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Flexible Speech Translation Systems
Tanja Schultz, Alan W. Black, Stephan Vogel, and Monika Woszczyna

Abstract—Speech translation research has made significant
progress over the years with many high-visibility efforts showing
that translation of spontaneously spoken speech from and to di-
verse languages is possible and applicable in a variety of domains.
As language and domains continue to expand, practical concerns
such as portability and reconfigurability of speech come into play:
system maintenance becomes a key issue and data is never suffi-
cient to cover the changing domains over varying languages. In this
paper, we discuss strategies to overcome the limits of today’s speech
translation systems. In the first part, we describe our layered
system architecture that allows for easy component integration,
resource sharing across components, comparison of alternative
approaches, and the migration toward hybrid desktop/PDA or
stand-alone PDA systems. In the second part, we show how flex-
ibility and reconfigurability is implemented by more radically
relying on learning approaches and use our English–Thai two-way
speech translation system as a concrete example.

Index Terms—Multilinguality, portability, speech translation,
system deployment.

I. INTRODUCTION

RESEARCH on speech translation has shown that it is pos-
sible to build systems that translate spontaneously spoken

utterances from one language to another. To handle the chal-
lenge of ambiguity introduced by spontaneous speech, most sys-
tems introduce semantic constraints by limiting the domain of
discourse, thereby reducing the number of suitable interpreta-
tions. For many applications, constraining the domain (hotel
reservation, scheduling, travel planning, etc.) is quite acceptable
and can provide practical translation devices. Over the years,
we have developed a large number of such systems for many
languages, domains, and platforms. These efforts have shown
that acceptable performance can be obtained for spontaneous
speech input, but also that practical concerns such as portability
and reconfigurability become increasingly important. The two
main challenges are in maintaining the existing system and ob-
taining enough data for each new language and domain. How
can the cost of data collection and programming effort be con-
tained? What translation approaches should be used? How do
we move from desktop prototypes to portable devices with lim-
ited computational power and memory footprint? How should
such portable devices be integrated and how should they com-
municate to deliver translation capability effectively?

Manuscript received June 20, 2004; revised June 16, 2005. This work was
supported in part by the Defense Advanced Research Projects Agency (DARPA)
under Grant “Mobile Speech-to-Speech Translation for Military Field Applica-
tions” (formerly called “Babylon”) and LASER-ACTD under Grant “CMU Thai
Speech Translator for Multilingual Coalition Conversation.” The associate ed-
itor coordinating the review of this manuscript and approving it for publication
was Dr. Giuseppe (G. E.) Riccardi.

The authors are with the Interactive Systems Laboratory, Carnegie Mellon
University, Pittsburgh, PA 15213 USA (e-mail: tanja@cs.cmu.edu).

Digital Object Identifier 10.1109/TSA.2005.860768

Fig. 1. Multilingual speech-to-speech translation. Typical speech translation
scenario: an English-speaking participant speaks into a handheld device.
Speech gets 1) recognized, 2) parsed into an intermediate textual meaning
representation (Interlingua), 3) sent wirelessly to the recipients 4) generated
into Arabic/Thai, and 5) synthesized on the recipient’s device.

II. A SCALABLE AND FLEXIBLE SYSTEM DESIGN

This section introduces each component, i.e., automatic
speech recognition (ASR), speech synthesis (TTS), natural
language understanding (NLU), as well as machine translation
(MT) and its integration into a scalable, flexible, and recon-
figurable speech translation system. Fig. 1 shows a typical
scenario for our speech translation system, which supports
a typical multilingual speech translation task. A native Eng-
lish medical doctor wants to communicate with an Arabic
or Thai patient. The doctor speaks English into his personal
handheld device. The speech is recognized and parsed on this
device (English ASR and parsing). An intermediate textual
meaning representation of the sentence, the interlingua, is
sent wirelessly to the patient’s device (the same handheld, a
second handheld, or a laptop/desktop). The recipient’s device
generates audible output in the target language Arabic or Thai
(generation and TTS), and processes the recipient’s spoken
response (Arabic/Thai ASR and parsing). In order to support
this scenario, each component of the speech translation system
needs to be scalable enough to run efficiently on platforms
ranging from handheld devices to desktops.

A. System Deployment

When it comes to the actual use and, thus, the practical de-
ployment of a speech translation system, smaller platforms are
more convenient to the user. Unfortunately, the larger or at least
the more computationally capable the platform is, the better the
translation can be. We have taken these conflicting requirements
into account and designed a system that can take advantage of
both. We built a system that runs on small platforms, such as a
PDA, as well as on larger platforms such as desktops or laptops.
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Fig. 2. Resource sharing in a S-2-S system.

