
A Workflow-Driven Approach for the
Efficient Integration of Web Services in Portals

Patrick Freudenstein1, Martin Nussbaumer1, Frederic Majer1, Martin Gaedke2

1University of Karlsruhe, Institute of Telematics,

 IT Management and Web Engineering Research Group,
Engesserstr. 4, 76128 Karlsruhe, Germany

{freudenstein, nussbaumer, majer}@tm.uka.de

2Chemnitz University of Technology, Faculty of Computer Science,
Distributed and Self-organizing Computer Systems Group,

Straße der Nationen 62, 09107 Chemnitz, Germany
gaedke@informatik.tu-chemnitz.de

Abstract

As Service-oriented Architectures (SOA) mature, an
efficient approach for the integration of Web services in
portals is required. This holds true especially in medium
and large-scale SOA-based systems with a multitude of
Web services to be made accessible to the users. The
integration scenarios, i.e. the Web service-based features
within a portal, are usually composed of complex
sequences of user interaction and service communication,
aggravating the need for an efficient integration solution.
We present an approach for the business process-driven
modeling of these scenarios in form of ‘user interaction
(UI) workflows’ as well as a technical framework
enabling the model execution within existing portal
systems. The integration of Web services in a portal can
thus be realized very efficiently by modeling UI workflows
and configuring highly generic activity building blocks
for dialog construction, service communication and data
presentation.

1. Introduction

Within the layer model of Service-oriented
Architectures (SOA), the presentation layer plays an
important role by providing interfaces for the users [1].
The majority of client applications found in this layer are
portals acting as central access points to the services -
usually Web Services - of the underlying layers [13].
Therefore, portal components realizing the service access
as well as the rendering of appropriate interaction and
presentation structures are needed.

Analyzing the required components for the service
integration in a portal shows that their requirements can
be quite complex and span across a variety of functional

aspects: presentation and interaction aspects as well as
aspects in the fields of data and service communication.
While simple integration scenarios comprise only a
parameterized service communication followed by the
presentation of the received data, much more complex
user interaction sequences of dialogs, service
communication and data presentation are found in
practice.

Given this complexity and the emerging variety of
Web services in medium and large SOA-based systems
which have to be made accessible to the users, an
efficient approach for the integration of services in portals
is required. Today’s portal systems offer only very
limited facilities and concepts for the integration of Web
services which are not appropriate for the complex
integration scenarios faced in practice. Developing
dedicated portal components for each single integration
scenario turns out to be too cost- and time-consuming,
aggravates operations and maintenance and the
enforcement of quality standards, e.g. regarding corporate
design or accessibility guidelines [18].

Thus, a highly generic and reuse-oriented approach is
not only from the efficiency perspective, but also
regarding aspects like quality, flexibility and evolution, a
desirable and inevitable solution. In this paper, we present
an approach for modeling the user interaction with Web
services and introduce a technological framework for its
application within existing portal systems. We consider
integration scenarios as ‘user interaction (UI) workflows’
composed of generic activity building blocks. Each of
these building blocks is tailored to a distinct integration
aspect like service communication, dialog and data
presentation and is implemented as a configurable
software component. The UI workflows can either be
derived from business process models, e.g. in Petri net or
the Business Process Modeling (BPMN) notation, or, due

to our simple and intuitive modeling notation, designed
from scratch with strong stakeholder collaboration.
Finally, the resulting UI workflow model is being
executed by a generic portal component. Thus, realizing
complex Web service integration scenarios in portals is
reduced to composing highly configurable building
blocks along a UI workflow.

Section 2 gives an overview of the state of the art in
today’s portal systems and current research approaches,
elaborating the need and the requirements for an adequate
solution. Section 3 presents the cornerstones of our
approach: the UI workflow modeling notation and how
UI workflows can be derived from business process
models as well as a detailed definition of our generic
activity building blocks. In this context, we present a
complete set of configuration aspects required for each of
these in order to enable their direct physical execution.
Section 4 describes the technological framework for
executing UI workflows in portal systems. The practical
application of our approach based on an example from a
large-scale Enterprise Application Integration (EAI)
project is demonstrated in section 5. Finally, section 6
draws the conclusions and presents future work.

2. State of the art

As to Web service integration, today’s portal systems
are still in their infancy. Although the great majority of
vendors claim comprehensive Web service support for
their products, reality looks different. The existing
approaches can be divided into two groups: Template-
based (e.g. RedDot Live Server [14]) and data-centric
approaches (e.g. Bea WebLogic [3], Microsoft Office
Sharepoint Server 2007 [12]).

