
Component-Based Content Linking

Beyond the Application

Johannes Meinecke1, Frederic Majer1, Martin Gaedke2

1 University of Karlsruhe, Institute of Telematics,

Engesserstr. 4, 76128 Karlsruhe, Germany
{Meinecke,majer}@tm.uni-karlsruhe.de

2 Chemnitz University of Technology, Faculty of Computer Science

Straße der Nationen 62, 09111 Chemnitz, Germany
gaedke@cs.tu-chemnitz.de

Abstract. The content of many innovative Web sites today often originates

from beyond the application. This paper is concerned with building Web appli-

cations that heavily integrate and link content from external sources, like e.g.

Web services or RSS feeds. Unlike conventional applications, they are charac-

terized by a very dynamic and distributed information space. In this context,

traditional Web Engineering approaches suffer from the fact that they rely too

much on a-priori knowledge of existing content structures. We present a sup-

port system and a method for building such applications in a very flexible way.

Flexibility is achieved by managing links separately from the content in a dedi-

cated Web service and by composing the application from fine-grained, reusa-

ble components that realize navigation, presentation, and interaction for the

linked content.

Keywords: Web Engineering, Content Linking, Web Services, Reuse, Triple

Stores

1 Introduction

Today, Web Engineering is challenged the construction of a wide variety of Web ap-

plication types. As one import trend, sites are evolving from isolated content provid-

ers to functionality providers that are connected to other parts of the Web beyond

simple HTML linking. In particular, Web applications combine their functionality

with external services and the content contributed by large communities of participat-

ing Web users [11]. Prominent examples include sites like Google Maps, Flickr or

del.icio.us that, in addition to offering a visible user interface, also provide program-

mable interfaces in the form of Web services to enable third parties to build applica-

tions on top of them (also referred to as mash-ups).

However, the existence of standardized Web service technologies only solves a

part of the problem. Beyond just integrating content as e.g. separate sets of resources,

real added value is only achieved, when resources from different sources are linked to

each other. Here, link is understood as the representation of a semantic connection be-

tween two resources, i.e. not exclusively related to navigation. We are especially in-

terested in the question of how to account for this linked content when developing

Web applications. In particular, we are addressing the following three challenges:

 Continuous extensions with new content sources: Unlike content sources that

are under the control of the application provider, the set of autonomous sources

that are potentially relevant changes frequently, as old services become obsolete

and new services become popular. Hence, the development process must be capa-

ble of accounting for originally unknown sources, which are integrated and linked

to the existing content later. Ideally, such changes should not require re-

implementing or re-generating the system at code level, in order to achieve short

revision cycles.

 A repetitive implementation effort for content source linking: Web developers

perceive getting content from others as one of the most frequent problems in Web

development work [13]. Concrete problems include distribution, cashing, support

for multiple service interfaces, or the realization of navigation across the linked

content. On the other hand, a considerable part of this functionality does not de-

pend on the application domain, but is rather general in nature.This raises the

question of how we can package generic functionality in reusable components that

abstract from specific applications.

 Content sources that are unprepared to be linked. As they originate from dif-

ferent organizations, they were most likely developed independently from each

other. Without the means to make changes to the external sources, the linking

structure has to be imposed retrospectively. Similarly, little can be assumed in

terms of service capabilities. The interfaces may vary and only provide for basic

data retrieval operations, instead of e.g. semantic query features.

In this paper, we present a support system and a method that aims at flexible solutions

for these challenges by assembling applications from reusable components and ser-

vices. In section 2, we introduce an example scenario to clarify the scope of our work.

Section 3 presents the Linkbase method together with its individual activities and the

architectural outline of the resulting applications. We then describe the implemented

support system and its application within a development project in section 4. Section

5 contains a brief overview of related work. We conclude with a summary and an out-

line of planned future work in section 6.

