
Type Safe Nondeterminism – A Formal Semantics of Java Threads

Andreas Lochbihler
Universität Passau

lochbihl@fim.uni-passau.de

Abstract
We present a generic framework to transform a single-threaded
operational semantics into a semantics with interleaved execution
of threads. Threads can be dynamically created and use locks for
synchronisation. They can suspend themselves, be notified by other
threads again, and interact via shared memory. We formalised this
in the proof assistant Isabelle/HOL along with theorems to carry
type safety proofs for the instantiating semantics (progress and
preservation in the style of Wright and Felleisen [24]) over to the
multithreaded case, thereby investigating the role of deadlocks and
giving an explicit formalisation for them. We apply this framework
to the Java thread model using an extension of the Jinja [12] source
code semantics to have type safety for multithreaded Java machine-
checked. The Java Memory Model is not included.

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics – type safety; F.3.2 [Semantics of Pro-
gramming Languages]: Operational semantics; D.3.3 [Language
Constructs and Features]: Concurrent programming structures

General Terms Languages, Theory

Keywords Threads, Deadlock, Type Safety, Java

1. Introduction
There are many formal approaches based on operational semantics
and type systems to model certain safety properties of the Java
programming language in the literature. A lot of work has been
done in the context of type safety for sequential Java [5, 12, 19,
21, 22] on the source code level. In [19], Stärk et al. also give
an abstract state machine semantics for threads, for which they
show preservation of a number of invariants. Also, there is a large
number of formal semantics for subsets of Java bytecode, see [3,
Ch. 2] for an overview. All of them are single-threaded or lack
other important features of concurrent Java, except for [3] and [15],
which contain a pretty comprehensive semantics of Java bytecode
features. However, both [3] and [15] only contain the semantics,
but neither type system nor other safety features.

To the best of our knowledge, there is no formal type safety
proof for multithreaded Java with dynamic thread creation and syn-
chronisation, for neither source nor byte code, although Java’s con-
currency features are widely used in practise. Thus, the primary
objective of this paper is a machine-checked type safety proof for a

[Copyright notice will appear here once ’preprint’ option is removed.]

large and faithful subset of multithreaded Java, including classes
with objects, fields and methods, inheritance with method over-
riding and dynamic dispatch, arrays, exception handling, dynamic
thread creation, synchronisation via monitors and the wait/notify
mechanism. To separate the semantics of these mechanisms from
the low-level details of allowed compiler/runtime optimisations, we
abstract from the complicated Java Memory Model (JMM) [9] by
using a single shared memory like in [19]. Every properly synchro-
nised program has the same semantics with or without the JMM.

Applying a standard approach [24] to show type safety, we ex-
perience the following in the multithreaded case: While the sub-
ject reduction theorem, i.e. preservation of well-typedness under
reductions, is usually easily carried over from threads in isolation,
the progress theorem, which shows that the evaluation of well-
typed expressions does not get stuck, is particularly nontrivial in the
presence of potential deadlocks and non-deterministic executions.
In fact, most formalisations of type soundness for concurrent pro-
gramming languages do not allow dynamic thread creation or syn-
chronisation that can lead to deadlocks. If they do, they leave out
the progress theorem or their notion of deadlock is given implicitly
by the theorem’s assumptions. This way, one cannot be sure that
the theorem’s notion coincides with the standard understanding of
deadlock, especially because deadlocks can arise in many different
ways (cf. Sec. 1.1 below). Thus, another major contribution of this
paper is an explicit formalisation of deadlock in a theorem prover.
Moreover, we then prove type safety with respect to this notion.

The basis of our work is the Jinja project [12], which already
contains most features of the Java language subset that are not re-
lated to threads. On the source code level, Jinja consists of both a
big-step and a small-step semantics, which are shown to be equiv-
alent, a type system and a type safety proof through progress and
preservation in the style of [24]. We add support for both threads
and arrays, but since the latter is pretty orthogonal to the develop-
ment here, we do not show this feature in detail. On the way, we
develop a generic formal framework for lifting a sequential oper-
ational semantics to the concurrent case, which gives modularity
in proving progress and preservation with respect to the sequential
and concurrent aspects. We then instantiate this framework with the
modified small-step semantics of Jinja to carry both progress and
preservation over to the multithreaded case, and type safety then
easily follows. In modelling threads, we closely follow Ch. 17 in
the Java Language Specification (JLS) [9] for Java 5. Our semantics
faithfully covers arbitrary dynamic thread creation, synchronisation
on monitors and the wait/notify mechanism. Interaction takes place
via shared memory. We have not included the deprecated methods
stop, suspend and resume, neither yield and sleep, which are
just hints to schedulers from which we abstract. Neither have we in-
cluded interrupt and join, but we believe that they can be added
easily. We have formalised every notion and proved every lemma
and theorem in this paper in the theorem prover Isabelle/HOL [17],
i.e. every single proof is machine-checked. Even though the presen-
tation is quite technical at times, we show only the most important

Type Safe Nondeterminism – A Formal Semantics of Java Threads 1 2007/10/8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197560728?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thread (I)
synchronized (f) {
synchronized (g) {

...
g.wait();
...

}
}

Thread (II)
synchronized (e) {
synchronized (f) {

.

.

.
}

}

Thread (III)
synchronized (g) {
synchronized (e) {

...
g.notify();
...

}
}

Figure 1. Three Java threads with different deadlock possibilities.

definitions, lemmata and theorems. The framework formalisation
consists of about 5000 lines of definitions and proof scripts with
approximately 250 lemmata. Multithreading for Jinja added about
another 5000 lines to the Jinja source code formalisation. The cur-
rent development of the formalisation is available online [16].

This contribution is organised as follows: The rest of this sec-
tion gives an example on deadlocks and introduces some notation.
The framework semantics is formalised in detail in Sec. 2. Sec. 3
contains the formal treatment of deadlocks. The machinery for lift-
ing well-formedness constraints from the instantiating semantics to
the multithreaded level is outlined in Sec. 4. In Sec. 5, we extend
the Jinja semantics, apply the framework to it and show type safety.
Sec. 6 discusses related and Sec. 7 concludes this paper.

1.1 Deadlock example
For an example on how different forms of deadlock can arise in
Java, consider Fig. 1. For a start, suppose there are only threads (I)
and (II), which share the object referenced by f. Thread (I) first
locks the monitor for the object f, then acquires the lock on object
g’s monitor, and later suspends itself to the wait set of g’s monitor,
thereby releasing the lock on g again. Once it is woken up (by some
notify invocation on g by some other thread),1 it then competes for
the lock on g again until it reacquires it and then finishes execution
after releasing the locks on both g and f. Thread (II) has to acquire
locks on objects e and f to execute its critical section. Now, if we
start (I) first and then interleave threads (I) and (II), both end up in
a deadlock: (I) is first to acquire the lock on f, so later it suspends
itself to g’s wait set and waits for being woken up by some other
thread, but there is only thread (II) which waits on the lock on f,
which is still held by (I). Conversely, if (II) acquires the lock on f

first, (I) will end up deadlocked in the wait set because there will
be no other thread to wake up (I) again. Note that in this case, there
is only a single thread in deadlock. This is not possible if deadlock
is due to locks only.

Now, suppose thread (III) is run in parallel with (I) and (II)
and shares objects e and g. (III) acquires locks on g and e and
possibly wakes up thread (I). However, e.g., if thread (I) acquires
its first lock and next, thread (II) acquires its first lock and then (III)
does so, all threads end up in deadlock, because they are waiting
cyclically on each other: (I) is waiting for the lock on g, which is
held by (III), but (III) is waiting on the lock on e, which is held by
(II), and (II) itself is waiting for the lock on f held by (I). There
are many more deadlock possibilities in this example, but not all
schedules lead to deadlock: If e.g. (II) acquires both locks first and
(I) acquires the lock on g before (III) does, no deadlock can occur.

1.2 Notation
Both our framework and the Jinja semantics are formalised in the
proof assistant Isabelle/HOL, i.e. all formulae and propositions are
written in HOL, which is close to standard mathematical notation.
This section introduces further non-standard notation, a few basic
data types and their primitive operations.

1 We abstract from “spurious wake-ups” which are allowed by the JLS [9].

Types is the set of all types which contains, in particular, the
type of truth values bool, natural numbers nat, and integers int. The
space of total functions is denoted by ⇒. Type variables are written
′a, ′b etc. The notation t::τ means that the HOL term t has type τ .

Pairs come with two projection function fst :: ′a × ′b ⇒ ′a and
snd :: ′a × ′b ⇒ ′b. We identify tuples with pairs nested to the right:
(a, b, c) is identical to (a, (b, c)) and ′a × ′b × ′c to ′a × (′b × ′c).

Sets (type ′a set) follow the usual mathematical convention.
Lists (type ′a list) come with the empty list [], the infix construc-

tor · for consing and the infix @ that concatenates two lists. Variable
names ending in “s” usually stand for lists or maps (see below) and
|xs| is the length of xs. If n < |xs|, then xs[n] denotes the n-th element
of xs. The standard function map f xs applies the function f to every
element in the list xs. flatten xss flattens a list xss of lists by concate-
nating all its elements. list-all2 P xs ys is shorthand for |xs| = |ys| ∧
(∀ i<|xs|. P xs[i] ys[i]).

Function update is defined as follows: Let f :: ′a ⇒ ′b, a :: ′a
and b :: ′b. Then f (a := b) ≡ λx. if x = a then b else f x.

The option data type ′a option = None | Some ′a adjoins a new
element None to a type ′a. All existing elements in type ′a are also
in ′a option, but are prefixed by Some. For succinctness, we write
bac for Some a. Hence, for example, bool option has the values None,
bTruec and bFalsec.

