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Abstract

Kernel methods constitute a new and popular field of research in the area of machine
learning. Kernel-based machine learning algorithms abandon the explicit represen-
tation of data items in the vector space in which the sought-after patterns are to be
detected. Instead, they implicitly mimic the geometry of the feature space by means
of the kernel function, a similarity function which maintains a geometric interpreta-
tion as the inner product of two vectors. Knowledge structures and ontologies allow
to formally model domain knowledge which can constitute valuable complementary
information for pattern discovery. For kernel-based machine learning algorithms, a
good way to make such prior knowledge about the problem domain available to a
machine learning technique is to incorporate it into the kernel function. This thesis
studies the design of such kernel functions.

First, this thesis provides a theoretical analysis of popular similarity functions for
entities in taxonomic knowledge structures in terms of their suitability as kernel func-
tions. It shows that, in a general setting, many taxonomic similarity functions can not
be guaranteed to yield valid kernel functions and discusses the alternatives.

Secondly, the thesis addresses the design of expressive kernel functions for text
mining applications. A first group of kernel functions, Semantic Smoothing Kernels
(SSKs) retain the Vector Space Models (VSMs) representation of textual data as vec-
tors of term weights but employ linguistic background knowledge resources to bias
the original inner product in such a way that cross-term similarities adequately con-
tribute to the kernel result. A second group of kernel functions, Semantic Syntactic
Tree Kernels (SSTKs) replace the VSM representation by a representation based on
parse trees. In contrast to other kernel functions based on this representation, they
are again capable of a more adequate handling of semantic similarities between dif-
ferent terms. Both types of kernel functions are then extensively evaluated in practi-
cal experiments.

Thirdly, the thesis provides a framework for kernel functions on instance data in
ontologies. These data instances are formally described by means of an ontologi-
cal structure. The framework allows to flexibly model kernel functions that probe
instances for selected ontological properties. Again, the thesis also shows the appli-
cation of the proposed kernel functions in practical experiments.
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Notational Conventions

Where possible, this thesis will adhere to the following notational conventions.

A,B, . . . Simple sets.
x ∈ X Input and input space; default is X = Rd

xi The i-th data item of a sequence; if clear
from context, also i-th component of vector x

y ∈ Y Label and label set; default is Y = {+1,−1}
S = (x1, y1), . . . , (xn, yn) ⊆ X ×Y Example (training or test) set for classification
S = (x1), . . . , (xn) ⊆ X Example (training or test) set for clustering
F The space of (hypothesis) functions
H Hilbert space
N, R The natural and real numbers
‖ · ‖p (‖ · ‖) Lp-norm (default is L2-norm)
P, Q . . . Simple matrices
K Kernel (Gram) matrix
I Identity matrix
K Knowledge Structure
O Ontology
E Set of entity names in a knowledge structure
P Set of property names in a knowledge structure
D Set of data values in a knowledge structure
S ⊆ E × P × (E ∪ D) Set of statements in a knowledge structure
C = {class1, class2, . . .} Class entities in ontology
P = {prop1, prop2, . . .} Property entities in ontology
I = {indiv1, indiv2, . . .} Individual entities in ontology
class1(indiv1) Class instantiation
prop1(indiv1, indiv2), prop2(indiv1, value) (Object/Datatype) Property instantiation

xi
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Chapter 1

Introduction

The ability to learn, i.e. to infer general rules after repeatedly observing recurring
phenomena, lies at the core of intelligent behaviour. In analogy with these roots, the
field of machine learning studies techniques that deal with the automatic detection of
patterns in data by modern computing systems. This thesis is occupied with a spe-
cific class of machine learning techniques called kernel methods. Extending classical
machine learning techniques, kernel methods distinguish themselves by an elegant
way to interface with the data by means of the so-called kernel function. A good way
to make prior knowledge about the problem domain available to a machine learning
technique is to incorporate this knowledge into the kernel function. Similarly, kernel
functions can be designed to work directly on data items that do not have a natural
vectorial representation.

As its overall topic, this thesis investigates the design of kernel functions that take
advantage of knowledge expressed in formal knowledge structures and associated
metadata. In this introductory chapter, we shortly introduce the context of this thesis
and give an overview of its contributions.

1.1 Background

Machine learning techniques mimic the process of learning by means of statistical
models. Presented with a limited amount of data, machine learning techniques aim
at learning about hidden patterns in the data by estimating the parameters of the
statistical model based on the observed data characteristics. Depending on the appli-
cation context, the model may be designed to either give a compact characterisation
of the dataset or to predict selected characteristics based on limited information in the
future. If the estimation is sufficiently accurate the resulting model can be applied in
its respective application context. During the last decade, the use of machine learning
techniques has contributed significantly to solving a large set of practical applications
in business and scientific settings.

The success of a machine learning approach in solving a given task depends on var-
ious factors. Some of these relate to the employed estimation procedures. However,
a more important set of factors relates to the capability of accurately representing the

1



Chapter 1 Introduction

relevant data characteristics that can help to describe the sought-after patterns. Ker-
nel methods constitute a fairly recent direction of machine learning research related
to this latter aspect. The major paradigm behind kernel methods is the decoupling
of the employed learning algorithms from the representations of the data instances
under investigation. Different popular learning algorithms can be “kernelized” such
as, for example, Support Vector Machines (SVMs) (Vapnik et al., 1997) for supervised
learning tasks or Kernel-kMeans and Kernel-PCA (Schölkopf et al., 1996) for cluster-
ing and dimensionality reduction, i.e. unsupervised learning tasks. In their original
formulation, these algorithms operate on vectors of real numbers. The hypotheses
generated by these algorithms are then tied to a geometric interpretation within the
corresponding vector space. An example of such a geometric interpretation is the
notion of a separating hyperplane in the case of linear classifiers.

In contrast, the “kernelized” variants of these algorithms are designed in such a
way that the input vectors need not be accessible directly by the algorithms of inter-
est. Instead, it is sufficient that they can access the evaluations of the inner products
of any two vectors in the feature space. In this situation, as we will see, any func-
tion which is positive semi-definite can replace the original inner product, thereby
defining a different feature space only implicitly. Conceptually, the kernel function
can be regarded as a function that encodes a particular notion of similarity of data
items of the input domain while complying with the interpretation as an inner prod-
uct, regardless of the reference space. The kernel function as such thus becomes an
interesting subject of research.

At the same time, ontologies and knowledge structures constitute powerful
paradigms for modelling a domain of interest in terms of declarative knowledge.
While these formalisms have been studied for some time, principled approaches for
the exploitation of knowledge structures within machine learning settings are still a
major subject of research. Structurally, the approaches that combine machine learning
techniques and knowledge structures can be organized according to the type of the
objects of interest to be analyzed by the learning techniques (Bloehdorn and Hotho,
2008).

“Ordinary” Data: In this setting, the objects of interest are arbitrary data items which
have already been the subject of investigation in conventional machine learn-
ing settings. However, their content and conventional representation can be
mapped to entities found in a knowledge structure.

Ontology Entities: In this setting, the objects of interest are part of the knowledge
structure themselves. This setting covers all cases where ontological entities
become the focus of the mining activities.

Knowledge Structures: Finally, this group of approaches covers all cases, where

2



1.2 Research Questions and Contributions

whole knowledge structures or fragments thereof, i.e. the respective sets of en-
tities and statements are the objects of interest.

Along this classification, the kernel functions studied in this thesis are specific in-
stantiations of the first two types of tasks. We will now introduce the respective
research questions in closer detail.

1.2 Research Questions and Contributions

In this section, the contributions of this thesis are outlined. In summary, this work
covers three sub-problems, namely (i) the analysis of popular similarity functions in
taxonomic knowledge structures in terms of their suitability as kernel functions, (ii)
the design of expressive and adequate kernel functions for textual data, that employ
linguistic background knowledge resources and (iii) the design of kernel functions
on data items that are formally described as instances of an ontological structure.

Kernel Functions for Entities in Taxonomic Structures

As we will see, it is not straightforward to see whether a function that assess the sim-
ilarity of two entities in a taxonomic knowledge structure constitutes a valid kernel
function. This property is required if the function should be used as a kernel on en-
tities in the taxonomy. Furthermore, this is also required if the similarity function
should be combined with other kernel functions (a matter of interest for the subse-
quent research question). This issue leads us to the first research question.

Research Question 1 (Validity of Taxonomic Similarity Measures). Which of the estab-
lished similarity functions on entities in taxonomic structures constitute valid kernel func-
tions?

With respect to this question, this thesis conducts a systematic analysis of popular
taxonomic similarity functions with respect to the question whether they have an
interpretation as kernel functions or under which condition they do so. The problem
also lies at the core of the kernel functions to be discussed in the later parts, thus
constituting a basic result for these subsequent parts.

Kernel Functions for Semantic Smoothing in Text Mining

Traditionally, text mining systems rely on the Vector Space Model (VSM) that has
been introduced early in information retrieval (IR) systems (Salton and McGill, 1983).
According to the Vector Space Model, textual inputs are encoded as vectors whose di-
mensions correspond to the terms in the set of documents under consideration. While

3



Chapter 1 Introduction

this straightforward feature representation has an appealing simplicity, a common
caveat is the observation that the terms that constitute the feature space can not be
regarded as mutually orthogonal dimensions but rather as dimensions with varying
degrees of semantic similarity. In this view, inner products on the VSM appear only
as rough approximations of the actual text similarities. On the other hand, lexical
knowledge structures like WORDNET provide a rich source of knowledge about the
semantic dependencies between different terms which could be exploited to address
the shortcomings of the basic VSM.

Research Question 2 (Semantic Smoothing Kernels for the VSM Representation).
How can we design kernel functions which complement the basic VSM representation with
information about the semantic similarity of terms from lexical knowledge structures and
what are the properties of these kernels?

Conceptually, this corresponds to the first setting considered above, i.e. mining
ordinary data with the help of knowledge structures. The mutual exploitation of the
benefits of lexical knowledge structures and statistical text analysis is one of the most
prominent problems in text mining and information retrieval (Bloehdorn et al., 2005).
Consequently, the model we will study, the class of Semantic Smoothing Kernels (SSKs),
bears connections to a variety of existing work in these fields. The main contribution
of this thesis w.r.t. SSKs is the systematic analysis of the behavior and the properties
of these kernel functions.

While SSKs approach a long-standing problem of the VSM representation in a prin-
cipled and intuitive way, the perception of natural language does not only draw from
the semantic content of isolated terms but also from the syntactic structure they are
used in. In linguistics, syntactic structure is commonly represented by parse trees
of the textual input. In recent years, specific kernel functions have been designed
to work directly on such parse tree representations. However, existing kernel func-
tions again neglect the issue of variability of natural language. Finding principled
techniques for exploiting the syntactic structure and the semantic variability of nat-
ural language texts at the same time within a unified framework constitutes another
promising research line. This leads to the next research question.

Research Question 3 (Combining Semantic Smoothing and Syntactic Structure). How
can we design kernel functions on textual documents that combine concepts of semantic
smoothing based on lexical knowledge structures as well as knowledge about their syntac-
tic structure and what are the properties of these kernels?

With respect to this question, this thesis proposes a generalization of tree kernel
functions which directly incorporates semantic background information, a family of
kernels which we call Semantic Syntactic Tree Kernels (SSTKs). These new kernel func-
tions constitute the first principled framework for kernel functions that build upon

4



1.3 Outline

linguistic structure and background knowledge about the semantic dependencies of
terms at the same time. Again, we also systematically analyse the behavior and the
properties of these kernel functions.

Both types of kernel functions, SSKs and SSTKs, require the choice of adequate
smoothing parameters in such a way that they encode a useful notion of semantic
similarity while ensuring the validity of the overall kernels. The proposed design
choices are motivated by the results of the previous sub-problem. Both types of kernel
functions, SSKs and SSTKs, are then applied in a set of practical experiments.

Kernel Functions for Mining Instance Data in Ontologies

With the emergence of the so-called Semantic Web, more and more datasets become
available which are formally described according to a specific ontology in a formal
ontology language. The increased availability of such data sources on the Semantic
Web leads to an increased interest in exploiting these data sources within intelligent
applications. While we have so far considered knowledge structures as a source of
complementary knowledge in an established machine learning scenario, we now turn
our attention to the question of learning from the knowledge structures themselves.
Conceptually, this corresponds to the second setting considered above, i.e. mining
entities within knowledge structures.

While the mapping of Semantic Web languages to formal logic allows for intelligent
applications based on deductive reasoning, the use of inductive approaches is not
straightforward. In particular, instances in formal knowledge structures do not lend
themselves naturally to a vector-based representation. The aim of this sub-problem
is thus to design and work with kernel functions that directly work on individuals
described within formal ontologies. This leads to the next research question.

Research Question 4 (Kernels for Instance Date in Ontologies). How can we design
kernel functions on instances described formally by means of an ontology?

With respect to this question, this thesis introduces a framework for kernel design
on ontological instances. Conceptually, such kernels exploit assertions about the ar-
gument individuals while they are at the same time based on the formal semantics of
the underlying ontology language. Besides the application of machine learning tech-
niques directly to Semantic Web data, this approach enables to naturally incorporate
intensional background knowledge. Again, the application of the resulting kernels is
shown in a set of practical experiments.

1.3 Outline

The current Chapter 1 has given a general introduction to this thesis, has discussed
its research questions and presented the contributions form a bird’s eye perspective.
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Chapter 1 Introduction

The outline over the subsequent chapters is as follows:

Part I introduces the background for the work of this thesis.

Chapter 2 introduces basic concepts from the field of machine learning and, specifi-
cally, kernel methods, including the relevant mathematical background.

Chapter 3 introduce basic concepts from the field of knowledge representation. The
exposition is based around a simple formal framework for knowledge struc-
tures. Even though the framework is kept generic, it is capable of characterizing
a large set of views on the topic of knowledge representation.

Part II reports on the first research question.

Chapter 4 introduces and investigates popular taxonomic similarity functions, in
particular in terms of a theoretical analysis whether or under which conditions
they constitute valid kernel functions.

Part III reports on the second and third research question.

Chapter 5 investigates how knowledge about term similarities can be exploited to
design adequate kernel functions in text mining applications. The chapter in-
troduces two new families of kernel functions, referred to as Semantic Smooth-
ing Kernels and Semantic Syntactic Tree Kernels which take the varying degrees
of semantic similarity between terms into account. The section introduces their
formal model, gives examples and provides an analysis of the the issues for
application.

Chapter 6 investigates the application of both types of kernels presented in Chapter 5
by means of an extensive set of experiments on different datasets.

Part IV reports on the fourth research question.

Chapter 7 investigates how instances, represented within ontologies can become the
subject of kernel-based learning. The chapter introduces a framework for such
kernel functions, which can be combined and adapted to be tuned for a partic-
ular use case.

Chapter 8 again investigates the application of the kernel functions proposed in the
preceding chapter in practical experiments.

Part V concludes this thesis.

Chapter 9 summarizes the main contributions and findings of this thesis and dis-
cusses future research directions.
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Chapter 2

Machine Learning and Kernel Methods

In this chapter, we introduce the foundations of machine learning and kernel methods
that are relevant for this thesis. The mathematical theory underlying kernel-based
learning techniques was developed by Aronszajn (1950) and Mercer (1909). While
the first application of kernel theory in a pattern analysis setting is due to Aizerman
et al. (1964), it has received widespread attention in the machine learning theory only
with the advent of Support Vector Machines (SVMs) (Boser et al., 1992; Cortes and
Vapnik, 1995; Vapnik, 1995). Subsequently, SVMs and other kernel-based learning
techniques have been successfully applied to learning problems such as recognition
of handwritten digits (Cortes and Vapnik, 1995) or text classification (Joachims, 1998,
2002). Since then, various tutorials and books have been written on kernel methods.
The following exposition partly relies on the comprehensive presentations by Shawe-
Taylor and Cristianini (2004); Burges (1998), as well as Hofmann et al. (2007).

In the following, we provide a general introduction to kernel functions and kernel-
based learning techniques. First, Section 2.1 revisits basic mathematical concepts
needed for the subsequent presentation. Section 2.2 then presents a generic introduc-
tion to elementary machine learning concepts. One of the various merits of kernel
methods is the decoupling of the design of learning algorithms and the design of
the kernel functions used. As a result, Section 2.3 first presents a selection of state-
of-the art kernel-based learning algorithms. It starts out with illustrating the main
concepts behind kernel-based learning in the context of a simple example, the kernel
perceptron. Based on this informal discussion, it then gives a systematic overview
of kernel-based learning algorithms. The main focus are SVMs, both in their original
hard-margin formulation and in their extended soft-margin version. Other kernel-
based algorithms are also shortly presented. Then, Section 2.4 formally describes
kernel functions and discusses their properties. The section also introduces a number
of standard kernels and well-known kernel modifiers. Finally, Section 2.5 summa-
rizes the procedures for performance assessment of a learning output. The chapter
concludes with a short summary in Section 2.6.
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2.1 Mathematical Foundations

In this section, we review the mathematical foundations relevant for the subsequent
exposition. Throughout this presentation, we touch a somewhat subjective choice of
topics from analysis and linear algebra. Obviously, the range of relevant topics is too
broad to be covered in full detail but the presented content should suffice to make
the exposition self-contained. In the same spirit, we will sometimes use simplified
definitions at the expense of generality. We include proofs for some of the theorems
if they are suitable to help in the understanding of the overall setting while pointing
to the appropriate literature for the other cases.

2.1.1 Vector Spaces, Inner Products and Hilbert Spaces

In this section, we mainly review the notion and properties of inner products that
play a central role in the context of kernel theory. We will begin with the definition
of a vector space and gradually extend this concept up to the concept of the Hilbert
space.

Sets and Metric Spaces

Mathematics often deals with sets made up of elements of whatever type, e.g. the sets
of real or integer numbers, sets of data items or sets of symbols of a certain alphabet.
The set plays a key concept in modern mathematics and sets form the core of most
more advanced mathematical structures that are built upon them. The empty set
is denoted ∅. As usual, we will use a ∈ A to denote the membership of a in the
set A. Given two sets A,B, well-known operations upon these sets are their union
A∪ B, their intersection A∩ B and their difference A \ B (i.e. the set of all elements of
A, which do not belong to B). Sets can stand in a subset-relation to each other, i.e.
A ⊆ B (A ⊂ B) denotes that A is (proper) subset of B. The power set of a set S is
the set of all its subsets, denoted 2A. The set of all pairs of two sets A and B is called
their Cartesian product, denoted A×B.

One of the simplest structures that can be imposed upon a set is a distance function
as a concept of “closeness” items.

Definition 2.1 (Metric Space). A metric space is a set A, along with a function d: A×
A 7→ R, called the distance between two elements, such that for any x, y ∈ A, the
following properties hold:

• d(x, y) ≥ 0 (positivity),

• d(x, y) = 0 ⇔ x = y,

• d(x, y) = d(y, x) (symmetry),
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2.1 Mathematical Foundations

• d(x, z) + d(z, y) ≥ d(x, y) (triangle inequality).

Vector Spaces

We now extend the concept of the set towards vector spaces. The concept of the
vector space provides means for combining and transforming items by means of a
set of fixed operations. The vector space is the basic structure in which the learning
techniques introduced in the remainder will operate.

Definition 2.2 (Vector Space). A set V is a vector space over a field K, if the two oper-
ations addition (+) and multiplication by a scalar (×) are defined on V such that for
any x, y, z ∈ V and α, β ∈ K we have x + y ∈ V and α× x ∈ V whereby V forms a
commutative group under addition, i.e.:

• x + (y + z) = (x + y) + z (associativity),

• there is an element 0 ∈ V , such that x + 0 = x (identity),

• for every x ∈ V there is a unique element −x ∈ V , such that x + (−x) = 0
(inverse),

• x + y = y + x (commutativity) ,

and where scalar multiplication obeys the following axioms:

• α× (β× x) = (α× β)× x (associativity),

• α× (x + y) = α× x + α× y (distributivity of vector sums),

• (α + β)× x = α× x + β× x (distributivity of scalar sums),

• there is an element 1 ∈ K such that 1× x = x (identity).

Elements x ∈ V are called vectors, elements α ∈ K are called scalars. A non-empty
subset M ⊆ V is called a subspace of V if the restriction of the above axioms to M
make it a vector space.

As a convention, we will abbreviate α× x as αx. In the following, we will restrict
the attention to vector spaces over the field R of real numbers which is sufficient for
the required results and simplifies the further discussion. Note however that most of
the presented results carry over to other fields with minor modifications.

Example 2.1 (d-dimensional Euclidean Space). The standard example of a vector
space is the set Rd of real column vectors of fixed dimensionality d. Using x′ to de-
note the transpose of vector x, such a vector can be written as x = (x1, . . . , xd) where
xi ∈ R, i = 1, . . . , d.
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While the term vector is often used synonymously with the concept of vectors in Eu-
clidean spaces, functional analysis generalizes this concept to arbitrary abstractions
of Euclidean vectors whose precise nature (as, for example, sequences or functions of
some kind) is unimportant for the basic concept of vector spaces.

Definition 2.3 (Linear and Convex Combinations). Given a vector space V , some
elements x1, . . . , xn ∈ V and scalars α1, . . . , αn ∈ R, a sum of the form α1x1 + . . . αnxn
is called a linear combination of x1, . . . , xn. If α1, . . . , αn ≥ 0 and ∑n

i=1 αi = 1, the sum
is also called a convex combination. The set of all linear combinations of x1, . . . , xn ∈ V
is called the linear hull of x1, . . . , xn, denoted span(x1, . . . , xn). The set of all convex
combinations of x1, . . . , xn ∈ V is called the convex hull of x1, . . . , xn. A set M ⊆ V is
called a convex set if for any two x, x′ ∈ M, all convex combinations of x and x′ are
also in M.

Definition 2.4 (Linear Independence, Basis). A finite set of of vectors x1, . . . , xn ∈ V
is called linearly independent if and only if there is no trivial linear combination that
yields the zero element, i.e. if α1x1 + . . . + αnxn = 0 ⇔ α1 = . . . = αn = 0. An
arbitrary (possibly infinite) set M is linearly independent if and only if every finite
subset of M is linearly independent. A set of vectors M forms a basis for a vector
space V if and only if M is linearly independent and span(M) = V . The cardinality
of every basis of a given vector space is constant and is called the dimension of the
vector space.

Normed Vector Spaces

Building on the notion of the simple vector space, we now move on to introducing
means for measuring the “length” or “size” of vectors.

Definition 2.5 (Normed Vector Space). A normed vector space is a vector space V along
with a function ‖ · ‖: V 7→ R, called the norm of V , such that for any x, y ∈ V and
α ∈ R, the following properties hold:

• ‖x‖ ≥ 0, ∀x ∈ V , whereby ‖x‖ = 0 ⇔ x = 0 (positivity),

• ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ V (triangle inequality),

• ‖αx‖ = |α|‖x‖, ∀α ∈ K, ∀x ∈ V (homogeneity).

Remark 2.1. A valid norm also induces a metric d(·, ·) by defining the distance d as
d(x, y) = ‖x− y‖, x, y ∈ V .

Example 2.2 (`p norm on Rd). In a real vector space Rd, for any p ≥ 1 the `p norm of
a vector x ∈ Rd with components x1, . . . , xd is given by:

‖x‖p =

(
d

∑
i=1
|xi|p

) 1
p

.
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For the case of p = 1 we get the so called Manhattan norm, while p = 2 yields the
standard Euclidean norm.