Template-based approaches represent the simplest
form of Web service integration. Developers can
predefine Web service invocations in form of SOAP
messages which can be filled with parameters and sent at
runtime. The necessary instructions for sending such a
message and processing the result message are integrated
in form of script code within the pages.

Data-centric approaches, which make up the second
group, are slightly more advanced. Web services to be
integrated have either to implement a certain interface or
their interface has to follow a particular pattern. In the
latter case, the concrete interface - both parameters and
result schemas - of each Web service has to be described
by means of a predefined XML format. In this group,
Web services are considered more as data providers than
as business capability providers. In the portal, the
business objects encapsulated by the Web services can
then be integrated via out-of-the-box portal components,
usually in form of lists and simple detail views.

Beyond that, some systems like the IBM WebSphere
Portal Server [17] ease only the development of dedicated

portal components (“portlets”) for each Web service to be
integrated via generating appropriate proxy classes. As
they do not provide any means for the efficient, (semi-)
automatic integration of Web services and thus require
the development of dedicated components for each single
Web service, they are not considered any further.

In practice, integration scenarios, i.e. the interaction of
users with Web services, are mostly complex sequences
consisting of multiple steps. Considering, for example, a
service which provides access to room information, an
integration scenario realizing a room search feature
within a portal could be as follows: Displaying a search
form, running a search on the room data Web service,
presenting a result list, requesting detail information for a
selected search result from the room service and finally
displaying the detail information. Such scenarios cannot
be realized in an efficient way with today’s portal
system’s concepts and approaches as described above.
Both of the presented groups require a lot of manual work
(predefining SOAP messages, processing response
messages, scripting the user interface, describing
parameters and response data schemas etc.). They do not
consider reuse nor do they provide any means for
enforcing quality guidelines regarding the user interface.
Moreover, future adjustments are costly due to the strong
interweavement of the user interaction workflow and the
portal pages’ source codes. Taking all this into account,
the effort resulting from existing approaches is not
reasonable, especially when considering medium- or
large-scale SOA-based systems with a multitude of
services and associated integration scenarios.

Beyond the examination of existing industry solutions,
a further important group has to be considered when
analyzing the state of the art: approaches from the Web
Engineering research community (e.g. [4, 15]) dealing
with the systematic construction of Web applications with
particular consideration of Web-specific characteristics
and requirements. These methodologies emphasize
modeling and development aspects of modern Web
applications, whereas they mostly act on the assumption
that applications are built from scratch. Thus, existing
Web applications and portal systems are usually not
considered. Nonetheless, their ideas in the fields of
process modeling and transformation in the Web
Engineering context inspired our work. Regarding the
consideration of existing Web applications and portal
systems, the WebComposition approach [6] is an
exception. It is based on the principles of evolution and
Component-Based Web Engineering (CBWE) as well as
the ‘configuration instead of programming’ paradigm [5].
Thus, it naturally considers compositional, integrative and
federated aspects. With respect to the problem domain
addressed in this paper - the efficient realization of
complex Web service integration scenarios in existing
portal systems - some of the WebComposition approach’s

core principles and concepts could be adopted for our
solution.

3. Efficient integration with UI workflows
and generic activity types

Analyzing a great variety of Web service integration
scenarios in several large-scale EAI and SOA projects,
we found so-called ‘user interaction (UI) workflows’ to
be an ideal common denominator for modeling these
scenarios. A workflow can be defined as “the
computerized facilitation or automation of a business
process, in whole or part” [7]. Our UI workflows comply
with this definition as they facilitate the execution of a
task within a business process by providing appropriate
interaction structures to a user and managing the
communication with underlying IT systems via Web
services. However, in contrast to ‘normal’ workflows, UI
workflows consider only a small part of a business
process where one user interacts with the system to
complete a particular task. Thus, they focus more on
providing support for completing a task and less on
controlling and running the whole business process from
an overall perspective. When modeling business
processes hierarchically with increasing degree of
refinement, UI workflows make up the bottom layer. By
describing the user interaction with IT systems through
Web services, they represent - besides system-to-system
interaction models - the highest degree of concretion
within a business process model (cf. section 3.2).

