
Universität Karlsruhe - Fakultät für Informatik - Bibliothek - Postfach 6980 - 76128 Karlsruhe

Towards Comparable Network Simulations

Pengfei Di, Yaser Houri, Kendy Kutzner,
Thomas Fuhrmann

Interner Bericht 2008-9

ISSN 1432-7864

Towards Comparable Network Simulations

Pengfei Di, Yaser Houri, Kendy Kutzner
System Architecture Group
Universität Karlsruhe (TH)

Karlsruhe, Germany
{di|houri|kutzner}@ira.uka.de

Thomas Fuhrmann
Computer Science Department
Technical University of Munich

Munich, Germany
fuhrmann@net.in.tum.de

Technical Report 2008-9
ISSN 1432-7864

Dept. of Computer Science
Universität Karlsruhe (TH)

Abstract

Simulations have been a valuable and much used tool in
networking research for decades. New protocols are evalu-
ated by simulations. Often, competing designs are judged
by their respective performance in simulations. Despite
this great importance the state-of-the-art in network simu-
lations is nevertheless still low. A recent survey [6] showed
that most publications in a top conference did not even give
enough details to repeat the simulations.

In this paper we go beyond repeatability and ask: Are
different simulations comparable? We study various im-
plementations of the IEEE 802.11 media access layer in
ns-2 and OMNeT++ and report some dramatic differences.
These findings indicate that two protocols cannot be com-
pared meaningfully unless they are compared in the very
same simulation environment. We claim that this problem
limits the value of the respective publications because read-
ers are forced to re-implement the work that is described
in the paper rather than building on its results. Facing the
additional problem that not all authors will agree on one
simulator, we address ways of making different simulators
comparable.

1 Introduction

Often, the simulation of a new network protocol is pre-
ferred over its evaluation in testbed experiments. The rea-
sons are manifold, e.g., the increased speed of getting eval-
uation results, the reduced hardware demands and thus the
reduced cost, or the flexibility in the scenario definition. As
a result, many network simulators have been developed over
the last decades.

Today, ns-2 has become the de-facto standard for net-
work simulation. It is mostly widely used in academia.
Kurkowski et al. [6] found that 44% of the simulations in
their MobiHoc survey used ns-2 as network simulator. Its
development began in 1989 as a collaboration between a
number of different researchers and institutions. Mean-
while, a vast number of models for all kinds of network
protocols have been written for ns-2. At the time of writing
this paper, a popular ns-2 web site [9] lists 59 models for
media access, routing, and transport protocols, as well as
various topology and traffic generators.

GloMoSim has become particularly popular for the sim-
ulation of wireless networks. It provides various mobil-
ity models, a commonly accepted radio model, and many
wireless ad-hoc networking protocol implementations. Glo-
MoSim is written in Parsec, a derivate of C, which provides
parallel discrete-event simulation capabilities. Even though
GloMoSim is number two in Kurkowski’s survey, it has
only 10% market share. Even this fact alone demonstrates
the severe market fragmentation in the area of network sim-
ulations.

OMNeT++ is another simulation tool that is free for aca-
demic use [13]. It is especially popular in Germany, where
several groups have contributed so-called frameworks that
provide various protocol implementations. OMNeT++ fea-
tures a simple, object oriented design, which leads to good
scalability. Therefore, we found OMNeT++ particularly
well suited for performance evaluations of large networks.
Still, outside a small community of OMNeT++ enthusiasts
few people seem to know this tool at all.

Besides these three, many other simulators have been
developed by the networking research community. All of
them have their own applications, frameworks, libraries and
modules. Their respective popularity greatly depends on the

particular field of interest. Thus, it is almost impossible to
address more than one or two research groups with your
choice of simulator, unless you stick to ns-2.

In many cases, however, the choice of ns-2 is prevented
by various problems. For example, we found ns-2 unsuited
for the simulation of large networks, i. e. network with sev-
eral thousands or even hundreds of nodes. Other groups
have other reasons; but in the end, ns-2 has only 44% market
share in Kurkowski et al.’s survey. The resulting fragmen-
tation of the simulation tool market leads to an important
problem: The reduced comparability of simulation results!