Definition 2.6 (Banach Space). In a normed vector space V , an infinite sequence of
vectors x1, x2, x3, . . . is said to converge to a vector x, if the sequence of distances
d(x, xn), induced by the norm of V , converges to zero. Furthermore, the sequence
is said to be a Cauchy sequence if d(xn, xm) → 0 as n, m → ∞. More precisely, given
ε > 0, there is an integer k such that d(xn, xm) < ε for all n, m > k. A space is said
to be complete when every Cauchy sequence converges to an element of the space. A
complete normed vector space is also called a Banach space.

Remark 2.2. Note that every real Cauchy sequence is convergent. This follows from
the fact that (i) every Cauchy sequence of real numbers is bounded and (ii) by virtue
of the well-known Bolzano-Weierstrass Theorem, every bounded sequence has a con-
vergent subsequence with some limit point x. Now assuming that such a limit x is
also a limit of the Cauchy sequence, we choose some xn of the subsequence that is
within a fixed distance ε of x. Provided we are far enough down the Cauchy se-
quence, any xm will be within ε of xn and thus also within 2ε of x.

Inner Products and Hilbert Spaces

Having introduced the notion of a vector space and the norm of vectors, we now
extend these concepts with the so-called inner product as a notion of the mutual ori-
entation of two vectors in the vector space.

Definition 2.7 (Linear Function). Let V and M be vector spaces over R. A function
f : V 7→ M is called a linear function if for any x, v ∈ V and α ∈ R the following
properties hold: f (x + y) = f (x) + f (y) and f (αx) = α f (x).

Definition 2.8 (Inner Product Space). An inner product space (pre-Hilbert space) is a
vector space V over R along with a function 〈·, ·〉 : V × V 7→ R such that for any
x, y, z ∈ V and α ∈ K the following properties hold:

• 〈x, y〉 = 〈y, x〉 (symmetry),

• 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇔ x = 0 (positivity),

• 〈αx, y〉 = α〈x, y〉 and 〈x + z, y〉 = 〈x, y〉+ 〈x, z〉 ((bi-)linearity).

The map 〈·, ·〉 is called inner product or, synonymously, scalar product or dot product.

Remark 2.3. Inner product spaces have a naturally defined norm via the relation
‖x‖ =

√〈x, x〉. By means of its corresponding norm, an inner product thus also
induces a metric.
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Example 2.3 (Euclidean Inner Product). In a real vector space Rd, the Euclidean inner
product of two vectors x, z ∈ Rd with components x1, . . . , xd and z1, . . . , zd is given
by:

〈x, z〉 =
d

∑
i=1

xizi.

The corresponding norm coincides with the `2 norm. The related Frobenius inner prod-
uct defines an inner product on matrices by treating them as two-dimensional vectors
and summing up the products of corresponding components.

Proposition 2.1 (Cauchy-Schwarz Inequality). In an inner product space we have that

|〈x, y〉|2 ≤ 〈x, x〉 〈y, y〉

and the equality holds if and only if x and y are dependent.

Definition 2.9. The angle between two vectors x, y ∈ V is defined by:

cos θ =
〈x, y〉
‖x‖ ‖y‖ .

If |〈x, y〉| = ‖x‖ ‖y‖, the cosine is equal to plus or minus one, the angle θ is zero, and
x and y are said to be parallel. If 〈x, y〉 = 0, the cosine is zero, the angle θ = π

2 and the
vectors are said to be orthogonal.

Definition 2.10. A finite set of of vectors x1, . . . , xn ∈ V is called orthogonal if all pairs
of vectors are distinct and orthogonal. The set is called orthonormal, if it is orthogonal
and all vectors have unit norm. An orthogonal set is always linearly independent.
A basis which forms an orthogonal or orthonormal set is called an orthogonal or
orthonormal basis, respectively.

Definition 2.11 (Gram Matrix). Given a set M = {x1, . . . , xn} of vectors from an
inner product space V , the n × n matrix G with entries Gij = 〈xi, xj〉 is called the
Gram matrix of M.

There are different definitions of the term Hilbert space, we here use the more re-
laxed definition, which is sufficient for our purpose.1

Definition 2.12 (Hilbert Space). A vector space H is called a Hilbert space if it is an
inner product space and H is complete with respect to the metric induced by the
inner product 〈·, ·〉 (i.e. if it is also a Banach space).

1For example, Kolmogorov and Fomin (1970) define a Hilbert space as above but restrict the definition
to infinite-dimensional and separable (in which case, informally speaking, the space must have a
countable subset whose closure is the space itself) spaces.
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Example 2.4 (Euclidean Space). A real vector space Rd, together with an Euclidean
inner product as introduced in example 2.3 is a Hilbert space.

Example 2.5 (L2 Space). The space L2 of all functions f : R 7→ R such that the integral
of f 2 over [−∞, ∞] is finite, together with the inner product

〈 f , g〉 =
∫ ∞

−∞
f (x)g(x)dx

is an example of an (infinite-dimensional) Hilbert space.

2.1.2 Fundamental Concepts from Matrix Algebra

In this section, we will constrain the exposition to real matrices. Recall that a real
n × m matrix M is a rectangular arrangement of real numbers along n rows and m
columns. By Mij we denote the real number in the i-th row and j-th column. Every
row and column of a real matrix forms a vector in the Euclidean spaces Rm and Rn,
respectively. We denote the transpose of a matrix M as M′. All linear functions f :
Rm 7→ Rn can be encoded as matrix multiplications f (x) = Mx, x ∈ Rm, f (x) ∈
Rn, M ∈ Rn×m. A square matrix is called symmetric if M = M′. A square matrix is
called diagonal if its off-diagonal cells are all zero. It is called upper (lower) triangular if
all elements above (below) the diagonal are all zero.

A diagonal matrix I (of dimensionality d) whose diagonal entries are all equal to
‘1’ is called the identity matrix (of dimensionality d). The Kronecker symbol, defined as:

δij =
{

1, if i = j
0, otherwise

conveniently expresses the entries of the identity matrix.
Further, recall that the rank of a matrix is the number of linearly independent rows

or columns of the matrix. An n × n matrix M (square matrix) is called regular if its
rank is equal to n, otherwise some of its vectors must be linearly dependent in which
case M is called singular. For a regular matrix M there exists a unique matrix denoted
M−1 such that MM−1 = I which is called the inverse of M. A singular matrix does
not have an inverse. A matrix M for which M−1 = M′ is called an unitary matrix.

Also recall that the determinant of a square matrix M, denoted det(M) is a function
that associates a scalar value to M that reveals certain properties of M.

Definition 2.13 (Determinant). Given a n× n matrix M, the determinant is computed
as

det M = ∑
σ∈Pn

(
sign(σ)

n

∏
i=1

Mi,σ(i)

)
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whereby Pn denotes all permutations of σ of {1, . . . , n} and sign(σ) denotes the sign of
the permutation σ, namely sign(σ) = 1 in case of an even permutation and sign(σ) =
−1 in case of an uneven permutation.

Obviously, in the case of larger matrices, the computation of the determinant is a bit
more involved. For 2× 2 matrices, the determinant can be conveniently expressed as
det(M) = M11M22 −M12M21. Without going into too much detail, we sketch some
important properties of the determinant. If the determinant of a matrix is zero, the
matrix is singular, otherwise it is regular. Specifically, if the determinant is one, the
matrix is said to be unimodular.

Definition 2.14 (Eigenvalues and Eigenvectors). Given an n × n matrix M, the real
number λ and the vector x ∈ Rn are called eigenvalue and eigenvector, respectively if
Mx = λx.

Obviously, a matrix can only have zero as an eigenvalue if it is singular with the
respective eigenvector(s) corresponding to a non-trivial combination of the column
vectors that yields the zero vector. Note that the product of the eigenvalues of a
square matrix is equal to the determinant of that matrix.

Proposition 2.2. Eigenvectors corresponding to distinct eigenvalues are orthogonal.

Proof. Let x, λ and z, µ be eigenvector, eigenvalue pairs with λ 6= µ and λ, µ > 0 for
some symmetric matrix M. We then have that λ〈x, z〉 = 〈Mx, z〉 = 〈x, Mz〉 = µ〈x, z〉.
But this implies that 〈x, z〉 = 0.

As a result, an n× n matrix can have at most n distinct eigenvalues. The Eigenvec-
tors can be chosen to form an orthonormal basis of Rn.

If we form a diagonal matrix Λ with eigenvalues λi of a square matrix M arranged
in decreasing order along the main diagonal and a matrix V with the corresponding
orthonormal eigenvectors arranged columnwise, we have that VV′ = V′V = I form-
ing the identity matrix and MV = VΛ. The latter decomposition is referred to as the
eigen-decomposition of M. In the case that all eigenvalues are non-negative, they can
have valid square roots. Setting A = V

√
Λ, the eigen-decomposition can thus also

be written as M = AA′.

Definition 2.15 (Positive Semi-Definiteness). A symmetric matrix M is positive semi-
definite (p.s.d.), if all eigenvalues of M are non-negative.

Proposition 2.3. Let M be a symmetric matrix. Then M is positive semi-definite if and only
if for any vector x 6= 0 we have that x′Mx ≥ 0.

Proof. Let M be a symmetric matrix n × n and x 6= 0 any vector in Rn. Consider
the rearrangement of the above condition in terms of the eigen-decomposition of M:
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x′Mx = x′V′ΛVx = 〈ΛVx, Vx〉 ≥ 0. It clearly follows that if all eigenvalues λi ≥ 0,
the condition is met as the resulting dot product will be non-negative. Let x be an
eigenvector of M with eigenvalue λ. But then we have x′Mx = x′ λx = λ〈x, x〉 ≥
0 ⇒ λ ≥ 0.

The interested reader is pointed to the treatment of positive (semi-) definite matri-
ces by Bhatia (2007).

Definition 2.16 (Singular Values and Singular Vectors). Given a m× n matrix M, the
singular value decomposition (SVD) of M is given by the decomposition M = UΣV′,
whereby U is a m × m unitary matrix, the matrix Σ is a m × n matrix with non-
negative numbers on the diagonal and zeros off the diagonal, and V is a n× n unitary
matrix. Further, the values σ1, . . . , σk with k = min(n, m) lie the diagonal of Σ in de-
creasing arrangement and are called the singular values of M.

Remark 2.4. The SVD of M is related to the eigendecomposition of MM′ as follows

MM′ = UΣV′VΣU′ = UΣIΣU′ = UΛU′

where Λ = Σ2 now is a diagonal matrix containing the (non-negative) eigenvalues of
MM′. The columns of U are thus also called the left singular vectors of M. The same
reasoning can be applied to the matrix M′M and, correspondingly, the columns of V
are called the right singular vectors of M.

To this point, we have introduced the main building blocks of analysis and linear
algebra required to express machine learning as function estimation in vector spaces
and to investigate the concept of kernel functions in closer detail.

2.2 Machine Learning as Pattern Analysis

Machine learning is a wide research field concerned with methods that deal with the
automatic detection of patterns in data. See e.g. Mitchell (1997) for a classical textbook.
Machine learning is a subdiscipline of the much broader field of artificial intelligence
which is occupied with devising computational techniques that mimic human intel-
ligent behaviour. The term machine learning points to the roots of this perspective
as it emphasizes the analogy with the kind of learning we know from humans and
animals. After observing or experiencing a certain recurring situation a number of
times we learn to recognize the same kind of situation again, even if the amount of
presented information is limited. Machine learning aims at achieving a similar effect.
Presented with a limited amount of data, machine learning techniques try to learn
about hidden patterns in the data and to exploit the results in a corresponding ap-
plication. Along this line, the term pattern analysis is used somewhat synonymously
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with machine learning. The patterns of interest can be any kind of structure, rela-
tions and regularities that can be observed in the data. Typically, the pattern analysis
process relies on statistical concepts and, consequently, the term statistical learning is
used in literature as yet another synonym that stresses the statistical nature of the
employed methods.2

2.2.1 Classes and Properties of Machine Learning Problems

In the classical machine learning scenario, we are presented a set S = {x1, x2, . . . , xn}
of data items (with S ⊂ X ) and try to detect patterns in this data. The xi are called
(training) instances and the space X they originate from is called the input space. The
type of pattern that we are looking for is constrained by various aspects, most promi-
nently by the type of the learning task.

Supervised Learning

In supervised learning, we are interested in a particular property of the data items. This
property, typically called the target, is a single discrete or real value linked to each
instance. The patterns we are looking for have a predictive nature: given a limited
amount of input-output pairs, we are interested in finding those patterns that are
capable of accurately predicting the target variable from the input instances alone.
Depending on the space Y of the target variables, the problem is referred to as classi-
fication (discrete target variables) or regression (real-values variables). We will give a
more formal account of supervised learning in the next section. These kind of tasks
are considered supervised because a (human) authority outside the system decides
upon the correct target variables.

Example 2.6 (e-mail Classification). As an example, consider the case of teaching a
spam filter application by presenting it a number of e-mails, marked as “spam” or
“non-spam” . The learning task is to detect those patterns in the e-mails that are
capable of determining the nature of a new, unclassified, e-mail.

Unsupervised Learning

In unsupervised learning, the patterns we are looking for have a descriptive nature. In
these cases, we can only observe the input instances and try to describe in a more

2In fact, literature uses yet another set of names for this field. With a tendency on stressing the appli-
cation context of pattern analysis methods, Data Mining is another term frequently used, typically in
conjunction with the term Knowledge Discovery for denoting the larger context in which Data Mining
techniques operate (Fayyad et al., 1996). In particular, the Knowledge Discovery Process starts from
the definition and analysis of the (business) problem, followed by phases for understanding and
preparation of data, setup of the learning model, the actual learning, application and evaluation of
the results, and, finally, deployment of the solution.
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compact way, how the data is organized. A typical unsupervised learning task is
clustering, where we are concerned with grouping the instances in such a way that the
items within each group are homogeneous in some way while heterogeneous items
should be placed in distinct clusters. Another unsupervised learning problem is as-
sociation rule learning that aims at identifying co-occurrence patterns of properties of
the input instances. Finally, dimensionality reduction techniques try to discover projec-
tions of arbitrary data items into low dimensional spaces, typically for visualization
purposes or as input to other learning algorithms. Here, the projection should retain
as much of the pairwise similarities and distributional characteristics of the original
data.

Common Principles

Regardless of the type of the learning task and the specific algorithm employed, all
pattern analysis endeavours exhibit a common structure:

(1) They require the choice of a suitable data representation.

(2) They require the choice of a suitable class of hypothesis functions F (model).

(3) They require the specification of an algorithm that, given a set of training ex-
amples, identifies a specific function f ∈ F by determining specific values for
the free parameters of the function class F (learning).

Each of these aspects critically determines the success of the learning problem. This
thesis is mainly concerned with the first two aspects, as kernel functions can be seen
as the interface between the data representation and the model. As a consequence,
the use of kernel functions restricts the types of models and the learning processes
that can be used. However, as we will see, these restrictions are rather mild and
the use of kernels enables a wide range of patterns to be accurately modelled and
detected.

Along another dimension, Shawe-Taylor and Cristianini (2004) name three desir-
able properties of modern machine learning techniques. On the one hand, the tech-
niques should be capable of dealing with the fact that real-life data is often corrupted
by noise, e.g. because of measurement inaccuracies. Algorithms should thus show
robustness in the sense of tolerating a certain amount of noise while still producing
approximate patterns. On the other hand, the algorithms should exhibit statistical
stability in the sense that regardless of the precise sample supplied, the algorithms
should reproduce largely similar results. In particular, the algorithms should not be
easily affected by variations in the distribution of instances or by outliers, i.e. rare
instances with extreme deviations. Later, we will investigate a set of concepts that
directly ensure these properties when investigating large-margin classifiers. Finally,
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the algorithms should be computationally efficient. This requirement is critical when
algorithms are to be used in practical applications with large amounts of data.

2.2.2 Supervised Learning and Statistical Learning Theory

Statistical learning theory is a field occupied with investigating general principles
and properties of (mostly supervised) learning techniques. In this section, we will
review the most relevant findings of this theory. The content of this section is bi-
ased towards the case of binary classification problems. Multi-classification can be
achieved by various schemes for combining binary classifiers, some of which will be
reviewed later. While we will not investigate the case of regression problems, note
that many of the results for binary classification can be adapted to regression settings
— often in a straightforward way.

The Learning Problem of Binary Classification

In the following, we denote the instance space as X and the set of possible targets as
Y . For the moment, we will entirely focus on the case of binary classification in which
case the targets are given by Y = {+1,−1}. The classical learning model of statis-
tical learning theory as introduced by Vapnik (1995, 1998) formalizes the classifica-
tion task as follows. Given input-output training data pairs generated independently
and identically distributed (i.i.d.) according to an unknown probability distribution
P(x, y):

(x1, y1), . . . , (xn, yn) ∈ X ×Y ,Y = {+1,−1} , (2.1)

and a class of functions F , we want to estimate a discriminant function:

f : X 7→ {−1, +1}, f ∈ F , (2.2)

such that f will correctly classify unseen examples (x, y). Given a hypothesis space
F , the optimal function f is the one that minimizes the expected risk associated with
the classifier.

Definition 2.17 (Expected Risk). The expected risk of a hypothesis f with respect to a
distribution P(·, ·) over (X ×Y) is the quantity:

R[ f ] =
∫

L( f (x), y) dP(x, y),

where L denotes a suitably chosen loss function.

Formally, the loss function states, how costly a misclassification is.
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Definition 2.18 (Loss Function). Given the prediction f (x) of a classifier f on a partic-
ular data item x and the true value y of that data item, the loss loss function L( f (x), y)
measures the loss incurred by the classification decision. Formally, L can be any map
L : Y × Y 7→ [0, ∞] such that L(y, y) = 0 for all y ∈ Y .

Example 2.7 (Zero/One Loss Function). In binary classification, a common and in-
tuitive loss function that weights any kind of misclassification equally, we typically
consider the zero/one-loss function:

L0/1( f (x), y) =
{

1 if f (x) 6= y
0 otherwise .

Thus, the zero/one loss function assigns a fixed error score if the true labels and
the labels predicted by the classifier differ, while assigning zero loss if they coincide.
Other loss functions can be defined to account for the fact that some kinds of classifi-
cation mistakes may be worse, and thus more costly, than others. We will encounter
examples of other loss functions, such as the soft margin loss in the context of the sub-
sequent treatment of SVMs. As another example, the squared loss is also commonly
used, especially in regression settings.

The expected risk tells us about the generalization capabilities, i.e. the predictive per-
formance of a learned discriminant function. These definitions in mind, we can view
the task of estimating an optimal prediction function as a search for a specific func-
tion within a given function class that minimizes the expected risk. However, the
expected risk can not be calculated directly as the distribution P(x, y) is unknown.
As a consequence, we try to estimate a function that is close to the optimal one based
on the information available in the training sample and on the function class F .

Empirical Risk Minimization

A straightforward approach would be to estimate the expected risk by means of the
empirical risk and minimize this quantity instead.

Definition 2.19 (Empirical Risk). The empirical risk of a hypothesis f on a data sample
S = {(x1, yi), . . . , (xn, yn)} is given by:

Remp[ f ,S ] =
1
n

n

∑
i=1

L( f (xi), yi)

where L again denotes the chosen loss function.

A learning technique that is based on the minimization of this quantity is said to
follow the empirical risk minimization (ERM) principle. Unfortunately, the minimization
of the empirical error on the training sample as such does, in general, not necessarily
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lead to a classifier with optimal generalization behavior. Instead, we may run into a
situation of deriving a (false) model that incurs a substantial expected risk but per-
fectly fits the training data. This situation, called overfitting, is likely to happen if
the model has too much complexity, i.e. too many free parameters, in relation to the
amount of data available. In cases of overfitting, the learning algorithm may adjust
the various model parameters to spurious and random features of the training data,
even if they have no causal relation to the target function.

As a means to avoid overfitting, we may try to increase the amount of available
training data. It is indeed possible to give conditions on the learning technique that
ensure that the empirical risk converges to the expected risk in the size of the training
sample. However, the amount of training data is generally limited and other means
for controlling the expected risk are required.

Complexity, VC Dimension and Structural Risk Minimization

The second quantity that determines the generalization power of the system is the
complexity of the employed function class. One way to avoid overfitting is thus to
restrict the complexity of the function class F under investigation. The intuition,
which we will investigate more formally in the following is to favour simple over
complex functions. On the other hand, given a function too simple for the learning
task at hand, we will again fail to mimic the unknown target concept, or, as Burges
(1998) put it:

“A machine with too much capacity is like a botanist with a photographic
memory, who, when presented with a new tree, concludes that it is not
a tree because it has a different number of leaves from anything she has
seen before; a machine with too little capacity is like the botanist’s lazy
brother, who declares that if it is green, it is a tree.”

In essence, the optimal result for a given learning task will be achieved if the right
tradeoff is found between minimizing the empirical error and controlling the com-
plexity of the function class under investigation. For example, a typical approach
taken in statistics is to add a regularization term to the empirical risk that penalizes
complexity. The problem of generalization has been treated in many different ways,
be it as overfitting, as the bias-variance tradeoff (Geman et al., 1992), regularization, or
from the viewpoint of philosophy of science.3 In essence, all theoretical background
work requires us to find a compromise between optimizing the empirical error and
minimizing the model complexity. The subsequent exposition will be based on a par-
ticular notion of complexity, the VC dimension.

3In fact, overfitting is typically considered to be a violation of the philosophical principle of Occam’s
razor, roughly stating that we should make as few assumptions about as possible when trying to
explain a given phenomenon.
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A common measure of complexity of a function class F that had substantial im-
pact on modern statistical learning theory is the Vapnik-Chervonenkis dimension due to
Vapnik and Chervonenkis (1971, 1974).

Definition 2.20 (Vapnik-Chervonenkis (VC) dimension). A set of m data points is
shattered by functions of a class F , if for all of the 2m possible labellings a function
f ∈ F is capable of separating both classes. The Vapnik-Chervonenkis (VC) dimension
of a class of functions F corresponds to the maximum number of points that can be
shattered by functions of the class.

Vapnik (1995) derived a bound on the expected risk that makes use of the notion of
the VC dimension.

Proposition 2.4 (Bound on the Expected Risk (Vapnik, 1995)). Let h denote the VC
dimension of the function class F and let Remp be defined as in Definition 2.19 using the
zero/one loss function obtained on the training set S . For all η ∈ [0, 1] and f ∈ F the
inequality

R[ f ] ≤ Remp[ f ] +

√
h(ln 2|S|

h + 1)− ln(η/4)
|S|

holds with probability of at least 1− η for |S| > h.

We thus get a means for bounding the expected risk in terms of all relevant pa-
rameters, namely the empirical risk Remp, the number of training examples |S| and
the complexity of the employed function class in terms of the VC dimension. Fixing
the probability η and the training set, and given two learning functions that yield
the same empirical risk, we will thus rationally choose the one whose function class
comes with a smaller VC dimension. The bound on the expected risk of Proposi-
tion 2.4 makes it possible to work on the basis of the structural risk minimization (SRM)
principle. The principle advises us to first arrange the hypothesis functions in a nested
family of function classes F1 ⊂ F2 . . . ⊂ Fk with decreasing VC dimension. Within
each class of functions, we then estimate a prediction function solely on the basis of
minimizing the empirical risk. We finally choose the function, for which the right
hand side of the bound of Proposition 2.4 is minimized.