Today, a great variety of business process modeling
notations exists, e.g. BPMN, Petri nets, UML etc. In order
to assure that our solution can be applied independently
from the modeling language used as well as to provide a
notation focusing only on the essential concepts of UI
workflows, we chose Finite State Machines (FSM) as
foundation. They provide a simple and intuitive notation,
they can be mathematically defined and mappings from
existing modeling languages to FSM models can easily be
realized.

Modeling Web service integration scenarios in form of
UI workflows with FSM, a user view (e.g. a search form)
is represented by a state and the user navigation between
views by triggering events (e.g. clicking on a button)
corresponds to transitions. Moreover, our modeling
concept comprises a set of generic activities for
specifying the entry actions for the particular states.
Therefore, we identified three elementary activity types
found in the great majority of Web service integration
scenarios: dialog construction, Web service
communication, and data presentation. Having modeled a
Web service integration scenario this way, it can be
directly executed by a dedicated technical platform within
a portal system (section 4).

In the following, we begin with clarifying the core
ideas of our modeling approach based on an example
(section 3.1). Subsequently, in section 3.2, we illustrate
how our approach contributes to an efficient stakeholder
communication and how existing business process
models, e.g. in Petri net notation, can be mapped to our
FSM-based notation. Finally, section 3.3 contains a
detailed description of the three generic activity types
which points out how the annotation of physical
configuration aspects enables the transition from the
model to its execution within a portal.

3.1. A modeling example

The following (slightly simplified) example is taken
from a large-scale, university-wide EAI project called
“Karlsruhe’s Integrated InformationManagement (KIM)”
[10]. In this project, a multitude of Web services
providing homogeneous access to heterogeneous legacy
systems was developed. Amongst these, there is a Web
service providing comprehensive course information
based on a course management legacy system and another
Web service providing access to course assignment data,
i.e. which student has registered for which courses. Each
of these services is to be integrated in a “Students Portal”
in a variety of integration scenarios, e.g. university
calendar, course search, room occupancy schedule,
personal timetable, course registration etc. While our
approach was applied for all Web service integration
scenarios (cf. section 5), this subsection concentrates on
the course registration feature which supports students in
the process of searching and registering for courses at the
beginning of a semester.

Figure 1: FSM-based model of the “course registration”

integration scenario

Figure 1 shows the two-layered model of the “course
registration” UI workflow. It can be formally defined in
terms of a FSM as W = (Q, Σ, δ, q0, F, A) with

Q = {Q0, Q1, Q2} : Set of user views
Σ = {OnContinue, OnBack} = Σdefault : Set of events

which can be triggered by a user. Event sets that
are likely to recur again in the future are defined

as normalized Σ clusters, thus easing reuse in the
implementation phase.

δ: State transition function, i.e. possible navigation
paths between the user views δ: Q×Σ→Q

q0 = {Q0} : Initial user view
F = {Q2} : Set of final user views
A = {aq,i | qϵQ, iϵN0} = {a0,0, a1,0, a1,1, a2,0, a2,1, a2,2}:

Set of entry actions to be performed when
entering state q

The set of user views consists of three states: In the

first state, Q0, a search form for specifying the parameters
for the course search is displayed to the user. Therefore, a
‘ConstructForm’ activity (a0,0) for generating the search
form is executed when entering Q0. Having filled out and
submitted the form, whereby the event Σ0 ‘OnContinue’ is
triggered, the user arrives in Q1, the search results list.
When entering Q1, an ‘InvokeWS’ activity (a1,0) is being
executed which runs a search against the course
information Web service based on the search parameters
defined in Q0. Afterwards, a ‘RenderMarkup’ activity
(a1,1) renders the Web service response in form of a
search results list. When the user selects a course she
wants to register for from the result list, the event Σ0
‘OnContinue’ is triggered and the transition to Q2 takes
place. Alternatively, using a corresponding button for
activating the event Σ1 ‘OnBack’, the user can navigate
back to the search form (Q0). In Q2, the user has been
registered for the selected course and her personal
timetable including the new registration is being
displayed. Therefore, three activities have to be executed
when entering the state: First, an ‘InvokeWS’ activity
(a2,0) accomplishes the registration for the selected course
by creating a new registration record for the given course
and student via the assignment Web service.
Subsequently, the current list of course registrations for
the given student is retrieved from the assignment Web
service, again using an ‘InvokeWS’ activity (a2,1). Finally,
a ‘RenderPresentation’ activity uses the received
assignment data and renders the student’s personal
timetable.

