRequestMessage"/>
 <output message="tns:IsStudentResponseMessage"/>
 </operation>
 <operation name="getCompleteSet">
 <input message="tns:GetCompleteSetRequestMessage"/>
 <output message="tns:GetCompleteSetResponseMessage"/>
 </operation>
</portType>

<!-- binding declarations -->
<binding name="StudentDBServiceSoapBinding" type="tns:StudentDBServicePT">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="isStudent" >
 <soap:operation soapAction=""/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:stud.services.cm.de" use="encoded"/>

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 62 of 82
Universität Karlsruhe (TH)

 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:stud.services.cm.de" use="encoded"/>
 </output>
 </operation>
 <operation name="getCompleteSet">
 <soap:operation soapAction=""/>
 <input>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:stud.services.cm.de" use="encoded"/>
 </input>
 <output>
 <soap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="urn:stud.services.cm.de" use="encoded"/>
 </output>
 </operation>
</binding>

<!-- service declaration -->
<service name="StudentDBService">
 <port name="StudentDBServiceP" binding="tns:StudentDBServiceSoapBinding">
 <soap:address location="http://localhost:8080/axis/services/StudentDBService"/>
 </port>
</service>

</definitions>

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 63 of 82
Universität Karlsruhe (TH)

APPENDIX B Java Source Code
/**
 * StudentDBAccess.java
 * @author Heiko.Schandua@cm-tm.uka.de
 */
package de.cm.services.stud;

import com.sap.mw.jco.*;

public class StudentDBAccess {

 private JCO.Client mConnection;
 private IRepository mRepository;

 // Method, which establishes the SAP connection
 private void openSAPConnection() throws Exception {
 String clientSAP = "211";
 String login = "STUDENT13";
 String passwort = "TEAM13";
 String lang = "DE";
 String server ="rzdb10.rz.uni-karlsruhe.de";
 String sysnum = "00";
 try {
 System.out.print("Verbinde mit SAP ... ");
 mConnection = JCO.createClient (clientSAP, login, passwort, lang,

server, sysnum);
 mConnection.connect();
 System.out.println("verbunden !");
 System.out.println("---------------------------------");

 } catch (Exception e) { System.out.println(e.fillInStackTrace()); }

 }

 // Method, which closes the SAP connection
 private void closeSAPConnection() throws Exception {
 try {
 mConnection.disconnect();
 System.out.println("---------------------------------");

 System.out.println("Verbindung mit SAP getrennt !");
 } catch (Exception ex) { ex.printStackTrace(); System.exit(1); }
 }

 // JCo Method which creates a function Template
 private JCO.Function createFunction(String name) throws Exception {
 try {
 mRepository = new JCO.Repository ("myRepository", mConnection);

 IFunctionTemplate ft =
mRepository.getFunctionTemplate(name.toUpperCase());

 if (ft == null) return null;
 return ft.getFunction();
 } catch (Exception ex) {
 throw new Exception ("Das JCO.Function-Objekt kann nicht erzeugt

werden.");
 }
 }

 // Method for the type conversion of the matriculation number long to char[8]
 private String convertMatrNr (long matriculation_nr) {
 String matn = "" + matriculation_nr;
 while (matn.length() < 8) {
 matn = "0" + matn;
 }
 if (matn.length() > 8) {
 return "00000000";
 } else {
 return matn;
 }
 }

 // Method, which returns the function object containing the standing data
 private JCO.Function getStudent(long MatrNr) {
 String rfm = "Z_CM_STUDENT_GET";
 JCO.Function function = null;
 try {
 function = this.createFunction(rfm);
 } catch (Exception ex) {
 ex.printStackTrace();

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 64 of 82
Universität Karlsruhe (TH)

 System.exit(1);
 }
 if (function == null) {
 System.err.println (rfm + " nicht gefunden in SAP");
 System.out.println("---------------------------------");

 System.exit(1);
 }

 function.getImportParameterList().setValue(this.convertMatrNr(MatrNr),"MATRNR");
 try {
 mConnection.execute(function);
 System.out.println(rfm + " gefunden in SAP");
 System.out.println("---------------------------------");
 } catch (Exception e) {}
 return function;
 }

 // Method, which returns the function object containing the study data
 private JCO.Function getStudydata(long MatrNr) {
 String rfm = "Z_CM_STUDY_DATA_GET";
 JCO.Function function = null;
 try {
 function = this.createFunction(rfm);
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 if (function == null) {
 System.err.println (rfm + " nicht gefunden in SAP");
 System.out.println("---------------------------------");

 System.exit(1);
 }

 function.getImportParameterList().setValue(this.convertMatrNr(MatrNr),"MATRNR");
 try {
 mConnection.execute(function);
 System.out.println(rfm + " gefunden in SAP");
 System.out.println("---------------------------------");
 } catch (Exception e) {}
 return function;
 }

 // Method, which returns true if the student exists in the system
 public boolean isStudent(long matriculationnumber) throws Exception {

 boolean valid = false;
 try {
 this.openSAPConnection();
 String rfm = "Z_CM_IS_STUDENT";
 JCO.Function isstudent = null;
 try {
 isstudent = this.createFunction(rfm);
 } catch (Exception ex) {
 ex.printStackTrace();
 System.exit(1);
 }
 if (isstudent == null) {
 System.err.println (rfm + " nicht gefunden in SAP");
 System.out.println("---------------------------------");

 System.exit(1);
 }
 isstudent.getImportParameterList().setValue(

this.convertMatrNr(matriculationnumber),"MATRNR");
 try {
 mConnection.execute(isstudent);
 System.out.println(rfm + " gefunden in SAP");
 System.out.println("---------------------------------");
 String obj_id =

isstudent.getExportParameterList().getString(
"IS_STUDENT");

 String ref_obj_id = "00000000";
 if (! obj_id.equals(ref_obj_id)) {
 valid = true;
 }
 } catch (JCO.Exception e) {
 }
 this.closeSAPConnection();
 }
 catch (Exception e) { System.out.println(e.fillInStackTrace()); }
 return valid;
 }