Typically, researchers and developers implement their
newly proposed protocol in one particular simulator. They
evaluate it in one or more scenarios (in this simulator), draw
their conclusions, and publish a paper about their new pro-
tocol. As Kurkowski et al. have pointed out, often, such
a publication does not give sufficient information about the
simulation so that it is impossible to repeat it. But even if
the paper gave all the required scenario information and the
source code of the simulation was publicly available, the
published result would be of limited use, because the cho-
sen simulator environment is limited.

If one wants to extend the work, for example, use the
proposed protocol together with another protocol or in a dif-
ferent scenario, it is almost impossible to do so, even if the
source code of the simulation was publicly available. The
reason is that the structures of the simulators differ signif-
icantly and thus the modules cannot (easily) be applied in
another simulator. As a result, it is typically impossible to
compare a bunch of newly proposed protocols with one an-
other.

In this paper, we want to raise the awareness for this
problem; and we want to report on ongoing work that aims
at circumventing this problem. This paper is structured as
follows: In section 2 we illustrate the comparability prob-
lem by an example study that we made using ns-2 and OM-
NeT++. In section 3 we advocate our proposal to use mod-
ules and messages as a fine-granular abstraction that allows
the re-use of models and protocol implementations across
different simulators. Section 4 discusses related work, and
finally, section 5 concludes with an outlook to future work.

2 Comparing Different Simulators

As stated above, the comparability of protocols and sim-
ulation results is severely affected by the fragmentation of
the simulator market. Typically, when ns-2 has been found
insufficient for a particular study, any substitute will have
a negligible market share. Thus the simulation results can-
not be compared with another, competing protocol. As a
result, simulation studies of newly proposed protocols can
only present some evidence for its principal fitness. They
cannot differentiate between different competing proposals.

Let us illustrate this problem with an example: Re-
searcher A presents a new routing protocol and publishes
some evaluation results that she obtained with the OM-
NeT++ simulator. Researcher B publishes his new routing
protocol with a performance measurement in ns-2. Both, A
and B claim that their protocol outperforms the state-of-the-
art protocols. Being aware of Kurkowski et al.’s critique, A
and B have taken particular care of providing all the rel-
evant information about their respective of the simulation
settings, including the source code of their protocol imple-
mentation. As a result, other researchers can repeat their
simulations and confirm their claim.

However, up to now, the relative performance of A’s and
B’s proposal is still unclear. The results from the two pa-
pers cannot be compared directly because A and B chose
different simulation environments. Assume, for example,
that they use different MAC-layer modules which can influ-
ent the fairness of such a comparison.

2.1 Differences Between ns-2 and the
INET framework of OMNeT++

In order to illustrate this problem, we have compared of
the IEEE 802.11 modules in the INET framework of OM-
NeT++ and ns-2.29. Obviously, the module implementa-
tions are based on the same standard. For the comparison,
we set all the (available) parameters in the two modules to
the same values. We modeled the application traffic with
the help of a trace file that we adopted to both simulators:
In the simulation, there is one stationary receiver and one
or two stationary senders. Specifically the distance between
sender and receiver is 50m, while the distance between two
senders is 70.7m. The senders regularly send UDP packets
with constant packet size to the receiver. In order to elimi-
nate the influence of the routing layer, we studied scenarios
that contain only 1 hop. Each run in this paper simulates
60 seconds. The figures show averaged values of 10 runs.
Error bars (where applicable) show standard deviation. (For
negligible small standard deviations, no error bars are plot-
ted.)

Despite the same node structure, the same protocol stack
and the same traffic parameters (cf. table 1), the results from
the different simulators deviate. The packet delivery ratio in
the 2-node scenario can be considered identical in both sim-
ulators (cf. fig. 1(a)). But the delay in the 2-node scenario
can only be considered identical when the update rate less
than 1000 packets per second. Beyond this limit, the delay
in ns-2 is significantly larger than that in OMNeT++ (cf.
fig. 1(c)). In the 3-node scenario, the two senders are mu-
tually hidden nodes. We see that the packet delivery ratio
of OMNeT++ is much smaller than that in ns-2 (fig. 1(b)).
The mean delay of OMNeT++ is similar to that of ns-2, but
with very large deviation(fig. 1(d)). Most interestingly, the

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2
INET framework

(a) 2 nodes

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2
INET framework

(b) 3 nodes (with 2 hidden senders)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

de
la

y(
m

s)

update rate of each sender (packet/sec)

ns-2
INET framework

(c) 2 nodes

-20

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

ns-2
INET framework

(d) 3 nodes (with 2 hidden senders)