To combine the benefits of both solutions, the system’s archi-
tecture supports a seamless integration of both platforms based
on wireless communication.

1) Multiple Platform Communication: The communication
between the devices is by wireless (Bluetooth or WiFi 802.11).
In order to keep the bandwidth limited, we pass a textual
representation between the devices rather than recorded speech.
Transferring audio to a single central server for recognition,
translation, and synthesis would require higher bandwidth and
a centralized infrastructure. Our interlingua-based machine
translation strategy uses an interchange format (IF) as rep-
resentation that is passed in a textual representation. In our
scenario, the sender’s language is recognized and analyzed on
the sender’s device while the receiver’s language is generated
and synthesized on the receiver’s device. This scenario also
naturally supports one-to-many translations, in which the
sender’s speech input is simultaneously translated into different
output languages on several recipients’ devices. The overall
architecture is, however, not restricted to pass IF representa-
tions between the devices. Other configurations using speech
recognizer output, n-best lists, or lattices are also supported.
We chose IF since it fits well with a one-language-per-device
scenario.

2) Small, Mobile Platforms: It should be explicitly stated
that small footprint devices such as PDAs are, at least for the
foreseeable future, not simply lower powered desktop machines.
They are limited mostly by battery power, which does not allow
them to double their processing power every 18 months with
Moore’s law. To save energy, handheld devices are limited in
their CPU speed and memory. Most PDA-class machines do not
have floating-point processors (though typically offer slow em-
ulation of such). In order to run ASR, NLU, MT, and TTS en-
gines efficiently such devices it is necessary to reengineer them.
Our system uses different engines when deployed on PDAs, but
the models are trained from the same data as their large coun-
terparts (see next section).

3) Resource Sharing Between Components: In order to con-
serve memory, to minimize the developmental effort, and to re-
duce the maintenance costs, knowledge sources can be shared
across components. Fig. 2 indicates all knowledge sources of
a two-way speech translation system that can be shared across
components. For example, the design and implementation of
the phone inventory is a major concern for both speech recog-
nition and speech synthesis. Therefore, we decided to use the
same phone inventory for the handheld and desktop ASR en-

Fig. 3. System architecture.

gines as well as the TTS. All three can share the same dictionary
resources.

We can bootstrap the M Modal handheld recognizer (see Sec-
tion II-B1) using the phonetic alignments of CMU’s desktop
recognizer. Both recognizers can also exchange statistical lan-
guage models (SLMs) in the National Institute of Standards and
Technology (NIST) ARPA format. Furthermore, the grammars
developed for interlingua-based translation can be read in for
context free grammar-based speech recognition. Since language
models are memory consuming, sharing them between ASR and
statistical MT (SMT) becomes a valuable aspect.

B. System Architecture and Components

To support a scalable system that handles complex trans-
lation tasks, we designed a flexible system architecture as
shown in Fig. 3. The architecture allows the development in
distributed teams, supporting decoupled implementation and
improvement of ASR, TTS, NLU and MT. The current system
runs on Windows, WinCE, and Linux operating systems and
supports two recognizers, two translation strategies, and two
synthesis engines. The spoken input in the source language is
passed on to the ASR/analysis component. This component
supports two recognition strategies. One uses statistical n-gram
language models ASR LM , the other uses grammars to
recognize and parse the input into an interlingua representation
ASR Parsing . The statistical parser SOUP [40] allows for

allows for parsing the ASR LM output. The recognition can
be performed with either CMUs or M Modal’s speech engine.
The ASR output is then passed on to one of two different
machine translation components: IF-based or direct SMT. In
case of the interlingua-based translation strategy, the target
language textual representation is generated from IF. The SMT
translates the textual representation of the source language
directly into the target language. Finally, the target language
text gets synthesized using either the Festival Speech Synthesis
system or Cepstral’s small footprint synthesis engine Theta.