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 65 of 82
Universität Karlsruhe (TH)

 // Method for the filling of the complete resultset of this service class
 public SetOfStudentDB getCompleteSet(long matriculationnumber) throws Exception
{

 SetOfStudentDB completeset = null;
 try {
 this.openSAPConnection();
 // Standing data ermitteln
 JCO.Function studentGet = getStudent(matriculationnumber);
 JCO.Structure stdata =

studentGet.getExportParameterList().getStructure(
"STUDENT_BASIC_DATA");

 JCO.Structure adddata =
studentGet.getExportParameterList().getStructure(
"STUDENT_ADDRESS_DATA");

 SetOfStandingTable standingset = new SetOfStandingTable();
 standingset.setMatriculationNumber(matriculationnumber);
 standingset.setGivenName(stdata.getString("FIRST_NAME"));
 standingset.setSurName(stdata.getString("LAST_NAME"));
 if (stdata.getString("GENDER_KEY").equals("1")) {
 standingset.setSex(true);
 } else if (stdata.getString("GENDER_KEY").equals("2")) {
 standingset.setSex(false);
 }
 standingset.setDateOfBirth(stdata.getDate("DATE_BIRTH"));
 standingset.setPlaceOfBirth(stdata.getString("BIRTHPLACE"));
 standingset.setStreet(adddata.getString("STREET"));
 try {
 standingset.setHouseNumber(adddata.getInt("HOUSE_NO"));
 } catch (Exception e) {}
 standingset.setCity(adddata.getString("CITY"));
 try {
 standingset.setCodePostale(adddata.getInt("POSTL_COD1"));
 } catch (Exception e) {}
 standingset.setNationality(stdata.getString("NATIONALITY_TXT"));

 // Study data ermitteln
 SetOfStudyTable studyset = new SetOfStudyTable();
 JCO.Function studydataGet = getStudydata(matriculationnumber);
 JCO.Table studydata =

studydataGet.getTableParameterList().getTable(
"STUDIENGANGSDATEN");

 if (studydata.getNumRows() > 0) {
 studyset.setMatriculationNumber(matriculationnumber);
 studyset.setDateOfMatriculation(

studydata.getDate("BEG_KEY_DATE"));
 studyset.setFieldOfStudy(

studydata.getString("PROGRAM_TXT"));
 studyset.setAward("");
 }
 this.closeSAPConnection();
 completeset = new SetOfStudentDB();
 completeset.setStandingData(standingset);
 completeset.setStudyData(studyset);
 } catch (Exception e) { System.out.println(e.fillInStackTrace()); }
 return completeset;
 }

}

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 66 of 82
Universität Karlsruhe (TH)

APPENDIX C ABAP Source Code
Function module Z_CM_IS_STUDENT:

FUNCTION Z_CM_IS_STUDENT.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(MATRNR) TYPE PIQSTUDENT12
*" EXPORTING
*" VALUE(IS_STUDENT) TYPE OBJEKTID
*"--

DATA: z_objid type OBJEKTID.

*---- Rufe FB auf, um aus Matr-Nr. die SAP interne ObjektID zu ermitteln
 CALL FUNCTION 'HRIQ_STUDENT_NUMBERS_GET'
 EXPORTING
 iv_student12 = MATRNR
 IMPORTING
 ev_objid = IS_STUDENT
 EXCEPTIONS
 OTHERS = 1.

ENDFUNCTION.

Function module Z_CM_STUDENT_GET:

FUNCTION Z_CM_STUDENT_GET.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(MATRNR) TYPE PIQSTUDENT12
*" VALUE(LANGUAGE) TYPE BAPI_LAISO-LANGU_ISO DEFAULT 'EN'
*" EXPORTING
*" VALUE(STUDENT_BASIC_DATA) TYPE BAPISTUDENT_PERSONALT
*" VALUE(STUDENT_ADDRESS_DATA) TYPE BAPISTUDENTADDRESST
*"--

DATA: z_objid type OBJEKTID.

*---- Rufe FB auf, um aus Matr-Nr. die SAP interne ObjektID zu ermitteln
 CALL FUNCTION 'HRIQ_STUDENT_NUMBERS_GET'
 EXPORTING
 iv_student12 = MATRNR
 IMPORTING
 ev_objid = z_objid.

*---- Aufrufen des BAPI zur Ermitteln der Studentenstammdaten
 CALL FUNCTION 'BAPI_STUDENT_GETDETAIL3'
 EXPORTING
 objectid = z_objid
 read_texts = 'X'
 language_iso = LANGUAGE
 IMPORTING
 studentpersonaldatat = STUDENT_BASIC_DATA.

*---- Aufrufen des BAPI zur Ermitteln der Studentenadressdaten
 CALL FUNCTION 'BAPI_STUDENT_ADDRESS_GETDETAIL'
 EXPORTING
 objectid = z_objid
 read_texts = 'X'
 language_iso = LANGUAGE
 IMPORTING
 addressdatat = STUDENT_ADDRESS_DATA.

ENDFUNCTION.

Function module Z_CM_STUDY_DATA_GET:

FUNCTION Z_CM_STUDY_DATA_GET.
*"--
""Lokale Schnittstelle:
*" IMPORTING
*" VALUE(MATRNR) TYPE PIQSTUDENT12
*" VALUE(LANGUAGE) TYPE BAPI_LAISO-LANGU DEFAULT 'EN'

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 67 of 82
Universität Karlsruhe (TH)

*" TABLES
*" STUDIENGANGSDATEN STRUCTURE PIQRFC_STUDYSEGMENTS_TXT OPTIONAL
*"--

DATA: z_objid type OBJEKTID,
 plan type PLVAR.

 plan = '01'.

*---- Rufe FB auf, um aus Matr-Nr. die SAP interne ObjektID zu ermitteln
 CALL FUNCTION 'HRIQ_STUDENT_NUMBERS_GET'
 EXPORTING
 iv_student12 = MATRNR
 IMPORTING
 ev_objid = z_objid.