2 The Tourism Portal Scenario

To characterize the targeted type of dynamic Web application, we begin by introduc-

ing a fictitious scenario. The scenario is concerned with the development of an ad-

vanced Web portal for tourists to aid them in planning their trips in advance. For this

purpose, the portal provides reports of other people, who have already visited the tra-

vel destinations, as well as all sorts of additional tourist-relevant information. As the

planning of trips generally requires accurate and up-to-date information, which the

site provider organization cannot gather itself, the envisioned application is supposed

to rely on the integration of Web services and other resources offered by third parties.

Examples of relevant content include public geographical information about places

(continents, countries, regions, and cities), locally relevant news from multiple pro-

viders, weather forecasts, climate statistics, and information about events taking place

at the travel destinations from multiple calendars. As an example for content that is

generated and stored at the site itself, the user community contributes their travel ex-

perience in the form of reviews or travelogues. Furthermore, information about rela-

tionships between the users of the portal, acquired from the service of a networking

portal, can be exploited. The last case of content integration is based on an agreement

of the tourism and the networking portal to share services and accounts, and thus al-

low their respective users to log on to each other’s sites through single-sign-on me-

chanisms. Furthermore, the tourism portal is granted access to services that are other-

wise not publicly available.

Fig. 1 gives a simplified overview of the possible content structure inside the por-

tal, as the provider might initially plan it. As indicated, most content originates from

outside the portal. In order to make the content more useful, the portal needs some

additional knowledge about how the individual resources relate to each other. For ex-

ample, descriptions about places can be linked to most other resources, as to specify

where a given news article is relevant or where a given event occurs. Users are related

to reports they authored, photos they took, events they participated etc. Furthermore,

there are links that apply to resources of only one source, as e.g. a geographical hie-

rarchy on the places, or the relations among the users in their networking communi-

ties.

Fig. 1. Content in the Tourism Portal Scenario

Based on the linked content, the tourism portal can offer functionality beyond just let-

ting users browse and contribute reports. For example, users cannot only find out,

what other people say about a certain place, but also, whom of their friends they can

ask for personal travel experiences, or where their friends will travel within the next

year. The benefits produced by the portal can in turn be made available as services to

other applications.

3 The Linkbase Method

This section presents the Linkbase method for building applications by linking auto-

nomous content sources with the help of a support system. Fig. 2 gives an overview of

the implementation architecture and the steps to be performed. The central idea is to

manage links between arbitrary resources with the help of a central Web service (the

Linkbase service) in a uniform way. Inspired by fundamental principles from the Se-

mantic Web, links are seen as triples, i.e. labeled connections between two resources.

A resource is anything that can be described with a Uniform Resource Identifier

(URI), including conventional Web resources accessible via HTTP and resources que-

ried from Web services. The Web application itself is composed of generic, reusable

components that operate on the links from the Linkbase and the content from the dif-

ferent sources to provide navigation, presentation, and interaction to the user.

Fig. 2. Architectural Overview of the Linkbase Method

In the following subsections, we give more specific definitions of the concepts in Fig.

2 and discuss three groups of activities that are necessary for building applications.

The information space has to be prepared for integration, the Linkbase has to be es-

tablished, and the Web application has to be assembled. These guidances should not

be seen as one-time activities, but more as tasks that become necessary every time the

application is extended. Rather than re-implementing the system in every cycle, the

Linkbase method focuses on reconstructing only the necessary parts (services and

components), as well as their integration with the remaining system at runtime.

3.1 Providing the Content Sources

The aim of the first step is to fulfill the preconditions for the content sources to be

linked to each other effectively by making them available in a uniform way. In the

case of conventional Web resources1, the existing Web standards already provide such

uniform access methods, as e.g. addressing images via URLs over HTTP. Alternative-

ly, Web services offer more advanced capabilities, e.g. related to querying for specific

resources. In this paper, we use the term (content-delivering) Web service for services

that provide access to content to other services and applications via standardized Web

protocols, as e.g. SOAP over HTTP or REST. Along with the more advanced capabil-

ities of Web services as content sources comes a wider choice of access methods, par-

ticularly in terms of Web service interfaces. As this variety stands in the way of an ef-

fective reuse of content, we propose to use a uniform interface that abstracts from the

particular type of content delivered by the service. If the application provider organi-

zation controls the service, it can implement the interface directly. Otherwise, the

provider creates a wrapping Web service, which is accessed with the uniform inter-

face, and which in turn delegates the content requests to the proprietary interfaces of

the third-party services. As one alternative, we propose the specification of an inter-

face in accordance to the CRUDS metaphor [8]. CRUDS allows the querying and

manipulation of arbitrary sets of content objects through the operations Create, Read,