Despite its appealing properties, the bound of Proposition 2.4 per se has limited
practical implications. On the one hand, it is often hard to compute as in cases of
infinite VC dimension. On the other hand, it may produce trivial results (such as
the bound on the expected risk being larger than one). However, the bounds offer
interesting theoretical insights that can be exploited to devise appropriate learning
schemes. A particularly interesting relation to another quantity, the margin of a lin-
ear classification function that motivates much of the theory behind SVMs will be
discussed in Section 2.3.2.
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2.2.3 Unsupervised Learning

With regard to unsupervised learning problems, we only shortly cover the case of
clustering as a specific case of unsupervised learning. However, also other techniques
like association rule learning or dimensionality reduction techniques could be classi-
fied as unsupervised learning. For the case of dimensionality reduction, another im-
portant class of unsupervised learning techniques, we will shortly cover a prominent
approach called Latent Semantic Indexing (LSI) in the context of the related work in
Section 5.5.

Clustering can be seen as the process of segmenting or partitioning a data set into
subsets. The site, spatial location, mutual distance and homogeneity of the found
clusters can be used for a compact description of the properties of the data. The
general objective thereby is that the objects within a cluster are closer or more similar
to each other (intra-cluster homogeneity) than to objects outside of the cluster and
that the objects across different clusters are as distant or dissimilar as possible (inter-
cluster heterogeneity).

The critical notion for all clustering techniques is the notion of distance metric (or,
sometimes, arbitrary similarity function) of data items upon which the clustering is
based. As we will see, kernel functions provide a good basis for this kind of notion.
While several clustering procedures operate heuristically, most techniques implicitly
or explicitly optimize a clustering criterion function. The optimization can be based
on notions like intra-cluster variance, the sum of squared errors, or the size (in terms
of the diameter) of the clusters. The actual clustering can be done in a number of
ways. Data clustering algorithms can be partitional or hierarchical. Beyond the basic
objective of partitional clustering, hierarchical clustering also produces a nested hi-
erarchy of groups of objects. Hierarchical algorithms can be agglomerative ("bottom-
up") or divisive ("top-down"). While agglomerative clustering algorithms begin with
one-element clusters and iteratively merge them into larger clusters, divisive tech-
niques first put the whole dataset into one cluster and successively divide it into
smaller clusters. Along another dimension, the produced clustering can be hard, or
fuzzy where each item is assigned to the whole set of clusters with a variable degree of
membership. Additionally, clustering algorithms sometimes make explicit assump-
tions about the structure of the clusters, e.g. many algorithms assume an unknown
Gaussian mixture model for the generation of the data.

Various variants of these clustering techniques have been proposed and lead to
different clustering techniques. Jain et al. (1999) provides an overview of relevant
approaches.
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2.3 Kernel-Based Learning Algorithms

In this section we introduce the concept of kernel-based learning algorithms. Start-
ing with an informal discussion of the concept of kernel functions in the context of
the kernel perceptron, we will then move on to other popular kernel-based learning
algorithms, in particular Support Vector Machines which form the basis the practical
experiments in this thesis.

2.3.1 Introducing Kernel-Based Learning: The Kernel Perceptron

The perceptron (Rosenblatt, 1958) is one of the earliest machine learning techniques.
We use the perceptron paradigm to informally introduce the concept of kernel func-
tions.

Linear Classification and Perceptron Learning

The perceptron learning technique belongs to the family of linear classifiers, a large
and powerful class of learning methods that will also form the basis for the SVM
techniques discussed later on.

Definition 2.21 (Linear Classifiers). Linear classifiers are defined by discriminant
functions of the form

f (x) = sign

(
d

∑
j=1

xjwj + b

)
= sign(〈x, w〉+ b); w, x ∈ Rd, b ∈ R.

Given a set of input examples in the form of vector-label pairs (x1, y1), . . . , (xn, yn) ∈
Rd × Y, Y = {+1,−1}, linear classifiers try to estimate the parameters w and b ac-
cording to a given optimality criterion.

Since the discriminant function is a threshold linear function, we can interpret the
learning process as searching for a (d-1)-dimensional separating hyperplane defined by
the equation 〈x, w〉+ b = 0, each side of which corresponds to a particular classifica-
tion decision.4 The weight vector w acts as normal vector for this hyperplane while the
bias parameter b determines the intercept. If b = 0, the hyperplane passes through
the origin. Figure 2.1 illustrates the situation. Note that there is a whole family of pa-
rameters (w, b) that define the same hyperplane as multiplication of both parameters
by a positive scalar does not change the classification result. Similarly, multiplication
of the parameters by a negative scalar leads to the same classification of the dataset

4Formally, the class membership of the points on the hyperplane remains undefined. Typically, algo-
rithms use a simple heuristic for this rare situation, e.g. by regarding points on the hyperplane as
part of the positive target class.
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Figure 2.1 — Linear classification boundary in 2D. The decision boundary is given by
a hyperplane, i.e. a straight line in 2D. Each side of the hyperplane corresponds to a
particular classification decision.

but leads to a flipping of the target classes. As we will see later, this freedom can be
restricted by requesting that ‖w‖ = 1. We will refer to this solution as the canonical
representation of a hyperplane. The magnitude of a weight vector component can be
seen as measuring the importance of the respective dimension (feature).

While initial insights and applications of linear classification have been developed
by Fisher (1936) as early as in the 1930s, the perceptron algorithm was developed
by Rosenblatt (1958) in the late 1950s. Perceptrons set the foundations for the field
of neural networks emerging in the 1980s.5 Procedure 2.1 sketches the perceptron
learning algorithm in pseudocode. In Definition 2.21, we have deliberately abstained
from defining a specific optimality criterion, as this choice differs among the different
learning methods. In particular, the perceptron algorithm does not use any advanced
objective for discovering the parameters w and b but simply produces a feasible solu-
tion, i.e. a solution which is capable of classifying the training vectors without errors.
Intuitively, such a solution can only exist if the dataset under consideration can actu-
ally be separated by a single hyperplane. In this case, we say that the dataset must be
linearly separable.

5In neural network research terminology, individual perceptrons are sometimes called artificial neu-
rons, the components of the argument vectors are called inputs, the sign function is an example of a
simple activation function whereby the bias b is typically rewritten as b = −θ and is called activation
threshold.
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Procedure 2.1
Perceptron Training — primal version (Rosenblatt, 1958)

Input: data S = ((x1, y1), . . . , (xn, yn))
Initialize: w ← 0, b ← 0

1: repeat
2: err ← 0
3: for i = 1, . . . , n do
4: compute γi = yi(〈w, xi〉+ b)
5: if γi < 0 then
6: w ← w + yixi
7: b ← b + yi
8: err ← err + 1
9: end if

10: end for
11: until err = 0
12: return w, b

Definition 2.22 (Functional Margin and Linear Separability). The functional margin of
an example (xi, yi) with respect to a hyperplane (w, b) is the quantity:

γi = yi (〈w, xi〉+ b).

Here, γi > 0 implies correct classification of (xi, yi). The functional margin γ of a
whole example set S with respect to a hyperplane (w, b) is the minimum functional
margin of all items in the set. The example set S is said to be linearly separable if there
exists a hyperplane (w, b) such that S has a positive functional margin.

As a consequence, the perceptron training algorithm will fail to terminate if the two
classes of the training data can not be separated by a hyperplane while it is guaran-
teed to find a feasible solution after a finite number of steps if the dataset is linearly
separable. The situation is summarized in the following proposition.

Proposition 2.5 (Perceptron Convergence (Novikoff, 1962)). Given a non-trivial data set
S = (x1, y1), . . . , (xn, yn) and let R = max1≤i≤n ‖xi‖. Without loss of generality, suppose
that there exists a hyperplane (w∗, b∗) such that ‖w∗‖ = 1 and assume that the functional
margin γ of S wrt. (w∗, b∗) is positive, i.e. yi (〈w∗, xi〉+ b∗) ≥ γ > 0 for 1 ≤ i ≤ n. Then
the number of update steps of the perceptron algorithm on S is at most (2R/γ)2.

Dual Representation

It is now interesting to observe that the perceptron training algorithm adapts the
weight vector w in each iteration by adding or subtracting misclassified training ex-

29



Chapter 2 Machine Learning and Kernel Methods

amples, thereby stretching and rotating the weight vector towards the examples un-
der consideration. Assuming that the weight vector is initially set to the zero vector,
it can at all times be written as a linear combination of training examples:

w =
n

∑
i=1

αiyixi, (2.3)

whereby αi indicates how often a particular training example xi has been misclassi-
fied. This representation of the weight parameter of a hyperplane is typically referred
to as the dual representation. Based on these observations and the bilinearity of the
inner product, we can rewrite the formula in Definition 2.21 (and, equivalently, in
Definition 2.22) as follows:

f (x) = sign(〈x, w〉+ b)

= sign

(〈
x,

n

∑
i=1

αiyixi

〉
+ b

)

= sign

(
n

∑
i=1

αiyi 〈xi, x〉+ b

) (2.4)

As a result, the perceptron training algorithm can be entirely rewritten in dual form
as done in Procedure 2.2. The dual representation, as an alternative formulation for
the decision function and the learning algorithm, has a number of interesting prop-
erties. For example, the components αi of the learned model directly indicate how
informative certain training examples are for the overall learning problem. However,
as we will see, the most important property of this representation is that all references
to the data during training and classification happen within inner products. Under
this view, even though we use a geometric concept in a vector space, we do not need
to know the precise positions of the vectors, just the inner products between all pairs.

Introducing Kernels

Despite a number of convenient properties, the power of the perceptron technique
is limited. In practice, the search heuristic of the perceptron training algorithm may
produce suboptimal solutions which do not generalize well while failing altogether
when the underlying learning problem is not linearly separable. The notorious ex-
ample of such a problem is the XOR problem introduced by Minsky and Papert (1969).
Their main result, namely the fact that the perceptron is not capable of simulating the
logical XOR function, led to a decline in the interest in neural networks for a number
of years.

A common technique to produce better generalization results for a given dataset
is to transform the data and embed it into a different vector space to yield a more
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Procedure 2.2
Perceptron Training — dual version

Input: data S = ((x1, y1), . . . , (xn, yn))
Initialize: α1, . . . , α` ← 0, b ← 0

1: repeat
2: err ← 0
3: for i = 1, . . . , ` do
4: compute γi = yi(∑n

j=1 αjyj
〈

xj, xi
〉
+ b)

5: if γi < 0 then
6: αi ← αi + 1
7: b ← b + yi
8: err ← err + 1
9: end if

10: end for
11: until err = 0
12: return α1, . . . , αn, b

adequate data representation. In particular, this is also a good technique to make
a linear learning technique capable of learning non-linear patterns. Formally, this
corresponds to defining a feature map Φ : X 7→ X ∗ which maps input vectors x ∈ X
to some (higher dimensional) feature representation. When speaking of this kind of
mappings, we will usually refer to X as the input space and to X ∗ = Φ(X ) as the
feature space.

We have seen that the weight vector produced by the perceptron learning algo-
rithm is a linear combination of training data points. Consequently, the evaluation of
the decision function as formulated in its dual version in Equation (2.4), relies only on
evaluations of the inner product of training data points that contribute to the weight
vector and the argument. This makes it possible to replace the techniques of explicit
feature mappings by the use of kernel functions.

Definition 2.23 (Kernel). A kernel is a function κ : X × X 7→ R, such that for all
x, z ∈ X

κ(x, z) = 〈φ(x), φ(z)〉.
where φ is a mapping from X to an (inner product) feature space X ∗.

In general, the kernel function corresponds to any kind of function that is capable
of simulating the computation of a dot product in some feature space. Note that, due
to the dual formulation in the training process and in the final classification function,
this feature space is, as such, not of interest.
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(b) Data mapped into 3D.

Figure 2.2 — 2D sphere learning problem. The data instances within and outside of
the sphere are not separable by a linear classification boundary (line) in the original
2-dimensional input space (left), but become separable in the 3-dimensional feature
space after the mapping φ(x) = (x2

1,
√

2x1x2, x2
2) (right).

Example 2.8 (2D Sphere Learning Problem). A problem similar to the XOR task is
illustrated in the left part of Figure 2.2. Here, the two classes are clearly not separable
by a linear classification boundary in the original 2-dimensional input space. The
right side of Figure 2.2 illustrates the situation after a mapping to a 3-dimensional
feature space by means of the transformation φ(x) = (x2

1,
√

2 x1x2, x2
2) ∈ R3. In the

new representation, the two groups of data instances can be separated by a linear
classification function. The evaluation of dot products can now be rewritten as a
closed expression:

〈φ(x), φ(z)〉 =
〈
(x2

1,
√

2x1x2, x2
2), (z2

1,
√

2z1z2, z2
2)

〉

= x2
1z2

1 + 2x1x2z1z2 + x2
2z2

2 = (x1z1 + x2z2)2 = 〈x, z〉2 = κ(x, z).

The resulting kernel is a specific instance of the class of polynomial kernels which take
the general form κ(x, z) = (〈x, z〉+ c)d.

Remark 2.5. Usually, the kernel function does not uniquely determine the feature
space. For example, the transformation φ′(x) = (x2

1, x2
2, x1x2, x2x1) ∈ R4 also fits

to the kernel κ(x, z) = 〈x, z〉2 of the previous example.

The name “kernel” as used in this context originally stems from integral operator
theory, which forms much of the theoretical basis for this field. As the feature vec-
tors need not be represented explicitly, the complexity in terms of computation time
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and space requirements to compute the inner products need not be proportional to
the number of dimensions involved. The use of kernels makes it possible to implic-
itly map the data into a feature space, train a linear model in that space and (again,
implicitly) refer the results back to the original input space. This kind of implicit
learning and representation of the resulting model by means of kernel functions is
typically referred to as the so-called kernel trick. Note that kernels can even be con-
structed without knowing the feature mapping φ associated with them as long as it is
possible to prove that such a mapping exists. We will investigate the conditions that
ensure kernel validity together with some other theoretical details about kernels in
Section 2.4. The use of kernel functions is not restricted to the perceptron algorithm.
Instead, a large class of learning algorithms are capable of formulating their solu-
tions as linear combinations of training instances, thereby admitting a reformulation
in terms of kernel functions.

2.3.2 Support Vector Machines

After the informal introduction to linear classification and kernels, we are now ready
to investigate the best known kernel-based learning algorithm, the Support Vector
Machines (SVMs) due to Boser et al. (1992). SVMs can be seen as the first practical
application of the principle of structural risk minimization. We will first review the
notion of the margin of a linear classifier and its relation to the bound on the expected
error. We will then introduce the simplest version of the SVM, the hard-margin SVM
(Boser et al., 1992; Vapnik, 1995), a training algorithm for linear classifiers in cases
of separable training data. We then continue with the soft-margin SVM (Cortes and
Vapnik, 1995), a variant which is also capable of dealing with data that is not linearly
separable.

Margins and the VC Dimension

Recall from Definition 2.21 that a linear classification algorithm forms its decisions
according to a decision function of the form f (x) = sign(〈x, w〉+ b). Furthermore,
Definition 2.22 has introduced the functional margin of a training example with respect
to a hyperplane as the quantity γi = yi (〈w, xi〉+ b). As the weight vector w and the
bias b can be rescaled by a positive factor without changing the actual hyperplane,
we can introduce a normalized variant, the geometric margin.

Definition 2.24 (Geometric Margin). The (geometric) margin of an example (xi, yi)
with respect to any hyperplane (w, b) is the quantity:

γi = yi

(〈
1
‖w‖w, xi

〉
+

1
‖w‖b

)
.
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Again, γi > 0 implies correct classification of (xi, yi). In analogy with Definition 2.22,
the geometric margin γ of a whole example set S with respect to a hyperplane (w, b)
is the minimum geometric margin of all items in the set.

The geometric margin is thus based on the canonical representation of a family of
hyperplanes, where the weight vector is required to conform to ‖w‖ = 1. It thus
measures the Euclidean distance of a training sample to the decision surface.

We will now investigate the relation between the margin and the VC dimension
introduced in Definition 2.20. First note the following result on the VC dimension of
general linear classification functions.

Proposition 2.6 (VC Dimension of Hyperplanes). Consider the class of classification
functions in Rd whose decision boundaries take the form of hyperplanes. This set of func-
tions has VC-dimension h = d + 1.

Together with the result of Proposition 2.4, i.e. the bound on the expected error, a
reduction of the VC dimension thus seems to require a reduction of the number of
available features. However, this strategy would require complicated feature selec-
tion techniques that might also introduce another source of bias. Also, this approach
seems contradictory to the use of kernels which implicitly introduce feature spaces of
typically higher and, as we will see, possibly even infinite dimensionality.

Let us for a moment assume that we are dealing with a linearly separable dataset,
i.e. a dataset for which we can achieve a positive margin. As a crucial observation,
Vapnik and Chervonenkis (1974) have shown that, for the case of linear classifiers,
the VC dimension can additionally be bounded in terms of the (geometric) margin of
the dataset. Although the precise reasoning requires a number of additional results,
we can get an intuition on how structural risk minimization can be implemented.

Proposition 2.7 (γ-Margin Separating Hyperplanes (Vapnik and Chervonenkis,
1974)). Let a set S ⊂ Rd of data items belong to a sphere of radius R. Then the set of linear
discriminant functions that achieve a margin of at least γ (the set of γ-margin separating
hyperplanes) has VC dimension h bounded by the inequality

h ≤ min
(

R2

γ2 , d
)

+ 1 .

The interested reader is pointed to the original analysis by Vapnik (1995) and to
Chapter 4 in the book by Cristianini and Shawe-Taylor (2000) for an elaborated dis-
cussion of these bounds and for extensions. This result together with the bound on
the expected error suggest that the expected error of a separating hyperplane can be
close to the training error, even in high-dimensional spaces, if it achieves a large mar-
gin. Thus, by maximizing the margin on the training data, we can hope to control the
VC dimension and, consequently, the second error term. This is exactly the principle
implemented by SVMs.
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Hard-Margin Support Vector Machines

Let us further stick to the assumption that we are dealing with a linearly separable
dataset. According to our earlier reasoning, the main principle behind SVMs is now
to find the optimal separating hyperplane by maximizing the geometric margin. This
situation seems intuitive: given no further information, we can assume that a hy-
perplane that achieves a large margin on a particular dataset is preferable to another
one that separates the data only by a small margin. One the one hand, this provides
a unique solution to the problem of choosing one out of many feasible decision sur-
faces. On the other hand, as we have seen, it leads to a better generalization behavior
as the VC dimension can be bounded by larger margins. Formally, the situation can
be expressed in the optimization problem:

max
w,b,‖w‖=1

γ

s.t. yi(〈xi, w〉+ b) ≥ γ, i = 1, . . . , n.
(2.5)

The conditions ensure that all points are at least a signed distance γ away from the
decision boundary and we seek the largest such γ with associated parameters. For the
sake of motivation, we have used the notion of the geometric margin by restricting the
weight vectors to conform to ‖w‖ = 1. Equivalently, we can replace this constraint
by replacing the conditions with:

1
‖w‖ yi (〈xi, w〉+ b) ≥ γ

yi(〈xi, w〉+ b) ≥ γ ‖w‖ . (2.6)

For any (w, b) that satisfy these constraints, their positively scaled multiples satisfy
them, too, so we can arbitrarily set ‖w‖ = 1/γ, yielding:

min
w,b

1
2
‖w‖2

s.t. yi(〈w, xi〉+ b) ≥ 1, i = 1, . . . , n.
(2.7)

Keeping a large margin is thus equivalent to minimizing the norm of the weight vec-
tor while keeping outputs above a fixed value. The resulting margin will be 1/‖w‖.
The overall situation is illustrated on the left side of Figure 2.3.

Equation (2.7) spells out a quadratic criterion with linear inequality constraints and
thus constitutes a convex optimization problem. Introducing a vector α of Lagrange
multipliers αi ≥ 0, i = 1, . . . , n, one for each of the constraints in Equation (2.7), we
get the following (primal) Lagrange function:

L(w, b, α) =
1
2
‖w‖2 −

n

∑
i=1

αi(yi(〈xi, w〉+ b)− 1). (2.8)
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To minimize this expression, we need to set the derivatives to zero, yielding the fol-
lowing relations:

n

∑
i=1

αiyi = 0 and
n

∑
i=1

αiyixi = w. (2.9)

By substituting expressions (2.9) back into (2.8) we get the dual quadratic optimiza-
tion problem.

max
α

n

∑
i=1

αi − 1
2

n

∑
i,j=1

αiαjyiyj〈xi, xj〉,

s.t. αi ≥ 0, i = 1, . . . , n,
n

∑
i=1

αiyi = 0.

(2.10)

On the one hand, this formulation is simpler to solve for standard convex optimiza-
tion software. On the other hand, any references to the data again appear only from
within inner products. On the one hand, we can reformulate the weight vector in Ex-
pression (2.9) in terms of training data items and can thus evaluate the final classifica-
tion function in its dual version in the same way as done in the case of the perceptron
training results. On the other hand, the optimization problem itself is expressed in
terms of the coefficients αi. This again allows us to replace the inner products 〈xi, xj〉
by any valid kernel function κ(xi, xj) as in the case of the perceptron training.

Before we move on to the soft-margin variant of the SVM note another property of
the solution. The solution needs to conform to the Karush-Kuhn-Tucker conditions
(Kuhn and Tucker, 1950; Karush, 1939), which, in addition to Equations (2.10) and
(2.9) require that:

αi(yi(〈xi, w〉+ b)− 1) = 0, i = 1, . . . , n. (2.11)

From this last condition, the so called Karush-Kuhn-Tucker complementarity con-
straint, we can see that if αi > 0, then yi(〈xi, w〉 + b) = 1 and, conversely, if
yi(〈xi, w〉 + b) > 1, then αi = 0. From this reasoning we see that the solution is
not only unique and optimal but also sparse as the training points xi that contribute to
the solution vector w via αi > 0 are all placed on the margin, i.e. are the points closest
to the hyperplane. These active points are called the support vectors of the solution.6

As another consequence of the complementarity constraint note that, while w can
be determined by the optimization, the threshold b is not directly determined. How-
ever, it is given implicitly and can be found by choosing some i with αi 6= 0, inserting
w into the corresponding Equation (2.11), and solving the resulting expression. In

6Note that any non support vector can be removed without altering the solution. The structure of the
solution thus limits the number of possible leave–one–out errors which are upper bounded by the
number of support vectors (Vapnik, 1995).
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Figure 2.3 — Separating Hyperplanes as produced by hard-margin and soft-margin
SVMs. The left illustration shows the separable case and the solution a hard-margin
SVM might produce. The separating hyperplane is a solid line, the equidistant broken
lines indicate the margins at distance 1/‖w‖. The right illustration shows the non-
separable case and the solution produced by a soft-margin SVM. Some points are on
the wrong side of their corresponding margin by the amount ξi/‖w‖.

practice, the mean over all such solutions is usually preferred to avoid numerical
instabilities.

Soft-Margin Support Vector Machines

Up to now, we have only considered the case of separable training data. In reality,
given noisy data, we may not be able to find a linear decision boundary at all or, by
enforcing a linear separation, may still face overfitting effects. So in reality, a good
tradeoff between the empirical risk and the capacity control via the maximum margin
approach needs to be set.

One way to deal with this situation is to still maximize the margin γ, but allow a
certain fraction of training data points to violate the margin constraint. To achieve
this situation, we rephrase the optimization problem of Equation (2.7) by introducing
a vector ξ of slack variables that relax the hard margin constraints.

min
w,b,ξ

1
2
‖w‖2 + C

n

∑
i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , n,
ξi ≥ 0.

