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ABSTRACT 
 
The performance of speech recognition systems is 
consistently poor on non-native speech. The challenge for 
non-native speech recognition is to maximize the 
recognition performance with small amount of non-native 
data available. In this paper we report on the acoustic 
modeling adaptation for the recognition of non-native 
speech. Using non-native data from German speakers, we 
investigate how bilingual models, speaker adaptation, 
acoustic model interpolation and Polyphone Decision 
Tree Specialization methods can help to improve the 
recognizer performance. Results obtained from the 
experiments demonstrate the feasibility of these methods. 
 

1 INTRODUCTION 
 
With maturing speech technology, the recognition of 
speech as uttered by non-native speakers of the language 
is becoming a topic of interest. Any deployed speech 
recognizer must be able to handle all of the input speech, 
which includes the speech from non-native speakers. 
Despite the large progress in fields like large vocabulary 
continuous speech recognition or noise robustness, 
recognition accuracy has been observed to be drastically 
lower for non-native speakers of the target language than 
for the native ones. One reason is because the non-native 
speakers’ pronunciation differs from those native 
speakers’ pronunciation observed during system training.  
     A number of methods for handling non-native speech 
in speech recognition have been proposed. The most 
straightforward approach is to use the non-native speech 
from the target language spoken by the group of non-
native speakers in question for recognizer training [6], 
however the problem of this method is that the non-native 
speech data is only rarely available. Another approach is 
to apply general speaker adaptation techniques such as 
MLLR and MAP on speaker-independent models to fit 
the characteristics of a foreign accent [5]. Some 
researchers are also working on using multilingual HMM 
for non-native speech [4], or applied recognizer 
combination methods and multilingual acoustical models 
on the non-native digit recognition task [2]. 
     For this study, we implement a number of acoustic 
modeling techniques to compare their performance on 

non-native speech recognition. Here we restrict our study 
to non-native English spoken by native speakers of 
German. In more detail, we explore how the acoustic 
models can be adapted to better handle the non-native 
speech. First we try to use a multilingual recognizer to do 
the decoding on non-native speech. Unlike [2], we are not 
testing on a small domain task like digit recognition, but 
on a conversational speech task. Furthermore we use the 
traditional MLLR and MAP to do the speaker adaptation 
experiments, with a different test setup to see how the 
variety among speakers will contribute to the recognition 
performance. Interpolation is useful in building language 
models for speech systems; here we explore this idea on 
acoustic models for non-native speech recognition. 
Additionally the Polyphone Decision Tree Specialization 
(PDTS)[1] method which was originally applied to port a 
decision tree to a new language in a multilingual 
environment; we adopt this approach for our task to see 
whether it can also help to improve the performance on 
non-native speech recognition.  
     This paper is structured as follows: The database is 
presented in section 2. In section 3, we describe the 
baseline system of our experiments and in section 4 we 
document how bilingual models, speaker adaptation, 
acoustic model interpolation and PDTS can help to 
improve the recognizer performance. Section 5 gives a 
brief conclusion of this paper. 
 

2 DATABASE DESCRIPTION 
 
Our study has been confined to sentences from German-
accented speakers. We use German-accented in-house 
data set that has been recorded with close-head 
microphone. The recording scenario is based on 
spontaneous face-to-face dialogues in the domain of 
appointment scheduling. Table 1 shows the corpus and 
the partition for training and testing data set in this study. 
 

Data Partition SPKs UTTs Minutes 
Training/adaptation 64 452 52 

Cross-validation 20 100 24 
Non-
native 
Data Testing 40 260 36 

Training 2118 17000 2040 Native 
Data Testing 40 312 52 

Table 1 Database overview 
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   Using the same 3-gram language model and vocabulary, 
the perplexity of the non-native test data is 211.27 and the 
OOV rate is 1.29%, the perplexity of the native test data 
is 323.41 and the OOV rate is 1.59%. The perplexity of 
native data is bigger than that of non-native data; this may 
come from the fact that the non-native speakers restrict 
themselves to smaller but well-known vocabulary and 
phrases in spontaneous spoken scenario. 
   

3 BASELINE SYSTEMS 
 
3.1 Baseline native system 
 
All recognition experiments described in this paper use 
the Janus recognition Toolkit JRTK [7].  
     The baseline system for native English speech use 
acoustic models trained on 34 hours ESST data. ESST 
data was collected for the Verbmobil project, a long-term 
research project aimed at automatic speech-to-speech 
translation between English, German and Japanese. Here 
we use the first phrase of Verbmobil (VM-I) English data 
to do the training, the domain is limited and the speaking 
style is cooperative spontaneous speech, the scenario is 
the same as the non-native data. The baseline recognition 
engine is a 3-state quintphone HMM system with 48 
Gaussians per state, 2000 codebooks sharing 4000 
distributions. Vocal tract length normalization and 
cepstral mean subtraction is applied at the spectral level. 
Linear discriminate analysis (LDA) is used to find the 
most discriminated MFCC, and power features and 
reduces the dimension of the feature vector to 40. The 
WER of the baseline system on native test data is 16.2%. 
 