Case distinctions on data types are written with guards. For x
of option type, e.g., case x of None ⇒ f | byc ⇒ g y means that if x is
None then the expression is f, and if x is some y then the expression
is g y where g may refer to the value y of the Some constructor.

Partial functions are modelled as functions of type ′a ⇒ ′b option
where None represents undefined and f x = Some y means x is mapped
to y. Instead of ′a ⇒ ′b option we write ′a ⇀ ′b and call such
functions maps. We write f (x 7→ y) as shorthand for f (x:=byc). The
map λx. None is written empty and empty(. . .), where . . . are updates,
abbreviates to [. . .]. For example, empty(x 7→ y) becomes [x 7→ y].

The indefinite description ε x. Q x is known as Hilbert’s ε-
operator. It denotes some x such that Q x is true, provided one exists.

2. Formalisation of the framework semantics
Our framework consists of two major parts. On the one hand,
there is the framework semantics redT which handles the threads
for an arbitrary (single-threaded) semantics. It is instantiated with
an operational small-step semantics r such that every single thread
can be reduced according to r. redT takes care of all bookkeeping,
e.g. managing locks and thread reductions. On the other hand, we
give a number of well-formedness conditions, both for the initial
program configuration and for the instantiating semantics, which
enable us to easily carry type safety proofs for the instantiating
semantics (when we view it as a single-threaded semantics) to
the multithreaded setting of the framework. In this section, we
only treat the framework semantics, well-formedness conditions
are presented in Sec. 3.2 and 4.

Our framework operates on a small-step operational semantics
which is modelled by a set of single-step reductions. When apply-
ing the framework, we always deal with two different small-step
semantics. We do not use a big-step semantics because any such
semantics would have to appeal to small-step semantics features to
allow for interleaved evaluations of different threads.

2.1 The instantiating semantics
The semantics with which we instantiate the framework contains
all single-step reductions for a single thread in isolation. We call
such a semantics an instantiating semantics and usually denote it
by r. Formally, a single-step reduction in r P, where P is a program
environment parameter to the semantics, is a tuple ((e, c, x), tas,
(e ′, c ′, x ′)), which we write as P ` 〈e,(c, x)〉 −tas−r→ 〈e ′,(c ′, x ′)〉.
Intuitively, this denotes that in r with program environment P, the

Type Safe Nondeterminism – A Formal Semantics of Java Threads 2 2007/10/8

expression e with common/shared memory c and local state x can
reduce to the expression e ′ with new shared memory c ′ and local
state x ′. tas is a list of thread actions which tell the framework
semantics to create a new thread, to acquire a lock, to wake another
thread, etc. r has type (′p, ′e, ′l, ′t, ′x, ′c, ′w) semantics, which is
shorthand for ′p ⇒ ((′e × ′c × ′x) × (′e, ′l, ′t, ′x, ′c, ′w) thread-action
list × ′e × ′c × ′x) set, where we assign the following meaning to
type parameters:
′p Type of the program environment, e.g. Java class definitions
′e Type of a thread expression
′l Type of the locks threads acquire and release, e.g. Java monitors
′t Type of the thread IDs, by which threads are identified
′x Type of the state information that is local to a single thread, e.g.

local variables
′c Type of the common/shared memory, e.g. type of the heap
′w Type of the identifiers for wait sets, e.g. monitors in Java

In what follows, to denote concrete values of these types we use the
same letters (without the leading ′, but with various decorations),
e.g. t, t ′, t1, etc. for thread IDs.

2.2 The multithreaded semantics
The framework semantics takes an instantiating semantics r as
a parameter and forms the set of single-step reductions for the
multithreaded case, in which a state consists of four components:

1. The lock status in the first component, usually denoted by ls,
stores in a map of type ′l ⇀ ′t × nat (denoted by (′l, ′t) locks)
for every lock l how many times it is held by a thread, if any. A
thread (identified by its thread ID t) holding the lock l (n + 1)
times is represented by ls l = b(t, n)c. If l is not held by any
thread, then ls l = None. Using a map ensures that a lock is
always held by at most one thread at a time.

2. The second component, usually denoted by es, stores the thread
information in a map of type ′t ⇀ ′e × ′x, denoted by (′e, ′t, ′x)
thread-info. For every ID t for which a thread is present, es maps t
to the current expression of the thread and the thread-local state.

3. The third component of type ′c is the shared memory, which
we usually denote with c.

4. The last component keeps track of the wait sets. Every thread
can be in at most one wait set at a time. We therefore model
them as a map ws of type ′t ⇀ ′w (denoted by (′w, ′t) waitsets)
where a thread t is waiting in the wait set w iff ws t = bwc. t is
ready for execution iff ws t = None.

Suppose, e.g., in Fig. 1 with threads (I) and (II) only, we are
in the deadlock state as described in the first scenario in Sec. 1.1.
Suppose e references an object at address e, and similarly for f and
g. Then, this state is represented by the tuple (ls, es, c, ws) where
ls = [f 7→ (I, 0), e 7→ (II, 0)], i.e. the locks on f and e are held once
by (I) and (II) resp., es = [I 7→ (sync(locked(f)) { sync(g) { . . . } },
x1), II 7→ (sync(locked(e)) { sync(f) { . . . } }, x2)] stores the thread
expressions and the local data for (I) and (II). The shared memory
c = [e 7→ Obj . . . , f 7→ Obj . . . , g 7→ Obj . . .] contains the objects
referenced by e, f, and g and (I) is in the wait set of g: ws = [I 7→ g]

When a single thread expression is reduced in the instantiat-
ing semantics r, it can ask the framework to perform finitely many
thread actions of type (′e, ′l, ′t, ′x, ′c, ′w) thread-action, which can
alter the state of the locks, threads and wait sets. Note that these ac-
tions are the only means of “communication” between the two se-
mantics. Since this is unidirectional, the framework semantics can
only transfer information to the instantiating semantics by picking
one reduction offered by the instantiating semantics. Hence, the

instantiating semantics must anticipate in its reductions all possi-
ble answers it is willing to accept from the framework semantics.
At the moment, our framework supports eight different thread ac-
tions, which can be split into three groups:
Locking Lock l acquires a lock on l for the current thread t. If l is

held by another thread, this reduction is not possible. For Unlock
l, which releases one lock on l, t must hold at least one lock on
l. UnlockFail l is only possible if t does not hold a lock on l, i.e.
releasing a lock on l would fail.

Thread creation NewThread t e c x creates a new thread with ID
t, initial expression e and local state x. c must be the equal to
the common memory after the reduction step of the executing
thread. The new thread is ready for execution and does not hold
any locks. NewThreadFail tests whether all IDs of type ′t are
assigned to a thread, i.e., normal thread creation would fail.

Wait sets Suspend w inserts the current thread t in the wait set w,
any previous assignment of the current thread to a wait set is
lost. Notify w non-deterministically wakes up one of the threads
in the wait set w. If w is empty, no thread is woken up. NotifyAll
w wakes up all threads in the wait set w.

Note that most actions with preconditions are paired with another
one whose precondition is the negation of the former’s. A thread
should always know, e.g., if it is able to release a lock that it ought
to have acquired before – if not, i.e., the lock status is inconsistent
with the thread’s state or the thread simply does not care whether it
owns the locks it tries to release, the framework semantics can tell
the instantiating semantics. The only exception is the Lock action,
since a thread cannot decide on its own if it will be able to acquire
a lock. We deliberately chose this asymmetry in the mutually-ex-
clusive locks because they are the source of deadlocks in practice.

Similarly, NewThread t e c x contains more information than im-
mediately necessary, e.g. the shared memory c, which is saved for
later use. The thread ID for the new thread is actually assigned by
the framework semantics, which picks non-deterministically a fresh
thread ID if available, but since some semantics might be interested
to know the IDs of those threads they have created, we include this
extra information in the action itself already. Hence, a sensible se-
mantics should - when it creates a new thread - offer a reduction for
every possible thread ID. Similarly, when the maximum number of
threads is reached, the NewThreadFail action tells the semantics so.

The list tas of thread actions issued by a reduction step of
the instantiating semantics tells the framework what changes to
do to the multithreaded state. The framework then performs these
changes using three update functions for single thread actions:
• ls ` t ta updates the lock state ls according to ta for thread t,
• es o ta adds the new thread in ta to the thread information es,
• ws ‘ t ta changes the wait sets ws according to ta requested by

thread t.
Their definitions are shown in Fig. 2, the cases in which the
map is not updated have been omitted. The function lock-lock ls
t l (unlock-lock ls t l) increases (decreases) the lock count of t on
l, new-thread-id es gives an unassigned thread ID if there is one
left. There are also functions which fold the update functions over
lists of thread actions tas, denoted by ls [`]t tas, es [o] tas, and
ws [‘]t tas resp. They are combined in one state update function
(ls, es, ws) []t tas for thread actions tas. Let us look briefly at
wake-ups: The equation for Notify w says that if there is a thread
waiting in w then pick any such thread, say t, and remove it from
w, otherwise do nothing. Similarly, NotifyAll w removes all threads
from w and leaves all other threads unchanged.