1) Automatic Speech Recognition: The two recognizers
used in our system are CMU’s Janus JRTk recognizer [1], [2],
and M Modal’s recognizer [3]. On a desktop or laptop, both
recognizers may either run interchangeably or combined. Both
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TABLE I
GRAMMAR VERSUS N-GRAM LANGUAGE MODEL

produce a flat hypothesis string and a recognition word lattice
graph, annotated with confidence scores for combination by
ROVER or confusion networks [4]. When running on a hand-
held device, the M Modal recognizer uses specialized compact
models. Depending on the amount of available resources at run-
time, both recognizers can be based on grammars as well as on
SLMs. The M Modal recognizer allows expanding the domain
on the fly in several ways. In case of an SLM system, a system
designer or a front-end user can add words to language-model
classes (pronunciations will be generated through a built-in
grapheme-to-phoneme module) or adapt the language model
by providing additional sentences. In case of a grammar-based
system, the rules can be edited and modified on the fly. The
easiest cases are to add new flat top-level expressions and to
expand lists of open-class terminals, such as medication names.
The runtime requirements for the M Modal recognizer are
between 3 MB for small grammar-based systems and 50 MB
for large SLM-based systems. The speech recognition perfor-
mance on the handheld for English in a medical domain using
a trigram LM roughly corresponds to the one on a desktop at
1/3 real time, with a 10% relative increase in word error rate.

In early bootstrap phases where no or too little data are
available for building SLMs, grammar-based recognition is ex-
tremely helpful. As more data become available, they are used
to increase grammar coverage and learn transition weights in
the grammars. As the amount of language model data increases
(for instance by transcribing data logged while the system is
used or by mining internet resources) using statistical language
models becomes more practical than the labor-intensive work
of increasing grammar coverage. This is especially important
since systems with very large grammars require more resources
than those based on statistical language models. Since the
grammar experts often include grammar rules for paraphrases
of training sentences, the resulting grammars may have better
coverage than the initial corpus. Therefore, formerly created
grammars are typically unrolled to generate additional data for
SLM training.

Table I compares the performance of grammars to SLMs for
the JRTk recognizer for German and English in a tourist as-
sistant and navigation domain in terms of sentence error rate
(SER), word error rate (WER), and real time (RT) behavior
(computed on a 1.13-GHz Pentium III Mobile Processor). The
test data consists of 820 utterances spoken by 11 German and
nine English native speakers, resulting in 31-min speech. The
vocabulary has about 2500 words for German and 2000 for
English. The language model was trained on 260 000 words
for English and 9100 words for German. One hundred ninety-
eight rules for the context-free grammar had been manually de-
signed to cover the English domain, 132 rules were created for

German. The bilingual acoustic model was trained on 15 h Eng-
lish Broadcast News, 40 h English Verbmobil, and 60 h German
Verbmobil.

Comparison of the English monolingual results (the first two
columns) shows that the statistical language model outperforms
the grammar in WER, but performs worse in case of the SER.
For German, the grammar outperforms the statistical model for
WER and SER, mainly due to the small training corpus. In
terms of real-time factors, the grammars are roughly twice as
fast as the n-gram models. The German SLM system is slower
because of the poor coverage. These results indicate that gram-
mars are preferable over statistical language models if the do-
main and training corpus is restricted and real-time performance
is of key concern. The last column shows that folding monolin-
gual grammars into one multilingual (ML) grammar in combi-
nation with multilingual acoustic models yields reasonable per-
formance with small real time losses. The resulting multilin-
gual speech interface implicitly performs language identifica-
tion (error rate on English is 3.6%, on German 1.8%) [5].

2) Machine Translation: Our system architecture supports
two translation engines, an interlingua-based and a statistical
MT component.

Interlingua-based machine translation: The interlingua-
based MT analyzes a sentence into a language independent se-
mantic representation (IF) using an analysis grammar and gen-
erates the target sentence using a generation grammar. To build a
domain-specific translation system requires the design of an in-
terlingua and the development of analysis and generation gram-
mars. The IF developed by CMU has been expanded to encom-
pass concepts in both the travel and medical domains, as well as
many general-use or cross-domain concepts. It has proven to be
portable to various domains and languages [6]. The design of an
interlingua has to balance expressive power and simplicity [7].
The specification at the argument level attempts to distinguish
between domain-dependent and domain-independent sets of ar-
guments, in order to better support portability to new domains.
The interlingua also has to be simple enough so that grammar
developers can work independently on different languages at
different sites. A simple and a more complex example of utter-
ances with corresponding IFs are shown here.

1) Thank you very much.
c:thank

2) On the twelfth we have a single and a double available.

( , )
The advantage of semantic grammars is that the parse tree

that results from analyzing an utterance is very close to its final
semantic interpretation. A disadvantage is that new grammars
have to be developed for each domain, although some low-level
modules such as those covering time expressions can be reused
across domains. Strong advantages of interlingua-based MT are
that: 1) it abstracts away from variations in syntax across lan-
guages, providing potentially deep analysis of meaning without
relying on information pertinent only to one particular language
pair and 2) the users can be given a paraphrase in their own
language, which can help verify the accuracy of the analysis
and be used to alert the listener to inaccurate translations. With
respect to a flexible system architecture, interlingua-based MT
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modules for analysis and generation can be developed by mono-
lingual persons, with additional knowledge only of the second
“language” of the interlingua. This is important in translation
between small languages where the chances to find a bilingual
expert are low.