(2.12)
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The first constraint allows a data point xi to violate the hard margin constraint by
a fraction of ξi. The right side of Figure 2.3 illustrates the situation. Naturally, we
want to control the amount of this deviation, which is achieved by including the sum
∑n

i=1 ξi as a term in the criterion function.7 The regularization constant C controls the
trade-off between the empirical error and the complexity term. Again, the optimiza-
tion problem can be recast into the dual problem. We omit the full derivation using
Lagrange multipliers and just state the final (dual) optimization problem:

max
α

n

∑
i=1

αi − 1
2

n

∑
i,j=1

αiαjyiyj〈xi, xj〉,

s.t. C ≥ αi ≥ 0, i = 1, . . . , n,
n

∑
i=1

αiyi = 0.

(2.13)

An intriguing observation is that the reference to the slack variables can be dropped
during the reformulation and do not occur in the dual optimization problem. The
change with respect to the hard-margin problem only affects the range of admissible
values of the Lagrange multipliers αi which are now bounded from above by the
tradeoff parameter C, a situation typically referred to as the box constraint. Again,
note that the references to the data appear within the dot product only and can thus
be replaced by any valid kernel function.

Again, the Karush-Kuhn-Tucker yield additional constraints that characterize the
support vectors. Differing from the hard margin case, the support vectors now fall
into two classes. On the one hand, support vectors with corresponding αi < C yield
a margin of exactly one and thus again lie directly on the margin and thus naturally
do not cause any misclassification, such that ξi = 0. On the other hand, some support
vectors correspond to Lagrange multipliers α = C and yield margins yi(〈xi, w〉+ b) ≤
1, i.e. they may lie on the wrong side of the margin (though, not necessarily on the
wrong side of the hyperplane). Correspondingly, their deviation from the desired
margin is quantified by slack variables ξi ≥ 0.

Various alternative formulations of the basic SVM formulation exist, such as the
prominent ν-SVM formulation by Schölkopf et al. (2000). These extensions are too
numerous to be presented here in detail. Generally, there is a tight correspondence
between these techniques and statistical theory.8 The interested reader is referred to

7The sum corresponds to the 1-norm of the slack variable vector, i.e. ‖ξ‖1, which is the most com-
monly used version. An alternative formulation is the 2-norm soft margin SVM, where the error
term is changed to ‖ξ‖2, i.e. using quadratic slack variables in the criterion function. The 2-norm
formulation naturally leads to a slightly different optimization problem.

8In statistics, regularization is a general method for solving ill-conditioned parameter-estimation prob-
lems and for preventing overfitting of data by a model by minimizing a general risk functional of
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the comprehensive books by Cristianini and Shawe-Taylor (2000); Shawe-Taylor and
Cristianini (2004) as well as Schölkopf and Smola (2002) and the references therein.

2.3.3 Kernel-Based Nearest Neighbour

Nearest Neighbour-type algorithms are a set of simple but powerful supervised
learning techniques (Mitchell, 1997, Chapter 8). These algorithms, in their basic
form first reported by Cover and Hart (1967), use the training instances closest to
the input item x under investigation to predict the corresponding target. To deter-
mine the “nearest” data points, this family of algorithms requires the definition of
a (pseudo-)metric on the input space. As every inner product space is also a metric
space, these algorithms can use kernels in a natural way.

Definition 2.25 (Kernel-induced Distance). Given a valid kernel function κ(·, ·), the
distance d(·, ·) between two points is defined as:

d(x, z) =
√

κ(x, x)− 2κ(x, z) + κ(z, z) .

The k-Nearest Neigbhour (kNN) technique can be adapted to deal with regression
and classification problems. In both cases, upon presentation of a new data instance
x, the k nearest data points are inspected. In the case of a regression setting, the target
value is averaged over these k data items. For classification, the majority class of the
k nearest training instances determines the class label prediction.

The critical parameter for nearest neighbour algorithms is the smoothing parame-
ter k. High values of k lead to better smoothing and make the algorithm more stable
with respect to random noise in the data. Smaller values of k lead to good approxi-
mations of complex patterns but are likely to lead to overfitting effects. A common
variant, the smoothing technique, is to downweight the contributions of the k neigh-
bours in proportion to their distance from the test example.9 In contrast to the cases

the form: Rreg[ f ] = Remp[ f ] + C Ω[ f ] where the regularizer Ω[ f ] penalizes the form of the hypothesis
function in terms of the number of parameters and the parameter C determines the trade-off with
respect to the empirical risk. The Representer Theorem (Kimeldorf and Wahba, 1971) gives an impor-
tant characterization of the solutions to risk functionals of the type Rreg[ f ] = Remp[ f ] + CΩ[‖ f ‖2

H]
namely that the minimizer in a Reproducing Kernel Hilbert Space (RKHS) always admits a dual rep-
resentation. In the case of linear classifiers this amounts to solutions of the form of Equation (2.3).
The significance of this theorem lies in the fact that it applies to other types of learning and esti-
mation procedures than SVMs, i.e. that the solutions of a large class of learning techniques can be
expressed in dual form and thus admit the use of kernels (Hastie et al., 2001).

9Interestingly, in statistics, the term kernel is often used to refer to such weighting function used in
non-parametric estimation techniques such as the nearest neighbour technique. While the term is
not used exactly in the sense as we use it throughout this thesis (i.e. to refer to a specific choice of an
inner product) there are strong connections between both types of kernels. Refer to the exposition
by Hastie et al. (2001) for details on the statistical perspective on the matter.

39



Chapter 2 Machine Learning and Kernel Methods

of linear classification we have seen before, nearest neighbour algorithms do not rely
on any assumptions about the pattern to be found. In the terminology of the bias-
variance analysis, kNN techniques tend to show high variance but low bias (Hastie
et al., 2001).

2.3.4 Kernel K-Means

The k-means algorithm (MacQueen, 1967) is a popular partitional clustering algo-
rithm. The algorithm is related to the expectation maximization (EM) algorithm for
estimating Gaussian mixture models as both algorithms try to detect the centers of
natural clusters in the data. Specifically, given a set S of objects to be clustered and
a number k of desired clusters, the k-means algorithm seeks to discover a partition
C = {C1, . . . , Ck} of S that minimizes the total intra-cluster variance:

W(C) =
1
2

k

∑
m=1

∑
xi ,xj∈Cm

d(xi, xj)

=
k

∑
m=1

|Cm| ∑
xi∈Cm

d(xi, µm) (2.14)

whereby µm is the centroid or mean point of all the points xi ∈ Cm.
The k-means algorithm uses the following iterative procedure to identify this clus-

tering. It starts by partitioning the data into k initial sets according to a random
clustering. It then repeats the following two steps. In the first step, it calculates the
mean, or centroid, of each cluster. In the second step, it constructs a new partition by
assigning each instance to the cluster with the closest centroid. The algorithm repeats
by alternating between these two steps. The algorithm has converged when none of
the instances switches clusters anymore (or, alternatively, if centroids are no longer
changed). Note that each of the two steps reduces the value of the optimization crite-
rion in Equation (2.14) so that the algorithm converges. Note, however, that the result
is not guaranteed to constitute a global optimum. The quality of the final solution de-
pends largely on the initial set of clusters, and may, in practice, be significantly worse
than the global optimum. As the algorithm is extremely fast, a common method is to
run the algorithm several times and return the best clustering found.

Various alternatives of the basic algorithm exist, varying the basic scheme in terms
of the initial clustering or the assignment of the clusters in the second step. Jain
et al. (1999) give a good overview over these variants as well as other clustering al-
gorithms.

If the data is not naturally clustered into spherical clusters in the input space, the
clustering may, however, produce strange results. As with other learning problems,
an implicit transformation into a more appropriate feature space by means of a kernel
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function may thus increase the cluster quality. Similar to the nearest neighbor tech-
nique investigated in the last section, the k-means clustering technique can make use
of kernel-induced distance functions. However, the algorithm also requires a repre-
sentation of the cluster centroids. Similar to the linear classifiers investigated above,
these can be represented in dual form as the centroids can implicitly be represented
by the set of instances in a cluster. The only computation that involves the centroid
is the computation of its distance to a data item of interest during step two of the
algorithm:

d(x, µm) = d

(
x,

1
|Cm| ∑

xi∈Cm

xi

)

=

√√√√〈x, x〉 − 2

〈
x,

1
|Cm| ∑

xi∈Cm

xi

〉
+

〈
1
|Cm| ∑

xi∈Cm

xi,
1
|Cm| ∑

xi∈Cm

xi

〉

=

√√√√〈x, x〉 − 2
1
|Cm| ∑

xi∈Cm

〈x, xi〉+
1

|Cm|2 ∑
xi ,xj∈Cm

〈xi, xj〉 (2.15)

Again, the references to the data in Equation (2.15) happen solely from within in-
ner products which can thus be replaced by any valid kernel function. An explicit
computation of the cluster centroids in the feature space is not necessary.

2.4 Characterization of Kernels

In Section 2.3.1, we have motivated the use of kernel functions as an inner product
in a so-called feature space. Recall from Definition 2.23 that a kernel function is a
symmetric function that implicitly computes the dot product of the two arguments
after a mapping φ to some inner product space, i.e. κ(x, z) = 〈φ(x), φ(z)〉. We have
then shown how several learning algorithms can make use of the kernel trick by re-
formulating their computations in a dual version, where the data instances appear
only within inner products. In particular, this procedure can be applied to design
kernel functions on arbitrary types of data which are not transformed into a vector
representation in the first hand, as long as the validity of the kernel function can be
ensured.

In this section, we will undertake a more formal analysis of the properties of kernel
functions. So far, there is only one way to define a valid kernel function: we need to
explicitly think about a useful feature space, work out the corresponding mapping
and then try to rewrite the resulting inner product in a way such that its computation
becomes more attractive. While it often makes sense to illustrate the inner workings
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by means of such an analysis, it is equally often cumbersome and does not provide
more information than the kernel function itself.

In this section, we review a number of properties of valid kernels, in particular their
correspondence to positive semi-definite functions which constitutes a criterion of
verifying the suitability of an arbitrary similarity function as a kernel. We also discuss
some useful closure properties that can aid the construction of complex kernels out
of existing kernels.

2.4.1 Positive Semi-Definite Kernels

In Definition 2.15, we have introduced positive semi-definite matrices as symmetric
matrices with non-negative eigenvalues. Equivalently, Proposition 2.3 has shown
that the condition x′Mx ≥ 0, ∀x ∈ X , x 6= 0 can be used to show that a matrix
M is positive semi-definite. We will now generalize this concept by characterising
functions as positive semi-definite.

Definition 2.26 (Positive Semi-definite Function). Given a set X and a function κ :
X × X 7→ R, then κ is a positive semi-definite function, if it is symmetric and if for all
n ∈ N and x1, . . . , xn ∈ X the matrix

K := (κ(xi, xj))ij, i, j = 1 . . . n

is positive semi-definite.

Remark 2.6. If we are dealing with kernel functions κ, we will also call the matrix
K obtained on some set S = {x1, . . . , xn} the kernel matrix of S or, in analogy with
Definition 2.11, its Gram matrix.

Proposition 2.8 (Cauchy-Schwarz Inequality for Positive Semi-definite Functions). If
κ is a positive semi-definite function, and x1, x2 ∈ X , then κ(x1, x2)2 ≤ κ(x1, x1) κ(x2, x2).

Proof. The 2× 2 matrix with entries K := (κ(xi, xj))ij, i, j ∈ {1, 2} is positive semi-
definite. Thus, both its eigenvalues must be non-negative. But then, K ’s determinant
must also be non-negative:

0 ≤ K11K22 −K12K21 = K11K22 −K2
12. (2.16)

This shows the desired inequality.

The important property of positive semi-definite functions is that they exactly de-
scribe the set of valid kernel functions.
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Proposition 2.9. Given a set X and a function κ : X ×X 7→ R which is either continuous
or has a finite domain. Then κ can be decomposed

κ(x, z) = 〈φ(x), φ(z)〉

into a feature map φ : X 7→ H into a Hilbert space H applied to both its arguments followed
by the evaluation of the inner product inH if and only if it is a positive semi-definite function.

Proof. We first show that the inner product is a positive semi-definite function. Con-
sider the general case of a Gram matrix

K := (κ(xi, xj))ij = (〈φ(xi), φ(xj)〉)ij, xi, xj ∈ X . (2.17)

For any compatible vector v we have

v′Kv =
n

∑
i,j=1

vivjKij =
n

∑
i,j=1

vivj〈φ(xi), φ(xj)〉

=

〈
n

∑
i=1

viφ(xi),
n

∑
j=1

vjφ(xj)

〉

=

∥∥∥∥∥
n

∑
i=1

viφ(xi)

∥∥∥∥∥
2

≥ 0, (2.18)

i.e. any such K is positive semi-definite as required.
We now show that the converse implication is also valid. Assuming that κ is indeed

a positive semi-definite function, we define a mapping φ : X 7→ Hκ into a Hilbert
space Hκ of functions which map X into R as follows:

φ(x) = κ(·, x). (2.19)

Note that the elements of Hκ can equally well be seen as functions or as elements of
X . To make Hκ a Hilbert space we first turn it into a vector space by the obvious
definition of scalar multiplication and addition defined by

( f + g)(x) = f (x) + g(x), f , g ∈ Hκ (2.20)

Let f (·) and g(·) be arbitrary functions of the form

f (·) =
n

∑
i=1

αiκ(·, xi) and g(·) =
m

∑
j=1

β jκ(·, zj), (2.21)
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with arbitrary n, m ∈ N, αi, β j ∈ R and xi, zj ∈ X . We then define an inner product
on Hκ as

〈 f , g〉 =
n

∑
i=1

m

∑
j=1

αiβiκ(xi, zj) (2.22)

=
n

∑
i=1

αig(xi) =
m

∑
j=1

β j f (zj). (2.23)

From this definition, it is obvious, that 〈·, ·〉 is real-valued, symmetric and bilinear.
Furthermore,

〈 f , f 〉 =
n

∑
i=1

n

∑
j=1

αiαjκ(xi, xj) ≥ 0,

which follows from the assumption that κ is positive semi-definite. It remains to be
shown that 〈 f , f 〉 = 0 ⇒ f = 0. First note that by Equation (2.22) we have for all
functions f :

〈κ(·, x), f 〉 = f (x), in particular 〈κ(·, x), κ(·, z)〉 = κ(x, z). (2.24)

Then, due to the Cauchy-Schwartz inequality in the variant of Proposition 2.8 we
have:

| f (x)|2 = |〈κ(·, x), f 〉|2 ≤ κ(x, x)〈 f , f 〉. (2.25)

By this inequality, 〈 f , f 〉 = 0 implies f = 0, such that 〈·, ·〉 is indeed a valid inner
product on Hκ. Furthermore, Equation (2.24) shows that its value is indeed equiva-
lent to the initial kernel function.

It remains to be shown that Hκ is complete to make it a Hilbert space. Consider
a fixed input x and a Cauchy sequence of elements in Hκ ( fn)∞

n=1. We now have, by
virtue of the Cauchy-Schwarz inequality, that

( fn(x)− fm(x))2 = 〈 fn − fm, κ(x, ·)〉2 ≤ ‖ fn − fm‖2κ(x, x). (2.26)

The sequence fn(x) is thus a bounded Cauchy sequence of real numbers and hence
has a limit. We can then complete the space Hκ by including in it all the functions of
the form

g(x) = lim
n→∞

fn(x). (2.27)

The space Hκ is thus a complete inner product space, i.e. it is indeed a Hilbert space.

The property of Equation (2.24) is known as the reproducing property of the kernel
κ (Aronszajn, 1950). Correspondingly, Hκ is also called its Reproducing Kernel Hilbert
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Space (RKHS). In literature, especially in the early publications on SVMs, we often en-
counter an alternative treatment of the correspondence of positive semi-definite func-
tions and kernel functions from the perspective of integral operator theory mainly
due to Mercer (1909). In this context, the kernel functions are also often explicitly
referred to as Mercer kernels. We here abstain from a detailed exposition on this view
and point to the good treatment of this topic by Cristianini and Shawe-Taylor (2000)
in the context of kernels. Bhatia (2007) provides additional insights into the theory of
positive (semi-) definite functions.

2.4.2 Kernel Construction

So far, we have investigated the theoretical properties of kernel functions. We have
seen that it is possible to either construct kernel functions explicitly by means of a
dot product formulation or to check a given similarity function whether it is positive
semi-definite.

Kernel Closure Properties

The given characterization of kernels also allows us to specify a set of rules that allow
the construction of valid kernels by combining existing kernel functions for which
the kernel property has already been shown. These closure properties can be used
conveniently to create advanced kernels out of simpler kernels.

Proposition 2.10 (Closure under Sum and Rescaling). Given two kernels κ1(·, ·) and
κ2(·, ·) defined on X , and coefficients α1, α2 ∈ R+, then the function κ3(x, z) =
α1κ1(x, z) + α2κ2(x, z) also constitutes a valid kernel.

Proof. Let K1, K2 and K3 denote arbitrary kernel matrices of κ1(·, ·), κ2(·, ·) and
κ3(·, ·), and let x ∈ Rd be any compatible vector. We then have that:

x′K3x = x′(α1K1 + α2K2)x = α1(x′K1x) + α2(x′K2x) ≥ 0 ,

i.e. κ3(·, ·) is positive semi-definite.

Proposition 2.11 (Closure under Direct Product). Given two kernels κ1(·, ·) and κ2(·, ·)
defined on X , then the function κ3(x, z) = κ1(x, z) κ2(x, z) also constitutes a valid kernel.
This type of operation is also often referred to as the Schur product.

We shortly sketch the proof by Shawe-Taylor and Cristianini (2004). Let K = K1 ⊗
K2 be the tensor product of the kernel matrices. The tensor product is obtained by
replacing each entry of K1 by K2 multiplied by that entry. The tensor product of two
positive semi-definite matrices yields a positive semi-definite matrix. The matrix K3

obtained by the pointwise product of Definition 2.11 is a principal submatrix of K.
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A principle submatrix of a positive semi-definite matrix is, however, itself positive
semi-definite (Shawe-Taylor and Cristianini, 2004).

Proposition 2.12 (Completeness). Given a sequence of kernels κ1, κ2, . . ., such that the
sequence converges, then the limit limn→∞ κn(x, z) also constitutes a valid kernel.

Proof. Let Kn denote arbitrary kernel matrices of κn(·, ·), and let x ∈ Rd be any com-
patible vector. We then have that:

x′
(

lim
n→∞

K
)

x = lim
n→∞

x′Kx.

Note that the last proposition, together with Proposition 2.10 characterizes the set
of positive semi-definite kernels as a closed convex cone. Of course, all the properties
presented in this section remain valid if the kernels are defined on different domains.

Kernel Modifiers

In this section, we consider a number of functions that can be applied to the result of a
kernel calculation while retaining the kernel property. Well-known kernel modifiers
for a valid kernel k(x, y) on some input set x, y ∈ X are, among others, the normalisa-
tion kernel, the polynomial kernel, and the Gaussian kernel. Note that most of these
kernel modifiers were initially introduced as kernels on vector arguments where the
embedded kernel was simply the standard dot product.

Proposition 2.13 (Cosine Normalization Kernel Modifier). Given a kernel function
κ(·, ·), the function

κnorm(x, z) =
κ(x, z)√

κ(x, x) κ(z, z)

constitutes a valid kernel.

Note that, as
√

κx, x corresponds to the Euclidean norm ‖x‖ in the feature space,
the kernel modifier is analogous with the cosine normalization for vectors which
scales the kernel results to [0, 1] (compare Definition 2.9).

Another, commonly used kernel modifier is the polynomial kernel.

Proposition 2.14 (Polynomial Kernel Modifier). Given a kernel function κ(·, ·) and pa-
rameters p ∈ N and c ≥ 0 the function κpoly(x, z) = (κ(x, z) + c)p constitutes a valid
kernel.

The validity of the polynomial kernel modifier directly follows from Proposi-
tions 2.10 and 2.11. Note that the kernel introduced in Example 2.8 is an example
of this kernel modifier in conjunction with the plain dot product.
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Proposition 2.15 (Gaussian Kernel Modifier). Given a kernel function κ(·, ·) and a pa-
rameter σ ∈ R+ the function

κgaussian(x, z) =
exp(−κ(x, x)− 2κ(x, y) + κ(y, y))

σ2 =
exp(−‖x− z‖H)

σ2

constitutes a valid kernel.

In this formulation, we have replaced the complex enumerator of the fraction with
the shorter formulation as distance, whereby ‖ · ‖H denotes the norm in the kernel-
induced feature space.

Proof. We can decompose the Gaussian kernel modifier as follows:

κgaussian(x, z) =
exp(−‖x− z‖H)

σ2

= exp(−‖x‖2
H/σ2) exp(−‖z‖2

H/σ2) exp(2κ(x, z)/σ2) . (2.28)

The first two factors can be seen as the product of two real-valued mappings of the in-
puts which thus constitutes a kernel. For the last factor note that an exponential func-
tion can be arbitrary closely approximated by polynomials with positive coefficients
and thus is a limit of kernels. Together with Proposition 2.12, the result follows.

The Gaussian kernel forms a specific case of the larger class of Radial Basis Function
(RBF) kernels which are general functions over the (potentially kernel-induced) dis-
tance of two data items. It is of particular interest due to its peculiar properties
and also helps to illustrate the abstract notion of Reproducing Kernel Hilbert Spaces
which we have encountered earlier. Recall that under the RKHS interpretation, we
can always construct a mapping of data items into a space of functions where each
data item is represented by a kernel-shaped function referring to the respective pat-
tern. In this sense, a data item is represented by its similarity to all other items. For
the case of Gaussian kernels this mapping is given by:

φ : X 7→ H with φ(x) = κ(x, ·) = exp
(‖x− ·‖2

σ2

)
(2.29)

The function in the RKHS space thus takes the form of a Gaussian bell function. Note
that, in the feature space, all data items are normalized to unit length, i.e. they lie on
the surface of a hyperball. The feature space itself thus has dimensionality that corre-
sponds to the number of overall instances, thus potentially infinite. The bandwidth
parameter σ controls much of the behaviour of the Gaussian kernel. Small values
of σ yield a situation where all data items are almost orthogonal, leading to precise
kernels which may, however, overfit more easily. On the contrary, larger values of σ
lead to a situation where the data items are almost parallel and the kernel has little
discriminative power.
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2.4.3 Kernel Design

While the validity of a kernel is important for its correct behaviour, it does not say
much about the power of the kernel in solving actual learning problems, i.e. its capa-
bility to detect concept classes. In binary classification settings, the concept class c(·)
corresponds to a binary classification label, i.e. c(x) ∈ Y = {+1,−1}.

Based on this reasoning, Gärtner (2003) has introduced formal notions for charac-
terizing kernel quality which we shortly review in this section. He distinguishes the
concepts of kernel completeness, kernel correctness and kernel appropriateness with respect
to a dataset and learning task.

Kernel Completeness This notion characterizes the capability of the kernel to repre-
sent the learning problem. Formally, a kernel is called complete if κ(x, ·) = κ(z, ·)
implies x = z. With respect to the concept class it is, however, sufficient for a
kernel to be complete with respect to a concept class, i.e. κ(x, ·) = κ(z, ·) implies
c(x) = c(z) ∀ c, z ∈ C.

Kernel Correctness This notion characterizes how much of the underlying hypothe-
sis language is properly reflected in the kernel. Given the case of linear combi-
nations of kernels on training items as the hypothesis language (e.g. as in the
case of SVMs and the perceptron), we can call a kernel correct if for all concepts
c ∈ C there exist αi ∈ R, xi ∈ X , b ∈ R such that ∀x ∈ X : ∑i αiκ(xi, x) + b ≥
0 ⇔ c(x), i.e. that the learning problem can be solved at all by this kernel. Note
that a kernel which is not complete can not be correct.

