
A DESCRIPTIVE APPROACH FOR THE LIFECYCLE SUPPORT
OF DISTRIBUTED WEB-BASED SYSTEMS

Frederic Majer, Martin Nussbaumer
Institute of Telematics, University of Karlsruhe (TH), Engesserstr. 4, 76128 Karlsruhe, Germany

{majer, nussbaumer}@tm.uni-karlsruhe.de

Martin Gaedke
Distributed and Self-organizing Computer Systems Group, Chemnitz University of Technology,

Straße der Nationen 62, 09111 Chemnitz, Germany
gaedke@cs.tu-chemnitz.de

Keywords: Web Engineering, Distributed Systems, Web Applications, Web Services, Information Model.

Abstract: Through the advancement in technology and the spreading of the internet, a wide range of different
application types has evolved. To cope with the increased complexity of today’s Web-based systems,
approaches facilitating development, operations and evolution of these heterogeneous and distributed
systems are vital. The approach, presented in this contribution, is based on a dedicated information model
allowing the description of the overall system and its components characteristics. At runtime, the relevant
model information is processed and provided to different in the system’s lifecycle involved stakeholders and
supports them to fulfill their activities. Due to this use in terms of orientation and guidance, our approach is
called the Integrated Information Map (i²map). Furthermore, the descriptive information regarding the
nominal status and behavior of the components is used for automated monitoring and testing to assure the
quality of the overall system at deployment and throughout operations.

1 INTRODUCTION

Through the advancement in technology and the
spreading of the internet, the World Wide Web has
evolved from a decentralized information medium to
a platform for a wide range of different application
types (Phifer, Kenney, Genovese et al., 2006). These
Web-based systems support collaboration scenarios,
deliver complex services and are often characterized
by the integration and composition of functionalities
and content from different organizations and
software systems.

In this context the question regarding the
development, operation and strategic and technical
evolution of such highly distributed and
heterogeneous Web-based systems arises. As in
most cases, the applications are rather developed
iterative than from scratch and make tremendous use
of existing components, the challenge of finding and
binding of heterogeneous building blocks has to be
addressed, making detailed descriptions about the
capabilities and configuration of system components

fundamental. Depending on the state of the
application regarding its lifecycle, such relevant
information must be provided to different
stakeholders to support their activities in an adequate
way. Furthermore, the availability of the overall
system at a high level of quality has to be assured.
On the one hand, this motivates the need of
mechanisms to preview or detect malfunctions of all
kinds of components, which in such an extremely
interdependent system can have effects on the
overall system and provide support for remedial
actions. On the other hand, the building blocks and
the system as a whole have to be observed regarding
the quality they offer their services, to guarantee an
efficient and satisfying support of the user’s need.

In this paper we introduce an information model
as the base for a dedicated approach for the lifecycle
support of highly distributed Web-based systems. In
section 2, we describe a real-world scenario from a
large-scale EAI-project at the University of
Karlsruhe and define functional requirements
regarding the problem scope. In section 3, we
present excerpts of the underlying information

model, providing information about the system
composition and components characteristics.
Section 4 defines architectural concepts for the
runtime use of the descriptive information to realize
the defined functional requirements and the
implementation of a support system. In section 5, we
give a brief overview of related approaches and
conclude with a summary and an outline of planned
future work in section 6.

2 THE PROBLEM DOMAIN

In the following section, we introduce fundamental
functional requirements for supporting development,
operations and evolution of highly heterogeneous
and distributed systems. The requirement analysis
was based on the experience gained in several large-
scale industry EAI projects.

2.1 An Example SOA Scenario

As an example scenario, we present the project
“Karlsruhe’s Integrated Information Management
(KIM)” (Juling, 2005) in which we have been
collaborating in for several years. Within the first
three-year project phase, one of our main goals was
to develop a Web portal for all students of the
university. The portal shall serve as a uniform access
point to all study-relevant information and business
processes and provide novel features realized by
integrating diverse legacy systems and processes.