Before updating the multithreaded state (ls, es, c, ws), we first
have to check whether all changes in tas requested by the thread

Type Safe Nondeterminism – A Formal Semantics of Java Threads 3 2007/10/8

ls ` t Lock l ≡ lock-lock ls t l
ls ` t Unlock l ≡ unlock-lock ls t l
ls [`]t [] ≡ ls
ls [`]t ta·tas ≡ (ls ` t ta) [`]t tas

es o NewThread t ′ e c x ≡ if new-thread-id es = bt ′c
then es(t ′ 7→ (e, x)) else arbitrary

es o NewThreadFail ≡ if new-thread-id es = None
then es else arbitrary

es [o] [] ≡ es
es [o] ta·tas ≡ (es o ta) [o] tas

ws ‘ t Notify w ≡ if ∃ t. ws t = bwc
then let t = ε t. ws t = bwc

in ws(t := None)
else ws

ws ‘ t NotifyAll w ≡ λt. if ws t = bwc then None else ws t
ws ‘ t Suspend w ≡ ws(t 7→ w)
ws [‘]t [] ≡ ws
ws [‘]t ta·tas ≡ (ws ‘ t ta) [‘]t tas

(ls, es, ws) []t ta ≡ (ls [`]t ta, es [o] ta, ws [‘]t ta)

Figure 2. Update functions for locks, thread data and wait sets.

ls `t Lock l
√

` ≡ may-lock ls t l
ls `t Unlock l

√
` ≡ has-lock ls t l

ls `t UnlockFail l
√

` ≡ ¬ has-lock ls t l
ls `t []

√
[`] ≡ True

ls `t ta·tas
√

[`] ≡ ls `t ta
√

` ∧ (ls ` t ta) `t tas
√

[`]

es,c ` NewThread t e c ′ x
√
o ≡ new-thread-id es = btc ∧ c = c ′

es,c ` NewThreadFail
√
o ≡ new-thread-id es = None

es,c ` []
√

[o] ≡ True
es,c ` ta·tas

√
[o] ≡ es,c ` ta

√
o ∧ (es o ta),c ` tas

√
[o]

Figure 3. Predicates on the state satisfying the preconditions of a
thread action list

t can actually be granted to it. For this purpose, we introduce the
predicates ls `t ta

√
` and es,c ` ta

√
o for an action ta. Again, they

are paired with list versions ls `t tas
√

[`] and es,c ` tas
√

[o], respec-
tively, which work through the list of thread actions, temporarily
updating the state after each successful check. We show their def-
initions in Fig. 3, leaving out the cases in which the predicates are
constantly true. may-lock ls t l checks that no thread other than t holds
a lock on l in ls, has-lock ls t l that t does so. Note that we do not have
to check for conditions on the wait set because wait set actions have
no preconditions.

If a list of thread actions contains at least one action whose
preconditions are not met by the current state at that position,
then the reduction step cannot be executed that time. This is a
powerful means to an instantiating semantics for checking that
some preconditions on the locks hold, even without changes to
the lock status. It can check e.g. whether it holds (does not hold)
the lock l by using the list [Unlock l, Lock l] ([UnlockFail l]), without
altering the locks. Note that the order of thread actions in the list
can be important: [Lock l, Unlock l], e.g., consists of the same actions,
but checks that no other thread is holding a lock on l. In the same
way, [Unlock l, Unlock l, UnlockFail l, Lock l] releases one lock on l,
but also tests that it has had exactly two before the reduction.

t1: t2:
1 Lock l1
2 Lock l2
3 (Lock l1)
4 (Lock l2)

t3: t4:
1
2 Suspend w
3
4 final

Figure 4. Two thread schedules that lead to deadlocked threads.

In case the list contains multiple Suspend actions, the thread will
be listed only in the wait set specified by the last such action after
the reduction. It is not forbidden to have a Suspend w action followed
by some Notify w or NotifyAll w action later in the same list. Note
that this is the only case in which a thread can possibly wake up
itself, because whenever a thread is in a wait set, this thread is not
considered for execution by the framework.

Now, we put together everything we have so far to obtain the set
of reductions in the framework semantics redT for the instantiating
semantics r in the program environment P. A single reduction step
in redT r P is denoted by P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉,
which means that in the multithreaded state (ls, es, c, ws), thread t
can reduce with thread actions tas which yields the multithreaded
state (ls ′, es ′, c ′, ws ′). The only reduction rule for the framework
semantics then reads:

es t = b(e, x)c ws t = None
P ` 〈e,(c, x)〉 −tas−r→ 〈e ′,(c ′, x ′)〉 ls `t tas

√
[`]

es,c ′ ` tas
√

[o] (ls ′, es ′, ws ′) = (ls, es(t 7→ (e ′, x ′)), ws) []t tas

P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉

Intuitively, P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉 is a reduction in
redT r P iff
• there is a thread t in es, say es t = b(e, x)c,
• which is not in a wait set in ws and
• which can do a reduction P ` 〈e,(c, x)〉 −tas−r→ 〈e ′,(c ′, x ′)〉

in r with thread actions tas such that lock and thread creation
conditions are met by the state (ls, es, c, ws) and

• the old state – where the thread information es gets updated with
the single-thread reduction result (e ′, x ′) – is updated according
to tas and combined with the new shared memory c ′ to yield
(ls ′, es ′, c ′, ws ′)

We write reductions in the transitive and reflexive closure of
P,r ` 〈·|·,·|·〉−·,·→〈·|·,·|·〉 as P,r ` 〈ls|es,c|ws〉 −tas→∗ 〈ls ′|es ′,c ′|ws ′〉.
tas now is a list of pairs of thread IDs and thread action lists
and keeps track of the thread ID and thread actions for every
reduction step, i.e., in step n, thread fst tas[n] reduces with the
actions snd tas[n]. Note that we do not model a specific scheduler
here, i.e. a reschedule is possible between any two single-step
reductions. However, restricting to a specific scheduling scheme
can be done easily by selecting the appropriate reduction tuples
from the framework semantics, e.g. based on the data given in tas.

Similarly, every reduction step of the instantiating semantics is
considered to be atomic. Conversely, there is no direct means to
force multiple reduction steps of a thread being atomic. However,
an instantiating semantics can easily use the locking mechanism
to ensure atomicity, if necessary: Replace, e.g., the lock type ′l by
′l option to introduce one extra lock. Then, every atomic reduction
sequence should start (end) with a Lock None (Unlock None) action.
If all single-step reductions, which are supposed to be atomic them-
selves, also prefix and postfix their thread actions by Lock None and
Unlock None respectively, every thread can only be reduced if it can
lock None. Since atomic sequences hold None in their intermediate
steps (and locks are mutually exclusive), rescheduling is not possi-
ble inside atomic actions.

Type Safe Nondeterminism – A Formal Semantics of Java Threads 4 2007/10/8

3. Type safety with deadlocks
In the sequential case, type safety is usually shown in the syntac-
tic way [24] by showing progress and preservation. Progress means
that every well-formed and well-typed expression that is not final
can be reduced, preservation requires that well-typedness is pre-
served under reductions and the expression’s type may become
only more specific. Usually, preservation can easily be carried over
from the instantiating semantics. Deadlocks, however, can break
the progress property.

3.1 Formalising deadlocks
A thread is said to be in deadlock if it is waiting for an event that
will never occur. In operating systems, deadlock of processes has
four preconditions on resource usage: mutual exclusion, hold and
wait, circular waiting, and no preemption (cf. e.g. [18]). In our
setting, we have two different possibilities for deadlocks:
• A thread that is in a wait set is deadlocked if all threads are

either in a wait set or have completed its execution or are
already deadlocked themselves.

• A thread is deadlocked if it is waiting to obtain a lock which is
held by another thread which itself is deadlocked, i.e. threads
are waiting circularly on each other.
We assume that the function final tells whether a given thread’s

expression has completed its execution and is not supposed to
be reduced any further. An instantiating semantics must define
final appropriately. The predicate wf-final then ensures that final
expressions indeed cannot be reduced.

Consider, e.g., the schedules shown in Fig. 4. On the left-hand
side, thread t1 acquires the lock l1, then thread t2 acquires the lock
l2. To proceed, t2 needs the lock l1, too, so the Lock l1 is postponed.
However, t1 requests the lock l2 which is held by t2, hence both
threads are deadlocked. On the right-hand side, we see an example
with wait sets. Suppose there are only two threads, t3 and t4. Some
time while being reduced, t4 suspends itself to the wait set w. Once
t3 has reduced to a final value, t4 is deadlocked because there are
no more threads to wake it up again.

In our framework, things are a little more tricky because threads
can atomically request and release any number of different locks
at one reduction step, and the instantiating semantics need not be
deterministic, i.e. a thread usually can reduce in many different
ways requesting many different locks. To get a hold on this, we
introduce two abstractions in our formalisation:
• P,r ` 〈e,(c, x)〉 L o denotes that in the semantics r with program

P, the expression e can reduce in the state (c, x) with a thread
action list which contains at least one Lock l action for every
lock l in L and in which all Lock actions are on locks in L.

• P,r ` 〈e,(c, x)〉 o denotes that in the semantics r with program
P, the thread action list of every possible reduction of e in state
(c, x) contains at least one Lock action.
Note that we do not care about unlock actions because only a

thread itself would be able to remedy the missing lock, not others.
With these two abstractions, we can now define the set of threads
in deadlock deadlocked r P ls es ws c as a co-inductive set. Fig. 5
shows the introduction rules, where the predicate final(es\M) checks
whether each thread of es is either final or its thread ID is in M.
The first rule ensures that those threads t are in deadlock which
must obtain a lock and can be reduced and for every reduction of
which there must be another thread t ′ in deadlock which holds one
of the locks requested by that reduction. The second rule says that
if a thread is in a wait set with all other non-final threads being
either also in a wait set or deadlocked, then it is deadlocked. This
is the case since there is no rule that eliminates that thread from

es t = b(e, x)c P,r ` 〈e,(c, x)〉 o P,r ` 〈e,(c, x)〉 L o
∀ L. P,r ` 〈e,(c, x)〉 L o−→

∃ t ′∈deadlocked r P ls es ws c. t ′ 6= t ∧ (∃ l∈L. has-lock ls t ′ l)
t ∈ deadlocked r P ls es ws c

es t = b(e, x)c final(es\deadlocked r P ls es ws c) ws t = bwc
t ∈ deadlocked r P ls es ws c

Figure 5. Introduction rules for the coinductive set deadlocked r P
ls es ws c

I: [Unlock l1, Lock l2]
II: [Unlock l2, Lock l1],

[Lock l3], [Lock l4]
III: [Lock l6]

IV: []

V: [Lock l2, Lock l3]
VI: [Lock l3]

IV V

I IIIII

VI

Figure 6. Deadlock example.

the coinductive set, which is in fact a greatest fixpoint. As a minor
technical detail, we consider a final thread which has suspended
itself in its last reduction to a wait set to be deadlocked, too.