Statistical direct translation: Statistical machine transla-
tion has been advocated by the IBM research group in the early
1990s [8] and since then has become a very active research field.
The approach is based on Bayes’ decision rule: given a source
sentence of length , the translation is given by

Here, is the language model of the target language,
typically a 3-gram, and is the translation model. A
number of different translation models, also called alignment
models, are used [8]–[11]. The argmax operation denotes the
search problem. The SMT decoder applied to these experiments
uses a beam search based on dynamic programming [12], [13].

As it is the case with any statistical system, more data usually
results in better performance. One of the arguments in favor of
knowledge-based systems like the interlingua-based MT system
is that statistical MT can often not be used in limited domain
translation tasks, as the bilingual corpora are usually extremely
limited. However, an advantage of the SMT system is that it is
easy to incorporate other knowledge sources like general-pur-
pose bilingual dictionaries, large monolingual corpora to esti-
mate the language model parameters, and out-of-domain bilin-
gual corpora. This typically involves data filtering, formatting,
and cleaning, but this is less work intensive than translating a
significant amount of domain-specific data or writing transla-
tion grammars.

Comparing IL-MT and SMT: To see if the statistical
approach to translation is applicable to domain-limited speech
translation, where the bilingual corpus is of very limited size,
we evaluated the SMT system on the NESPOLE! translation
task [14] and compared it to an existing IL-MT system [6]
which was developed as part of the NESPOLE! project. To
make the results from the SMT system comparable to those
from the interlingua-based MT system, the same data was used
for training the alignment model as was used to develop the
analysis and generation grammar. Two-thousand four-hundred
twenty-seven German–English sentence pairs with 11 236
German and 11 729 English tokens were used to train the sta-
tistical system. The vocabularies contained 1196 German and
1010 English words. For the SMT system, HMM alignments
[10] from German to English and from English to German were
generated and used to extract a word-to-word statistical lexicon
and phrase-to-phrase translations from the bilingual corpus.

A human evaluation was carried out for the comparative eval-
uation. Several dialogs, adding up to 194 sentences were used as
a test set. Translation was from German into English. Six evalu-
ators were presented with the German turn and the two transla-
tions. Grading was done on a three-point scale: “Good” (trans-
lation gives the required information and is easy to understand);
“Okay” (translation gives useful information, even if it is syn-
tactically not correct); “Bad” (translation is missing, gives no
useful information, or is misleading).

TABLE II
EVALUATION RESULTS FOR IL-MT AND SMT

The evaluation results are given in Table II. The numbers for
“Good,” “Okay,” and “Bad” translations are given in percent-
ages, with counts accumulated over the six evaluators. Com-
paring the results from both systems shows that statistical trans-
lation is at least competitive, yielding comparable translation
quality in significantly less development time.

3) Speech Synthesis: Current technology in speech syn-
thesis is concentrated on concatenative speech synthesis,
selecting appropriate subword units from a natural speech
database and concatenating them to form new utterances.
Previous techniques, such as formant synthesis, required sig-
nificant knowledge and skill to construct for new languages.
The building of voices in new languages is based on the work
described in the FestVox project [16], which offers tools and
techniques for building new synthetic voices. The techniques
we designed provide working voices for the Festival Speech
Synthesis System, a free software system that runs on most
platforms [17]. Much of the quality of a concatenative unit se-
lection synthesizer depends not just on the engine and selection
algorithms but also on the coverage of the database the units
are selected from. Festival requires significant resources to run,
and unit selection databases can easily require hundreds of
megabytes. In order to offer the ability to run voices on much
smaller platforms, Cepstral, LLC developed a new engine,
called Theta [18], which uses voice compression and pruning
techniques to allow the same high-quality synthesis on a hand-
held. The quality of the results directly depends on the effort
involved. Although a reasonable domain targeted voice can be
built fairly quickly for Festival, small footprint general voices
take more effort in design, labeling, and tuning.

III. SYSTEM FLEXIBILITY AND RECONFIGURABILITY

In this section, we discuss how to reduce the developmental
effort for practical deployment of speech translation systems.
While part of the discussion is abstracted away from a par-
ticular target language, we also demonstrate how the current
system supports speech translation in a realistic setting and how
it supports the rapid adaptation to a new target language. We re-
port quantitative scores in terms of development time and per-
formance numbers for single components. These numbers are
based on our two-way English–Thai speech translation system,
which was developed in the framework of Babylon, supported
by DARPA and Laser-ACTD. The end-to-end system was also
evaluated within the Babylon framework by MITRE [19].