Beyond advanced UI workflows like this, also simple
scenarios consisting only of only one step, e.g. invoking a
Web service and rendering the result, can be realized with
our approach.

3.2. Improving stakeholder collaboration and
correlation to business process models

Especially when collaborating with project participants
with a non-technical background, our modeling approach
has proved to be quite reasonable and efficient. In our
experience, stakeholders could easily associate the
modeling elements states and transitions with user views
and the navigation between these. Also the modeling of

entry actions turned out to be rather comprehensible due
to the limitation on only three meaningful activity types
as well as their associated descriptions in the models.
Thus, with regard to avoiding misunderstandings and to
assuring efficient communications between all project
participants throughout the whole development cycle, our
approach has proved its worth. Thereby, two of the most
problem fields in software projects [16] – ambiguous
requirements and lacking or inefficient communications
between the developers and the business – could
successfully be handled.

A further advantage of our two-layered, FSM-based
modeling approach is that business process models can
easily be transferred – manually or even automated – to
the proposed notation. Thus, process models resulting
from the requirements engineering or conceptual design
phases can be directly incorporated in the implementation
phase. Solely the second layer, i.e. the modeling of entry
actions, has to be added manually, for example by a
developer collaborating with appropriate stakeholders. In
the KIM project, the majority of the business processes to
be supported by adequate information systems was
modeled with hierarchical Petri nets. Starting with a very
abstract view of the business process on the top layer, the
process model is being more and more refined in the
subjacent layers. The penultimate layer contains the UI
workflow models and the bottom layer comprises system-
to-system interactions, e.g. used for designing Web
service orchestrations. Figure 2 shows exemplarily how a
model from the UI workflow layer in Petri Net notation
can be transferred to our proposed FSM-based modeling
notation. Likewise, transformations from other business
process modeling languages like e.g. BPMN can be easily
realized.

Figure 2: Deriving a FSM-based UI Workflow model
from a hierarchical Petri net business process model

3.3. Generic activity types as fundamental
integration building blocks

Based on the description of our approach’s core ideas
in the preceding sections, a detailed specification of the
three generic activity types used for modeling a state’s
entry actions follows. As fundamental logical building
blocks, they represent the functional units actually needed
for integrating Web services in a portal: constructing
forms, communicating with Web services and generating
markup for displaying data in a portal. The activities were
designed highly generic and thus configurable in order to
assure their universal application for modeling all current
and future integration scenarios. Each activity type
provides specific configuration aspects for specifying
parameters required to execute an UI workflow model by
a dedicated portal component within a portal (physical
design). Thus, these physical configuration aspects
establish the transition from conceptual (business process
models) and logical (FSM-based UI workflow model) to
physical design. The configuration procedure should be
supported by a dedicated editor, easing the configuration
and assuring the preservation of configuration aspect
interdependencies (cf. section 4).

3.3.1. Dialog construction – the ‘Construct Form’
Activity

Description: Dialogs are the central medium for user
interaction in the World Wide Web. The logical building
block ‘ConstructForm’ represents the generation of a
Web form according to an XML-based specification. In
contrast to manually developing forms, this approach
leads to an improved development efficiency and form
quality and enables the strict enforcement of quality
guidelines. Especially in the field of Web accessibility,
this gains more and more importance as many countries
have passed ordinances requiring public institutions to
assure their Web sites’ accessibility, e.g. [8, 9]. Beyond
that, the XML-based form specification is decoupled from
the actual implementation and thus leads to a
considerably decreased complexity. Our XML
specification format is based on the W3C XForms
standard. Hence, form specifications can be derived
automatically from data schemas and subsequently be
configured regarding layout and dynamic aspects.

Physical configuration aspects:
• XML specification: The specification of the form to

be rendered based on the XForms standard. By
means of a special tag, values from the result
document of a previous ‘InvokeWS’ activities can
be referenced.

• URL to Web service interface description: In Web
service-based integration scenarios, forms are

usually submitted to Web services. In these cases,
the form is based on the data schema of a Web
service operation. Using this and the ‘data type
selector’ configuration aspects, a data schema from a
Web service interface description (usually a WSDL
document) can be referenced. Based on this data
schema, the ‘ConstructForm’ activity generates a
first XML specification of an appropriate form and
stores it in the ‘XML specification’ configuration
aspect. There, it can be further refined.

• Data type selector: An XPath expression for
selecting a data schema from the Web service
interface description referenced in the previous
configuration aspect.