3.2 Baseline non-native system 
 
The non-native acoustic models are trained on non-native 
training set described in table 1. The measurement, label 
classes and training procedure are kept the same as those 
used to train the baseline native models. The non-native 
speech engine is a 3-state quintphone HMM system with 
48 Gaussians per state, 1000 codebooks sharing 1800 
distributions. Table 2 shows the performance on the non-
native test set when using the native, non-native models. 
 

Models Native Models Non-Native models 
WER 49.3% 43.5% 

Table 2 Performance on non-native test data  
 

     As expected, the non-native models perform better on 
the non-native set than do the native models. This result 
provides some assurance that the non-native models are 
adequately trained. We also tried a non-native system 
with the same number of parameters as the native system, 
the result is worse. 
 

4 EXPERIMENTS 
 
We implement a number of acoustic modeling methods to 
compare their effectiveness in improving recognition 

accuracy on non-native speech. In this section, we 
describe the approaches that we tried and compare their 
performance. 
 

4.1 Pooled models 
 
Although non-native training data is better than native 
training data for recognition of non-native speech, 
including native English data in the training set may be 
helpful. So our first experiment is to pool the ESST native 
training data and the non-native training data (see table 1) 
together to build so-called “pooled” English acoustic 
models. In this case we have much more native English 
data than that of non-native English data. When testing on 
non-native test data, the pooled models get a WER of 
42.7%, performing slightly better than that of the baseline 
non-native system. 
 
4.2 Bilingual models 
 
The usefulness of multilingual acoustic models has been 
demonstrated before in non-native digit recognition task 
[2], here we extend our investigation on the recognition of 
non-native conversational speech. 
     Since we are studying the non-native data from 
German speakers, we use bilingual acoustic models 
trained earlier [3] that share training data from English 
part of Verbmobil (ESST) and German part of Verbmobil 
(GSST), to improve the robustness of the recognizer 
against accent of non-native speakers. We investigated the 
knowledge-based (IPA) approach and the data-driven 
approach to define a common phone set for English and 
German bilingual acoustic models. We achieved the best 
WER of 48.7% by using IPA-based bilingual models on 
non-native speech, only a 0.6% absolute reduction from 
the baseline native system. 
      Adding German native speech to the acoustic models 
without using any non-native speech seems not working 
well on improving the performance of non-native speech. 
With limited non-native data available, doing adaptation 
on native models is a promising way to improve the 
recognition performance on non-native data. So we 
investigate speaker adaptation, acoustic model 
interpolation and PDTS and compare their performance 
on non-native speech. We tried the adaptation 
experiments on both the baseline native system and the 
bilingual system. Since we did not see significant 
difference between them, we present the results from the 
experiments on the baseline native system.   
 
4.3 Speaker adaptation 
 
In speaker adaptation, acoustic models that have been 
trained for general speech are adjusted so that they better 
model the speech characteristic of a specific condition. 
Those adaptation techniques do not have to be limited to 
speaker adaptation; general models can be specialized to 
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compensate for differences in acoustic environment or the 
characteristic of a group of speakers. 
     Most widely used adaptation techniques include 
maximum likelihood linear regression (MLLR) and 
maximum a posteriori (MAP) adaptation. MLLR is an 
example of what is called transformation based 
adaptation, here one single transformation operation is 
applied to all models in a transformation class; the 
transformation function is estimated from a small amount 
of held-out data. In MAP adaptation, the model 
parameters are re-estimated individually, using held-out 
adaptation data. Sample mean values are calculated. An 
updated mean is then formed by shifting the original 
value toward the sample value. If there was insufficient 
adaptation data for a phone to reliably estimate a sample 
mean, no adaptation is performed. 
     We use various amount of adaptation data for our two 
adaptation experiments. In the first experiment, both the 
number of adaptation speakers and the amount of speech 
data are varied; the range of the speaker number is from 0 
to 64. In the second experiment, the number of speakers is 
fixed at the maximum of 64, and only the amount of 
speech data is varied. For both experiments, the 
performances are calculated at 52, 48, 42, 37, 35, 32, 28, 
22, 17, 13, and 7 minutes of adaptation data.  
 

 
Figure 1 MLLR & MAP adaptation  
 

      Figure 1 shows the results of applying MLLR and 
MAP on baseline native system with non-native data. 
Adaptation with non-native data leads to improved 
performance, and as expected MAP adaptation would be 
the better choice as long as there is enough adaptation 
data. Also with the same amount of speech data, 
adaptation from more speakers’ data is better than from 
that of fewer speakers, suggesting that the variety among 
speakers contributes more to the gain. 
 