Figure 1. Performance comparison between 802.11 MAC modules in OMNeT and ns-2

results from ns-2 are erratic while those from OMNeT++
are not.

parameter ns2/OMNeT++
application packet 20 bytes (UDP)
routing protocol AODVUU
interface queue 50
data rate 11Mb
RTSThreshold 3000 (RTS/CTS off)
retry limit 7
cwMin 31
snirThreshold 10
signal attenuation threshold(OMNeT) -71.843dBm(55m)
CSThresh (ns2) 6.35631e-08W(55m)
radio sensitivity(OMNeT) -71.843dBm(55m)
RXThresh (ns2) 6.35631e-08W(55m)

Table 1. parameters in comparison between
OMNeT and ns-2

In out comparison, we have paid attention that all con-
figuration parameters were the same. But generally, such
a difference can result from a different configuration. For
example, both simulators use different default parameters:
In ns-2, the bit-rate is set to 2Mb, and the RTS/CTS is set
to ON; while in OMNeT, the default bit-rate is set to 11Mb,
and RTS/CTS is set to OFF. More subtle is the fact that
some parameters are in different units. For example, in ns-2,

the receive threshold is set in Watt, while in OMNeT it is set
in dBm.

In principle, these differences in configuration can be re-
solved with careful study of the simulator and module man-
ual. But as we all know carefully reading the documentation
is time-consuming and needs much attention. Especially,
under pressure such subtleties can easily be overlooked.

In addition to these differences in the respective default
configuration, there exist some differences in the implemen-
tations of both simulators that cannot (easily) be resolved:

1. Some parameters are not available in the configura-
tion file but only in the source code. For example, in ns-2,
the maximal contention window CWMax is set in the con-
figuration file, with a default value of 1023. In OMNeT++
this parameter is defined as a constant of 255 in one of the
source files.

2. Sometimes there is no corresponding parameter
in the other simulator at all. For example, in ns-2,
longRetryLimit=4 is configured as the retry limit for
data packets and shortRetryLimit=7 is configured as
the retry limit for a control packet. In OMNeT, there is only
one RetryLimit=7 for all the packets. In ns-2, CWMin is
configurated as 31 for all the packets. In OMNeT, there are
two distinct values, CWMinBroadcast and CWMinData
for broadcast messages and data messages respectively.

3. The simulators use a different modeling approach for
the parameters. For example, ns-2 and OMNeT++ have the

following different modeling approaches:

• Propagation delay — In ns-2, the delay is a constant
defined in configuration file. In OMNeT++, the delay
is a function of the nodes’ distance.

• Signal loss model — Pr ∼ d−2/K in ns-2 and Pr ∼
d−x in OMNeT++.

• Bit-error definition — In ns-2 the frame is considered
as having bit-errors if the distance between sender and
receiver is between RxRange and CsRange. In OM-
NeT the bit-error probability is a function of the dis-
tance, frame size and bit rate.

• Collision model — In ns-2, a collision between
packets happens if ReceivePower

MaxNoise > SNR while
OMNeT++ defines that a collision occurred if
ReceivePower

SumNoise > SNR.

Because of these implementation differences1, it is im-
possible to make identical simulations without modifying
the source code of either module. The latter would be time-
consuming and error-prone; and it would further limit the
comparability of the simulation results unless all relevant
publications would use the same modifications.

2.2 Differences Within ns-2

As the development of a network simulator progresses,
its code will change: bugs are fixed, code is refactored, and
new features are introduced. Obviously, fixing a bug will
modify the behavior of a simulation. But sometimes mi-
nor changes can have a significant impact on the result of a
simulation.

In order to evaluate this potential problem, we set up sim-
ulations with the IEEE 802.11 MAC module in three differ-
ent versions of ns-2: ns2.26 which was released in February
2003, ns2.29, and ns2.31. In our experiment, again, one or
two senders regularly send 20 byte UDP packets to the re-
ceiver. We use the default MAC parameters where applica-
ble. (See table 2 for details.)

As can be seen in fig.2, the different IEEE 802.11 MAC
module versions perform identically with respect to the
packet delivery ratio as well as the packet delay as long
as there are no hidden nodes. If we reduce the carrier
sense threshold to make the two senders mutually hidden
nodes, the delay becomes erratic (fig.2(c) and fig.2(f))3. As

1These differences kept us from directly comparing the ns-2 model with
the OMNeT++ Mobility framework. We could only compare ns-2 to the
OMNET++ INET framework. However, we were able choose a scenario
that allowed us to compare the INET and Mobility within OMNeT++, see
section 2.3.

