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Summary

Realized Volatility (RV) is an estimate of daily volatility from a sample
aggregation of squared or absolute values of intraday high frequency returns.
Realized correlation is also conditionally constructed based on the volatility.
The model-free RV is time-varying, observable and free of the distributional
and model assumptions. Sampling as often as possible would theoretically pro-
duce consistent estimates of the true variance in the limit. However, the most
important practical challenge to the realized volatility theory, beside the lack of
continuous-time recorded prices, is market microstructure noise. The noise at
high frequency levels does not allow realized volatility estimator to converge into
its integrated volatility and it causes a considerable bias and inefficiency. To
overcome the problem of noise, some approaches have been introduced. In addi-
tion, realized volatility literature usually assumes a Gaussian noise. Meanwhile,
the noise in real world financial markets does not follow a Gaussian process.
The present dissertation discusses volatility and correlation estimators and in-
troduces new volatility and correlation estimators which converge faster and are
consistent under Gaussian microstructure noise. They show lower error under
non-Gaussian noise relative to Gaussian noise. Empirically, the new estimators
reveal better some stylized facts of financial markets in analogous to their coun-
terparts. Importantly, the proposed correlations exhibit negative asymmetry
or heavy tail in dependence structure of stock market comovements consistent
with other approaches such as Archimedean copulas.

It has been well documented that financial time series have in common some
regularities. Nonstationarity and noise of stock market returns are among those
characters. Considerable insight into the volatility dynamics is gained by look-
ing at the data at several different scales. An efficient way of representing a
time series with such complex dynamics is given by multiscale analysis. With
the help of wavelet functions, the multiscale analysis is able to decompose a time
series into several scales while preserving the time dimension. According to the
multiscale theory, a function is described by means of a low resolution function
plus a series of details from low to high resolution. Exploiting the multiscale
analysis, a successful strategy can be designed to improve upon a function es-
timation performance. The proposed strategy consists of a combination of the
multiscale analysis and Support Vector Regression (SVR) as an estimation tool
to fit a nonparametric volatility model, namely CHARN model. In fact, the
combination is expected to yield higher performance of learning the structures
behind each separated scale. According to the strategy, the combination is de-
signed so that the original time series of returns is decomposed into several scales
or resolutions, each scaled time series is approximated separately by a SVR ma-
chine and then the fitted functions on different scales are summed up to reach
a general function approximation for the original time series. The experiments
show that the SVR machine outperforms other function approximation algo-
rithms such as some kind of neural network. More important, the experiments
show that the strategy yields promising results. The multiscale strategy yields
better performance of estimation than the usual single scale strategy.
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Chapter 1

Introduction

Volatility of and correlation between return series in financial markets are stud-
ied. In fact, an important topic in financial econometrics that has received
significant attention in the finance literature is the modeling of second moment
of asset returns. Importance of volatility measuring, modeling and forecasting
for finance is quite clear. Perhaps volatility is one of the most important mea-
sures for determining behavior of a financial market and of any time series. The
interest in stock market volatility has grown significantly, specially in recent
years, with the general observation that stock markets around the world are
becoming increasingly integrated and more volatile. This interest in stock mar-
ket volatility has extended beyond the experience of developed markets, and
has now focused on emerging markets. Even how the volatilities in financial
markets are correlated is an important subject of interest for many researches.
Application of financial market volatility, in turn, is indispensable in most fi-
nancial problems including asset and derivative pricing, asset allocation, risk
management, and hedging. Volatility and correlation forecasts are, in fact, fun-
damental statistical parameters for many financial models. As volatility is not
a directly observable variable, large research areas have emerged that attempt
to best address this problem. By far the most popular approach is to obtain
volatility estimates using the statistical models that have been proposed in the
ARCH and Stochastic Volatility literature. Another method of extracting in-
formation about volatility is to formulate and apply economic models that link
the information contained in options to the volatility of the underlying asset.
All these approaches have in common that the resulting volatility measures are
only valid under the specific assumptions of the models used and it is generally
uncertain which or whether any of these specifications provide a good descrip-
tion of actual volatility. Most of the models fail to explain stylized facts. True
enough, they are only models, and as such perhaps only means for successful
data fitting, but they are missing on something crucial.

A model-free measure of volatility is the sample variance of returns. Using
daily data, for instance, it may be freely estimated using returns spanning over
any number of days and, as such, one can construct a time series of model-
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free variance estimates. When one chooses the observation frequency of this
series, an important trade-off has to be made, however. When the variances are
calculated using a large number of observations (e.g. the returns over an entire
year), many interesting properties of volatility tend to disappear (the volatility
clustering and leverage effect, for instance). On the other hand, if only very few
observations are used, the measures are subject to great error. At the extreme,
only one return observation is used for each daily variance estimate.

The approach taken is to calculate the daily volatility from the sample sum
of squared or of absolute values of intraday returns, the realized volatility (RV).
Implied volatility model for asset pricing is based on the assumption of constant
volatility, but it is now widely accepted that volatility is time varying. Specifi-
cally, the high frequency record of some stock indices or individual equities over
a period is used to obtain a time series of daily realized volatilities. These are
free of the assumptions necessary when the statistical or economic approaches
are employed and we have an (almost) continuous record of returns for each
day.

In theory, realized volatility computed from the highest possible frequency
data should provide both consistent and efficient estimator for integrated volatil-
ity. However, the most important challenge to the realized volatility theory, be-
side the lack of continuous-time recorded prices, is market microstructure noise.
The noise at high frequency levels does not allow realized volatility estimator
to converge into its integrated volatility.

To overcome the problem, sparse sampling or applying lower frequencies
have been recommended in literature to reduce the market microstructure ef-
fects. Obviously this recommendation is in contrast to the realized volatility
theory under which the realized volatility estimator converges as the frequency
continuously increases. Therefore, other approaches have been investigated in
literature. The approaches include a kernel-based correction, a moving aver-
age filter, an autoregressive filter and a subsampling and averaging approach.
It has been assessed to what extend correction for microstructure noise im-
proves forecasting future volatility. The subsampling and averaging method
has been documented to have the best performance among the noise corrector
approaches. The subsampling and averaging approach constitutes the class of
estimators that best predicts volatility. The present dissertation applies the
subsampling approach on a wider class of the realized volatility, namely realized
power volatility and introduces some new realized volatility and correlation es-
timators. The wider class is analogously more robust against large values, since
it is constructed upon absolute transformation of return time series.

Simulation experiments suggest in general that the proposed estimators are
consistent and contain comparatively faster convergence under Gaussian mi-
crostructure noise assumptions. In addition, all estimators indicate lower error
under non-Gaussian noise compared to Gaussian microstructure noise. Empir-
ical experiments imply that the proposed estimators are better able to display
some dynamic behaviors and some stylized facts. While the realized correlation
estimator possesses almost a normal distribution in comovement structure be-
tween stock markets, the proposed correlation is negatively skewed. We shall
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specifically see how the problem of noise can be solved by different estimators
and how the estimators empirically behave.

Multiscale volatility estimation by Support Vector Regression (SVR) is also
studied. It has been well documented that financial time series such as return
series share common characteristics. Non-stationary character of stock market
returns, for example, has been tested and documented repeatedly. An efficient
way of representing a time series such as returns with such complex dynamics
is given by wavelet methodology. With the help of a wavelet basis, discrete
wavelet transform is able to break a time series with respect to a time-scale
while preserving the time dimension.

Time-scale specific information is important, if one accepts the view that
stock market consists of heterogeneous agents or investors operating at differ-
ent time-scales. According to hypothesis of a heterogeneous market, the stock
market consists of multiple layers of investment horizons (time-scales) varying
from an extremely short (minutes) to long (years). The small time-scales are
commonly thought to be related to speculative activity and the bigger time-
scales to investment activity. Therefore, time-scale is one of the most important
aspects in which trading behaviors differ. Considerable insight into the volatil-
ity dynamics is gained by looking at the data at several different time-scales or
frequencies. At small time-scales, in particular, the locality of wavelet analysis
allows one to fully exploit high frequency data.

The methodology used here is based on a wavelet multiscaling or multireso-
lution analysis (MRA), which decomposes the return data into its low and high
frequency components, in combination with the SVR. The multiresolution anal-
ysis is implemented by means of an algorithm called maximal overlap discrete
wavelet transform (MODWT). The MODWT is particularly useful for analyz-
ing and forecasting time series that exhibit nonstationary characteristics, since
time-dependent events at various scales are properly localized by MODWT. Ac-
cording to multiresolution theory, a function is described by means of a low
resolution function plus a series of details from low to high resolution. The mul-
tiresolution analysis, indeed, provides different levels of frequency of a process.
Exploiting the multiresolution analysis, a strategy or scheme for estimation is
proposed. According to the strategy, employing the multiresolution analysis, a
signal or time series is decomposed into an arbitrary number of different series
from a smooth to detailed levels preserving the time dimension. Each individ-
ual series as input data feeds a volatility CHARN model to be approximated by
the SVR machine. The aggregated estimation for original return series is then
obtained by adding up the individual estimations.

Support vector regression (SVR) machine is a state-of-the-art sort of learn-
ing algorithm. In general, estimation and approximation applications involve
making inference from observations that are distorted or corrupted in some un-
known manner, when the information that one wishes to extract is unknown
to the observer. The simplest way to approximate a function would be to take
the mean of the observations. Choosing linear functions or more complicated
bases of functions would be a more sophisticated approach, and the solution
to obtain better results seems to enhance the complexity of the base. This is
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not true since one encounters the well-known effect of overfitting, which means
that the complexity of the system of functions used is too high. For obtaining
good approximations, one needs to take the complexity of the base of functions
into account. There already exists a large set of approximation approaches, for
instance splines and methods based on decomposition into orthogonal systems.
All these methods suffer from shortcomings that are tried to be overcome by
the support vector approach. Splines and decomposition approaches share the
problem of exponential increase in the number of coefficients with the dimen-
sionality of the problem. One solution is to use nonseparable expansions, e.g.
neural networks, which allow tractable solutions of high dimensional problems.
Their architecture has to be defined a priori or modified by some heuristics dur-
ing training, which cannot assure that the optimal structure of the network is
found for a particular problem. Moreover, the possibilities for controlling the
complexity of the function base are rather limited, and the training algorithm
can get stuck in local minima. Only for the asymptotic case and for the case of
known prior probabilities optimal selection criteria have been obtained. In con-
trast, support vector machines (SVMs) possess a number of advantages. Their
architecture does not have to be determined beforehand, and input data of any
arbitrary dimension can be treated with only a linear cost in the number of
input dimensions. Moreover, the training has a unique solution, and the mod-
eling functions may be chosen within a rich function base having to satisfy only
some conditions from functional analysis. Capacity is controlled efficiently by
implementing a learning bias that involves a regularization term.

SVMs combine several results from statistical learning theory, optimization
theory, and machine learning, and employ kernels as one of their most important
ingredients.

The SVMs have been proved to pose excellent performance in many applica-
tions. Regression function approximation by support vector regression machine
where the data is corrupted by noise, nonstationarity and locality will be par-
ticularly considered in this dissertation. The noise problem, for example, causes
overfitting problem and in turn poor generalization. We shall demonstrate how
SVMs can be applied in combination of multiresolution analysis to the specific
problem of financial time series prediction.

Implementing the multiresolution strategy is expected to improve accuracy
and precision performances of learning structures or approximating volatility
model. In general, experiments on real data suggest that the multiscale es-
timation strategy yields better performance of estimation relative to a single
resolution strategy. In particular, we shall indicate in detail how the multireso-
lution analysis can be used to help improving approximation power or learning
patterns.

The present dissertation includes 2 main parts in addition to a general intro-
duction as well as basic conclusions. Part I focuses on the realized volatility and
correlation, and part 2 is devoted to multiscale modeling and forecasting volatil-
ity. Each part is provided by its own specific introduction. The specific intro-
ductions to the parts typically include literature review, problem description,
motivation, objective, contribution, and structure of the corresponding part.
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The current chapter 1, covering an introduction, provided a general overview
on the subjects and issues of the chapters. Chapter 2 addresses the definition of
realized volatility and correlation. Moreover, assumptions under which realized
volatility and correlation estimators converge are explained. In chapter 3, the es-
timators are simulated under various assumptions and results are demonstrated.
In addition, their distributional and dynamic behaviors are empirically experi-
enced. Chapter 4 explains multiresolution analysis (MRA) by maximal overlap
discrete wavelet transform (MODWT). Support vector regression machine, as an
application of a theory called statistical learning theory, is illustrated in chapter
5. To nonparametrically approximate volatility, a model called conditional het-
eroskedastic autoregressive nonlinear (CHARN) is invoked to be approximated
in chapter 6. Chapter 7 presents the results of volatility function estimation by
SVR under different strategies. All fundamental conclusions, discussions, and
open questions are gathered in chapter 8.
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Part I

Realized volatility and
correlation
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Introduction to the part: High frequency finance has started to rapidly
grow as a new field of finance after being availability of high frequency financial
data. Exploiting the high frequency data, volatility and correlation can be mea-
sured more accurately in a model-free approach. The realized volatility, in a new
approach to volatility, is claimed to be consistent under general nonparametric
conditions. In other words, this type of measures provides more precise ex-post
observations of the actual volatility compared to the traditional sample vari-
ances based on daily or coarser frequency data. The main idea is to aggregate
intra-daily squared returns to construct realized volatility. In fact, sampling as
often as possible would, in theory, produce exact estimates of the true variance
in the limit. But in practice, the realized volatility and correlation estimators
suffer from the market microstructure noise. The noise results in biased and im-
precise estimators. This suggests that the estimators do not converge for high
frequency levels, where the noise especially exists. To overcome the problem of
noise, some approaches have been introduced. In addition, the realized volatility
literature usually assumes a Gaussian microstructure noise. However, the noise
in the real world financial markets does not follow the Gaussian process. The
present part discusses volatility and correlation estimators and introduces new
volatility and correlation estimators which converge faster and are consistent
under Gaussian microstructure noises.

Literature review As it has been already discussed, the presence of mar-
ket microstructure noise in high frequency financial data complicates the esti-
mation of financial volatility and correlation making the approach unreliable.
There is a considerable bias of estimation at the higher frequency due to inter-
vention of the noise. While the realized volatility approach suggests sampling
at the highest possible frequency to attain the highest precision, the market
microstructure frictions exist at the highest levels of frequency. That is, this
problem is most serious in high frequency data since the volatility of true price
usually shrinks with the time interval, while the volatility of noise components
such as the bid-ask spread usually does not. For this reason, sparse sampling or
lower frequencies have been recommended to reduce the market microstructure
contamination. But this is in contrast to the realized volatility theory. Opti-
mal sampling schemes have been investigated by Bandi and Russell [Ban05b].
Bandi and Russell [Ban05b] argue that while it is theoretically necessary to sum
squared returns that are computed over very small intervals to better identify
the underlying volatility over a period, the summing of numerous contaminated
return data entails substantial accumulation of noise. The resulting effect is the
determination of a bias-variance trade-off. They quantify the trade-off in the
presence of a realistic microstructure model of price determination and provide
clear and easily implementable directions for optimally sampling high frequency
data for the purpose of volatility estimation. The optimal sampling problem
can be written as the minimization of the conditional MSE expansion of the
realized volatility estimator. Specifically, they deem the (easy to implement)
15-minute sampling interval to be a valid (albeit conservative) choice of fre-
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quency. Such choice can be improved upon (i.e., lowered) in the case of very
liquid stocks. Aı̈t-Sahalia et al. [Ait05] in contrast conclude that even with op-
timal sampling, using say 5-min returns when transactions are recorded every
second, a vast amount of data is discarded, in contradiction to basic statistical
principles. They demonstrate that modeling the noise and using all the data is
a better solution, even if one misspecifies the noise distribution. So the answer
is: sample as often as possible. Therefore, researchers investigate some meth-
ods to cope with the problem at the highest available frequency in presence
of the noise. A kernel-based correction proposed by Zhou [Zho96]; a moving
average filter introduced by Maheu and McCurdy [Mah02]; an autoregressive
filter introduced by Bollen and Inder [Bol02]; and a subsampling and averaging
approach introduced by Zhang et al. [Zha05]. Ghysels and Sinko [Ghy07] assess
to what extend correction for microstructure noise improves forecasting future
volatility using the MIxed DAta Sampling (MIDAS) framework. The subsam-
pling and averaging procedure has been experimentally documented by Ghysels
and Sinko [Ghy07] to predict volatility the best among microstructure noise
correctors. Their empirical results suggest that for 30 Dow Jones stocks data,
within the class of quadratic variation measures, the subsampling and averaging
approach constitutes the class of estimators that best predicts volatility.

Problem description The problem of market microstructure noise is well
dealt with by the subsampling procedure of Zhang et al. [Zha05] where their
proposed realized volatility is constructed upon squared intra-daily returns.
However, the construction of realized volatility upon squared returns is only
one of the alternatives for realized volatility and is indeed a specific case of
what Barndorff-Nielsen and Shephard [Bar03] generally introduce. In fact,
Barndorff-Nielsen and Shephard [Bar03] extend the realized squared volatil-
ity to realized power variation which covers realized squared as well as realized
absolute volatility. Meanwhile, the special case, i.e., realized absolute volatility
models have been reported to produce better volatility forecasts than models
based on squared returns. But a specific problem we face to in this part is that
the realized absolute volatility and the wider case of realized power volatility
suffer from the microstructure noise. The realized squared correlation faces to
the same problem of noise.

Motivation All in all, much of discussions in this part is motivated by the
need for forecasting volatility and correlation of financial asset return series. In
particular, inspired by superiority of the subsampling method to cope with the
noise problem, advocating Zhang et al. [Zha05], the subsampling method is ap-
plied on the wider class of realized variation, namely the realized power volatility
and especially on its specific case, that is, the realized absolute volatility.

Objective Applying the subsampling method to construct new realized volatil-
ity and correlation estimators, we aim to improve upon the convergence of re-
alized power variation at higher frequencies under the presence of noise. Con-
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sistent and unbiased estimators for true volatility and correlation are desired.
Furthermore, it is desired the estimators include dynamic behaviors and stylized
facts as many as and as strong as possible.

Contribution The part contributes by new realized volatility and correlation
estimators. The estimators are expected to converge faster and to be consistent
under the market microstructure noise. The estimators are more robust against
the large values. In addition, some new types of the microstructure noise are
introduced and simulated. Empirically, the new estimators reveal better some
dynamic behaviors and stylized facts. In terms of distributional characteristic,
the new realized correlation estimators exhibit negative asymmetry or heavy
tail.

Structure of the part The current part contains two chapters. The first
chapter involves theories and the second to simulation and empirical experi-
ments. In two first sections of chapter 2, importance of volatility and correlation
modeling and forecasting for different areas of applied finance are mentioned.
In section 2.3, it is discussed that whether volatility is a measure of risk as
sometimes it is supposed. Section 2.4 addresses to different alternatives to re-
alized volatility estimator. In this section, our idea for measuring volatility is
formulated. Consequently, realized correlation estimators constructed based on
realized volatility are explained in the next section. The Epps effect which yields
a considerable bias when applying non-synchronous trading hours to estimate
covariation is discussed in this section. We will see how to efficiently solve the
problem of Epps effect. Before simulating and evaluating the realized volatility
and correlation estimators, some assumptions about the price, return and noise
processes have to clarified. These are explained in section 2.6. Moreover, section
2.7 explains some self-similar noise processes to be exploited in simulation stud-
ies. Under normality and non-normality assumptions of the noise, the realized
volatility and correlation estimators are simulated to observe their convergence
and error behaviors in the next chapter, sections 3.1 and 3.2. Then in section
3.3, distributional and dynamic behaviors of the estimators utilizing real data
are empirically experimented. Observing some dynamic behavior of the estima-
tors, we are intrigued to put into discussion the old issue of predictability of
the financial markets. Very briefly, some discussions of predictability are pro-
vided in section 3.4. In section 3.5, an association of volatility and correlation
is studied. The last section 3.6 temporarily covers some related conclusions and
discussions about important issues. Further investigations are also discussed in
this section.
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Chapter 2

Realized volatility and
correlation estimators

2.1 Importance of volatility modeling and fore-
casting

Return volatility is at the center of many theories within financial economics,
be it asset and derivatives pricing or risk management, so it is hardly surprising
that great effort has been made to determine reliable, if not optimal, procedures
for forecasting future volatility. Likewise, the practical import of volatility for
financial performance has spurred product innovation, leading to a rapid in-
crease in organized trading of financial derivatives written directly on volatility
variables, such as variance swaps and futures and options written on volatility
indices as well as an over-the-counter market in variance and volatility swaps on
individual assets. In short, the financial industry views volatility as a distinct
asset class endowed with separate risk factors and novel opportunities for both
strategic trading and hedging. Obviously, the latter developments also have
generated a surge in the demand for practical volatility forecast procedures.

Volatility forecasting is an important task in financial markets, and it has
held the attention of academics and practitioners over the last two decades. An
extensive research reflects the importance of volatility in investment, security
valuation, risk management, and monetary policy making. Volatility is the
most important variable in the pricing of derivative securities, whose trading
volume has quadrupled in recent years. To price an option, we need to know the
volatility of the underlying asset from now until the option expires. In fact, the
market convention is to list option prices in terms of volatility units. Nowadays,
one can buy derivatives that are written on volatility itself, in which case the
definition and measurement of volatility will be clearly specified in the derivative
contracts. In these new contracts, volatility now becomes the underlying asset.
So a volatility forecast and a second prediction on the volatility of volatility over
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the defined period is needed to price such derivative contracts.
“Financial risk management has taken a central role since the first Basle

Accord was established in 1996” [Poo03]. This effectively makes volatility fore-
casting a compulsory and practically risk management exercise for many finan-
cial institutions around the world. Banks and trading houses have to set aside
reserve capital of at least three times that of value-at-risk (VaR), which is de-
fined as the minimum expected loss with a 1-percent confidence level for a given
time horizon (usually one or ten days). Sometimes, a 5-percent critical value is
used. Such VaR estimates are readily available given volatility forecast, mean
estimate, and a normal distribution assumption for the changes in total asset
value. When the normal distribution assumption is disputed, which is very of-
ten the case, volatility is still needed in the simulation process used to produce
the VaR figures.

Poon and Granger [Poo03] state that “financial market volatility can have
a wide repercussion on the economy as a whole. The incidents caused by the
terrorists’ attack on September 11, 2001, and the recent financial reporting
scandals in the United States have caused great turmoil in financial markets
on several continents and a negative impact on the world economy. This is
clear evidence of the important link between financial market uncertainty and
public confidence. For this reason, policy makers often rely on market estimates
of volatility as a barometer for the vulnerability of financial markets and the
economy. In the United States, the Federal Reserve explicitly takes into account
the volatility of stocks, bonds, currencies, and commodities in establishing its
monetary policy. The Bank of England is also known to make frequent references
to market sentiment and option implied densities of key financial variables in
its monetary policy meetings” [Poo03].

2.2 Importance of correlation modeling and fore-
casting

Asset returns cross correlations is pivotal to many prominent financial problems
such as asset allocation, risk management and option pricing.

The covariance of financial asset returns is of central importance in the
theory of asset prices, and is a recurring theme throughout finance. Finding
good empirical ex-post estimates of covariance is a key step to understand it
better. For this purpose, there is an opportunity to draw on recent advances in
the study of ex-post realized variances.

Correlations are critical inputs for many of the common tasks of financial
management. Hedges require estimates of the correlation between the returns
of the assets in the hedge. If the correlations and volatilities are changing, then
the hedge ratio should be adjusted to account for the most recent information.
Similarly, structured products such as rainbow options that are designed with
more than one underlying asset have price that are sensitive to the correlation
between the underlying returns. A forecast of future correlations and volatilities
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is the basis of any pricing formula. Asset allocation and risk assessment also
rely on correlations. However, in this case a large number of correlations is
often required. Construction of an optimal portfolio with a set of constraints
requires a forecast of the covariance matrix of the returns. The quest for reliable
estimates of correlations between financial variables has been the motivation for
countless researches [Eng02].

2.3 Volatility is a measure of risk?

Bollerslev and Zhou [Bol07] show that the difference between model-free implied
and realized variances, which they term the variance risk premium, provides
remarkable accurate and stable forecasts for the quarterly market return, with
high (low) premia predicting high (low) future returns.

Poon and Granger [Poo03] argue that volatility is not the same as risk.
“When it is interpreted as uncertainty, it becomes a key input to many invest-
ment decisions and portfolio creations. Investors and portfolio managers have
certain levels of risk which they can bear”. A good forecast of the volatility
of asset prices over the investment holding period is a good starting point for
assessing investment risk. Many investors and generations of finance students
often have an incomplete appreciation of the differences between volatility, stan-
dard deviation, and risk. It is worth elucidating some of the conceptual issues
here. In finance, volatility is often used to refer to standard deviation, σ, or
variance, σ2, computed from a set of observations. The sample standard devia-
tion statistic σ̂ is a distribution free parameter representing the second moment
characteristic of the sample. Only when σ is attached to a standard distribu-
tion, such as a normal or a t distribution, can the required probability density
and cumulative probability density be derived analytically. Indeed, σ can be
calculated from any irregular shape distribution, in which case the probability
density will have to be derived empirically. In the continuous time setting, σ is a
scale parameter that multiplies or reduces the size of the fluctuations generated
by the standard wiener process. Depending on the dynamic of the underlying
stochastic process and whether or not the parameters are time varying, very
different shapes of returns distributions may result. So it is meaningless to use
σ as a risk measure unless it is attached to a distribution or a pricing dynamic.
When σ is used to measure uncertainty, the users usually have in mind, perhaps
implicitly, a normal distribution for the returns distribution.

Standard deviation, σ, is the correct dispersion measure for the normal dis-
tribution and some other distributions, but not all. Other measures that have
been suggested and found useful include the mean absolute return and the inter-
quantile range. However, the link between volatility and risk is tenuous; in
particular, risk is more often associated with small or negative returns, whereas
most measures of dispersion make no such distinction. The Sharpe ratio, for
example, defined as return in excess of risk free rate divided by standard devi-
ation, is frequently used as an investment performance measure. It incorrectly
penalizes occasional high returns. The idea of semi-variance, an early suggestion
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by Markowitz [Mar91], which only uses the squares of returns below the mean,
has not been widely used, largely because it is not operationally easy to apply
in portfolio construction.

Both concepts of volatility and risk are very broad. Hence, what are volatility
and risk, depends on within which framework volatility and risk are identified. If
there is a significant measurement error, volatility may not act as an appropriate
measure of risk. Unconditional volatility measures average fluctuations around
the unconditional mean. Conditional volatility measures time-series fluctuations
around the conditional mean. A stochastic volatility measures time-series fluc-
tuations around the stochastic mean. These volatility measures are obtained
from the physical (or empirical) return distribution, the so-called P-measure
of volatility. Alternatively an expected future volatility obtained from a set of
options measures volatility, called Q-measure of volatility which is backed out
from the risk-neutral distribution.

All of these measures of volatility can be treated as a measure of risk during
normal functioning of the financial markets. However, during extremely volatile
markets, volatility cannot be considered as an appropriate measure of risk even
if the measurement error is zero. A downside risk measure such as Value at Risk,
Expected Shortfall, Semi-variance, Tail Risk, and so on represents a measure of
risk.

In summary, volatility interpreted as uncertainty, is one of the key variables
in most models in modern finance. Risk is usually associated with small or neg-
ative returns (the so-called downside risk) whereas the most common measures
of dispersion (e.g. standard deviation) make no such distinction. Furthermore,
standard deviation is a useful risk measure only when it is attached to a distri-
bution or a pricing dynamic.

2.4 Realized volatility estimators

In classical volatility literature, volatility is often calculated as the sample stan-
dard deviation. Figlewski [Fig97] notes that since the statistical properties of
sample mean make it a very inaccurate estimate of the true mean, especially
for small samples, taking deviations around zero instead of the sample mean
typically increases volatility forecast accuracy. There are methods for estimat-
ing volatility that are designed to exploit or reduce the influence of extremes1.
While the σ̂2 is an unbiased estimate of σ2, the square root of σ̂2 is a biased
estimate of σ due to Jensen inequality2.

1For example, the Maximum likelihood method proposed by Ball and Torous [Bal84], the
high-low method proposed by Parkinson [Par80] and Garman and Klass [Gar80].

2See Fleming [Fle98], and Cox and Rubinstein [Cox85] for explanation of how this bias can
be corrected assuming a normal distribution for Rt. However, in most cases, the impact of
this adjustment is small.
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2.4.1 Realized Squared Volatility estimator

A voluminous literature has emerged for modeling the temporal dependencies
in financial market volatility using ARCH and stochastic volatility models. An-
dersen and Bollerslev [And98] argue that while most of these studies have doc-
umented highly significant in-sample parameter estimates and pronounced in-
tertemporal volatility persistence, traditional ex-post forecast evaluation criteria
suggest that the models provide seemingly poor volatility forecasts. Contrary to
this contention, Merton [Mer80] showed that the integrated volatility of a Brow-
nian motion over a fixed interval can be approximated to an arbitrary precision
using the sum of intraday squared returns, provided the data are available at a
sufficiently high sampling frequency. In other words, the variance over a fixed
interval can be estimated arbitrarily, although accurately, as the sum of squared
realizations, provided the data are available at a sufficiently high sampling fre-
quency. More formally, Andersen and Bollerslev [And98] show that volatility
models produce strikingly accurate interdaily forecasts for the latent volatility
factor that would be of interest in most financial applications. They discuss new
methods for improved ex-post interdaily volatility measurements based on high
frequency intradaily data. In fact, they demonstrate how high frequency intra-
day data may be used constructively in forming more accurate and meaningful
ex-post interdaily volatility measurements.

The intuition behind the apparent poor predictive power of well-specified
volatility models is straightforward. Let the return innovation be written as
rt = σt.zt, where zt, denotes an independent mean zero, unit variance stochastic
process, while the latent volatility, σt, evolves in accordance with the particu-
lar model entertained. A common approach for judging the practical relevance
of any model is to compare the implied predictions with the subsequent real-
izations. Unfortunately, volatility is not directly observed so this approach is
not immediately applicable for volatility forecast evaluation. Still, if the model
for σ2

t is correctly specified, then Et−1(r
2
t ) = Et−1(σ

2
t .z

2
t ) = σ2

t , which appears
to justify the use of the squared return innovation over the relevant horizon
as a proxy for the ex-post volatility. However, while the squared innovation
provides an unbiased estimate for the latent volatility factor, it may yield very
noisy measurements due to the idiosyncratic error term, z2

t . This component
typically displays a large degree of observation-by-observation variation relative
to σ2

t , rendering the fraction of the squared return variation attributable to
the volatility process low. Consequently, the poor predictive power of volatility
models, when judged by standard forecast criteria using r2t as a measure for ex-
post volatility, is an inevitable consequence of the inherent noise in the return
generating process.

The poor volatility forecast in ARCH models motivates a fundamentally
different approach. Rather than seeking to perfect the forecast evaluation
procedures-taking the noisy observations on volatility provided by fixed-horizon
squared returns as given-it may prove fruitful to pursue alternative ex-post
volatility measures. Specifically, building on the continuous-time stochastic
volatility framework developed by Nelson [Nel90] and Drost and Werker [Dro96],
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Andersen and Bollerslev [And98] demonstrate how high frequency data allow
for the construction of vastly improved ex-post volatility measurements via cu-
mulative squared intraday returns.