Figure 1: Architecture of the KIM project

In order to cope with the integration challenges
described above, the KIM project is founded on a
Service-oriented Architecture (SOA) as depicted in
Figure 1. The Core Services layer mainly comprises
highly reusable Web service wrappers with a
standardized CRUDS interface (IBM Corporation,
2006). Each service provides access to a

semantically cohesive set of business objects stored
in a legacy system or database. For example, we
have Core Services for courses, persons and rooms.
An Application Service is also a Web service which
composes Core Services to realize value-added
functions. For example, by orchestrating the Core
Services for exam results, persons and events, we
provide an Application Service for creating a
‘Transcript of Records’ which is a detailed overview
of a student’s examination performances. The Portal
layer comprises mainly Web portals, e.g. the student
portal, which provides a central user interface for
accessing the highly distributed Application and
Core Services. Furthermore, the orthogonal Security
and Identity Management layer achieves federated
authentication, authorization and identity
management concepts using a WS-Federation-based
Identity Federation System (Meinecke, Nussbaumer,
and Gaedke, 2005). Finally, the orthogonal
Integrated Information Map (i²map) layer comprises
concepts and thereon developed Web applications
for describing, managing and monitoring the highly
distributed system landscape.

The introduced project, with the portal for all
students of the university as a central application,
represents a typical example of a highly distributed
Web-based system. Complexity arises on the one
hand from the high amount and diversity of users
(approx. 30.000 students) and participating
organizational units (e.g. faculties, administration,
library, other universities). On the other hand,
through the portal integration of business processes
spanning over different organizational boundaries
and data from heterogeneous information systems.
All together, the resulting system architecture can
hardly be overlooked. With the necessity of
delivering the services in an efficient and problem-
free way, a support system is vital.

2.2 Functional Requirements

In cooperation with different stakeholders groups we
have developed a set of functional requirements
supporting development, operation and evolution of
highly distributed systems. Each stakeholder group
can be characterized by different information needs.
The group of end-users includes students as well as
administrative staff who use the different
information systems of the university. Through the
development of new (partly under reuse) and the
advancement of existing functionalities, the group of
developers make the largest contribution to the
development and evolution of the system landscape,
whereas the operators deal with the operation of the

resulting system. This includes tasks like the
monitoring of the technical infrastructure, the legacy
systems and all developed iSOA components and
interfaces, and supporting the end-users dealing with
diverse information systems.

The information needs and resulting functional
requirements can be divided into two domains:
description (R1-R7) and monitoring (R8–R11).
R1 – System overview: For the (strategic) evolution
and operation of the highly distributed system,
dedicated views of the system landscape are
essential. This includes particularly the visualization
of relations between different components.
R2 – Detailed component description: Besides
general, organizational and functional descriptions,
the different stakeholders need explicit information
regarding aspects like security and quality of each
system component.
R3 – Reuse support: To foster the overall reuse of
software components and artifacts, dedicated search
capabilities with the possibility to access and use
desired resources are essential.
R4 – Change log: To cope with the high dynamics
of a distributed system, a central log should protocol
and publish all the changes made to any component
of the system.
R5 – Snapshot: Information describing the current
system composition and configuration, as well as to
distinctive former states must be provided, to
support fault analysis and increase in efficiency.
R6 – Simulation: The impact of changes through
modification of a particular component, as well as
adding or removing any components to the overall
system, should be determined by simulation based
on the system description.
R7 – Operational concept: Access to the
operational concept descriptions should be provided
at a central point.
R8 – System status / Error detection: Besides the
possibility of requesting a component’s nominal
status (R2), i.e. service level agreements, techniques
for the comparisons regarding their actual values
must be available. Furthermore this status
information should be evaluated and documented.
R9 – Automatic Testing / Auditing: For the initial
deployment and during operations of system
components, dedicated methodologies for the
automated testing regarding functional requirements
and guidelines (e.g. accessibility (W3C, 2006),
security aspects etc.) should be provided.
R10 – Reporting: The type and quantity of a
component’s usage should be documented
continuously and used while planning technological
and strategic evolution.

R11 – Notification: Through messaging mecha-
nisms dedicated persons or (external) systems
should be notified about incidents (i.e. system
disturbance through the malfunction of a single
component) in the distributed system.