3Even after longer simulation time, the delay varies significantly. We
think it is due to the incompatible implementation of backoff timer to the
IEEE 802.11 specification [11].

parameter ns2.xx
app. packet 20bytes (UDP)
routing protocol AODV2

interface queue 50
RTSThreshold 0 (RTS/CTS on as default)
data rate 11Mb
CSThresh 3.41828e-08W(75m)
RXThresh 6.35631e-08W(55m), 3.41828e-08W(75m)

Table 2. parameters in comparison among
diff. ns-2 versions

parameter INET/MF framework
host MobileHost/MFMobileHost
app. packet 20 bytes (UDP)
routing protocol static table
mobility no
RTS/CTS off
bit rate 11 Mb
sat -74.537 dBm(75m), -71.843 dBm(55m)
maxQueueSize 50 packets
sensitivity -74.537 dBm(75m), -71.843 dBm(55m)
pathLossAlpha 2
snirThreshold 10 dBm

Table 3. parameters in comparison between
INET framework and Mobility framework

a consequence, the results of the simulations differ, but only
within the variance of the simulated value.

Although these results cannot prove the absence of the
presumed problem, they could not demonstrate it either.
Thus, we can have some confidence that simulation results
that have been obtained with these three module versions
are indeed comparable.

2.3 Different OMNeT++ Frameworks

Next, we compare different implementations of the same
protocol in the same simulator. In OMNeT, several frame-
works for the same protocol stacks have been developed in-
dependently. For example, both the INET framework and
the Mobility framework contain an IEEE 802.11 model.
They differ in their internal structure and the number and
kind of their parameters.

For example, upon encapsulation of a MAC packet into
”‘airframe”’ packet, the Mobility framework adds an air-
frame header of 192 bit, while the INET framework does
not add such an overhead. In our example, which uses
20 byte UDP packets, this is a significant difference. Most
probably, many other such more or less subtle differences
exist. But they are hard to tell without close inspection of
the source code.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(a) 2nodes(1 sender CS:75m PR:55m)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(b) 3nodes(2 senders CS:75m PR:55m)

-20

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(c) 3nodes(2 senders CS:55m PR:55m)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(d) 2nodes(1 sender CS:75m PR:55m)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(e) 3nodes(2 senders CS:75m PR:55m)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

ns-2.26
ns-2.29
ns-2.31

(f) 3nodes(2 senders CS:55m PR:55m)

Figure 2. Comparing IEEE 802.11 MAC module in different versions of ns-2

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

INET Framework
Mobility Framework

(a) 2nodes(1 sender sat:55m sensitivity:55m)

 40

 50

 60

 70

 80

 90

 100

 110

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

INET
MF

(b) 3nodes(2 senders sat:75m sensitivity:75m)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

INET
MF

(c) 3nodes(2 senders sat:55m sensitivity:75m)

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

de
la

y(
m

s)

update rate of each sender (packet/sec)

INET Framework
Mobility Framework

(d) 2nodes(1 sender sat:55m sensitivity:55m)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

INET
MF

(e) 3nodes(2 senders sat:75m sensitivity:75m)

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000 1200

de
la

y(
m

s)

update rate of each sender (packet/sec)

INET
MF

(f) 3nodes(2 senders sat:55m sensitivity:55m)

Figure 3. comparing IEEE 802.11 MAC module in different frameworks in OMNeT

The effect of these differences is dramatic: Fig. 3 shows
the results of the simulations that we did with these two
different 802.11 models. Again, we use the similar sce-
narios as used in section 2.2 with the parameters listed in
table 3. Now, almost all the measured parameters deviate
significantly. Only if there is no contention the result of the
packet delivery ratio is similar for both modules (fig. 3(a)).
In the two sender scenarios the INET framework based sim-
ulation seems to perform more than 10 times better than the
Mobility framework based one. Such differences invalidate
all protocol comparisons that would compare results from
different frameworks.

2.4 One Module in Different Simulators

Once a module is written, it should work identically in
all discrete event simulators. Ideally, the simulator would
just be a machine that processes the events in chronological
order. The events – and especially their causal relation –
should be entirely determined by the modules’ properties
(and the pseudo random number generator).