Actually, applying the quadratic variation theory, Andersen and Bollerslev
[And98] generalized the result of Merton [Mer80] to the class of special (finite
mean) semimartingales, the so-called realized volatility (RV). This class encom-
passes processes used in standard arbitrage-free asset pricing applications, such
as, Ito diffusions, jump processes, and mixed jump diffusions. In the standard
arbitrage-free asset pricing framework, the log-price of a financial asset follows
a continuous-time semi-martingale process with stochastic volatility and possi-
bly jumps. The standard definition for an equally spaced returns series of the
Realized Squared volatility R̂S is

R̂S =
T∑

ti

(Yti+1
− Yti

)2, (2.1)

over a period t, with 0 = t0 ≤ t1 ≤ ...tn = T and i = 1, ..., n is ith intraday
observation with an integer n. Here Yti

denotes a logarithmic price of an asset
on day t at time i. According to the theory of quadratic variation, Andersen and
Bollerslev [And98] suggest that as the observation frequency increases from a
daily to an infinitesimal interval, this measure of volatility converges to genuine
measurement of the latent volatility factor. In other words, the quantity R̂S is
thought to approximate the so-called Integrated Volatility (IV), i.e.,

IV (t) =

∫ t

t−1

σ2(s)ds, (2.2)

as n→ ∞.
In summary, the notion of realized volatility represents a model-free ap-

proach to (continuous-record) consistent estimation of the quadratic return vari-
ation under general assumptions based primarily upon arbitrage-free financial
markets. As such it allows us to harness the information inherent in high fre-
quency returns for assessment of lower frequency return volatility. It is thus the
natural approach to measuring actual (ex-post) realized return variation over a
given horizon. This perspective has now gained widespread acceptance in the
literature, where alternative volatility forecast models are routinely assessed in
terms of their ability to explain the distribution of subsequent realized volatility.

2.4.2 Realized Power Volatility estimator

Davidian and Carroll [Dav87] show absolute returns volatility specification is
more robust against asymmetry and non-normality. There is some empirical evi-
dence that deviations or absolute returns based models produce better volatility
forecasts than models based on squared returns (Taylor [Tay86]; Ederinton and
Guan [Ede00]; and McKenzie [Mak99]), but the majority of time series volatility
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models are squared returns models. Hence, Ding, Granger, and Engle [Din93]
suggest measuring volatility directly from absolute returns. They propose real-
ized Absolute Volatility, R̂A, as an aggregated intra-daily absolute returns as
follows

R̂A =

T∑

ti

∣∣Yti+1
− Yti

∣∣ . (2.3)

The estimator R̂A is supposed to asymptotically converge to its true or
integrated volatility, i.e., Integrated Absolute Volatility

IAV (t) =

∫ t

t−1

σ(s)ds, (2.4)

as n increases. Barndorff-Nielsen and Shephard [Bar03a] have generalized
the main idea of accumulative intradaily squared or absolute returns to a wider
class called Realized Power variation of order r, that is, sums of absolute powers
of increments of a process, R̂P ,

R̂P =

T∑

ti

∣∣Yti+1
− Yti

∣∣r , (2.5)

where i = 1, ..., n is ith intraday observation with an integer n and r, the
power or order, is a positive value. The quantity of Realized Power variation,
R̂P as a proxy, is supposed to approximate the daily increments of the power
variation of the semimartingale that drives the underlying logarithmic price
process, i.e., Integrated Power Volatility (IPV),

IPV (t) =

∫ t

t−1

σr(s)ds, (2.6)

as n → ∞ for a fixed t. The consistency result justifying this procedure
is the convergence in probability of R̂P to IPV as returns are computed over
intervals that are increasingly small asymptotically or, equivalently, as n → ∞
for a fixed t. Barndorff-Nielsen and Shephard [Bar03a] provided a limiting

distribution theory for realized power variation. A special case of R̂P , where
r = 1, is known as Realized Absolute (RA) volatility in (2.3). The estimator

(2.1) is also a special case of R̂P where r = 2.
In practice, it is infeasible the realized volatility estimators converge to their

integrated volatility because of data limitations and a host of market microstruc-
ture features. In reality, there is a definite lower bound on the return horizon
that can be used productively for computation of the realized volatility, both
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because we only observe discretely sampled returns and, more important, mar-
ket microstructure frictions on intradaily level such as discreteness of the price
grid, asymmetries in information, nonsynchronous trading effects, transaction
costs, bid-ask spreads, lunch-time effects, and intraday periodic patterns such as
U-shape volatility of trading volume over the day induce gross violations of the
semimartingale property at the very highest return frequencies. This implies
that we typically will be sampling returns at an intraday frequency that leaves
a non-negligible error term in the estimate of integrated power volatility.

Several approaches have been introduced to correct the microstructure noise.
A kernel-based correction introduced by Zhou [Zho96], an optimal sampling
introduced by Bandi and Russell [Ban05b], a moving average filter introduced by
Maheu and McCurdy [Mah02], an autoregressive filter introduced by Bollen and
Inder [Bol02], and a subsampling and averaging approach introduced by Zhang
et al. [Zha05]. It has been experimentally shown by Ghysels and Sinko [Ghy07]
that the subsampling and averaging class of estimators predicts volatility the
best among microstructure noise correctors.

2.4.3 Two-Scale Realized squared Volatility estimator

In order to deal with the market microstructure effects in approximating Inte-
grated Volatility, IV =

∫ t

t−1
σ2(s)ds, through the estimator R̂S, a well-accepted

alternative approach called Two-Scale Realized Volatility (TSRV), based on
a subsampling and averaging procedure has been proposed by Zhang et al.
[Zha05]. Their device takes advantage of the rich sources of tick-by-tick data,
and to a great extent corrects for the adverse effects of microstructure noise on
volatility estimation.

The volatility estimator T̂ SRV combines the sum of squared estimators from
two different time scales; R̂Savg from the returns on a slow time scale, whereas

R̂Sall is computed from the returns on a fast time scale using the latter as a
means for bias-corrector of the measure. The R̂Savg estimator is constructed

based on subsampling and averaging procedure. The T̂ SRV estimator approx-
imates Integrated Volatility as unbiased and more precisely than R̂S estimator
under the microstructure frictions. It forms as

T̂ SRV =
(
1 − n̄

n

)−1 (
R̂Savg − n̄

n
R̂Sall

)
, (2.7)

where the R̂Sall estimator is the same as (2.1) and R̂Savg = 1
K

∑
ti+1,ti∈g(k)(Yti+1

−
Yti

)2, when the K number of samples are regularly allocated to g subgrids. The

estimator T̂ SRV averages the squared returns from sampling every data point,
R̂Sall, and those from every Kth data point, R̂Savg. Its asymptotic behavior
derived by Zhang et al. [Zha05] when n → ∞ and n

K → ∞. It is a consistent
and unbiased estimator for integrated volatility, IV , (2.2).
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2.4.4 Two-Scale realized Power Volatility estimator

Motivated by the benefits of subsampling and averaging frequencies procedure
in the Two-Scale squared Realized Volatility (TSRV), the general class of the
realized power variation measure was extended to a Two-Scale realized Power
Volatility (TSPV) measure [Saf07a], where the variation of the measure can be
lessened by the averaging on samples and the bias can be vanished into zero by
sampling on all data points.

To define the estimator, we start by defining the full grid of G arrival times,
G = {t0, ..., tn}, partitioned into K nonoverlapping subgrids g(k) with k =
1, ...,K. The first subgrid starts from t0 and takes every Kth arrival time,
i.e., g(1) = (t0, t0+K , t0+2K , ..., ), the second subgrid starts from t1 and takes
every Kth arrival time, i.e., g(2) = (t1, t1+K , t1+2K , ..., ) and so on. Given the
kth subgrid of arrival times, the corresponding realized variation estimator can

be defined as R̂P
(k)

=
∑

ti,ti+1∈g(k)

∣∣Yti+1
− Yti

∣∣r, where ti and ti+1 denote

consecutive elements in g(k). Then the Two-Scale realized Power Volatility,

T̂ SPV is estimated by

T̂ SPV =
(
1 − n̄

n

)−1 (
R̂P avg − n̄

n
R̂P all

)
, (2.8)

where (1 − n̄
n )−1 is a small-sample adjustment and n̄ = n−K+1

K . The esti-

mator T̂ SPV combines the realized power volatility estimators from two time
scales. It combines the sum of power estimators from two different time scales;
R̂P avg from the returns on a slow time scale, whereas R̂P all is computed from
the returns on a fast time scale using the latter as a means for bias-corrector
of the estimator. The R̂P avg estimator is constructed based on subsampling

and averaging procedure. The estimator R̂P all is obtained via (2.5) and the

estimator R̂P avg through

R̂P avg =
1

K

K∑

k=1

∑

ti,ti+1∈g(k)

∣∣Yti+1
− Yti

∣∣r (2.9)

and, in a special case when the sampling points are regularly allocated, from

R̂P avg =
1

K

∑

ti,ti+1∈g(k)

∣∣Yti+1
− Yti

∣∣r . (2.10)

The averaging scale reduces the variance of the estimator while the all scale
plays a bias-correcting role. The optimal number of subgrids K, where the bias
induced by the noise is minimized, provided by Zhang et al. [Zha05] is expressed
as
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K = cn2/3, (2.11)

as n → ∞ where c is estimated by c = (
16σ4

ǫ

TEη2 )1/3 where η2 = 3
4

∫ t

0
σ4(s)ds.

The term σ4
ǫ is square of the variance of the noise, while

∫ t

0
σ4(s)ds is the

integrated quarticity. The σ2
ǫ is estimated by σ̂2

ǫ = 1
2n R̂P and η2 = 4

3 (R̂P )2

at some reasonable lower frequency, for example either every 15 or 20 minute
[Bar06].

The estimator T̂ SPV is expected to consistently converge to its true esti-
mator IPV even under the microstructure noise at every intadaily frequency,
as n→ ∞ with n

K → ∞ over a fixed interval of time t.

2.5 Realized correlation estimators

Exploiting the high frequency data has been advocated to improve the precision
of asset volatility measurement and estimation. The so-call Realized Volatility
approach was proposed to this end. As for the realized volatility approach, the
idea of employing high frequency data in the computation of covariances and
correlations between assets leads to the analogous concept of realized covariance
(or covariation) and realized correlation. After introducing realized covariance
and correlation by Andersen et al. [And01a] and Andersen et al. [And01b],
several alternatives have been appeared.

2.5.1 Realized squared-based correlation estimator

Based on the realized variation theory, Andersen et al. [And01a] and Ander-

sen et al. [And01b] have derived realized standard deviation, R̂Sstd = R̂S
1/2

;

covariance, R̂COV xy =
∑T

ti
(Yti+1

− Yti
)x.(Yti+1

− Yti
)y; and realized squared-

based correlation, ̂RSCORxy in the form of

̂RSCORxy = R̂COV xy/(R̂Sstd,x.R̂Sstd,y), (2.12)

where x and y are two assets or high frequency time series. Barndorff-Nielsen
and Shephard [Bar04a] have provided an asymptotic distribution theory for
these realized covariance and squared based correlation estimators allowing the
returns to be a stochastic volatility semimartingale. The limit theory for the
normalized estimation error for realized covariance, regression, and correlation
of the returns of assets asymptotically results to N(0, 1) as n → ∞. This
implies that their estimators converge in probability to the corresponding true
covariance, regression, and correlation. The limit theory is robust as it does
not require the empirical researcher to specify a model for the spot covolatility
or the drift process. In this sense, it is semiparametric. They argue that an

27



important theme in theoretical econometrics and statistics is that covariances
are not very robust objects, as they are highly sensitive to large movements in
asset prices. It may be desirable to construct economic theory and econometrics
on more robust quantities such as mean absolute errors.

2.5.2 Realized absolute-based correlation estimator

Motivated by robustness of absolute transformation in analogous to square
transformation and by availability of high frequency data, the concept of re-
alized power-based volatility was extended to realized covariation in [Saf07a].
Thus, based on realized power variation, absolute-based realized power stan-

dard deviation, R̂P std = R̂P
1/2

is derived according to the corresponding real-

ized power variation. Realized covariance remains the same as R̂COV xy, and

realized power-based correlation, ̂RPCORxy takes the form

̂RPCORxy = R̂COV xy/(R̂P std,x.R̂P std,y), (2.13)

where all estimators are based on a fixed interval of time and where x and y
are two assets or high frequency time series. Throughout of this part, we con-
sider covariance and correlation estimators between only two assets. However,
the estimators can be extended to the covariation between several assets. The
corresponding Integrated Power-based Correlation is defined as

IRPCORxy =

∫ t

t−1
Σxy(s)ds

√∫ t

t−1
σr

x(s)ds
∫ t

t−1
σr

y(s)ds
, (2.14)

where
∫ t

t−1
σr

x(s)ds is integrated power volatility for asset x and so for y

according to the previous notations, and
∫ t

t−1
Σxy(s)ds is the true or Integrated

Covariance.

2.5.3 Two-scale realized power-based correlation estima-
tor

Due to the presence of microstructure noise or frictions in practice, the estimator
̂RPCORxy, which is conditionally built on noisy realized covariance, would

not consistently estimate IRPCORxy and it would show a considerable bias
and some slower convergence than it can when it is modified like the case of
volatility by the same applied approach (subsampling). Hence, we further follow
the subsampling method to construct a two-scale correlation estimator to be

consistent and unbiased for IRPCORxy. We have T̂ SPV std = T̂ SPV
1/2

. The

estimator Two-Scale Covariance ̂TSCOV xy is proposed as follows
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̂TSCOV xy =
(
1 − n̄

n

)−1 (
R̂COV xy,avg − n̄

n
R̂COV xy,all

)
(2.15)

where R̂COV xy,all is the same as R̂COV xy, built on the full grid. The

estimator R̂COV xy,avg is estimated by

R̂COV xy,avg =
1

K

K∑

k=1

∑

ti,ti+1∈g(k)

(Yti+1
− Yti

)x.(Yti+1
− Yti

)y. (2.16)

Finally the Two-Scale Power-based Correlation, TSPCORxy, is estimated
as

̂TSPCORxy = ̂TSCOV xy/(T̂ SPV std,x.T̂ SPV std,y), (2.17)

where ̂TSPCORxy denotes the two-scale time-varying and instantaneous
conditional correlation between the returns of two time series x and y. The

̂TSPCORxy estimator should converge asymptotically to the IRPCORxy esti-
mator under microstructure noise.

2.5.4 Synchronous covariance estimator

The standard way to compute the realized covariance is to first choose a time
interval, construct an artificially regularly-spaced time series by means of some
interpolation scheme and then take the contemporaneous sample covariance of
those regularly-spaced returns. But simulations and empirical studies indicate
that such covariance measure presents a bias toward zero which rapidly increases
with the reduction of the time length of the fix interval chosen [Cor07]. As for
the realized volatility, the presence of market microstructure can induce signifi-
cant bias in standard realized covariance measure. However, the microstructure
effects responsible for this bias are different. Corsi [Cor07] argues that “bid-ask
bouncing, which is the major source of bias for the realized volatility, will just
increase the variance of the covariance estimator but it will not induce any bias.
On the contrary, the so called non-synchronous trading effect strongly affects
the estimation of the realized covariance and correlation”. In fact, since the
sampling from the underlying stochastic process is different for different assets,
assuming that two time series are sampled simultaneously when, indeed, the
sampling is non-synchronous gives rise to the non-synchronous trading effect.
As a result, covariances and correlations measured with high frequency data will
possess a bias toward zero which increases as the sampling frequency increases.
This effect of a dramatic drop of the absolute value of correlations among stocks
when increasing the sampling frequency was first reported by Epps [Epp79] and
hence called the Epps effect. The absolute value of the correlation is biased
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toward zero. The effect implies that empirical correlations virtually disappear
at high frequencies, while being far from zero at moderate intraday frequencies.
Epps’ findings have been replicated extensively in financial markets.

The Epps effect has been widely associated with non-synchronous trading,
when fresh observations of transactions prices do not arise simultaneously across
markets, but are separated by, e.g., a few seconds. See Scholes and Williams
[Sch77]. If non-synchronous trading is the source of the Epps effect, there is
a challenging consequence for realized covariation estimation. Indeed, Hayashi
and Yoshida [Hay05] and Corsi [Cor07] develop an all-overlapping-returns esti-
mator of covariation to do this, and Lunde and Voev [Lun07] and Zhang [Zha06]
assess it when there is contamination or measurement error. However, evi-
dence from Reno [Ren03] indicates that on equity and currency markets non-
synchronous trading is not alone sufficient to explain Epps effects.

Let ti and τj be the instants at which the prices x and y are being observed.
Hayashi and Yoshida [Hay05] and Corsi [Cor07] proposed a covariance estimator

R̂COV xy =

Tn∑

ti

Tm∑

τj

(Yx,ti
− Yx,ti−1

).(Yy,τj
− Yy,τj−1

). (2.18)

I[min(ti, τj) > max(ti−1, τj−1)],

where I[.] is the indicator function which takes the value of one only when the
observations of two returns instantaneously overlap. This estimator consistently
estimates the covariance of non-synchronous processes.

2.6 Assumptions about processes

To evaluate performance of the realized estimators, some assumptions have to
be imposed on price, return and noise processes. Let p denotes a price process.
We observe logarithmic price Y =log p as

Y = Y ∗ + u, (2.19)

where Y ∗ denotes the logarithmic equilibrium or efficient price of an as-
set, i.e., the price that would prevail in the absence of market microstructure
frictions, and u denotes a microstructure contamination in the observed loga-
rithmic price as induced by price discreteness and bid-ask bounce effects. We fix
a certain time period t (a day, say) and assume availability of n high frequency
prices over t. Given Eq. (2.19), we can readily define continuously-compounded
returns over any intra-period interval of length t

n and write

Yti+1
− Yti

= Y ∗
ti+1

− Y ∗
ti

+ uti+1
− uti

,

or
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yti
= y∗ti

+ ǫti
, (2.20)

where yti
is a return on day t at time i, and where t = 1, ..., T and i =

1, ..., n. The following assumptions are imposed on the price process and market
microstructure effects.

Price Process : The logarithmic price process, Y ∗, is a continuous stochastic
volatility semimartingale. Specifically,

1: The price process is decomposed as

Y ∗ = αt +mt, (2.21)

where αt ( with α0 = 0) is a continuous drift process of finite variation de-

fined as
∫ t

0
φ(s)ds andmt is a continuous local martingale defined as

∫ t

0
σ(s)dWs,

with {Wt : t ≥ 0} denoting a standard Brownian motion.
2: The spot volatility process, σt, is cádlág and bounded away from zero.
3: The integrated variance process

∫ t

0
σr(s)ds (r = 2 for integrated volatility)

is bounded almost surely for all t <∞.

Microstructure Noise : Considering the decomposition (2.19),
1: The microstructure frictions in the price process, u

′

ti
, have mean zero and

are strictly stationary with joint density fn(.).
2: The variance of ǫti

= uti+1
− uti

is O(1) for all i and all n.

3: The u
′

ti
are independent of the Y ∗′

ti
for all i and all n.

In agreement with asset pricing theory, the first assumption (price pro-
cess) implies that the equilibrium return process evolves in time as a stochastic
volatility martingale difference plus an adapted process of finite variation. The
stochastic spot volatility can display jumps, diurnal effects, high-persistence
(possibly of the long memory type), and nonstationarities. Furthermore, lever-
age effects (i.e., dependence between σ and the Brownian motion W) are allowed.

The second assumption permits general dependence features for the mi-
crostructure noise components in the recorded prices. The correlation structure
of the microstructure noise contaminations can, for instance, capture first order
negative autocorrelations in the recorded high frequency returns as determined
by bid-ask bounce effects as well as higher order dependence in the market fric-
tions as induced by clustering in order flows. In general, the characteristics of
the noise returns ǫ’s may depend on the sampling frequency.

While the equilibrium return process y∗ti
is modeled as being Op(

√
t
n ) over

any intra-period time horizon of size t
n , the contaminations in the observed re-

turn process are Op(1). This result, which is a consequence of the assumptions
of price and noise, implies that longer period returns are less contaminated by
noise than shorter period returns. On the other hand, the size of the contami-
nations does not decrease in probability with the distance between subsequent
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time stamps. Provided sampling does not occur between high frequency price
updates, the rounding of recorded prices to a grid (i.e., price discreteness) alone
makes this feature of the set-up presented above empirically compelling.

Sometimes the dependence structure of the microstructure noise process can
be simplified. Specifically, one can modify the assumption of noise as follows:

1: The microstructure frictions in the price process u
′

ti
are i.i.d. mean zero.

2: The u
′

ti
are independent of the Y ∗′

ti
for all i and all n.

If the microstructure noise contaminations in the price process, uti
, are i.i.d.,

then the noise returns, ǫti
, display an MA(1) structure and are negatively cor-

related [Ban05a]. Importantly, the noise return moments do not depend on n,
i.e., the number of observations over t or, equivalently, the sampling frequency.
This is an important feature of the MA(1) model which has been exploited in
recent works on volatility estimation. For example, Bandi and Russell [Ban05b]
provide an alternative bias-correction in both the correlated noise case and in
the MA(1) case. The subsampling and averaging methodology proposition of
Zhang et al. [Zha05], indeed, consistently estimate integrated volatility in the
presence of MA(1) microstructure noise. The MA(1) model, as typically justi-
fied by bid-ask bounce effects [Rol84], is known to be a realistic approximation
in decentralized markets where traders arrive in a random fashion with idiosyn-
cratic price setting behavior, the foreign exchange market being a valid example.
It can also be a good approximation in the case of equities when considering
transaction prices or even quotes posted on multiple exchanges.

While the abovementioned assumptions about noise like usual literature are
basis for experiments in the present dissertation, the realized estimators will be
examined also under some non-Gaussian noise processes. Next section explains
some backgrounds for these non-Gaussian noise processes.

2.7 Self-similar noise processes

Self-similar processes are of great interest in modeling heavy-tailed and long-
memory phenomena. Self-similar processes are invariant in distribution under
suitable translations of time and scale. They are important in probability theory
because of their connection to limit theorems. Lamperti [Lam62] uses the term
semi-stable in order to underline that the role of self-similar processes among
stochastic processes is analogous to the role of stable distributions among all
distributions. A process {X(t)}t≥0 is called self-similar [Lam62] if for some
H > 0 and for every a > 0,

X(at)
d
= aHX(t),

where
d
= denotes equality of all finite-dimensional distributions of the pro-

cesses on the left and right. The process X(t) is also called H-self-similar pro-
cess and the parameter H is called the self-similarity index or Hurst exponent.
Weron et al. [Wer05] argue that if we interpret t as time and X(t) as space then
above equation tells us that every change of time scale a > 0 corresponds to a
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change of space scale aH . The bigger H, the more dramatic is the change of the
space coordinate. The equation, indeed, means a scale-invariance of the finite-
dimensional distributions of X(t). This property of a self-similar process does
not imply the same for the sample paths. Therefore, pictures trying to explain
self-similarity by some zooming in or out on one sample path, are, by definition,
misleading. In contrast to the deterministic self-similarity, the self-similarity of
stochastic processes does not mean that the same picture repeats itself exactly
as we go closer. It is rather the general impression that remains the same.

Rachev et al. [Rac07] demonstrate that the normality as a distributional
model for asset returns has been rejected conjecturing that financial return
time series behave like non-Gaussian stable processes. The latter commonly are
referred to as stable Paretian distributions or Levy stable distributions. In fact,
Rachev et al. [Rac05a] explain that Stable Paretian is used to emphasize that
the tails of the non-Gaussian stable density have Pareto power-type decay. Levy
stable is used in recognition of the seminal work of Paul Levys’ introduction and
characterization of the class of non-Gaussian stable laws.

2.7.1 Fractional Gaussian noise

Sun, Rachev and Fabozzi [Sun06] discuss that “fractal processes (self-similar
processes) are tightly connected with the analysis of long-range dependence.
Many of the interesting self-similar processes have stationary increments”. A
process {X(t)}t≥0 is said to have stationary increments if for any b > 0,

[X(t+ b) −X(b)]
d
= [X(t) −X(0)].

The fractional Brownian motion {BH(t)}t≥0 has the integral representation

BH(t) =

∫ ∞

−∞
[(t− u)

H−1/2
+ − (−u)H−1/2

+ ]dB(u), (2.22)

where x+=max(x,0) and B(u) is a Brownian motion. It is H-self-similar
stationary increments (H-sssi) and it is the only Gaussian process with such
properties for 0 < H < 1 [Sam94]. The classic Brownian motion B(t), used by
Einstein and Smoluchowski, is simply a special case of the fractional Brownian
motion when H = 1/2.

In modeling of long-memory phenomena, the stationary increments of H-
self-similar processes are of special interest since any H-self-similar process with
stationary increments {X(t)}t∈R induces a stationary sequence {Yj}j∈Z , where

Yj = X(j+1)−X(j) and j = ...,−1, 0, 1, ... . The sequence Yj corresponding to
the fractional Brownian motion is called fractional Gaussian noise [Mer03]. It
is called a standard fractional Gaussian noise if varYj=1 for every j ∈ Z. The
fractional Gaussian noise has some remarkable properties. If H=1/2, then its
autocovariance function r(k) = R(0, k) = 0 for k 6= 0 and hence it is the sequence
of independent identically distributed (i.i.d.) Gaussian random variables. The
situation is quite different when H 6= 1/2, namely the Yj ’s are dependent and
the time series has the autocovariance function.
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2.7.2 Fractional stable noise

Rachev and Mittnik [Rac00] give a very detailed description on the stable Pare-
tian models in finance. The stability property is highly desirable for asset re-
turns. In the context of portfolio analysis and risk management, the linear
combinations of different return series follow again a stable distribution. In
fact, the Gaussian law shares this feature, but it is only one particular member
of a huge class of distributions, which also allows for skewness and heavy tails.

Fractional Brownian motion can capture the effect of long-range dependence.
But it has less power to capture heavy tailedness [Sun07]. The existence of
abrupt discontinuities in financial data, combined with the empirical observa-
tion of sample excess kurtosis and unstable variance, confirms the stable Pare-
tian hypothesis identified by Mandelbrot [Man83]. It is natural to introduce
the stable Paretian distribution in self-similar processes in order to capture
both long-range dependence and heavy tailedness. There are many different
extensions of fractional Brownian motion to the stable distribution. The most
commonly used extension of the fractional Brownian motion to the α-stable
case is the linear fractional stable motion (also called the fractional Levy stable
motion). Samorodnitsky and Taqqu [Sam94] define the process

{
ZH

α (t)
}

t∈R
by

the following integral representation

ZH
α (t) =

∫ ∞

−∞
[(t− u)

H−1/α
+ − (−u)H−1/α

+ ]dZα(u), (2.23)

where Zα(u) is a symmetric Levy α-stable motion. The integral is well
defined for 0 < H < 1 and 0 < α ≤ 2 as a weighted average of the Levy stable
motion Zα(u) over the infinite past with the weight given by the above integral
kernel denoted by ft(u).

The process ZH
α (t) is the H-sssi. Assume that H-self-similarity follows from

the above integral representation and the fact that the kernel ft(u) is d-self-
similar with d = H − 1/α, when the integrator Zα(u) is 1/α-self-similar. This
implies [Wer05] the following important relation

H = d+
1

α
.

The process ZH
α (t) is reduced to the fractional Brownian motion if one sets

α=2. When H=1/α, then the Levy α-stable motion is obtained which is an
extension of the Brownian motion to the α-stable case. Contrary to the Gaussian
case (α=2), the Levy α-stable motion (0 < α < 2) is not the only 1/α-self-
similar Levy α-stable process with stationary increments (this is true for 0 <
α < 1 only). The increment process corresponding to the fractional Levy stable
process is called a Fractional Stable Noise (FSN). By analogy to the case of α=2,
fractional stable noise has the long-range dependence when H > 1/α and the
negative dependence when H < 1/α. If H = 1/α, the increments of fractional
Levy stable motion are i.i.d. symmetric α-stable variables. We note that there
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is no long-range dependence when 0 < α ≤ 1 because H is constrained to lie in
the interval (0, 1).

Some properties of these processes have been discussed in Maejima and
Rachev [Mae87], Rachev and Mittnik [Rac00], Rachev and Samorodnitsky [Rac01],
and Samorodinitsky and Taqqu [Sam94].

2.7.3 Simulation of the noise processes

A fast Fourier transform method for synthesizing approximate self-similar sam-
ple paths for Fractional Gaussian Noise has been presented by Paxson [Pax97].
The method is fast and appears to generate close approximations to true self-
similar sample paths. A simulation procedure based on this method that over-
comes some of the practical implementation issues has been prescribed by Bardet
et al. [Bar03b]. Sun et al. [Sun07] explain procedure. “The procedure follows
these steps:

1. Choose an even integer M . Define the vector of the Fourier frequencies
Ω = (θ1, ..., θM/2), where θt = 2/M and compute the vector F = fH(θ), ..., fH(θM/2),
where

fH(θ) =
1

π
sin(πH)Γ(2H + 1)(1 − cosθ)

∑

i∈N

|2πt+ θ|−2H−1
,

and fH(θ) is the spectral density of fractional Gaussian noise.
2. Generate M/2 i.i.d. exponential (exp(1)) random variables E1, ..., EM/2

and M/2 i.i.d. uniform (U [0, 1]) random variables U1, ..., UM/2.

3. Compute Zt = exp(2iπUt)
√
FtEt, for t = 1, ...,M/2.

4. From the M -vector: Z̃ = (0, Z1, ..., Z(M/2)−1, ZM/2, Z̄(M/2)−1, ..., Z̄1.
5. Compute the inverse FFT of the complex Z to obtain the simulated

sample path.”
Using the Fast Fourier Transform (FFT) algorithm, Stoev and Taqqu [Sto04]

provide an efficient method for simulation of a class of processes with symmetric
α-stable (SαS) distributions, namely the linear fractional stable motion (LFSM)
processes. The paths of the LFSM process are generated by using Riemann-sum
approximations of its SαS stochastic integral representation. They introduce
parameters n,N ∈ ℵ and express the fractional stable noise Y (t) as

Yn,N (t) :=

nN∑

j=1

((
j

n

)H−(1/α)

+

−
(
j

n
− 1

)H−(1/α)

+

)
Lα,n(nt− j), (2.24)

Where Lα,n(t) := Mα((j + 1)/n) −Mα(j/n), and j ∈ ℜ. The parameter
n is mesh size and the parameter M is the cut-off of the kernel function. The
authors use the Fast Fourier Transformation (FFT) algorithm for approximating
Yn,N (t). Consider the moving average process Z(m),m ∈ ℵ,
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Z(m) :=

nM∑

j=1

gH,n(j)Lα(m− j), (2.25)

where

gH,n(j) :=

((
j

n

)H−(1/α)

+

−
(
j

n
− 1

)H−(1/α)

+

)
n−1/α, (2.26)

and Lα(j) is the series of i.i.d. standard stable Paretian random variables.