*---- Aufrufen des RFC FB zur Ermitteln der Studiendaten des Studenten
 CALL FUNCTION 'HRIQ_STUDENT_STUDIES_GET_RFC'
 EXPORTING
 objectid = z_objid
 planversion = plan
 read_texts = 'X'
 read_studysegments = 'X'
 language = LANGUAGE
 TABLES
 studysegments_text = STUDIENGANGSDATEN.

ENDFUNCTION.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 68 of 82
Universität Karlsruhe (TH)

APPENDIX D SQL Statements for MySQL databases
CREATE DATABASE organizationdb;

USE organisationdb;

CREATE TABLE universitydata (
 universityname VARCHAR(64),
 city VARCHAR(64),
 codepostale INT,
 state VARCHAR(64),
 PRIMARY KEY (universityname)
);

CREATE TABLE facultydata (
 universityname VARCHAR(64),
 facultyname VARCHAR(64),
 ectscoordinator_givenname VARCHAR(64),
 ectscoordinator_surname VARCHAR(64),
 ectscoordinator_tel VARCHAR(32),
 ectscoordinator_fax VARCHAR(32),
 ectscoordinator_email VARCHAR(64),
 PRIMARY KEY (universityname, facultyname)
);

INSERT INTO universitydata VALUES ('Universitaet Karlsruhe
(TH)','Karlsruhe','76128','Deutschland');
INSERT INTO universitydata VALUES ('Universita di Bologna','Bologna','40126','IT');

INSERT INTO facultydata VALUES ('Universitaet Karlsruhe
(TH)','Informatik','Billy','Gates','+49 721 608-3248','+49 721 608-
3248','ects@ira.uka.de');
INSERT INTO facultydata VALUES ('Universitaet Karlsruhe (TH)','Master of Information
Science','Christian','Emig','+49 721 608-3248','+49 721 608-3248','emig@ira.uka.de');
INSERT INTO facultydata VALUES ('Universitaet Karlsruhe
(TH)','Staatswissenschaft','Hans','Muentefering','+49 721 608-8432','+49 721 608-
8432','muenty@ira.uka.de');
INSERT INTO facultydata VALUES ('Universitaet Karlsruhe
(TH)','Sport','Joey','Deckarm','+49 721 608-4376','+49 721 608-4376','joey.deckarm@uni-
karlsruhe.de');

CREATE DATABASE courseunitdb;

USE courseunitdb;

CREATE TABLE courseunitdata (
 courseunitcode VARCHAR(16),
 courseunittitle VARCHAR(64),
 courseunitduration ENUM('1S','2S','3S','4S','1T','2T','3T','4T','5T','6T'),
 ectscredits TINYINT,
 PRIMARY KEY (courseunitcode)
);

INSERT INTO courseunitdata VALUES ('341-SPO-87653','Leichter Lauf','1S','8');
INSERT INTO courseunitdata VALUES ('873-SPO-9735','Elfmeterschiessen','2S','6');
INSERT INTO courseunitdata VALUES ('45-SPO-1234','Wettskandale','2S','4');
INSERT INTO courseunitdata VALUES ('424-SPO-965','Hallenhalma','2T','2');
INSERT INTO courseunitdata VALUES ('832-SPO-935','Rasenschach','1T','1');
INSERT INTO courseunitdata VALUES ('872-SPO-5335','Selbstvermarktung','1S','5');

INSERT INTO courseunitdata VALUES ('893-SWI-543','Revolutionslehre','2T','4');
INSERT INTO courseunitdata VALUES ('854-SWI-2783','Praktische Putschtheorie
2','1T','4');
INSERT INTO courseunitdata VALUES ('125-SWI-7247','Die Neue Mitte','2S','6');
INSERT INTO courseunitdata VALUES ('362-SWI-685','Diaetenmanagement','1S','2');
INSERT INTO courseunitdata VALUES ('27-SWI-1276','Durch eine Labyrinth von 2 hoch 30
Reformmoeglichkeiten','3T','8');

INSERT INTO courseunitdata VALUES ('34-INFO-29775','Internet-Systeme und Web-
Applikationen','1S','6');
INSERT INTO courseunitdata VALUES ('224-INFO-65775','Complierbau','2S','4');
INSERT INTO courseunitdata VALUES ('365-INFO-32475','Softwaretechnik','2S','2');
INSERT INTO courseunitdata VALUES ('87-INFO-13324','Verteilte Datenbanken','1S','6');
INSERT INTO courseunitdata VALUES ('378-INFO-25435','Hoehere Mathematik','1S','2');

CREATE DATABASE examinationdb;

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 69 of 82
Universität Karlsruhe (TH)

USE examinationdb;

CREATE TABLE resultdata (
 matriculationnumber INT ZEROFILL,
 courseunitcode VARCHAR(16),
 localgrade
ENUM('0.7','1.0','1.3','1.7','2.0','2.3','2.7','3.0','3.3','3.7','4.0','5.0'),
 ectsgrade ENUM('A','B','C','D','E','FX','F'),
 PRIMARY KEY (matriculationnumber, courseunitcode)
);

INSERT INTO resultdata VALUES ('1','341-SPO-87653','2.3','A');
INSERT INTO resultdata VALUES ('1','873-SPO-9735','2.3','A');
INSERT INTO resultdata VALUES ('1','45-SPO-1234','2.3','A');
INSERT INTO resultdata VALUES ('1','832-SPO-935','2.3','A');
INSERT INTO resultdata VALUES ('1','872-SPO-5335','2.3','A');

INSERT INTO resultdata VALUES ('2','362-SWI-685','1.7','C');
INSERT INTO resultdata VALUES ('2','893-SWI-543','1.7','C');
INSERT INTO resultdata VALUES ('2','27-SWI-1276','1.7','C');
INSERT INTO resultdata VALUES ('2','125-SWI-7247','3.7','C');
INSERT INTO resultdata VALUES ('2','854-SWI-2783','4.0','B');

INSERT INTO resultdata VALUES ('3','34-INFO-29775','3.0','E');
INSERT INTO resultdata VALUES ('3','224-INFO-65775','3.0','E');