To support the various stakeholders
appropriately regarding the lifecycle support of
highly distributed systems, the different features
should be integrated and combined with each other
in a support system. Therefore, each functional
requirement must be implemented in a highly
adaptable way to cope with the needs and interests
of each user group and provide dedicated views on
the relevant information.

3 AN INFORMATION MODEL
FOR HIGHLY DISTRIBUTED
WEB-BASED SYSTEMS

The analysis of the identified functional
requirements of the last section leads to the
conclusion that, regardless of the concrete
realization of any of the functionalities, detailed
information about each component, as well as the
relations among each other, are fundamental.
Moreover, beside descriptive aspects, e.g. to foster
development and evolution through reuse or
composition of existing components, in particular
information about the expected behavior of all
components is essential for a smooth operation of
the overall system.

(Ackermann, Brinkop, Conrad et al., 2002)
define the dimensions marketing, task, terminology,
quality, coordination, behavior and interface for the
description of business components and suggest
dedicated and well-known standards for the notation
to represent the information and to simplify
reusability between organizations. In regard to
highly distributed systems, we have identified a
comprehensive set of conceivable building blocks of
system architectures and specified their relevant
characteristics in the aforementioned dimensions.
The resulting information model forms the base for a
broad specification and through this the monitoring
of the system.

3.1 Modeling Distributed Systems

The model comprises a metadata concept that is
based on the Dublin Core Metadata Initiative
(Andresen, 2003), a de-facto standard defining a set
of common meta-level attributes (ContentObject).

By building upon this standard and introducing
further attribute definitions, the central interface
iSOAComponent (integrated service-oriented
architecture component) captures characteristics all
system building blocks have in common. This
includes components of the technical infrastructure
like servers, data bases and legacy systems and
components more specific to highly distributed and
Web-based systems (SOAComponent). The latter
contain building blocks and therewith related type
definitions for Web applications (e.g. Application,
Domain and Audience), an abstract class for Web
services and classes for specific building blocks, e.g.
SecurityRealm for modeling organizational zones of
control over networks, hardware and software
systems. The type WebService is separated into
application services, core services and infrastructure
services. The latter serve for the modeling of
fundamental infrastructure Web services, like the
identity provider or security token service used for
federated identity management scenarios.

 Figure 2 shows an excerpt of the UML-based
representation of the information model with the
definition of iSOAComponent and several
associated types. As depicted, each iSOAComponent
includes metadata conform to the Dublin Core
standard and further elementary information such as
the component’s architectural layer affiliation
(Layer). However the Status does not imply the
actual operational status, but allows the assignment
of a component to different phases of its lifecycle
(e.g. implemented, tested and operational).
Accordingly there is the possibility to specify
contact information regarding different concerns as
well as information about the component’s changes
and versions (ChangeLog), and the technical
documentation (Documentation).

Figure 2: Meta-information concept

General security aspects like the classification of
a component according to predefined security levels
(SecurityLevel), or the default Certificate regarding
communication (DefaultCertificate) are integrated

directly into iSOAComponent. More complex and
specific security concerns as authorization policies
for operation invocations or transport and message
security aspects, as well as the interface description,
are realized by the definition of endpoints. Thereby
the degree of freedom of several endpoints for one
component, allows the specification of multiple
types of access with different protocols and policies
(i.e. certificates).

The description of the functional aspects of a
component can be realized with the type
FunctionalAspectType. As depicted in Figure 2, it
enables the description of a component’s general
functionality and field of application, as well as the
business goal it supports. With the declaration of
attributes as IsEquivalentTo, UsesComponent and
IsUsedByComponent, functional relations and
dependencies between components can be modeled.
E.g., this permits one to gain an overview on the
effect the breakdown of one component has on the
overall system. Furthermore, the attribute Relation
facilitates the declaration of further relations.

The definition of QualityAspects enables the
specification and validation of quality parameters for
components. Besides service level agreements, this
includes the ability to define functional tests.