Kernel Appropriateness This notion characterizes the quality of the kernel with re-
spect to the question whether examples that are “close” in class membership are
also “close” in the feature space such that a good generalization is possible. This
property can only be (experimentally) validated for a given class hypothesis
functions and the employed learning algorithm. As a simple example consider
the case of the matching kernel κδ(x, z) = 1 ⇔ x = z and κδ(x, z) = 0 ⇔ x 6= z
which is complete and always correct though not usually not appropriate as it
will not generalize well to unseen examples.

In essence, the former two notions relate to the ability of the kernel to separate hid-
den concepts well, while the latter relates to the kernel’s generalization capabilities.

2.5 Performance Assessment

In this section, we shortly discuss the procedures for assessing the quality of esti-
mated machine learning models. These procedures will also be used for assessing
the results of the experiments reported in Sections 6 and 8.
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2.5.1 Binary Classification

While the above procedure enables us to hopefully determine the optimal prediction
function, the question arises how the eventual effectiveness of the classifier can be
estimated and which evaluation measure should be used.

Estimation Procedures

The empirical error obtained on the training data is not a good estimate of the gener-
alization error as it is biased towards the training sample and has been used to derive
the prediction function in the first hand. The only way to get an idea of the size of
the generalization error is to estimate it on a separate test sample that has been gen-
erated independently of the training sample and that has not been used for training.
The approach of setting aside a certain subset of the available data is called a hold out
approach.

Usually, the available data is limited and we want to use as much as possible for
training to reduce the variance of the trained classifier. At the same time, the error
estimate based on the test set suffers from the same problem. If the test sample is too
small, the variance of the expected variance of the error estimate will be greater — so
a tradeoff needs to be found. If enough data is available, the problem becomes less
severe, but if data is limited other techniques have to be used. Often, a strategy called
cross validation is applied. Here, all available data is partitioned into a certain number
of folds. In multiple runs, classifiers are trained on all but one folds, each time leaving
aside a different fold which is used as test set. Averaging over the results in each run,
the error of a final classifier trained on the entire available data can be estimated.
In the extreme case, where the number of folds is equal to the number of available
training examples, we speak of a so-called leave–one–out (LOO) estimate.

Performance Metrics

All performance metrics can be estimated based on the observations on the test set.
Given binary classification setting, four possible combinations of true and predicted
class label can arise in total.

Definition 2.27. Given a classifier f trained on an independent training set one can
partition the set into S = S+ ∪ S− and further into the sets S+ = TP ∪ FN and
S− = FP ∪ TN given by:

TP := {(xi, yi) ∈ S | f (xi) = 1∧ yi = 1}
FP := {(xi, yi) ∈ S | f (xi) = 1∧ yi = −1}

TN := {(xi, yi) ∈ S | f (xi) = −1∧ yi = −1}
FN := {(xi, yi) ∈ S | f (xi) = −1∧ yi = 1}
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called the sets of true positive, false positive, true negative and false negative classifica-
tions.

Based on this definition, different evaluation measures have been defined. Com-
monly used classification measures are the classification error, precision, recall and the
Fβ measure.

The most natural classification metric, the classification error measures the probabil-
ity that the classifier will make a wrong decision which actually coincides with the
notion of the empirical error in conjunction with the zero/one loss function.

Definition 2.28 (Classification Error). The classification error of classifier f is esti-
mated by:

R̂( f ,S) :=
|FP|+ |FN|

|TP|+ |FP|+ |TN|+ |FN| .

Sometimes, the complementary measure of accuracy is used that measures the prob-
ability of the complementary event, namely that the classifier makes right decisions.
Obviously, the accuracy is calculated by subtracting the error probability from one.

Although the classification error is an intuitive measure, it is not the used as the
sole metric of interest. The reason is that in most settings the number of positive
vs. negative test examples |S+| and |S−| are extremely uneven. Many real-world
datasets have several thousands of instances of which only a small fraction carries
a certain class label. In this setting, a trivial rejector, i.e. a simple classifier given by
f (x) = −1 ∀x ∈ S , that produces negative decisions only, may yield impressively
low error rates, sometimes outperforming other classifiers. Comparing and tuning
classifiers based on the error rate may therefore lead to adopting a classifier that be-
haves very much like the trivial rejector (Yang, 1999). As an alternative, the clas-
sification effectiveness is often measured in terms of the precision and recall metrics
originating from information retrieval.

Definition 2.29 (Precision and Recall). The precision and recall of classifier f are
given by:

precision( f ,S) :=
|TP|

|TP|+ |FP|
recall( f ,S) :=

|TP|
|TP|+ |FN| .

Precision thus estimates the probability that if the classifier judges an instance to
belong to a certain class, this decision is correct. Precision therefore measures how
“clean” the result for a certain class label is. Conversely, recall estimates the probabil-
ity that if an instance actually belongs to the class in question, it will be detected as
such by the classifier.
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Unfortunately, neither precision nor recall are sensible measures of the classifiers
performance if judged independently. Most often, though not always, precision and
recall are inversely related, meaning that higher recall scores often come at the cost
of worsening precision scores.

Example 2.9 (Pathological Classifiers). Consider an extremely “conservative” binary
classifier that judges only a single instance on a given test sample to belong to a
certain class and that decision is correct. In this case, precision will obviously be 1.0,
while recall may be quite low if more instances of this class actually linger around in
the test sample. In contrast, a classifier that retrieves any instance as belonging to one
class will achieve maximum recall at score 1.0, while precision may be quite low as
other instances not belonging to that class have been retrieved as well.

As neither precision nor recall make sense in isolation it is desirable to evaluate a
classifier based on a measure that combines both. A measure that is widely used for
this purpose is the Fβ function proposed by van Rijsbergen (1979).

Definition 2.30 (Fβ measure). Given precision and recall, the combined Fβ measure
of precision and recall is given by:

Fβ( f ,S) =
(β2 + 1) precision( f ,S) · recall( f ,S)

β2 precision( f ,S) + recall( f ,S)
,

where β ∈ R+ is a suitably chosen parameter.

The parameter β weights precision versus recall. Smaller values of β emphasize the
contribution of recall, while higher values of β emphasize precision. It is common
to assign equal weight to precision and recall by setting β = 1.0 in which case the
formula simplifies to

F1( f ,S) :=
2 precision( f ,S) · recall( f ,S)
precision( f ,S) + recall( f ,S)

, (2.30)

which is equivalent to the harmonic mean of precision and recall. Here, the smaller
of precision and recall dominates the F1 score, which is therefore maximized when
precision and recall are equal or close to each other.

2.5.2 Multiclass Classification

We have so far only looked at the case of assessing the performance of binary clas-
sifiers where Y = {+1,−1}. However, in many real world applications, we may
encounter problems that require inputs to be mapped to a set C of available cate-
gories. While some supervised machine learning algorithms can directly be extended
to work with this setting, many algorithms are intrinsically devised for binary classi-
fication and require more complex schemes to achieve this effect.
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Multi-Label vs Single-Label Classification

In the simplest case, the task is to assign the inputs to several possible categories in
C. We will refer to this case as the multi-class, multi-label setting. The extension of a
binary algorithm to this setting is commonly done by reducing the problem into |C|
binary sub-problems. The subproblems are then trained, evaluated independently
and finally processed into the calculation of the overall predictions.

Depending on the application context, additional constraints on the choice of tar-
get classes may be imposed. In a very common alternative setting, referred to as the
multi-class, single-label setting, the number of classes to be assigned to a data instance
is enforced to be exactly equal to one. The extension of a binary algorithm to this
setting is not always possible or easy to conceive. Again, a common alternative con-
sists in reducing the problem into several binary sub-problems and compose their
individual decision into a joint classification. However, the problem is that the differ-
ent binary classifiers may produce conflicting individual classifications that have to
be resolved by the composite system. Several binary classifiers, such as the margin-
based classifiers discussed in the next section, are capable of producing fine-grained
confidence values on a numeric scale instead of pure binary decisions. In the case
of such classifiers, the input instances are mapped to a real vector of confidence val-
ues formed by the outputs of the binary classifiers. The final target class is then
computed from this vector by means of a decoding function. In the simplest case,
the so called one-vs-all scheme, the class that achieves the maximal prediction con-
fidence is considered positive, while the others are implicitly considered negative.
More generic schemes for reducing the case to binary classification problems are the
methods based on error correcting output codes (ECOCs) introduced by Dietterich
and Bakiri (1995) and more recently extended by Allwein et al. (2000). In the case
of SVMs, some approaches have directly extended the algorithm to the multi-class
case. While the resulting models have the advantage of simultaneously optimizing
all decisions, they are computationally very intensive.

In the sequel we will focus on binary classification only, which eases notation. The
experiments presented in Parts III and IV, however, are often based on multi-class
settings. According to the procedures described, the extension from binary classifica-
tion is straightforward.

Micro and Macro Averaging of Performance Measures

The evaluation measures presented so far were defined for binary classifiers. How-
ever, in the case of multi-class, multi-label settings we are interested in the perfor-
mance of a whole set of binary classifiers for a corresponding set of classes. In this
case, the evaluation scores of the individual classifiers have to be averaged across
class labels. All performance metrics we have encountered so far are of the general
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structural form of a fraction. Each performance metric qi on some category ci ∈ C has
the general form:

qi =
ai

bi
. (2.31)

Here, ai refers to the expression in the numerator and bi to the expression in the
denominator of the respective performance metric.

Based on Expression (2.31), one can define the micro-averaged or macro-averaged
scores as follows. Micro-averaged scores qµ are obtained by averaging over all in-
stances:

qµ =
∑|C|

i=1 ai

∑|S|
i=1 bi

. (2.32)

The general interpretation of this averaging alternative is that micro-averaging corre-
sponds to a per-instance average. The micro-averaged F1 value is computed directly
from micro-averaged precision and recall. In contrast to micro-averaging, the macro-
averaged scores qM are obtained by averaging over the different classes:

qM =
∑ |C|

i=1 qi

|C| . (2.33)

Here, the macro-averaged scores correspond to per-class averages. Note that the
macro-averaged classification error equals the micro-averaged classification error.

The choice of the averaging scheme to be employed depends on the characteristics
of class distribution in the test dataset. In macro averaging, all classes are treated
equally, regardless of the numbers of positive instances in the different classes. If all
classes are considered equally important, the macro-averaging scheme is usually the
best choice but it is important to keep in mind that the individual figures on small
classes can have a large effect. If the uneven distrubution of positive training docu-
ments is to be considered explicitly, the micro-averaging scheme is usually favoured
although this bears the risk that classes with a grossly higher number of training doc-
uments can dominate the result. If classes are equally distributed, there is usually no
particular reason to favour a particular averaging scheme.

The averages of the evaluation measures presented so far are most easily conceived
for assessing the performance of multiple independent binary classifiers , i.e. multi-
class, multi-label settings. In most of the experiments which we report on, we will
adopt this view. For the case of a multiclass, single-label setting, i.e. a setting where
the final result of multiple independent classifiers is post-processed by a selection
function to enforce the assignment of a single category, these measures are used by
some authors in analogy. In the case that the performance in an explicit multiclass,
single-label setting, is of interest this thesis will however resort to explicitly reporting
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the single-label adjusted error (accuracy) as a measure of multiclass, single-label classi-
fication performance. These measures are not computed as an average over multiple
categories but as the total fraction of wrong (correct) classification decisions.

2.5.3 Measuring Significance: the Paired T-Test

Besides simply reporting performance measures, statistical significance tests are use-
ful in machine learning experiments to verify that an given change in performance is
significant, i.e. that it is very unlikely that the change in question is only the result of
random effects (Yang and Liu, 1999). This thesis will sometimes use a common sigin-
ficance test procedure devised by Gosset (1908) which is known as (Student’s) paired
T-Test

The test compares two systems based on the paired values of a the reference per-
formance measure, e.g. F1, in different experiments, e.g. on the same set of classes or
training subsets which can be associated with one another among the different exper-
iments. Specifically, given that two systems A and B were evaluated in m individual
experiments, let ai denote the performance value achieved by system A in the ith
experiment and bi the same for system B. Then, the values di = ai − bi indicate the
amount of deviation and d is a random variable with mean µd and unknown standard
deviation σd. Let the sample average of the sequence of di for i = 1 . . . n be denoted
by d and the estimated variance by var(d).

The null hypothesis H0 of the (one-sided) test is that µd = 0, i.e. that on average
there is no difference in the performance of the systems while the alternative hy-
pothesis H1 is µd > 0, i.e. that system A yields higher performance values than the
reference system B. The (one-tailed) p-value is then computed from the t-distribution
with n− 1 degrees of freedom for the test statistic:

T =
d

SE(d)
=

d√
ṽar(d)

n

. (2.34)

For large n (at least n > 40) the standard normal distribution approximates the t-
distribution and may be used instead. The p-value measures the probability of com-
mitting a type I error, that is the probability of falsely rejecting H0. Small p-values
thus indicate substantial evidence against the null hypothesis. Following common
statistical practice, the significance level α = 0.05 is required for the claim that an
improvement is significant. The significance level of α = 0.01 is required for the claim
that an improvement is very significant.
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2.6 Summary

In this section, we have introduced the main building blocks of kernel-based learning.
We have first reviewed the main mathematical concepts that underlie kernel-based
machine learning. We have then introduced, step-by-step the machine learning set-
ting both supervised and unsupervised. We have motivated the use of kernels in
the context of the kernel perceptron and subsequently presented examples of other
kernel-based learning techniques among which the SVM constitute the most impor-
tant instantiation in practice. We have then, in more technical detail, investigated the
concept of valid kernel functions and their characterization as positive semi-definite
functions. Furthermore, we have looked at well known kernels and kernel closure
properties and discussed the issue of appropriate kernel design. Finally, we have
finally reviewed the techniques for assessing the performance of machine learning
algorithms. In the next section, we will turn to the other main building block of this
thesis, namely the concepts of knowledge representation and ontologies.

55



56



Chapter 3

Knowledge Structures

In this chapter, we introduce a number of basic concepts from the field of knowledge
representation. Knowledge representation is a research area shaped by a variety of
disciplines, theories and applications. As a branch of artificial intelligence, knowl-
edge representation deals with mechanisms for representing factual knowledge as
well as general ideas, associations, and perceptions in a formal manner for further
processing by computer systems. Representing knowledge in an explicit form en-
ables computer systems to automatically organize data records, draw conclusions,
and answer queries about the available knowledge in a way similar to human rea-
soning (Russell and Norvig, 2003). Common to many of these perspectives is the
notion of an ontology as a conceptual model of a particular domain of interest (see
e.g. Staab and Studer (2004) or Grimm et al. (2007)). Several formalisms have been
devised for knowledge representation which differ in the set of supported primitives
and their formal grounding. In the remainder, we will use the term ontology to refer
to knowledge expressed by means of a formalism that (i) supports at least a minimal
set of core primitives, in particular the capability to organize knowledge by means
of individuals and classes and (ii) are formally grounded in a logical theory. As a
more general notion we will refer to knowledge structures as knowledge expressed by
a potentially informal network structure.

This chapter is organized as follows. First, Section 3.1 reviews some basic no-
tions related to the nature of knowledge representation. On the one hand, it tries
to answer the question why computer science is occupied with knowledge repre-
sentation in practical and scientific contexts. On the other hand, it shortly reviews
how the topic of knowledge representation has typically been addressed and which
basic concepts have been established in the field. Section 3.2 then presents a for-
mal framework for knowledge structures that forms the basis for the subsequent
exposition in this thesis. The framework is inspired by current Semantic Web stan-
dards, in particular the graph model of the Resource Description Framework (RDF)
(Manola and Miller, 2004) and class-based description languages which form the ba-
sis of Description Logics (DLs) (Baader et al., 2003) and the related Web Ontology
Language (OWL) (McGuinness and van Harmelen, 2004). However, the model is
largely kept generic and is capable of characterizing a large set of views on the topic
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of knowledge representation. Throughout these sections we will sketch the relation
to the relevant Semantic Web standards where appropriate. The chapter concludes
with a short summary in Section 3.3.

3.1 Background

In recent years, there has been an increased interest in knowledge representation and
ontologies (Staab and Studer, 2004). The reasons for the popularity of this topic are
manifold, and we will begin with motivating this interest.

3.1.1 Motivation

We can roughly cluster the influences for knowledge representation in computer sci-
ence as follows:

Classification of Resources Most notably in information organization and library sci-
ence, we encounter a need to organize knowledge resources (e.g. files or library
media) to facilitate browsing and retrieval. A common method is to organize
resources in a formal classification structure. Such a structure, a taxonomy, is a
system for coding and organizing similar resources according to their subject or
other important characteristics. The classes of interest are usually arranged in
a hierarchical manner which encodes a specialization/generalization relation-
ship.

Lexical Resources In the study and formalization of natural language, lexical tax-
onomies aim at structuring the words and senses of a given language along
different types (e.g. nouns, verbs etc.) and relating these via relations such
as hypernymy (generalization), antonymy (opposition) or meronymy (part-
relationship).

Metadata Descriptions Besides a classification into major classes as done with tax-
onomies, metadata descriptions allow for a detailed specification of the charac-
teristics of an object (e.g. a document). Metadata descriptions correspond to
records where an entity is described by a set of fixed attributes. Metadata sys-
tems are usually tightly coupled with a type system whereby the type of an
entity determines the structure (schema) of its metadata record.

Information Integration Given related data sources stored according to differing meta-
data schemata, we often wish to enable a unified view on the data. We thus
encounter a need to specify a global schema that describes the relations and
mappings between the various schemata to be integrated.
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Queries and Deductive Reasoning Along another line, the explicit articulation of do-
main knowledge often serves the purpose of answering queries about the rep-
resented knowledge. Thereby the system should also return implicit knowl-
edge which was not explicitly articulated but can be inferred from the supplied
knowledge. In contrast to inductive reasoning, as we have encountered in the
previous chapter, this reasoning is deductive. Intuitively, for this reasoning to
yield the desired results, we need to endow our representation with a formal
semantics that precisely specifies the effects of a certain representation primi-
tive on the resulting model.

While each of these clusters emphasizes a different aspect, they draw a useful picture
of the main roots of knowledge representation.

3.1.2 Ontologies and Knowledge Structures

We will now look in closer detail at the basic notions of knowledge representation
and at the notions of knowledge structures and ontologies in computer science.

Ontologies in Computer Science

The term Ontology itself denotes a philosophical discipline occupied with reasoning
about the fundamental categories of what sorts or kinds of things there are in the uni-
verse. While the term Ontology as a name refers to this discipline, the term ontology as
a common noun has slightly different interpretations in philosophy and in computer
science. In philosophy, an ontology is a particular system of categories accounting
for a certain view of the world.

Originating from the philosophical context, this terminology has been taken up
and found widespread usage in diverse branches of computer science. Especially,
ontologies have recently found much attention as the backbone of the Semantic Web
(Berners-Lee et al., 2001). In this sense, ontologies are are formal engineering artifacts,
designed to provide a common schema for storing data and for explicating the un-
derstanding of the knowledge in a domain of interest. The probably most prominent
recent characterization of ontologies is given by Gruber (1993, own emphases):

“An ontology is an explicit specification of a conceptualization. [. . . ] In such
an ontology, definitions associate the names of entities in the universe of
discourse (e.g., classes, relations, functions, or other objects) with human-
readable text describing what the names mean, and formal axioms that con-
strain the interpretation and well-formed use of these terms. Formally, an
ontology is the statement of a logical theory.”
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An ontology thus comprises (i) a vocabulary of symbols used to describe the rele-
vant domain and (ii) a number of assumptions about the meaning of the vocabulary
entries. Studer et al. (1998) build upon this definition and further characterize the
conceptualization to be shared, i.e. consensual among different stakeholders.

Classes of Ontologies

Guarino (1998) distinguishes ontologies and ontology languages according to their
degree of formality. While informal ontologies are usually expressed in an ontol-
ogy language which largely draws from the natural language descriptions of the
employed primitives, a formal ontology is expressed in a formal ontology language,
usually represented in first-order logic or fragments thereof. These languages give
their constructs a clear mathematical interpretation. In the remainder, we will refer
to informal ontologies and general knowledge representation models as knowledge
structures. We will refer to ontologies only as advanced knowledge structures where
knowledge is expressed by means of a formalism that supports a minimum number
of modeling primitives and which is formally grounded in a logical theory.

Along another line, Guarino (1998) distinguishes ontologies according to the sub-
ject of conceptualization. Different types of ontologies that are commonly suggested
include top-level ontologies, domain ontologies, task ontologies and application on-
tologies, each of which comes with a different level of generality and focus. While
top-level ontologies describe very general concepts independent of the application
domain (e.g. relating to the representation of space and time), domain ontologies de-
scribe the concepts related to a specific domain (e.g. medical knowledge).

3.1.3 Semantic Web Standards

Knowledge structures and ontologies have recently attracted attention as the build-
ing blocks of the envisioned Semantic Web (Berners-Lee et al., 2001; Shadbolt et al.,
2006). Conceptually, the Semantic Web is seen as an extension of the World Wide
Web as a universal medium for data, information, and knowledge exchange. On the
Semantic Web, content can be expressed not only in natural language for presenta-
tion to human users, but also in a format that can be interpreted directly by computer
systems, permitting them to easily find, share and integrate information.

Practically, the backbone of the Semantic Web is constituted by a set of standards
developed under the lead of the World Wide Web Consortium (W3C). In particu-
lar, the Resource Description Framework (RDF), Resource Description Framework Schema
(RDFS) and Web Ontology Language (OWL) standards form the core of the Semantic
Web. While RDF (Manola and Miller, 2004) constitutes a rudimentary graph-based
data model, RDFS (Brickley and Guha, 2004) supports established knowledge rep-
resentation paradigms and a distinction between schema and instance level. Ini-
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tially without a formal interpretation, these languages have later been given for-
mal semantics (Hayes, 2004). This paradigm is extended by OWL, an ontology lan-
guage that supports a rich set of advanced modelling primitives and has a clear log-
ical grounding in Description Logics (McGuinness and van Harmelen, 2004; Patel-
Schneider et al., 2004; Horrocks et al., 2003). Furthermore, with Simple Protocol and
RDF Query Language (SPARQL), a query language for the RDF data is under develop-
ment (Prud’hommeaux and Seaborne, 2007). A description of some older knowledge
representation languages on the Semantic Web which have lost practical importance
since the advent of OWL is given by Gomez-Perez and Corcho (2001).

In practice, the interaction with Semantic Web data is performed by means of on-
tology management systems. These systems are software frameworks that provide a set
of components that allow to interact and work with ontologies and knowledge struc-
tures in practical settings (Bloehdorn et al., 2006d). Standard components of ontology
management systems are ontology editors and/or ontology management APIs, rea-
soning engines and query interfaces.

3.2 Formalizing Knowledge Structures

In this section, we formalize the notions of knowledge structures and ontologies. This
formalization will constitute the basis for the subsequent exposition in this thesis.

3.2.1 Elementary Knowledge Structures

We begin by introducing the very general notion of an (elementary) knowledge struc-
ture which will be extended and refined subsequently.

Syntactic Elements

Definition 3.1 (Knowledge Structure). A knowledge structure is a four-tuple K :=
(E ,P ,D,S) consisting of a set E of entity names, a set P ⊆ E of property names, a
set D of data values, and a set S ⊆ E × P × (E ∪ D) of statements.

Remark 3.1 (Data Values). Note that we have deliberately not further specified the
nature of the data values in the (potentially infinite) set D. In general, these can be of
any basic data type such as strings or integers. We will sometimes refer to the set of
data values of a specific data type as D. The set D = DString ∪ DR ∪ DN ∪ . . . is then
seen as the set of supported data values.