Consider Fig. 6 for an example of different deadlock situations.
Suppose there are six threads which at the moment can reduce
with the thread action lists shown on the left-hand side. If there
are multiple lists for one thread, then there is one reduction for
each list. Suppose that no thread is in a wait set and that the i-th
thread holds the lock li. The graph on the right-hand side shows
which thread is waiting to obtain a lock held by another thread.
Then, thread III and VI are waiting on each other without other
reduction options. Clearly, both of them are deadlocked. Although
I and II are also waiting on each other, they are not deadlocked at
the moment: II has two more reduction options. Waiting on lock
l3 will be in vain, because III is deadlocked. However, IV is not
waiting on anyone, hence II may still hope to obtain the lock l4
some time. Since thread action lists must be executed atomically,
we may not appropriately interleave the action lists of I and II. Note
that V is waiting simultaneously on II and III. Since III is already in
deadlock, so is V. Clearly, IV is not deadlocked, since the empty list
is always possible. Now, suppose thread IV is in a wait set. Then, all
threads are deadlocked, since every thread except IV is waiting on
some other thread to release a lock, and the only thread that could
be reduced (i.e. IV) is waiting for some other thread waking it up.

For the framework semantics working properly, we need two
basic well-formedness conditions. First, we require (via the predi-
cate es `f ls

√) that all locks are held by actual, non-final threads:

es `f ls
√≡ ∀ l. case ls l of None ⇒ True

| b(t, n)c ⇒ ∃ e x. es t = b(e, x)c ∧ ¬ final e
Second, let wf-lock r P c c ′ denote that both P,r ` 〈e,(c, x)〉 L o
and P,r ` 〈e,(c, x)〉 o are invariant if c is changed (via reduction
by another thread) to c ′. Then, we show the following properties
for the set of deadlocked threads. The first lemma is shown by
case analysis on t being deadlocked. Lem. 2 and 3 are shown by
coinduction on the set of deadlocked threads.

LEMMA 1. Deadlocked threads are irreducible in the framework
semantics. Formally:

t ∈ deadlocked r P ls es ws c
¬ P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉

Type Safe Nondeterminism – A Formal Semantics of Java Threads 5 2007/10/8

t ′ /∈ deadlocked r P ls es ws c es t ′ = b(e, x)c ¬ final e es `f ls
√

∃ t e x. es t = b(e, x)c ∧ ¬ final e ∧ ws t = None ∧ (P,r ` 〈e,(c, x)〉 o ∧ (∃ L. P,r ` 〈e,(c, x)〉 L o) −→ (∃ L. P,r ` 〈e,(c, x)〉 L o ∧ (∀ l∈L. may-lock ls t l)))

Figure 7. Formal restatement of Lem. 3

LEMMA 2. Deadlocked threads remain deadlocked after reduc-
tions of other threads.

wf-final r
P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉 wf-lock r P c c ′

deadlocked r P ls es ws c ⊆ deadlocked r P ls ′ es ′ ws ′ c ′

LEMMA 3 (cf. Fig. 7). If there is a non-final thread which is not
deadlocked – and all locks are held by non-final threads – then
there is a thread which is not final, not in a wait set and if it can be
reduced and must obtain a lock when being reduced then there is a
reduction whose Lock actions can all be performed.

3.2 Well-formedness conditions for progress
To show progress in the multithreaded case, we naturally need
some progress lemma for the instantiating semantics. We write
wf-progress r P es c to denote that all non-final threads in es can
be reduced in r if the shared memory is c. However, this is not
sufficient for progress in the multithreaded case. Suppose, e.g.,
there is only a single thread t which tries to release a lock l by
the Unlock l action although it is not holding l. If this was the
only reduction possible for t, then this would break the progress
property of the framework semantics, because the expression in
the instantiating semantics is not stuck, but its embedding as a
thread in the multithreaded semantics is. Therefore, we introduce
the predicate ex-red r P ls es c which requires that for every thread t
in es which is reducible in r with thread actions tas there is also a
reduction in r with thread actions tas ′ where
• all actions in tas ′ that are related to thread creation are possible,
• for every lock l, all (un)lock actions on l in tas ′ are possible or

the first one not possible is a Lock l action, and
• for every Lock l action in tas ′ that is not preceded by a Unlock l

action in tas ′ there must already be a Lock l action in tas.

ex-red r P ls es c ensures that if a thread t in es can be re-
duced in r, then either t is deadlocked in (ls, es, c, ws) or there
exists a thread in es and a reduction of it in r that is possible in
(ls, es, c, ws). However, it is frequently more convenient to show
for every thread ID t a different kind of well-formedness denoted
by wf-r-progress r P ls es c t, which implies ex-red (cf. Lem. 4). Intu-
itively, wf-r-progress r P ls es c t imposes six constraints provided that
there is a thread t in es, say es t = b(e, x)c:
• The length of the thread action list for reductions of e in state

(c, x) must be bounded.
• For all reductions of t with actions tas, all NewTread actions must

have the same shared memory as the resulting state.
• For every reduction of t which creates a new thread with ID t ′,

there must also be a reduction creating a thread with any other
thread ID and, if all thread IDs are used up, another one which
has a NewThreadFail action instead.

• Conversely, if not all thread IDs are used, for every NewThread-
Fail action, there must be a reduction actually creating a new
thread with an arbitrary ID.

• If there is a reduction of t with actions tas which contain an
Unlock l action, there must be a reduction with an UnlockFail l
action instead, if the Unlock l action is not possible.

• Conversely, if UnlockFail l is requested by some reduction of
t, but t holds sufficiently many locks on l, then there is also a
reduction with an Unlock l action instead.

In fact, both ex-red r P ls es c and wf-r-progress r P ls es c t are
more complex because we allow for partially rearranging of thread
actions in the substitute reductions, but this technical detail is not
important for the further development.

The next lemma shows that wf-r-progress r P ls es c t for every
thread t is indeed sufficient for ex-red r P ls es c. It is shown by induc-
tion on prefixes of thread action lists and a large case distinction.

LEMMA 4. If ∀ t. wf-r-progress r P ls es c t then ex-red r P ls es c.

With Lem. 1, 2, and 3, we finally show the following key
theorem in proving progress for the instantiating semantics:

THEOREM 1 (Progress). Let t be a non-final thread which is not
deadlocked. Suppose r satisfies the progress conditions wf-progress
and ex-red r P ls es c. Then, if all locks are held by non-final threads,
the multithreaded semantics can make progress. Formally:

es t = b(e, x)c ¬ final e t /∈ deadlocked r P ls es ws c
wf-progress r P es c es `f ls

√
ex-red r P ls es c

∃ t ′ tas ′ es ′ ls ′ ws ′ c ′. P,r ` 〈ls|es,c|ws〉 −t ′,tas ′→ 〈ls ′|es ′,c ′|ws ′〉

4. Lifting thread-local well-formedness conditions
Often one wants to consider only program expressions which
satisfy some well-formedness condition. This section introduces
the machinery provided by the framework to lift such condi-
tions to the multithreaded case at no cost. An instantiating se-
mantics can define a predicate Q of type ′e ⇒ ′c ⇒ ′x ⇒ bool
and the operator ⇑·⇑ automatically lifts Q to a predicate of type
(′e, ′t, ′x) thread-info ⇒ ′c ⇒ bool. Formally:

⇑Q⇑ es c ≡ ∀ t. case es t of None ⇒ True | b(e, x)c ⇒ Q e c x

Suppose, e.g., that on the single-thread level, we have a definite
assignment requirement, i.e. every variable must be assigned be-
fore being used. Suppose further, the predicate D, which takes an
expression e and a store for local variables x, guarantees that eval-
uating e satisfies the definite assignment condition with variables
in the local store x having already been initialised. Then, ⇑D⇑ es c
says that every thread t in es, say es t = b(e, x)c, satisfies D e x.

In the context of type safety proofs, such well-formedness con-
ditions are usually preserved under reductions in r. The predicate
P,r ` Q

√
→ gives three conditions that are sufficient for Q being

also preserved under reduction in the framework semantics:

1. Q must be preserved under reductions of the instantiating se-
mantics.

2. Q must also hold for new threads at the time of creation.
3. Q is preserved even if another thread, which also satisfies Q,

changes the shared memory in a single-step reduction in r.

The next lemma shows that a predicate Q satisfying P,r ` Q
√
→

is in fact preserved under multithreaded reductions, both single-
step and multi-step. The first part is shown by a case analysis
and induction on tas, the second by induction on the number of
reduction steps.

Type Safe Nondeterminism – A Formal Semantics of Java Threads 6 2007/10/8

LEMMA 5 (Soundness of the predicate P,r ` · √→).

P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉 ⇑Q⇑ es c P,r ` Q
√
→

⇑Q⇑ es ′ c ′

P,r ` 〈ls|es,c|ws〉 −tas→∗ 〈ls ′|es ′,c ′|ws ′〉 ⇑Q⇑ es c P,r ` Q
√
→

⇑Q⇑ es ′ c ′

Returning to the example above, if we can show for r that D e x
is preserved under reductions and all new threads also satisfy the
predicate, then P,r ` D √

→ holds and ⇑D⇑ es c is preserved under
multithreaded reductions, too.