Update, Delete and Search. In cases where there is just read-only access, it is suffi-

cient to implement the Read and Search operations. The interface is independent of

the content type, as the method signatures contain XML parameters for passing over

content objects. Thus, this service provides uniform access to e.g. databases, legacy

systems, or, like in our case, other third-party services.

As a second precondition for making the service a part of the information space (in

which resources can be linked to each other), we require a method for addressing the

supplied resources uniformly. The object identifiers used in the CRUDS interface are

inappropriate, as they are not guaranteed to be globally unique. In order to overcome

this disadvantage, we propose their extension to so-called Information Space Identifi-

ers (ISID). ISIDs are special types of Uniform Resource Nominators (URN) that con-

tain, in addition to the local object identifiers of the resource, also an identifier of the

service supplying the resource. The general format of an ISID is:

urn:isid:[service id]:[object id]

The service identifiers should correspond to the same identifiers that are already used

to refer to the service within registries (like e.g. UDDI). Consequently, an application

can resolve an ISID by first querying the service’s URL from a registry (if not already

known) and then invoking its Read method with the contained object identifier as a

parameter.

Referring to the example in section 2, the first step of the Linkbase method would

be to develop a new CRUDS service for handling travel reports, and to create wrapper

services for the remaining content sources (weather report, events, etc.). If photos are

integrated without any metadata (as e.g. provided by a Web service of a photo sharing

site), they can be addressed by URLs, requiring no further implementations. In the

other cases, the wrapping Web services introduce new identifiers. For example, an

event could be identified with:

urn:isid:0a816d35-05fc-41eb-8a76-d54c111c8d2f:20070508-001

1 In the sense of RFC 3986.

Here, 0a816d35-… identifies the wrapping calendar service, and 20070508-001 is the

identifier by which the event is known at the external service.

3.2 Linking the Content

The second step of the Linkbase method addresses the actual linking of the resources,

within the unified information space. For this purpose, we propose using a Linkbase

service, which we define as a Web service that provides at least read- and write-

access to a set of links, where each link must at least contain a triple of URIs. Each

triple consists of a subject, a predicate, and an object. In our case, the subject and ob-

ject URIs refer to resources provided by the autonomous data sources, and the predi-

cate URI serves as a label for the type of relationship. For the realization of the Link-

base service, there already exists a wide variety of triple stores, many of them related

to Semantic Web projects [1], that implement the functionality for storing and manag-

ing triples.

Generally, triple stores do not only support storage and retrieval, but also the com-

putation of new triples that logically follow from others. Based on an ontology that

captures the necessary knowledge about the types of resources and relationships, the

store can infer new facts from old facts. This takes place either when triples are

created (forward chaining) or every time the store is queried (backward chaining).

The Linkbase method focuses not so much on storing facts between arbitrary (virtual)

concepts, but rather on storing links between concrete resources on the Web. Howev-

er, reasoning can still be valuable in relieving the application from the burden of

computing links by itself. For example, we can declare the located in relationship

from Fig. 1 as transitive, to better reflect the geographical hierarchy.

So far, we have been concerned with content originating from external sources. In

addition to that, it may also be necessary to retrieve the information about which re-

source is linked to which from the outside. We propose an extension of the triple store

concept to not only provide stored and inferred triples, but also triples extracted from

external sources at runtime (cf. Fig. 3). When such an extended store receives a query

for links, it identifies an appropriate source (like a Web service), queries that source,

and returns the result as a set of triples. The idea resembles in some ways the concept

of distributed triple stores, where the triple space spreads across several connected

stores. However, in this case, the external sources are not restricted to triple stores,

but can e.g. also include legacy systems or third-party Web services.