Since Lα,n(j)
d
= n−1/αLα(j), where j ∈ ℜ, then the latter equations (2.25) and

(2.26) imply that Yn,N (t)
d
= Z(nt), for t = 1, ..., T . Let L̃α(j) be the n(N + T )-

periodic with L̃α(j) := Lα(j), for j = 1, ..., n(N+T ) and let g̃H,n(j) := gH,n(j),
for j = 1, ..., nN , g̃H,n(j) := 0, for j = nN + 1, ..., n(N + T ). Then

{Z(m)}nT
m=1

d
=





n(N+T )∑

j=1

g̃H,n(j)L̃α(n− j)





nT

m=1

, (2.27)

because for all m = 1, ..., nT , the summation in equation (2.25) involves only
Lα(j) with indices j in the range −nN ≤ nT−1. Using a circular convolution of
the two n(N +T )-periodic series g̃H,n and L̃α computed by using their Discrete
Fourier Transforms (DFT), the variables Z(n), m = 1, ..., nT (i.e., the fractional
stable noise) can be generated.

2.8 Volatility and correlation modeling

2.8.1 Continuous-time volatility modeling

For evaluation of the volatility estimators, the GARCH approach of volatility
modeling looks like a suitable framework. The GARCH(1,1) model has emerged
as a work-horse for modeling volatility in financial markets, as it tends to provide
a simple approximation to the main statistical features of the return series across
a wide range of assets. For the simulation part of the present work, we advocate
Andersen et al. [And98] and Andersen et al. [And99] and establish the diffusion
foundation for analysis. Following Nelson [Nel90] and Drost and Werker [Dro96],
the continuous-time diffusion limit of the GARCH(1,1) model is given by

dpt = σtdW1,t, (2.28)

dσ2
t = θ(ω − σ2

t )dt+ (2λθ)1/2σ2
t dW2,t, (2.29)
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where W1,t and W2,t denote independent standard Brownian motions and
where ω > 0, θ > 0 and λ ∈ (0, 1). According to Drost and Werker [Dro96]
the discretely sampled returns from the continuous-time process defined by Eqs.
(2.28) and (2.29), satisfy the weak GARCH(1,1) model

σ2
(n),t = ψn + αnr

2
(n),t−1/n + βnσ

2
(n),t−1/n, (2.30)

with n observations per day t, where σ2
(n),t ≡ P(n),t−1/n(r2(n),t) denotes the

best linear predictor of r2(n),t. The relationship between the discrete-time pa-
rameters ψn, αn, and βn and the continuous-time parameters ω, θ, and λmay be
obtained in closed form, as outlined by Drost and Werker [Dro96]. Hence, in this
weaker interpretation a GARCH(1,1) specification for any discrete frequency is
compatible with the diffusion in Eqs. (2.28) and (2.29), and in this sense the
setting provides a coherent framework for analysis of the model forecasts at
different sampling intervals. Now, following Baillie and Bollerslev [Bai92] the
h-period linear projection from the weak GARCH(1,1) model with returns that
span 1/n day(s) is conveniently expressed as

P(n),t(r
2
(1/h),t+h) = P(n),t





 ∑

j=1,...,nh

r(n),t+j/n




2



=
∑

j=1,...,nh

P(n),t(r
2
(1/h),t+j/n)

=
∑

j=1,...,nh

[
σ2

(n) + (αn + βn)j(σ2
(n),t − σ2

(n))
]

= nhσ2
(n) + (αn − βn)

[
1 − αn − βnh

n

]
× [1 − αn − βn]

−1
(σ2

(n),t − σ2
(n)), (2.31)

where σ2
(n) ≡ ψn(1 − αn − βn)−1. Different realized volatility alternatives

previously defined can be cast in the volatility term in the model formulated
above.

2.8.2 Correlation modeling

Realized correlation is in essence a model-free estimator. Following Meddahi
[Med02] and Barndorff-Nielsen and Shephard [Bar04b] one can estimate the
difference between realized correlation and corresponding actual correlation es-
timators and then study and evaluate the consistency and unbiasedness of the
realized correlation estimators. This difference indicates an error in estimation
of integrated or true estimators. Meddahi [Med02] and Barndorff-Nielsen and
Shephard [Bar04b] write actual correlation as
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∫ t

t−1
Σxy(s)ds

√∫ t

t−1
Σr

x(s)ds
∫ t

t−1
Σr

y(s)ds
, (2.32)

where
∫ t

t−1
Σxy(s)ds and

∫ t

t−1
Σr

x(s)ds represent actual covariation between
assets x and y and variation of order r for asset x respectively. If r = 1, then the
above expression is actual correlation regarding to the absolute based volatility.
If r = 2 which is equivalent to

∫ t

t−1
Σxx(s)ds and

∫ t

t−1
Σyy(s)ds for variations,

then we have actual squared based correlation. Obviously both ̂RPCORxy and
̂TSPCORxy are estimating the same integrated correlation, i.e., IRPCORxy.
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Chapter 3

Experiments on volatility
and correlation estimators

3.1 Simulation experiments under normality

3.1.1 Simulation of volatility estimators

Having a suitable framework of volatility model prescribed in previous chapter,
it is easy to evaluate consistency and unbiasedness of alternative estimators on
finite samples. First the convergence of estimators is evaluated under normal-
ity assumption of the microstructure noise process. Then, the estimators are
examined under more realistic non-Gaussian microstructure noise assumptions.

Simulation scheme : Advocated by Andersen et al. [And98] and Andersen
et al. [And99], our theoretical assessment of the performance of the discrete-time
GARCH(1,1) approximation in Eq. (2.31) for predicting the subsequent realized
volatility models defined by the stochastic volatility diffusion in Eqs. (2.28) and
(2.29) rely on numerical means. More specifically, sample-path realizations of
the underlying stochastic volatility diffusion are obtained via simulation using
an Euler scheme. The estimator TSAV of order 1 (r = 1) is compared with
the estimators RA and TSRV. For theoretical evaluation of estimators, RMSE
and Bias statistics are used. However, to accommodate the heteroskedastisity
in forecast errors, following Andersen et al. [And99], we compute the corre-
sponding heteroskedastisity adjusted statistics by

HRMSE = E[(1 − estimator/I(P )V )2]1/2,

HBias = E[(1 − estimator/I(P )V )],

where I(P)V is the integrated (power) volatility for corresponding volatility
estimator.
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Advocated by Barndorff-Nielsen, Hansen, Lunde and Shephard [Bar04c],
Bandi and Russell [2005b], Zhang et al. [Zha05] and Hansen and Lunde [2006]
and recalling our assumptions about the price, return and market microstructure
noise processes, we assume that the market microstructure noise, ǫ, follows a
Gaussian process and is small. We assume a pure noise (i.e., noise is i.i.d and
independent with the efficient price). Specifically, we set (Eǫ2)1/2 = 0.01, i.e.,
the standard deviation of the noise is 1% of the value of the variable of interest.

According to our daily real world data sample (will be described later in
section 3.3) of NASDAQ from December 17, 2002 to January 31, 2007, we ap-
proximate the parameters of continuous-time GARCH(1,1) models (2.28) and
(2.29) equal to θ=0.0173 (Std Error=0.0042, T stat.=4.15), ω=8.17e-007 (Std
Error=2.9e-007, T stat.=2.74), and λ=0.974 (Std Error=0.0065, T stat.=150.84)
by MLE parameter estimation. The GARCH parameters are fixed at the values
obtained from maximum likelihood estimation based on real daily observations
of NASDAQ for simulations. Random variables for simulations are generated by
MATLAB. For generating data, we assume 250 working days a year as usual and
generate data at different frequencies according to table 3.1. The simulations
are based on 5 years of data samples and 7,000 sample paths (realizations). For
two-scale based estimators we allow the sampling points to be regularly allo-
cated. For all three alternative estimators, we assume equally distance sampling
interval.

3.1.2 Results of volatility simulations

The results of Monte Carlo simulations of volatility estimators in terms of
HRMSE and HBias are contained in Table 3.1 [Saf07a]. The table shows how
the estimators converge to the integrated variation across frequencies when the
sampling interval is going to diminish. Comparing the rows reveals asymptotic
convergence in probability distribution. Moreover, it is clear from the table
that how different estimators behave. A comparison between the columns of
the table reveals convergence capability of the volatility estimators.

Table 3.1: Results of volatility simulation (displaying values*10,000)

Frequency at every TSRV RA TSAV
HRMSE HBias HRMSE HBias HRMSE HBias

60 min. 9.6922 0.4589 2.5602 0.4235 2.4511 0.3920

30 min. 9.0308 0.4127 2.5613 0.4243 2.0030 0.3917

15 min. 8.7350 0.4004 2.5674 0.4407 1.7182 0.3891

5 min. 7.8221 0.3612 2.7985 0.8939 1.3482 0.3197

1 min. 6.8790 0.2526 3.0134 1.4023 0.6201 0.1826

30 sec. 6.5025 0.2032 3.0141 1.7709 0.5618 0.1692

10 sec. 6.1408 0.1897 3.0375 2.2048 0.4803 0.1032

5 sec. 5.7112 0.1715 3.0392 2.6963 0.4403 0.0723
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The table simply shows that the realized power volatility of order 1 (RA)
is not an unbiased and consistent estimator of integrated power variation as
the frequency increases. This finding is consistent with the literature around
microstructure noise. Even the bias and variance of estimator is increasing
across the frequencies caused by the market microstructure frictions. As a
result, RA estimator is not a consistent estimator and according to the table,
it obviously diverges. However, the two-scale estimators, as expected by the
subsampling approach in line with Zhang et al. [Zha05], are consistent and
unbiased estimator for the corresponding targets, i.e., Integrated Volatility (in
our special case of order 2 for TSRV, i.e., r=2) and Integrated Power Volatility
(in our special case of order 1 for RA and TSAV, i.e., r=1). A comparison
between the two-scale estimators gives some informations. At each frequency the
TSRV suffers from higher variation compared to the TSAV. In terms of bias the
same condition holds. This implies that the rate of convergence and consistency
differs between estimators, although both estimators gradually and eventually
converge. Therefore, the two-scale absolute based estimator converges faster.

The difference between the two-scale estimators in convergence rate may be
akin to the fact that absolute based estimators are inherently somewhat immune
against large values in a relative sense. There is, indeed, empirical evidence that
absolute returns based models produce better volatility forecasts than models
based on squared returns. For example Taylor [Tay86], Ding, Granger, and
Engle [Din93], McKenzie [Mak99], Ederinton and Guan [Ede00], Forsberg and
Ghysels [For05], Andersen et al. [And06], and Ghysels et al. [Ghy06], show that
a squared transformation of returns in squared based models of volatility in turn
reinforces large values in return series and hence they appear in volatility series
as larger values. Thus, TSRV seems theoretically not to be robust against large
values, meanwhile construction of volatility based on realized power variation
with absolute transformation is somewhat robust to rare values [Bar04d], in
particular in case of r = 1 (or absolute based variation).

3.1.3 Simulation of correlation estimators

Simulation scheme : Considering different realized correlation estimators
modeled in (2.12), (2.13), and (2.17), and actual correlation modeled in (2.32),
the corresponding differences or errors can be studied. Specifically, we con-
sider correlation estimators of (2.13) and (2.17) where r = 1, i.e., absolute-
based correlations which are more common estimators. They are appeared in
Table 3.2 with RACOR and TSACOR notations respectively. For two-scale
based estimators, we allow the sampling points to be regularly allocated. More-
over, we consider again the assumptions about price, return and microstructure
noise processes explained previously, and set the noise to be i.i.d. and equal
to (Eǫ2)1/2 = 0.01. For evaluation, the HRMSE and HBias metrices will be
utilized. The data are generated assuming 250 working days a year at different
frequencies contained in table 3.2. The simulations are based on 5 years of data
samples and 20,000 sample paths.
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3.1.4 Results of correlation simulations

According to the results [Saf07a] contained in Table 3.2, the estimators have

different convergence behavior at presence of the noise. The ̂RSCORxy and
̂RACORxy estimators not only do not converge but also explicitly diverge with

increasing frequency where the noise intervene. Nevertheless, the two-scale esti-
mator indicates consistency and unbiasedness due to its bias-corrector in addi-
tion to averaging procedure for reducing variation at higher frequencies. Essen-
tially this estimator is included by a bias-corrector and averaging and therefore
it converges as compared to other correlation estimators in terms of bias and
variation. Obviously from the table it is seen that as the frequency increases for

the ̂TSACOR correlation estimator, i.e., the number of intraday observations
increases (n→ ∞), the HRMSE and HBias decrease.

Table 3.2: Results of correlation simulation (displaying values*10,000)

Frequency at every RSCOR RACOR TSACOR
HRMSE HBias HRMSE HBias HRMSE HBias

60 min. 10.1206 0.1164 3.2301 0.0673 3.0921 0.0662

30 min. 10.1259 0.1183 3.2523 0.0680 3.0905 0.0589

15 min. 10.1347 0.1197 3.2748 0.0687 3.0718 0.0540

5 min. 11.5602 0.1236 3.3407 0.0698 2.9743 0.0537

1 min. 12.9831 0.1405 3.3756 0.0786 2.7643 0.0449

30 sec. 13.3125 0.1427 3.3904 0.0820 2.7215 0.0416

15 sec. 13.8347 0.1436 3.4018 0.0835 2.6713 0.0401

5 sec. 13.8461 0.1477 3.4029 0.0849 2.5908 0.0393

While the realized volatility literature assumes that the market microstruc-
ture noise follows an i.i.d. process, Sun, Rachev, and Fabozzi [Sun07] con-
clude that an ARMA-GARCH model assuming a fractional stable noise out-
performs other ARMA-GARCH models assuming independent and identically
distributed (i.i.d.), stable, generalized Pareto, generalized extreme value and
fractional Gaussian noises. They examine the model under different assumptions
about noise and empirically compare them based on data of 27 German stocks
included in DAX. As a result, non-Gaussian assumption about microstructure
noise, and specifically the fractional stable noise seems more realistic.

3.2 Simulation experiments under non-normality

Motivated by the results of Sun, Rachev, and Fabozzi [Sun07], the realized
volatility and correlation estimators under different assumptions about microstruc-
ture noise were simulated [Saf08b]. Particularly, the impact of different assump-
tions about the microstructure noise including i.i.d. or White noise, stable noise,
fractional Gaussian noise, and fractional stable noise on accuracy and especially
on the bias in the estimation are investigated and compared.
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3.2.1 Simulation of volatility estimators

Simulation scheme : Now simulation and evaluation schemes of the realized
volatility estimators T̂ SRV , R̂A and T̂ SAV are explained. The estimators are
cast in the continuous-time volatility model (2.31) with different microstructure
noise assumptions including the i.i.d noise, fractional Gaussian noise, stable
noise, and fractional stable noise. For evaluation the bias and variance metrices
of estimations are calculated. The Gaussian noise is set equal to 1% of the value
of the variable of interest. Random variables for simulations are generated ac-
cording to minute-by-minute frequency for 4 years assuming 252 working days
a year. For generating the non-Gaussian noises, the described procedures in
2.7.3 are followed based on minute-by-minute frequency observations of CAC
40 and FTSE 100 explained in [Saf08b] subsection 5.1. The number of sample
paths for all simulations is 15,000 realizations. Regarding to two-scale based
estimators, we allow the sampling observations to be regularly allocated. For
all three alternative estimators, we assume equally distance sampling interval.
Three estimators including TSRV, RA, and TSAV (which the two latter esti-
mators are the RP and TSPV estimators of the power 1) are compared. But
what is more important here is the comparison of different microstructure noise
assumptions. For evaluation of estimators, we use RMSE and Bias statistics.

3.2.2 Results of simulation for volatility

The results of Monte Carlo simulations in terms of RMSE and Bias of estima-
tion are contained in Table 3.3. A horizontal comparison of different volatility
estimators is an indication of different estimation power of the estimators. In
general, the TSAV estimator yields less variation and bias than others at minute-
by-minute simulation frequency. This is in line with the results of [Saf07a].

Table 3.3: Results of volatility simulations assuming different noise (simulated based on CAC

data)

Assumptions TSRV RA TSAV
RMSE Bias RMSE Bias RMSE Bias

White noise 0.001612 1.686e-005 0.001125 1.749e-005 0.000853 1.383e-005
Fractional Gaussian noise 0.001487 1.675e-005 0.001060 1.688e-005 0.000820 1.347e-005

Stable noise 0.001489 1.676e-005 0.001072 1.692e-005 0.000821 1.349e-005
Fractional Stable noise 0.001306 1.502e-005 0.000885 1.644e-005 0.000819 1.318e-005

Table 3.4 provides the results of simulations using the simulated noise values
based on 1 minute frequency real data of FTSE. The table yields the same results
for CAC data. However, a vertical comparison of the values contained in the
tables is more important purpose.

Both tables report that the GARCH(1,1) model assuming the fractional sta-
ble noise outperforms the other models assuming the White noise, Fractional
Gaussian noise, and Stable noise. Among the models with different noise as-
sumptions, the model assuming White noise has the worst results of fitting.
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These results are consistent with those of obtained by Sun, Rachev, and Fabozzi
[Sun07]. As it is emphasized in [Sun07], the results imply that the real mi-
crostructure noise is better characterized by the fractional stable noise. In fact,
the i.i.d. noise, which is usually assumed in the realized volatility literature, is
not the real case.

Table 3.4: Results of volatility simulations assuming different noise (simulated based on FTSE

data)

Assumptions TSRV RA TSAV
RMSE Bias RMSE Bias RMSE Bias

White noise 0.002859 1.113e-004 0.002125 1.750e-004 0.001847 1.002e-005
Fractional Gaussian noise 0.002853 1.107e-004 0.002104 1.750e-004 0.001823 9.993e-006

Stable noise 0.002731 9.685e-005 0.001873 1.607e-004 0.001765 9.885e-006
Fractional Stable noise 0.002548 7.071e-005 0.001546 1.418e-004 0.001508 8.453e-006

3.2.3 Simulation of correlation estimators

Simulation scheme : For simulation of the correlation estimators we use
again the same nonparametric scheme in the previously described subsection
2.8.2. To solve the problem of non-synchronous trading effect, in [Saf08b] we
applied the scheme in model (2.18) for estimating the realized covariances. Re-
garding to the microstructure noise, the size of the White noise is set again
equal to 1% of the generated data. Other types of the noise have been previ-
ously simulated and used for volatility estimators based on minute-by-minute
real CAC and FTSE data. They will be exploited again here for correlation
simulation. Other conditions for volatility simulations are held.

3.2.4 Results of simulation for correlation

Table 3.5 indicates that the White noise which is usually assumed when mod-
eling of the realized volatility and correlation estimators, possesses the highest
errors in terms of RMSE and Bias of estimation. Instead, models based on the
Fractional Stable noise assumption have the best performance of estimation.
This fact is true for the three correlation estimators.

Table 3.5: Results of correlation simulation
Assumptions RSCORxy RACORxy TSACORxy

RMSE Bias RMSE Bias RMSE Bias
White noise 0.003841 5.478e-005 0.003341 4.654e-004 0.002760 2.783e-005

Fractional Gaussian noise 0.003839 5.478e-005 0.003317 4.652e-004 0.002760 2.744e-005
Stable noise 0.003802 5.463e-005 0.003321 4.657e-004 0.002764 2.346e-005

Fractional Stable noise 0.003754 5.418e-005 0.003206 4.574e-004 0.002608 1.837e-005

The results suggest that the market microstructure noise includes some self-
similarity and it does not follow a simple white process. In fact, the market
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microstructure noise possesses some long memory dependence structure as well
as heavy tailedness.

3.3 Distributional and dynamic behaviors of es-
timators

It could be interesting to empirically study some more common and important
distributional and dynamic behaviors and properties of the realized volatility
and correlation estimators. In this section, such the behaviors are experimen-
tally evaluated and compared for different estimators on real world data sets.

3.3.1 Data description

Volatility can be estimated arbitrarily well from an arbitrary short span of
data, provided that returns are sampled sufficiently frequently. This suggests
the use of high frequency data. Note that realized volatility at day t is based
on information within day t as opposed to volatility from, e.g., GARCH models
that depends on information up to day t − 1. For this section, the empirical
analysis is based on NASDAQ100 and DAX30 stock index data at every 5 minute
frequency. Our sample indices cover longer than 4 years from December 17, 2002
to January 31, 2007 with 250 official business days a year. This period includes
1029 trading days totally with 76410 observations. Both indices encompass
those equities with a high degree of liquidity and the related markets are very
active markets. The variables of interest in our analysis are returns defined from
time to time of aforementioned index values. We define return of an index by
Yti+1

− Yti
= log(Yti+1

) − log(Yti
), which is the return from holding the index

time ti to time ti+1, when Yti
is the observed index value.

Table 3.6: Basic statistics and test of return of indices

Statistic NASDAQ100 DAX30

Minimum -3.52e-02 -2.79e-02
Maximum 5.71e-02 2.43e-02

Mean 7.06e-06 5.44e-06
Median 0.00e+00 5.19e-06
Sum 5.37e-01 4.14e-01

Variance 1.87e-06 1.78e-06
Skewness 1.37e+00 -3.36e-01
Kurtosis 8.00e+01 3.62e+01

Jarque-Bera test 2.2e-16 2.2e-16
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Table 3.6 describes some basic statistics of the time series. According to
the table, positive mean and median returns explain an average positive return
trend. In particular, excess kurtosis (peakedness) with skewness (asymmetry)
shows obviously our time series depart from normality. In view of the fact
that the kurtosis coefficient of distributions are much higher than 3 (coefficients
equal to 80 for NASDAQ and to 36 for DAX) for a standard normal distri-
bution, therefore distributions of our series are leptokurtic. Leptokurtosis is a
sign of heavy tail in a distribution. This implies that there is a higher prob-
ability for extreme events in data than that is normally distributed. Negative
coefficient of skewness for DAX (-0.336) series describes that the probability
density function is negatively skewed and therefore that is asymmetric to the
left side. However, this coefficient indicates an asymmetry to the right side for
NASDAQ (1.37). At last, the Jarque-Bera test1 for normality simply reveals
that the investigated time series with P-value equal to 2.2e-16 do not form a
normal distribution. Rachev et al. [Rac05b] write that “empirical evidence does
not support the assumption that many important variables in finance follow a
normal distribution”.

3.3.2 Distributional behaviors

The realized volatility and correlation are observable and measurable in na-
ture. Therefore, based on different construction of the volatility and correlation
estimators, we can characterize their distributional behaviors with relying on
conventional statistical procedures. Comparison of empirical distributions of
different measures can be simply implemented.

Realized volatility estimators : Figure 3.1 depicts the time series of dif-
ferent realized volatility estimators. In fact, the figure unveils that volatility,
constructed by realized measures, is time-varying. This is in contrast to the
conventional approach which views the volatility as constant. Time-varying
property of realized volatility suggests that volatility appears to change over
time as a time series and hence may include some dynamic properties. Large
values appeared in squared based volatility series are obvious. A comparison of
realized volatilities with a traditional constant variance using Tables 3.6 and 3.7
detects that all realized measures tend to report volatility higher than a con-
stant value. The variances of two indices in Table 3.6 are much smaller than the
mean of realized volatilities in Table 3.7. However, the mean of TSRV volatility
is smaller than that of others.

Andersen et al. [And01b] found that the distributions of realized daily vari-
ances are skewed to the right and are leptokurtic for exchange rate data. Con-
sistent with this finding, Andersen et al. [And01a] find that the unconditional
distributions of realized variances are highly right-skewed for stock exchange
data. In line with these findings, our volatility series in Table 3.7 are rightward.

1The Jarque-Bera test of normality is the most widely used procedure for testing normality
of economic time series returns. The algorithm provides a joint test of the null hypothesis of
normality in that the sample skewness equals zero and the sample kurtosis equals three.

46



0 200 400 600 800 1000

0.
00

00
0.

00
25

TSRV volatility time series for NASDAQ

0 200 400 600 800 1000

0.
00

00
0.

00
15

TSRV volatility time series for DAX

0 200 400 600 800 1000

0.
05

0.
15

RA volatility time series for NASDAQ

0 200 400 600 800 1000

0.
05

0.
15

RA volatility time series for DAX

0 200 400 600 800 1000

0.
05

0.
15

TSAV volatility time series for NASDAQ

0 200 400 600 800 1000

0.
05

0.
15

TSAV volatility time series for DAX

Figure 3.1: Time series of realized volatility measures constructed based on two-scale
squared, absolute, and two-scale absolute transformations. Evidently volatility is viewed
time-varying. Large values in squared based volatility are obvious.

Table 3.7: Basic statistics and tests of realized volatility measures
Statistic NASDAQ100 DAX30

TSRV RA TSAV TSRV RA TSAV
Mean 1.38e-04 6.39e-02 6.38e-02 1.32e-04 5.76e-02 5.76e-02

Median 1.00e-04 5.96e-02 6.00e-02 7.41e-05 4.86e-02 4.77e-02
Variance 2.37e-08 4.58e-04 4.42e-04 2.59e-08 1.06e-03 1.04e-03
Skewness 9.44e+00 9.62e-01 9.53e-01 3.16e+00 1.52e+00 1.52e+00
Kurtosis 1.64e+02 1.44e+00 1.28e+00 1.46e+01 2.44e+00 2.42e+00

Jarque-Bera 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16 2.2e-16
A.D-F of 20 lags 0.01 0.01 0.01 0.05 0.23 0.24
A.D-F of 30 lags 0.01 0.07 0.06 0.06 0.22 0.20

Four moments of realized volatility measures plus median are included in
Table 3.7. The Skewness and kurtosis of the measures determine in more de-
tail, none of the measures possess exactly a normal distribution. In terms of
the Jarque-Bera test of normality reported in the table, none of the measures
hold a normal distribution. With p-value 2.2e-16, normality for all measures is
significantly rejected. However, a relative comparison may include informative
facts. The Skewness coefficients of absolute based measures (RA and TSAV) are
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almost one-tenth of those of squared based measure (TSRV) in case of NASDAQ
and a half in case of DAX, and closer to that of the normal distribution. All the
coefficients are positive meaning that the distributions are skewed rightward.
On the other hand, while the coefficients of kurtosis for absolute-based estima-
tors are relatively close to 3 for a normal distribution, this coefficient is equal
to 164 and 14.6 for NASDAQ and DAX for TSRV estimator. Higher kurtosis
means more of the variance is due to infrequent extreme deviations, as opposed
to frequent modestly-sized deviations.

The main reason for difference among the distributions of volatility series
may most likely be akin to different sensitivity to jumps or large values. Ander-
sen et al. [And01a] argue that the squared returns approach, over the relevant
return horizon, provides model-free unbiased estimates of the ex post realized
volatility. Unfortunately, however, squared returns are also a very noisy volatil-
ity indicator and hence do not allow for reliable inference regarding the true
underlying latent volatility. In fact, squared based volatility measures reinforce
jumps and large values in return series to appear larger in realized volatil-
ity series as extreme values to shape a positive heavy tail. However, realized
volatility constructed by absolute transformation when the power of transfor-
mation is around 1 (r = 1 in realized power volatility) seems relatively to be
more monotonous. These arguments are also confirmed by figure 3.2. All distri-
butions, especially distribution of TSRV are asymmetric to the right side. The
shapes show long right tail. Presence of big jumps in squared based volatility
is obviously evident in figure 3.2. As such, these jumps lead the time series of
measure to form a longer right tail in distribution. The jumps or extreme values
cause positive skewness coefficient (to the right side) in Table 3.7.

In general, all daily time series of estimators shape a kind of non-normal
distribution meanwhile absolute based series seem nearer to normal. These
findings are in agreement with that of Andersen et al. [And01a]. Of course, this
phenomena was well documented as the fact of markets where the distribution
of relative price changes is strongly nonGaussian: these distributions can be
characterized by power law tails with an exponent close to 3 for rather liquid
markets. Emerging markets have even more extreme tails, with an exponent
that can be less than two - in which case the volatility is infinite [Bou02]. In
spite of negative skewness in returns of DAX, implying existence of big negative
jumps, figure 3.3 exhibits both tails of volatility distributions are positive. This
is quite clear, because when constructing volatility measures, we restricted val-
ues to be positive by squared or absolute transformations. In essence, realized
volatility is positive like the constant volatility. Meanwhile, differences in dis-
tribution of measures are obviously appeared. Plots depict that how much can
the points match bisector line. The size of discrepancy from bisector represents
deviation from normality. Obviously here, absolute based series have smaller
jumps, and therefore closer distribution to the normal one.

Realized correlation estimators : The co-movement of world equity mar-
kets is often used as a barometer of economic globalization and financial inte-
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Figure 3.2: Kernel density distribution of different realized volatility series seem skewed
rightward. However, the shapes are not the same. Asymmetry degree seems different among
volatility series. Heavy tail in distributions is remarkable.

gration. Analyzing such co-movement is important for risk diversification of an
international portfolio [Sun08]. The most commonly used measure to analyze
comovements and cointegration among international equity markets is correla-
tion analysis. Therefore, the realized correlation estimators are applied on 5
minute frequency stock indices to this end. Applying the correlation estimators
(2.12, 2.13 and 2.17), our study is focused on correlation between the returns
of the NASDAQ and DAX markets. A two-scale squared based correlation has
not been yet appeared in literature. Thus, we proceed with the squared based
correlation in (2.12). The models (2.13) and (2.17) are estimated with regard
to r = 1.

In our analysis, both indices belong to very developed, active and liquid
markets. A main difference of our correlation with that of traditional analy-
sis includes time-variation, and hence probably nonlinearity and dynamics of
dependence structure over time. In figure 3.4, some distributional properties
of different realized correlation measures are graphically embodied. First row
plots explicitly imply that realized correlation series, against classical formu-
lation of correlation, are time-varying, what is a profound property of many
financial phenomena, and that they may have some nonlinearities and dynam-
ics. Their kernel density can be found in second row of the plots. As Andersen
et al. [And01a] and Andersen et al. [And01b] reported, the distributions of
realized squared correlation between stocks and between exchange rates are ap-
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Figure 3.3: Quantile Quantile-normal plots compare the empirical volatility series to the
theoretical distribution. The x and y axes of the plots represent theoretical quantiles and
sample quantiles of the series respectively. More matching to the straight line means more
approaching to normality.

proximately normal. In our experiment here, the distribution of RSCORxy

is normal too. However, we found that the distributions of RACORxy and
TSACORxy look like non-normal in the shape.

Some basic distribution-related statistics of realized correlations are reported
in Table 3.8. All the correlation estimators have negative mean. The RSCORxy

correlation shows stronger dependence between returns on average, while the
estimators RACORxy and TSACORxy show a weaker degree of dependence
between markets on average over our time period. These two latter correlations
behave relatively more stable over the time, since they have much less vari-
ance than the RSCORxy correlation has. Analogously, the TSACORxy tends
to be more stable than RACORxy in terms of variance over the time. Com-
paring both mean and variance of different correlation estimators, we observe
that RSCORxy correlation shows a stronger (based on the mean value), and at
the same time, more unstable (based on variance) dependence between markets.
The RSCORxy correlation is slightly skewed to the right, what is not consistent
with a common sense. But RACORxy and TSACORxy estimators are nega-
tively skewed so that the degree of skewness in TSACORxy is much bigger than
that of RACORxy estimator. P-value of Jarque-Bera test for null normality is
statistically significant at the 5 percent level for RSCORxy correlation (0.464).
Based on rather high skewness of absolute based correlation estimators, we find
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Figure 3.4: Distributional properties of realized correlations are graphically embodied. Ev-
idently realized correlations, based on first row plots, fluctuate over the time. The squared
based correlation possesses almost a symmetric density, while density of others are skewed.
These findings are more informatively supplemented by QQ-normal plots. The x and y axes
of the plots represent theoretical quantiles and sample quantiles of the series respectively.
Longer left tail is documented in dependence structure of the absolute-based correlations.

that asymmetry is present in the conditional realized correlation distributions.