Similarly, such predicates on the thread level sometimes also
needs some extra data, which is thread-specific, but invariant
under reductions, e.g. a typing environment for local variables.
We model such extra invariant data as maps from thread IDs
to some type ′i. As before, suppose Q is a predicate of type
′i ⇒ ′e ⇒ ′c ⇒ ′x ⇒ bool on the invariant data and the thread state.
We automatically lift Q to the framework semantics, denoted by
⇑Q⇑ of type (′t ⇀ ′i) ⇒ (′e, ′t, ′x) thread-info ⇒ ′c ⇒ bool.

We say a map I (type ′t ⇀ ′i) to invariant data is well-formed
w.r.t. a thread map es, denoted by I `i es

√, iff I and es are defined
on the same set of thread IDs. The partial order extends I E I ′ on
maps to invariant data denotes that I ′ is an extension of I, i.e. I ′ is
defined whenever I is defined, and in that case, I and I ′ coincide.

Let I [I]Q tas denote the extension of I with invariant data
for all threads created in tas. These updates then preserve well-
formedness of maps to invariant data, which is shown by case
analysis, induction on tas, and by induction on the number of
reduction steps.
LEMMA 6.

P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉 es `i I
√

es ′ `i (I [I]Q tas)
√

P,r ` 〈ls|es,c|ws〉 −tas→∗ 〈ls ′|es ′,c ′|ws ′〉 es `i I
√

es ′ `i (I [I]Q flatten (map snd tas))
√

Here we see the reason for storing the shared memory in NewTread
actions. Only with this trick are we able to update I correctly in
the case of multiple reductions because the data chosen for a new
thread may depend on the shared memory at thread creation time.

Now, let the predicate P,r,R ` Q
√
→ impose the following

conditions on an predicate Q sufficient for Q being preserved un-
der a multithreaded reduction in redT r P, provided that the well-
formedness predicate R holds in the initial state. (This extra predi-
cate R is, strictly speaking, not necessary for the proofs, but allows
for some modularity in applications.)
1. Q is preserved under reductions in r P for threads satisfying R.
2. For all actions NewThread t e c x issued by threads satisfying R,

there is some invariant data i for (e, c, x) with Q i e c x.
3. Q is unaffected by changes to the shared memory by another

thread that also satisfies both Q and R.
The next lemma shows that these conditions are sufficient for Q
being preserved under multithreaded reductions. Again, the first
part is shown by a case analysis and induction on tas, the second
part by induction on the number of reduction steps.
LEMMA 7 (Soundness of the predicate P,r,· ` · √→).

P,r ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉
⇑Q⇑ I es c ⇑R⇑ es c P,r,R ` Q

√
→

⇑Q⇑ (I [I]Q tas) es ′ c ′

P,r ` 〈ls|es,c|ws〉 −tas→∗ 〈ls ′|es ′,c ′|ws ′〉
⇑Q⇑ I es c ⇑R⇑ es c P,r ` R

√
→ P,r,R ` Q

√
→

⇑Q⇑ (I [I]Q flatten (map snd tas)) es ′ c ′

5. Multithreaded Jinja
In this section, we instantiate the framework with an extension of
the Jinja source code semantics [12] for Java threads (without the
JMM) and present the formalisation in detail. In modelling Java
threads, we closely follow Ch. 17 in the Java Language Specifica-
tion [9] for Java 5, making minor abstractions where special cases
would have unnecessarily complicated the formalisation. First, we
explain how Java threads are modelled in the framework. Then, we
present the well-formedness conditions we need to impose on Jinja
programs and expressions in order to show type safety (progress
and preservation) in the last part.

In Jinja, source code expressions have the type expr, which is a
data type with a constructor for every kind of operation, i.e. for cre-
ating objects and arrays, for casts, literals, access and assignment
to local variables, arrays and fields, binary operations, method call,
nested blocks, sequential composition, if and while statements, ex-
ception throwing and catching, and synchronized blocks. An ex-
pression is considered to be final iff it is a value or a thrown excep-
tion object on the heap. Although the syntax is quite different from
Java, a compiler can translate any program which only uses Jinja
features to the Jinja syntax.

5.1 Modelling the Java thread concept in Jinja
In our formalisation, the “program” P (type J-prog) contains the
class declarations. Every thread stores its expression (expr) and
its local variables (locals); since method calls are dynamically in-
lined, we do not need an explicit call stack. The shared memory
(heap) is a map from addresses (addr) to heap objects (heapobj),
thread IDs are natural numbers. In Java, only monitors – of which
every object has one – can be locked, so locks are addresses,
too. So are the wait set identifiers, because every monitor man-
ages its own wait set. Thus, the Jinja semantics red is of type
(J-prog, expr, addr, nat, locals, heap, addr) semantics and, accordingly,
a reduction in it is denoted by P ` 〈e,(h, x)〉 −tas−red→ 〈e ′,(h ′, x ′)〉.

Having explained the different instantiations of type parameters
to the framework, we now present the introduction rules for the
set of reductions red P which are relevant for our modelling Java
threads. Fig. 8 and Fig. 9 show the reduction rules for method calls
and the synchronized statement, respectively. See [12] for all other
reduction rules, none of which issues thread actions on its own.

5.1.1 Thread creation
In Java, threads are associated with objects of the class Thread or
its subclasses. A new thread is spawned by invoking the Thread
object’s start method. Hence, in our model, we treat objects of
class Thread (or subclasses thereof) like standard objects, except
that the well-formedness condition requires that no class compara-
ble to Thread in the type hierarchy declares a method called start.
Only when invoking the start method on such an object, rules NT1
and NT2 apply instead of CALL, which is for invoking nonnative
methods and dynamically inlines the called method’s code. In con-
trast, NT1 generates a new thread with an arbitrary thread ID, initial
expression Var this·run([]) (which represents the call to the thread
object’s run method), the heap as the shared memory component,
and, as thread local information, this initialised to the correct thread
object, given by its address. Similarly, NT2 models the reduction
in case there are no more free thread IDs, which results in an Out-
OfMemory exception being thrown in the spawning thread.

5.1.2 Wait, notify and notifyAll
We cannot implement the wait, notify, and notifyAll methods of Ob-
ject inside the Jinja language, because they are native just like
spawning a thread. Hence, we include a pair of extra rules for each
of these (rules W1, W2, N1, N2, NA1 and NA2), emulating the be-
haviour of the natives methods in the JVM:

Type Safe Nondeterminism – A Formal Semantics of Java Threads 7 2007/10/8

h a = bObj C fsc P ` C sees M: Ts→T = (pns, body) in D |vs| = |pns| |Ts| = |pns| ¬ P ` C �∗ Thread ∨ M 6= start
P ` 〈addr a·M(map Val vs),(h, x)〉 −[]−red→ 〈blocks (this·pns, Class D·Ts, Addr a·vs, body),(h, x)〉 CALL

h a = bObj C fsc P ` C �∗ Thread
P ` 〈addr a·start([]),(h, x)〉 −[NewThread t (Var this·run([])) h [this 7→ Addr a]]−red→ 〈unit,(h, x)〉

NT1

h a = bObj C fsc P ` C �∗ Thread
P ` 〈addr a·start([]),(h, x)〉 −[NewThreadFail]−red→ 〈THROW OutOfMemory,(h, x)〉 NT2

h a = bqc
P ` 〈addr a·wait([]),(h, x)〉 −[Suspend a, Unlock a, Lock a]−red→ 〈unit,(h, x)〉

W1

h a = bqc
P ` 〈addr a·wait([]),(h, x)〉 −[UnlockFail a]−red→ 〈THROW IllegalMonitorState,(h, x)〉 W2

h a = bqc
P ` 〈addr a·notify([]),(h, x)〉 −[Notify a, Unlock a, Lock a]−red→ 〈unit,(h, x)〉

N1

h a = bqc
P ` 〈addr a·notify([]),(h, x)〉 −[UnlockFail a]−red→ 〈THROW IllegalMonitorState,(h, x)〉 N2

h a = bqc
P ` 〈addr a·notifyAll([]),(h, x)〉 −[NotifyAll a, Unlock a, Lock a]−red→ 〈unit,(h, x)〉

NA1

h a = bqc
P ` 〈addr a·notifyAll([]),(h, x)〉 −[UnlockFail a]−red→ 〈THROW IllegalMonitorState,(h, x)〉 NA2

Figure 8. Jinja reduction rules for method call.

P ` 〈o ′,s〉 −tas−red→ 〈o ′′,s ′〉 ¬ lock-granted o ′

P ` 〈sync(o ′) e,s〉 −tas−red→ 〈sync(o ′′) e,s ′〉 S1

P ` 〈sync(null) e,s〉 −[]−red→ 〈THROW NullPointer,s〉 S2

P ` 〈sync(throw a) e,s〉 −[]−red→ 〈throw a,s〉 S3

P ` 〈sync(addr a) e,s〉 −[Lock a]−red→ 〈sync(locked(a)) e,s〉 S4
P ` 〈e,s〉 −tas−red→ 〈e ′,s ′〉

∀ tas ′. tas 6= Suspend a·tas ′∧ tas 6= UnlockFail a·tas ′

P ` 〈sync(locked(a)) e,s〉 −tas−red→ 〈sync(locked(a)) e ′,s ′〉
S5

S6
P ` 〈e,s〉 −tas−red→ 〈e ′,s ′〉 tas = Suspend a·tas ′

P ` 〈sync(locked(a)) e,s〉 −tas @ [Unlock a]−red→ 〈sync(addr a) e ′,s ′〉
P ` 〈sync(locked(a)) Val v,s〉 −[Unlock a]−red→ 〈Val v,s〉 S7

P ` 〈sync(locked(a)) throw a ′,s〉 −[Unlock a]−red→ 〈throw a ′,s〉 S8

Figure 9. Jinja reduction rules for the synchronized statement.

1. One (W1, N1, NA1) models normal execution with three thread
actions: The first one tells the framework to manipulate the
wait sets according to the method’s meaning, the Unlock and
subsequent Lock actions are to check if the current thread holds
a lock on monitor associated with the wait set. If not, this
reduction will not be chosen by the multithreaded semantics.