Fig. 3. Inferred and Extracted Triple Space Extensions

With the mentioned extension, there exist three principal ways of feeding links into

the Linkbase:

 Links are manually created from inside the application itself, e.g. according to

information given by a large community of users.

 Links are automatically extracted from external sources at runtime. This is espe-

cially applicable when the set of links is very large or changes frequently.

 Links are imported from external sources once, e.g. by applying batch tools.

This is preferable in cases where the source’s availability is unreliable, or where

the procedure of extracting the links takes too long to be performed at runtime.

In the tourism portal scenario, the step linking the content comprises setting up one

Linkbase service that handles instances of all relationships from Fig. 1. For example,

the taken by relationship could result in triples like:

<http://photo.site/photos/P1010023.JPG>

<http://purl.org/dc/elements/1.1/creator>

<urn:isid:77ff72af-…:smithj>.

Here, the triple links the URL of a photo with a description of a person supplied by a

Web service. Assuming that the photo sharing site supplies this information, a plug-in

can be developed for the Linkbase service that extends the triple space with always

up-to-date information about the photos that people took. In contrast, the located in

relationship is relatively stable and can therefore be supplied by a singular import

step. The wrote relationship is an example for triples created by the application itself,

e.g. every time a user contributes a new report.

3.3 Using Linked Content in the Application

Within the third step, the goal lies in allowing developers to construct the (frontend)

Web application without having to program it. To achieve this, the Linkbase method

focuses Component-based Web applications, which we understand as dynamic Web

sites that are composed of server-sided, reusable components, usually assembled with

the help of a framework. An example for such a framework is our previous work, the

WebComposition Service Linking System (WSLS) approach [4], which we adapt to

the challenge of linking content from autonomous sources. The idea behind WSLS is

to provide a runtime environment for visual, interactive components. At runtime,

WSLS allows application developers and administrators to place, rearrange and con-

figure components on pages without recompiling the application. In order to support

separation of concerns, components are developed as fine-grained implementation ar-

tifacts that can be combined with each other by following the Decorator software de-

sign pattern [5]. For the Linkbase method, we supplemented the WSLS approach with

a catalogue of components that are dedicated to dealing with linked content. Since

both links and content sources are provided in a uniform way, we can restrict the

number of components to be implemented and focus on generic functionality. In the

following, we present three components from our catalogue to exemplify the support

for the three aspects navigation, presentation, and interaction: the Fisheye, the Time-

line, and the Content Connector. To be of practical use, they have to be comple-

mented with additional components, like the ones described in [4]. This includes par-

ticularly a component that retrieves and caches the content objects from the Web ser-

vices and that supports the Web service interface chosen for unification (e.g. the

CRUDS interface).

Fisheye Component (Aspect Navigation): The Fisheye allows users to navigate

through the graph formed by the Linkbase, along selected types of links. This is

achieved by decorating the presentation of a currently active object with smaller navi-

gatable preview presentations of related objects around it (cf. Fig. 4). The name Fi-

sheye relates to the impression that the view skims over a web of objects, where the

object in focus is always magnified. Technically, the component queries the Linkbase

for any resources linked to the currently active resource. When a user activates a

hyperlink, the Fisheye component notifies the content-supplying component of the

next object to focus.

In order to customize the component for a concrete use case, the configuration has

to specify, over which types of links the navigation should occur. In general, it is

more advisable to restrict the navigation on a subgraph formed by certain types of

connections. Depending on the types, we have to configure, where a related object

should be placed (underneath, above, to the left, to the right …) and how it should be

rendered (e.g. with a template).

Example: Given a Linkbase that contains a geographical hierarchy, the Fisheye can

be configured to display hyperlinks to geographical places (continents, countries, re-

gions, cities) above, underneath or next to the currently selected place X, depending

on whether the places contain, are contained by, or are situated near place X. A simi-

lar navigation support can be provided to browse through a network of friends or fam-

ily members.