Table 3.8: Basic statistics and test of realized correlations

Statistic RSCORxy RACORxy TSACORxy

Mean -3.87e-03 -7.78e-06 -1.36e-06

Median -2.78e-03 -4.53e-06 -6.04e-07

Variance 1.35e-02 4.56e-08 1.04e-09

Skewness 5.41e-02 -1.21e-01 -6.09e-01

Kurtosis 1.49e-01 3.32e+00 6.43e+00

Jarque-Bera test 0.464 2.2e-16 2.2e-16

In fact, when the relationship between the markets follows the RSCORxy

dependence structure, then based on our data, upside comoves are greater than
downside ones. In contrast, negative asymmetry in RACORxy and TSACORxy

correlations conveys that downside comoves are greater than upside comoves
between markets. Asymmetry here has an important message: negative shocks
in returns have greater impact than positive shocks in NASDAQ market on DAX
market, if we assume DAX is affected by NASDAQ based on New York effect.
According to behavioral finance theory, key observations made in behavioral
finance literature include the lack of symmetry between decisions to acquire or
keep resources, called colloquially the bird in the bush paradox, and the strong
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loss aversion or regret attached to any decision where some emotionally valued
resources might be totally lost. In prospect theory, loss aversion refers to the
tendency for people to strongly prefer avoiding losses than acquiring gains. “A
bird in the hand is worth two in the bush”, reflects individual or social biases
probably leading to negative asymmetry. These observations are confirmed and
more informatively completed by QQ-normal plots in third row of the figure 3.4.
Longer negative tail in multivariate absolute-based realized correlations can be
documented in such a way that the extreme values are usually populated in the
left tail of distributions.

Rachev et al. [Rac05b] discuss that “correlation is one particular measure
of dependence among many. Another approach is to model dependency us-
ing copulas”. For continuous multivariate distribution functions, the univariate
margins and the multivariate dependence structure can be separated, and the
dependence structure can be represented by a copula [Emb03]. As Embrechts
et al. [Emb03] argue, copulas provide a natural way to study and measure de-
pendence between random variables. The popularity of linear correlation stems
from the ease with which it can be calculated and it is a natural scalar measure
of dependence in elliptical distributions (with well known members such as the
multivariate normal and the multivariate t-distribution). However most random
variables are not jointly elliptically distributed, and using linear correlation as
a measure of dependence in such situations might prove very misleading. The
copula-based Kendall’s rank correlation coefficient provides some advantages
over the use of linear dependence in the elliptical distributions. On the other
hand, the strength of non-linear dependence at joint extreme levels, which is a
property of some copulas, may be informed by the tail dependence coefficients.
Although the Student-t copula exhibits tail dependence against Gaussian cop-
ula which dose not, as an elliptical copula, Student-t copula show symmetric
tails. Since elliptical distributions are radially symmetric, the coefficient of
upper and lower tail dependence are equal. In financial applications, there is
usually a stronger dependence between big losses (e.g. market crashes) than be-
tween big gains [Emb03] as it was shown in absolute-based realized correlation
above. Clearly, such asymmetries cannot be modeled with elliptical copulas.
In contrast to elliptical copulas, all commonly encountered Archimedean copu-
las (e.g., Frank, Gumbel, Clayton and mixtures) have closed form expressions.
Their popularity also stems from the fact that they allow for a great variety
of different dependence structures. Copulas differ not so much in the degree of
association they provide, but rather in which part of the distributions the as-
sociation is strongest. Through the choice of copula, a good deal of control can
be exercised over what parts of the distributions are more strongly associated.

Based on the copula theory, Patton [Pat04] constructs models of the time-
varying dependence structure that allow for different dependence during bear
markets than bull markets. Stock returns appear to be more highly correlated
during market downturns than during market upturns. For evaluating asymme-
try in dependence, Patton [Pat06] considered an extension of theory of copulas
to allow for conditioning variables, and employed it to construct flexible models
of conditional dependence structure in the joint density of the DM/USD and
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Yen/USD exchange rates. Two different copulas were estimated: the copula
associated with the bivariate normal distribution and the symmetrized Joe-
Clayton copula, which allows for general asymmetric dependence. Time varia-
tion in the dependence structure between the two exchange rates was captured
by allowing the parameters of the two copulas to vary over the sample period.
He found evidence that the mark-dollar and yen-dollar exchange rates are more
correlated when they are depreciating against the dollar than when they are ap-
preciating. On equity returns, Longin and Solnik [Lon01], using extreme value
theory to model the multivariate distribution tails, derive the distribution of
extreme correlation for a wide class of return distributions. Empirically, they
reject the null hypothesis of multivariate normality for the negative tail, but
not for the positive tail. They report that correlation increases in bear markets,
but not in bull markets.

Cizeau, Potters and Bouchaud [Ciz01] studied the correlations between stock
returns, conditioning on absolute market returns, fraction of positive/negative
returns, and large individual stock returns-quantile correlations and exceedance
correlations as different indicators, all based on a simple but comprehensive
non-Gaussian one-factor model. Assuming that the return of every stock is the
sum of random independent (non-Gaussian) factors, they decompose a return
into a market part and a residual part in the model. In a generic factor model,
the residuals are combinations of all the factors except the market and are there-
fore independent of it. Their model, which accounts for fat tail effects, explains
the correlations between stock returns increase in high volatility periods, and
in particular explains the level and asymmetry of empirical exceedance corre-
lations. Conditioning on exceedance correlations, they study more specifically
how extreme stock returns are correlated between themselves. For this, they
consider a pair of individual stocks which their normalized returns are larger as
well as smaller than a level. Large and small returns correspond to extreme cor-
relations. They find that the correlation grows with extreme returns. However,
correlation between extreme negative pair of returns is larger than correlation
between extreme positive pair of returns.

Consistent with the Archimedean copulas and one-factor model, the pro-
posed multivariate absolute-based realized correlations exhibit non-linearity in
dependence structure of variables. Evidently, based on the sign of skewness
in Table 3.8, the RACORxy and TSACORxy correlations are consistent with
common sense. The simulation study on correlation in the previous sections
suggests that TSACORxy is an unbiased estimator for the true correlation. As
such, this estimator consistent with other approaches mentioned above, approx-
imates the true correlation between equity markets to be negatively asymmetric,
while the squared based correlation estimates the true correlation to be sym-
metric as it has been emphasized by Andersen et al. [And01a] and Andersen
et al. [And01b]. The squared based realized correlation with the normal dis-
tribution for stock index real data leads to an evident bias, whereas absolute
based estimators consistent with the other models of dependence possess the
skewed distribution for asymmetric real dependence structure and hence it does
not exhibit a bias with this regard.
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3.3.3 Dynamic behaviors

The underlying efficient market hypothesis (EMH) has enormous philosophical
and mathematical appeal. The strong form of the hypothesis is that investors
have access to all relevant information, and that this is fully reflected by the
current market price. The random arrival of new (independent and identically
Gaussian-distributed) information causes traders’ expectations to change. This
is then translated into a Brownian motion in a Gaussian distribution of (log)
price returns. There are variations upon this reasoning, for example, invoking
arbitrageurs or informed investors who quickly exploit any inefficiencies due to
noise traders or uninformed investors but the pricing outcome is the same. One
of the refutable implications of the EMH is the Gaussian distribution of returns.
Actual distributions however are sufficiently non-Gaussian so as to require bet-
ter explanations and mathematical models than provided by the EMH. For a
detailed discussion, see for example Rachev et al. [Rac05b].

With many plausible EMH violations (and the impossibility of performing
controlled experiments with real markets), it is extremely difficult to draw con-
clusions regarding the chain of cause and effect from statistical analysis alone.
However, these analysis have identified a set of stylized facts that appear to be
prevalent across asset classes independent of trading rules, geography or cul-
ture. These include the lack of linear correlations in price returns over all but
the shortest timescales, non-Gaussianity, excess kurtosis (fat tails) in the price
return distribution, volatility clustering (ARCH-effects) short- and long-range
dependence, temporal dependence of the tail behavior, skewed distributions,
temporal dependence of the tail behavior, and heteroskedasticity. See for exam-
ple Rachev and Mittnik [Rach00]. Some finer details have also been revealed,
most notably the existence of power-law scalings and estimates of the exponents.

The class of models addressing the stylized facts is an attempt to provide a
framework within which to study systematically the effects of various, simple,
EMH violations. The hope is that the insights gained will result in a greater
theoretical understanding of the operation of markets. Now, issues related to
dynamic features of the volatility and correlation estimators are extracted by
detailed examinations, with particular focus on the long memory.

Realized volatility estimators : Simply behavior of autocorrelation of fi-
nancial time series has been studied by many researchers. It has been investi-
gated to see how the autocorrelations decay over the lags. Ding, Granger and
Engle [Din93] and Andersen and Bollerslev [And97] argue that the autocorre-
lations of squared and absolute returns decay at a much slower hyperbolic rate
over longer lags. Consistent with this finding, in the figures 3.5 and 3.6, on the
left panels, autocorrelation functions based on NASDAQ (figure 3.5) and DAX
(figure 3.6) for realized volatilities have been drawn.

The top plot in figure 3.5 belongs to TSRV volatility which differs remark-
ably from the two others. While the autocorrelation of TSRV volatility, com-
puted from NASDAQ data, is going to be insignificant around 140 lags, this
serial correlation for realized absolute volatilities is still significant around 240
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Figure 3.5: Autocorrelation function and long memory autocorrelation function plots (ACF
and log-log) of volatilities, computed based on NASDAQ data. For all functions of both
kind of autocorrelation function and long memory autocorrelation function, the number of
lags is arbitrarily equal to 300. The top row belongs to TSRV measure, the middle to RA,
and the bottom to TSAV. Left plots are autocorrelation functions and right ones are long
memory autocorrelation functions. The axes on the right plots are log of that of the left plots.
Estimated Hurst exponent (self-similarity parameter) in long memory plots for TSRV, RA,
and TSAV are respectively equal to 0.65, 0.74, and 0.76.

lags equivalent to almost one calendar year. This exhibits a quite considerable
difference. Also in figure 3.6, the difference is observable. Autocorrelation of
squared based measure estimated from DAX data in figure 3.6, lasts only up
to 170 lags. Instead, autocorrelation of absolute based measures dies away to
be insignificant around 260 lags, more than one year. These important findings
imply that a shock in the volatility process will have a long-lasting impact.

An autocorrelation may be a sign of long memory process. The autocor-
relation function (ACF) can be completed to have more meaningful sense by
long memory autocorrelation function. This may be a very interesting signa-
ture for series dynamics, and it sets a pretty high hurdle for any financial model
to meet. Usually it is spoken of a long memory behavior, if the decay in the
ACF is slower than a hyperbolic rate, i.e., the correlation function decreases
algebraically with increasing (integer) lag. Thus it makes sense to investigate
the decay on a double logarithmic scale and to estimate the decay exponent.
Graphically, if the time series exhibits long memory behavior, it can easily be
seen as a straight line in the plot on the right panels of figures 3.5 and 3.6.
This double logarithmic plot is displayed and a linear regression fit is done from
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Figure 3.6: Autocorrelation function and long memory autocorrelation function plots of
volatilities, computed based on DAX data. The axes on the right plots are log of that of the
left plots. For all functions of both kind of autocorrelation function and long memory autocor-
relation function, the number of lags is arbitrarily equal to 300. The top row belongs to TSRV
measure, the middle to RA, and the bottom to TSAV. Left plots are autocorrelation func-
tions and right ones are long memory autocorrelation functions. Estimated Hurst exponent
(self-similarity parameter) in long memory plots for TSRV, RA, and TSAV are respectively
equal to 0.72, 0.83, and 0.85.

which the intercept and slope are calculated. Corresponding long memory plots
of volatility series in figures 3.5 and 3.6 show a slow decay for the estimators,
meanwhile absolute based estimators explicitly indicate longer memory. Log-log
plots for RA and TSAV estimators exhibit a more straight and smoother curve.
The curve in this plot for TSRV estimator fluctuates around a straight line. So,
the volatility estimators include long memory behavior as a dynamic stylized
fact of market. Finding long memory in realized volatility of NASDAQ and
DAX here is consistent with those empirical experiments on tickers included in
NASDAQ by Andersen et al. [And01a] and in DM/US dollar and Yen/US dollar
exchange rates by Andersen et al. [And01b] both at a 5-minute frequency.

Andersen et al. [And03] suggest that the long-run dynamics of realized log-
arithmic volatilities can be well approximated by a fractionally-integrated long-
memory process. Following this suggestion, we estimate a multivariate model
for the logarithmic realized volatilities. Advocated to Andersen et al. [And03]
we estimate the degree of fractional integration, d, obtained using the Geweke
and Porter-Hudak (GPH) [Gew83] log-periodogram regression estimator. The
GPH estimator is based on the regression equation using the peridogram func-
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tion as an estimate of the spectral density. For more information see [Gew83].
The estimated d’s in volatility series are equal to 0.37 (0.023), 0.41 (0.028), 0.42
(0.029) and to 0.39 (0.021), 0.42 (0.031), 0.43 (0.035) in the structure of TSRV,
RA, and TSAV volatility estimators for NASDAQ and DAX respectively. The
values in parenthesis are corresponding asymptotic standard error. Andersen
et al. [And03] reported estimated d equal to 0.387, 0.413, and 0.43 respectively
for DM/USD, Yen/USD, and Yen/DM in daily realized squared volatility.

The presence of slow autocorrelation decay may be an indication of the pres-
ence of a unit root, as in the integrated GARCH model of Engle and Bollerslev
[Eng86]. In Table 3.7, p-values for Augmented Dickey-Fuller test of nonstation-
arity with 20 and 30 augmentation lags are reported. The test soundly rejects
the null hypothesis for all of the volatility series with 20 lags in NASDAQ, but
significantly accepts all volatilities in DAX at 5 percent level. With 30 lags, the
test accepts nonstationarity of volatility series except TSRV in NASDAQ. This
suggests that almost all volatilities follow a unit root variety.

Taylor [Tay86] analyzes 40 series of returns and observes that the sample
autocorrelations of absolute returns seem to be larger than the sample autocor-
relations of squares. If Yt, t = 1, ..., T , is the series of returns and rθ(k) denotes

the sample autocorrelation of order k of |yt|θ, θ > 0, the Taylor Effect can be
defined as r1(k) > rθ(k) for any θ 6= 1. So, the autocorrelations of absolute
returns to the power of theta reach their maximum at θ = 1. In figure 3.7, plots
depict autocorrelations as a function of the exponent θ for each lag from 1 to
maximum lag (here in this figure, 10 lags). In the case that the above formulated
hypothesis is supported, all the curves should peak at the same value around
θ = 1. The plots related to the absolute-based volatility estimators exhibit more
number of points from 10 points met the vertical line of θ = 1.

Consider again a self-similar process, X(at)
d
= aHX(t), described in section

2.7. Statistically, self-similar means that the statistical properties for the en-
tire data set are the same for sub-sections of the data set. In other words, the
self-similar dimension of fractional integration is invariant to the horizon. Esti-
mating the Hurst exponent for a data set provides a measure of whether the data
is a pure random walk or has underlying trends. The values of Hurst exponent
range between 0 and 1. A Hurst exponent value in range 0.5 < H < 1 indicates
persistent behavior (e.g., a positive autocorrelation). If the Hurst exponent is
0.5 < H < 1, the process will be a long memory process. Furthermore, the closer
H is to 1, the stronger the dependence of the process is. Data sets like this are
sometimes referred to as fractional Brownian motion. A value of 0.5 indicates a
true random walk (a Brownian time series with no autocorrelation). The fractal
dimension is directly related to the Hurst exponent for a statistically self-similar
data set. In a random walk there is no correlation between any element and
a future element. A small Hurst exponent has a higher fractal dimension and
a rougher surface. A larger Hurst exponent has a smaller fractional dimension
and a smoother surface. A Hurst exponent value 0 < H < 0.5 will exist for a
time series with anti-persistent behavior (or negative autocorrelation). Here an
increase will tend to be followed by a decrease and inversely. This behavior is
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Figure 3.7: The Taylor effect plot indicates that Taylor Effect exists in a series, where the
curves peak at the value around θ = 1 which is on the x axis. Left panel belongs to NASDAQ
and the right one to DAX. First, middle, and bottom rows belong to TSRV, RA, and TSAV
volatilities respectively. The absolute-based estimators show better the effect.

sometimes called mean reversion. There are several estimators that are used to
estimate the value of the Hurst parameter. Some more common methods include
Absolute value method, Variance method, R/S method, Periodogram method,
Whittle estimator, Variance of residuals, and Abry-Veitch method. The Hurst
exponents estimated by R/S method are equal to 0.65, 0.74, and 0.76 and to
0.72, 0.83, and 0.85 in the structure of TSRV, RA, and TSAV volatility esti-
mators for NASDAQ and DAX respectively. Estimated based on the Whittle
method [Whi63], the values of Hurst are equal to 0.63, 0.72, and 0.75 and to
0.73, 0.79 and 0.83 respectively. Although estimated Hurst exponents by two
methods are not exactly the same, differences in various series are meaningfully
kept and generally the methods endorse each other. In fact, consistent with
Andersen et al. [And01a], there is the strong evidence to suggest that volatility
is a long memory process.

Realized correlation estimators : An existence of regularities in the pat-
terns and temporal dependencies of comovements across the stock markets is
studied here. The existence of such the regular behaviors implies the dynam-
ics of correlation series. Now we draw regular patterns in correlations series.
Considering Figure 3.8, a long autocorrelation (ACF plot) has been completely
disappeared for squared based correlation now. Based on the long memory au-
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tocorrelation plot in Figure 3.8, a temporal dependence for RSCORxy estimator
can not be reported. The degree of fractional integration, d, is estimated equal
to 0.05 (0.004). Of course, the RACORxy and TSACORxy estimators seem to
keep still their dynamic properties. These results are consistent with the results
of Taylor [Tay86]. He observed that the sample autocorrelations of absolute
returns seem to be larger than the sample autocorrelations of squares. The ab-
solute based correlation estimators exhibit long memory dependence with Hurst
exponents based on R/S method equal to 0.58 and 0.59 and based on the Whit-
tle estimator are 0.57 and 0.58 respectively. The degree of fractional integration,
d, here equals 0.31 (0.019) and 0.33 (0.022) respectively.
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Figure 3.8: Autocorrelation function and long memory autocorrelation function plots (ACF
and log-log) of correlations between NASDAQ and DAX. The axes on the right plots are
log of that of the left plots. For all functions of both kind of autocorrelation function and
long memory autocorrelation function, the number of lags is arbitrarily equal to 300. The
top row belongs to RSCORxy, the middle to RACORxy, and the bottom to TSACORxy

correlation. Left plots are autocorrelation functions and right ones are long memory auto-
correlation functions. Estimated Hurst exponent (self-similarity parameter) in long memory
plots for RACORxy, and TSACORxy are respectively equal to 0.58 and 0.59. The RSCORxy

exhibits no long memory.

A glance at Figure 3.9 reveals that only one of the curves in the Taylor effect
plot of RSCORxy correlation reaches at its pinnacle around θ = 1. Instead, the
Taylor effect appears considerably in RACORxy and TSACORxy series.
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Figure 3.9: In spite of the Taylor effect plot for the RSCORxy correlation where one of lags
peaks around θ = 1; the effect appears in the RACORxy, and TSACORxy correlation series
remarkably.

3.4 Is volatility really forecastable?

The Hurst exponent promises a gleam of hope for predictability in financial
markets which seemingly sound unpredictable at all, under efficient market hy-
pothesis; since it shows well regularity in chaotic and stochastic behaviors of
particles or agents. Peters [Pet96] suggests that a Hurst exponent value be-
tween 0.5 < H < 1.0 shows that the efficient market hypothesis is incorrect.
Returns are not randomly distributed. There is some underlying predictability.

Poon and Granger [Poo03] discuss that financial market volatility is clearly
forecastable. The debate is on how far ahead one could accurately forecast and
to what extent could volatility changes be predicted. This conclusion does not
violate market efficiency since accurate volatility forecast is not in conflict with
underlying asset and option prices being correct. The option implied volatility
being a market based volatility forecast has been shown to contain most in-
formation about future volatility. The supremacy among historical time series
models depends on the type of asset being modeled.

However, the problem of estimating the Hurst exponent itself, involves a
complex problem of accurate calculation. Different methods of estimating Hurst
exponent do not yield exactly the same result. Moreover, we are not certain
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about a specific variable of interest to be a representative for predictability of the
market. In our investigation here, volatility reflects regularity in the markets.
But as reported by many, for an example Ding, Granger, and Engle [Din93],
original prices do not show the regularity, at least by Hurst exponent, among
statistics. It is now well established that the stock market returns themselves
contain little serial correlation which is in agreement with the efficient market
theory. But this empirical fact does not necessarily imply that returns are inde-
pendently identically distributed as many theoretical financial models assume.
It is possible that the series is serially uncorrelated but is dependent. The stock
market data is especially so, since if the market is efficient, a stock’s price should
change with the arrival of information. If information comes in bunches, the
distribution of the next return will depend on previous returns although they
may not be correlated. As the return period increases, the return values reflect
longer trends in the time series. Perhaps the higher Hurst exponent value is
actually showing the increasing upward or downward trends. This does not, by
itself, show that the efficient market hypothesis is incorrect. Even if we accept
the idea that a non-random Hurst exponent value does damage to the efficient
market hypothesis, estimation of the Hurst exponent seems of little use when
it comes to time series forecasting. At best, the Hurst exponent tells us that
there is a long memory process. The Hurst exponent does not provide the local
information needed for forecasting. Nor can the Hurst exponent provide much
of a tool for estimating periods that are less random, since a relatively large
number of data points are needed to estimate the Hurst exponent. For example
a constant Hurst exponent over time also does not seem a sound and reasonable
conclusion. However, this statistic can be useful in analyzing the behavior of
market models.

Fama [Fam98] believes that the efficient market hypothesis “survives the
challenge from the literature on long-term return anomalies. Consistent with
the market efficiency hypothesis that the anomalies are chance results, apparent
overreaction to information is about as common as underreaction, and post-
event continuation of pre-event abnormal returns is about as frequent as post-
event reversal. Most important, consistent with the market efficiency prediction
that apparent anomalies can be due to methodology, most long-term return
anomalies tend to disappear with reasonable changes in technique”.

3.5 Association between volatility and correla-
tion

The realized volatility is modeled according to univariate distributions. How-
ever, addressing associations between multivariate distributions may yield some
important facts. There may exist an association between estimators of vari-
ation and covariation. Key issues relevant in financial economic applications
include, for example, whether and how TSAV std, and TSACORxy move to-
gether. These questions are difficult to answer using conventional volatility
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models, but they are relatively easy to address using the realized volatilities
and correlations. There is indeed strong evidence that realized volatilities and
correlations move together in a manner broadly consistent with latent factor
structure. That is, realized correlation is itself correlated with realized volatil-
ity, which Andersen et al. [And01a] call volatility effect in correlation (V IC).
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Figure 3.10: Scatter plots of different Volatility Effect in Correlation are uncovered to
document association between realized volatility and correlation of NASDAQ and DAX. Axes
x and y represent realized volatility and correlation respectively. The smooth line indicates
the trend of association.

Now the question is how to model the association. In turn, modeling the
association produces the problem of measurement and estimation. Andersen et
al. [And01b] estimate the kernel density of correlations between realized cor-
relation and logarithmic realized standard deviation when the medians of both
logarithmic realized standard deviations of Deutsche Mark and Yen are less
than a threshold equal to -0.46 and when both are greater than -0.46 and they
show density distributions of high volatility days differ from that of low volatil-
ity days. Huang and Nieh [Hua04] estimate a linear regression and indicate
a positive association between realized correlation and volatilities significantly.
Sun et al. [Sun08] introduce a copula ARMA-GARCH model for analyzing the
co-movement of international equity markets. The model is implemented with
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an ARMA-GARCH model for the marginal distributions and a copula for the
joint distribution. After goodness of fit testing, they find that the Student’s
t copula ARMA(1,1)-GARCH(1,1) model with fractional Gaussian noise is su-
perior to alternative models investigated in their study where they model the
simultaneous co-movement of nine international equity market indexes. They,
indeed, studied volatility effect in correlation by their model. In fact, V IC effect
is explained by the tail dependence of underlying assets, which exhibits extreme
events happening simultaneously by their copula based model. In order to model
V IC, unfortunately there is no possibility, or at least there is difficulty, to con-
struct again a conditional multivariate realized volatility in correlation (V IC)
here between realized volatility and correlation like the construction of realized
volatility or correlation procedure to take advantages of time-varying instanta-
neous and contemporaneous characteristics of series. We have to turn back to
the conventional techniques which fail to formulate directly observable instan-
taneous and contemporaneous measures. We simply proceed with a scatter plot
and an estimated smooth trend of V IC.
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Figure 3.11: Scatter plots of different Volatility Effect in Correlation are unveiled to doc-
ument association between realized volatility and correlation of NASDAQ and TNT. Axes x
and y represent realized volatility and correlation respectively. The smooth line indicates the
trend of association.
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In Figure 2.10, scatter plots of different realized correlations between NAS-
DAQ and DAX on y axis against their corresponding realized volatilities of
NASDAQ are drawn to unveil association between realized volatility and cor-
relation. A simple smooth curve passed through the points reveals lots of im-
portant facts flowing between the markets. As a matter of fact, in TSACORxy
based V IC plot, which depicts a two-scale absolute based correlation against its
corresponding two-scale absolute based volatility, a positive trend is observed,
while another V IC plots seem to show almost a constant trend. Applying
V IC for studying of relationship between markets, we found that when the
leading market (NASDAQ) is highly volatile (measured by realized volatility),
the relationship between two markets becomes stronger, and when the leading
market goes to calm down, the association (measured by realized correlation)
between the markets goes to relax. So, two markets tend to be highly corre-
lated when the leading market is highly volatile and inversely. Of course, this
relation between realized volatility and correlation is strongly obvious, when we
consider the TSACORxy estimator. The findings are consistent with those in
[Saf07b], where Euro/USD and Euro/GBP exchange markets have been studied.
A similar correlation effect in volatility was documented for international eq-
uity returns by Solnik, Boucrelle, and Le Fur [Sol96]. It is also a common belief
that cross-correlations between stocks actually fluctuate in time, and increase
substantially in a period of high market volatility [Ciz01]. In other words, the
time fluctuations of the measured cross-correlations between stocks are directly
related to the fluctuations of the market volatility. Further, Cizeau, Potters
and Bouchaud [Ciz01] investigate that how much of these correlations can be
explained within a simple non-Gaussian one-factor description, which accounts
for fat-tail effects, with time-independent correlations. The one-factor model,
conditioning on absolute market returns larger than a given value, predicts an
increase of the correlations in high volatility periods. The much discussed ex-
ceedance correlations can also be reproduced quantitatively and reflect both the
non-Gaussian nature of the fluctuations and the negative skewness of the index,
and not the fact that correlations themselves are time dependent.

The volatility effect in correlation can be studied also in relationships within
a given market. Summarily the results of association between NASDAQ and
TNT stock ticker of 5 minute frequency are reported. American TNT is handled
in NYSE where NASDAQ index is provided. Our TNT time series affords a pe-
riod from 5.04.2005 to 14.09.2006. NASDAQ is also truncated to overlap exactly
this period. The simple result is summarized in Figure 3.11. Like result of in-
vestigating comovement between the markets, the TSACORxy based measure
exhibits a positive trend between the volatility of NASDAQ and the correlation
between NASDAQ and TNT equity, where another V IC plots exhibit a nearly
constant smooth trend. This result implies that TNT equity returns are viewed
so that it has no a constant and stable relationship with NASDAQ index re-
turns. Here V IC association conveys that the so-called Beta or systematic risk
in Capital Asset Pricing Model (CAPM) which is conventionally assumed to be
constant should vary over the time.
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3.6 Concluding remarks and some discussions

Mainly the consistency and unbiasedness of proposed realized volatility and cor-
relation estimators for the corresponding integrated volatilities and correlations
have been studied under assumption of Gaussian noise. In fact, the consistency
of volatility estimators differs given they are constructed differently. This fact
is valid for correlation estimators as well. In addition, the behaviors of intro-
duced estimators on finite samples were studied by simulation experiments. The
TSAV volatility estimator eventually is a consistent and unbiased estimator for
integrated power variation where r = 1 as the frequency increases even under
the assumption of existence of microstructure frictions. This suggests that the
estimator converges even at high frequency levels, where the noise especially
exists. The TSAV estimator is constructed upon the subsampling and averag-
ing approach which corrects for the bias caused by the microstructure noise.
All the estimators display lower error under the fractional stable noise which is
the most realistic process compared to other noise processes investigated by the
simulations.

The empirical study of some important distributional and dynamic aspects
of different alternative realized volatility and correlation estimators was another
subject of this current part. None of volatility measures exactly pose a normal
daily distribution tested by Jarque-Bera test of normality. Some of the volatility
and correlation estimators indicate heavy tail in distributions. While squared
based volatility shows heavier tail than absolute based volatility estimators,
the absolute based correlation estimators show heavier tail than squared based
correlation. In our experiments, we found that absolute based volatility esti-
mators include longer memory behavior as a dynamic stylized fact of markets.
Self-similarity structures computed by Hurst exponent was documented in the
structures of series generated by realized measures.

Consistent with Andersen et al. [And01a] and Andersen et al. [And01b] our
results suggest that realized squared correlation is viewed to pose the normal
distribution. However, according to our experiment, it seems to fail containing
dynamic properties such as long memory. In contrast, tested by Jarque-Bera
estimator, the null hypothesis of normality for the proposed absolute based cor-
relation estimators can not significantly be accepted. Consistent with common
sense and in particular with Archimedean copulas and one-factor model, we
found that the multivariate absolute-based realized correlations exhibit non-
linearity in dependence structure of time-varying correlation series. They in-
dicate negative asymmetry in correlation implying fatter left tail where the
extreme values are mainly populated there. It turns out that downside comoves
are greater than upside comoves between markets. The autocorrelation and
long memory, which have been well documented in many real world financial
time series processes, are included in the structure of absolute based correlation
estimators.

Realized correlation is itself correlated with realized volatility, which is called
the volatility effect in correlation. This fact stimulates one to revise for ex-
ample systematic risk assumptions in CAPM theory. Using V IC analysis, the
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TSACORxy based V IC exhibits a positive trend between the volatility of NAS-
DAQ and the correlation between NASDAQ and TNT equity, where another
V IC plots exhibit a nearly constant smooth trend. Also applying this effect on
relation between the markets, we found that when NASDAQ is highly volatile,
the relationship between NASDAQ and DAX becomes stronger, and when NAS-
DAQ goes to calm down, the association between the indices goes to relax.

Construction of some kind of combined realized measures, for example return
per unit of volatility which may be somehow close to Sharpe Ratio, gives a
strong analytical tool at hand to study jointly dynamics of two most important
criteria for investors, namely volatility and return, as the time in these series
varies rather a constant Sharpe Ratio.
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Part II

Multiresolution modeling
and forecasting volatility
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Introduction to the part: When modeling conditional volatility in fi-
nancial time series, a time series can be decomposed into predictable and unpre-
dictable components. Then consideration can be centered on the determinants
of the predictable part. Like many financial variables, volatility can be mod-
eled and estimated parametrically and nonparametrically. Heteroskedastisity is
well-known to be modeled by GARCH approach. Meanwhile, motivated by this
parametric approach, the Conditional Heteroskedastic Autoregressive Nonlin-
ear (CHARN) model nonparametrically models return and volatility of a time
series.