2. In that case, the other rule (W2, N2, NA2) instead raises an
IllegalMonitorState exception if the thread does not hold a lock
on the monitor associated with the object. The UnlockFail action
ensures that this rule can only be chosen if the thread does not
hold a lock on the monitor.

Note that the framework semantics does not allow for “spurious
wake-ups”, which are permitted by the JLS [9].

5.1.3 Synchronisation
Synchronisation in Java is done via synchronized statements.
Sec. 14.19 in the JLS [9] determines its behaviour: “A synchro-
nized statement acquires a mutual-exclusion lock on behalf of the
executing threads, executes a block and then releases the lock.”
Fig. 9 shows the rules for the synchronized statement. A synchro-
nized statement is written sync(o ′) e where o ′ is the expression for
the object on whose monitor a lock is acquired and e is the block’s
expression. To remember syntactically that a synchronized state-
ment has already acquired the lock on a, we use the expression
locked(a) at o ′. The predicate lock-granted o ′ checks whether o ′ is of
the form locked(a) for some a. We now discuss the rules in Fig. 9 in
detail.

S1 reduces the monitor subexpression, provided it is not the
expression denoting the granted lock on the monitor. If the monitor
subexpression reduces to the null value, a NullPointer exception is
thrown (S2). If an exception is raised while reducing the monitor
subexpression, the same exception is propagated by S3. If it reduces
to some address a, the thread can only reduce further (S4) by
acquiring the lock on a.2 Once the lock has been granted, the body
e of the synchronized statement is reduced: If e’s reduction does

2 In [4], in rule SYN2, the monitor subexpression may evaluate to an address
only if the lock can be acquired at the same time. This simplification, which
we avoid, may have some strange effects. For instance, suppose we have a
thread θ1 with expression

sync(o·f) { o·f = new Object(); sync(o) { . . . }}
and another one θ2 with expression

sync(o) { sync(o·f) { . . . }}
where o is a shared object, say O, with a field f initially referencing another
object, say F. If θ1 first obtains the lock on F, which is referenced by
o·f, and then θ2 is evaluated as far as possible, i.e. it is then waiting on
the lock on F, this schedule leads to a deadlock in our semantics. In [4],
however, θ2 cannot evaluate that far, but stops evaluating o·f at O·f. Once
θ1 changes O·f to another object F ′, θ2 can continue with a lock on F ′, i.e.,
there is no possibility for a deadlock here. Although the JMM introduces
much complexity about which values a thread sees when, an example with
a volatile field f reveals the same issue in the presence of the memory model.

Type Safe Nondeterminism – A Formal Semantics of Java Threads 8 2007/10/8

not request that the thread is suspended to the wait set a, nor that
the thread does not hold a lock on a, sync(locked(a)) e is reduced
accordingly by S5. If e’s reduction corresponds to a call to the
wait method of a, which is characterised by a Suspend a action at
the action list’s head, additionally, the lock on a is released (by
appending an Unlock a action to the end) (S6).

If the body reduces to a value in a normal way, the lock is
released and the synchronized statement returns the value by S7.
If an exception is thrown while the body is reduced, the lock on a
is released and the exception propagated (S8).

Since synchronized methods are just syntactic sugar for ordi-
nary methods with their whole body inside a synchronized state-
ment on this, we omit this option in our formalisation for simplicity.

5.2 Well-formedness constraints
In Sec. 4, we have shown how local well-formedness constraints
can be lifted to the multithreaded case. In this section, we introduce
the well-formedness conditions for Jinja and show how they are
lifted in the above way.

There are already a number of constraints for well-formed Jinja
programs (see [12] for the details). For the threads, we need to
impose some more on the class declarations. We say, a class with
name C is well-formed if it is a well-formed Jinja class and satisfies
additionally:
• if C is Object, it must not have fields or methods which are not

native (and thus would be hardwired into the semantics)
• if C is Thread, it must have a run method with no parameters and

return type Void,
• if C is comparable to Thread in the subtype relation, it must not

have a start method (which is hardwired in the semantics), and
• it must not have methods called wait, notify, nor notifyAll.

A well-formed program P, denoted by wf-J-prog P, consists of well-
formed class declarations only.

Since we use the special expression locked(a) in monitor ex-
pressions of synchronized statements to remember that the lock on
the monitor a has already been granted, we must also ensure that
locked(a) cannot occur in a monitor expression via subexpression
reduction (rule S1 in Fig. 9). To this end, we define the predicate
` e

√
& for an expression e. Intuitively, ` e

√
& ensures that in an

expression e with multiple subexpressions, if an explicit address
value occurs in such a subexpression e ′, then all other subexpres-
sions of e which are evaluated before e ′ according to the evalua-
tion order imposed by the semantics must have already been com-
pletely evaluated. For example, in an array assignment a[i] := e, if
a has evaluated to some address a and the index expression i has
not yet been completely reduced to an integer, e must not contain
an explicit address. We write ` · ⇑√&⇑ for ` · √& lifted to the
multithreaded case with the ⇑·⇑ operator.

LEMMA 8. If P ` 〈o ′,s〉 −tas−red→ 〈o ′′,s ′〉 and ` sync(o ′) e
√

&
then ¬ lock-granted o ′′.

By this lemma, shown by case analysis on the reduction steps,
` · √& in fact does the job. The next lemma, which proves that
` · √& is also preserved under reductions for well-formed pro-
grams, is shown by induction on the set of reductions.
LEMMA 9. If wf-J-prog P then P,red ` (` · √&)

√
→.

Locks are stored twice in the multithreaded Jinja semantics: On
the one hand, there is the map ls for storing locks in the framework.
On the other hand, we remember locks in the monitor subexpres-
sion of synchronized statements, which are stored in the map es.
Naturally, we want them to be consistent, which is expressed by
the predicate es `e ls

√:

P ` T ≤ T P ` NT ≤ Class C
P ` A ≤ B

P ` A[] ≤ B[]

P ` C �∗ D
P ` Class C ≤ Class D

P ` NT ≤ A[] P ` A[] ≤ Class Object

Figure 10. Jinja subtyping rules

es `e ls
√≡ ∀ t. case es t of None ⇒ ∀ l. ¬ has-lock ls t l | b(e, x)c ⇒

∀ l. if 0 < ` e l then ls l = b(t, ` e l − 1)c else ¬ has-lock ls t l

The function ` e l counts the number of sync(locked(l)) subexpres-
sions in e. Note that es `e ls

√ implies es `f ls
√:

LEMMA 10. If es `e ls
√ then es `f ls

√
.

LEMMA 11. For well-formed programs and well-formed thread
expressions, · `e · √ is preserved under reductions:

wf-J-prog P P,red ` 〈ls|es,c|ws〉 −t,tas→ 〈ls ′|es ′,c ′|ws ′〉
` es ⇑√&⇑ es `e ls

√

es ′ `e ls ′
√

wf-J-prog P P,red ` 〈ls|es,c|ws〉 −tas→∗ 〈ls ′|es ′,c ′|ws ′〉
` es ⇑√&⇑ es `e ls

√

es ′ `e ls ′
√

This lemma is shown by an extensive case analysis and induction
on the thread action list, and the number of reduction steps.

Another feature of both Jinja and Java is definite assignment
(cf. example in Sec. 4): It ensures that every variable must be as-
signed before being used. As before, we write D e x, which takes
an expression e and a store for local variables x, for the definite
assignment test. The details for D can be found in [12], the def-
initions for the synchronized statements are straight forward. The
next lemma, which is shown by rule induction on the reductions,
shows that definite assignment is preserved under reductions for
well-formed programs.

LEMMA 12. If wf-J-prog P then P,red ` D √
→.

5.3 The type safety proof
In this section, we introduce the Jinja type system and show the
progress and subject reduction theorem, which we combine in the
end to get type safety.

5.3.1 The type system
Jinja has two primitive types Boolean and Integer, for Unit the type
Void, and reference types NT, Class C, and T[], where ·[] is a
recursive type constructor for arrays. This way, array types of
arbitrarily many dimensions are allowed in Jinja whereas the Java
VM supports at most 255 dimensions [14].

On the types of a program P, we define a widening relation
whose rules are shown in Fig. 10: P ` T ≤ T ′ denotes that T is a
subtype of T ′. Subtyping behaves as in Java: The subclass relation
P ` ·�∗· is injected into the subtype relation, NT is a subtype
of reference types, arrays are subtypes of Class Object and ·[] is
covariant. We extend ≤ to lists pointwise, denoted by [≤].

Jinja has a static type system with typing judgements of the form
P,E ` e :: T where P is the Jinja program, E the typing environment,
i.e. a map from variable names to types, e is the expression to be
typed and T is e’s Jinja type. Fig. 11 shows the typing rules for
method calls and the synchronized statement. Due to space limi-
tations, we cannot show all of the typing rules. For the remaining
rules, see [12].

Rule WTC1 is the standard Jinja rule for method call where
P ` C sees M: Ts→T = (pns, body) in D denotes that in program P,

Type Safe Nondeterminism – A Formal Semantics of Java Threads 9 2007/10/8

P,E ` e :: Class C P ` C sees M: Ts→T = (pns, body) in D
list-all2 (λe T. P,E ` e :: T) es Ts ′ P ` Ts ′ [≤] Ts

P,E ` e·M(es) :: T
WTC1

P,E ` e :: Class C P ` C �∗ Thread
P,E ` e·start([]) :: Void

WTC2

P,E ` e :: T is-refT T T 6= NT
P,E ` e·wait([]) :: Void

WTC3

P,E ` e :: T is-refT T T 6= NT
P,E ` e·notify([]) :: Void

WTC4

P,E ` e :: T is-refT T T 6= NT
P,E ` e·notifyAll([]) :: Void

WTC5

P,E ` o ′ :: T is-refT T T 6= NT P,E ` e :: T ′

P,E ` sync(o ′) e :: T ′
WTS

Figure 11. Jinja typing rules for method call and the synchronized
statement.