A. Language Peculiarities

We have used our tools and techniques for a large range of
human languages, and this has made them more robust and
general. We have frequently encountered new aspects that we
had not yet catered for. We have gained significant experience
dealing with many language groups, from the major European
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and Asian languages, to various resource-limited indigenous
languages. This has allowed us to address various language
phenomena that can make speech recognition, translation,
and synthesis hard, such as tonality (Chinese, Thai), various
inflection systems including rich morphology (German, Ko-
rean, Serbo–Croatian, Turkish), lacking word segmentation
(Japanese, Chinese), different phonological structures (simple
mora-based as in Japanese versus complex consonantal clusters
as in German), and various writing systems (Roman, Cyrillic,
Korean, Devanagari, Chinese).

Within a speech translation system, there are sometimes so-
lutions that might not be possible in other speech and language
systems. For example, in conventional written Arabic [20],
vowels are not included in the written script. It is a nontrivial
task to automatically predict which vowels are missing. There
has been work on Arabic speech recognition that ignores
vowels, but it is difficult to use such implicit vowel systems
for speech synthesis. For our two-way English–Arabic speech
translation system, we use a closely phonetic internal repre-
sentation with full vowel information. We can transform this
representation into Arabic script, but not the reverse. A similar
simplification is made in our Thai system [21]. Normal Thai
script does not contain spaces between words. We have a word
segmentation algorithm [22], and within the system we only use
the segmented representation. This makes the translation and
synthesis easier, without requiring each process to resegment
the Thai character string.

Spoken language can differ quite significantly from written
language. Such differences can vary from language to language.
For example, Modern Standard Arabic (MSA) is a well-defined
written language and can also be used for more formal speech
such as news broadcasts. It allows a common communication
over a wide range of dialects in the Arabic-speaking world.
However, MSA is not a standard spoken language and in de-
signing speech translations systems it is important to cater for
spoken language. In Thai, there is also a distinction between the
written form and spoken language. For example, sentence final
particles are influenced by the gender of the speaker. Thus, it is
important to collect in-domain conversational speech to model
the differences in natural spoken language.

B. Rapid Model Building for ASR

We have accumulated considerable experience in language
adaptation techniques and our recognizer has been successfully
applied to more than ten languages [23], which cover a variety
of characteristics as described above. Based on our multilingual
data collection efforts GlobalPhone (GP) [24], we train a global,
language-independent phone set and then adapt the acoustic
models to new languages. Our rapid adaptation techniques en-
able us to bootstrap acoustic models in a new language on lim-
ited training data. We first collect general domain speech data
for the new language to create general acoustic models. For the
latest developments in Arabic and Thai language, we collected
read speech from about 100 speakers. Since read speech does
not require costly transcription work, this kind of data collec-
tion can be done very quickly and efficiently. For Thai, a single
person collected 20 h of GlobalPhone style data in Thailand and
prepared it for acoustic model training in three weeks.

TABLE III
WER ON GP, PHONE SET, AND PRONUNCIATION VARIANTS

Phone set: The Thai phoneme set consists of 21 conso-
nantal phonemes, 17 consonantal cluster phonemes, and 24
vowels. Each vowel can carry one of five tones: low, mid, high,
rising, and falling. When investigating the impact of tone in-
formation, we found no performance gain [25]. Therefore, we
focused on phone sets without tone features. Our baseline phone
set consists of 42 phones: 21 consonantal, and 21 vowel phones.
We split the 17 consonantal cluster phonemes into two separate
phones. For comparison, we built an enhanced phone set by
adding the 17 cluster phonemes, resulting in 59 phones. The re-
sults in Table III show no significant gains by using the enhanced
phoneset. Ina thirdexperiment,we tookthesmallerphonesetand
built a dictionary with multiple pronunciation variants to handle
the most common pronunciation variation effects (on average
1.1 variants per word). This gives up to 4% relative improvement.
We ran the model training on 80 native speakers of the Thai
GlobalPhone data. For testingweused 1181 utterances spoken by
eight different speakers. The language model was built on news
articles and gives a trigram perplexity of 140 and an out-of-vo-
cabulary (OOV) rate of 1.4% based on an 8k vocabulary.