A multiresolution analysis based on wavelet transformations, however, can
help to boost estimation performance. The multiresolution analysis can be im-
plemented utilizing maximal overlap discrete wavelet transform (MODWT). The
MODWT is in particular useful for analyzing and forecasting time series that
exhibit nonstationary property, since time-dependent events at various scales
are properly localized by MODWT. It can be investigated how multiresolution
analysis can help to enhance the estimation power of the CHARN model. In-
deed, applying capabilities of wavelet analysis and advantages, such as locality
in time and frequency, ability to handle multiscale information and especially
ability to describing heterogeneous data series help to obtain better results.
A Multiscale resolution CHARN model to be estimated by the support vector
regression machine is proposed in such a way that the capabilities of wavelet
transformation are exploited by multiresolution analysis.

As a tool for regression estimation, Support Vector Regression machine is
considered to be combined with the multiresolution analysis. This combination
is expected to yield higher performance of learning. The combination is designed
so as the original time series is decomposed into several scales or resolutions,
each scaled time series is approximated separately by a SVR machine and then
the fitted values on different scales are linearly summed up to obtain an overall
function estimation for the original time series.

Literature review Härdle and Tsybakov [Hae97] consider the class of dy-
namic model CHARN in which both the conditional mean and the conditional
variance (volatility) are unknown functions of the past. They construct an esti-
mator based on local polynomial fitting. They examine the rates of convergence
of these estimators and give a result on their asymptotic normality. The local
polynomial fitting of the volatility function is applied to different foreign ex-
change rate series. They find an asymmetric U-shaped smiling face form of the
volatility function. Härdle, Tsybakov and Yang [Hae98] again approximate the
CHARN model by the local polynomial estimator using foreign exchange rate
data. The returns on exchange rates show negative correlation when the two se-
ries have opposite lagged values and positive correlation elsewhere. Härdle and
Wieu [Hae92] propose to use the ordinary Nadaraya-Watson kernel regression
for estimation of the CHARN model. Polzehl and Spokoiny [Pol03] introduce
an adaptive weights smoothing (AWS) procedure which is fully adaptive and di-
mension free. The AWS method is generalized to the case of an arbitrary local
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linear parametric structure. They illustrate the performance of the procedure
in univariate and bivariate situations.

Aussem, Campbell and Murtagh [Aus98] discuss forecasting strategies based
on the assumption that the time series exhibits characteristics spanning different
time scales. The method is illustrated on the S&P500 daily prices. A wavelet
decomposition of the original series is first carried out to decompose a time series
into varying scales of temporal resolution, with the aim of underlying temporal
structures becoming more tractable. Using the resulting wavelet coefficient, ap-
propriately modified for time series data, as the new input patterns, a recurrent
neural network applied on an autoregressive model is successfully trained to
provide five days ahead forecasts for S&P500 closing price forecasts. A more so-
phisticated method that has proved useful is proposed: each individual wavelet
series is fitted with a neural network model to output the wavelet forecast.
The latter are afterward recombined to form the overall S&P500 forecast. The
method is shown to significantly reduce the MSE and allows distinct forecast-
ing techniques to be fruitfully combined. Bashir and El-Hawary [Bas00] report
the application of the wavelet neural networks (WNNs) to short-term load fore-
casting. The wavelet neural network has much higher ability of generalization
and fast convergence for learning than a multilayer feedforward neural network.
The results of the network have been compared with artificial neural network
and show an improved forecast with fast convergence. Lotric [Lot04] adds a
denoising unit based on wavelet multiresolution analysis ahead of the multilay-
ered perceptron. Chen et al. [Che06a] present a local linear wavelet neural
network (LLWNN). The difference of the network with conventional wavelet
neural network (WNN) is that the connection weights between the hidden layer
and output layer of conventional WNN are replaced by a local linear model. A
hybrid training algorithm of particle swarm optimization (PSO) with diversity
learning and gradient descent method is introduced for training the LLWNN.
Simulation results for the prediction of time series show the feasibility and ef-
fectiveness of the proposed method. In their paper, Soltani et al. [Sol00] deal
with the problem of long-term memory time series prediction. The presented
method is based on the multiscale filtering which iteratively decomposes a series
into a trend and a hierarchy of details that are stationary and contain only short
memory. Thus, the obtained series are modeled with classical ARMA models.
The advantage of this method is that it overcomes the tricky problem of the
fractional integration parameter estimation. The statistical properties of the
obtained series are studied and the use of multichannel autoregressive models is
justified when the moving average part does not exist. Results obtained through
the use of both simulated and real-life series show the efficiency of the approach.

Problem description The problem of regression estimation to be approxi-
mated in terms of a finite sample of financial time series is considered. Financial
time series samples are considered as very complex data series. They are usually
nonstationary and include a combination of signal as well as noise components.
Financial estimation and forecasting is an example of a regression estimation
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which is challenging due to the high noise [Gil01]. In fact, financial data are very
noisy, unstable, and non-Gaussian [Cam97]. Even further, financial time series
are among the noisiest and most difficult signals to forecast [Abu96]. Model-
ing and estimation of nonstationary time series is typically more difficult that
stationary time series.

As a supervised learning machine, support vector regression provides a valu-
able framework for the representation of relationships present in data. Nonethe-
less, the choice of input data is not a trivial matter when difficult noisy data is
handled. Data preprocessing and decomposition remain essential steps in the
knowledge discovery process for real world application and, when correctly car-
ried out, greatly improve the machine’s ability to capture valuable information.
Wavelet preprocessing and decomposing for enhancing prediction comes from
multiresolution analysis provided by wavelet transform. The wavelet transform
can decompose one time series into several time series with different resolu-
tions which have different levels of smoothness. The smoother level is more
predictable, whereas the detailed level is less predictable, or more related to the
noise.

Motivation An idea in modeling financial markets is the hypothesis of a het-
erogeneous market where the market agents differ in their perceptions of the
market, risk profiles, institutional constraints, degree of information, prior be-
liefs, and other characteristics such as geographical locations. Müller et al.
[Mue97] argue that many differences among market participants translate to a
sensitivity to different time horizons.

“The diversity of agents in a heterogeneous market makes volatilities of
different time resolutions behave differently” [Mue97]. The long memory of
volatility as already found in Dacorogna et al. [Dac93] and Ding et al. [Din93] is
explained in terms of different market participants with different time horizons,
from short-term dealers to long-term investors.

There is a growing number of studies dealing with different types of traders.
For example, Müller et al. [Mue97] focus on the time horizon and the temporal
resolution with which different traders are viewing and influencing the market.
They believe that the time horizon is one of the most important aspects in which
trading behaviors differ and give some evidence for this. They argue there is also
a methodological reason for this: the time horizon aspect can be investigated by
studying the time series of prices whereas the study of other properties of trader
groups often requires some less easily obtainable and quantifiable information.

Inspired by heterogeneous market agents, our basic idea is that different
classes of market agents perceive, react to, and in particular cause different
resolutions of volatility. Short-term traders evaluate the market at a higher
frequency and have a shorter memory than long-term traders. Thus, we di-
vide not only the market agents into different classes but also volatility into
different resolutions or scales. In turn, the heterogeneous agents cause different
volatility resolutions. A multi-agent approach with the type of noise trader-
fundamentalist interaction introduced by Beja and Goldman [Bej80] and Day
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and Huang [Day90]. It can be supposed that the noise traders or daily brokers
who trade daily, cause volatility of finer resolutions and fundamentalists who
invest yearly, cause volatility of coarser resolutions.

Objective Applying the multiresolution decomposition of a time series into
several scales by wavelets, our specific objective is to improve estimation perfor-
mance of the CHARN model estimated by support vector regression. Exploit-
ing multiresolution analysis, each separated scale especially the smoother scale
can be estimated more accurate than the original time series. Because time-
dependent events at various scales are properly localized by MODWT analysis,
it is particularly useful for analyzing and forecasting time series that exhibit
nonstationary characteristics. The objective comes through in both in-sample
and out-of-sample estimations by the multiresolution analysis. In general, im-
provement of the predictability power is considered as a direct goal for this
part.

Contribution This part contributes by combining a multiresolution analysis
with support vector regression in order to improve predictability power. In the
other side, combination of the multiresolution analysis with the financial time
series CHARN model is a new contribution.

Structure of the part The part contains chapters 4, 5, 6, and 7. Chap-
ter 4 discusses theoretically what is a multiresolution analysis. Some kinds of
wavelet functions are briefly defined in section 4.1. Section 4.2 is devoted to
theories explaining the multiresolution analysis by wavelets. The chapter uses
the maximal overlap discrete wavelet transform for decomposition of a time se-
ries into scales. It is described in this section. The maximal overlap discrete
wavelet transform is suitable for the multiresolution analysis demonstrated in
section 4.3. Section 4.4 compares Fourier transform with wavelet transform.
The theory behind support vector regression, i.e., statistical learning theory, is
illustrated in chapter 5. Then support vector regression is formulated in this
chapter. Section 5.1 describes the statistical learning theory. Support vector
regression is modeled in the next section. It is seen in section 5.3 that how
nonlinearity reality of for example financial time series is dealt with. Section
5.4 summarily introduces some popular implementation algorithms of support
vector regression. The financial time series CHARN model to be estimated by
support vector regression is explained in chapter 6. It is shown in section 6.2
that how the model is estimated. For estimation, some common nonparametric
algorithms are introduced in the next section. Then the results of model esti-
mation are appeared in chapter 7, section 7.1 with a single resolution design and
section 7.2 with a multiresolution design. Section 7.3 gives some conclusions on
the results of the present part.
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Chapter 4

Multiresolution analysis

4.1 Wavelet transformation

Wavelets are mathematical tools for analyzing time series or images (although
not exclusively so) [Per00]. Our discussion of wavelets here focuses on their use
with time series, which we take to be any sequence of observations associated
with an ordered independent variable t (the variable t can be assumed either
a discrete set of values such as integers or a continuum of values such as the
entire real axis). Broadly speaking, there have been two main waves of wavelets.
The first wave resulted in what is known as the continuous wavelet transform
(CWT), which is designed to work with time series defined over the entire real
axis; the second, in the discrete wavelet transform (DWT), which deals with
series defined essentially over a range of integers (usually t = 0, 1, ..., N − 1,
where N denotes the number of values in the time series).

4.1.1 The essence of a wavelet

What is a wavelet? As the name suggests, a wavelet is a small wave. A small
wave grows and decays essentially in a limited time period. The contrasting
notion is obviously a big wave. An example of a big wave is the sine function,
which keeps on oscillating up and down on a plot of sin(u) versus u ∈ (−∞,∞).
To begin to quantify the notion of a wavelet, let us consider a real-valued1 func-
tion ψ(.) defined over the real axis (−∞,∞) and satisfying two basic properties
[Per00].

1. The integral of ψ(.) is zero:

∫ ∞

−∞
ψ(u)du = 0. (4.1)

1Of course, in a wider exposition complex-valued wavelets can be assumed. But they are
applied in other areas such as geophysical applications than finance.
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2. The square of ψ(.) integrates to unity:

∫ ∞

−∞
ψ2(u)du = 1 (4.2)

(for the sine function, the above integral would be infinite, so sin2(.) cannot
be renormalized to integrate to unity).

If Equation (4.2) holds, then for any ǫ satisfying 0 < ǫ < 1, there must be
an interval [−T, T ] of finite length such that

∫ T

−T

ψ2(u)du > 1 − ǫ.

If we think of ǫ as being very close to zero, then ψ(.) can only deviate
insignificantly from zero outside of [−T, T ]: its nonzero activity is essentially
limited to the finite interval [−T, T ]. Since the length of the interval [−T, T ] is
vanishingly small compared to the infinite length of the entire real axis (−∞,∞),
the nonzero activity of ψ(.) can be considered as limited to a relatively small
interval of time. While Equation (4.2) says ψ(.) has to make some excursions
away from zero, Equation (4.1) tells us that any excursion, it make above zero,
must be canceled out by excursion below zero. So ψ(.) must resemble a wave.
Hence Equations (4.1) and (4.2) lead to a small wave or wavelet.

Based on the definitions below, one can verify that these functions indeed
satisfy Equations (4.1) and (4.2). A popular wavelet is called the Haar wavelet
function:

ψ(H)(u) ≡





−1/
√

2, −1 < u ≤ 0;

1/
√

2, 0 < u ≤ 1;
0, otherwise

(4.3)

The above is arguably the oldest wavelet function, being named after A.
Haar, who developed an analysis tool in an article in 1910 [Haa10]. To form
other two wavelets, we start with the Gaussian probability density function
(PDF) for a random variable with mean zero and variance σ2:

φ(u) ≡ e−u2/2σ2

√
2πσ2

, −∞ < u <∞.

The first derivative of φ(.) is

dφ(u)

d(u)
= −ue

−u2/2σ2

σ3
√

2π
.

If we renormalize the negative of the above to satisfy Equation (4.2), we
obtain the wavelet
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ψ(fdG)(u) ≡
√

2ue−u2/2σ2

σ3/2π1/4
. (4.4)

Equation (4.4) represents the first derivative Gaussian (fdG) wavelet trans-
form. With proper renormalization again, the negative of the second derivative
of φ(.) also yields a wavelet, usually referred to as the Mexican hat:

ψ(Mh)(u) ≡ 2(1 − u2

σ2 )e−u2/2σ2

π1/4
√

3σ
. (4.5)

To introduce Daubechies’ wavelet system, let us describe here the basic idea
and the principal characteristics of the multiresolution wavelet decomposition.
The multiresolution analysis will be followed in details later in MODWT frame-
work. The main equation of the multiresolution theory is the scaling equa-
tion which establishes a connection between the two symmetries underlying the
wavelet theory: dilations and translations [Gag94] [Lin93]. Given a set of coef-
ficients ak, k ∈ Z, the scaling equation

ϕ(x) = 2
∑

k

akϕ(2x− k), x ∈ R

and the normalization

∫
ϕ(x)dx =

∑

k

ak = 1,

define a scaling function ϕ(x). By defining the set of translates of the dilated
function ϕ(x),

ϕj,k(x) = 2j/2ϕ(2jx− k), j ∈ Z, (4.6)

the multiresolution analysis of L2(R) consists of the decomposition of the
Hilbert space L2(R) (the space of square-integrable functions) into the chain of
closed subspaces

... ⊂ Vj−1 ⊂ Vj ⊂ Vj+1 ⊂ ...

where

Vj = Span {ϕj,k(x), k ∈ Z}
and such that

⋂

j

Vj = {0} ,
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⋃

j

Vj = L2(R).

The set of functions ϕj,k(x) is called a Riesz basis of Vj [Che06b] [Res97].
According to above chain of closed subspaces, multiresolution property means
that Vj is a subset of Vj+1 [Che06b]. In fact a multiresolution analysis of L2(R)
is defined as a sequence of nested subspaces Vj with scaling function ϕ(x) if the
above properties hold. The multiresolution analysis aims to decompose L2(R)
as

L2(R) = Vj0 ⊕
∑

j≥j0

Wj , (4.7)

where Wj is defined as the orthogonal complement of Vj in Vj+1, that is

Vj+1 = Vj ⊕Wj . (4.8)

So, each element of Vj+1 can be uniquely written as the orthogonal sum of
an element in Vj and an element in Wj that contains the complementing details,
i.e., Vj+1 = Vj ⊕Wj . For a given scale j,

Wj = Span {ψj,k(x), k ∈ Z} ,
where

ψj,k(x) = 2j/2ψ(2jx− k), (4.9)

and ψ(x) is the wavelet of the multiresolution analysis which satisfies

ψ(x) = 2
∑

k

bkψ(2x− k) x ∈ R.

The function ψj,k(x) in (4.9) is called wavelet function. Following (4.7), any
function of L2(R) can be expanded as a linear combination of translates of the
scaling function ϕ(x) at some fixed scale and the translates of the wavelet ψ(x)
expressed at finer scales as

f(x) =
∑

k

vj0,kϕj0,k(x) +
∑

j≥j0

∑

k

wj,kψj,k(x).

Thanks to the orthonormal decomposition (4.8), we then have

VN = VN0
⊕WN0

⊕WN0+1...⊕WN−1

for some larger scale N0 < N . This decomposition amounts to consider the
equivalent finite expansion for f(x),
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f(x) =
∑

k

vN0,kϕN0,k(x) +
N−1∑

j=N0

∑

k

wj,kψj,k(x).

In this expansion which is called multiscale expansion [Mcc94], the first term
represents the approximation of f(x) at a given coarse scale. The remaining
terms are the corrections at finer scales. The expansion completely describes
the function f(x).

The basic ingredient of the multiresolution analysis, i.e., the scaling function
ϕ(x) entails four important constraints including: i) compactness of its support,
ii) orthogonality of its translates, iii) regularity, and iv) symmetry.

The first condition insures an exact local description of the functions of
L2(R). As a consequence, there are a finite number of non-vanishing scaling
coefficients ak, and it is considered ak 6= 0, for k = −J,−J + 1, ..., J, J + 1,
where J is an arbitrary integer. It is straightforward to show that both ϕj,k(x)
and ψj,k(x) have a support in the interval

[
2−j(−J + k), 2−j(J + k + 1)

]
. The

first three conditions define the so-called Daubechies’ wavelet analysis [Dau88]
for which the regularity condition sets the polynomial content of the V spaces
(scaling functions of regularity R(R ≤ J) allow exact representations of poly-
nomials of order R in the V spaces). The scaling function and its translations
thus define a polynomial interpolation scheme up to order J .

Daubechies [Dau88] found the system of the wavelet functions with 2N co-
efficients. Haar wavelet functions themselves are defined not to overlap each
other. On the other hand, Daubechies’ wavelet functions overlap each other to
some degree and interpolate together. Still they are orthogonal.

In summary, a wavelet by definition is any function that integrates to zero
and is square integrable. Here, we have intentionally given just a bare bones
definition of a wavelet so that we can focus on presenting the key concepts
behind the subject.

4.1.2 Wavelet applications

Wavelet transforms are now being adopted for a vast number of different ap-
plications. Many areas of physics including molecular dynamics, astrophysics,
density-matrix localization, seismic geophysics, optics, turbulence and quan-
tum mechanics. Other areas like engineering, industry, economics and finance,
chemie, bioinformatic, medicine, geophysics, computer science apply wavelet
analysis to solve related problems. In some of these problems like image pro-
cessing, blood-pressure, heart-rate, DNA analysis, protein analysis, climatol-
ogy, general signal processing, speech recognition, computer graphics, signal
denoising and multifractal analysis wavelet transforms is effectively used. Doc-
ument and texture analysis, character recognition, face and gesture recognition,
computer vision, biomedical image application, remote sensing, geophysics ex-
ploration, regression function approximation are among those applications of
wavelets. One use of wavelets is in data compression. Like several other trans-
forms, the wavelet transform can be used to transform raw data (like image,

76



audio and video), then encode the transformed data, resulting in effective com-
pression.

However, financial applications of wavelets in time series analysis are rela-
tively new but emerging.

A discrete wavelet transform (DWT) provides a background for the Max-
imal Overlap Discrete Wavelet Transform (MODWT). The Maximal Overlap
Discrete Wavelet Transform is suitable for multiresolution analysis applied in
this part.

4.1.3 The Discrete Wavelet Transform

The key feature in the discrete wavelet transform (DWT) is that the translation
parameter t is not continuous, but instead is integer. In practical applications,
we only have a finite numberN of sampled values. If we only have these samples,
it is not possible to compute a continuous wavelet exactly, but we can resort to
approximations. Generally, the discrete wavelet transform of a time series X of
the length N is a linear transformation which can therefore be represented in
matrix form

W = WX.

Here W is the column vector of DWT coefficients and W is an orthonormal
DWT matrix constructed according to the type of wavelet we choose to use.
Constantine, Percival, and Reinhall [Con01] mention a number of advantages in
using the discrete wavelet transform on turbulence data “as follows

• Decomposition based on scale: Turbulence is known to exhibit fluctuations
at various spatial scales, and hence the DWT is a natural analyzer.

• Decorrelation of time series: While turbulence data are typically highly
correlated, their wavelet coefficients are approximately uncorrelated. This
property is crucial for obtaining viable approximate maximum likelihood
estimates of fractionally differenced parameters.

• Localized time and scale content: Each wavelet coefficient is localized in
time, allowing us to track changes in the characteristics of a time series at
a particular scale as a function of time.

• Separation of nonlinear trends from noise: The wavelet coefficients are
inherently blind (invariant) to nonlinear polynomial trend contamination
in the original time series”.

Further details on discrete wavelet transform prescriptions can be found in
Appendix A where it is explained in a pyramid algorithm framework.
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4.2 The Maximal Overlap Discrete Wavelet Trans-
form

Here a modified version of the discrete wavelet transform called the maximal
overlap DWT (MODWT) is described. Essentially the same transform has been
discussed in the wavelet literature in the context of infinite sequences under the
name undecimated DWT (Shensa [She92]) and in the context of power of two
sequences under the names stationary DWT (Nason and Silverman [Nas94]),
translation-invariant DWT (Coifman and Donoho [Coi95]; Liang and Parks
[Lia96]), and time-invariant DWT (Pesquet, Krim, and Carfantan [Pes96]).

The maximal overlap discrete wavelet transform (MODWT) of Percival and
Walden [Per00] is basically a nondecimated version of the discrete wavelet trans-
form (DWT) of Mallat [Mal89]. Cornish, Bretherton, and Percival [Cor05] define
the MODWT. “The MODWT is a linear filtering operation that transforms a
series into coefficients related to variations over a set of scales. It is similar to
the DWT in that both are linear filtering operations producing a set of time-
dependent wavelet and scaling coefficients. Both have basis vectors associated
with a location t and a unitless scale τj = 2j−1 for each decomposition level
j = 1, ..., J0. Both are suitable for analysis of variance (ANOVA) and multires-
olution analysis (MRA)”.

As Percival and Mofjeld [Per97] explain, “the MODWT of a time series
leads to two types of analysis. The first is an additive decomposition known
as multiresolution analysis, which breaks up the series into a number of details
and a single smooth. Each detail is a time series describing variations at a
particular time scale, whereas the smooth describes the low-frequency variations.
The second type of analysis decomposes the sample variance of the time series
across different time scales and over time”. The decomposition across time is
facilitated by a compactly supported least asymmetric (LA) wavelet filter due
to Daubechies [Dau92] that helps events align in the analysis with events in the
original series.

Because time-dependent events at various scales are properly localized by
MODWT, it is particularly useful for analyzing and forecasting time series that
exhibit nonstationary characteristics.

Let X be a column vector containing a sequence X0,X1, ...,XN−1 of N
observations of a real-valued time series. We assume that the observationXt was
collected at time t, where ∆t is the time interval between adjacent observations
(e.g., ∆t = 1

2 day for a time series). It is also assumed that the sample size N
is an integer multiple of 2J , where J is a positive integer.

Decomposing an infinite sequence {Xt} of Gaussian random variables using
the MODWT to J0 levels theoretically involves the application of J0 pairs of
filters. The filtering operation at the jth level consists of applying a wavelet

(high-pass) filter
{
h̃j,l

}
to yield a set of wavelet coefficients
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W̄j,t =

Lj−1∑

l=0

h̃j,lXt−l (4.10)

and a scaling (low-pass) filter {g̃j,l} to yield a set of scaling coefficients

V̄j,t =

Lj−1∑

l=0

g̃j,lXt−l (4.11)

for all time t = ...,−1, 0, 1, ... [Per00]. The equivalent wavelet
{
h̃j,l

}
and

scaling {g̃j,l} filters for the jth level are a set of scale-dependent localized differ-
encing and averaging operators, respectively, and can be regarded as stretched
versions of the base (j = 1) filters. The jth level equivalent filter coefficients
have a width Lj = (2j − 1)(L− 1) + 1, where L is the width of the j = 1 base
filter. In practice, the filters for j > 1 are not explicitly created because the
wavelet and scaling coefficients can be generated sequentially using an elegant
algorithm that involves just the j = 1 filters operating on the jth level scaling
coefficients to generate the j + 1 level wavelet and scaling coefficients [Per00].
The jth level wavelet coefficients characterize those components of the signal
with fluctuations matching the unitless scale τj = 2j−1. If {Xt} is either a
stationary process or a non-stationary process with stationary backward differ-
ences, and L is suitably chosen, then W̄j,t is a Gaussian stationary process with
zero mean and known power spectral density [Per00].

In addition, MODWT coefficients for different scales are approximately un-
correlated and are hence useful statistical measures for partitioning variability
by scale.

The real world financial time series or signals are usually sampled over a
finite interval at discrete times. To complete the filtering operation at each
level for a finite time series {Xt}, t = 0, ..., N −1, the MODWT treats the series
as if it were periodic, whereby the unobserved samples X−1,X−2, ...,X−N are
assigned the observed values at XN−1,XN−2, ...,X0. The MODWT coefficients
are thus given by

W̃j,t =

Lj−1∑

l=0

h̃j,lXt−l mod N, (4.12)

and

Ṽj,t =

Lj−1∑

l=0

g̃j,lXt−l mod N, (4.13)
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for t = 0, ..., N − 1.
When considering the statistical properties of DWT coefficients, it is useful to

divide the wavelet and scaling coefficients into boundary and interior coefficients.
Boundary coefficients are those subject to change if the mod operator were
to be dropped in (4.12) and (4.13) [Con01]. Obviously, MODWT coefficients
generated by both beginning and ending components could be spurious. Hence,
we will adjust the boundary-affected coefficients later. This periodic extension
of the time series is known as analyzing {Xt} using circular boundary conditions.

Applying the MODWT to a time series requires specification of a wavelet
filter and of the index J0 for the maximum scale of interest. To make appropriate
selections we must take into account the goals of the analysis and time series
being analyzed.

4.2.1 Wavelet filter

There are two considerations about the filter choice: the type and the length.
Percival and Walden [Per00] demonstrate the artifacts in some of the DWT
filters, but the problem is much mitigated in MODWT case. Daubechies least
asymmetric (LA) MODWT filters, which are also called as symlets, are among
the popular choices, because LA filters provide most accurate synchronization
between wavelet coefficients and the original series. The Daubechies class of
wavelets possesses appealing regularity characteristics and produces transforms
that are effectively localized differences of adjacent weighted averages [Dau92].
The least asymmetric (LA) subclass has approximate linear phase and exhibits
near symmetry about the filter midpoint. This linear phase property means
that events and sinusoidal components in the wavelet and scaling coefficients
at all levels can be aligned with the original time series. For the MODWT,
this alignment is achieved by circularly shifting the coefficients by an amount
dictated by the phase delay properties of the basic filter.

The MODWT coefficients can be calculated from the Daubechies family
of compactly supported wavelet filters, which are well localized in time. Us-
ing Daubechies least asymmetric family of wavelet filters (LA), the MODWT
is constructed via approximate linear-phase filtering operations, thus allowing
wavelet coefficients at various scales to be aligned in time with the events of
the original series. This property makes the MODWT a particularly useful tool
in the analysis of time-dependent processes [Jen00]. Gencay et al. [Gen04] ex-
press that “the least asymmetry wavelet of length 8, i.e., LA(8) is a widely used
wavelet and is applicable in a wide variety of data types. In practice, if one
wants to have the MODWT coefficients be alignable in time, the optimal choice
is often LA(8)”.

Percival and Walden [Per00] argues that LA(8) often provides “a good trade-
off between the width of the wavelet function and its smoothness. Being rela-
tively short, and therefore providing a narrower cone of influence in the wavelet
decomposition, its shape is still a good match to the characteristic features for
most of the time series”. Least asymmetric means that the associated wavelet
filter has nearly zero phase property, i.e., the resulting features in the wavelet
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decomposition will be aligned in time with the features in the time series being
analyzed [Div07].

The choice of filters’ length is based on the trade-off between leakage and the
number of boundary affected coefficients. If the length (L) is larger, the filters
are much closer to the ideal high (low) pass only filters. However, the number
of boundary affected coefficients will increase, reducing the size of unaffected
coefficients. The LA filters are available in even widths L. The optimal filter
width is dependent on the characteristics of the signal and problem domain
of interest. A wider filter is smoother in appearance and reduces the possible
appearance of artifacts in multiresolution analysis (MRA) due to the filter shape.
It also results in better uncorrelatedness between wavelet coefficients across
scales for certain time series, which is useful for deriving confidence bounds
from certain wavelet-based estimates [Cra05]. However, using a wider filter
results in many more boundary coefficients, especially at higher levels.

Figure 4.1: The pyramid algorithm is an iterative filtering algorithm to transform a time
series into a collection of wavelet coefficients.
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4.2.2 Number of scales

A time series can be completely or partially decomposed into a number of scales
or levels. For complete decomposition of a series of length N = 2J using the
DWT, the maximum number of scales in the decomposition is J . In practice,
a partial decomposition of level J0 ≤ J suffices for many applications. A J0

level DWT decomposition requires that N be an integral multiple of 2J0 . The
MODWT can accommodate any sample size N and, in theory, any J0. In
practice, the largest level is commonly selected such that J0 ≤ 2(N) in order to
preclude decomposition at scales longer than the total length of the time series.
In particular, for alignment of wavelet coefficients with the original series, the
condition LJ0

< N , i.e., the width of the equivalent filter at the J0th level is less
than the sample size, should be satisfied to prevent multiple wrappings of the
time series at level J0. Selection of J0 determines the number of octave bands
and thus the number of scales of resolution in the decomposition.

The wavelet and scaling filters are used in a pyramid algorithm (an iterative
filter algorithm) to transform {Xt} into a collection of wavelet coefficients Wj,t

and scaling coefficients Vj,t that can be associated with scales of, respectively,
τj ≡ 2j−1 and τj , j = 1, ..., J [Con01]. Figure 4.1 illustrates the pyramid
algorithm. Appendix A explains the pyramid algorithm in more details. The
pyramid algorithm can also be interpreted as a cascade filter bank operation
[Con01].

4.3 Multiresolution analysis (MRA) by MODWT

Actually, the level-j wavelet coefficients, W̃j,t, are associated with changes of Xt

on the scale τj ≡ 2j−1 and the level-j scaling coefficients Ṽj,t are associated with
average of Xt on the scale 2τj. In multiresolution analysis, the level-j wavelet
details are defined by

D̃j,t =

Lj−1∑

l=0

h̃j,lW̃j,t mod t = 0, ..., N, (4.14)

and the level-j wavelet smooths by

S̃j,t =

Lj−1∑

l=0

g̃j,lṼj,t mod t = 0, ..., N. (4.15)

As with the wavelet and scaling coefficients, the level-j wavelet details D̃j,t

are associated with changes ofXt on the scale τj and level-j wavelet smooths S̃j,t

are associated with average of Xt on the scale 2τj. A wavelet basis consists of a
father wavelet that represents the smooth baseline trend and a mother wavelet
that is dilated and shifted to construct different levels of detail. At high scales,
the wavelet has a small time support, enabling it to zoom in on details such
as spikes and cusps, and on short-lived phenomena. At low scales, wavelets
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capture long-run phenomena. D̃j,t is mother wavelet. A mother wavelet is
a source function, from which translated and scaled wavelet functions (with
different regions of support) are constricted. S̃j,t is the father wavelet, also
referred to as the scaling function that represents the coarsest components or
the smooth baseline trend of the function. It is just a horizontal line equal to
one. While the father wavelet integrates to one, the mother wavelet integrates
to zero, reflecting the fact that it is used to represent differences in the data
that average out to zero. The father wavelet covers the whole time support at
the lowest scale of resolution, while the mother wavelet is dilated and translated
to capture different levels of fineness. An alternative way to view the difference
is that the father wavelet acts as a low pass filter, whereas the mother wavelets
act as high pass filters. Different scales translate into different frequency bands
that are passed.