• Data schema: Instead of referencing a data schema
from a Web service interface description using the
two preceding configuration aspects, a data schema
can be directly stored in this configuration aspect.

3.3.2. Web service communication – the ‘InvokeWS’
activity

Description: This logical building block represents
invoking a Web service, receiving the return value, and
storing it in an XML representation. If necessary, the
communication can be realized securely based on WS-
Security using encryption and / or digital signatures. The
configuration of these security parameters can be
achieved via the WS-Policy or WS-Security Policy
standards [2] respectively.

Physical configuration aspects:
• Web service URL: URL of the Web service endpoint

to be called.
• Interface description URL: URL where the Web

service’s interface description, usually a WSDL
document, can be found.

• Operation: Name of the Web service’s operation to
be invoked.

• Input parameters: Values or references to values
from previous activities to be passed as the
operation’s input parameters. For example, the
user’s input in a form field could be referenced as an
input parameter. The input parameters are specified
in form of an XML document using a special tag for
referencing values from former activities.

• Security policy source: Used for specifying whether
the WS-Security Policy based information about
how a secured Web service call shall be realized,
should be extracted from the WSDL document or
from the subsequent configuration aspect.

• Security policy: Used for specifying a security
policy for the Web service communication based on
the WS-Security Policy standard.

3.3.3. Data presentation – the ‘RenderMarkup’
Activity

Description: The presentation of data, e.g. returned from
a Web service invocation, is being represented by this
logical building block. Similar to the ‘ConstructForm’
building block, the inherent preservation of quality
guidelines plays an important role here, too. With regard
to Web pages composed of autonomous components,
enforcing and verifying quality guidelines at development
time is rather sophisticated. Regarding for example
accessibility aspects, this is due to the fact that the
composition of components which are themselves
accessible is not necessarily accessible [11].

Physical configuration aspects:
• Data reference: Reference to the ‘InvokeWS’

activity whose result data shall be displayed.
• XSL template: Reference to an eXtensible Stylesheet

Language (XSL) document specifying the data
transformation to the desired output format (e.g.
XHTML, PDF etc.). If this configuration aspect
remains empty, the ‘RenderMarkup’ activity shall
generate an automatic presentation of the XML data.
This can be achieved by presenting name-value pairs
whose layout is derived from the XML document’s
structure.

4. Technical framework for executing UI
workflows within existing portal systems

Figure 3 gives an overview of our technical

framework’s architecture consisting of four layers: The
bottom layer contains the Web services to be integrated in
the portal. Above, the ‘UI Workflow’ layer comprises
FSM-based workflow instances as described in the
previous section. The ‘Data Exchange Service (DES)’
layer holds mediating components decoupling workflows
from the clients executing them. Therefore, a DES
component offers a well defined interface to both parties
based on the set of possible user events Σ. For the
different Σ clusters, e.g. Σdefault (cf. section 3.1),
appropriate DES components already exist. In case a
different Σ set is required, a custom DES component can
easily be developed. Finally, the top layer contains
instances of a generic portal component which is able to
instantiate all kinds of workflows and to send and receive
events to or from them via the DES layer.

Our current implementation is based on the Microsoft
Windows Workflow Foundation (WF) as workflow
engine. The FSM-based workflows as well as the entry
action sequences can be modeled very comfortably using
a graphical editor within Visual Studio 2005 (cf. section
5). The activity types described in section 3.3 were
implemented as highly configurable software

components, so-called ‘Custom Activities’. When
modeling an UI workflow, they can be easily integrated
and configured via drag & drop and a dedicated property
editor.

Regarding the portal component layer, we developed a
component for the Microsoft Office SharePoint Server
2007. The so-called ‘Web Part’ is configurable in terms
of the workflow library to be executed and the DES
component to be used for communicating with the
workflow.

Our implementation can be adapted very easily to be
used in other portal systems. If the portal system’s
underlying platform is able to run the .NET Framework,
only a portal system-specific portal component being able
to communicate with the workflows via the DES layer
has to be developed. All other layers of our
implementation can remain untouched. For portal systems
running on platforms which are not compatible to the
.NET Framework, the Windows Workflow Foundation
supports encapsulating workflows as Web services which
can then be used from any platform. Thus, our Web
service integration framework can easily be incorporated
in all kinds of portal systems as the portal system-specific
development effort is restricted to one specific component
located in the top layer of the presented architecture. This
portal component is rather simple as its only functionality
lies in receiving markup from the workflow and sending
back events triggered by a user – both via the DES layer.