INSERT INTO resultdata VALUES ('17','34-INFO-29775','1.3','A');
INSERT INTO resultdata VALUES ('17','224-INFO-65775','1.7','B');
INSERT INTO resultdata VALUES ('17','87-INFO-13324','2.0','C');

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 70 of 82
Universität Karlsruhe (TH)

APPENDIX E XSLT code for Generating the HTML ToR

<?xml version="1.0" encoding="ISO-8859-1"?>
<!-- HTMLToRTemplate.xslt -->
<!-- @author Tom.Stiller@cm-tm.uka.de -->

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head>
<title>ECTS - EUROPEAN CREDIT TRANSFER SYSTEM</title>
</head>

<body>

<table border="0" width="800" cellspacing="10" cellpadding="2" id="table1">
 <tr>
 <td>
 <p align="center">
 ECTS - EUROPEAN CREDIT TRANSFER SYSTEM</p>
 <p align="center">
 TRANSCRIPT OF RECORDS</p><p></p></td>
 </tr>
 <tr>
 <td>
 <table border="2" width="100%" cellspacing="0" cellpadding="0"
bordercolor="#000000" id="table2">
 <tr>
 <td>
 <table border="0" width="100%" cellspacing="4" cellpadding="0" id="table3">
 <tr>
 <td colspan="3">NAME OF SENDING INSTITUTION:
 <xsl:value-of select="//Header/SendingInstitution/InstitutionName" />
 </td>
 </tr>
 <tr>
 <td colspan="3">Faculty/Department of:
 <xsl:value-of
select="//Header/SendingInstitution/FacultyDepartmentName" />
 </td>
 </tr>
 <tr>
 <td colspan="3">ECTS departmental co-ordinator:
 <xsl:value-of
select="//Header/SendingInstitution/ECTSDepartmentalCoordinator/Surname" />,
 <xsl:value-of
select="//Header/SendingInstitution/ECTSDepartmentalCoordinator/GivenName" /></td>
 </tr>
 <tr>
 <td width="33%">Tel.:
 <xsl:value-of
select="//Header/SendingInstitution/ECTSDepartmentalCoordinator/Telephone" />
 </td>
 <td width="33%">Fax.:
 <xsl:value-of
select="//Header/SendingInstitution/ECTSDepartmentalCoordinator/Fax" />
 </td>
 <td width="33%">e-mail box:
 <xsl:value-of
select="//Header/SendingInstitution/ECTSDepartmentalCoordinator/EMail" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table border="2" width="100%" cellspacing="0" cellpadding="0"
bordercolor="#000000" id="table6">
 <tr>
 <td>
 <table border="0" width="100%" cellspacing="4" cellpadding="0" id="table7">
 <tr>
 <td>NAME OF STUDENT:
 <xsl:value-of select="//Header/Student/Surname" />
 </td>

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 71 of 82
Universität Karlsruhe (TH)

 <td colspan="2" width="45%">First name:
 <xsl:value-of select="//Header/Student/GivenName" />
 </td>
 </tr>
 <tr>
 <td>Date and place of birth:
 <xsl:value-of select="//Header/Student/DateOfBirth" />,
 <xsl:value-of select="//Header/Student/PlaceOfBirth" />
 </td>
 <td colspan="2" width="45%">Sex:
 <xsl:if test="//Header/Student/Sex='false'">female</xsl:if>
 <xsl:if test="//Header/Student/Sex='true'">male</xsl:if>
 </td>
 </tr>
 <tr>
 <td colspan="2">Matriculation date:
 <xsl:value-of select="//Header/Student/DateOfMatriculation" />
 </td>
 <td width="45%">Matriculation number:
 <xsl:value-of select="//Header/Student/MatriculationNumber" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table border="2" width="100%" cellspacing="0" cellpadding="0"
bordercolor="#000000" id="table10">
 <tr>
 <td>
 <table border="0" width="100%" cellspacing="4" cellpadding="0" id="table11">
 <tr>
 <td colspan="3">NAME OF RECEIVING INSTITUTION:
 <xsl:value-of
select="//Header/ReceivingInstitution/InstitutionName" />
 </td>
 </tr>
 <tr>
 <td colspan="3">Faculty/Department of:
 <xsl:value-of
select="//Header/ReceivingInstitution/FacultyDepartmentName" />
 </td>
 </tr>
 <tr>
 <td colspan="3">ECTS departmental co-ordinator:
 <xsl:value-of
select="//Header/ReceivingInstitution/ECTSDepartmentalCoordinator/Surname" />,
 <xsl:value-of
select="//Header/ReceivingInstitution/ECTSDepartmentalCoordinator/GivenName" />
 </td>
 </tr>
 <tr>
 <td width="33%">Tel.:
 <xsl:value-of
select="//Header/ReceivingInstitution/ECTSDepartmentalCoordinator/Telephone" />
 </td>
 <td width="33%">Fax.:
 <xsl:value-of
select="//Header/ReceivingInstitution/ECTSDepartmentalCoordinator/Fax" />
 </td>
 <td width="33%">e-mail box:
 <xsl:value-of
select="//Header/ReceivingInstitution/ECTSDepartmentalCoordinator/EMail" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td>
 <table border="2" width="100%" cellspacing="0" cellpadding="0"
bordercolor="#000000" id="table14">
 <tr>
 <td>
 <table border="0" width="100%" cellspacing="5" id="table15">
 <tr>
 <td>Course unit code</td>
 <td width="33%">Title of course unit</td>

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) OUTLOOK Page 72 of 82
Universität Karlsruhe (TH)