The MODWT is equivalent to the original time series in the sense that,
given the MODWT coefficients, we can reconstruct the original time series,
X. This leads to the following additive decomposition, which is known as a
multiresolution analysis (MRA)

Xt =
J∑

j=1

D̃j,t + S̃j,t. (4.16)

In the above, the Dj,t is an N dimensional vector that depends upon just

W̃j,t and hence is constructed using just those MODWT wavelet coefficients
that are associated with changes of averages on a scale of τj . This vector is
called a detail series and is the part of the MRA of X that can be attributed
to variations on a scale of τj . The final term in the MRA is S̃j,t, which again is

an N dimensional vector, but this depends just on the scaling coefficients Ṽj,t.

The vector S̃j,t is called the smooth series, because it is associated with averages
over scales 2τj and longer and hence captures the slowly varying portion of X.
Thus an MRA is an additive decomposition that expresses a time series as the
sum of several new series, each of which can be associated with variations on a
particular scale.

Percival and Mofjeld [Per97] mention four important “properties that dis-
tinguish the MODWT from the DWT:

1. While the DWT of level J restricts the sample size to an integer multiple
of 2J , the MODWT of level J is well defined for any sample size N (for
convenience, however, we again assume that N is at least as large as the
length L1 of the wavelet filter). When N is an integer multiple of 2J , the
DWT can be computed using O(N) multiplications, whereas the corre-
sponding MODWT requires O(N log2N) multiplications. There is thus a
computational price to pay for using the MODWT, but its computational
burden is the same as the widely used fast Fourier transform algorithm
and hence is usually quite acceptable.

2. As is true for the DWT, the MODWT can be used to form a multiresolu-
tion analysis. In contrast to the usual DWT, both the MODWT wavelet
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and scaling coefficients and multiresolution analysis are shift invariant in
the sense that circularly shifting the time series by any amount will circu-
larly shift by a corresponding amount the MODWT wavelet and scaling
coefficients, details and smooths.

3. In contrast to the DWT details and smooths, the MODWT details and
smooths are associated with zero phase filters, thus making it possible
to meaningfully line up features in a multiresolution analysis with the
original time series.

4. As is true for the DWT, the MODWT can be used to form an analysis
of variance based upon the wavelet and scaling coefficients. Under a sta-
tionarity assumption on the wavelet coefficients, the MODWT yields an
estimator of the variance of the wavelet coefficients that is statistically
more efficient than the corresponding estimator based on the DWT”.

4.4 Short Time Fourier Transform vs. Wavelet
Transform

The wavelet transform is often compared with the Fourier transform, in which
signals are represented as a sum of sinusoids. Just as Fourier analysis is based
upon the notion of representing (or re-expressing) a time series as a linear com-
bination of sinusoids, the idea underlying wavelet analysis is to represent the
series as a linear combination of wavelets. In Fourier analysis, each sinusoid is
associated with a particular frequency, so what frequencies are important in a
particular time series can be deduced by studying the magnitudes of the co-
efficients of the various sinusoids in the linear combination. In contrast, each
wavelet is associated with two independent variables, namely, time and scale,
because each wavelet is essentially nonzero only inside a particular interval of
times. Within that interval, the wavelet spends roughly an equal amount of
time above and below zero, so it appears to be a small wave.

The Short Time Fourier Transform (STFT) is a modified version of the
Fourier Transform. The Fourier Transform separates the waveform into a sum
of sinusoids of different frequencies and identifies their respective amplitudes.
Thus it gives us a frequency-amplitude representation of the signal. In STFT,
a nonstationary signal is divided into small portions, which are assumed to be
stationary. This is done using a window function of a chosen width, which is
shifted and multiplied with the signal to obtain the small stationary signals.
The Fourier Transform is then applied to each of these portions to obtain the
Short Time Fourier transform of the signal.

The problem with STFT goes back to the Heisenberg uncertainty princi-
ple which states that it is impossible for one to obtain which frequencies exist
at which time instance, but, one can obtain the frequency bands existing in a
time interval. This gives rise to the resolution issue where there is a trade-off
between the time resolution and frequency resolution. To assume stationarity,
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the window is supposed to be narrow, which results in a poor frequency res-
olution, i.e., it is difficult to know the exact frequency components that exist
in the signal; only the band of frequencies that exist is obtained. If the width
of the window is increased, frequency resolution improves but time resolution
becomes poor, i.e., it is difficult to know what frequencies occur at which time
intervals. Also, choosing a wide window may violate the condition of stationar-
ity. Consequently, depending on the application, a compromise on the window
size has to be made. Once the window function is decided, the frequency and
time resolutions are fixed for all frequencies and all times.

The wavelet transform solves the above problem to a certain extent. In con-
trast to the STFT, which uses a single analysis window, the wavelet transform
uses short windows at high frequencies and long windows at low frequencies.
This results in multiresolution analysis by which the signal is analyzed with
different resolutions at different frequencies, i.e., both frequency resolution and
time resolution vary in the time-frequency plane without violating the Heisen-
berg inequality.

Figure 4.2: The Time-Frequency tiling for (a) Time-Domain (b) Frequency-Domain (c)
STFT (d) Wavelet.

In the wavelet transform, as frequency increases, the time resolution in-
creases; likewise, as frequency decreases, the frequency resolution increases.
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Thus, a certain high frequency component can be located more accurately in
time than a low frequency component and a low frequency component can be
located more accurately in frequency compared to a high frequency component.

In summary, the main difference between two transforms is that wavelets are
localized in both time and frequency whereas the standard Fourier transform is
only localized in frequency. The Short-time Fourier transform (STFT) is also
time and frequency localized but there are issues with the frequency time resolu-
tion and wavelets often give a better signal representation using multiresolution
analysis. Figure 4.2 helps to understand the difference visually. Plot 4.2(a)
shows the time-frequency tiling in the time-domain plane and plot 4.2(b) shows
the tiling in frequency-domain plane. It is seen that plot 4.2(a) does not give
any frequency information and plot 4.2(b) does not give any time information.
Similarly plot 4.2(c) shows the tiling in STFT and plot 4.2(d) shows the tiling
in wavelet transform. It is seen that STFT gives a fixed resolution at all times,
whereas wavelet transform gives a variable resolution.
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Chapter 5

Support vector regression
machine

5.1 Statistical Learning Theory

Statistical Learning Theory (SLT) addresses a key question [Ped98] that “arises
when constructing predictive models from data-how to decide whether a par-
ticular model is adequate or whether a different model would produce better
predictions”. SLT is a framework in which learning from examples can be stud-
ied in a principled way. Whereas classical statistics typically assumes that the
form of the correct model is known and the objective is to estimate the model
parameters, statistical learning theory presumes that the correct form is com-
pletely unknown and the goal is to identify the best possible model from a set
of competing models. The models need not have the same mathematical form
and none of them need to be correct. The theory provides a sound statistical
basis for assessing model adequacy under these circumstances, which are pre-
cisely the circumstances encountered in machine learning, pattern recognition,
and exploratory data analysis.

5.1.1 Setting a learning problem

Vapnik [Vap99] explains that “the model of learning from examples can be
described using three components:

1. a generator of random vectors, drawn independently from a fixed but
unknown distribution P (x);

2. a supervisor that returns an output vector y for every input vector x,
according to a conditional distribution function1 P (y |x) , also fixed but
unknown;

1This is the general case which includes a case where the supervisor uses a function y =
f(x).
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3. a learning machine capable of implementing a set of functions f(x, α),
α ∈ Λ”.

The problem of learning is that of choosing from the given set of functions
f(x, α), α ∈ Λ, the one which predicts the supervisor’s response in the best pos-
sible way. The selection is based on a training set of random independent identi-
cally distributed (i.i.d.) observations drawn according to P (x, y) = P (x)P (y |x) ,

(x1, y1), ..., (xℓ, yℓ). (5.1)

Here, (5.1) denotes a training data set.

5.1.2 Problem of risk minimization

Estimating the performance of competing models is the central issue in statisti-
cal learning theory. Performance is measured through the use of loss functions.
In other words, in order to choose the best available approximation to the su-
pervisor’s response, one measures the loss or discrepancy L(y, f(x, α)) between
the response y of the supervisor to a given input x and the response f(x, α) pro-
vided by the learning machine. Consider the expected value of the loss, given
by the risk functional

R(α) =

∫
L(y, f(x, α))dP (x, y). (5.2)

The goal is to find the function f(x, α0) which minimizes the risk functional
R(α) (over the class of functions f(x, α), α ∈ Λ ) in the situation where the joint
probability distribution P (x, y) is unknown and the only available information
is contained in the training set (5.1).

Regression estimation is one of the typical problems such as pattern recogni-
tion, regression estimation, and density estimation in learning problems based
on the statistical learning theory. Let the supervisor’s answer y be a real value,
and let f(x, α), α ∈ Λ be a set of real functions which contains the regression
function

f(x, α0) =

∫
ydP (y |x).

It is known that if f(x, α) ∈ L, then the regression function is the one which
minimizes the functional (5.2) with the the following loss function:

L(y, f(x, α)) = (y − f(x, α))2. (5.3)

Thus the problem of regression estimation is the problem of minimizing
the risk functional (5.2) with the loss function (5.3) in the situation where the
probability measure P (x, y) is unknown but the data (5.1) are given.
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The general setting of the learning problem can be described as follows. Let
the probability measure P (z) be defined on the space Z. Consider the set of
functions Q(z, α), α ∈ Λ. The goal is to minimize the risk functional

R(α) =

∫
Q(z, α)dP (z), (5.4)

α ∈ Λ if probability measure P (z) is unknown but an i.i.d. sample

z1, ..., zℓ (5.5)

is given. The learning problems considered above are particular cases of this
general problem of minimizing the risk functional (5.4) on the basis of empirical
data (5.5), where z describes a pair (x, y) andQ(z, α) is the specific loss function.
Below we will describe results obtained for the general statement of the problem.
To apply it for specific problems one has to substitute the corresponding loss
functions in the formulas obtained.

5.1.3 Empirical Risk Minimization

It is assumed that the expected risk is defined on a large class of functions F
and we will denote by f0 the function which minimizes the expected risk in
F . If we allow f0 to be taken from a very large class of functions F , we can
always find a f0 that leads to a rather small value of risk. The function f0 is our
ideal estimator, and it is often called the target function. This function cannot
be found in practice, because the probability distribution P (x, y) in (5.2) that
defines the expected risk is unknown, and only a sample of it, the data set (5.1),
is available. To overcome this shortcoming, we need an induction principle
that we can use to learn from the limited number of training data we have.
The SLT, as developed by Vapnik [Vap98], builds on the so-called Empirical
Risk Minimization (ERM) induction principle. The ERM method consists in
using the data set (5.1) to build a stochastic approximation of the expected
risk. Therefore, in order to minimize the risk functional (5.4), for an unknown
probability measure P (z), the following induction principle is usually used. The
expected risk functional R(α) is replaced by the empirical risk functional

Remp(α) =
1

ℓ

ℓ∑

i=1

Q(z, α) (5.6)

constructed on the basis of the training set (5.5). The principle is to approx-
imate the function Q(z, α0) which minimizes risk (5.4) by the function Q(z, αℓ)
which minimizes empirical risk (5.6). This principle is called the empirical
risk minimization induction principle (ERM principle). The ERM principle is
quite general. The classical methods for solving a specific learning problem,
such as the least squares method in the problem of regression estimation or
the maximum likelihood method in the problem of density estimation are real-
izations of the ERM principle for the specific loss functions. Indeed, in order
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to specify the regression problem, one introduces a n + 1-dimensional variable
z = (x, y) = (x1, ..., xn, y) and uses loss function (5.3). Using this loss function
in the functional (5.6) yields the functional

Remp(α) =
1

ℓ

ℓ∑

i=1

(yi − f(x, α))2,

which one needs to minimize in order to find the regression estimate (i.e.,
the least square method).

5.1.4 Four ingredients of Learning Theory

Learning theory has to address the following four questions [Vap99]:

1. What are the conditions for consistency of the ERM principle? To answer
this question one has to specify the necessary and sufficient conditions
for convergence in probability of the following sequences of the random
values.

(a) The values of risks R(αℓ) converging to the minimal possible value
of the risk R(α0) where R(αℓ), ℓ = 1, 2, ... are the expected risks for
functions Q(z, αℓ), each minimizing the empirical risk Remp(αℓ),

R(αℓ) → Pℓ→∞R(α0). (5.7)

(b) The values of obtained empirical risks Remp(αℓ), i = 1, 2, ... con-
verging to the minimal possible value of the risk R(α0)

Remp(αℓ) → Pℓ→∞R(α0). (5.8)

Equation (5.7) shows that solutions found using ERM converge to the best
possible one. Equation (5.8) shows that values of empirical risk converge
to the value of the smallest risk.

2. How fast does the sequence of smallest empirical risk values converge to
the smallest actual risk? In other words, what is the rate of generalization
of a learning machine that implements the empirical risk minimization
principle?

3. How can one control the rate of convergence (the rate of generalization)
of the learning machine?

4. How can one construct algorithms that can control the rate of generaliza-
tion?

The answers to these questions form the four ingredients of learning theory:
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1. the theory of consistency of learning processes;

2. the nonasymptotic theory of the rate of convergence of learning processes;

3. the theory of controlling the generalization of learning processes;

4. the theory of constructing learning algorithms.

5.1.5 Consistency of learning processes

The theory of consistency is an asymptotic theory. It describes the necessary
and sufficient conditions for convergence of the solutions obtained using the pro-
posed method to the best possible as the number of observations is increased.
The question arises: Why do we need a theory of consistency if our goal is
to construct algorithms for a small (finite) sample size? We need a theory
of consistency because it provides not only sufficient but necessary conditions
for convergence of the empirical risk minimization inductive principle. There-
fore, any theory of the empirical risk minimization principle must satisfy the
necessary and sufficient conditions. The main capacity concept, the so-called
Vapnik-Cervonenkis (VC) entropy has been introduced by Vapnik and Chervo-
nenkis [Vap71], [Vap81], [Vap91] which defines the generalization ability of the
ERM principle. It is shown that the nonasymptotic theory of learning is based
on different types of bounds that evaluate this concept for a fixed amount of ob-
servations. The key theorem of the theory concerning the ERM-based learning
processes is the following [Vap99].

“The Key Theorem:

The Key Theorem: Let Q(z, α), α ∈ Λ be a set of functions that has a
bounded loss for probability measure P (z)

A ≤
∫
Q(z, α)dP (z) ≤ B,

and ∀α ∈ Λ. Then for the ERM principle to be consistent it is necessary
and sufficient that the empirical risk Remp(α) converges uniformly to the actual
risk R(α) over the set Q(z, α), α ∈ Λ as follows:

limℓ→∞Prob
{
supα∈Λ(R(α) −Remp(α)) > ε

}
= 0, (5.9)

and ∀ε. This type of convergence is called uniform one-sided convergence”.
In other words, according to the Key theorem the conditions for consistency
of the ERM principle are equivalent to the conditions for existence of uniform
one-sided convergence (5.9). This theorem is called the Key theorem because
it asserts that any analysis of the convergence properties of the ERM principle
must be a worst case analysis. The necessary condition for consistency (not
only the sufficient condition) depends on whether or not the deviation for the
worst function over the given set of functions
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∆(αworst) = supα∈Λ(R(α) −Remp(α)),

converges in probability to zero. From this theorem it follows that the anal-
ysis of the ERM principle requires an analysis of the properties of uniform
convergence of the expectations to their probabilities over the given set of func-
tions. To describe the necessary and sufficient condition for uniform convergence
(5.9), we explain a concept called the entropy of the set of functions Q(z, α),
α ∈ Λ on the sample of size ℓ.

Let A ≤ Q(z, α) ≤ B, α ∈ Λ be a set of bounded loss functions. Using this
set of functions and the training set (5.5) one can construct the following set of
ℓ-dimensional real-valued vectors

q(α) = Q(z1, α), ..., Q(zℓ, α)), α ∈ Λ (5.10)

This set of vectors belongs to the ℓ-dimensional cube with the edge B−A and
has a finite ε-net in the metric C. Let N = NΛ(ε; z1, ..., zℓ) be the number of
elements of the minimal2 ε-net of the set of vectors q(α), α ∈ Λ. The logarithm
of the (random) value NΛ(ε; z1, ..., zℓ)

HΛ(ε; z1, ..., zℓ) = lnNΛ(ε; z1, ..., zℓ),

is called the random VC-entropy of the set of functions A ≤ Q(z, α) ≤ B on
the sample size z1, ..., zℓ. The random entropy describes the diversity of the set
of functions on the given data. It is a random variable since it is constructed
using random i.i.d. data. The expectation of the random VC-entropy

HΛ(ε; ℓ) = ENΛ(ε; z1, ..., zℓ)

is called the VC-entropy of the set of functions A ≤ Q(z, α) ≤ B, α ∈ Λ
on the sample of the size ℓ. Here expectation is taken with respect to product-
measure P (z1, ..., zℓ) = P (z1), ..., P (zℓ). The main results of the theory of uni-
form convergence of the empirical risk to actual risk for bounded loss function
includes the following theorem [Vap71].

Theorem: For uniform two-sided convergence of the empirical risks to the
actual risks

limℓ→∞Prob
{
supα∈Λ

∣∣R(α) −Remp(α)
∣∣ > ε

}
= 0,∀ε, (5.11)

2The set of vectors q(α), α ∈ Λ has minimal ε-net q(α1), ..., q(αN ) if there exist N =
NΛ(ε; z1, ..., zℓ) vectors q(α1), ..., q(αN ), such that for any vector q(α∗), α∗ ∈ Λ one can find
among these N vectors one q(αr) which is ε-close to this vector (in a given metric). For a C
metric that means

ρ(q(α∗), q(αr)) = max1≤i≤ℓ |Q(zi, α
∗) − Q(zi, αr)| ≤ ε.

N is minimal number of vectors which possess this property.
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it is necessary and sufficient that the equality

limℓ→∞
HΛ(ε, ℓ)

ℓ
= 0,∀ε > 0 (5.12)

be valid. According to the key assertion, this implies the necessary and
sufficient conditions for consistency of the ERM principle.

Under which conditions is the asymptotic rate of convergence fast? The
asymptotic rate of convergence is fast, if for any ℓ > ℓ0 the exponential bound

P {R(αℓ) −R(α0) > ε} < e−cε2ℓ

holds true, where c > 0 is some constant. The equation

limℓ→∞
HΛ

ann(ℓ)

ℓ
= 0

describes the sufficient condition for fast convergence. It guarantees a fast
asymptotic rate of convergence. Note that both the equation describing the
necessary and sufficient condition for consistency and the one that describes
the sufficient condition for fast convergence of the ERM method are valid for
a given probability measure P (z) (both VC-entropy HΛ(ℓ) and VC-annealed
entropy HΛ

ann(ℓ) are constructed using this measure). However our goal is to
construct a learning machine for solving many different problems (i.e., for many
different probability measures).

Under what conditions is the ERM principle consistent and rapidly converg-
ing, independently of the probability measure? The following equation describes
the necessary and sufficient conditions for consistency of ERM for any proba-
bility measure

limℓ→∞
GΛ(ℓ)

ℓ
= 0,

where GΛ(ℓ) is a growth function. This condition is also sufficient for fast
convergence. It describes the conditions under which the learning machine im-
plementing ERM principle has an asymptotic high rate of convergence indepen-
dently of the problem to be solved.

5.1.6 Bounds on rate of convergence of learning machine

In order to estimate the quality of the ERM method for a given sample size, it is
necessary to obtain nonasymptotic bounds on the rate of uniform convergence.
A nonasymptotic bound of the rate of convergence can be obtained using a
new capacity concept, called the VC dimension, which allows us to obtain a
constructive bound for the growth function. The concept of VC-dimension is
based on a remarkable property of the growth function GΛ(ℓ).
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Theorem: Any growth function either satisfies the equality

GΛ(ℓ) = ℓln2

or is bounded by the inequality

GΛ(ℓ) < h

(
ln
ℓ

h
+ 1

)

where h is an integer for which

GΛ(h) = hln2,

GΛ(h+ 1) 6= (h+ 1)ln2.

In other words, the growth function will be either a linear function or will
be bounded by a logarithmic function. (For example, it cannot be of the form
GΛ(ℓ) = c

√
ℓ).

Equivalently to define, the VC-dimension of a set of indicator functions
Q(z, α), α ∈ Λ, is the maximum number h of vectors z1, ..., zh which can be
separated in all 2h possible ways using functions of this set3 (shattered by this
set of functions). If for any n there exists a set of n vectors which can be shat-
tered by the set Q(z, α), α ∈ Λ, then the VC-dimension is equal to infinity. Let
a ≤ Q(z, α) ≤ A,α ∈ Λ be a set of real-valued functions bounded by constants a
and A (a can approach −∞ and A can approach ∞). Let us consider along with
the set of real-valued functions Q(z, α), α ∈ Λ, the set of indicator functions

I(z, α, β) = θ {Q(z, α) − β} , α ∈ Λ (5.13)

where a < β < A is some constant, θ(u) is the step function

θ(u) =

{
0, if u < 0
1, if u ≥ 0.

The VC-dimension of the set of real valued functionsQ(z, α), α ∈ Λ is defined
to be the VC-dimension of the set of indicator functions (5.13).

In following, distribution independent bounds for the rate of convergence of
learning processes is addressed. Consider sets of functions which possess a finite
VC-dimension h. Two cases are distinguished: 1) the case where the set of loss
functions Q(z, α), α ∈ Λ is a set of totally bounded functions; 2) the case where
the set of loss functions Q(z, α), α ∈ Λ is not necessarily a set of totally bounded
functions.

Case 1- The Set of Totally Bounded Functions: Without restriction in gen-
erality, we assume that

3Any indicator function separates a set of vectors into two subsets: the subset of vectors
for which this function takes value zero and the subset of vectors for which it takes value one.
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0 ≤ Q(z, α) ≤ B, α ∈ Λ (5.14)

The main result in the theory of bounds for sets of totally bounded functions
is the following [Vap98],[Vap95].

Theorem: With probability at least 1 − η, the inequality

R(α) ≤ Remp(α) +
Bε

2

(
1 +

√
1 +

4Remp(α)

Bε

)
(5.15)

holds true simultaneously for all functions of the set (5.14), where

ε = 4
h
(
ln 2ℓ

h + 1
)
− lnη

ℓ
. (5.16)

This theorem provides bounds for the risks of all functions of the set (5.13),
including the functionQ(z, αℓ) which minimizes empirical risk (5.6). The bounds
follow from the bound on uniform convergence (5.11) for sets of totally bounded
functions that have finite VC dimension.

Case 2- The Set of Unbounded Functions: Consider the set of (nonnegative)
unbounded functions 0 ≤ Q(z, α), α ∈ Λ. Without additional information about
the set of unbounded functions and/or probability measures, it is impossible to
obtain an inequality of type (5.15). Below we use the following information:

supα∈Λ

(∫
Qp(z, α)dP (z)

)1/P

∫
Q(z, α)dP (z)

≤ τ <∞ (5.17)

where p > 1 is some fixed constant4. The main result for the case of un-
bounded sets of loss functions is the following [Vap98],[Vap95].

Theorem: With probability at least 1 − η the inequality

R(α) ≤ Remp(α)

(1 − a(p)τ
√
ε)+

, a(p) =
p

√
1

2

(
p− 1

p− 2

)p−1

(5.18)

holds true simultaneously for all functions of the set, where ε is determined
by (5.17), (a)+ = max(a, 0). The theorem bounds the risks for all functions of
the set (including the function Q(z, αℓ)).

4This inequality describes some general properties of distribution functions of the random
variables ξα = Q(z, α), generated by the P (z). It describes the tails of distributions (the
probability of big values for the random variables ξα). If the inequality (5.17) with p > 2
holds, then the distributions have so-called light tails (large values do not occurs very often).
In this case rapid convergence is possible. If, however, (5.17) holds only for p < 2 (large values
of the random variables ξα occur rather often) then the rate of convergence will be small (it
will be arbitrarily small if p is sufficiently close to one).
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5.1.7 Structural Risk Minimization Induction Principle

The core results in statistical learning theory are a series of probability bounds
developed by Vapnik and Chervonenkis [Vap71], [Vap81], and [Vap91] that de-
fine small-sample confidence regions for the maximum difference between ex-
pected or true risk and empirical risk. The confidence regions differ from those
obtained in classical statistics in three respects. First, they do not assume that
the chosen model is correct. Second, they are based on small-sample statis-
tics and are not asymptotic approximations. Third, a uniform method is used
to take into account the degree to which overfitting can occur for a given set
of competing models. This method is based on a measurement known as the
Vapnik-Chervonenkis (VC) dimension. Conceptually speaking, the VC dimen-
sion of a set of models is the maximum number of data vectors for which over-
fitting is virtually guaranteed in the sense that one can always find a specific
model that fits the data exactly [Ped98]. Hence, the SLT provides probabilistic
bounds on the distance between the empirical and expected risk of any function
(therefore including the minimizer of the empirical risk in a function space that
can be used to control overfitting). Hence, to avoid overfitting (to get a small
confidence interval) one has to construct networks with small VC-dimension.

The theory for controlling the generalization of a learning machine is devoted
to constructing an induction principle for minimizing the risk functional which
takes into account the size of the training set (an induction principle for a small
sample size5). The goal is to specify methods which are appropriate for a given
sample size.

The ERM principle is intended for dealing with a large sample size. Indeed,
the ERM principle can be justified by considering the inequality (5.15). When
ℓ/h is large, the second summand on the right hand side of inequality (5.15)
becomes small. The actual risk is then close to the value of the empirical risk. In
this case, a small value of the empirical risk provides a small value of (expected)
risk. However, if ℓ/h is small, then even a small Remp(αℓ) does not guarantee
a small value of risk.

In general, straight minimization of the empirical risk in F can be problem-
atic. First, it is usually an ill-posed problem [Tik77] in the sense that there
might be many, possibly infinitely many, functions minimizing the empirical
risk. Second, it can lead to overfitting, meaning that although the minimum
of the empirical risk can be very close to zero, the expected risk-which is what
we are really interested in-can be very large. In fact, overfitting occurs when
the best model relative to the training data tends to perform significantly worse
when applied to new data.

In such the conditions, the minimization for R(α) requires a new principle,
based on the simultaneous minimization of two terms in (5.15) one of which
depends on the value of the empirical risk while the second depends on the VC-
dimension of the set of functions. To minimize risk in this case, it is necessary
to find a method which, along with minimizing the value of empirical risk,
controls the VC-dimension of the learning machine. The following principle,

5The sample size ℓ is considered to be small if ℓ/h is small, say ℓ/h < 20 [Vap99].
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which is called the principle of structural risk minimization (SRM), is intended
to minimize the risk functional with respect to both empirical risk and VC-
dimension of the set of functions.

Let S the set of functions Q(z, α), α ∈ Λ be provided with a structure: so
that S is composed of the nested subsets of functions Sk = {Q(z, α), α ∈ Λ}
such that

S1 ⊂ S2 ⊂, ..., Sn (5.19)

and S∗ = ∪kSk. An admissible structure is one satisfying the following three
properties.

1. The set S∗ is everywhere dense in S.

2. The VC-dimension hk of each set Sk of functions is finite.

3. Any element Sk of the structure contains totally bounded functions 0 ≤
Q(z, α) ≤ Bk, α ∈ Λk.

The SRM principle suggests that for a given set of observations z1, ..., zℓ

choose the element of structure Sn, where n = n(ℓ) and choose the particular
function from Sn for which the guaranteed risk (5.15) is minimal. The SRM
principle actually suggests a trade-off between the quality of the approximation
and the complexity of the approximating function (as n increases, the minima
of empirical risk are decreased; however, the term responsible for the confidence
interval (summand in (5.15)) is increased. The SRM principle takes both factors
into account.). The main results of the theory of SRM are the following [Dev96],
[Vap98].

Theorem: For any distribution function, the SRM method provides conver-
gence to the best possible solution with probability one.

In other words, SRM method is universally strongly consistent.

Theorem: For admissible structures the method of structural risk minimiza-
tion provides approximationsQ(z, α

n(ℓ)
ℓ ) for which the sequence of risks R(α

n(ℓ)
ℓ )

converges to the best one R(α0) with asymptotic rate of convergence6

V (ℓ) = rn(ℓ) +Bn(ℓ)

√
hn(ℓ)lnℓ

ℓ
, (5.20)

if the law n = n(ℓ) is such that

6We say that the random variables ξℓ, ℓ = 1, 2, ... converge to the value ξ0 with asymptotic
rate V (ℓ), if there exists constant C such that

V −1(ℓ) |ξℓ − ξ0| → Pℓ→∞C.

97



limℓ→∞
B2

n(ℓ)hn(ℓ)lnℓ

ℓ
= 0. (5.21)

In (5.20), Bn is the bound for functions from Sn and rn(ℓ) is the rate of
approximation

rn = infα∈Λn

∫
Q(z, α)dP (z) − infα∈Λ

∫
Q(z, α)dP (z).

To implement the SRM induction principle in learning algorithms one has
to control two factors that exist in the bound (5.15) which has to be minimized:
1) the value of empirical risk; 2) the capacity factor (to choose the element Sn

with the appropriate value of VC dimension).
Support Vector Machine as a well-known learning algorithm is firmly grounded

in the framework of statistical learning theory, or VC theory. One of the main
practical problems which can be solved in the Statistical Learning Theory frame-
work by the Support Vector Machine is regression estimation. In the rest of the
current chapter, we address the problem of regression estimation by the Support
Vector Machine formulation.

5.2 The ε-insensitive support vector regression

Two sets of random variables x ∈ X ⊆ Rd and y ∈ Y ⊆ R related by a prob-
abilistic relationship are considered. The relationship is probabilistic because
generally an element of X does not determine uniquely an element of Y , but
rather a probability distribution on Y . This can be formalized assuming that an
unknown probability distribution P (x, y) is defined over the set X ×Y . We are
provided with examples of this probabilistic relationship, that is with a data set
Dℓ ≡ {(xi, yi) ∈ X × Y }ℓ

i=1 called training set, obtained by sampling ℓ times
the set X × Y according to P (x, y). The problem of learning consists in, given
the data set Dℓ, providing an estimator, that is a function f : X → Y , that
can be used, given any value of x ∈ X, to predict a value y. For an example
consider a case where x is a set of parameters, such as pose or facial expres-
sions, y is a motion field relative to a particular reference image of a face, and
f(x) is a regression function which maps parameters to motion. For an example
from finance, the training data set might be the exchange rates for some cur-
rency or stock index measured at subsequent days together with corresponding
econometric indicators.