P,E,h ` e : NT list-all2 (λe T. P,E,h ` e : T) es Ts
P,E,h ` e·M(es) : T

WTCN

P,E,h ` o ′ : NT P,E,h ` e : T
P,E,h ` sync(o ′) e : T ′

WTSN

Figure 12. Jinja runtime typing rules for the null type in method
call and the synchronized statement.

class C sees the method M with parameter types Ts and return type
T in class D which has parameter names pns and body body, taking
method overriding into account. list-all2 (λe T. P,E ` e :: T) es Ts ′

denotes that |es| = |Ts ′| and the parameters es have types Ts ′. As
before, this rule cannot subsume the hard-wired methods for thread
creation, wait, notify, and notifyAll, because they do not have an im-
plementation in the Jinja language. Thus, we introduce one extra
rule for each of them where is-refT is a predicate for reference types
(rules WTC2, WTC3, WTC4 and WTC5). The rule for the syn-
chronized statement WTS is straightforward. Note that we include
the condition T 6= NT in these rules to disallow expressions like
null·wait([]), since null cannot directly be dereferenced in Java [9].

However, the static type system is not preserved under reduc-
tions. In particular, during reduction, explicit addresses may occur
inside expressions which are not typable without knowing the heap.
Thus, we also have another (runtime) type system [5], which takes
the heap into account and which is denoted by P,E,h ` e : T. It re-
laxes some constraints imposed by the static type system, for de-
tails see [12]. Most importantly, in addition to each rule in Fig. 11,
which also exist in the runtime type system with the h added to
them, there is another rule for typing the case when an expression
typed with a non-null reference type reduces to null. Fig. 12 shows
the typing rules for method call WTCN, which also subsumes the
new native methods, and the synchronized statement WTSN. Note
that, e.g., the expression null·wait([]) now has arbitrary type, not
even a unique least type, however, since this is only technical de-
vice for the type safety proof, this does not matter to us when typing
an expression statically in the type system above.
LEMMA 13. If P,E ` e :: T then P,E,h ` e : T.

5.3.2 Progress
For both progress and preservation, the initial configuration must
conform to the type constraints given by the program in various as-

pects. First, all field contents of all objects on the heap h must have
a type which conforms to the type given in the field declaration,
which we denote by P ` h

√. Similarly, every local variable in x
must hold a value which is compatible with the typing environment
E, denoted by P,h ` x (:≤) E. If both heap h and local store x are con-
form, we write P,E ` (h, x)

√ as shorthand. Details for conformance
can be found in [12], the extension to the Jinja thread semantics is
straightforward. For progress, we lift typability to the multithreaded
setting. P,h `:: es

√ holds iff for every thread t, there exists a typing
environment in which t’s expression is (runtime) typable. With the
runtime type system, we can carry over the induction proof on red
P for progress to the thread extension under the same conditions:
LEMMA 14 (Progress for threads in isolation).

wf-J-prog P P ` h
√

P,E,h ` e : T D e x ¬ final e
∃ e ′ s ′ tas. P ` 〈e,(h, x)〉 −tas−red→ 〈e ′,s ′〉

Hence, we have:
LEMMA 15 (wf-progress for red P).

wf-J-prog P P ` h
√

P,h `:: es
√ ⇑D⇑ es h

wf-progress red P es h

For progress of the framework semantics, we also need to show
that the instantiating Jinja semantics is well-behaved:
LEMMA 16.
If ` es ⇑√&⇑ and es `e ls

√ then wf-r-progress red P ls es h t.

Together with Thm. 1 and Lem. 4, we get progress for the
framework semantics:
THEOREM 2 (Progress).

wf-J-prog P P,h `:: es
√

⇑D⇑ es h ` es ⇑√&⇑ es `e ls
√

P ` h
√

es t = b(e, x)c ¬ final e t /∈ deadlocked red P ls es ws h
∃ t tas es ′ ls ′ ws ′ h ′. P,red ` 〈ls|es,h|ws〉 −t,tas→ 〈ls ′|es ′,h ′|ws ′〉

5.3.3 Preservation
For preservation, we combine conformance conditions and typabil-
ity in a single predicate. First, let P,E,h ` e ≤: T be a shorthand for
∃ T ′. (P,E,h ` e : T ′ ∧ P ` T ′ ≤ T)), i.e. e is typable in the environ-
ment E and heap h with a type T ′ which is a subtype of T. However,
this is not the only such condition where the typing environment
E is used: P,E ` (h, x)

√ also depends on E. All in all, we define
P,(E, T) ` e,x,h

√ ≡ P,E ` (h, x)
√ ∧ P,E,h ` e ≤: T and lift it to the

multithreaded setting:
P,Es ` es,h ⇑√⇑ ≡ ⇑(λ(E, T) e h x. P,(E, T) ` e,x,h

√
)⇑ Es es h

Note that this time, since the typing environment and the initial type
must remain the same during reduction, we use a map to invariant
data Es which is a pair of a typing environments E and a type T.
Hence, for every thread t, Es t stores both the typing environment
for t’s local variables and the type of t’s initial expression.

The next lemma, which follows from a number of differ-
ent other preservation lemmata not presented here, shows that
P,Es ` es,h ⇑√⇑ is invariant for well-formed programs if threads
respect definite assignment.
LEMMA 17. If wf-J-prog P then P,red,D ` (P,· ` ·,·,· √)

√
→.

Subject reduction, the key lemma for preservation, immediately
follows from this using Lem. 7:
THEOREM 3 (Subject reduction).

wf-J-prog P P,red ` 〈ls|es,h|ws〉 −t,tas→ 〈ls ′|es ′,h ′|ws ′〉
⇑D⇑ es h P,Es ` es,h ⇑√⇑

P,(Es [I]P,· ` ·,·,· √ tas) ` es ′,h ′ ⇑√⇑

Type Safe Nondeterminism – A Formal Semantics of Java Threads 10 2007/10/8

5.3.4 Type safety
We use the preservation lemmata for the various conditions to
lift all single-step reductions to the transitive reflexive closure by
induction. With Thm. 2 and 3, this gives the final type safety
theorem:

THEOREM 4 (Type safety).
wf-J-prog P

es `i Es
√

P,Es ` es,h ⇑√⇑ ⇑D⇑ es h es `e ls
√

` es ⇑√&⇑ P,red ` 〈ls|es,h|ws〉 −tas→∗ 〈ls ′|es ′,h ′|ws ′〉
@ t ta es ′′ ls ′′ ws ′′ h ′′. P,red ` 〈ls ′|es ′,h ′|ws ′〉 −t,ta→ 〈ls ′′|es ′′,h ′′|ws ′′〉

Es ′ = Es [I]P,· ` ·,·,· √ flatten (map snd tas)

Es E Es ′∧
(∀ t e ′. ∃ x ′. es ′ t = b(e ′, x ′)c−→

(∃ v. e ′ = Val v ∧ (∃E T. Es ′ t = b(E, T)c ∧ P,h ′ ` v :≤ T))∨
(∃ a. e ′ = Throw a ∧ a ∈ dom h ′)∨
(t ∈ deadlocked red P ls ′ es ′ ws ′ h ′∧(∃E T. Es ′ t = b(E, T)c∧

P,E,h ′ ` e ′≤: T))

Let us examine what Thm. 4 states: Suppose we have:
• a well-formed Jinja program P, and
• there is a typing environment and an initial type in Es for thread

ID t iff there is a thread with ID t in es, and
• for each thread t in es, say es t = b(e, x)c and Es t = b(E, T)c,

its expression e and local variable store x is typable in the type
environment E and the heap h with a subtype of T, and

• every thread passes the definite assignment check, and
• locks are held only by non-final threads, and
• no thread can be reduced such that the monitor subexpression of

a synchronized statement reduces to locked(a) for some address
a, and

• the state (ls, es, c, ws) reduces to some state (ls ′, es ′, c ′, ws ′) with
thread action lists tas such that

• (ls ′, es ′, h ′, ws ′) is in normal form.
Let Es ′ denote the map to typing environments and initial types Es
which is extended with the environments and types for threads that
are newly created in tas. Note that for threads t that have already
been present in Es, Es ′ t = Es t, by Es E Es ′, i.e. type environments
and initial types have remained the same for them. Then, for every
thread t in es ′, say es ′ t = b(e ′, x ′)c, one of the following cases holds:
1. e ′ is a final value v, whose type is a subtype of t’s initial type, or
2. e ′ throws an object that exists on the heap h, or
3. t is deadlocked and e ′ is typable with a subtype of t’s initial type.

6. Related work
There are a number of formal semantics for Java on the source
code level [21, 5, 22, 12], all of which model different subsets of
sequential Java. Our basis for the sequential part is [12], which is a
successor to [22]. In [4], Cenciarelli et al. give a formal semantics
of multithreaded Java on the source code level, which includes most
Java thread features such as dynamic thread running and stopping,
synchronisation via monitors and the wait/notify mechanism. In
particular, using event spaces, they carefully model the memory
model for Java 2 [8], which is now out-dated. However, they neither
give a type system nor do they prove any meta-theoretic results on
their semantics. In contrast, they say:

Event spaces are not necessarily “complete” [. . .] In fact,
there are well-formed event spaces which are not com-
pletable, and this complicates the meta-theory of the seman-
tics.

Since we are aiming for type safety via progress and preservation,
we cannot resort to their semantics because non-completable event
spaces would break the progress proof.