Figure 3: Overview of the architecture of our

technical integration framework

5. UI workflows applied – developing a Web
service-based portal

In the KIM project, we developed a completely

service-based portal for the students of the University of
Karlsruhe. Starting from October 2007, the portal shall

serve as a uniform access point to all study-relevant
information and business processes and provide novel
features realized by integrating diverse legacy systems
and processes.

Figure 4: Overview of the Service-oriented

Architecture from the KIM project

The KIM project is founded on a Service-oriented
Architecture (SOA) as depicted in Figure 4. The Core
Services layer mainly comprises highly reusable Web
service wrappers where each service provides access to a
semantically cohesive set of business objects stored in a
legacy system or a database. For example, there are Core
Services for courses, persons, rooms etc. An Application
Service is also a Web service which composes Core
Services to drive business processes or realize value-
added functions. The Portal layer comprises mainly Web
portals, e.g. the students portal, providing a centralized
user interface for accessing the heavily distributed
Application and Core Services. Security aspects and a
support system for maintenance and evolution of the
system landscape are comprised by two orthogonal layers.

The students portal integrates a multitude of Core and
Application Services in various integration scenarios.
Figure 5 shows an extract from the portal sitemap
whereas the Web services used for a feature’s realization
are annotated in brackets.

Figure 5: Extract from the students portal’s sitemap

In the following, we outline the practical application of

our modeling approach and technical framework for the
realization of the ‘Course Registration’ feature as

introduced in section 3.1. Figure 6-1 shows the graphical
model of the FSM-based UI workflow within Visual
Studio 2005 which corresponds to the UI workflow
model in Figure 1. The modeling of entry actions as well
as their physical configuration according to section 3.3
using a dedicated property editor is shown exemplarily
for the state ‘DisplayCourseList’ (Q1) in Figure 6-2.
Corresponding to the model shown in Figure 1, an
‚InvokeWS’ activity named ‚InvokeCourseWebService’
and a ‘RenderMarkup’ activity named ‘RenderCourse
List’ were placed consecutively and appropriately
configured in the state’s initialization phase. Having
completed the workflow modeling, an instance of our
generic Web Part (cf. section 4) is inserted on a portal
page and configured with a reference to the compiled
workflow library. After that, the realization of the
integration scenario or the UI workflow respectively is
completed.

When a user navigates to the portal page, the Web Part
instantiates the workflow which in turn enters its first
state ‘DisplaySearchForm’ (Q0) and executes the entry
activity modeled therein. The resulting output – in the
course registration scenario a search form – is sent to the
Web Part which displays it on the portal page. After the
user has submitted the form which triggers the
‘OnContinue’ event, the workflow makes the transition to
the second state ‘DisplayCourseList’ (Q1), cf. Figure 6-3.
By clicking on a course title, the event ‚OnContinue’ is
triggered and the workflow proceeds to the third state
‘DisplayTimetable’ (Q2). Alternatively, a link at the
bottom of the course list triggers the ‘OnBack’ event
whereby the user returns to the ‘DisplaySearchForm’
state (Q0).

Figure 6: UI workflow modeling in Visual Studio 2005

(1+2) and its execution within the students portal (3)

6. Summary & future work

The user interaction with the emerging multitude of
Web services in medium to large-scale SOA-based
systems is usually realized via portals. These portals
provide appropriate interaction and presentation
structures and realize the service communication. The
integration scenarios, i.e. the Web service-based features
within a portal, mostly consist of complex sequences of
user interaction and service communication. With today’s
portal systems, such scenarios cannot be realized in an
efficient and reuse-oriented way; however, with respect to
the large number of services to be integrated, an efficient
methodology is essential. We present an approach for
modeling these scenarios in form of ‘UI workflows’ as
well as a technical framework for their execution which
can easily be integrated in existing portal systems. Our
model for describing the user views, the possible
navigation trails between them and the actions to be
performed when entering a state is based on Finite State
Machines (FSM) and a core set of generic activity types.
We propose three activity types targeting the areas of
dialog, service communication and data presentation. The
models can either be derived from existing business
process models or designed from scratch with strong
stakeholder involvement.