Pronunciation dictionary generation: The dictionaries
used in the experiments described above rely on manually
transcribed pronunciations of a base vocabulary. Using this
model, we built a statistical letter-to-sound model to predict the
pronunciation of new words, and hand corrected errors [26]. By
iterating this method, we built a dictionary with 8000 entries.
Pronunciation variants were generated by applying a set of
(manually created) rules to this dictionary. However, in rapid
adaptation of ASR to new languages, we cannot assume that
pronunciations of a base vocabulary exist, nor that native experts
are available for hand corrections. Recently, grapheme-based
models for ASR have been proposed [27], which back up results
indicating that pronunciation variants should not be explicitly
modeled through phone string variations but implicitly by the
use of single-pronunciation dictionaries [28] and parameter
sharing across phonetic models [29].

A purely grapheme-based dictionary cannot capture the fact
that depending on the context 1) the same grapheme might be
pronounced in different ways or 2) that different graphemes
might be pronounced the same way. The traditional clustering
procedure is able to deal with the effects of 1). In order to handle
case 2) and make the best use of the available training data,
we allow sharing across different center graphemes by applying
our flexible tree tying scheme in which a single decision tree is
constructed for all substates of all graphemes [30]. We investi-
gated grapheme-based ASR on various languages and found that
grapheme based systems perform significantly worse for lan-
guages with poor grapheme-to-phoneme relation such as Eng-
lish, but achieve comparable or even better results for languages
with a closer grapheme-to-phoneme relations such as Spanish,
Russian, and German [31], [32].
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TABLE IV
WER ON GP GRAPHEME VERSUS PHONEME

TABLE V
INITIALIZATION ACROSS LANGUAGES

Table IV compares the results of the phoneme-based with
the grapheme-based approach for Thai. The baseline is the
previously described system based on 500 quinphone models
using the smaller phone set without pronunciation variants.
The grapheme-based system uses 500 “quingrapheme” models
based on 63 Thai graphemes. The pronunciation dictionary is
constructed by splitting the written word into its single char-
acter components. We also applied one simple rule, as in the
Thai writing system, the grapheme for a vowel is sometimes
written in front of the consonant even when it is spoken after the
consonant. The results in Table IV show that the straightforward
approach without sharing any parameters across graphemes
does not work well for Thai. This is a consequence of several
peculiarities of the Thai writing system: 1) one phoneme can be
represented by many graphemes, even by two nonconsecutive
graphemes, e.g., in the word “ ” (/lae/) the vowel (/ae/)
is represented by two graphemes “ ” which enclose the
consonant “ ” (/l/), 2) one grapheme can represent different
phonemes, and 3) a special written tag “ ” (karan) suppresses
the pronunciation of the tagged grapheme. The sharing of
parameters across different grapheme models using flexible
tree tying resolves these problems.

Initialization across languages: We bootstrapped our
acoustic models from initial alignments generated by a very
small acoustic model trained on 4 h transcribed Thai spon-
taneous speech dialogs of Hotel Reservations (HR) from
Thailand’s National Electronics and Computer Technology
Center (NECTEC). The experiments in Table V show how
much performance would be sacrificed if no Thai data was
available for bootstrapping. We compared the bootstrap from
the Thai HR models with a 7-lingual acoustic model (ML7)
derived from the GlobalPhone project (trained on Chinese,
Croatian, French, German, Japanese, Spanish, and Turkish).
Table V displays a very reasonable loss when using the ML7
over the Thai HR models.

Rapid adaptation to Babylon: Finally, we adapted the
best GP-based acoustic model to the Babylon domain of
spontaneous medical dialogs between American doctors and
Thai patients. For this purpose, we recorded a very limited
set of speech data from ten native Thai speakers. Prompts
were designed which include word forms typically occurring
in spontaneously spoken Thai speech in medical dialogs. For
adapting the acoustic models, we used 2433 utterances from
eight speakers. The test set consists of 322 utterances from two
speakers. The trigram language model has a perplexity of 41.8

TABLE VI
WER ON BABYLON CORPUS

TABLE VII
TRAINING CORPUS STATISTICS

with an out-of-vocabulary rate of 0.48%. The experiments were
all performed on a fully continuous 3-state HMM recognizer
with 500 quinphone models and 32 Gaussians per state.

To adapt the acoustic models using this very limited training
material, we investigated four schemes:

1) train acoustic models based on GlobalPhone training data
only (GP only);

2) use the Babylon training material to MLLR-adapt the GP
models (GP Bab MLLR);

3) combine the training material of both corpora, weighting
the Babylon material by a factor of 2 (GP Bab Mixed),

4) use the GP models for initial alignments, but then com-
pletely retrain based on Babylon only material (Bab only).