Fig. 4. Fisheye Component

Timeline Component (Aspect Presentation): The Timeline visualizes objects related

to a given context in time. To this end, it decorates the presentation of a central object

with a time axis and bars that represent the related objects and the time span of the re-

lation (cf. Fig. 5). Similar to the Fisheye, the Timeline queries the Linkbase for all

links connected to a particular resource, and renders small presentations of the related

objects next to the time bars. The time spans are retrieved either directly from the

Linkbase (if the Linkbase supports time-based links [6]) or from common metadata

attributes contained in the objects that are supplied by the CRUDS service.

Besides presentation aspects of the timeline axis and bars, the configuration has to

specify, how to render the related objects and how to retrieve the time spans.

Example: An application of the Timeline in the running example is to give an

overview of submitted travel reports, that relate to a specific travel destination. Alter-

natively, another interesting view would be to display selected photos and travel re-

ports related to the user or any friend of a user, in order to provide a personalized tra-

vel history line.

Content Connector Component (Aspect Interaction): The Content Connector facili-

tates the interaction between the user and the links by allowing the user to add new

links with a single mouse click (cf. Fig. 5). Again acting as a decorator, the compo-

nent adds hyperlinks or buttons to the presentation of content objects. When activated,

it creates a new link in the Linkbase between the decorated object and another object,

according to context and configuration. This other object can e.g. be the account of

the currently logged-in user or a statically pre-defined URI. Alternatively, the user se-

lects an object within a second step, from a choice of objects queried from a CRUDS

Web service.

The configuration determines how the rather technical act of adding a link is pre-

sented to the user. Furthermore, it must specify the type of link to add (i.e. the triple

predicate URI) and what to link to (see above).

Example: Applied to a list of travel destinations, the Content Connector can pro-

vide “’Been There”-Buttons, that allow portal users to mark the places they have vi-

sited and the tourist activities they have attended on the fly.

Fig. 5. Timeline Component and Content Connector Compompoent

Based on the described component-based Web application architecture, the third step

of the Linkbase method comprises a number of activities to be conducted that follow

the principle configuring instead of programming. First, the components required for

the construction or extension of the application are provided, either by developing

them or by falling back on existing components (e.g. from a component repository).

Components and content sources are then registered at the framework, and thus be-

come potential building blocks for the application. Following that, the visible part of

the Web application is created or extended by configuring new pages and page sec-

tions where the components are instantiated. In other words, the components become

responsible for specific parts of the application’s hyperspace. Finally, the generic

components are configured in accordance to their intended purpose within these sec-

tions. This includes as a vital step the wiring of the component to the registered con-

tent sources. Another example of an aspect to be configured is the specification of

templates for rendering content objects. Apart from the development of new compo-

nents, all activities involved in assembling the application are supported by the

framework’s Web interface.

4 The Linkbase Applied

The Linkbase method relies on support by system to guide the application developer.

In the following section, we present the support system we implemented to validate

our approach, including a triple store that realizes the extensions discussed in section

3.2. To gain experience in its application, the Linkbase support system has been used

to realize a number of scenarios that demonstrate the applicability of its standard

building blocks in different situations.

4.1 Experiments with an Implemented Support System

The central component of the Linkbase support system is the Linkbase service. Rather

than using an existing triple store, we implemented a Linkbase service especially with

dedicated support for our purposes. The main reason for this was to be able to dynam-

ically extend the triple space with triples extracted from external sources, which is not

supported by existing triple stores, and to experiment with extensions to the triple

schema (like e.g. time-based triples).

Fig. 6 displays the architecture of the implemented Linkbase that was developed as

an ASP.NET Web service. To the outside, the service provides a CRUDS interface,

which applications can use for querying (Read, Search) and modifying (Create, Up-

date, Delete) the triple space. Hence, the same service interface can be used to access

both the content objects and the links between the objects, resulting in additional reu-

sability. To provide rudimentary support for reasoning, an inference module was in-

cluded that computes and stores implied triples every time the triple space is changed.