5.2.1 Standard formulation

In ε-SV Regression of Vapnik, the goal is to find a function f(x) that has at
most ε deviation from the actually obtained targets yi for all the training data,
and at the same time, is as flat as possible. In other words, we do not care
about errors as long as they are less than ε, but will not accept any deviation
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larger than this constant. This may be important if one wants to be sure not
to lose more than ε money when dealing with exchange rates, for instance. For
simplicity reasons, we begin by describing the case of linear functions f , taking
the form

f(x) = 〈w, x〉 + b (5.22)

with
w ∈ X, b ∈ R

where 〈., .〉 denotes the dot product in X. Flatness in the case of (5.22)
means that one seeks small w. One way to ensure this, is to minimize the
Euclidean norm, i.e., ‖w‖2

= 〈w,w〉. Formally, we can write this problem as a
convex optimization problem by requiring:

minimize
1

2
‖w‖2

(5.23)

subject to {
yi − 〈w, xi〉 − b ≤ ε
〈w, xi〉 + b− yi ≤ ε.

The implicit assumption in (5.23) is that such a function f actually exists
that approximates all pairs (xi, yi) with ε precision, or in other words, that the
convex optimization problem is feasible. Sometimes, however, this may not be
the case, or we also may want to allow for some errors. One can introduce slack
variables ξi, ξ

∗
i to cope with otherwise infeasible constraints of the optimization

problem (5.23). Hence, we arrive at the formulation (Smola and Schölkopf
[Smo04]):

minimize
1

2
‖w‖2

+ C

ℓ∑

i=1

(ξi + ξ∗i ) (5.24)

subject to

{
yi − 〈w, xi〉 − b ≤ ε+ ξi
〈w, xi〉 + b− yi ≤ ε+ ξ∗i

and ξi, ξ
∗
i ≥ 0. The constant C > 0 determines the trade-off between the

flatness of f and the amount up to which deviations larger than ε are toler-
ated. This corresponds to dealing with a so called ε-insensitive loss function,
|y − f(x)|ε, described by a binary loss function, where only the correspond-
ing input points with error larger than ε contribute to the cost insofar, as the
deviations are penalized in a linear fashion. The ε-insensitive loss function,
|y − f(x)|ε, is specified by

|y − f(x)|ε =

{
0, if |y − f(x)| ≤ ε

|y − f(x)| − ε, if otherwise.
(5.25)

Figure 5.1 depicts graphically the ε-insensitive loss function. It turns out
that in most cases the optimization problem (5.24) can be solved more easily in
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its dual formulation. Moreover, support vector machine can be solved based on
nonlinear functions utilizing kernel functions in high dimensional space. Hence,
a standard dualization method utilizing Lagrange multipliers is used. The key
idea is to construct a Lagrange function from the objective function and the
corresponding constraints, by introducing a dual set of variables. The Lagrange
function has a saddle point with respect to the primal and dual variables at the
solution. We have

L :=
1

2
‖w‖2

+ C

ℓ∑

i=1

(ξi + ξ∗i ) −
ℓ∑

i=1

(ηiξi + η∗i ξ
∗
i )

−
ℓ∑

i=1

αi(ε+ ξi − yi + 〈w, xi〉 + b)

−
ℓ∑

i=1

α∗
i (ε+ ξ∗i + yi − 〈w, xi〉 − b). (5.26)

Here L is the Lagrangian and ηi, η
∗
i , αi, α

∗
i are Lagrange multipliers. Hence,

the dual variables have to satisfy positivity constraints, i.e., ηi, η
∗
i , αi, α

∗
i ≥ 0.

It follows from the saddle point condition that the partial derivatives of L with
respect to the primal variables (w, b, ξi, ξ

∗
i ) have to vanish for optimality.

∂bL =

ℓ∑

i=1

(α∗
i − αi) = 0 (5.27)

∂wL = w −
ℓ∑

i=1

(αi − α∗
i )xi = 0 (5.28)

∂ξi
L = C − αi − ηi = 0 (5.29)

∂ξ∗

i
L = C − α∗

i=1 − η∗i = 0 (5.30)

Substituting (5.27), (5.28), (5.29), and (5.30) into (5.26) yields the dual
optimization problem. Finally, we have a dual optimization problem as

maximize

{
− 1

2

∑ℓ
i,j=1(αi − α∗

i )(αj − α∗
j ) 〈xi, xj〉

−ε∑ℓ
i=1(αi + α∗

i ) +
∑ℓ

i=1 yi(αi − α∗
i )

(5.31)

subject to
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{ ∑ℓ
i=1(αi − α∗

i ) = 0
αi, α

∗
i ∈ [0, C].

In deriving (5.31) we already eliminated the dual variables ηi, η
∗
i through

the conditions (5.29) and (5.30) which can be reformulated as ηi = C − αi and
η∗i = C − α∗

i . The Equation (5.28) can be rewritten as

w =
ℓ∑

i=1

(αi − α∗
i )xi. (5.32)

Therefore, the estimated regression function can be obtained by

f(x) =
ℓ∑

i=1

(αi − α∗
i ) 〈xi, x〉 + b, (5.33)

where αi and α∗
i are unknown variables of interest to be found by solving the

optimization problem. The estimated regression (5.33) is the so-called Support
Vector expansion, i.e., w can be completely described as a linear combination of
the training patterns xi. In a sense, the complexity of a function’s representation
by SVs is independent of the dimensionality of the input space X, and depends
only on the number of SVs. Moreover, note that the complete algorithm can
be described in terms of dot products between the data. Even when evaluating
f(x), we need not compute w explicitly. These observations will come in handy
for the formulation of a nonlinear extension.

Figure 5.1: Figure is adopted from Smola and Schölkopf [Smo04]. The left panel represents
fitting a linear regression by SVR machine. Errors equal to or smaller than ±ε are ignored in
fitting the curve. The right panel represents corresponding ε-insensitive loss function.
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Computing b can be done by exploiting the so called Karush-Kuhn-Tucker
(KKT) conditions. These state that at the point of the solution, the product
between dual variables and constraints has to vanish, i.e.,

αi(ε+ ξi − yi + 〈w, xi〉 + b) = 0 (5.34)

α∗
i (ε+ ξ∗i + yi − 〈w, xi〉 − b) = 0, (5.35)

and

(C − αi)ξi = 0 (5.36)

(C − α∗
i )ξ

∗
i = 0. (5.37)

This allows us to make several useful conclusions. Firstly only samples
(xi, yi) with corresponding αi, α

∗
i = C lie outside the ε-insensitive tube. Sec-

ondly, αiα
∗
i = 0, i.e., there can never be a set of dual variables αi, α

∗
i which are

both simultaneously nonzero. This allows us to conclude [Smo04] that

ε− yi + 〈w, xi〉 + b ≥ 0 and ξi = 0 if αi < C (5.38)

ε− yi + 〈w, xi〉 + b ≤ 0 ξi = 0 if αi > C. (5.39)

In conjunction with an analogous analysis on α∗
i we have

max {−ε+ yi − 〈w, xi〉 |αi < C or α∗
i > 0} ≤ b ≤

min {−ε+ yi − 〈w, xi〉 |αi > 0 or α∗
i < C} . (5.40)

If some α∗
i ∈ (0, C) the inequalities become equalities. See also Keerthi et al.

[Kee01] for further means of choosing b. From (5.34) and (5.35) it follows that
only for |f(xi) − yi| ≥ ε the Lagrange multipliers may be nonzero, or in other
words, for all samples inside the ε-tube the αi, α

∗
i vanish: for |f(xi) − yi| < ε the

second factor in (5.34) and (5.35) is nonzero, hence αi, α
∗
i have to be zero such

that the KKT conditions are satisfied. Therefore, we have a sparse expansion
of w in terms of xi (i.e., we do not need all xi to describe w). The examples
that come with nonvanishing coefficients are called Support Vectors.
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5.3 Nonlinearity

In many real world cases one has to make the SV algorithm nonlinear. This, for
instance, could be achieved by simply preprocessing the training patterns xi by
a map Φ : X → F into some feature space F and then applying the standard
SV regression algorithm.

Consider the map Φ : R2 → R3 with Φ(x1, x2) = (x2
1,
√

2x1x2, x
2
2), for an ex-

ample. It is understood that the subscripts in this case refer to the components
of x ∈ R2. Training a linear SV machine on the preprocessed features would
yield a quadratic function. While this approach seems reasonable in the par-
ticular example above, it can easily become computationally infeasible for both
polynomial features of higher order and higher dimensionality, as the number of
different monomial features of degree p is

(
d+p−1

p

)
where d = dim(X). Typical

values for OCR tasks with good performance are p = 7, d = 28 × 28 = 784,
corresponding to approximately 3.7 × 1016 features.

Clearly this approach is not feasible and we have to find a computationally
cheaper way. The key observation in Boser, Guyon and Vapnik [Bos92] is that
for the feature map of the abovementioned example, we have

〈
(x2

1,
√

2x1x2x
2
2), (x

′2
1 ,

√
2x

′

1x
′

2, x
′2
2 )
〉

=
〈
x, x

′

〉2

.

In fact, the SV algorithm only depends on dot products between patterns

xi. Hence, it suffices to know k(x, x
′

) :=
〈
Φ(x),Φ(x

′

)
〉

rather than Φ explicitly

which allows us to restate the SV optimization problem:

maximize

{
− 1

2

∑ℓ
i,j=1(αi − α∗

i )(αj − α∗
j )k(xi, xj)

−ε∑ℓ
i=1(αi + α∗

i ) +
∑ℓ

i=1 yi(αi − α∗
i )

(5.41)

subject to

{ ∑ℓ
i=1(αi − α∗

i ) = 0
αi, α

∗
i ∈ [0, C].

Likewise the expansion of f in (5.32) may be written as

w =

ℓ∑

i=1

(αi − α∗
i )Φ(xi), (5.42)

and therefore

f(x) =

ℓ∑

i=1

(αi − α∗
i )k(xi, x) + b. (5.43)

The difference to the linear case is that w is no longer given explicitly. Also
note that in the nonlinear setting, the optimization problem corresponds to
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finding the flattest function in feature space, not in input space. The question
that arises now is, which functions k(x, x

′

) correspond to a dot product in
some feature space F . In 1909, Mercer [Mer09] proved a theorem which defines
the general form of inner products in Hilbert spaces. The following theorem
characterizes these functions (defined on X).

Theorem: The general form of the inner product in Hilbert space is defined
by the symmetric positive definite function k(x, y) that satisfies the condition

∫
k(x, y)z(x)z(y)dxdy ≥ 0,

for all functions z(x), z(y) satisfying the inequality

∫
z2(x)dx ≤ ∞.

Therefore, any function satisfying Mercer’s condition can be used for con-
structing rule (5.41) which is equivalent to constructing an optimal regression
function in some feature space [Vap99]. The learning machines which construct
decision functions of the type (5.41) are called support vectors networks or Sup-
port Vector Machines (SVM’s) [Vap99]. This name stresses that for constructing
this type of machine, the idea of expanding the solution on support vectors is
crucial. In the SVM machines, the complexity of construction depends on the
number of support vectors rather than on the dimensionality of the feature
space. Using different expressions for inner products k(x, x

′

) one can construct
different learning machines with arbitrary types of (nonlinear in input space)
decision surfaces.

In summary, by replacing the inner product with an appropriately chosen
kernel function, one can implicitly perform a nonlinear mapping to a high di-
mensional feature space [Cri00]. Typical choices of kernels include, for example,
Gaussian, polynomial, and Radial Basis Function (RBF) kernels [Sch00]. The
SVM possesses “some useful properties [Vap99]:

• The optimization problem for constructing an SVM has a unique solution.

• The learning process for constructing an SVM is rather fast.

• Simultaneously with constructing the decision rule, one obtains the set of
support vectors.

• Implementation of a new set of decision functions can be done by changing
only one function (kernel K(xi, x)), which defines the dot product in Z-
space”.
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5.4 Implementation algorithms

While there has been a large number of implementations of SV algorithms in the
past years [Smo04], we focus on some of the most effective ones which are useful
for practitioners who would like to actually code a SV machine by themselves.
For doing so, we very briefly cover some major implementation algorithms and
optimization packages. There are, however, many other softwares implementing
a QP programming we do not enumerate here. First, we summarily concentrate
on the most effective and popular algorithms for implementing the QP program-
ming namely the interior point algorithm and sequential minimal optimization.

Interior point algorithm: In a nutshell, the idea of an interior point al-
gorithm is to compute the dual of the optimization problem and solve both
primal and dual simultaneously. This is done by only gradually enforcing the
KKT conditions to iteratively find a feasible solution and to use the duality
gap between primal and dual objective function to determine the quality of the
current set of variables. For both feasible primal and dual variables, the primal
objective function (of a convex minimization problem) is always greater or equal
than the dual objective function. Since SVMs have only linear constraints, the
constraint qualifications of the strong duality theorem (Bazaraa, Sherali and
Shetty [Baz93], Theorem 6.2.4) are satisfied and it follows that the gap vanishes
at optimality. Thus the duality gap is a measure how close (in terms of the
objective function) the current set of variables is to the solution.

Sequential minimal optimization: The Sequential Minimal Optimization
(SMO) algorithm was proposed by Platt [Pla99] that puts chunking to the ex-
treme by iteratively selecting subsets only of size 2 and optimizing the target
function with respect to them. In fact, the working set is restricted to only two
elements. The main advantage is that each two-variable sub-problem can be
analytically solved, so numerical optimization software are not needed. For this
method, at least two elements are required for the working set. Otherwise, the
equality constraint leads to a fixed optimal objective value of the sub-problem.
Then, the decomposition procedure stays at the same point. Therefore, the
SMO algorithm solves the SVM quadratic problem (QP) without using any nu-
merical QP optimization steps. Instead, it chooses to solve the smallest possible
optimization problem involving two elements of αi. At every step, SMO chooses
two αi to jointly optimize and finds the optimal values for these αi analytically,
thus avoiding numerical QP optimization, and updates the SVM to reflect the
new optimal values.

Most commercially available packages for Quadratic Programming (QP) can
also be used to train SV machines. These are usually numerically very sta-
ble general purpose codes, with special enhancements for large sparse systems.
While the latter is a feature that is not needed at all in SV problems (there the
dot product matrix is dense and huge) they still can be used with good success.
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OSL: This package was written by IBM-Corporation (1992). It uses a two-
phase algorithm. The first step consists of solving a linear approximation of the
QP problem by the simplex algorithm of Dantzig [Dan62]. Next a related very
simple QP problem is dealt with. When successive approximations are close
enough together, the second subalgorithm, which permits a quadratic objective
and converges very rapidly from a good starting value, is used. Recently an
interior point algorithm was added to the software suite.

CPLEX: This package has been provided by CPLEX-Optimization-Inc. (1994).
It uses a primal-dual logarithmic barrier algorithm introduced by Megiddo
[Meg89] instead with predictor-corrector step (see, e.g., Lustig, Marsten and
Shanno [Lus92], Mehrotra and Sun [Meh92]).

MINOS: Written by the Stanford Optimization Laboratory (Murtagh and
Saunders [Mur83]) uses a reduced gradient algorithm in conjunction with a
quasi-Newton algorithm. The constraints are handled by an active set strat-
egy. Feasibility is maintained throughout the process. On the active constraint
manifold, a quasi-Newton approximation is used.

MATLAB: The large-scale algorithm is a subspace trust-region method based
on the interior-reflective Newton method described in Coleman and Li [Col94]
and [Col96]. Each iteration involves the approximate solution of a large linear
system using the method of preconditioned conjugate gradients (PCG). For
medium-scale optimization, MATLAB uses an active set method, which is also
a projection method, similar to that described in Gill et al. [Gil81]. It finds an
initial feasible solution by first solving a linear programming problem.

LOQO: Developed by Vanderbei [Van94], it is another example of a primal-
dual interior point code which preserves the primal-dual symmetry. It is a
system for solving smooth constrained optimization problems. The problems
can be linear or nonlinear, convex or nonconvex, constrained or unconstrained.
The only real restriction is that the functions defining the problem be smooth
(at the points evaluated by the algorithm).
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Chapter 6

Modeling volatility

6.1 CHARN modeling volatility

Financial time series are of extremely complex nature. However, there exist
some universal phenomena that are called the stylized facts. The study of sta-
tistical properties of financial time series has revealed a wealth of interesting
the stylized facts which seem to be common to a wide variety of markets, in-
struments and periods. Rachev and Mittnik [Rach00] argue that “a complete
model should be rich enough to encompass relevant stylized facts, such as

• non–Gaussian, heavy–tailed and skewed distributions

• volatility clustering (ARCH–effects)

• temporal dependence of the tail behavior

• short– and long–range dependence”.

Among these properties, volatility clustering is one of the most important
stylized facts in financial time series data [Gau00]. Whereas price changes them-
selves appear to be unpredictable, the magnitude of those changes appear to be
predictable in the sense that large changes tend to be followed by large changes-
of either sign- and small changes tend to be followed by small changes.

In parametric modeling, the specification and estimation of any econometric
relationship possesses many significant challenges. This is especially true when
it comes to the choice of functional form, as the latter is not always suggested
or prescribed by the underlying economic theory. Any misspecification of the
functional form of an econometric model can have serious consequences for sta-
tistical inference, for example, the parameter estimates may be inconsistent.
Moreover, an important issue that arises in all estimation strategies for deal-
ing with volatility is exactly how anticipated values and volatility terms should
be related to the information available to agents. Most strategies presume lin-
earity, or perhaps a quadratic relationship [Pag88], normal or another specific
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distribution of innovations and there are serious consequences for estimation, if
these assumptions are invalid. A natural response to the overwhelming variety
of parametric ARCH or GARCH models involving misspecification, linearity
or quadratic, and distributional assumptions, is to consider and estimate more
flexible nonparametric models as a way of circumventing these difficulties as
Bollerslev, Engle, and Nelson state [Bol94]. Härdle and Yang [Hae96] stress
that nonparametric procedures are an interesting alternative to classical time
series analysis. The nonparametric technique follows the principle of “letting
the data speak for themselves”, and provides guidance in choosing parametric
models.

In fact, the nonparametric modeling of mean and variance function does
not depend on specific structures of any quantity. In the framework of ARCH
models, Gourieroux and Monfort [Gou92] model both the conditional mean and
the conditional variance nonparametrically. They specify

Yi =
J∑

j=1

αjI(Xi ∈ Aj) +
J∑

j=1

βjI(Xi ∈ Aj)ξi, (6.1)

Xi = (Yi−1, Yi−2, ..., Yi−m) ∈ Rmd, Yi ∈ Rd,

which is called Qualitative Threshold ARCH model. Here {Aj}J
j=1 with

fixed J denotes a partition of the set of lagged values for Y , and (αj), (βj)
are unknown parameter vectors and matrices respectively and ξi is white noise
[Hae96]. A generalization of model (6.1) to a wider class of conditional mean
and variance functions can be seen as a limit of (6.1) for J → ∞ thus allowing
J to be unknown

Yi = f(Xi) + σ(Xi)ξi, (6.2)

where ξi = (ξi1, ξi2, ..., ξid) ∈ Rd, i = m,m+ 1, ..., n are random vector vari-
ables and ξi are i.i.d. with E(ξ1j) = 0, for any 1 ≤ j ≤ d, E(ξ21j) = 1. The

mean vector function f : Rmd → Rd and volatility function σ : Rmd → Rd ×Rd

are unknown, σ(x) is positive definite for any x ∈ Rmd, and the initial value
Xm = (Ym−1, Ym−2, ..., Y0) is a random vector variable independent of {ξi}.
Here f(Xt) is the conditional mean function and σ(Xt) is the conditional vari-
ance function. The model neither makes structural assumptions on f and σ, nor
distributional assumptions on ξ. According to Härdle and Yang [Hae96], and
Härdle et al. [Hae98], the model (6.2) is called a Conditional Heteroskedastic
AutoRegressive Nonlinear (CHARN) model1 2, somehow as a nonparametric

1In 1993, Diebolt and Guegan [Die93] derive new bounds for the tail of the stationary
density of certain non-linear d-dimensional processes {Xt; t ∈ N} defined by the recursive
scheme Xt = T (Xt−1) + σ(Xt−1)εt, where T (x) is a function Rd → Rd(d ≥ 1), σ(x) is d × d
regular matrix-valued function defined on Rd and εt is a sequence of i.i.d. random variables
with mean 0 and variance 1 whose common distribution has a positive density µ(x). They
assume that σ(x) is invertible for all x. They do not assume that T (x) or σ(x) is continuous,
nor that the density µ(x) is Gaussian, or even continuous.

2Assuming that the observed process does not have the same trend functions and the same
volatility functions at each time instant, recently the CHARN model has been generalized to
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alternative to GARCH family of models. Estimation of the CHARN model is
relatively simple. Theoretical results about stability properties of thess pro-
cesses are available [Fra07]. Both the conditional mean and the conditional
variance (volatility) matrix are unknown functions of the past.

The CHARN model provides a generalization for the popular GARCH(1,1)
model in that f(X) is a nonparametric function, and most importantly σ2(x) is
not a linear function of X2

t−1. The symmetry in Xt−1 of the conditional variance
in GARCH models is a particularly undesirable restriction when modeling finan-
cial time series due to the empirically well documented leverage effect. However,
the CHARN model is more restrictive than traditional GARCH models in that
its markov property restricts its ability to effectively model the longer memory
that is commonly observed in return processes.

Mandelbrot, Fisher and Calvet [Man97] state that the common strand in
GARCH-type representations is a conditional distribution of returns that has a
finite, time-varying second moment. This directly addresses volatility clustering
in the data, and mitigates the problem of fat tails.

There are some theoretical reasons to believe that the return, Xi, may be
a (first order) Markov chain [Hei96]. If financial markets worked efficiently,
then all relevant information would be included in present returns3. In this
case, a forecast based on all available information is not better than a forecast
based solely on today’s returns. More precisely, the conditional distribution of
future returns based on the whole information set is equal to the conditional
distribution given today’s return. However, the assumption of efficiency is not
convincing if investors have to bear some cost for acquiring information. As
in Grossman and Stiglitz’s model [Gro80] returns may then reveal information
rather slowly. Whatever is the case, the ξi in the CHARN model (6.2) is explic-
itly assumed to be strict white noise.

6.2 Nonparametric estimation

Recall the CHARN model (6.2), in order to get the estimator for the condi-
tional mean and variance functions, Härdle and Tsybakov [Hae97] present local
polynomial estimators. As Martins-Filho and Yao [Mar06] discuss, the estima-
tors described by Härdle and Tsybakov [Hae97] for estimating the conditional
variance suffers from significant bias and does not produce estimators that are
constrained to be positive. Furthermore, the estimator is not asymptotically de-
sign adaptive to the estimation of f(Xi), i.e., the asymptotic properties of their
estimator for conditional volatility is sensitive to how well f(Xi) is estimated.

a model called Conditional Heteroscedastic Autoregressive Mixture of Experts (CHARME)
which is useful for modeling time series data that are piecewise stationary such that their
dynamics switch sometimes from one state to another. A typical example is given by stock
returns if the market changes from a quiescent to a volatile phase. For more detail, see Franke,
Stockis and Kamgaing [Fra07].

3This notion of efficiency is not to be confused with Pareto-efficiency. A suitable term
would be information-efficiency.
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Following [Mar06] and [Jul05], we therefore consider alternative estimation pro-
cedures due to Fan and Yao [Fan98], which is described as follows.

The first alternative is based on the following steps: i) Estimate f̂(Xi),
ii) Estimate the equation Y 2

i = g(Xi) + ξi, yielding an estimator ĝ(Xi) for
the second moment, iii) Estimate the conditional variance function σ̂2(Xi) =

ĝ(Xi) − f̂2(Xi). The only possible problem that may arise is the presence of
negative values for σ̂2(Xi) . The second alternative is as follows: i) Estimate

f̂(Xi) using some nonparametric technique, ii) Estimate the Heteroskedastic

residuals ǫ̂i = Yi − f̂(Xi), and demean them, ei = ǫ̂i − ǭ. Then estimate
e2i = σ2(Xi)+ηi, leading to the estimator σ̂2(Xi) which characterizes for having
σ̂2(Xi) > 0 for all i.

An important feature of nonparametric strategies based on interval specific
information is that, they provide asymptotically unbiased measures, and there-
fore approximately serially uncorrelated measurement errors. See Andersen et
al. [And02].

The CHARN model has usually been estimated by means of local polynomial
regression [Hae97], [Hae98], [Jul05], Nadaraya-Watson kernel regression [Hae92]
and local polynomial smoothing [Pol03] regression techniques. The techniques
have a good performance for approximating CHARN model. It is shown how
good they fit a regression function, regarding to Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) criterion. The MAE is similar to the
RMSE but is less sensitive to large forecast errors. On the other hand, the result
of MAE tends to place less emphasis on the larger errors and therefore, gives
a more conservative measure than the RMSE. Generally both of them measure
the deviation between actual and forecasted value. The forecasting powers of
these techniques for estimating CHARN model are compared. In addition to
the common techniques used in estimating the CHARN model, Neural Network
because of its popularity and the Support Vector Regression are considered for
estimation.

6.3 Algorithms for estimation

Before getting the functions, it is needed to briefly enumerate those algorithms
which would be used for fitting local polynomial, kernel and local polynomial
smoothing regression functions. These algorithms are alternative techniques as
benchmarks. The algorithms are run in software R which is an open source
system for statistical computation and graphics4 including stats, aws, e1071,
lpridge, AMORE and locfit libraries. We note that except loess algorithm,
conventional functions have no prediction method. In the next parts where the
results of running above functions would be presented, we will see this problem
is not crucial.

4More information about included packages, documents and downloading source codes can
be found on: http://www.r-project.org
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Lpepa: Local polynomial regression fitting with Epanechnikov weights is a
fast and stable algorithm for nonparametric estimation of regression functions
and their derivatives via local polynomials with Epanechnikov weight function.
This algorithm known as lpepa, can be run in the software R with package
Lpridge. More details can be found in [Sei94] and other related sources.

Ksmooth: It runs Nadaraya-Watson kernel regression estimate found in pack-
age of stats within software R. In fact, it is a kernel regression smoother which
is based on selecting an optimal bandwidth for smoothness level.

Loess: Local polynomial regression fitting in package stats, is possible also
using loess function. It fits a polynomial surface determined by one or more
numerical predictors, using local fitting. The fit is made using points in a
neighborhood of x, weighted by their distance from x (with differences in para-
metric variables being ignored when computing the distance). The size of the
neighborhood is controlled by span parameter α. More details are found in
[Cle92].

Aws: A local polynomial adaptive weights smoothing for regression with ad-
ditive errors can be run using aws algorithm in the Package aws in software
R. This function implements a local polynomial adaptive weights smoothing
procedure for regression problems with additive errors as described in [Pol03].
Adaptive weights smoothing is an iterative data adaptive smoothing technique
that is designed for smoothing in regression problems with discontinuous re-
gression function. The basic assumption is that the regression function can be
approximated by a simple local constant or local polynomial model.

Amore: The AMORE package would represent a neural network. This pack-
age offers a highly flexible environment and provides more control over the
learning details, allowing the user to customize the available functions. The
package is capable of training a multilayer feedforward network according to
both the adaptive and the batch versions of the gradient descent with momen-
tum backpropagation algorithm.

Svm: This algorithm implements support vector machine. It can be used to
carry out general regression and classification (of nu and epsilon-type), as well
as density estimation. It is nested in the e1071 package of the software R. The
original codes come from LibSVM codes. It works with different kernels.

A crucial problem in some of these methods, i.e., ksmooth, and lpepa used
here is the choice of the local bandwidth array. Too small bandwidths will lead
to a wiggly curve, too large ones will smooth away important details. Of course,
the performance of model depends strongly on choosing an optimal bandwidth.
Finding an optimal bandwidth using related methods like as kdeb in package
Locfit is really time expensive. Choosing an optimal architecture and topology
for the network in neural network learning seems as a typical problem too.
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Chapter 7

Experiments on different
resolution models

7.1 Experiments with single resolution model

7.1.1 Estimation schemes

Some algorithms, i.e., ksmooth and lpepa previously described need an optimally
chosen bandwidth. To do this, an automatically bandwidth selection using the
function kdeb in library locfit in software R is conducted and the value is directly
passed to the related functions. For the svm function, which runs support vector
regression included in library e1071, a radial basis kernel function is applied by
default. For the AMORE function, a MLP feedforward network according to
the adaptive type of the gradient descent with momentum backpropagation
algorithm is adopted. The activation function would be sigmoid as usual kind
of function. In order for uniformity, we keep all these features and properties
while running all functions for all data sets.

7.1.2 Data description

For experiments, real world daily data sets are exploited. Daily stock exchange
indices including S&P500, Nikkei225, Hang Seng, FTSE100, and DOW30 series
would be analyzed in our experiments. These real world data, all which are close
type, were extracted from Karlsruhe Capital Market Data Bank (Karlsruher
Kapitalmarktdatenbank (KKMDB)) at the University of Karlsruhe1. S&P500
covers a period consisting from 13. Nov. 1981 to 30. Dec. 2005 daily. Nikkei225,
Hang Seng, FTSE100, and DOW30 also cover duration respectively from 4. Jan.
1984, 31. Dec. 1986, 2. Apr. 1984, and 27. Jul. 1988 all to 30. Dec. 2005 daily.
We split all series into two sets: Two-third as in-sample data sets and one-third
as out-of-sample data sets. Crashes and bubbles may be included in data, for

1More information can be found on page: http://fmi.fbv.uni-karlsruhe.de/149.php
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example the crash of October 1987 is present in S&P500, but we do not intend
to address this problem here. Dealing with such a problem needs another kind
of financial time series modeling. The variables of interest in our analysis are
returns defined from daily abovementioned index values, pt. We define return
of an index by Xt = log(pt) − log(pt−1), t = −R + 1, ..., n, which is the return
from holding the index from time t−1 to time t.

Table 7.1: Descriptive statistics of indices

Statistic S&P500 Nikkei225 Hang Seng FTSE100 DOW30

Minimum -0.229 -0.161 -0.405 -0.130 -0.074
Maximum 0.087 0.124 0.172 0.076 0.062
Mean 0.00038 0.00009 0.00037 0.00030 0.00038
Median 0.00046 0.00037 0.00055 0.00062 0.00050
Sum 2.328 0.484 1.756 1.623 1.652
Variance 0.00011 0.00019 0.00030 0.00011 0.00010
Skewness -1.830 -0.119 -3.386 -0.547 -0.291
Kurtosis 41.152 7.737 76.576 8.152 4.970

Table 7.1 contains some basic descriptive statistics of our time series. Pos-
itive mean and median returns explain an average positive return trend. In
particular, excess kurtosis (peakedness) and skewness (asymmetry) show obvi-
ously our time series depart from normality. Among those of all indices, higher
kurtosis (76.6 and 41.2) and skewness (-3.38 and -1.83) coefficients for Hang Seng
and S&P500, for example, explain more distant distribution of these time series
from that of a normal. Since kurtosis coefficients of series are higher than 3 (for
a normal distribution), we find immediately that they are leptokurtic with fat
tail. Negative coefficients of skewness for all series describe that our probability
density functions are negatively skewed and therefore they are asymmetric with
longer negative tail. Since the probability densities are skewed, median values
of all series are higher than mean values.

These findings are confirmed by Figure 7.1 in which plots display kernel
density estimation of sample distributions for time series. Negative tails on
plots are evident. These findings are in line partly with those of Hoechstoetter,
Rachev and Fabozzi [Hoe05]. All of the tests performed in their study reject
the Gaussian hypothesis for the logarithmic returns of the German blue chip
stocks. Excess kurtosis here may be related to volatility clustering. From these
findings, we are empirically convinced to use nonparametric models which are
distribution free and need no assumption about distribution.