Our approach was successfully applied for the
development of a Web service-based portal in a large-
scale EAI project. We identified the high efficiency and
flexibility when realizing new integration scenarios or
adapting existing ones to be the approach’s main
advantages. Beyond that, due to the building block-based
modeling approach as well as the inherent ‘configuration
instead of programming’ paradigm, quality guidelines,
e.g. concerning Web accessibility, could be effectively
preserved.

At the moment, we are working on the enhancement of
the existing activity building blocks. As for the service
communication activity, emphasis lies on incorporating
federated security concepts while the dialog construction
activity will be enhanced by further dynamic interaction
aspects. Furthermore, we are intensively examining how
the core ideas of our approach can be transferred to the
realization of long-running, distributed workflows.

7. References

[1] Arsanjani, A., Service-oriented Modeling and

Architecture - 2004), IBM: http://www-128.ibm.com/
developerworks/webservices/library/ws-soa-design1/
(05.07.2006).

[2] Bajaj, S., et al., Web Services Policy 1.2 - Framework
- W3C Member Submission - 2006:
http://www.w3.org/Submission/WS-Policy/
(4.12.2006).

[3] Bea Systems, BEA WebLogic Homepage - 2006:
http://www.bea.com/framework.jsp?CNT=index.htm
&FP=/content/products/weblogic/.

[4] Ceri, S., Fraternali, P., and Bongio, A. Web Modeling
Language (WebML): A Modeling Language for
Designing Web Sites. in 9th International World Wide
Web Conference (WWW). 2000. Amsterdam,
Nethderlands. p. 137-157.

[5] Gaedke, M., Nussbaumer, M., and Meinecke, J.,
WSLS: An Agile System Facilitating the Production
of Service-Oriented Web Applications, in Engineering
Advanced Web Applications, S.C. M. Matera, Editor.
2005, Rinton Press. p. 26-37.

[6] Gaedke, M. and Turowski, K., Specification of
Components Based on the WebComposition
Component Model, in Data Warehousing and Web
Engineering, S. Becker, Editor. 2002, IRM Press:
Hershey, PA, USA. p. 275-284.

[7] Hollingsworth, D., The Workflow Reference Model
(1.1) - 1995, The Workflow Management Coalition:
http://www.wfmc.org/standards/docs/tc003v11.pdf
(22.01.2007).

[8] IT Accessibility & Workforce Division (ITAW) -
Office of Governmentwide Policy - U.S. General
Services Administration, U.S. Section 508 Guidelines
- 1998), The Rehabilitation Act:
http://www.section508.gov

[9] Japanese Standards Association, JIS X8341-3:2004
Guidelines. 2004, Japan Industrial Standards
Committee

[10] Juling, W., KIM Project Homepage - 2005, University
of Karlsruhe: http://www.kim.uni-karlsruhe.de/
(29.01.2007).

[11] Luque Centeno, V., et al.: Web Composition with
WCAG in Mind. in Fourteenth International World
Wide Web Conference (WWW), International Cross-
Disciplinary Workshop on Web Accessibility (W4A).
2005. Chiba, Japan: ACM. p. 38 - 45.

[12] Microsoft, Microsoft Office SharePoint Server 2007
Homepage - 2007: http://office.microsoft.com/en-
us/sharepointserver/default.aspx (01.02.2007).

[13] Phifer, G., A Portal May Be Your First Step to
Leverage SOA, Gartner ID G00130149. 2005:
Stamford, CT.

[14] Reddot Solutions, RedDot LiveServer Homepage -
2006: http://www.reddot.com/products_
personalization_and_integration.htm

[15] Schwabe, D., Rossi, G., and Barbosa, S. Systematic
Hypermedia Design with OOHDM. in ACM
International Conference on Hypertext' 96. 1996.
Washington, USA.

[16] The Standish Group International, CHAOS Research -
Research Reports (1994-2006):
http://www.standishgroup.com.

[17] Thomas Schaeck - IBM Software Group, WebSphere
Portal Server and Web Services Whitepaper - 2006:
www.ibm.com/software/solutions/webservices/pdf/W
PS.pdf.

[18] World Wide Web Consortium, Web Accessibility
Initiative (WAI) Homepage - 2006:
http://www.w3.org/WAI/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

	1: Patrick Freudenstein, Martin Nussbaumer, Frederic Majer, Martin Gaedke: A Workflow-Driven Approach for the Efficient Integration of Web Services in Portals. In Proceedings of the the IEEE International Conference on Services Computing 2007 (SCC 2007), July 2007, Salt Lake City, USA.