4.4 Acoustic model interpolation 
 
The improvement we have seen from pooling the native 
and non-native training data indicated that the recognition 

of non-native speech could benefit from native training 
data (see table 2). However, the pooled training set gives 
very little weight to the non-native training utterances, 
while there are overwhelmingly more native training 
utterances. One way to achieve the desired weighting is 
by interpolating the native and non-native models. 
     Interpolating of acoustic models refers to the weighted 
averaging of the PDFs of several models to produce a 
single output. In this case we are combining the native 
and non-native models, the native models are better 
trained and the non-native models are more appropriate 
for the test data. 
     For our case, there are only two different models, so 
the interpolated model can be defined as: 

)()()( OPWOPWOP NativeNonNativeNonNativeNativeI −−+=  

Where 1=+ −NativeNonNative WW ; O : observed vector of 

acoustic features; )(OP : acoustic models; W: 

Interpolation weights. 
 

 
Figure 2 Performance with various interpolation weights 
 

     We create a series of interpolated models by varying 
the related weights assigned to the baseline native and 
baseline non-native models. Figure 2 shows the results of 
interpolated models with different interpolation weights. 
A weight of 0 represents the performance with the native 
acoustic models, and a weight of 1 represents 
performance with the non-native acoustic models. The 
optimal weighting factor was found to be 0.56 achieving 
36.0% word error rate. 
 

4.5 PDTS 
 
Non-native speakers are known to have difficulties 
acquiring context-conditioned phonetic contrasts when 
the English phoneme is perceived as corresponding to one 
of their native language’s phoneme that is not subject to 
the same variation. There is a big mismatch of the context 
between the speech of native speakers and that of non-
native speakers. However when we do the decoding we 
are using the context decision tree that was built from 
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native speech to model the context of non-native speech. 
This decision tree does not represent the context of the 
non-native speech very accurately. 
     By building the tree from scratch with a sufficient 
amount of non-native data, one would expect to capture 
important patterns of allophonic distribution in accented 
English. The problem here is we need enough non-native 
training data to build the tree. In order to include 
questions relevant to non-native speech in the decision 
tree without building it from scratch, we adopt the 
Polyphone Decision Tree Specialization (PDTS)[1] 
method for porting a decision tree to a new language. This 
method was originally designed to overcome the 
problems of the observed mismatch between represented 
context in the multilingual polyphone decision tree and 
the observed polyphones in the new target language. In 
this approach, the clustered multilingual polyphone 
decision tree is adapted to the target language by 
restarting the decision tree growing process according to 
the limited adaptation data available in the target 
language. Each time a new language is added, it brings 
with its phonemes and polyphones that have not yet seen 
by the system. PDTS allows question to be asked about 
these new polyphones in the decision tree and new model 
mixture weights to be trained for them without discarding 
the questions about the polyphones that the new language 
share with the old one.   
     For the non-native speech, the recognizer selects the 
best acoustic match for each word during alignment, 
generating a list of new polyphones. The new polyphones 
are then integrated into the decision tree, with branches 
pruned back to the point where the new polyphone data 
could be inserted, and re-grow with new specialization 
where the new data show sufficient internal diversity or 
divergence from the native data. 
     After applying PDTS, the adapted decision tree 
represents contexts of the non-native speech data. After 
doing MAP adaptation using this new decision tree, the 
system is expected to improve the recognition results for 
the non-native speech. The best result we got so far from 
PDTS approach was 35.5%. However, further 
investigation need to be done using PDTS on non-native 
speech such as we did not change the pronunciation 
dictionary that limits the occurrence of new polyphones.   
 
4.6 Summary 
 
In this section, we show how applications of acoustic 
model adaptation techniques contribute to increase the 
recognition accuracy on non-native speech. Figure 3 
compares the results for each approach. For the training 
data of each system, the baseline native system is trained 
on ESST data, the bilingual system is trained on ESST 
and GSST data, the baseline non-native system is trained 
on non-native training data, and the pooled system is 
trained on ESST and non-native training data. The MAP, 

interpolation and PDTS systems are all using the non-
native adaptation data adapting on the baseline native 
system. The testing data is the non-native test set (see 
table 1). From our experiments, while using 52 minutes of 
adaptation data, the PDTS approach works best reducing 
the word error rate from 49.3% to 35.5%, a 27.9% relative 
reduction in error rate over the baseline native system. 
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Figure 3 Best results of various systems 
 

5 CONCLUSION 
 
In this paper, we explore how the acoustic models can be 
adapted to better recognize the non-native speech. The 
results present in this paper show that while there are 
many elements of non-native speech such as the non-
native pronunciation patterns that remain to be 
investigated, a small amount of non-native data can be 
used effectively in improving the recognition performance 
on non-native speech. 
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