7.1.3 Results

Consider now the CHARN model (6.2) to be estimated by algorithms described
above. Table 7.2 indicates the results [Saf08a] of running model with regard
to RMSE and MAE criterion applying various techniques based on in-sample
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Figure 7.1: Kernel densities of the return data sets are graphically depicted. Leptokurtosis
with fat negative tails is obviously evident in distributions, in particular in S&P500 and Hang
Seng.

data set for fitting functions or training machines. Clearly, a nearly similar
performance is seen, for example in terms of RMSE, between loess (0.01, 0.014,
0.0094, and 0.014) and AMORE (0.011, 0.0159, 0.0106, and 0.01309) for all
data sets, excluding Hang Seng, but a dramatic discrepancy between both of
them with lpepa (0.024, 0.033, 0.022, and 0.031) and aws (0.015, 0.023, 0.016,
and 0.022) which have a relative poor performance to capture fully data points.
This result is also valid in terms of MAE. In some cases, for example S&P500,
FTSE100 and DOW30, discrepancies amount even to several times. More im-
portant, svm outperforms all other techniques with a remarkable difference for
all indices. For example, loess has mean absolute error 0.007, 0.00989, 0.01478,
0.0071, and 0.01, while svm has mean absolute error equal to 0.0064, 0.009,
0.012, 0.0068, and 0.0093, in fitting all time series respectively. Different perfor-
mance between svm with AMORE and loess, particularly in case of FTSE100,
is highly competitive.
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Table 7.2: Estimated RMSE and MAE (In-sample data set)

Technique Criteria S&P500 Nikkei225 Hang Seng FTSE100 DOW30

ksmooth RMSE 0.01058 0.01349 0.06580 0.00980 0.01549
MAE 0.00742 0.00930 0.04709 0.00734 0.01168

lpepa RMSE 0.02387 0.03317 0.04648 0.02258 0.03130
MAE 0.01672 0.02417 0.03045 0.01692 0.02370

loess RMSE 0.01000 0.01414 0.02191 0.00938 0.01367
MAE 0.00700 0.00989 0.01478 0.00715 0.01029

aws RMSE 0.01516 0.02345 0.03049 0.01612 0.02191
MAE 0.01181 0.01732 0.02101 0.02430 0.01693

AMORE RMSE 0.01106 0.01597 0.01986 0.01060 0.01309
MAE 0.00833 0.01222 0.01270 0.00768 0.01002

svm RMSE 0.00943 0.01330 0.01924 0.00894 0.01257
MAE 0.00640 0.00907 0.01188 0.00684 0.00933

According to Table 7.2, support vector regression clearly affords better per-
formance in terms of RMSE and MAE metrics than local polynomial regression,
Nadaraya-Watson kernel regression, neural network and local polynomial adap-
tive weights smoothing regression estimators.

To see the generalization performance of different estimators, out-of-sample
experiments have also been conducted in our investigation. Table 7.3 presents
the results. Since loess was a considerable competitor for svm and also the only
algorithm which provides a prediction method, among conventional techniques,
it was led into out-of-sample round. Based on the table, svm also outperforms
loess absolutely in case of all indices in prediction phase. Superiority of sup-
port vector machine in prediction of financial time series has been reported
by several authors. For example, Ullrich, Seese and Chalup [Ull05] conclude
that support vector machines consistently perform well relative to traditional
forecasting techniques in terms of forecasting accuracy and in terms of trading
performance via a simulated strategy. Application of SVMs is not restricted
only to the financial time series forecasting. SVMs have been successfully ap-
plied on for example bankruptcy prediction problem. The experiment results of
Min and Lee [Min05] show that SVM outperforms the other methods such as
multiple discriminant analysis (MDA), logistic regression analysis (Logit), and
three-layer fully connected back-propagation neural networks (BPNs). Härdle,
Moro, and Schäfer [Hae06] describe the rating methodology that is based on
the nonparametric nonlinear classification method, the support vector machine,
and a proposed nonparametric technique for mapping rating scores into prob-
abilities of default. They give an introduction to underlying statistical models
and introduce the results of testing their approach on the German Central Bank
data.
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Table 7.3: Estimated RMSE and MAE (Out-of-sample data set)

Technique Criteria S&P500 Nikkei225 Hang Seng FTSE100 DOW30

loess RMSE 0.01304 0.01581 0.01761 0.01233 0.00949
MAE 0.00492 0.01203 0.01344 0.00901 0.00720

svm RMSE 0.01183 0.01449 0.01342 0.01204 0.00848
MAE 0.00486 0.01092 0.00997 0.00871 0.00637

For simplicity, we have not carried out sensitivity analysis related to the free
parameters. However, a sensitivity analysis can reveal more details and may
improve performance. We summarize in the following important points:

• Tuning bandwidth for those algorithms which need this free parameter is
not only time-consuming but also is hard to find a rather well-tuned level
even using automatically kdeb function. The results critically depend on
that level. Choosing the optimal number of layers and neurons in neural
network is a difficult problem too.

• The SVR is faster than those techniques which need tuning bandwidth.
The regression function in SVR is only determined by the support vectors,
and the number of support vectors is smaller compared to the number of
training samples.

• Both training and testing stages for SVR show better results than other al-
gorithms. As explained previously, SVR machine provides smaller RMSE
and MAE than those of other alternative benchmark techniques. This is
because SVR adopt the structural risk minimization principle, eventually
leading to better generalization than conventional techniques. In addi-
tion, the SVR machine is eventually solved by a quadratic optimization
formulation by which a unique solution can be obtained.

In the next section, we investigate whether the wavelet decomposition can
still improve estimation accuracy of the regarded CHARN model. A multi-
scale resolution approach is compared to the traditional single resolution one
previously done. The objective is to improve previous results in estimation per-
formance of the model by following a wavelet preprocessing procedure, although
studies around heterogeneous financial agents present interesting findings which
deepen our proposition in theory.

7.2 Experiments with multiresolution model

Support vector regression, as a supervised learning machine provides a strong
framework for the representation of relationships present in data structure. In
previous section, it was experienced that it performs analogously well. Nonethe-
less, the choice of input data is not a trivial matter when difficult noisy and
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nonstationary data is handled. Data preprocessing and decomposition remain
essential steps in the knowledge discovery process for real world application
and, when correctly carried out, greatly improve the machine’s ability to cap-
ture valuable information. Wavelet preprocessing and decomposing for enhanc-
ing prediction power comes from multiresolution analysis provided by wavelet
transform. The wavelet transform can decompose one time series into several
time series with different resolutions which have different levels of smoothness.
The smoother level is more predictable, whereas the detailed level is less pre-
dictable, or more related to the noise. In this section, it is explored how the use
of nonlinear regression fed with decomposed data can aid in better capturing
useful information on various time scales.

By applying the wavelet representation, a multiresolution representation is
built based on the differences of information available at two successive resolu-
tions 2j and 2j+1. In fact, the multiresolution analysis is applied in order to
obtain a further information from the signal that is not readily available in the
row signal. Such a representation can be computed by decomposing the signal
using a wavelet orthonormal basis. Therefore, the multiresolution representa-
tions are very effective for analyzing the information content of signal. The
decomposition defines a multiresolution representation called a wavelet repre-
sentation [Mal89].

Among all wavelets proposed in the literature, Daubechies and Morlet wavelet
transforms have been increasingly adopted by signal and image processing re-
searchers [Mur04]. Daubechies discrete wavelets exhibit a good trade-off be-
tween parsimony and information richness. Haar wavelet, for example, as one
of popular wavelet transform, has some serious limitations because of its discon-
tinuity. Daubechies wavelets are orthogonal wavelets and have less information
redundancy than other wavelet transforms [Akh05]. They are nearly symmetric,
a necessary property for compactly supported wavelets [Sch02].

7.2.1 Estimation schemes

Now we keep all estimation conditions previously used for a single resolution
model estimation to suitably compare the results. Hence, the same data de-
scribed in Table 7.1, the same multi-step procedure of estimation, and the same
performance metrics (RMSE and MAE) are preserved for the multiresolution
model estimation. Since a neural network has been successfully trained to pro-
vide five days ahead forecasts for S&P500 as the initial idea of wavelet prepro-
cessing for enhancing prediction by Aussem, Campbell and Murtagh [Aus98],
we also estimate the Multiscale CHARN model by the AMORE package here.

In summary, using the MODWT transform (4.12) and (4.13) the wavelet and
scaling coefficients for time series are calculated, and then we feed several SVR
machines with the whole coefficients of each scale, obtained from (4.12) and
(4.13) equations, to run the CHARN model for each scale separately. On each
scale, a machine runs separately a CHARN model. Then we additively recon-
struct the wavelet details and smooths obtained by (4.14) and (4.15) using the
multiresolution analysis Equation (4.16). This multiresolution analysis strategy
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is identically implemented for both training and forecasting stages. The type of
wavelet system including the scaling filter and the wavelet filter is Daubechies
least asymmetric family of wavelet filters (LA) of the length or order 8 which
is particularly useful tool in the analysis of time-dependent processes. Usually
Daubechies’s least asymmetric wavelet of order 8 yields markedly better results
[Per93]. The least asymmetric LA(8) wavelet filter, based on eight non-zero
coefficients, yields coefficients that exhibit better uncorrelatedness across scales
than the Haar filter and is better suited for decomposition of broadband turbu-
lent signals [Cor05] [Mcc96]. The Daubechies least asymmetric scaling wavelet
filter (LA8) looks like the Mexican Hat, but is also weakly asymmetric; a fact
that makes LA(8) filter more malleable than the Mexican Hat [Wes04].

Aussem, Campbell, and Murtagh [Aus98] considered two types of wavelet
feature as follows:

1. Decomposition-based approach: Wavelet coefficients at a particular time
point are taken as a feature vector.

2. Scale-based approach: Modeling and predicting are run independently at
each resolution level, and the results were combined.

If we follow the scale-based approach, a crucial task remained is to know
how many and which wavelet coefficients will be used at each scale. A sparse
representation of the information contained in the decomposition is the key to
address this. There is no clear and efficient method to gain sparsity. However,
the standard support vector regression machine solves the problem efficiently,
since its solution is eventually sparse. Therefore, our scheme is selecting the
whole coefficients.

Utilizing the function modwt in package waveslim included in software R and
choosing arbitrarily 5 levels of scale, J=5, like that in Figure 7.2 for instance,
we would be able to decompose a time series into 5 scaled series plus a smooth
level. Then 5 scaled series plus a smooth series as input variables can feed 6 SVR
machines. After training, we additively reconstruct an estimated series (returns
on index) from the output of 6 machines. Test set phase follows exactly the
same procedure as that for train phase.

7.2.2 Results

The original training data points can be compared against 5 level decomposed
time series in Figure 7.2. Of course, if more level resolutions are selected, more
smoothed scales could be seen. The results of estimation by singlescale svm and
AMORE are repeated from Table 7.2 in Table 7.4 solely for comparison with the
results of the multiscale model. In all series, a multiscale svm model shows better
results than a singlescale resolution svm in training phase. Table 7.4 [Saf08a]
reports higher than 5% improvement in accuracy of multiscale model relative to
the singlescale model for Hang Seng, FTSE and DOW series in terms of RMSE.
It is also found that the results of model estimation by neural network have been
considerably improved from the singlescale to the multiscale model. Although
Support Vector Regression still outperforms absolutely Neural Network in our
experiments, in cases of S&P500 and Hang Seng the Neural Network reveals
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Figure 7.2: Original training data and 5 levels of resolution decomposition: Nikkei.

even better improvement. This implies that no matter what is the estimation
tool, the multiscale setup constructed based on decomposed time series models
better reality. Even better results for the test phase is observed. Since AMORE
dose not have prediction method, table 7.5 reports only the results of predicted
model by svm. Interestingly, it can be observed much more improvement in
out-of-sample data sets (Table 7.5). For an example, a multiresolution model
run by support vector machine can reach to 28.1% and 26.8% improvement of
accuracy in terms of RMSE and MAE relative to a single resolution model for
FTSE100 data set. Residuals of fitting and predicting functions are depicted
in Figure 7.3 to represent how much distance between real and captured points
is still residue. Smaller residuals in plots of svm and even better in plots of
multiresolution svm for both train and test sets are manifest.

119



0 1000 2000 3000

−
0.

05
0.

05

Loess: Residuals on train set

0 500 1000 1500

−
0.

10
0.

00

Loess: Residuals on test set

0 1000 2000 3000

−
0.

05
0.

05

SVM: Residuals on train set

0 500 1000 1500

−
0.

10
0.

05

SVM: Residuals on test set

0 1000 2000 3000

−
0.

10
0.

00

MultiScale SVM: Residuals on train set

0 500 1000 1500

−
0.

10
0.

05
MultiScale SVM: Residuals on test set

Figure 7.3: Residuals on fitting and predicting curves for Nikkei time series. Smaller resid-
uals for svm and rather for multiscale svm are obviously evident.

Table 7.4: Estimated RMSE and MAE (In-sample data set)
Technique Criteria S&P500 Nikkei225 Hang Seng FTSE100 DOW30
AMORE RMSE 0.01106 0.01597 0.01986 0.01060 0.01309

MAE 0.00833 0.01223 0.01270 0.00768 0.01002
Multiscale AMORE RMSE 0.01037 0.01544 0.01837 0.01021 0.01236

MAE 0.00796 0.01174 0.01202 0.00734 0.00977
Improvement (%) RMSE 6.21 3.26 7.51 3.71 5.54

MAE 4.52 3.98 5.30 4.47 2.46
svm RMSE 0.00943 0.01330 0.01924 0.00894 0.01257

MAE 0.00642 0.00907 0.01188 0.00684 0.00933
Multiscale svm RMSE 0.00911 0.01265 0.01811 0.00848 0.01183

MAE 0.00626 0.00880 0.01162 0.00640 0.00893
Improvement (%) RMSE 3.43 4.92 5.85 5.13 5.87

MAE 2.50 3.30 2.23 6.83 4.20

Exploitation from multiscale decomposition abilities and advantages can help
to enhance performance of time series modeling. Wavelets offer advantages
over traditional statistical analysis techniques, for example apart from other
advantages, ability to minimize correlation and time-dependency of data, and
in particular locality of the analysis and ability to handle multiscale informa-
tion. The interest in wavelets is their speed and locality. Locality is the most
important, because many economic time series and even natural phenomena
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are nonstationary and very local. Locality was realized in estimation procedure
by wavelet, and therefore one of reasons behind outperforming the Multiscale
CHARN model may be exploiting this ability. For some phenomena, it would
be impossible to make sense of the data without wavelets. Using their ability
to analyze data sets can help to understand difficult, chaotic and nonstation-
ary data sets. Wavelets are able to economically describe phenomena that are
heterogeneous.

Table 7.5: Estimated RMSE and MAE (Out-of-sample data set)
Technique Criteria S&P500 Nikkei225 Hang Seng FTSE100 DOW30

svm RMSE 0.01183 0.01449 0.01342 0.01204 0.00849
MAE 0.00886 0.01092 0.00997 0.00872 0.00637

Multiscale svm RMSE 0.00894 0.01095 0.01049 0.00866 0.00663
MAE 0.00666 0.00825 0.00800 0.00637 0.00493

Improvement (%) RMSE 24.4 24.4 21.82 28.1 21.83
MAE 24.73 24.45 19.78 26.8 22.65

In recent years a number of studies around financial markets based on inter-
acting heterogeneous agents with different time horizons have been developed.
These studies and their interesting results support theoretically advocating scale
based study of financial markets and therefore the Multiscale CHARN model.
Each scale seems to correspond to each agent or class of agents in a finan-
cial market. As a relative initial work, Müller et al. [Mue97] focused on time
horizons of investment by heterogeneous agents which trade at different fre-
quencies of prices. That is, the population of traders often consists of both
long-term traders and short-term traders. The diversity of agents in a heteroge-
neous market makes volatilities of different time resolutions behave differently.
Heterogeneity in agent’s time scale is believed to be responsible for a number of
stylized facts. Long term traders naturally focus on long term behavior of prices
thereby neglecting fluctuations at the smallest time scale, whereas short term
traders are not concerned with price movements on the long run but rather aim
to exploit short term predictability. A lagged correlation study in Dacorogna
et al. [Dac01] reveals that statistical volatility defined over a coarse time grid
significantly predicts volatility defined over a fine grid. It has been shown that
there is an asymmetry where the coarse volatility predicts fine volatility better
than the other way around.

7.3 Concluding remarks and some discussions

The SVR machine was applied for approximating volatility in CHARN frame-
work. An estimation by SVR was conducted and the results were compared
with those of benchmark techniques to estimate the CHARN model. The best
performance belongs to SVR among technical benchmarks. However, further
works may reveal more improvement in performance of SVR with regard to
choosing more appropriate kernels, and tuning free parameters.
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Moreover, applying the multiresolution analysis by wavelet transformation
utilizing the CHARN model studied. Locality capability and ability of ex-
plaining phenomena that are heterogeneous by wavelet analysis were exploited
through the multiscale decomposition in order to improve performance of es-
timation and forecasting so that the multiscale resolution model can capture
smooth and noise levels of time series separately using several SVR machines
more accurate than a singlescale resolution model. The results of the multiscale
model are remarkably promising.

A relevant question here may be if the scale time series resulted from mul-
tiresolution decomposition have the same properties that different frequencies
of an asset return have. In other words, if we decompose for an example a
frequency of 20 minute asset return to some scales by wavelets, then each of
decomposed scales would have those properties and stylized facts which lower
frequencies of 30, and 60 minute and so on have. The question is important,
since any time series model should capture any property existing in structure of
the data. We advocate however a wavelet decomposition to reach different time
scales which represent heterogeneous agents more reasonable and clear rather
the raw different finer frequencies based on reason that orthogonal wavelet func-
tions, have no overlap or projection to each other. This means that in a discrete
wavelet transform which is orthogonal, each scale does not overlap the next one
and therefore does not give redundant information. Daubechies wavelet, has
such the property. Instead a raw time series at, for example, 20 minute fre-
quency includes a 20 minute frequency itself, 30 minute, hourly and lower fre-
quencies. So, a higher frequency includes, and therefore overlaps, lower horizon
and lower frequencies. Thus using raw frequencies, representing heterogeneous
agents, could be misleading, whereas orthogonal wavelet decomposition seems
to represent heterogeneity clear, however this should be also studied further. In
wavelet domain, different decomposed scales imply the different frequencies of
a signal over the time.

Further study may reveal how many levels or scales in multiresolution anal-
ysis can have the best estimation performance or optimality in CHARN model
estimation or may mathematically reveal irregularity. But back to the real-
ity and heterogeneous agent models, this optimal number should be somehow
picked out around the number of agents or of class of agents who act differently
in an actual market, if we believe each scale corresponds to each agent or class
of agents, i.e., each class of agents causes volatility on its corresponding scale.

The conditional variance, σ(Xi), in the CHARN model is not a linear func-
tion of Xi. The symmetry in Xi of the conditional variance in GARCH models
is a particularly undesirable restriction when modeling financial time series due
to the empirically well documented leverage effect. However, CHARN model is
more restrictive than traditional GARCH models in that its markov property
restricts its ability to effectively model the longer memory that is commonly
observed in return processes [Mar06]. But in fact, as Martins-Filho and Yao
concluded [Mar06], their simulations indicate that accounting for nonlinearities
may be more important than richer modeling of dependency. This was why
CHARN model, rather than the GARCH model has been selected, in addition
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to those reasons latent in nonparametric modeling privileges.
Trading of the stock papers includes not only explicit but also implicit trans-

action costs which determine a decision of shareholders [Lue96]. Also dividends
are remarkable. In both GARCH and CHARN models, these variables are
assumed to be zero. Returns in these models refer to those from price’s differ-
ences. So, returns stemmed from price’s increments are not all of what an asset
holder obtains. The CHARN model however has still some another shortcom-
ings. Since volatility clustering implies that volatility comes and goes, thus a
period of high volatility will eventually give way to more normal volatility and
similarly, a period of low volatility will be followed by a rise. Mean reversion
in volatility is generally interpreted as meaning that there is a normal level of
volatility to which volatility will eventually return [Eng01]. Most evidences in
empirical finance indicate that returns on financial assets seem unforecastable
at short horizons as Granger claimed [Gra92]. Even mean reversion in volatility,
as a further stylized fact of volatility clustering, implies that current informa-
tion has no effect on the long run forecast. The CHARN model in first term is
not able to capture all levels of mean function. So need for a CHARN model
including mean shift function motivates future works.

One of the most important feature of return data is the persistence of volatil-
ity, which is interconnected to fat tailed returns. It is well known that models
in GARCH class generally will possess fat tails, but they are only an empirical
description, and not a true behavioral mechanism explaining the existence of
fat tailed distributions. Also the distributions of estimated residuals of these
models are often fat tailed themselves, suggesting that changing variances alone
do not give the whole story [Leb06].
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Chapter 8

Conclusions and discussions

The current chapter summarizes main results, conclusions and discussions of
the dissertation. They are presented in a more general level here. Details can
be found in the corresponding part.

Realized volatility and correlation estimators were addressed. The condi-
tional volatility is latent, and hence is not directly observable. It can be esti-
mated by several univariate, multivariate, conditional and stochastic approaches
of volatility such as GARCH family of models, stochastic volatility (SV) models
and exponentially weighted moving averages (EWMA) model. However, as it
has been observed most of the latent volatility models fail to describe satisfacto-
rily several stylized facts that have been observed in financial time series. More
important, realized volatility provides more precise ex-post observations of the
actual volatility compared to the other approaches based on daily or coarser
frequency data. In fact, the availability of high frequency data has sown seeds
for realized volatility modeling. Therefore, realized volatility as a model-free
and observable measure of volatility, which needs the analysis of high frequency
intraday data, has attracted lots of attention.

However, the biggest challenge to the realized volatility approach is the mi-
crostructure noise. It undermines consistency of the realized volatility estima-
tors. Several methods have recently been proposed in the ultra high frequency
financial literature to remove the effects of microstructure noise and to ob-
tain consistent estimates of the integrated volatility as a true measure of daily
volatility. Even bias-corrected and consistent realized volatility estimates of the
integrated volatility can contain residual microstructure noise and other mea-
surement errors that should not be neglected.

The consistency of proposed realized volatility and correlation estimators
for integrated volatilities and correlations have been studied under different
assumption of Gaussian noise. Naturally the consistency of different volatility
estimators differs, given they are constructed differently. It was observed that
the TSAV volatility estimator converges faster for integrated power variation as
the frequency increases even under the assumption of existence of microstructure
frictions. This implies that the estimator converges even at high frequency levels,
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where the noise especially exists. The TSAV estimator is constructed based on
the subsampling and averaging approach which corrects for the bias caused by
the microstructure noise.

Given a number of different realized volatility and correlation estimators, it
could be interesting to assess their ability to reproduce the stylized facts. It was
observed that absolute based volatility and correlation estimators can empiri-
cally repeat long memory behavior and reproduce some dynamic stylized facts
of financial markets stronger than squared based volatility and correlation esti-
mators. Self-similarity structure computed by Hurst exponent was documented
in the structure of series generated by realized measures. None of volatility
measures exactly pose a normal daily distribution tested by Jarque-Bera test of
normality. Some of the estimators indicate heavy tail in distributions. Tested
by Jarque-Bera estimator, the null hypothesis of normality for the absolute
based correlation estimators can not significantly be accepted. While squared
based volatility shows heavier tail than absolute based volatility estimators,
the absolute based correlation estimators show heavier tail than squared based
correlation.

Consistent with common sense and in particular with Archimedean copulas
and one-factor model, it was empirically found that the multivariate absolute-
based realized correlations exhibit negative asymmetry in dependence structure
implying fatter left tail where the extreme values are mainly populated there.

In general, using intraday high frequency data yields better volatility esti-
mation. The question that if more information contained in higher frequency
data leads to more precisely volatility estimation is an open question. Moreover,
the assumption of continuous and unlimited data is not of practical case.

Construction of some time-varying statistics such as Beta or systematic risk,
regression with time-varying parameters, or even some kinds of combined esti-
mators, for example return per unit of volatility which may be somehow close
to Sharpe Ratio, based on the concepts of realized estimators using absolute
values of high frequency data may yield more realistic analytical tool.

There are several methods, mentioned here, to correct the effects of mi-
crostructure noise. But what is actually missing, is a model or estimator that can
capture the more complex time-dependent characteristics of market microstruc-
ture noise. What is called noise, is likely a part of useful and informative data
that our model cannot capture or explain. Further attempts may yield some
estimators which are able to capture but not correct the market microstructure
noise.

The problem of nonparametrically volatility function approximation has
been also addressed. To improve upon predictability performance of the SVR
machine, multiresolution analysis is applied in conjunction with the SVR ma-
chine. A multiresolution analysis (MRA) or multiscale approximation (MSA)
is the design method of most of the practically relevant discrete wavelet trans-
forms. Multiresolution analysis using the wavelet transform is an efficient way
to span the information contained in a signal.

An approach for forecasting using a wavelet-based multiresolution (multi-
scale) analysis has been described. Applying the multiresolution analysis, a
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signal or time series is decomposed into an arbitrary number of different scaled
series. Each individual scale is fitted using a SVR machine applying the CHARN
volatility model and the aggregate forecast is then obtained by adding up the
individual forecasts.

Locality capability and ability of explaining phenomena that are heteroge-
neous by wavelet analysis were exploited through the multiscale decomposi-
tion in order to improve performance of estimation and forecasting so that the
multiscale resolution model can capture smooth and noise levels of time series
separately using several SVR machines more accurate than a singlescale resolu-
tion model. The reason behind outperformance of the mutiresolution approach
stems from the fact that the smooth levels are more predictable and in contrast
the detailed levels are less predictable and correspond to the noise. In other
words, the wavelet transform can decompose one time series into several time
series with different resolutions which have different levels of smoothness. The
smoother level is more predictable, whereas the rougher (detailed) level is less
predictable, or more related to the noise. As a matter of fact, a nonstationary
system is dealt with suitably applying multiresolution analysis based on proper
wavelet systems.

The support vector regression machine as an application of the statistical
learning theory has been successfully exploited. The support vector regression
was successfully utilized for estimation and forecasting of volatility in CHARN
framework. An estimation by SVR was implemented and the results were com-
pared with those of benchmark techniques to estimate the CHARN model. The
best performance of accuracy belongs to the SVR among technical benchmarks.
More important, it was empirically shown that the multiresolution approach im-
proves upon the accuracy and precision performances in analogous to a single
resolution forecasting approach.

Indeed, the problem which droves the initial development of SVMs occurs
in several guises- the bias variance trade-off, capacity control, overfitting- but
the basic idea is the same. Roughly speaking, for a given learning task, with
a given finite amount of training data, the best generalization performance will
be achieved if the right balance is struck between the accuracy attained on that
particular training set, and the capacity of the machine, that is, the ability of
the machine to learn any training set without error. “A machine with too much
capacity is like a botanist with a photographic memory who, when presented
with a new tree, concludes that it is not a tree because it has a different number
of leaves from anything she has seen before; a machine with too little capacity
is like the botanist’s lazy brother, who declares that if it’s green, it’s a tree.
Neither can generalize well. The exploration and formalization of these concepts
has resulted in one of the shining peaks of the theory of statistical learning”
[Bur98].

The distributional properties of scaled series and the whole fitted function
in this new forecast approach were not investigated. How the smoother and
detailed or even noise series are related to each other; and how each individual
scaled series shows stylized facts are another open questions. If the distribu-
tional properties of and stylized facts of scaled series are the same as those of
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corresponding lower frequencies for a given frequency. These subjects are del-
egated to further investigations. How to model CHARN approach so that it
would be able to capture stylized facts beside volatility clustering and heavy
tail is also a subject of more investigations.

For improving accuracy and precision in estimation, advantages of aggrega-
tion in part I and inversely advantages of disaggregation in part II were some-
how benefited. The goal was almost the same, while two opposite methods
were adopted. Realized volatility is an aggregation of higher frequency data to
gain higher accuracy of volatility estimation. Multiscale analysis was exploited
for disaggregation of lower frequency to obtain several scales corresponding to
different frequencies to yield higher accuracy of volatility estimation.
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Appendix A

Pyramid algorithm

Explicitly, the DWT and MODWT coefficients are computed by way of an
algorithm that allows W to be factored in terms of very sparse matrices. The
algorithm known as the pyramid algorithm was introduced by Mallat [Mal89].
Figure 4.1 visualizes the pyramid algorithm for the MODWT.

For discrete compactly supported filters of the wavelet family, denote the
even-length L of the wavelet filter {hl : l = 0, ..., L− 1} and the scaling filter
{gl : l = 0, ..., L− 1}. By definition, the wavelet filters satisfy

L−1∑

l=0

hl = 0, (A.1)

and

L−1∑

l=0

h2
l = 1, (A.2)

and

L−1∑

l=0

hlhl+2n =
∞∑

−∞
hlhl+2n = 0, (A.3)

for non-zero integers n. The scaling filters satisfy the conditions in (A2) and
(A.3) except (A.1). But, additionally the filters are chosen to satisfy

hl = (−1)lgL−1−l (A.4)

gl = (−1)l+1hL−1−l
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for l = 0, ..., L−1. For example, the Haar wavelet filter
{
h0 = 1√

2
, h1 = − 1√

2

}

has length L = 2. The corresponding scaling filters are
{
g0 = 1√

2
, g1 = − 1√

2

}
.

Implementation of the DWT begins by defining the zeroth level scaling coeffi-
cients to be the original time series V0,t ≡ Xt [Con01]. When we denote the
time series to be transformed by {Xt : t = 0, ..., N − 1}, with V0,t ≡ Xt, the
jth stage input to the pyramid algorithm is {Vj−1,t : t = 0, ..., Nj−1 − 1}, where
Nj = N

2j . The level j wavelet coefficients Wj,t and scaling coefficients Vj,t are
then formed recursively by

Wj,t =

L−1∑

l=0

hlVj−1(2t+1−l) mod Nj−1, (A.5)

and

Vj,t =
L−1∑

l=0

glVj−1(2t+1−l) mod Nj−1, (A.6)

for t = 0, ..., Nj − 1. Letting {Wj,t} be Wj and {Vj,t} be Vj , then N = 2J

and the pyramid algorithm is completed after J repetitions giving W1, ...,WJ ,VJ ,
with the latter two vectors containing only one coefficient each. This gives the
definition of the full discrete wavelet transform. If N is an integer multiple
of 2J0 ,J0 < J , then we carry out a partial discrete wavelet transform to level
J0. Therefore, the discrete wavelet transform is an orthonormal transform of
{Xt}. We can relate the wavelet and scaling coefficients at any level directly
to the time series {Xt}. Let {hj,t} be the jth level wavelet filter with length
Lj = (2j − 1)(L − 1) + 1. The jth level scaling coefficients {gj,t} are similarly
defined. Then

Wj,t =

Lj−1∑

l=0

hlX2j(t+1)−1−l mod N, (A.7)

and

Vj,t =

Lj−1∑

l=0

glX2j(t+1)−1−l mod N, (A.8)

with the filters satisfying (A.2) and (A.3). The nominal frequency band at
every level with which the corresponding wavelet coefficient {Wj,t} is associated,
is given by |f | ∈ ( 1

2j+1 ,
1
2j ]. For example, {W1,t} has nominal frequency band

of (1
4 ,

1
2 ]. However, the discrete wavelet transform has a number of limitations.

The limitations in the discrete wavelet transform can be overcome by avoid-
ing downsampling. This can be achieved using the maximum overlap discrete
wavelet transform MODWT.
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