In a general sense, we will refer to entities as all ontology elements that can be
referenced, such as entity names or data values such as a specific character string.
In contrast, statements classify and relate entities and may constrain their logical in-
terpretation. The structure of the statement triples is devised in analogy with the
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basic structures we find in natural language sentences. Correspondingly, the first ar-
gument of each statement (any entity name) is referred to as the subject, the second
argument (any property name) as the predicate, and the third argument (any entity
name or value of one of the admitted data types) as the object.

Remark 3.2 (Properties as Entities). Note that properties form a subset of the overall
entities, i.e. they may as well themselves appear as subjects or objects of statements.
Sometimes, this level of generality is restricted and the sets E and P are instead re-
quired to be non-overlapping.

Practical Use and Examples

Conceptually, the statements in a knowledge structure form a directed and labeled
graph. Graphs of this kind are alternatively also often referred to as semantic net-
works. The model basically corresponds to the RDF language for representing infor-
mation about resources. The main distinction is that RDF additionally includes a
small number of advanced concepts like the specification of sets and lists and the use
of unnamed entities called blank nodes (Manola and Miller, 2004) both of which are not
relevant for the further exposition in this thesis. The following examples illustrate the
explication of such knowledge structures.1

Example 3.1 (Bibliographic Metadata and Topic Hierarchies). The elements of the
knowledge structure would, for example allow us to encode bibliographic informa-
tion like in the following example:

pub100 dc:title "Kernel Methods for Knowledge Structures"
pub100 dc:creator person100
person100 foaf:name "Stephan Bloehdorn"
pub100 dc:subject topic110
topic110 skos:prefLabel "Machine Learning"
topic110 skos:altLabel "Statistical Learning"

The example references property names taken from some of the best known RDF-
based metadata standards such as the Dublin Core (DC) (DCMI Usage Board, 2006),
Friend of a Friend (FOAF) (Brickley and Miller, 2007) and Simple Knowledge Organ-
isation Systems (SKOS) (Miles and Brickley, 2005) metadata elements, marked by the
corresponding namespaces.

1Since RDF, Semantic Web standards use the concept of Uniform Resource Identifiers (URIs) (Berners-
Lee et al., 2005) to express entity names. In analogy with the concept of namespaces as found in
Extensible Markup Language (XML) (Bray et al., 2006) we will shorten the notation by using a colon
to separate the vocabulary identifier from an element in the vocabulary. We will also use the simple
RDF abstract syntax (Klyne and Carroll, 2004) where an RDF triple is conventionally written in the
order subject, predicate, object.
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Often, such knowledge structures are used to encode taxonomic information as in
the following example.

Example 3.2 (Bibliographic Metadata and Topic Hierarchies (cont.)). Consider the
previous bibliographic example and the following knowledge structure:

topic110 skos:broader topic100
topic120 skos:prefLabel "Knowledge Representation"
topic120 skos:broader topic100
topic100 skos:prefLabel "Artificial Intelligence"

The knowledge structure implements the common organization of topics via broader-
narrower relations we find in library systems.

Knowledge structures, as introduced so far are only syntactic structures but do not
specify how these structures are to be interpreted. Correspondingly, the meaning of
the entities needs to be described outside of the formal structure, e.g. in natural lan-
guage descriptions and their proper use has to be checked by humans or needs to
be ensured procedurally in the relevant applications. Consider Example 3.2 above,
where it is not clear whether the skos:broader relation between two topics implies
that an assignment of the specific topic should also imply an assignment of the more
general topic. Such an approach is thus prone to suffer from interpretations changing
over time or differing among implementing applications. A further level of com-
plexity is added when different knowledge structures are to be combined, where the
correspondence of the language elements has to be inspected and aligned manually.
Also, while it is possible to query knowledge structures to retrieve resources that
match certain patterns within the graph, there is no way of automatically inferring
implicit facts or detecting inconsistencies. In the next section, we will extend the basic
knowledge representation model to match these requirements.

3.2.2 Ontologies and Formal Semantics

We have argued earlier that (formal) ontologies should specify a sufficiently rich set
of language primitives and that these primitives should be grounded in a logic-based
interpretation to allow to reason with the supplied knowledge. In the following,
we look at ontologies as an extension of the general model of knowledge structures
considered so far. This model is designed in the light of two considerations. Firstly,
the model is in line with a whole family of class-based knowledge representation
languages and can be easily extended towards expressive DLs. Secondly, it has a
well-defined formal semantics in the sense of first-order logic interpretations which
again seamlessly fits into the family of DLs.
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Syntactic Elements

The main primitives of the model are individuals, classes, and object/data type properties
which, from the perspective of mathematical logic correspond to constants, unary
predicates, and binary predicates, respectively as well as the notion of subsumption
as a basic inference task.

Definition 3.2 (Ontology). An ontology is a knowledge structure in the sense of Def-
inition 3.1 with the following additions. The set of entities E is partitioned into two
subsets E = EV ∪ EO called the description language entities and domain entities. The set
of domain entities is partitioned further as follows: EO = I ∪ C ∪ P0 ∪ PD whereby
P0 ∪ PD ⊂ P . We call C the set of class names, I the set of individuals, P0 the set
of object properties, and PD the set of data properties. The set of description language
entities contains the properties {instanceOf, subClassOf, subPropertyOf, domain, range}.
The set of admissible statements in S is constrained according to the partition:

S ⊆ (I × {instanceOf} × C)∪ (class instantiation)
(I × P0 × I) ∪ (I × PD ×D)∪ (property filler)
(C × {subClassOf} × C)∪ (class subsumption)
(P0 × {subPropertyOf} × P0)∪
(PD × {subPropertyOf} × PD)∪ (property subsumption)
(PD × {domain} × C) ∪ (P0 × {domain} × C)∪ (property domain restriction)
(P0 × {range} × C) (property range restriction)

The basic elements of this ontology model, in particular the separation of schema-
level and instance-level, can be found in all popular ontology languages. Schema-
level statements encode intensional knowledge, i.e. properties of groups or abstrac-
tions of individuals, expressed by means of classes, properties (as entities) and their
respective subsumptions (as axiom statements). Instance-level statements encode ex-
tensional knowledge, i.e. properties of particular individuals, expressed by individu-
als (as entities) and class and property fillers (as axiom statements). Sometimes, the
intensional knowledge is also referred to as the ontology (in a strict sense), while the
extensional knowledge is said to constitute the knowledge base.

Conceptually, the syntactic elements introduced in the model above correspond
to the main syntactic elements available in RDFS. However, RDFS is not restrictive
about the formation of the statements thus making the semantics as specified for RDF
and RDFS (Baader et al., 2003; Patel-Schneider et al., 2004) more complex.2

2In fact, the RDFS language is specified via a cyclical metamodel where the language elements are
described by references to themselves. As such, this structure produces several problems for a class-
based interpretation of RDFS.
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Model-Theoretic Semantics

Given an ontology structure in the sense of Definition 3.2, meaning of the basic mod-
eling primitives is formally defined via a model theoretic semantics, i.e. by relating
the language syntax to a model in an interpretation domain. We sketch this approach
in the following definition.

Definition 3.3 (Class-Based Semantics for Ontologies). Given an ontology structure
in the sense of Definition 3.2, a model consists of a domain ∆I consisting of a non-empty
set of objects, a domain of data values ∆I

D representing the data values corresponding
toD, and an interpretation function I which maps entities of the ontology to concrete
entities or groups of entities in the domain(s). The built-in classes > (Top) and ⊥
(Bottom) map to ∆I , i.e. all individuals in the domain, and to the empty set of objects,
respectively. In particular, the following mappings hold (for convenience, we also
include the common notation used in DL literature which we will often use):

Elements Semantics

ind1 ∈ I ind1
I ∈ ∆I

val ∈ D val = val I
D

class1 ∈ C class1
I ⊆ ∆I

prop1 ∈ P0 prop1
I ⊆ ∆I × ∆I

prop2 ∈ PD prop2
I ⊆ ∆I × ∆I

D
Statements Semantics DL-Notation

ind1 type class1 ind1 ∈ class1
I class1(ind1)

ind1 prop1 ind2 (ind1
I , ind2

I) ∈ prop1
I prop1(ind1, ind2)

class1 subClassOf class2 class1
I ⊆ class2

I class1 v class2
prop1 subPropertyOf prop2 prop1

I ⊆ prop2
I prop1 v prop2

prop1 domain class1 prop1
I ⊆ class1

I × ∆I —
prop2 domain class1 prop1

I ⊆ class1
I × ∆I

D —
prop1 range class1 prop1

I ⊆ ∆I × class1
I —

An interpretation is said to satisfy an ontology (or any set of axioms), if there are
no contradictions in the interpretation. Such an interpretation is called a model of the
ontology (or set of axioms). If there are no such interpretations, the ontology is said
to be inconsistent. If an additional axiom A = (ei, propj, ek) holds in all models of
an ontology O, this axiom is said to be entailed by the ontology and this situation is
denoted O |= A. Two ontologies (or sets of axioms) are said to be equivalent if they
have the same set of models.

A basic reasoning problem for a given ontology O are the questions of sub-
sumption of classes and properties, i.e. whether for two classes class1, class2
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(properties prop1, prop2) we have that O |= (class1 subClassOf class2) (O |=
(prop1 subPropertyOf prop2)). The structure where each class is associated with its
immediate sub- and superclasses is called the subsumption hierarchy . A second basic
reasoning procedure of particular practical importance is the task of instance retrieval.
Given a set I of individuals and a class classi, the retrieval task is to find all individ-
uals indj such that O |= (indj instanceOf classi). This task is particularly interesting
when it is possible to form complex class descriptions as will be discussed below.

Remark 3.3 (Interpreting Individual Names). Note that the semantics given above
ignores the naming of individuals as a means for distinguishing the corresponding
domain entities. Specifically, two differently named individuals may be mapped to
one and the same entity by the interpretation function. Sometimes, the axioms equal
and differentFrom with the obvious interpretations are introduced to account for this
fact. Alternative semantics that postulate the inequality of individuals with different
naming are said to follow the unique names assumption.

Remark 3.4. Note that the equivalence of two classes (or properties) is not explic-
itly introduced but trivially follows from subsumption, i.e. class1 v class2 ∧ class2 v
class1 ⇔ class1 ≡ class2.

The most common paradigm for queries to such ontologies are conjunctive queries.
Such a query corresponds to a conjunction of DL atoms which may contain distin-
guished or non-distinguished variables. The result corresponds to individuals which
are valid fillers of the distinguished variables with the non-distinguished variables
existentially bound. Practically, such queries can be encoded for example in terms of
SPARQL queries by interpreting the basic graph matching capabilities on knowledge
structures by the semantics of the ontology language.

3.2.3 Advanced Ontology Constructs

While the presented syntactic elements allow for basic arrangement of information
and retrieval tasks, several applications require more expressive semantics which
also allow for more interesting reasoning problems. Advanced DLs build upon the
basic ontology model and provide additional modelling primitives. As an exam-
ple, we here informally introduce the language constructs of the Description Logic
SHOIN (D) which constitutes the basis for the most prominent variant of OWL,
called OWL-DL. In particular, in addition to the introduction of atomic classes it is
possible to build complex class descriptions based on atomic classes by means of a
set of constructors:

• class1 u class2 (intersection, conjunction), denoting the set of individuals that
belong to both class1 and class2,
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• class1 t class2 (union, disjunction), denoting the set of individuals that belong
to either class1 or class1,

• ¬ class1 (complement, negation), denoting the set of individuals that do not be-
long to class1,

• ∀prop1.class1 (universal restriction), denoting the set of individuals that are re-
lated via the (object) property prop1 only with individuals belonging to the con-
cept class1,

• ∃prop1.class1 (existential restriction), denoting the set of individuals that are re-
lated via the (object) property prop1 with some individual belonging to the con-
cept class1,

• ≥ n prop1 and ≤ n prop1 (qualified number restriction), denoting the set of in-
dividuals that are related with at least (at most) n individuals via the (object)
property prop1.

• {ind1, . . . , indn} (nominal), denoting the set of individuals that are explicitly
enumerated.

Note that for such descriptions, single triples are not sufficient any more. Instead,
each of these descriptions requires a set of triples which together describe their struc-
ture. In practice, the blank node feature of RDF is usually used to avoid unnecessary
naming of complex classes.

Based on all available class descriptions, in addition to the axiom statements intro-
duced in Definition 3.2, SHOIN (D) allows the following statements:

• axioms for transitivity, symmetry and functionality denoted transitive(prop1),
symmetric(prop1), and functional(prop1) stating that the (object) property prop1

is transitive, symmetric, or functional,

• inversion axioms inverse(prop1, prop2) stating that the (object) property prop2 is
the inverse of the (object) property prop1,

• class equality axioms equivalentClass(class1, class2), stating that the sets of indi-
viduals in class1 and class2 are identical,

• class disjointness axioms disjoint(class1, class2), stating that the sets of individu-
als in class1 and class2 are disjoint,

• individual (in)equalities ind1 ≈ ind2, and ind1 6≈ ind2, respectively, stating that
ind1 and ind2 denote the same (different) individuals.
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In cases of such more expressive DLs, the subsumption hierarchy comprises com-
plex descriptions besides the actual atomic classes. The practical importance of
SHOIN (D) stems from the fact that it allows for a fairly expressive modelling lan-
guage while remaining computationally realistic as complete reasoning procedures
can be devised (i.e. all conclusions can actually be computed) and the logic remains
decidable. We deliberately omit further details on the logical foundations as these as-
pects are not relevant for the core work of this thesis. The interested reader is referred
to the rich literature on DLs, especially to the comprehensive presentation by Baader
et al. (2003) for further reference.

3.3 Summary

In this chapter we have briefly introduced basic concepts from the field of knowledge
representation which we will rely on in the subsequent chapters. We have motivated
the distinction of possibly informal knowledge structures and ontologies and formal-
ized these notions in terms of a graph-based knowledge representation model and a
simple class-based description language with possible extensions.

Both models are rooted in specific Semantic Web standards, namely RDF, RDFS,
and OWL but abstract away from the technical details of these languages. For further
literature on these topics, we refer to the books by Staab and Studer (2004) as well as
Hitzler et al. (2008) or to the comprehensive introduction by Grimm et al. (2007).
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Kernels for Entities in Taxonomic
Structures
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Chapter 4

Kernel Functions for Entities in Taxonomic
Structures

The notion of similarity plays a key role in the cognitive models we build of the world.
It provides a principle by which humans classify objects, form concepts, and make
generalizations. The quantification of similarities between entities is thus also an im-
portant issue in artificial intelligence and information management (Rissland, 2006).
It has found most attention in the context of natural language processing, informa-
tion retrieval and information integration (Budanitsky and Hirst, 2006; McHale, 1998;
Li et al., 2003). In particular, various similarity functions have been proposed in lit-
erature that reflect notions of similarity between entities in taxonomies based on the
overall structural setup of these taxonomic knowledge structures.

In Chapter 2, we have seen that kernel functions can be regarded as a special class
of similarity functions for which an implicit embedding into a (possibly unknown)
vector space is possible. Within this thesis, in particular in Part III, we encounter the
need for similarity functions on entities in taxonomic knowledge structures which
comply with the formal requirement of being valid kernel functions. This chapter
thus investigates the most prominent similarity functions of this type that have been
proposed in literature. For each of them, it answers the question whether (or under
which conditions) the respective similarity function also constitutes a valid kernel.
On the one hand, this is the first comprehensive formal analysis of similarity func-
tions in taxonomic knowledge structures with respect to this question. On the other
hand, it also sets the ground for the methods to be discussed later on.

The chapter is organized as follows. In Section 4.1, we first introduce the general
notion of a similarity function as well as some basic concepts needed for the subse-
quent exposition. In Section 4.2, we then study the properties of various set-based
similarity functions. The results of this section provide the tools needed for the next
section but will sometimes also be used for themselves in other parts of this thesis.
In Section 4.3 we then study prominent taxonomic similarity functions. For each of
these similarity functions, we (i) review their main intuitions and (ii) show whether
they constitute valid kernels. As we will see, some of these functions are positive
semi-definite and can thus be readily used as kernel functions (or as parameters for
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kernel functions) while a large proportion does not exhibit this property in the gen-
eral case. We shortly review pointers to related work in Section 4.4 and conclude with
a short summary and discussion in Section 4.5.

4.1 Defining Similarity in Taxonomic Structures

The most prominent group of similarity functions for entities in knowledge structures
are those functions that rely on the taxonomic backbone of the knowledge structures.
Before we start investigating the actual similarity functions, this section discusses
the general notion of a similarity function and the notions related to the taxonomic
backbone of a knowledge structure.

4.1.1 Similarity Functions

A similarity function provides a mapping from pairs of objects to a set of similar-
ity values. While any set of ordered values could be used, it is common to quantify
similarities in terms of positive real numbers. We formalize these intuitions mathe-
matically using the notion of a similarity function, or similarity measure.

Definition 4.1 (Similarity Function). A similarity function on a set A of objects is
a real-valued function sim : A × A 7→ R+, that measures the degree of similarity
between the two input arguments. We generally require that sim(·, ·) is symmet-
ric, i.e. sim(x, y) = sim(y, x), ∀x, y ∈ A and that it obeys the maximality axiom
sim(x, y) ≤ sim(x, x), ∀x, y ∈ A.

Conceptually, sim(·, ·) captures the degree of similarity of two entities, whereby
any entity must be at least as similar to itself than to any other entity. Lin (1998) has
summarized a number of widely accepted intuitions about the basis of a similarity
function.

(1) The similarity between two objects is related to their commonality. The more
commonality they share, the more similar they are.

(2) The similarity between two objects is related to the differences between them.
The more differences they have, the less similar they are.

In addition to these intuitions the third common intuition about similarity formu-
lated by Lin (1998) introduces the notion of a (globally) maximal similarity value and
the concept of identity:

(3) A maximum similarity between two objects is reached when the objects are
identical, no matter how much commonality they share.
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To account for this additional requirement, we introduce the notion of a normalized
similarity function.

Definition 4.2 (Normalized Similarity Function). A normalized similarity function
on a set A of objects is a symmetric and real-valued function: sim : A×A 7→ [0, 1],
that measures the degree of similarity between the two input arguments. Hereby, sim
is maximal for identical objects, i.e. sim(x, y) = 1 ⇔ x = y, x, y ∈ A.

Note that the choice of the interval [0, 1] is only for convenience and can be altered
by rescaling by any positive factor. More importantly, similarity functions of this type
enforce a constant self-similarity among objects. While this assumption seems intu-
itive, its adequacy has been challenged in psychological literature, e.g. by Krumhansl
(1978) and some of the similarity functions we encounter will nevertheless allow dif-
ferent levels of self-similarity, i.e. they comply with Definition 4.1 but not necessarily
with Definition 4.2.
Remark 4.1. Intuitions (1) and (2) are best captured in the feature contrast model by
Tversky (1977) in one of the seminal psychological treatments of the topic. Tversky
proposed a family of similarity functions, in which joint features tend to increase the
perceived similarity of two objects while feature differences tend to diminish per-
ceived similarity. Specifically, in the feature contrast model, the similarity of two
objects x and y is defined as

sim(x, y) = θ µ(F (x) ∩ F (y))− α µ(F (x) \ F (y))− β µ(F (y) \ F (x)) ,

whereby F (·) denotes the set of features of the argument objects, µ(·) denotes some
measure on these sets (sometimes also referred to as salience function) and the param-
eters α, β and θ are fixed positive real numbers. Note, however that this family of
functions is more general than required by intuitions (1) and (2) as it allows for nega-
tive similarity values and, more importantly, for asymmetric similarity functions (in
case of α 6= β).

To account for normalized similarity functions, i.e. for intuition (3), Tversky has
proposed the ratio model as a variation of his first model of similarity functions. Specif-
ically, in the ratio model, the similarity of two objects x and y is defined as

sim(x, y) =
µ(F (x) ∩ F (y))

µ(F (x) ∩ F (y)) + α µ(F (x) \ F (y)) + β µ(F (y) \ F (x))

whereby F (·) again denotes the set of features of the argument objects, µ(·) denotes
the corresponding salience function and the parameters α and β are fixed positive real
numbers.

In the following, we investigate popular taxonomic similarity functions which can
often (though not always) be reduced to Tversky’s families of similarity functions by
means of a specific choice of the relevant features, the salience function or the other
parameters.
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4.1.2 Structural Similarity in Taxonomic Structures

A major line of work on similarity functions for entities in knowledge structures are
those that rely on the taxonomic backbone of the knowledge structures. This back-
bone organizes entities along their perceived generality. The basic assumption be-
hind this view is that the structural properties of the taxonomic backbone correlate
well with the perceived similarity of entities in the knowledge structure, a view that
has been supported by various psychological studies (Budanitsky and Hirst, 2006).

The taxonomic backbone is obtained by retaining only the structure of a directed
acyclic graph (DAG) induced by a dedicated taxonomic relation from an existing
knowledge structure. For any two entities e1 and e2 directly linked by the taxonomic
relation, we will say that e2 is direct superconcept of e1 or vice versa that e1 is direct
subconcept of e2. For any two entities e1 and e2 that can be linked by multiple consec-
utive taxonomic relations we will say that e2 is superconcept of e1 or vice versa that e1

is subconcept of e2. This formalization is deliberately generic to capture a wide range
of linguistic resources, taxonomies and ontologies. For formal ontologies, the taxon-
omy is mostly associated with the class subsumption hierarchy, i.e. the arrangement
of classes via subClassOf relations. For informal ontologies, the taxonomy is often
based on a specific set of relations, such as the skos : broader relation. This approach
is particularly relevant for knowledge structures that model the semantic dependen-
cies between natural language words and their senses, a group of structures which
we will refer to as lexical knowledge structures. In practice, we will focus our attention
to WORDNET synsets and the hypernym/hyponym relations among them.

Example 4.1 (WORDNET). Similarity between two words is often represented by sim-
ilarity between entities in lexical knowledge structures such as WORDNET that are
associated with the two words. WORDNET is a large lexical reference system and
semantic network (Miller et al., 1990; Miller, 1995).1 WORDNET organizes English
nouns, verbs, adjectives, and adverbs into sets of cognitive synonyms called synsets,
each expressing a distinct concept. Synsets are interlinked by means of conceptual-
semantic and lexical relations. While the original WORDNET database is coded in a
proprietary format, a translation to an RDFS/OWL encoding exists (van Assem et al.,
2006). The following knowledge structure illustrates a fragment of WORDNET:

sense100 wn20schema:inSynset synset500
sense100 wn20schema:word word700
word700 wn20schema:lexicalForm "island"
synset500 wn20schema:hyponymOf synset800
sense200 wn20schema:inSynset synset800
sense100 wn20schema:word word900
word900 wn20schema:lexicalForm "land"

1http://www.cogsci.princeton.edu/~wn/
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This fragment references two words, namely word700 having the lexical form “is-
land” and word900 having the lexical form “land” . The former is part of a sense that
links to the synset synset500 while the latter has a sense that links it to the synset
synset800. These synsets stand in a hyponym relation, such that meaning of the
word “island” is at least in some sense a hyponym (i.e. a specialization) of meaning
of the word “land” .

4.1.3 Basic Notions on Taxonomic Structures

The similarity functions to be introduced subsequently require a set of preliminary
notions and assumptions. Most similarity functions assume the taxonomic struc-
ture to form a DAG with a unique topmost element. For taxonomies based on the
subClassOf relation in class-based ontology formalisms, this root entity is clearly the
class of all individuals (Top). For any other knowledge structure we thus introduce a
dedicated root entity which becomes superconcept of all entities that are not equipped
with outgoing superconcept edges. This is particularly true for the WORDNET noun
hierarchy, which up to version 2.0 defined 9 distinct unique beginner concepts up to
which each concept can be traced.