In order to check this behavior of the same module in dif-
ferent simulators, we have wrapped the IEEE 802.11 mod-
ule from the ns-2 into OMNeT++. Then we compared the
results obtained in OMNeT against the results obtained in
original ns-2.

The scenarios used here are the same as in table 2. As ex-
pected, we obtained almost identical MAC layer throughput
in both simulators (fig. 4). We attribute the remaining small
differences to a different implementation of the MAC buffer
module, which has most effect in the hidden node scenario.
Furthermore, the results are not identical because the two
simulators use different pseudo random number generators:
OMNeT uses the Mersenne Twister RNG [8]; while ns-2
uses the combined multiple recursive generator MRG32k3a
proposed by L’Ecuyer [4]. Finally, the use of floating point
data types for the time stamps might introduce further de-
viations when the simulators are run in different computing
environments.

3 Towards Comparable Simulations

As we have shown in the previous section, it is typically
not meaningful to compare protocol evaluations that have
been obtained in different network simulators: Even such a
well-studied protocol like IEEE 802.11 is implemented so
differently in popular simulators that the results can vary
by an order of magnitude. It seems evident that this prob-
lem will become worse when more complex simulations are
concerned, for example, simulations that involve radio mod-
els, mobility models, traffic models, or that consist of sev-
eral interfering protocols such as network layer and overlay
routing protocols.

Luckily, our studies that we described in the previous
section have also shown a potential way out of this compa-
rability problem. As we have demonstrated, it is feasible
to extract the implementation of a particular model or pro-
tocol such as IEEE 802.11 from one simulator and run it
in another simulator. In this section we want to advocate
this approach and recommend it as general way to obtain
comparable network simulations. We claim that in fact the
models and protocol implementations, not the simulators or
frameworks are the right level of abstraction. A simulator
should be used as a tool that executes the models and pro-
tocols. The simulator should not be used as reference of its
own because it is not suitable to compare protocols.

In practice this means that the code that implements a
model or protocol should be as independent of a particular
simulation environment as possible. Here, the simulation
environment includes both, the simulation engine and the
other models and protocols such as the protocols in the lay-
ers below and above the respective protocol.

We found that the common denominator of all network
simulators we studied are modules and messages. Here, a
”‘module”’ means the implementation of a particular model
or protocol. Modules interact with the simulation engine,
for example, for enqueuing or processing events. More-
over, modules interact with one another, for example, along
a packet’s way through a protocol stack.

We claim that all these interactions can rather easily be
expressed as the exchange of messages between the mod-
ules using the simulator as mediator. Therefore, we propose
that modules use messages as the only way of communica-
tion. In particular, we propose that different modules should
not use function calls into other modules or the simulator
engine. The reason is that in our studies, we often found that
modules that used function calls were significantly more
difficult to port to other environments than modules that em-
ployed only messages. The latter could be used almost ”‘as
is”’.Typically a simple wrapper was enough to translate the
according messages into the respective other format. More-
over, we could also easily employ this approach with mod-
ules that were written in different programming languages.
For example, SWIG and Mono provide OMNeT++ with spe-
cial wrappers for modules written in other languages than
C++ [2]. With this tool we could easily use Java and C#
modules in OMNeT++, too.

As we proposed above, a module should only use the
simulator’s event queue. Besides the event queue most
simulators also provide libraries with various convenience
functions such as pseudo random number generators, sta-
tistical logging services, etc. Such libraries are extremely
helpful in implementing a module. But as a drawback they
are very simulator dependent, too. Therefore we propose
to use these functions only with care. In particular, we
propose to avoid functions that establish a communication

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2
ns module in OMNeT

(a) 2nodes(1 sender CS:75m RX:55m)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns-2
ns module in OMNeT

(b) 3nodes(2 senders CS:75m RX:55m)

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

de
liv

er
y

ra
tio

(%
)

update rate of each sender (packet/sec)

ns module in OMNeT
ns-2.29

(c) 3nodes(2 senders CS:55m RX:55m)

Figure 4. evaluating the ns-MAC80211 Module in OMNeT(delivery ratio)

means between modules besides the event queue. For ex-
ample, when the programmer of a framework uses a black-
board to convey additional information between a set of
modules, we found it very hard to extract the individual
modules from the framework. Moreover, in the cases we
studied, we could always replace the implicit blackboard
communication by explicit communication between the re-
spective modules. Thus, we propose to avoid such special
approaches and use messages as the only means of commu-
nication between the modules.