The third and the fourth scheme include a reclustering of the
decision tree. Table VI shows the performance for the different
phone sets and dictionary variants. The results indicate that
using a larger amount of general training material in combina-
tion with a limited amount of specialized training material to
retrain including a reclustering of the decision tree is the best
strategy.

C. Rapid Model Building for MT

While IF-based MT requires experts to manually design
and implement the concepts, statistical MT permits automatic
building of a translator. However, a bilingual corpus is needed
to train the translation model. If no such corpus exists for the
domain, some data collection is required.

We report on our speech translation experiments on Thai–
English translation in the medical domain on two training sets:
a corpus of 43k sentences pairs (22k provided by DLI and 21k
collected by Mobile Technologies Inc.) and a corpus of 61k
sentence pairs (35k from DLI, 26k from Mobile Technologies
Inc.). Table VII shows the statistics of both corpora. The test
set consists of 130 English sentences, for which the translitera-
tion and the recognizer output for four different speakers were
available. The vocabulary of the test sentences is well covered
by the training data. The first three columns in Table VIII give
the word error rates for the four speakers based on our ASR and
the 3-gram perplexities for the language models built on the 43k
and the 61k corpus, respectively.

The translation models were trained on the bilingual cor-
pora, the language models were built using the Thai part of
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TABLE VIII
EVALUATION RESULTS ON TEST SET

TABLE IX
TRAINING DATA SELECTION EVALUATION

the corpora. For Thai, word segmentation was done as a pre-
processing step. The original transcription (text) and the ASR
output of each speaker were translated with both setups. The
results, in terms of NIST and BiLingual Evaluation Understudy
(BLEU) scores are given in Table VIII. We see a significant
improvement by adding more text data for training. Transla-
tion quality degrades gracefully when going from text input
to speech input, and the translation performance scales nicely
with the recognition performance when comparing for the dif-
ferent speakers.

Training data selection: It has been shown that more data
will give better results. However, as translating a collection of
domain-specific sentences into a foreign language is time and
cost consuming, it would be valuable to know which sentences
in the corpus are of greater importance and, thus, should be in-
corporated first. Another reason to select more informative sen-
tences for manual translation is the limited resources at run-
time since training the models on more data also requires more
memory at runtime.

More important data simply means the data, which gives best
translation quality. A first target would, therefore, be to cover the
vocabulary. The first selection criterion is formulated as: from
all remaining sentences in the corpus select the one for which
the ratio between number of new words and number of words in
the sentence is largest. However, as translation quality depends
strongly on the use of entire phrases, we extend the selection
criterion to also include the coverage of n-grams. Experiments
have shown that including bigrams in the selection process gives
a significant improvement over using unigrams, while going be-
yond bigrams does not seem to help.

To test our selection criterion we trained systems on the 5k,
10k, 20k, 30k, and 40k most informative sentences from the 61k
corpus. Table IX shows the results from translating the test set
(text) based on two systems, one tuned toward the NIST score,
one tuned toward the BLEU score. The results show that we
have better NIST scores with a set of 10k well chosen sentences
than with 43k randomly selected sentences. Even with only 5k
sentences, we approach the 43k performance. We see also that
with smaller corpora we can bring up the NIST score faster than
the BLEU score. We get high vocabulary coverage fast, but good
phrase coverage requires more data.

D. Rapid Model Building for TTS

We have developed general techniques for building synthetic
voices in new languages [16] that can be run on the free soft-
ware Festival Speech Synthesis System [17] be converted to run
on Cepstral LLC’s commercial Theta engine [18] that runs on
handheld devices.

In building high-quality unit selection synthesis, it is neces-
sary to collect sufficient natural speech to cover the intended
phonetic and prosodic variation in the target language. When de-
veloping voices for languages without significant linguistic re-
sources, we must take a generic approach that does rely on such
knowledge. As described in more detail in [33], we select sen-
tences that are optimized for phonetic coverage, from general
text corpora. As we want the voice talents to read the sentences
properly, the selected prompts should be as easy as possible to
say. The less discrepancies between the prompts and the actual
recordings the more we can depend on automatic labeling.

The basic selection process involves first finding sentences
which are easy to say and have less chance of pronunciation
error. We can further restrict this to disallow sentences con-
taining homographs. We have discovered other worthwhile con-
straints, particularly to remove foreign words/names, especially
if the selection corpus is newspaper text. Foreign words are
likely to have unusual pronunciation, especially if our speaker
is multilingual. When no lexicon of foreign names is available
for a language, we use word frequency to limit our selection
process. Thus, first we build word frequency lists and then se-
lect sentences that only contain high-frequency words.