3.2 Modeling Web-based Systems

To model specific architectural aspects of Web
applications, another excerpt of the information
model is shown in Figure 3.

As described in 3.1, type definitions for all
components comprise a general set of attributes from
iSOAComponent (cf. figure 2). Specific components
of Web-based systems (e.g. PortalApplication,
Domain, ControlFunction etc.) inherit further
characteristics of SOAComponent (cf. figure 3). For
example, ApplicableGuideline allows the
specification regarding which standards or
guidelines conformity of a component should be
assured at initial deployment and during operation.
In this context, mechanisms as described in (Luque
Centeno, Delgado Kloos, Gaedke et al., 2006) can
be utilized to guarantee the accessibility of content.

The WebComposition approach (Gaedke and
Turowski, 2002) describes the development of Web
applications through an open process model,
allowing the integration of arbitrary processes, with
reuse of existing components as an integral element.
The information model follows this concept as the
modeling of a Web application is based on the
PortalApplicationType and ClientApplicationType
respectively, which comprises several application

-IsEquivalentTo
-UsesComponent
-IsUsedByComponent
-...

FunctionalAspectType

BusinessGoalType

-RelationType
-RelatedComponent

RelationType-Tags
-Layer
-State
-ChangeLog
-Documentation
-FunctionalAspects
-SecurityLevel
-DefaultCertificate
-Relation
-QualityAspects
-Cost
-...

iSOAComponentType

-SourceEndpoint
-TargetEndpoint

CommunicationRelationType

-Id
-Title
-Description
-...

ContenObjectType

domains. Each domain has the ability to include
further domains and provides a desired functionality
as part of a Web page. Depending on the expected
audience and correlated configuration, the domain
utilizes a dedicated building block, the control
function, to realize the functionality. Hence, beside
the execution of the functionality, certain kind of
control functions are responsible for requesting and
processing data from Web services or other data
providers which is modeled by specifying relations
from the particular control function to the
corresponding system component.

Figure 3: Excerpt of Web-based system aspects

The consideration of the growing integration of
Web application in the execution of business
processes, motivates the need for modeling “the
computerized facilitation or automation of a
business process, in whole or part” (Hollingsworth,
1995), the so-called user interaction workflow, as an
imminent aspect. With the definition of
UIWorkflows and the correlation to diverse domains
and control functions, appropriate interaction
structures for different audiences and the
management of the communication with underlying
IT systems can be modeled for each task. During
operation of a complex Web-based system, this
modeling information allows an efficiency analysis
of the defined user interaction workflows as well as
the valuation of the system disturbance through the
malfunction of a single component.

4 THE INFORMATION MODEL
APPLIED

To provide appropriate stakeholder support, the
functional requirements described in section 2 have
to be realized highly adaptable. Moreover, the
integration of these functionalities into a dedicated

support system as well as existing portals or client
applications is essential.

As some functional requirements emphasize the
description and others the monitoring of the
components and the overall architecture, in the
following basic concepts and building blocks for
their realization are described separately. Both
approaches are characterized by the strong
incorporation of model information at runtime.
Furthermore, they are consistently oriented towards
the presented architecture of the KIM project as they
form an imminent part of it but can be applied to any
distributed Web-based system environment.

At the end of this section, we present an
overview of the actual realized functions integrated
in a Web application.

4.1 Support by Description

The realization of descriptive functionalities regar-
ding the components (Managed Objects) and the
overall architecture of the highly distributed system
is based on the registration of all components at a
central registry. Thereby, the relevant information is
specified according to the type of the component and
in compliance to the information model. Depending
on the management ability of the registered compo-
nent, this step can be conducted automatically.

As the registry constitutes the central element
responsible for the model information, it provides
access to the data via several interfaces. Besides an
interface for the retrieval of the information
according to schemas based on the information
model (Registry), the registry publishes subsets of
the information conforming with the UDDI standard
(Bellwood, Clément, Ehnebuske et al., 2004) or for
other models like e.g. the WebComposition
Architecture Model (Meinecke, Gaedke, Majer et
al., 2006) and therefore supports the application of
the information in different contexts (cf. Figure 4).
For scenarios with participating autarkic
organizational units but inter-organizational business
processes or other system correlations, the federation
of such registries is applicable. This assures the
characteristic of loosely coupled system interaction
specific to the Web and Service-oriented Architec-
tures, but allows the support of description and
monitoring transcending organizational boundaries.