Stärk et al. [19] also present a multithreaded semantics of Java
(without the JMM) based on abstract state machines together with
a proof for preservation. However, they do not consider deadlocks,
neither do they give a proof for progress. Moreover, their proofs are
not checked by a theorem prover.

On the bytecode level, Belblidia and Debabbi present a for-
mal small-step semantics for Java bytecode [3] which also features
threads, but not the JMM. Like our approach, they have a seman-
tics for threads in isolation and a second layer which manages the
threads and receives thread actions, which they call labels, from
them. In contrast to our framework semantics, at most one action
can be issued at a time, but their single-thread semantics already
takes care of the locks, which are stored in the shared memory, i.e.
they only have actions for creating, killing, blocking and notifying
threads. Yet, they do not model the wait/notify mechanism, which –
strictly speaking – is not an integral part of Java bytecode, but of the
java.lang package [14]; their block and notify actions are used
by the second layer to keep track of which threads are ready for
execution. Like Cenciarelli et al. in [4], they only give the seman-
tics, but no type system and no discussion about deadlocks. Our
framework semantics also handles the locks, i.e. an instantiating
semantics need not care about other threads, and is generic and far
more versatile, in particular, because arbitrary lists of thread actions
can be passed in a single reduction. Their second layer, however, is
tailored to their single-thread semantics for Java bytecode.

In [15], Liu and Moore present a monolithic formal semantics
for multithreaded Java bytecode in form of an interpreter which
also models class loading and initialisation. They aim for verifying
JVM implementations w.r.t. the JVM specification and small Java
programs in ACL2. However, they do not give a type system, nor
do they comment on the deadlock issues.

Apart from showing type safety for the Java type system, type
systems have proven useful for other safety features. Flanagan and
Abadi [6] came up with an object calculus and a type system
with dependent types to ensure that data races in accessing object
members cannot occur. A data race occurs if two threads can
access a location simultaneously without synchronisation, which
can result in a corrupted state. Object members are annotated with
locks’ names, the type system ensures that accessing a member
is only possible if the specified lock is held by the thread. An
appropriate subject reduction theorem shows soundness. However,
they do not provide any progress results. Flanagan and Freund [7]
translated this calculus to full Java bytecode and implemented it
in the rccjava tool. In [10], Grossman extends the approach of
[6, 7] to multithreaded Cyclone, which is a type safe variant of
C. He also shows the progress property that no well-typed thread
can get “badly stuck”. A thread t is “badly stuck” iff t cannot
reduce any further even if t could acquire an arbitrary additional
lock and, in case being final, t still holds some lock. Together
with the subject reduction theorem, type safety, i.e. all threads
reachable from a well-typed thread via reductions are not badly
stuck, follows. In general, being in deadlock is stronger than being
badly stuck because the latter does not involve the aspect of circular
waiting.

Programs without data races are a desired kind of Java pro-
grams: The new JMM ensures that such programs have sequentially
consistent behaviour. Aspinall and Ševčı́k [2] have formalised data
race freedom and the memory model in Isabelle/HOL and proved
this guarantee.

There are also approaches to eliminate potential deadlocks via
type systems: For example, Suenaga and Kobayashi [20] propose
a process calculus with thread creation, interrupts (which can be

Type Safe Nondeterminism – A Formal Semantics of Java Threads 11 2007/10/8

temporarily disabled), and synchronisation via structured locking.
They assign to each syntactic occurrence of a lock a unique level
tag. Their type system remembers bounds on the level of acquired
locks in effect labels and ensures deadlock freedom by requiring
that locks must be acquired in ascending order. Their deadlock for-
malisation is on the syntactic level only: A set of threads is in dead-
lock iff every “reducible” subexpression of the threads’ expressions
must be a synchronisation statement which has to acquire a lock
which is already held. Consequently, they cannot express that some
threads are in deadlock while others are still active. Moreover, in
their model, a thread cannot acquire a lock multiple times as it is
the case in Java. In contrast to that, our approach is defined in terms
of the semantics, handles the extra cases introduced by wait sets
and computes whether a given thread is in deadlock – even if some
threads are not yet in deadlock.

Another interesting issue is to ensure that every lock ac-
quired is eventually released and that a lock must have been ac-
quired before being released, i.e. to avoid objects being locked
forever and IllegalMonitorStateExceptions being raised at
monitorexit instructions. For Java on the source level, this is no
issue because locks are reliably acquired and released in a struc-
tured fashion by synchronized blocks and methods, but when
we want to extend our formalisation to bytecode, monitorenter
need not always be matched by monitorexit, which violates the
es `f ls

√ well-formedness condition of our framework. In particu-
lar, if an exception is raised while the lock is held and the excep-
tion handler is outside the synchronized section, things get tricky.
Iwama and Kobayashi [11] propose to tag every object with a usage
label which specifies a policy on how this object may be locked.
A type system, for which they also give a type inference algo-
rithm, guarantees that method implementations respect the usage
tags, and the subject reduction theorem ensures soundness. How-
ever, their subset of Java bytecode is rather restricted in not al-
lowing object fields, method invocations and inheritance. To tackle
this problem of proper lock acquisition and release, Laneve [13]
presents an operational semantics and a type system for a slightly
larger subset of Java bytecode which includes both synchroni-
sation and the wait/notify mechanism. It enforces the structured
locking principle that is known from Java source code. Hence,
the soundness proof gives that well-typed programs are free of
IllegalMonitorStateExceptions, even for calls to wait and
notify. He also discusses the intricacies introduced by exception
handling in detail. However, his type system is not Java’s and he
does not mention progress.

7. Conclusion and future work
We have presented a general framework for adding concurrency
to a single-threaded, operational semantics, in the proof assistant
Isabelle/HOL. The framework semantics unhinges thread manage-
ment and synchronisation from the instantiating semantics, thus al-
lowing for modular proofs of meta-theoretic properties such as type
safety. Further, we have given a formal definition of deadlock in
terms of the semantics. In extending the Jinja source code seman-
tics and applying the framework to it, we have type safety for mul-
tithreaded Java machine-checked, via progress and preservation.

For the future, we plan to extend the Jinja bytecode semantics
to threads and to apply the framework there, too. [3] will be a
good start there. Since our framework requires that every thread
releases all locks it has acquired before terminating, we may want
to recourse on [11] or [13]. When we then also add the JMM,
Aspinall’s and Ševčı́k’s work [2] will be a good basis. Beyond Java,
we also plan to add posix-like threads to a formal semantics of C++
[23] in Isabelle/HOL.

Acknowledgments
We would like to thank Daniel Wasserrab and Dennis Giffhorn for
their valuable comments and the inspiring discussions we had with
them.

References
[1] J. Alves-Foss, editor. Formal Syntax and Semantics of Java. LNCS

1523. Springer, 1999.
[2] D. Aspinall and J. Ševčı́k. Formalising Java’s Data Race Free

Guarantee. In TPHOLs, pages 22–37, 2007.
[3] N. Belblidia and M. Debbabi. A Dynamic Operational Semantics for

JVML. Journal of Object Technology, 6(3):71–100, 2007.
[4] P. Cenciarelli, A. Knapp, B. Reus, and M. Wirsing. An Event-Based

Structural Operational Semantics of Multi-Threaded Java. In Alves-
Foss [1], pages 157–200.

[5] S. Drossopoulou and S. Eisenbach. Describing the Semantics of Java
and Proving Type Soundness. In Alves-Foss [1], pages 41–82.

[6] C. Flanagan and M. Abadi. Object Types against Races. In CONCUR,
pages 288–303, 1999.

[7] C. Flanagan and S. N. Freund. Type-Based Race Detection for Java.
In PLDI, pages 219–232, 2000.

[8] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification, Second Edition. Addison-Wesley, 2000.

[9] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language
Specification, Third Edition. Addison-Wesley, 2005.

[10] D. Grossman. Type-Safe Multithreading in Cyclone. In TLDI, pages
13–25, 2003.

[11] F. Iwama and N. Kobayashi. A New Type System for JVM Lock
Primitives. In ASIA-PEPM, pages 71–82, 2002.

[12] G. Klein and T. Nipkow. A Machine-Checked Model for a Java-Like
Language, Virtual Machine and Compiler. TOPLAS, 28(4):619–695,
2006.

[13] C. Laneve. A Type System for JVM Threads. Technical Report TCS
290, University of Bolonga, 2003.

[14] T. Lindholm and F. Yellin. The Java Virtual Machine Specification,
Second Edition. Addison-Wesley, 1999.

[15] H. Liu and J S. Moore. Executable JVM Model for Analytical
Reasoning: A Study. In IVME, pages 15–23, 2003.

[16] Formalisation of the framework and the Java semantics online at
http://www.infosun.fim.uni-passau.de/st/staff/lochbihl/jt.zip.

[17] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof
Assistant for Higher-Order Logic. LNCS 2283. Springer, 2002.

[18] G. Nutt. Operating Systems. Addison-Wesley, 2nd edition, 2000.
[19] R. F. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual

Machine. Springer, 2001.
[20] K. Suenaga and N. Kobayashi. Type-Based Analysis of Deadlock

for a Concurrent Calculus with Interrupts. In ESOP, pages 490–504,
2007.

[21] D. Syme. Proving Java Type Soundness. In Alves-Foss [1], pages
83–118.

[22] D. von Oheimb and T. Nipkow. Machine-Checking the Java
Specification: Proving Type-Safety. In Alves-Foss [1], pages 119–
156.

[23] D. Wasserrab, T. Nipkow, G. Snelting, and F. Tip. An Operational
Semantics and Type Safety Proof for Multiple Inheritance in C++. In
OOPSLA, pages 345–362, 2006.

[24] A. K. Wright and M. Felleisen. A Syntactic Approach to Type
Soundness. Information and Computation, 115(1):38–94, 1994.

Type Safe Nondeterminism – A Formal Semantics of Java Threads 12 2007/10/8