Thus, the Linkbase takes into account properties of link types, which can be defined

in an OWL-XML ontology file. For example, the following entry has the effect that

whenever a person is linked to an acquainted person, a link is automatically generated

in the opposite direction:

<owlx:ObjectProperty

owlx:name="http://xmlns.com/foaf/0.1/knows

owlx:symmetric="true" />

This declaration of link types and knowledge about the linked domain is optional, i.e.

links with new types can be added to the Linkbase anytime. Additional triples are

generated by the plug-in module, which delegates queries for selected link types to

external sources. As the mechanism for extracting external links may vary from

source to source (e.g. due to different Web service interfaces), it is performed by

plug-ins that are added to the Linkbase at runtime.

Fig. 6. Linkbase Service Implementation Architecture

To validate the applicability of the support system, we used its various components

for the construction of a Web application. This development was conducted in the

context of the project Software Engineering for Information Appliances at Home,

whose outcome included a Web portal targeted at families at home. Relating to the

step providing the content sources, we developed a number of CRUDS Web services.

Some of them were generated with the help of a custom Visual Studio plug-in, as e.g.

a service for handling personal profiles of family members. Others were programmed

to wrap existing non-Web systems, as e.g. a calendar service that provides read- and

write access to appointments from a Microsoft Exchange server. For example, we

created a CRUDS Web service that provides slides as individually addressable con-

tent objects (JPG images and metadata entries). Then, we filled it with slides from ex-

isting PowerPoint presentation files, including a lecture of 800 slides.

Following that, we set up the Linkbase service to provide the links according to the

three principal ways described in section 3.2. For instance, the links that make up the

relationships between the family members are specified by the portal users themselves

during the lifetime of the Web site. Here, we took advantage of the built-in reasoning

support, which in this case supplements the user’s input to work out any implied rela-

tionships. As an example for a dynamically extracted link type, we developed a plug-

in that queries a public Web service of the popular photo sharing site Flickr, to pro-

vide links between photos and concepts represented by tags. In the case of the slide

service, the hierarchical structure of the presentations (chapters, sections, learning

units…) was converted to links during the initial import step.

The visible part of the Web application was exclusively assembled and configured

from components, i.e. no code was written to wire the components. Fig. 7 contains a

screenshot of the application in administration mode, together with an extract from

the configuration screen. The depicted page section is composed of a combination of

four components: a CRUDS component to communicate with the profile Web service,

a template presentation component to render the personal profile in HTML, a naviga-

tion component to provide previous- and next-buttons, and finally, a timeline compo-

nent, to decorate the person with an overview of related photos and events.

Fig. 7. Timeline Component: Events and Photos

Fig. 8 shows the Fisheye component applied for two different purposes within the de-

veloped application. In the first screenshot, it supports the user in navigating through

a family tree and browsing the profiles of family members. According to the specific

configuration, the Fisheye places links to parents above, links to children bellow and

links to partners next to the current profile. In the second screenshot, the same con-

cept is applied to realize a presentation slide browser. Here, the horizontal dimension

lets users skim through slides on the same level, while the vertical dimension lets

them move up and down the lecture hierarchy, e.g. in order to return to the title slide

of the current section.

Fig. 8. Fisheye Component: Family Tree and Lecture Slides

All involved content sources were initially unprepared for linking. Some of them were

even beyond our control in a sense that we could not influence their content structure

(like of the Exchange Calendar or the Flickr Web service). Although programming

was necessary, the implementation was limited to generic, application-independent

components that can be reused later on to save effort in the long run. Rather then

planning everything from the very beginning, we extended the application in several

cycles: The first version only featured family members and photos; then the calendar

was added, and later on the presentation slides. Hence, the chosen scenario corres-

ponds to the three issues in content linking identified in the introduction.