The descriptive functional requirements, e.g.
system overview (R1), detailed component
description (R2) and reuse support (R3) are actually
realized by a dedicated application service
(Description). Depending on the chosen portal
functionality, this component queries the registry for

-RootDomain
PortalApplicationMinimalType

-ApplicableGuideline
-FullyQualifiedTypeName
-LegalAspects

SOAComponentType

-TargetAudience
ClientApplicationType

-ControlFunction
-ChildDomain
-TargetAudience

DomainType ControlFunctionType
-State

UIWorkflowType

-LoadPattern
AudienceType LoadPatternType

-RelevantStandard
-RelevantStandardUri
-RequiredLevel

GuidelineType

UIWorkflowStateType

-Tags
-Layer
-...

iSOAComponentType

the relevant information and prepares it according to
the user needs. Furthermore, it provides access to
documents related to components (e.g. conceptual
models, technical documentation and source code)
possibly stored in different Repositories.

Figure 4: Architectural concept supporting description

Another application service (Synchronization)
guarantees consistency between the stored data in
the registry and information, components with
management ability publish about themselves. On
the one hand, it propagates changes carried out to a
component itself (e.g. changes to the interface) to
the registry. On the other hand, it passes
modifications to registry entries regarding available
information at components (e.g. updates about
responsibilities of a components made via a support
system) to the component for further processing.

4.2 Support by Monitoring

Besides descriptive information about the system
characteristics and behavior, the actual performance
of each component as well as the overall system is
essential to conduct a variance comparison and to
detect inefficiency and failure during operation. The
achievement of the functional requirements in the
monitoring dimension depends to a great extent on
the management ability of the system components.

The application service Monitoring and Event
Processing coordinates the monitoring of the
different components. According to its
configuration, it accesses the registry to query the
identifiers and end points of components to monitor
and passes the information to Observers responsible
for the actual surveillance (cf. Figure 5). The
observers are realized as CRUDS core services and
provide dedicated monitoring metrics for different
component types in a highly distributed and
heterogeneous system. On the one hand, the
indirection between the application service and the
managed objects via observers has the advantage of

easy scalability and the parallelization of the status
requests for the overall system. On the other hand,
the encapsulation of the concrete logic for the
monitoring of a certain type of component regarding
a specific dimension increases the flexibility and
coverage of the approach. For example, this enables
the use of several observers differing in monitoring
aspects and metrics for a specific component type or
the application of observers consuming the data of
existing monitoring systems (e.g. in the area of the
technical infrastructure).

Figure 5: Architectural concept supporting monitoring

The results of the continuous and automated
status querying and testing, conducted by the
observers, are processed by the application service
(monitoring and event processing) according to
predefined rules and stored into a Log. Identified and
anticipated system disturbances through
malfunctions of components are reported via the
application service Notification to responsible
persons or (external) systems. Furthermore, the
Reporting service provides access to the stored
runtime information and prepares it depending on
the stakeholder’s needs, e.g. the average availability
and other quality aspects or the usage of a
component for billing purposes.

4.3 i²map Tool Support

In the following, we present the application of the
described information model and the architectural
concepts in the KIM project at the University of
Karlsruhe. By the use of the model information at
runtime, the developed support system provides
guidance and orientation for different stakeholder
according to a “map”.

To provide the necessary information about the
components, we implemented the designated ma-
nagement operations getServiceCard and getStatus
of each existing core and application service,

allowing the retrieval of nominal (ServiceCard) and
actual (Status) data. In a further step, all relevant
components were registered at a central KIM-
Registry and data regarding components without
management abilities was gathered manually.