For Thai, because we did not at first have a word segmenta-
tion system, nor a lexicon, we initially selected sentences based
on letter tri-gram frequency. This gave us a basic phonetic cov-
erage corpus to start recording. Later, following [34], we added
domain specific sentences and selected these for word and pho-
netic coverage for the medical domain. A third set of prompts
was handcrafted covering for example general greeting, num-
bers, and dates. It is worth noting that as this is an automatic
process the resulting prompts may still not be ideal. They will
tend to select for most varied phonetic coverage and often con-
tain unusual word sequences, including typos. Thus, we still
prune the resulting selections based on human judgment.

Building comprehensive lexicons for new languages can be
a substantial task. As described in [26], first about 300 repre-
sentative words are chosen and hand transcribed with their ap-
propriate phoneme sequence. A statistical letter-to-sound rule
model [35] is then trained from this data, which allows pre-
dicting pronunciations for new words. Next, we submit the most
frequent words to the model, correct them manually where nec-
essary, and add them to the lexicon. After adding a few hundred
words, the letter-to-sound rule model is retrained. By repeating
these steps, we converge on a set of words and letter-to-sound
rules that pronounce arbitrary words in the language well. We
have tested this technique on English and German with good
results, and also applied it to Nepali, where no computational
pronunciation lexicon had existed before.

Once the prompt set is recorded by the voice talent, it is au-
tomatically labeled using speaker-specific acoustic models, and
forced alignment. Then, a cluster-based unit selection voice is
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built [36]. Hand correction of labels can be worthwhile to im-
prove quality.

Evaluation of voices, especially in new languages is hard. Al-
though objective measures can be calculated for speech synthe-
sizers for text analysis, lexicon and letter-to-sound rule coverage
and accuracy, ultimately native listeners must be involved. Three
levels of sentence type may be generated and listened to by 5–10
native speakers:

1) phonetic confusable words, following the Diagnostic
Rhyme Test [37];

2) semantically unpredictable sentences (SUS) [38], where
templates are used to generate sentences from simple part
of speech classes;

3) in domain sentences, which are checked for intelligibility.
These tests are designed to be diagnostic, in other words, to
identify lexical and labeling problems which can then be fixed.
The results of applying these evaluation criteria are described
for our Arabic work in [39].

E. System Evaluation

As with any complex system, it is not just the components that
have to be evaluated, but also the whole system. For real users
of a speech translation system, it is necessary that it presents
an intuitive interface, and that they understand the system suffi-
ciently to make an efficient communication aid. In many cases,
one side of the conversations will involve a trained user who has
used the system before (e.g., the doctor) while the other is new
to the system. The conversations are likely to be led by the more
expert user.

As part of the DARPA Babylon/CAST program, our Eng-
lish/Thai Doctor/Patient system was one of the participants in
an evaluation with real American doctors and monolingual Thai
speakers trained to act as patients. Although the number of par-
ticipants was insufficient to produce significant quantitative re-
sults, a number of valuable observations were made. First, feed-
back is important to users so that they can judge if the system’s
translation conveyed the right message. To reduce confusion,
we included the synthesized playback of the recognition output.
Thus, the speaker could immediately identify when errors were
occurring. This audible output was invaluable as a communica-
tion aid, since in some cases the screen was not visible to par-
ticipants, and/or they had limited reading ability. Second, the
time from speaking into the system to achieving the translated
synthesized output is critical for multilingual conversations me-
diated by machines. Even when approaching real time, it is in-
trusive in the conversation flow. Thus, external hand signals for
quick communication feedback helped significantly to make the
conversations more fluent. In summary, carrying out evaluations
in realistic scenarios we discovered that aspects of the interface,
such as microphone accessibility and reliability of users using
push-to-talk become significant.

IV. CONCLUSION

This paper describes our strategies to overcome the major
limits of today’s speech translation systems, namely the
problem of system maintenance and the challenge of ever
changing domains and/or languages resulting in a lack of

appropriate data. The implemented flexible system architec-
ture allows for easy component integration, resource sharing
across components, comparison of alternative approaches,
and the migration toward hybrid desktop/PDA or stand-alone
PDA systems. The experiments and results carried out on
our English–Thai two-way speech translation system show
how flexibility and reconfigurability can be achieved by more
radically relying on learning approaches. The recent system
evaluation with real users indicates that the core technology in
speech translation has now reached a level where user interface
issues make a difference.
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