4.2 Lessons Learned

While the project’s outcome confirmed the approach’s suitability to meet the targeted

problems, we also gained experience related to implementation issues and potential

for improvement. Concerning the data model of the link, applications can benefit

from extensions of the basic triple concept. Additional information, like the already

applied integration of time intervals or the inclusion of standard metadata attributes

enable more advanced ways of using the links. To increase performance, redundant

information about the linked resources can be stored with the links in cases where the

information is unlikely to change. This proved especially helpful, as it drastically re-

duced the frequency at which components had to query the linked resources. Beyond

that, the need for caching at the application to achieve adequate response times be-

came evident. Within the project, this was achieved with the help of the WSLS

framework, which caches content retrieved from CRUDS Web services at the granu-

larity of individual content objects. For example, in order to render an object that is

linked with l other objects inside a Fisheye or Timeline component without cashing,

the Linkbase is queried once and the content-supplying service (l+1) times (or once,

if the triples contain enough information for rendering the previews). While these

measurements can ease performance problems caused by the Web service communi-

cation overhead, the Linkbase remains a bottleneck in the architecture. As the number

of linked sources grows, it may become necessary to distribute the Linkbase (e.g. as

proposed in [3]). As a major advantage, the Linkbase architecture provides for a great

degree of flexibility, accounting for changes to the application’s information space

from the very beginning.

5 Related Work

In the following, we give a brief overview of several approaches that are related to the

challenge of linking autonomous content sources in Web application development.

Several model-oriented Web Engineering methods address the aspect of external

content and services. For example, WebML, a visual language for the specification of

data-intensive Web applications, has been extended for the model-driven develop-

ment of Web applications that consume web services as data sources [2]. The focus

here lies on applications with most of the data stored in a database (i.e. under the con-

trol of the provider), whereas the external content only supplements this data. Directly

opposed with respect to this aspect, the HERA methodology targets distributed Web-

based information systems where data is retrieved from Web sources with semantic

query capabilities [16]. While this approach enables the user to perform very intelli-

gent search capabilities over heterogeneous sources, it requires relatively high devel-

opment effort for ontology integration, even in cases where such queries are not ne-

cessary. The OOWS method has been conceptually extended with support for Web

Services [14] and content aggregation [15]. Generally speaking, there is a discrepancy

between the very systematic, model-based development methodologies and the dy-

namic nature of the information space exploited by modern Web applications.

From the architectural point of view, the idea of managing content links in a sepa-

rate service is closely related to Open Hypermedia Systems (OHS) and the concept of

the link service found there [12]. This relatively old idea has also been applied to Web

technologies [3] as well as to Web services in particular [10]. In the context of this

field, our approach can be understood as an application of the OHS concept to a uni-

fied information space on top of Web services, and as an alternative method for ex-

ploiting the links in a reusable manner. Related to our idea of dynamically extending

the triple space, [10] proposes the storage of dynamic hypermedia links that contain

queries instead of rigid identifiers, in order to realize stable links on a evolving infor-

mation space. While this approach does not explicitly target Web services, it could be

combined with ours by delegating these queries to the (unified) Web services.

With respect to the goal of composing functionality and content from existing

Web-based systems, our approach is related to the field of Semantic Web services. As

one example, the WSMX system supports the execution and combination of semanti-

cally described Web services [7]. This approach is very powerful, as the system can

dynamically chose and combine appropriate services to fulfill goals given by the re-

questor. However, it is less suitable for dealing with the specific problem of handling

and linking sets of resources provided by these services in a uniform way. As an ex-

ample for a more manual approach to application composition, [9] proposes the end-

user-driven definition and wiring of components that wrap existing Web applications.

The idea has advantages in cases where there is no Web service interface to build on,

but entails the same problems that are common to all Web site wrapping strategies,

e.g. in terms of sensitivity to layout changes on the wrapped sites.

6 Conclusion

The contribution of this work was a novel way of constructing Web applications that

integrate content from external sources. The development of such applications require

very flexible implementation techniques, as the set of content sources to be integrated

is often unknown at design time and is subject to changes later on. In this paper, we

described a way to support application development with a support system, whose

major component is a Web service for providing links between content objects from

different sources (the Linkbase service). To apply this system, we first unify the ap-

plication’s information space by introducing a standardized interface for (wrapping)

Web services, and a standardized way of addressing content objects. Content objects

are linked by triples of URIs, stored by the Linkbase service. For the application ar-

chitecture, we propose to assemble Web sites from configurable generic components

that work with the unified content sources and links. We are now working on varia-

tions of the triple data model, in order to examine the added value gained by augment-

ing the triple with metadata. Another interesting question for future research is the

exploration of further ways to exploit the links from the Linkbase.