For the monitoring of the core and application
services, observers were implemented, examining
managed objects according to the Web Service
Level Agreements project (Keller, Kar, Ludwig et
al., 2002). Concerning the monitoring of the
technical infrastructure, as well as further compo-
nents, e.g. the Microsoft BizTalk Server 2006,
dedicated observers use existing monitoring systems
like Nagios (Galstad, 2006) or Microsoft System
Center Operations Manager 2007 (Microsoft, 2006)
of the university’s computer center.

Finally the relevant information is made
accessible via dedicated application services in the
i²map portal, based on the Microsoft Office
SharePoint Server 2007 (cf. Figure 6). In addition to
administrative support (e.g. for the registration of
new components), the developers use the actual
implementation particularly for searching for
specific components, as well as to access the
detailed descriptions. Besides the operators, who are
mainly supported by first views on the system status,
the university direction gets an overview regarding
the utilization of specific services. Furthermore, for
the group of end users the portal provides a view on
upcoming system maintenance and a listing of
current system breakdowns.

Figure 6: Overall system’s status in the i²map Portal

5 RELATED WORK

In the following, several existing approaches facing
the challenge of supporting development, operation
and evolution of highly distributed Web-based
systems will be described briefly.

When analyzing the state of the art, an important
group to be considered, are approaches from the
Web Engineering research community (e.g.
WEBML (Ceri, Fraternali and Bongio 2000),
OOHDM (Schwabe, Rossi and Barbosa, 1996))
dealing with the systematic construction of Web
applications with particular consideration of Web-
specific characteristics. As these methodologies
emphasize the modeling and development of Web
applications built from scratch, they focus less on
operation and evolution of highly distributed Web
application. Regarding the consideration of existing
components of Web-based systems, the
WebComposition approach based on the principles
of evolution and Component-Based Web
Engineering (CBWE) is an exception. It naturally
includes compositional, integrative and federated
aspects and some of the WebComposition
approach’s core principles and concepts could be
adopted to our solution.

For the modeling of heterogeneous and
distributed Web-based systems, there exist several
concepts for domain-specific aspects, e.g. regarding
the specification of the quality performance of Web
services (OASIS, 2005). Moreover, (OASIS, 2006b)
deals with complex systems and defines elementary
building blocks and concepts for Service-oriented
Architectures in an abstract manner to achieve a
common understanding and a clear terminology
independently of actual implementations and
technologies. Other approaches like (Kirchner,
2005) and (Winter, Brigl and Wendt, 2003) allocate
building blocks of distributed systems to
architectural layers and use descriptive information
to realize first descriptive functionalities. Even
though, the information is utilized at runtime, the
approaches focus on constricted scenarios and often
neglect federated aspects of today’s distributed
Web-based systems.

Regarding the operation of systems, (OASIS,
2006a) provides a Web service-based framework for
the management of components, especially for Web
services. Furthermore there exist solutions (partly
from the industry) for the monitoring of portals, as
well as the technical infrastructure (e.g.
ManageEngine; Nagios) but these approaches
mostly concentrate on specific aspects. However
Microsoft’s Dynamic System Initiative aims at a
comprehensive approach for design, installation and
operations of distributed systems (Turner, 2006).
The methodology is based on the System Definition
Model, which will be replaced by the Service
Modeling Language in future, facilitating the
modeling of abstract service components.

Microsoft’s vision is to use this information for the
configuration of components at installation or for the
monitoring of those services with the System Center
Operations Manager 2007.

6 CONCLUSION

To cope with the increased complexity of today’s
Web-based systems, approaches facilitating
development, operations and evolution of these
heterogeneous and distributed systems are vital. In
this context the paper presented functional
requirements for a support system, focusing on the
aspects of describing and monitoring the overall
system. To realize these functionalities, we
presented an information model applicable for
modeling the relevant aspects and characteristics of
highly distributed Web-based systems. Together
with the architectural concepts using the modeled
information at runtime, the resulting approach
supports different stakeholders during their activities
within an application’s lifecycle. The realization of
first functionalities and their integration within the
Integrated Information Map of the KIM project at
the University of Karlsruhe (TH), showed the
support potential of the approach in a highly
distributed, heterogeneous and Web-based system
environment.