 <td>Duration of course unit</td>
 <td width="10%">Local grade</td>
 <td width="10%">ECTS grade</td>
 <td width="10%">ECTS credits</td>
 </tr>
 <tr>
 <td colspan="6" width="100%" height="1" bordercolor="#000000">
 <hr noshade="" color="#000000" size="1"></hr></td>
 </tr>
 <xsl:for-each select="//TableOfGrades/CourseUnit">
 <tr>
 <td height="22"><xsl:value-of select="CourseUnitCode"/></td>
 <td height="22"><xsl:value-of select="CourseTitle"/></td>
 <td height="22"><xsl:value-of select="CourseDuration"/></td>
 <td height="22"><xsl:value-of select="LocalGrade"/></td>
 <td height="22"><xsl:value-of select="ECTSGrade"/></td>
 <td height="22"><xsl:value-of select="ECTSCredits"/></td>
 </tr>
 </xsl:for-each>
 <tr>
 <td colspan="6" width="100%" height="1" bordercolor="#000000">
 <hr noshade="" color="#000000" size="1"></hr></td>
 </tr>

 <tr>
 <td></td>
 <td width="33%"></td>
 <td></td>
 <td width="10%"></td>
 <td width="10%">Total</td>
 <td width="10%">
 <xsl:value-of select="//TableOfGrades/TotalECTSCredits" /></td>
 </tr>

 </table>
 </td>
 </tr>
 </table>

 </td>
 </tr>
 <tr>
 <td>Diploma/degree awarded: </td>
 </tr>
 <tr>
 <td></td>
 </tr>
</table>
</body>
</html>

</xsl:template>
</xsl:stylesheet>

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 73 of 82
Universität Karlsruhe (TH)

TABLES

Abbreviations and Glossary

Abbreviation
or Term

Full Name and/or
Term Description

ABAP Advanced Business Application Programming
Programming language for the development of applications for SAP systems.

API Application Programming Interface
An Application Programming Interface is a set of definitions of the ways one
piece of computer software communicates with another. It is a method of
achieving abstraction, usually (but not necessarily) between lower-level and
higher-level software.

BAPI Business Application Programming Interface
Interface on the business object layer, providing access for non-SAP
components.

BPEL Business Process Execution Language
In computer science, the Business Process Execution Language (BPEL) is an
XML language to describe business processes. A BPEL program is invoked as
a Web service, and it can interact with the external world only by calling Web
services. The standard that defines how BPEL is used in Web service
transactions is BPEL4WS also known as WS-BPEL. BPEL is designed by
IBM and Microsoft, based on their respective work on WSFL and XLANG,
which are both superseded by BPEL. In April 2003, BPEL was submitted to
OASIS and is now being standardized in the Web services BPEL Technical
Committee [Wikipedia, http://en.wikipedia.org/wiki/BPEL].

BPM

Business Process Management
The term Business Process Management (or BPM) refers to a set of activities
which organizations can perform to either optimize their business processes or
adapt them to new organizational needs. As these activities are usually aided
by software tools, the term BPM is synonymously used to refer to the software
tools themselves.

Although it can be said that organizations have been performing BPM for
some time, a new impetus has been given to the theme with the advent of
software tools (business process management systems or BPMS) which allow
for the direct execution of the business processes without a costly and time
intensive development of the required software. In addition, these tools can
also monitor the execution of the business processes, providing the
management of an organization the means to analyze their performance and
make changes to the original processes with the aim of improving them. Using
the BPMS the modified processes can then be quickly placed into operation
[Wikipedia, http://de.wikipedia.org/wiki/Business_Process_Management].

BPMN Business Process Modeling Notation
Important specification in the context of Business Process Modeling (BPM)

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 74 of 82
Universität Karlsruhe (TH)

developed by the Business Process Management Initiative (BPMI).

BOR Business Object Repository
The Business Object Repository is the central access point to the SAP business
object types and their BAPIs.

CGI Common Gateway Interface
Common Gateway Interface is an important World Wide Web technology that
enables a client web browser to request data from a program executed on the
Web server. CGI specifies a standard for passing data between the client and
the program.

COBOL COBOL is a third-generation programming language. Its name is an acronym,
for COmmon Business Oriented Language, defining its primary domain in
business, finance, and administrative systems for companies and governments.
COBOL was initially created in 1959 by The Short Range Committee, one of
three committees proposed at a meeting held at the Pentagon in May 1959,
organized by Charles Phillips of the United States Department of Defense. The
Short Range Committee was formed to recommend a short range approach to a
common business language.
Nowadays many COBOL programs are still in use in major commercial
enterprises, notably financial institutions. The expense of rewriting a very
large code base that has already been debugged, in a new language has not
been thought worth any benefits that might ensue. In the late 1990s, the
Gartner Group, a data-processing industry research organization, estimated
that of the 300 billion lines of computer code that existed, eighty percent - or
240 billion lines - were COBOL. They also reported that more than half of all
new mission-critical applications were still being created using COBOL.
[http://en.wikipedia.org/wiki/COBOL].

ECTS The European Credit Transfer and Accumulation System
A student-centered system based on the student workload required to achieve
the objectives of a program, objectives preferably specified in terms of the
learning outcomes and competences to be acquired
[http://europa.eu.int/comm/education/programmes/socrates/ects_en.html].

EAI Enterprise Application Integration
“Enterprise Application Integration (EAI) is the use of software and
architectural principles to bring together (integrate) a set of enterprise
computer applications. It is an area of computer systems architecture that
gained wide recognition from about 2004 onwards. EAI is related to
middleware technologies such as message-oriented middleware MOM, and
data representation technologies such as XML. Newer EAI technologies
involve using web services as part of Service-oriented Architecture as a means
of integration.”
[Wikipedia, http://en.wikipedia.org/wiki/Enterprise_application_integration]

ERP Enterprise Resource Planning
ERP systems are management information systems that integrate and automate
many of the business practices associated with the operations or production
aspects of a company.

HTML HyperText Markup Language
In computing, HyperText Markup Language is a markup language designed

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 75 of 82
Universität Karlsruhe (TH)

for the creation of web pages and other information viewable in a browser.

HTTP HyperText Transfer Protocol
HTTP is the primary method used to convey information on the World Wide
Web. The original purpose was to provide a way to publish and receive HTML
pages.

J2SE Java-2-Platform, Standard Edition
Variant of the Java framework for the development of client applications.

JCo SAP Java Connector
A Java-based middleware, acting as a bridge between ABAP and Java.