Note that we argue against frameworks because we be-
lieve that frameworks reduce the comparability of simu-
lations. As we have shown above, the two popular OM-
NeT++ frameworks produce very different results. Hence,
their existence further fragments the simulator market. We
propose that authors of simulation studies should provide
their models and protocol implementations in form of mod-
ules. These modules should be as self-contained as pos-
sible. They should communicate only explicitly via mes-
sages. Ideally, these messages should be as generic as pos-
sible. For example, when using addresses for a routing pro-
tocol, the programmer should abstract from peculiarities of
certain address families such as IPv4 and assume only the
properties that are actually need for their respective proto-
col implementation. This allows to re-use the code in other
settings, too, for example in an IPv6 setting. Programmers
should definitely refrain from mis-using IPv4 header fields
to convey simulator-internal information, as we have for ex-
ample, seen it in the GloMoSim implementation of AODV.

We are convinced that our proposed ”‘modules-and-
messages-only”’ approach will indeed allow others to re-
use individual modules and combine them to obtain new re-
sults. Note that we haven’t given out rigorous definitions of
the implementation guidelines here, but rather some sugges-
tions that the protocol developer might take care in order to
make his model easy to be reused in more simulators later.

Currently, we explore the feasibility of this approach
with a rather heterogeneous set of modules from different
simulators. So far, this effort seems to be very promising.

4 Related Work

Various authors have already addressed the problem that
different simulators can produce largely differing results for
the same scenario.

Cavin et al. [3] present the incompatibilities among dif-
ferent simulators: OPNET, ns-2 and GloMoSim. Even for
a simple flooding algorithm based on MAC 80211 models,
there exists large quantitative and qualitative divergences.
The authors have compared the different structures of these
simulators, and think that the divergences can result from
the abstractions and simplifications of the models from dif-
ferent simulators, which could contain errors or incompat-
ibilities to the IEEE 80211 standard. However they didn’t
illustrate the differences.

Heidemann et al. [5] evaluate the effect of abstracted
model with four case studies of wireless simulations. The
abstraction can result in incorrect results, inapplicable re-
sults or correct results depended on the application’s robust-
ness to the error and sensitivities to the detail. They address
that applications which are robust to error can tolerate ab-
stract models of underlying layers, and additionally the vi-
sualization techniques can help pinpoint incorrect details.

Takai et al. [12] demonstrated the effect of different
implementation of the physical layer on routing protocol
(AODV and DSR) in ns-2 and GloMoSim. The physical
layer modeling factors, which vary in different simulators,
are: preamble length, interference model, fading model,
path loss model and reception model. Eventually, they
find the performance divergence of the same protocol be-
tween different simulators result from the different physical
model. They give out that if the same modeling factors are
applied, the divergence are negligible.

Reddy et al. [11] quantify the differences in the model-
ing of 802.11 MAC protocol in different simulators: Glo-
MoSim, GTNetS and ns-2. They found that the simula-
tors can produce identical results in the scenarios without
medium contention when paying attention to the implemen-
tation discrepancies. In the scenario with medium con-

tention, the ns-2 and GloMoSim have worse performance
than GTNetS due to the incompatible implementation of
NAV and backoff timer to the IEEE 802.11 specification.

Liu et al. [7] tried to validate ad-hoc routing simulations
by executing the actual protocol implementation in a sim-
ulator and comparing it to real-world measurements. They
found critical dependency on the physical model underlying
the 802.11 MAC layer which resulted in large deviations be-
tween the various simulation runs.

Despite the fact that these problems have long been
known, our studies show that the problem is still present
not only in the different simulators but also in the current
simulation frameworks. Moreover, our studies demonstrate
that the simulation models have actually identical behaviors
in different simulators, i.e., simulation results are depended
on models but not simulators

Recently, several authors have again addressed the ques-
tion of repeatability of simulations. Kurkowski et al. [6]
showed that most publications in the MobiHoc conference
did not give enough details to repeat the simulations. An-
del et al. [1] given more examples for the lack of rigor
in MANET simulation studies. They found 80%-90% of
the publications to give insufficient information about the
simulations that were used to obtain the presented results.
Naicken et al. [10] discuss the same problem with respect
to peer-to-peer research.