In the future, we will work on further
implementations of descriptive functionalities like
the snapshot (R5), as well as the simulation of
changes to distributed Web applications (R6).
Moreover, we will focus on further realization of
monitoring aspects as the pilot operation phase of
the student’s Web portal and all correlated
components is scheduled for the last quarter of 2007.
Particularly, this includes the development of
observers with dedicated monitoring and test metrics
(R9) to assure the quality for specific component
types. Finally the integration of further
functionalities for the remote management of
components into the i²map portal and the
development of concepts regarding self-healing and
reconfiguration of distributed systems are of interest.

As the presented approach is the result of more
than two years research, not all aspects could be
described in detail. Thus, we are working on further
publications focusing e.g. on the use of the
descriptive information at runtime and the
integration of model information of existing (Web
Engineering) approaches into our approach. A
transformation of the existing data according to our
information model would allow supporting

operations and evolution of Web-based systems
developed with these methodologies.

REFERENCES

Ackermann, J., Brinkop, F., Conrad, S., et al., 2002.
Standardized Specification of Business Components.

Andresen, L., 2003. Dublin Core Metadata Element Set,
Version 1.1: Reference Description, DCMI.

Bellwood, T., Clément, L., Ehnebuske, D., et al., 2004.
UDDI Version 3.0, UDDI.org.

Ceri, S., Fraternali, P., and Bongio, A., 2000. Web
Modeling Language (WebML): A Modeling Language
for Designing Web Sites In 9th International World
Wide Web Conference (WWW), 2000, 137-157.

Gaedke, M., Turowski, K., 2002: Specification of
Components Based on the WebComposition
Component Model.

Galstad, E., 2006. Nagios Homepage.
Hollingsworth, D., 1995. The Workflow Reference Model

(1.1). The Workflow Management Coalition.
IBM Corporation, 2006. Elements of Service-Oriented

Analysis and Design. IBM Homepage.
Juling, W., 2005. KIM Homepage. University of Karlsruhe
Keller, A., Kar, G., Ludwig, H., et al., 2002. Managing

Dynamic Services: A Contract Based Approach to a
Conceptual Architecture. EMISA´05. Austria, 2005.

Kirchner, L., 2005. Cost Oriented Modelling of IT-
Landscapes: Generic Language Concepts of a Domain
Specific Language.

Luque Centeno, V., Delgado Kloos, C., Gaedke, M., et al.,
2006. Web Composition with WCAG in mind. In
Journal of Web Engineering (JWE).Rinton Press. 2006

Microsoft Corporation, 2006. Microsoft System Center
Homepage.

Meinecke, J., Gaedke, M., Majer, F., et al., 2006.
Capturing the Essentials of Federated Systems. In
15th International World Wide Web Conference.

Meinecke, J., Nussbaumer, M., Gaedke, M., 2005.
Building Blocks for Identity Federations. ICWE 2005,
Sydney, Australia, 2005.

OASIS, 2005. Quality Model for Web Services.
OASIS, 2006a. Web Services Distributed Management.
OASIS, 2006b. Reference Model for Service Oriented

Architecture 1.0.
Phifer, G., Kenney, L.F., Genovese, Y., et al., 2006. Hype

Cycle for Web Technologies, Research Report.
Gartner Research. Stanford, CT.

Schwabe, D., Rossi, G., and Barbosa, S., 1996. Systematic
Hypermedia Design with OOHDM. In ACM
International Conference on Hypertext. USA, 1996.

Turner, M., 2006. Microsoft System Center takes on
enterprise IT management market leaders.

Winter, A., Brigl, B., Wendt, T., 2003. Modeling hospital
information systems. The revised three-layer graph-
based meta model 3LGM. Stuttgart, Germany.

W3C, 2006. Web Accessibility Initiative (WAI)
Homepage (2006): http://www.w3.org/WAI/

	Text1: Majer, F., Nussbaumer M., Gaedke M.: A Descriptive Approach for the Lifecycle Support of Distributed Web-based Systems. In Proceedings of 4th International Conference on Web Information Systems and Technologies (WEBIST-2008), 4-7 May, 2008, Funchal, Portugal.