JDK Java Development Toolkit
Set of design tools (interpreter, compiler) and class libraries

JNI Java Native Interface
The Java Native Interface (JNI) is a programming framework that allows Java
code running in the Java virtual machine (VM) to call and be called by native
applications (programs specific to a hardware and operating system platform)
and libraries written in other languages, such as C, C++ and assembly.
The JNI is used to write native methods to handle situations when an
application cannot be written entirely in the Java programming language such
as when the standard Java class library does not support the platform-
dependent features or program library. It is also used to modify an existing
application, written in another programming language, to be accessible to Java
applications [Wikipedia, http://en.wikipedia.org/wiki/JNI].

JSP Java Server Pages
JSP or Java Server Pages, known to some as the Java Scripting Preprocessor,
is a Java technology that allows developers to dynamically generate HTML,
XML or some other type of web page. The technology allows Java code and
certain pre-defined actions to be embedded into static content [Wikipedia,
http://en.wikipedia.org/wiki/JavaServer_Pages].

Legacy System A legacy system is an antiquated computer system or application program
which continues to be used because the user (typically an organization) does
not want to replace or redesign it [Wikipedia,
http://en.wikipedia.org/wiki/Legacy_system].

RFC Remote Function Call
In the SAP context, RFC stands for Remote Function Call and is used to
invoke function modules. Technically, it the same as a Remote Procedure Call
(RPC).

RFM RFC-enabled Function Module
SAP program module, programmed in ABAP, which can be called by other
systems.

RPC Remote Procedure Call
„A remote procedure call (RPC) is a protocol that allows a computer program
running on one host to cause code to be executed on another host without the
programmer needing to explicitly code for this. When the code in question is
written using object-oriented principles, RPC is sometimes referred to as

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 76 of 82
Universität Karlsruhe (TH)

remote invocation or remote method invocation.” [Wikipedia,
http://en.wikipedia.org/wiki/RPC]

SAP SAP (Systeme, Anwendungen, Produkte in der Datenverarbeitung)
SAP is an acronym for "Systeme, Anwendungen, Produkte in der
Datenverarbeitung", which means "Systems, Applications and Products in data
processing". The company was founded in 1972 by five former IBM
employees. As of 2005, SAP employs over 28,900 people in more than 50
countries.

SAP CM SAP Campus Management
Software module Campus Management of the SAP R/3 system especially for
University Resource Planning (URP).

SAP GUI Client program to access SAP R/3 Systems
Graphical user interface (or GUI, pronounced "gooey") used to access SAP R/3
systems.

SAP R/3 SAP R/3
SAP R/3 is the name of the main ERP software developed by the company SAP.
Its new version is named mySAP.

Servlet The Java Servlet API allows a software developer to add dynamic content to a
web server using the Java platform. The generated content is commonly
HTML, but may be other data such as XML. Servlets are the Java counterpart
to dynamic web content technologies such as CGI. It has the ability to
maintain state after many server transactions. This is done using HTTP
Cookies, session variables or URL rewriting.

SOA Service-oriented Architecture
 “A Service-oriented Architecture (SOA) is a form of distributed systems
architecture that is typically characterized by the following properties:

• Logical view: The service is an abstracted, logical view of actual
programs, databases, business processes, etc., defined in terms of what
it does, typically carrying out a business-level operation.

• Message orientation: The service is formally defined in terms of the
messages exchanged between provider agents and requester agents,
and not the properties of the agents themselves. The internal structure
of an agent, including features such as its implementation language,
process structure and even database structure, are deliberately
abstracted away in the SOA: using the SOA discipline one does not
and should not need to know how an agent implementing a service is
constructed. A key benefit of this concerns so-called legacy systems.
By avoiding any knowledge of the internal structure of an agent, one
can incorporate any software component or application that can be
"wrapped" in message handling code that allows it to adhere to the
formal service definition.

• Description orientation: A service is described by machine-
processable meta data. The description supports the public nature of
the SOA: only those details that are exposed to the public and
important for the use of the service should be included in the
description. The semantics of a service should be documented, either
directly or indirectly, by its description.

• Granularity: Services tend to use a small number of operations with

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 77 of 82
Universität Karlsruhe (TH)

relatively large and complex messages.
• Network orientation: Services tend to be oriented toward use over a

network, though this is not an absolute requirement.
• Platform neutral: Messages are sent in a platform-neutral, standardized

format delivered hrough the interfaces. XML is the most obvious
format that meets this constraint.”

[W3C Working Group Note 11.02.2004, http://www.w3.org/TR/ws-arch/]

SQL Structured Query Language
SQL is the most popular computer language used to create, modify and
retrieve data from relational database management systems.

ToR Transcript of Records
At the end of a time of study at a university, the students receive a report
(Transcript of Records) stating their completed courses and exams. In this
report, the students’ achievements are stated in a plain and comprehensive
way, such that a transfer to another higher education institution according to
the Bologna requirements can be achieved smoothly.

UML Unified Modeling Language
Language to describe any objects (e.g., software systems or business units) in a
semi-formal way using graphical elements.

URP University Resource Planning
University Resource Planning is a university-oriented ERP solution. It consists
of supplementary services and integrated administration information services.

USOA University SOA
Name of the SOA which supports business processes of universities.

Web service “A Web service is a software system designated to support interoperable
machine-to-machine interaction over a network. It has an interface described
in a machine-processable format (specifically WSDL). Other systems interact
with the Web service in a manner prescribed by its description using SOAP
messages, typically conveyed using HTTP with an XML serialization in
conjunction with other Web-related standards. A Web service is an abstract
notion that must be implemented by a concrete agent. The agent is the concrete
piece of software or hardware that sends and receives messages, while the
(Web-)service is the resource characterized by the abstract set of functionality
that is provided.”
[W3C Working Group Note 11.02.2004, http://www.w3.org/TR/ws-arch/]

WSDL Web Service Description Language
XML format used for describing Web service interfaces.

WSIF Web Service Invocation Framework
WSIF stands for the Web services Invocation Framework. It supports a simple
Java API for invoking Web services, no matter how or where the services are
provided. The framework allows maximum flexibility for the invocation of
any WSDL-described service [Apache Web Services Project,
http://ws.apache.org/wsif/overview.html].