Another notion that will be used in the following is notion of the semantic cotopy of
an entity (Maedche and Staab, 2002).

Definition 4.3 (Semantic Cotopy). The upper, lower and overall semantic cotopies
SC+(e1), SC−(e1), and SC(e1) of an entity e1 in a taxonomy are respectively defined
as:

SC+(e1) ={ei|ei is superconcept of e1}
SC−(e1) ={ei|ei is subconcept of e1}

SC(e1) = SC+(e1) ∪ SC−(e1)

Further important notions for the specification of the similarity functions are the
distance of two entities, the depth of an entity as well as the Lowest Super Ordinate (LSO)
of two entities .

Definition 4.4 (Distance in a Taxonomy). By the distance dist(e1, e2) of two entities,
we will refer to the length of the shortest path(s) between e1 and e2 that traverses a
common superconcept.

Note that in a DAG there can, in general, be multiple different paths that yield the
minimal distance.

Definition 4.5 (Depth in a Taxonomy). The depth of an entity in a taxonomy is then
defined as: depth(e1) = dist(e1, root).
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Based on this, the Lowest Super Ordinate of two entities (or, alternatively, their most
specific common subsumer) refers to the entity with maximal depth that subsumes them
both. Distances can be easily computed from the taxonomy’s adjacency matrix using
the Floyd-Warshall algorithm (Floyd, 1962) for all pairs of entities and their supercon-
cepts. Note that in a taxonomic structures that correspond to perfect tree structures,
the path of an entity to the root entity is unique. The LSO of two entities is thus
unique and necessarily lies on the shortest path between them. On the other hand,
for taxonomic structures that correspond to general DAGs, i.e. for those that permit
multiple inheritance, these properties do not hold.

4.2 Analysis of Set-Based Similarity Functions

In line with Tversky’s notions, many similarity functions are defined in terms of
compositions into sets of characteristic objects and various set operations on these
sets. In this section, we will introduce a number of basic results on the positive semi-
definiteness of popular set based similarity functions — traditionally sometimes also
referred to as set similarity coefficients.

Set Intersection Coefficient

As the simplest set-based similarity function, we first introduce the set intersection
coefficient.

Definition 4.6 (Set Intersection Coefficient). Let X be an arbitrary set of objects. The
set intersection similarity function for two sets A1 ⊆ X and A2 ⊆ X is defined as
sim∩(A1,A2) = |A1 ∩A2|.
Proposition 4.1. The set intersection similarity function of Definition 4.6 is positive semi-
definite.

The result follows directly from the representation as the inner product of two bi-
nary vectors, each element of which encodes the presence or absence of an element
of X .

Crossproduct Similarity

While the set intersection coefficient only allows to relate the elements of two sets
by their identity, the crossproduct similarity compares them based on an embedded
similarity function.

Definition 4.7 (Crossproduct Similarity Function). LetX be an arbitrary set of objects
and sim(·, ·) a similarity function on these elements. The crossproduct similarity for
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two sets A ⊆ X and B ⊆ X is defined as:

simcp(A,B) = ∑
a∈A

∑
b∈B

sim(a, b).

Proposition 4.2. If sim(·, ·) is a positive semi-definite function, the set crossproduct simi-
larity function of Definition 4.7 is positive semi-definite.

Proof. Let φ 7→ H be the feature space mapping associated with the positive semi-
definite function sim(·, ·) into some feature space H. We then have

simcp(A,B) = ∑
a∈A

∑
b∈B

sim(a, b) = ∑
a∈A

∑
b∈B
〈φ(a), φ(b)〉

=

〈
∑

a∈A
φ(a), ∑

b∈B
φ(b)

〉
.

As the crossproduct similarity function can be reformulated as an inner product, it
constitutes a positive positive semi-definite function.

In such cases, we will usually refer to the crossproduct similarity function as the
crossproduct kernel.

Jaccard Coefficient

The Jaccard coefficient is a statistic used for comparing the similarity and diversity of
sample sets.

Definition 4.8 (Jaccard Coefficient). Let X be an arbitrary set of objects. The Jaccard
similarity coefficient for two sets A1 ⊆ X and A2 ⊆ X is defined as

simJAC(A1,A2) =
|A1 ∩A2|
|A1 ∪A2| .

Note that the Jaccard coefficient corresponds to the value of Tversky’s ratio model
when setting α = β = 1. To analyze the positive semi-definiteness of this similarity
function, we require the following result by Gower (1971, proof therein).

Proposition 4.3 (Gower (1971)). Let f : X ×X 7→ R be a positive semi-definite function
and let c ∈ R be a constant such that for all x ∈ X we have that f (x, x) < c. Then the
function f ′ : X ×X 7→ R given by f ′(x, z) = 1/(c− f (x, z)) is positive semi-definite.

Proposition 4.4. The Jaccard coefficient of two sets is a positive semi-definite function.
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Proof. For any set A ⊆ X we define its complement as A = X \ A. Clearly, by our
earlier reasoning in terms of vector representations, |A1 ∩ A2| is bounded by |X |.
Clearly, we have that |A1 ∪ A2| = |X | − |A1 ∩ A2|. From Proposition 4.3, it follows
that 1/(|A1 ∪A2|) is positive semi-definite. Together with Proposition 4.1 it follows
that the Jaccard Coefficient is positive semi-definite (p.s.d.) as it is the product of two
positive semi-definite functions.

Dice Coefficient

The Dice coefficient is another popular statistic for comparing two sample sets.

Definition 4.9 (Dice Coefficient). Let X be an arbitrary set of objects. The Dice simi-
larity coefficient for two sets A1 ⊆ X and A2 ⊆ X is defined as

simDICE(A1,A2) =
2 |A1 ∩A2|
|A1|+ |A2| .

Again note that the Dice coefficient corresponds to Tversky’s ratio model when
setting α = β = 0.5. For the Dice coefficient, we simply state the result by Gower and
Legendre (1986).

Proposition 4.5 (Positive Semi-Definiteness of Dice Coefficient (Gower and Legendre,
1986)). The Dice coefficient of two sets is a positive semi-definite function.

We shortly sketch the proof of Gower and Legendre (1986). The main idea is to look
at the nominator and the denominator separately. Clearly, the nominator, i.e. 2 |A1 ∩
A2| is positive semi-definite as it is an instance of the intersection kernel (positivly
scaled by 2). It is now sufficient to show that (|A1| + |A2|)−1 is a positive semi-
definite function. Gower and Legendre (1986) proof this by showing that, as |Ai| are
non-negative the determinant of any matrix formed out of this second function has a
non-negative determinant, a sufficient condition for the positive semi-definiteness of
a matrix (Shawe-Taylor and Cristianini, 2004).

Introducing Measures

All set-based similarity functions can be extended to take into account (bounded)
measures µ : 2X 7→ [0, C] on the subsets of a reference set X with µ(X ) = C < ∞
other than the basic set cardinality µ(·) = | · |. The use of a different measure allows to
extend the similarity functions introduced so far in such a way that different objects
within the reference sets can be emphasized or deemphasized when computing the
similarity functions. The results of the analysis above carry over to this setting, c.f.
for example to the analysis by Gärtner (2005).

78



4.3 Analysis of Taxonomic Similarity Functions

4.3 Analysis of Taxonomic Similarity Functions

We now study the most prominent similarity functions on entities in knowledge
structures that rely on the taxonomic backbone for computing similarity values. We
present both structural and information theoretic similarity functions, as well as combi-
nations thereof. We focus on the main rationales behind these measures, pointing to
the recent survey by Budanitsky and Hirst (2006) for detailed complementary infor-
mation on the topic. For each of the similarity functions, we then investigate whether
it constitutes a positive semi-definite function. For most similarity functions, we can
show that they do not correspond to positive semi-definite functions in the general
case by constructing appropriate counterexamples. However, these similarity func-
tions can sometimes be shown to be positive semi-definite functions if the structure
of the taxonomic backbone is appropriately restricted.

4.3.1 Path-Based Taxonomic Similarity

The main assumption behind path-based similarity functions is that the distance be-
tween to entities is the major indicator of their semantic similarity. The inverted path
length can be seen as an example of a particularly simple way to compute semantic
similarity between two entities in a taxonomy.

Definition 4.10 (Path-Based Taxonomic Similarity). The similarity simIPL(e1, e2) of
two entities e1 and e2 is defined as

simIPL(e1, e2) =
1

(1 + dist(e1, e2))α

where α > 0 specifies a decay factor.

Based on its first reported use by Rada and Bicknell (1989), this similarity function
is also referred to as the Rada measure.

Proposition 4.6. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.10, i.e. the Inverted Path Length similarity, is
not positive semi-definite.

Proof. The proposition is shown by counterexample. Consider the fragment of a tax-
onomic network in Figure 4.1. For the inverted path length similarity function with
α = 1, this gives rise to the following similarity matrix for the entities {A, . . . , K}. We
hereby order the matrix indices according to the alphabetical order of the variables.
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R

A B C

D E F G

H I K

Figure 4.1 — Taxonomic network as counterexample for the Inverted Path Length
Measure. The similarity matrix formed by restriction to entities {A, . . . , K} for the
Inverted Path Length Measure is not positive semi-definite.




1 1/3 1/3 1/2 1/4 1/4 1/4 1/2 1/2 1/2
1/3 1 1/3 1/4 1/2 1/4 1/2 1/2 1/3 1/3
1/3 1/3 1 1/2 1/4 1/2 1/4 1/3 1/2 1/3
1/2 1/4 1/2 1 1/5 1/3 1/5 1/2 1/2 1/2
1/4 1/2 1/4 1/5 1 1/5 1/3 1/2 1/2 1/2
1/4 1/4 1/2 1/3 1/5 1 1/5 1/2 1/3 1/2
1/4 1/2 1/4 1/5 1/3 1/5 1 1/3 1/2 1/2
1/2 1/2 1/3 1/2 1/2 1/2 1/3 1 1/3 1/3
1/2 1/3 1/2 1/2 1/2 1/3 1/2 1/3 1 1/3
1/2 1/3 1/3 1/2 1/2 1/2 1/2 1/3 1/3 1




This matrix, however, has eigenvalues λ′ ≈ (−0.001, . . . , 4.463). As the smallest
eigenvalue is negative, the matrix is not positive semi-definite.

While this counterexample may not correspond to a typical setup in a taxonomic
knowledge structure, it is one of the most compact examples that can be stated in a
limited amount of space. In fact, various other counterexamples can be formed which
correspond to more common situations in taxonomic knowledge structures and also
exhibit larger negative eigenvalues. However, these examples require substantially
more entities making them unsuitable for presentation in a limited amount of space.
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R

A B C

D. . . . . .

Figure 4.2 — Taxonomic network as counterexample for the Wu-Palmer, Resnik and
Lin Measures. The similarity matrix formed by restriction to entities {A, B, C, D} for
the Wu-Palmer similarity function as well as – for appropriately chosen probabilities
– the Resnik and Lin similarity functions is not positive semi-definite.

4.3.2 Taxonomic Similarity by Wu&Palmer

While the simplicity of the pure path-based similarity function is intriguing, it does
not comply with the common intuition that concepts closer to the root of the semantic
network should have a higher distance compared to concepts far away. Among many
others, the similarity function introduced by Wu and Palmer (1994) tries to scale the
similarity with respect to the depth of the entities and the LSO in the taxonomy:

Definition 4.11 (Taxonomic Similarity by Wu and Palmer (1994)). The similarity of
two entities is defined as

simWP(e1, e2) =
2 depth(lso(e1, e2))

dist(e1, lso(e1, e2)) + dist(e2, lso(e1, e2)) + 2 depth(lso(e1, e2))
.

Proposition 4.7. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.11, i.e. the similarity function introduced by
Wu and Palmer (1994), is not positive semi-definite.

Proof. Again, the proposition is shown by counterexample. Consider the fragment of
a taxonomic network in Figure 4.2. The similarity matrix of the entities {A, B, C, D}
is (again, matrix indices are in order of the entities):




1 0 0 2/3
0 1 0 2/3
0 0 1 2/3

2/3 2/3 2/3 1


 .
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For example, the matrix entry M = 2/3 refers to the similarity of entity A and D.
The Lowest Super Ordinate of these two entities is A at depth 1. The distances of
the argument entities to the LSO are 0 for A and 1 for D, thus yielding 2 · 1/(0 + 1 +
2 · 1) = 2/3. This matrix, however, has eigenvalues λ′ ≈ (−0.15, 1, 1, 2.15). As the
smallest eigenvalue is negative, the matrix can not be positive semi-definite.

Obviously, the finding that the similarity function by Wu and Palmer is not positive
semi-definite in general, does not exclude the possibility that matrices restricted to
specific sets of entities may nevertheless be positive semi-definite. Similarly, tighter
assumptions in the taxonomic structure can enforce the positive semi-definiteness of
the similarity function as shown in the following proposition.

Proposition 4.8. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.11, i.e. the similarity function introduced by
Wu and Palmer (1994), is positive semi-definite if the taxonomic backbone does not allow for
multiple inheritance, i.e. if it is a perfect tree structure.

Proof. Consider a representation of any entity ei as a set F (ei) of edges on the unique
path from this entity to the root entity. We then have that:

simWP(e1, e2) =
2 depth(lso(e1, e2))

dist(e1, lso(e1, e2)) + dist(e2, lso(e1, e2)) + 2 depth(lso(e1, e2))

=
2 depth(lso(e1, e2))

depth(e1) + depth(e2)

=
2 |F (lso(e1, e2))|
|F (e1)|+ |F (e2)| =

2 |F (e1) ∩ F (e2)|
|F (e1)|+ |F (e2)| .

The Wu & Palmer similarity function thus has a representation in terms of the Dice
coefficient, which is positive semi-definite according to Proposition 4.5.

The proof relies on the finding that in a tree structure, there is only a single unique
path between an entity and the root entity and that the Lowest Super Ordinate of two
entities, necessarily lies on their respective paths to the root.

4.3.3 Information Content Based Similarity by Resnik

A different type of similarity functions tries to incorporate additional knowledge
about the information content of a concept besides the structural setup of the tax-
onomic backbone. Resnik (1999) has argued that neither the individual edges nor the
absolute depth in a taxonomy can be considered as homogeneous indicators of the
“semantic content” of an entity. To overcome this problem, he introduces the notion
of the probability P(e) of encountering the entity e. This probability is typically esti-
mated by the relative frequencies of the instantiations of the concept. For the case of
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lexical knowledge structures, e.g. WORDNET, it is common to obtain these frequen-
cies by counting the number of lexicalizations of the concept in a corpus relevant for
the domain under consideration. Here the counts of subconcepts equally contribute
to their respective superconcepts. Resnik follows the argumentation of information
theory in quantifying the information content (IC) of an observation as the negative log
likelihood of the probability. By means of the argument that “one key to the similarity
of two concepts is the extent to which they share information in common” he proposes the
following function for the similarity of two concepts.

Definition 4.12 (Taxonomic Similarity by Resnik (1999)). Let P(e) be the probability
of encountering e. The similarity simRES(e1, e2) of two entities e1 and e2 is then de-
fined as simRES(e1, e2) = IC(lso(e1, e2)) = − log P(lso(e1, e2)), i.e. as the information
content of the Lowest Super Ordinate.

The similarity function by Resnik has been highly influential in the field of simi-
larity functions for knowledge structures. However, it has been repeatedly criticized
because it is not normalized and thus allows varying degrees of self-similarity. While
a universal root concept having a probability of 1 will carry an information content
equal to zero, rare concepts will carry high information content values. Self-similarity
thus increases for more specific concepts and can in practical settings easily achieve
very high values.

Proposition 4.9. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.12, i.e. the similarity function introduced by
Resnik (1999), is not positive semi-definite.

Proof. Consider again the fragment of a taxonomic network in Figure 4.2 with the
following probabilities of the entities: P(A) = 0.5, P(B) = 0.5, P(C) = 0.5, and
P(D) = 0.25. Then the respective amounts of information content according to Def-
inition 4.12 will be IC(A) = 1, IC(B) = 1, IC(C) = C, and IC(D) = 2. These values
give rise to the following similarity matrix for the entities {A, B, C, D} (matrix indices
in order of the entities): 



1 0 0 1
0 1 0 1
0 0 1 1
1 1 1 2


 .

This matrix, however, has eigenvalues λ′ ≈ (−0.30, 1, 1, 3.30). As the smallest eigen-
value is negative, the matrix can not be positive semi-definite.

Again, this result does not carry over to the case of tree structures. This result is
due to Mavroeidis et al. (2005a) and we here repeat it for completeness.
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Proposition 4.10. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.12, i.e. the similarity function introduced by
Resnik (1999), is positive semi-definite if the taxonomic backbone does not allow for multiple
inheritance, i.e. if it is a perfect tree structure.

Proof. Again consider a representation of any entity ei as a set F (ei) of edges on the
unique path from this entity to the root entity. Define a measure µ(·) on the edges
such that for each edge connecting an entity e1 and its direct superconcept e2, the
measure returns the difference of the information content value of e1 and e2. We then
have that

simRES(e1, e2) = − log P(lso(e1, e2))
= µ(F (lso(e1, e2))
= µ(F (e1) ∩ F (e2).

This means that the Resnik similarity function can be represented as in terms of the
set intersection coefficient for an appropriate fixed choice of the measure µ(·). The
positive semi-definiteness of the set intersection coefficient has been stated in Propo-
sition 4.1.

Again, the proof relies on the fact that the Resnik similarity function relies only on
the information content of the unique LSO of two entities and that this value can be
determined by looking only at the common path elements of the two elements on
their shortest paths to the root.

4.3.4 Information Content Based Similarity by Lin

Based on Resnik’s proposal, Lin (1998) derived a theoretically well motivated simi-
larity function given by:

Definition 4.13 (Taxonomic Similarity by Lin (1998)). The similarity simLIN(e1, e2) of
two entities e1 and e2 is defined as

simLIN(e1, e2) =
2 log P(lso(e1, e2))

log P(e1) + log P (e2)
.

As an extension to the similarity function proposed by Resnik, it includes the in-
formation content of the compared entities as a means for normalization.

Proposition 4.11. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.13, i.e. the similarity function introduced by
Lin (1998), is not positive semi-definite.
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Proof. The result follows directly from the fact that the Wu-Palmer similarity function
is not positive semi-definite. Consider again the fragment of a taxonomic network in
Figure 4.2 with the following probabilities of the entities: P(A) = 0.5, P(B) = 0.5,
P(C) = 0.5, and P(D) = 0.25. But then the respective amounts of information content
will be IC(A) = 1, IC(B) = 1, IC(C) = C, and IC(D) = 2. These correspond directly
to the distances of the entities to the root entity in the Wu-Palmer similarity and thus
give rise to the identical similarity matrix which, however, has been shown to be
indefinite.

Again, this result is confined to knowledge structures that allow multiple inheri-
tance.

Proposition 4.12. The similarity of two entities in a taxonomic structure according to the
similarity function introduced in Definition 4.13, i.e. the similarity function introduced by
Lin (1998), is positive semi-definite if the taxonomic backbone does not allow for multiple
inheritance, i.e. if it is a perfect tree structure.

The proposition directly follows as a result of Proposition 4.8, i.e. from the positive
semi-definiteness of the Wu & Palmer similarity function, when used with the same
similarity function for the sets of edges as used in the case of the Resnik similarity
function in the proof of Proposition 4.10.

4.3.5 Taxonomic Overlap and Related Similarity Functions

Maedche and Staab (2002) introduce a notion of the similarity that compares two
entities in a taxonomy by means of their intensional semantics, i.e. by comparing
them via all other entities they directly relate to by means of taxonomic relations.

Definition 4.14 (Taxonomic Overlap). The similarity simTO(e1, e2) of two entities e1

and e2 is defined as
simTO(e1, e2) = | SC(e1) ∩ SC(e2)| .

Depending on the application context, the taxonomic overlap can be varied by re-
stricting the semantic cotopies to superconcepts (i.e. SC+(·)) or to subconcepts (i.e.
SC−(·)).

Note again that the cardinality of the intersection can be calculated by means of
an inner product if each set is represented as a binary vector of its entries. This rep-
resentation as a vector leads to an alternative explicit formulation by considering a
weighting function for the entities in the semantic cotopy. Weighting can be useful
to limit the effect of entities which reside far away from both reference concepts. In
theory, any of the similarity functions we encounter in this section can be used for
this purpose.
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Definition 4.15 (Weighted Taxonomic Overlap). The similarity of two entities is de-
fined as

simTOW(e1, e2) = ∑
ei∈K

[ei ∈ SC(e1)][ei ∈ SC(e2)] sim(e1, ei) sim(e2, ei) .

The notation [·] refers to indicator functions evaluating to ‘1’ if the backeted expres-
sion is true or to ‘0’ otherwise. Again, the weighted taxonomic overlap can be varied
by restricting the semantic cotopies to superconcepts (i.e. SC+(·)) or to subconcepts
(i.e. SC−(·)). Hereby, sim(ei, ej) is an arbitrary weighting function.

Proposition 4.13. The taxonomic overlap similarity functions of Definition 4.14 and 4.15
constitute positive semi-definite functions.

The result follows from Proposition 4.1 or directly from the alternative formulation
as an inner product.

Both variants of the taxonomic overlap are not normalized and may thus yield
varying levels of similarity. In their original formulation, Maedche and Staab (2002)
thus normalized the taxonomic overlap. We here report only on the unweighted
variant of this similarity function.

Definition 4.16 (Normalized Overlap (Maedche and Staab, 2002)). The normalized
taxonomic overlap of two entities is defined as

simTO(e1, e2) =
| SC(e1) ∩ SC(e2)|
| SC(e1) ∪ SC(e2)| .

Depending on the application context, the taxonomic overlap can be varied by re-
stricting the semantic cotopies to superconcepts (i.e. SC+(·)), to subconcepts (i.e.
SC−(·)).

Proposition 4.14. The normalized taxonomic overlap of two entities of Definition 4.16 is a
positive semi-definite function.

The result follows directly from the positive semi-definiteness of the Jaccard Coef-
ficient in Proposition 4.4.

4.4 Related Work

With the increased interest in ontologies and formal knowledge structures, the mea-
surement of semantic similarity of entities in taxonomic structures has become a pop-
ular topic in the last decade (Budanitsky and Hirst, 2006). For large taxonomies like
WORDNET, the computation of many of the structural components of these similar-
ity functions requires substantial computational resources which have only recently
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become available. Note that the use of the taxonomic similarity functions which we
have discussed is not constrained to informal knowledge structures. For example,
Borgida et al. (2005) discuss the use of these similarity functions in the context of com-
plex DL-based ontologies. Their goal is to generalize these earlier efforts for defining
similarities for atomic concepts in order to obtain a way for assessing similarity be-
tween complex concept descriptions.

The positive semi-definiteness of the intersection coefficient and the crossproduct
similarity are well known in the kernel community (see e.g. Shawe-Taylor and Cris-
tianini (2004)). Results on the positive semi-definiteness of the Dice and Jaccard co-
efficients have been reported by Gower (1971), Gower and Legendre (1986) as well
as Zegers (1986). However, these results are not well known in the kernel commu-
nity. To the best of my knowledge, the only reference for an analysis of the positive
semi-definiteness of a taxonomic similarity function is the proof of the positive semi-
definiteness of the Resnik similarity function in tree structures by Mavroeidis et al.
(2005a).