5 Conclusions

In this paper, we have addressed the issue of comparabil-
ity of protocol evaluations that are done with different sim-
ulators. To this end, we have compared simple simulations
that involved the IEEE 802.11 MAC modules in different
versions of ns-2 and two different OMNeT++ frameworks.
Analyzing the simulators including their source code, we
have found that differences in the implementation of the
simulators and frameworks do not allow to reproduce the
simulation scenarios from another simulator. Furthermore,
we have shown that even for scenarios where two simulators
allow the choice of identical parameters, the different sim-
ulators lead to vastly different results. As a consequence,
we conclude that protocol evaluations from different sim-
ulators are not comparable even when the authors use the
very same simulation scenario.

Based on the experience from our study, we propose that
modules, i. e. the implementation of a particular model or
protocol, should be the level of abstraction on which dif-
ferent model and protocol implementations should be com-
pared. We have demonstrated our idea by porting the ns-2
IEEE 802.11 MAC module to OMNeT++. There, we found
it to produce almost identical results as compared to being
run in ns-2. Wrappers in OMNeT++ even allowed us to
integrate modules that were written in other programming

languages such as Java or C#.
In order to simplify the re-usability of such modules we

recommend that modules should only communicate by ex-
changing messages. We found that messages could be eas-
ily wrapped, thereby allowing the straightforward combi-
nation of modules from different simulators. Modules that
used function calls or communication side-channels such as
a blackboard were rather hard to isolate from their original
environment. Thus we believe that our proposed modules-
and-messages approach is one important step to simplify
the combination of different modules. Furthermore, we be-
lieve that once modules can be re-used and combined freely,
it will become easy to make fair and reliable comparisons
of new protocol proposals.

References

[1] T. R. Andel and A. Yasinac. On the credibility of manet
simulations. Computer, 39(7):48–54, 2006.

[2] D. M. Beazley. Simplified Wrapper and Interface Generator
(SWIG).

[3] D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of
manet simulators. In POMC ’02: Proceedings of the sec-
ond ACM international workshop on Principles of mobile
computing, pages 38–43, New York, NY, USA, 2002. ACM
Press.

[4] G. W. Fischer, Z. Carmon, D. Ariely, G. Zauberman, and
P. L’Ecuyer. Good parameters and implementations for com-
bined multiple recursive random number generators. Oper-
ations Research, 47:159–164, 1999.

[5] J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K.-
C. Lan, Y. Xu, W. Ye, D. Estrin, and R. Govindan. Effects
of detail in wireless network simulation. In Proceedings
of Society for Computer Simulation (SCS) Communication
Networks and Distributed Systems Modeling and Simulation
Conference (CNDS’01), 2001.

[6] S. Kurkowski, T. Camp, and M. Colagrosso. MANET Sim-
ulation Studies: The Incredibles. Mobile Computing and
Communications Review, 9(4):50–61, 2005.

[7] J. Liu, Y. Yuan, D. M. Nicol, R. S. Gray, C. C. Newport,
D. Kotz, and L. F. Perrone. Simulation validation using di-
rect execution of wireless ad-hoc routing protocols. In Pro-
ceedings of the Workshop on Parallel and Distributed Simu-
lation (PADS), pages 7–16, May 2004. Nominated for Best
Paper award.

[8] M. Matsumoto and T. Nishimura. Mersenne twister: a
623-dimensionally equidistributed uniform pseudo-random
number generator. ACM Trans. Model. Comput. Simul.,
8(1):3–30, 1998.

[9] S. McCanne and S. Floyd. ns Network Simulator. http:
//www.isi.edu/nsnam/ns.

[10] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wake-
man, and D. Chalmers. The state of peer-to-peer simula-
tors and simulations. SIGCOMM Comput. Commun. Rev.,
37(2):95–98, 2007.

[11] D. Reddy, G. F. Riley, B. Larish, and Y. Chen. Measuring
and explaining differences in wireless simulation models. In
14th IEEE International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Sys-
tems, 2006.

[12] M. Takai, J. Martin, and R. Bagrodia. Effects of Wireless
Physical Layer Modeling in Mobile Ad Hoc Networks. In
Proceedings of MobiHoc’01, Oct. 2001.

[13] A. Varga. The OMNeT++ discrete event simulation system.
In Proceedings of the European Simulation Multiconference
(ESM’2001). June 6-9, 2001. Prague, Czech Republic, 2001.