WUSKAR Werkstatt UnternehmensSoftware KARlsruhe
WUSKAR has been initiated upon the recommendation of a task force of the

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 78 of 82
Universität Karlsruhe (TH)

state government of Baden-Wuerttemberg.
Students of computer science in all higher education institutions in Karlsruhe
have access to virtual servers in order to solve problems coming from practical
cases in the industry.
Thus students gain knowledge about software used in industrial applications
and additionally acquire skills regarding methods of problem solving
techniques in the industry.

XML eXtensible Markup Language
W3C recommendation for creating special-purpose markup languages; it is a
simplified subset of SGML, capable of describing many different kinds of
data.

XPath XML Path Language
XPath is a language for addressing parts of an XML document, designed to be
used by both XSLT and XPointer vocabulary [W3C consortium,
http://www.w3.org].

XPointer XML Pointer Language (XPointer) is used as the basis for a fragment
identifier for any URI reference that locates a resource whose Internet media
type is one of text/xml, application/xml, text/xml-external-parsed-entity, or
application/xml-external-parsed-entity [W3C consortium, http://www.w3.org].

XSL XSL is a family of recommendations for defining XML document
transformation and presentation. It consists of three parts: XSL
Transformations (XSLT), the XML Path Language (XPath) and XSL
Formatting Objects (XSL-FO) an XML vocabulary for specifying formatting
semantics vocabulary [W3C consortium, http://www.w3.org].

XSLT XSLT is designed for use as part of XSL, which is a stylesheet language for
XML. In addition to XSLT, XSL includes an XML vocabulary for specifying
formatting. XSL specifies the styling of an XML document by using XSLT to
describe how the document is transformed into another XML document that
uses the formatting vocabulary [W3C consortium, http://www.w3.org].

Index

A
ABAP 6, 16, 19, 33, 39
API 26

B
BAPI 18, 19, 36, 40
Bologna-Process 5
BOR 18
BPEL 1, 5, 21, 26, 28, 41
BPMN 24, 26, 27

C
CGI 25
COBOL 15

E
ECTS 5, 6, 13, 14

H
HTML 24
HTTP 26

J
JCo 21, 32, 33, 42
JNI 33
JSP 25

L
Legacy System 8

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 79 of 82
Universität Karlsruhe (TH)

R
RFC 18, 33
RFM 18, 21, 33, 39
RPC 26

S
SAP 15, 18
SAP CM 1, 5, 6, 8, 15, 21, 39
SAP GUI 15, 20
SAP R/3 15, 33
Servlet 25, 41
SOA 1, 5, 20, 21, 28, 60
SOAP 26, 41
SQL 15

T
ToR 5, 9, 10, 15, 19, 21

U
UML 32
URP 1, 5, 6, 15, 60
USOA 20, 21

W
Web service 26
WSDL 26, 29, 41
WSIF 26
WUSKAR 5, 6, 39

X
XML 26

Information and Exercise Slides
Information 1: Roadmap of the Case Study .. 6
Information 2: Concrete Challenges of the Case Study University SOA 6
Information 3: Milestones of the Bologna Process ... 8
Information 4: Business Processes.. 8
Information 5: Consult a Student as a concrete Business Process .. 9
Information 6: Appearance and Usage of the Transcript of Records.. 10
Information 7: Business Object Diagram.. 11
Information 8: Overview about the Student Information... 11
Information 9: Overview about the Examination Information.. 12
Information 10: Overview about the Course Unit Information... 12
Information 11: Overview about the Organisation Information.. 13
Information 12: An empty Transcript of Records ... 13
Information 13: What is ECTS – key features .. 14
Information 14: What is ECTS – Grades .. 15
Information 15: Client-Server-Architecture of SAP R/3 .. 16
Information 16: SAP GUI ... 16
Information 17: Development Workbench.. 17
Information 18: Classification... 17
Information 19: Business Application Programming Interface... 18
Information 20: SAP Business Object Repository (BOR) .. 18
Information 21: Possibilities for getting a ToR within the SAP System..................................... 20
Information 22: DESIGN – General Architecture .. 21
Information 23: BPMN Process Model of the GUI for ToR queries .. 22
Information 24: Login Screen ... 23
Information 25: Choose output format.. 23
Information 26: Display ToR (HTML page in this case) .. 24
Information 27: Apache Jakarta Tomcat ... 25
Information 28: Apache Axis.. 26
Information 29: BPMN Internal Business Process – Get ToR.. 27
Information 30: Core Web services – SOA classification .. 29
Information 31: StudentDBService and its semantic and syntactical definition 30
Information 32: StudentDBService – semantic and syntactical type definition.......................... 31
Information 33: Components which encapsulate one return set of the StudentDBService......... 31
Information 34: Component that encapsulates the Access to SAP Campus Management 32

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 80 of 82
Universität Karlsruhe (TH)

Information 35: SAP JAVA CONNECTOR – Overview ... 32
Information 36: JCo Architecture ... 33
Information 37: Creation of a function group ... 34
Information 38: Creation of a function group – part two .. 34
Information 39: Creation of a function module – ABAP source code editor.............................. 35
Information 40: Searching for existing function modules... 36
Information 41: Analyzing function modules – import and export parameters 37
Information 42: IMPLEMENTATION – ABAP function module Z_CM_IS_STUDENT........ 39
Information 43: ABAP function module Z_CM_STUDENT_GET ... 40
Information 44: ABAP function module Z_CM_STUDY_DATA... 41
Information 45: Class Model of the StudentDBService.. 42
Information 46: Source code snippet of StudentDBAccess – JCO.createClient() 43
Information 47: Source code snippet of StudentDBAccess – JCO.Repository........................... 43
Information 48: Source code snippet of StudentDBAccess – getImportParameterList() /