Demonstration Videos

Demo videos of the described support system are available for download at the

MWRG homepage, http://mwrg.tm.uni-karlsruhe.de/downloadcenter/systems/demos.

http://mwrg.tm.uni-karlsruhe.de/downloadcenter/systems/demos

Acknowledgements

This material is partially funded by Microsoft Research Cambridge, within the con-

text of the research project 2005-053.

References

1. Beckett, D.: SWAD-Europe Deliverable 10.1: Scalability and Storage: Survey of Free

Software/Open Source RDF storage systems - 2002), W3C:

http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/ (12.10.2006)

2. Brambilla, M., et al.: Model-driven Development of Web Services and Hypertext Applica-

tions. in SCI2003. 2003. Orlando, Florida

3. Deroure, D., et al.: A Distributed Hypermedia Link Service. in Third International Work-

shop on Services in Distributed and Networked Environments. 1996: IEEE

4. Gaedke, M., Nussbaumer, M., and Meinecke, J.: WSLS: An Agile System Facilitating the

Production of Service-Oriented Web Applications, in Engineering Advanced Web Appli-

cations, S.C. M. Matera, Editor. 2005, Rinton Press. p. 26-37

5. Gamma, E., et al.: Design patterns: elements of reusable object-oriented software. Addi-

son-Wesley professional computing series. 1995, Reading, Mass.: Addison-Wesley. xv,

395

6. Gutierrez, C., Hurtado, C., and Vaisman, A.: Temporal RDF. in European Conference on

the Semantic Web (ECSW’05). 2005

7. Haller, A., et al.: WSMX-a semantic service-oriented architecture. in 2005 IEEE Interna-

tional Conference on Web Services (ICWS 2005). 2005. Orlando, Florida

8. Ibm: Elements of Service-Oriented Analysis and Design - 2005), IBM Homepage:

http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/

9. Ito, K. and Tanaka, Y.: A visual environment for dynamic web application composition. in

ACM Conference on Hypertext and Hypermedia. 2003. Nottingham, UK ACM

10. Karousos, N., et al.: Offering Open Hypermedia Services to the WWW: A Step-by-Step

Approach for Developers. in Twelfth International Conference on World Wide Web.

2003. Budapest, Hungary

11. O'reilly, T.: What Is Web 2.0 - Design Patterns and Business Models for the Next Genera-

tion of Software - Online Article (2005):

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

(18.10.2005)

12. Pearl, A.: Sun's Link Service: A Protocol for Open Linking. in 2nd Annual ACM Confe-

rence on Hypertext. 1989. Pittsburgh, USA: ACM Press

13. Rosson, M.B., et al.: "Designing for the Web" Revisited: A Survey of Informal and Expe-

rienced Web Developers. in 5th International Conference of Web Engineering (ICWE

2005). 2005. Sydney, Australia: Springer

14. Ruiz, M., et al.: A Model Driven Approach to Design Web Services in a Web Engineering

Method. in 1st International Conference on Advanced Information Systems Engineering

Forum (CAiSE Forum). 2005. Porto, Portugal

15. Valderas, P., Fons, J., and Pelechano, V.: Extending Navigation Modeling to Support Con-

tent Aggregation in Web Sites in Fourth International Conference on Web Engineering

(ICWE’04). 2004. Munich, Germany: Springer

16. Vdovjak, R., Barna, P., and Houben, G.J.: Designing a Federated Multimedia Information

System on the Semantic Web. in CAiSE. 2003: Springer

http://www.w3.org/2001/sw/Europe/reports/rdf_scalable_storage_report/
http://www-128.ibm.com/developerworks/webservices/library/ws-soad1/
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-web-20.html

	Text1: J. Meinecke, F. Majer, M. Gaedke: Component-Based Content Linking Beyond the Application. In Proceedings of the Seventh International Conference on Web Engineering (ICWE), Como, Italy, 16-20 Jul, Pages 427-441, ISBN 3-540-73596-8, 2007.