getExportParameterList()... 44
Information 49: IMPLEMENTATION PHASE - BPEL Code for the ToRService 45
Information 50: The ToRService modelled with the Oracle BPEL Designer............................. 46
Information 51: Example of a simple Error Handling .. 47
Information 52: The Scope in which the Plausibility Check is performed 47
Information 53: The Scope in which the ToR-relevant Information is collected........................ 48
Information 54: The Request Dispatcher .. 49
Information 55: Choosing the desired Format of the Transcript of Records 50
Information 56: Converting XML into HTML ... 50
Information 57: An abstract of an exemplary Transcript of Records in XML............................ 51
Information 58: Adressing parts of the XML Transcript of Records via XPath Expressions..... 52
Information 59: JSP code for invoking the ToR Service .. 52
Information 60: The deployed four Core Web services .. 55
Information 61: The deployed ToRService in the Oracle Process Manager............................... 56
Information 62: Login Screen of the deployed GUI ... 57
Information 63: Menu of the GUI ... 58
Information 64: The HTML Transcript of Records within the GUI ... 58
Information 65: Further Options for Staff... 59

References
[AE+04] Sebastian Abeck, Christian Emig, Jochen Weisser: Fallstudie Transcript of

Records, Bericht zum Projekt „Werkstatt Unternehmenssoftware
Karlsruhe“ (WUSKAR), Karlsruhe 2004.

[APACHE] Official Homepage of the Apache Project
http://www.apache.org

[APACHE-WSIF] Official Homepage of the Apache Web Services Project, Web Services
Invocation Framework
http://ws.apache.org/wsif/

[BE05]

Ingo Beutler, Sabine Enge: Entwicklung von Core-Webservices zur
Generierung eines Transcript of Records (WUSKAR-Projektteam WiSe
2004/05), Praktikumsarbeit, Universität Karlsruhe (TH), 2005.

[BPMN1.0] Business Process Management Initiative (BPMI): Business Process
Modeling Notation (BPMN), Version 1.0, BPMI.org, May 2004.

[CB03] Communiqué of the Conference of Ministers responsible for Higher

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 81 of 82
Universität Karlsruhe (TH)

Education
in Berlin on 19 September 2003, REALISING THE EUROPEAN
HIGHER EDUCATION AREA, http://www.bologna-
berlin2003.de/pdf/Communique1.pdf, 2003.

[C&M-ABAP]

Cooperation & Management, Tomas Stiller: Einführung in ABAP,
Dokument im Rahmen der C&M Technologien und Werkzeuge, Universität
Karlsruhe (TH), C&M (Prof. Abeck), Mai 2005.

[C&M-JCo]

Cooperation & Management, Heiko Schandua: Einführung zum SAP Java
Connector, Dokument im Rahmen der C&M Technologien und Werkzeuge, ,
Universität Karlsruhe (TH), C&M (Prof. Abeck), Mai 2005.

[EA04] Christian Emig, Sebastian Abeck: Werkstatt Unternehmenssoftware
Karlsruhe - Ein Beitrag zur praxisorientierten Informatik-Ausbildung an
Hochschulen, erscheint in: UNIKATH, Karlsruhe 2004.

[EM+05] Christian Emig, Christof Momm, Jochen Weisser, Sebastian Abeck:
Programming in the Large based on the Business Process Modelling
Notation, Jahrestagung der Gesellschaft für Informatik (GI), Bonn, 2005.

[Er04] Thomas Erl: Service-Oriented Architecture – A Field Guide to Integrating
XML and Web Services, Prentice Hall, 2004.

[EU01] Communiqué of the meeting of European Ministers in charge of Higher
Education in Prague on May 19th 2001, TOWARDS THE EUROPEAN
HIGHER EDUCATION AREA, http://www.bologna-
berlin2003.de/pdf/Prague_communiquTheta.pdf, 2001.

[EU99] Joint declaration of the European Ministers of Education, The Bologna
Declaration of June 19th 1999, http://www.bologna-
berlin2003.de/pdf/bologna_declaration.pdf, 1999.

[JAVA-SUN] Sun Developer Network
http://java.sun.com/

[Li03] David S. Linthicum: Next Generation Application Integration, From
simple Information to Web Services, Addison Wesley, December 2003.

[RS+05] Elmar Reuther, Tomas Stiller, Sophie Tardif d’Hamonville, Jochen
Weisser, Christian Emig, Sebastian Abeck: Geschäftsprozess- und
Systemmodellierung von SAP Campus Management, Bericht zum Projekt
„Werkstatt Unternehmenssoftware Karlsruhe“ (WUSKAR), Karlsruhe
2005.

[RW05]

Erik Rull, Jochen Weisser: Einführung in Java Webservices, Dokument im
Rahmen der C&M Technologien und Werkzeuge, Universität Karlsruhe (TH),
2005.

[SAP-ABAP]

SAP AG: ABAP-Einführung, Michael Höding, HCC-Kurs an der FH
Brandenburg, März 2005.

[SAP-
BasisTechnologien]

SAP AG: SAP Basis Technologien, HCC-Kurs an der TU München, März
2005.

WERKSTATT UNTERNEHMENSSOFTWARE KARLSRUHE (WUSKAR) – CASE STUDY UNIVERSITY SOA

© C&M (Prof. Abeck) TABLES Page 82 of 82
Universität Karlsruhe (TH)

[SAP-CM] SAP AG: Campus Management (IS-HER-CM) Release 471, Online Help,

26.02.2003.

[SAP-Help] SAP Knowledge Warehouse, Communication between ABAP- and Non-
ABAP Technologies, SAP Java Connector,
http://help.sap.com/saphelp_erp2004/.

[SAP-JCo]

Valentin Nicolescu, Yuriy Taranovych: Einführungsschulung:
Entwicklung von SAP Web-Applikationen mit Java/JCo, (HCC-Kurs an
der TU München), März 2005.

[Sl05] Christian Slamka: Portal Integration of SAP Campus Management,
Practical Work, University of Karlsruhe (TH), C&M (Prof. Abeck), 2005.

[We05]

Jochen Weisser: University SOA – Building a Transcript of Records
Service, Studienarbeit, Universität Karlsruhe, 2005.