This exposition in this chapter has covered the best known taxonomic similarity
functions. Future work will also look at less popular similarity functions like e.g.
the conceptual density of Agirre and Rigau (1996) which was primarily designed for
word sense disambiguation purposes or the similarity functions proposed by Li et al.
(2003).

4.5 Summary and Discussion

In this chapter we have introduced and analyzed the popular similarity functions in
taxonomic knowledge structures. Our exposition constitutes the first comprehensive
investigation of these similarity functions in terms of the question whether they are
positive semi-definite. On the one hand, we have seen that the multiple inheritance
structure we find in most ontologies and (lexical) knowledge structures, e.g. WORD-
NET affects the positive semi-definiteness of many classical similarity functions. The
positive semi-definiteness of these similarity functions, and thereby their suitability
as kernel functions or parameters for kernel functions, can be ensured only if the
background taxonomies conform to perfect tree structures. On the other hand, simi-
larity functions of the families of taxonomic overlap do not show this limitation and
will thus be the primary focus of our treatment in Part III in the context of Semantic
Smoothing Kernels and Semantic Syntactic Tree Kernels.
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Part III

Kernels for Semantic Smoothing in
Text Mining
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Chapter 5

Designing Kernel Functions for Semantic
Smoothing

The overall topic of this thesis is the design of kernel functions that exploit declara-
tive knowledge encoded in formal knowledge structures during learning. This chap-
ter investigates an instantiation of this topic, in particular how (lexical) knowledge
structures can provide complementary background knowledge in text mining scenar-
ios. The chapter introduces and investigates two families of kernel functions, namely
Semantic Smoothing Kernels (SSKs) and Semantic Syntactic Tree Kernels (SSTKs),
that are capable of using such knowledge structures for alleviating the problems of
variability in natural language. On the one hand, Semantic Smoothing Kernels build
on the standard Vector Space Model (VSM) representation but can take the varying
degrees of semantic similarity between individual terms into account. On the other
hand, Semantic Syntactic Tree Kernels extend this concept towards representations
that also mirror the syntactic structure of the textual input. For both types of ker-
nels we incorporate the findings of Chapter 4 for choosing adequate notions of terms
similarity based on the available lexical knowledge structures.

This chapter is organized as follows. We begin by reviewing the background for
this chapter in Section 5.1. Specifically, this section introduces the Vector Space Model
which constitutes the basic representation paradigm in text mining. It then analyzes
some of the deficiencies of the VSM model which in turn motivate the design of alter-
native kernel functions. Section 5.2 investigates a family of kernel functions, referred
to as Semantic Smoothing Kernels, which take build on the VSM representation but
can take the variability of language into account. This section introduces the formal
model, gives examples and provides an analysis of the properties of SSKs. While
SSKs explicitly consider semantic aspects, they still neglect any syntactic relation-
ships within the input texts. This aspect is taken up in Section 5.3 by developing a
family of kernels called Semantic Syntactic Tree Kernels which incorporate the con-
cepts of semantic smoothing into tree kernels, a class of kernels designed to work
directly on the syntactic structure of the textual input. Critical to both groups of
kernels is the choice of semantic smoothing parameters. In Section 5.4, we there-
fore investigate the requirements for the smoothing parameters that are (i) effective
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by maintaining a useful interpretation and (ii) valid by ensuring that the resulting
SSKs or SSTKs maintain the kernel property. For both types of kernel functions, the
results from the previous chapter determine the choice of semantic smoothing pa-
rameters that can be used. Section 5.5 points to various trails of related work while
Section 5.6 concludes with a short summary and a discussion of the presented con-
cepts. We demonstrate the application of both types of kernels in an extensive set of
experiments on different datasets in the subsequent chapter.

5.1 Text Mining and the Vector Space Model

By text mining we refer to the application of machine learning technology to the orga-
nization and analysis of textual data (Feldman and Dagan, 1995; Hotho et al., 2005),
a field that has attracted considerable interest in the last decade. In their recent book,
Feldman and Sanger (2006, own emphases) characterize this field as follows:

“In a manner analogous to data mining, text mining seeks to extract use-
ful information from data sources through the identification and exploration of
interesting patterns. In the case of text mining, however, the data sources
are document collections, and interesting patterns are found not among
formalized database records but in the unstructured textual data in the doc-
uments in these collections.”

Text mining distinguishes itself from other machine learning settings mainly along
two dimensions: the type of tasks and the type of data preprocessing.

5.1.1 Text Mining Tasks

Text mining tasks relate to structuring textual content according to (i) its perception
by human users, or (ii) its linguistic properties. Text mining thus naturally over-
laps with other computer science disciplines that deal with the processing of natural
language such as information retrieval (Baeza-Yates and Ribeiro-Neto, 1999), web
mining (Chakrabarti, 2002) as well as information extraction and corpus-based com-
putational linguistics (Manning and Schütze, 1999).

Text mining tasks can be classified according to the instance type considered. For
some tasks the items of interest are larger text units such as whole documents, para-
graphs or sentences. Examples are text classification (TC) (Sebastiani, 2002) or text
clustering which automate the classification or grouping of texts into sets of thematic
or functional categories (Sebastiani, 2002). For another group of tasks, the items of
interest are single or multiple sub-sentence expressions such as phrases, expressions
or single words. Here, examples are Part–of–Speech (POS)-tagging, term clustering,
e.g. for the automatic induction of concept hierarchies (Cimiano et al., 2005), semantic
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role labeling (Giuglea and Moschitti, 2006) or information extraction (Manning and
Schütze, 1999). Along another line, text mining tasks can be distinguished by the de-
scriptive features to be exploited as input. In the case of larger text units, it is common
to use the text itself as the main source of information. In the case of sub-sentence ex-
pressions, it is common to use the surrounding context, e.g. the remaining text within
a sentence or text windows of a predefined width as input. Finally, tasks can also be
distinguished according to their purpose. Many classical text mining tasks such as text
classification, text clustering or text summarization aim at the organization of textual
documents as a classical knowledge management task (Marwick, 2001). Other tasks
like information extraction (IE) or ontology learning (OL) (Maedche and Staab, 2001;
Maedche, 2002; Cimiano, 2006) aim at the extraction of structured knowledge from
unstructured textual input.

Text mining tasks need not be necessarily designed to operate in isolation. Often,
they are part of a complex processing pipeline. As an example, consider the case of
question classification (QC) (Metzler and Croft, 2005) that will be of interest as an
evaluation scenario in Chapter 6. The QC task is a text classification task that aims at
detecting the semantic type of the sought-after answer to a natural language question,
e.g. whether it asks for a person or for an organization. The resulting classification
information is then exploited for locating and extracting the right answers in question
answering (QA) systems which requires further processing.

5.1.2 Fundamentals of the Vector Space Model

Text mining distinguishes itself from conventional data mining primarily by a set of
specific preprocessing operations. These operations are responsible for transforming
the unstructured textual input into a vector representation. Of course, in a kernel-
based setting, some of these steps can alternatively be shifted into the kernel function
and we will discuss some of these approaches later on.

Textual data comes with an intuitive feature representation, the Vector Space Model
representation, sometimes also referred to as the Bag-of-Words (BOW) representation,
that has been used early information retrieval (IR) (Salton et al., 1975). This repre-
sentation builds on the hypothesis that the meaning of a text fragment can be ap-
proximated via the individual words it contains. Each word that occurs in the train-
ing collection thus becomes a feature. The resulting representation of a document
is consequently referred to as a word vector. Widdows (2004) provides a good and
comprehensive overview over the main rationales behind this representation. The
main design decisions that affect the setup of the feature vectors in this paradigm are
captured by two questions: (i) Which lexical units should be considered as features?
(ii) What numerical values should be assigned to the dimensions of the feature vector
such that they adequately mirror the importance of the respective lexical units in the
textual input? In the following, we sketch the basic steps towards the VSM repre-
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sentation by answering both questions and name some of the most popular variants.
Throughout this chapter, we denote the lexical units (terms) as l1, l2, . . . ∈ L and the
VSM vectors of textual inputs as x, z, . . . ∈ X .

Term Extraction

The term extraction- or indexing phase focuses on identifying the relevant lexical units
that make up the dimensions in the word vector space. The resulting set of terms
l1, l2, . . . ∈ L is stored in a lexicon or term dictionary, usually together with basic occur-
rence statistics.

Assuming that the textual input is available as plain text, characters are usually
converted to lower case in a first step. The aim of tokenization is then to determine
adequate word boundaries and to split the text into chunks of terms. In the simplest
case, tokenization rules only need to spot split characters such as whitespaces and
punctuation marks. Depending on the language, the tokenization rules may how-
ever be more subtle. For example, in the English language a term may be a single
word or a linguistic expression composed of multiple words that has a distinct mean-
ing. Composite terms are usually referred to as multi-word expressions or collocations
and need to be detected by advanced rules, usually by comparison with a reference
dictionary.

Not all words necessarily contribute to the perceived document content. Such
words, especially function words like articles and prepositions are called stopwords
and are usually removed. For example, for the English language, a list of 571 stop-
words which has originally been developed for the SMART system is commonly
used.1 Similarly, numbers are often removed as well as part of the stopword removal
step.

In most languages, the same word may appear in different morphological vari-
ants. Most of these variations are inflections and reflect the contextual situation of a
word in the sentence like plural forms or cases. Lemmatization is the activity of reduc-
ing words to their word stems. It is common to use language-specific lemmatization
dictionaries or a set of advanced reduction rules. In an alternative paradigm called
stemming, the reduction to base forms is governed by coarse grained heuristics which
approximate a proper lemmatization. As an example, by virtue of simple morpho-
logical rules, most words in the English language can be stemmed easily by stripping
off common suffixes. Porter (1980) has devised a popular and successful stemming
algorithm for the English language based on this observation.

Example 5.1 (VSM Preprocessing). Consider the preprocessing of the sentence “SAP
agrees 4.8-billion-euro buyout of Business Objects” .

1The SMART stopwords list is available at ftp://ftp.cs.cornell.edu/pub/smart/english.stop.
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• Tokenization and lowercase normalization would yield the term set {“sap” ,
“agrees” , “4.8” , “billion” , “euro” , “buyout” , “of” , “business” , “objects”}.

• The entries “4.8” and “of” would be removed as stopwords.

• The lemmatization step would alter the verb entry “agrees” and, assuming that
no special handling of collocations and named entities is in place, the noun
entry “objects” .

• The resulting bag of term features would thus become {“sap” , “agree” ,
“billion” , “euro” , “buyout” , “business” , “object”}.

Term Weighting

In the simplest case, feature vectors contain the binary indicator variables ‘1’ or ‘0’
to indicate the presence or absence of a term in some text item. This representation
has its roots in early approaches of information retrieval where search queries were
seen as logical expressions and a document was considered a result candidate if its
assignment of Boolean variables to the terms made the expression true. The major
drawback of this representation is that all terms that occur in a document are consid-
ered equally important.

Weighting schemes aim at addressing this issue. For example, the vector entries
may correspond to the absolute term frequencies in the respective document. How-
ever, using absolute term frequencies seems intuitive but has empirically produced
suboptimal results. The reason is that common words which tend to occur in many
documents are not well suited for discriminating documents in term space. Vari-
ous advanced weighting schemes have been proposed to account for this situation.
The most popular approach which has empirically shown superior performance is
to inversely relate the term weight to the number of documents in which the term
occurs by discounting the absolute term frequencies with a so called Inverse Doc-
ument Frequency (IDF) resulting in the combined Term Frequency Inverse Document
Frequency (TFIDF) weight (Salton, 1989).

Definition 5.1 (Term Frequency Inverse Document Frequency). Given a set L =
{l1, l2, . . . , ln} of terms in the reference corpus and a set X = {x1, x2 . . . xm} of doc-
uments, let tf(li, xj) be the absolute frequency of term li in document xj. Then the
function tfidf : L×X 7→ R with:

tfidf(li, xj) = tf(li, xj) idf(li) = tf(li, xj) log
|X |

|{xk ∈ X |xk contains li}|
denotes the TFIDF score of term li in document xj.
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Extensions of the TFIDF scheme incorporate document length normalization to ac-
count for different lengths of input documents, e.g. by means of the mathematical
vector normalization. In a kernel-based setting, this effect can be achieved implicitly
by means of the cosine kernel modifier (c.f. Proposition 2.13). A study on the effects
of various variants of these term weighting schemes in TC settings was conducted by
Leopold and Kindermann (2002).

Since its early use by Salton et al. (1975) and others, the VSM representation has
found widespread use in information retrieval and text mining. It still constitutes the
predominant choice for most text mining tasks and the main source of this success
is certainly the good performance in various text mining tasks at an appealing level
of simplicity. However, various caveats can be made about the comparatively simple
modeling of natural language phenomena in the VSM representation which we will
review in the following together with an analysis of the impact of these deficiencies.

5.1.3 Deficiencies of the Vector Space Model — Semantic Aspects

The basic assumption behind the VSM representation is that it yields a “semantic”
space in which geometric patterns can express regularities which correlate well with
the perceived meaning of the input texts. In this space, each term contributes inde-
pendently to the overall meaning of a document. Technically speaking, this represen-
tation implies that different terms correspond to mutually orthogonal dimensions in
the resulting vector space.

The adequacy of this representation is challenged by situations in which two tex-
tual inputs, although perceived as conveying the same or similar content, only share
a small amount of terms or no terms at all. In the following, we will approach the
roots of this situation, historically termed the vocabulary mismatch problem, in terms of
lexical semantics (Cruse, 1986).

Terms vs. Term Senses

According to the viewpoint of lexical semantics, words denote things or concepts in
the world. This notion is best reflected by the well known semiotic triangle or meaning
triangle of Ogden and Richards (1923).2 Unfortunately, there is no one-to-one corre-

2The semiotic triangle is part a theory that explains the interconnections between symbols (e.g.
words), concepts (senses) and referents (real world things and phenomena). According to this the-
ory, symbols, e.g. verbal expressions in different languages, are used for communication. These
symbols are not at all identical with concepts (thoughts) or things (referents) themselves. However,
symbols are used to refer to concepts, thereby evoking the associated thought on the one hand. The
evoked concept then, as we have said before, refers to a whole group of things. Thus the connection
between a word and a thing is indirect as there is not necessarily any observable or direct relation-
ship between a symbol and a certain thing (referent). Whether and how this link can be completed
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spondence between the individual lexical units which we find in natural language
and the meaning they are supposed to convey. Along this line, two problems are
specifically apparent and relevant for the VSM representation, namely the phenom-
ena of synonymy and lexical ambiguity.

Synonymy refers to situations where two or more different terms carry an identical
meaning. In a strict sense, two expressions are considered synonymous if one can
mutually substitute the two expressions in any sentence without changing the truth
value of that sentence. As a classical example consider the synonymous terms “car”
and “automobile” . In a looser sense, two expressions can be considered synonymous
within a certain context, if there exists a context such that the mutual substitution in
this context does not alter the truth value. The representation of texts via sets of terms
in the VSM paradigm may pull the contribution some senses apart and distribute it
across its different lexical representations. Note that this problem already exists with
basic spelling variants (e.g. “organization” vs. “organisation” which a human reader
would not even consider to be different terms.

On the other hand, lexical ambiguity refers to the converse phenomenon, namely
that one and the same term or expression may have different meanings, usually in
different contexts. Humans have the ability to differentiate between the different
senses as part of the cognitive process of natural language understanding. Psycho-
logical studies suggest that this is done by relating the word to the discourse context,
which may, however, apparently be quite small (Ide and Véronis, 1998). In the con-
text of the VSM, lexical ambiguity tends to depresses the quality of the representation
as different senses are conflated to a common dimension in feature space. In practice,
the impact of ambiguous terms may, however, vary. On the one hand, lexical ambi-
guity becomes manifest in situations of homonymy, i.e. in situations where the various
senses of a word are really distinct. In contrast, situations of polysemy are character-
ized by a set of possible senses for a given term that are, however, related because
they share a common origin.

Relation among Term Senses

The problems we have mentioned so far mostly relate to the inadequacy of the VSM
representation with regard to the lexical surface forms. As a more subtle variant
of synonymy we also need to look at the similarity among senses. Psychology and
linguistics have extended the concept of synonymy on the term level with a weaker
form of the concept, namely semantic similarity. According to this view, senses are
related to one another according to various degrees of semantic similarity and for
the indication of a certain topic or the description of a certain situation, a wide set
of concepts may appear relevant. In fact, native speakers tend to actively exploit the

depends on the interpreting process of both sender and receiver of the symbol.
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offered variability in the choice of their wording. Even in a restricted scenario in a
study by Furnas et al. (1987), two people choose the same main keyword for a single
well-known object less than 20% of the time.

A common notion is that semantic similarity of senses mainly relates to the (linguis-
tic) contexts in which words occur (Harris, 1968; Charles, 2000). At the same time, this
perception primarily correlates with the amount of common “semantic content” by
means of common generalizations. Generalizations cognitively organize concepts, i.e.
word senses, along increasing levels of generality. Basic concepts at the highest lev-
els of these structures are distinguished as elementary units that maximize cognitive
economy while lower level concepts refine these basic categories (Rosch et al., 1976).
In linguistics, generalization is captured in the notion of hypernymy as a semantic re-
lation between concepts. Intuitively, hypernymy is asymmetrical whereby its inverse
relation is referred to as hyponomy. Furthermore, hypernymy is transitive thereby
generating a hierarchical semantic structure. Studies indicate that many of the se-
mantic similarity measures which are based on the hypernym–hyponym structure of
lexical taxonomies like WORDNET (i.e. measures of the type we have encountered in
Chapter 4) correlate well with the similarity perception by human subjects (Budanit-
sky and Hirst, 2006, 2001).3

In the following, we continue our previous example to illustrate the impact of se-
mantic similarity on the VSM representation.

Example 5.2. Consider again the sentence “SAP agrees on 4.8-billion-euro buyout of
Business Objects.” we have introduced in Example 5.1 and another sentence “IBM
announces acquisition of its PC division by Lenovo.” . Assuming that both docu-
ments belong to the positive class of a classification problem aiming at the detection
of financial news on acquisitions in the IT sector, the distinct though highly similar
terms “acquisition” and “buyout” would be the sole indicators of this class.

Practical Impact

Despite these shortcomings, text classification systems have achieved good general-
ization results using the basic VSM representation or variants thereof in many set-
tings. This is particularly true in text classification and text clustering tasks that aim

3In a strict sense, we only cover the concept of literal similarity. This can be distinguished from iconic,
analogical, or connotative similarity which do, however, not impact the vocabulary mismatch prob-
lem in a way as literal similarity does. Along another line, Resnik (1999) has made a good point in
distinguishing the more general concept of semantic relatedness from semantic similarity. The notion
of relatedness can encompass various kinds of relationships other than common hypernyms, e.g.
meronymy, antonymy or functional association. Consider the example given by Resnik to demon-
strate this distinction: “car” and “gasoline” might seem to be more closely related than “car” and
“bicycle” but the latter pair would certainly be more similar.
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at the automated dispatching of text documents along their primary topics (Joachims,
1998; Yang, 1999).

A common intuition is that text classification on the basis of the pure VSM represen-
tation works well in those cases where the categories of interest can be characterized
by the use of distinctive keywords and where sufficient data is available to recognize
them during training. Joachims (2001) has theoretically analyzed this behaviour in a
formal model of text classification with Support Vector Machines (SVMs). The most
relevant findings of this analysis are as follows. On the one hand, the analysis shows
that there is usually a large number of keywords that, with varying degrees of oc-
currence frequencies, can be used as class indicators. On the other hand, the consid-
ered text mining tasks are characterized by redundancy, i.e. usually several indicative
words occur together in a document. In line with common intuition, Joachims (2001)
shows that the expected error can be bounded in terms of several characteristics of
the dataset. In particular, the bound becomes tighter, i.e. it suggests better general-
ization capabilities, if (i) the discriminative power of groups of terms increases, (ii)
discriminative features occur more frequently and (iii) the level of redundancy in-
creases.

A crucial result of this analysis is, however, that the bounds may loosen in situa-
tions of insufficient training data. On the one hand, an insufficient number of training
instances introduces a higher level of variance both for the occurrence frequencies of
term sets and their discriminative power. The smaller number of stable cues also
affects the level of redundancy.

In summary, in those cases where training data is scarce and/or sparse, a more
adequate data representation should reduce the variability and lead to patterns which
are more stable than those based on the pure VSM representation. The approach we
will take in the following is based on complementing the VSM representation by a-
priori knowledge about the semantic similarities of terms by means of a specifically
designed kernel function. We thereby perform a kind of “semantic smoothing” that
alleviates the problems of the heterogeneity in the use of terms.

5.1.4 Deficiencies of the Vector Space Model — Syntactic Aspects

Up to now, we have covered the question in how far the lack of information on the
mutual relation between terms affects the VSM model. Except for this shortcoming,
we have implicitly accepted the validity of the VSM in which terms or senses are
treated as the main constituents of the overall meaning of a text fragment.

Considering Syntactic Aspects

In natural language sentences, terms do not occur in isolation. The regularities in
word order and phrase structure are governed by syntactic rules. The syntactic struc-
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ture of natural language sentences is usually described according to the formal gram-
mar of the respective language. The grammar provides a precise description of how
terms as basic units of language can be transformed and combined to yield valid nat-
ural language sentences (Allen, 1995). Hereby, syntactic structures can be associated
with the meaning of the overall sentences.

Example 5.3. Consider the two text snippets (i) “They named Reims as an interesting
tourist attraction.” and (ii) “What are the names of tourist attractions in Reims?” .
Ignoring stopwords and morphology, both texts would be represented almost identi-
cally but obviously have distinct individual meanings.

Depending on the context, different syntactic patterns may be particularly rele-
vant for a given text mining problem. Typical examples are phrases that group
words into larger meaning-bearing units. As an example consider the noun phrase
“tourist attractions in Reims” in the second sentence in the example above consisting
of the head noun “attractions” , the modifier “tourist” and its prepositional phrase
“in Reims” . Similarly, verb phrases are important meaning bearing units. In the first
sentence in the above example, the verb “to name” takes “Reims” as its object. But
also collocations, phrasal verbs or other expressions that are usually not considered
individually in the VSM model may contribute to a distinct meaning of two sentences
(Allen, 1995; Manning and Schütze, 1999).

Practical Impact

For scenarios of classification and clustering based on the overall document topic,
the isolation of keywords in VSM-type representations appears to be sufficient. For
example, while the two sentences in Example 5.3 have distinct meanings, their VSM
representations would probably suffice if the task was to find classification rules for
the topic “tourism in France” .

On the other hand, structural patterns may be highly relevant in more advanced
tasks. They are particularly relevant when the text mining task is to find common
patterns for constituents or other parts of the sentence. For the case of Example 5.3,
the syntactic structures intuitively make a difference in a classification task that aims
at detecting qualitative statements about cities. Other examples of tasks for which
syntactic structure as a source of information has proved to be indispensable are se-
mantic role labeling (Giuglea and Moschitti, 2006) or question classification (Metzler
and Croft, 2005).

5.2 Semantic Smoothing Kernels

In the preceding section, we have argued that the representation of textual input
according to the VSM does not adequately take into account various semantic and
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syntactic details of natural language. In particular, the VSM representation in con-
junction with plain dot products suffers from the heterogeneous use of terms as it
ignores knowledge about the pairwise semantic similarities of terms.

The aim of this section is to show how such knowledge, as for example encoded
in the topological relations within semantic structures like WORDNET, can be incor-
porated within kernel functions. This allows the learning algorithm to relate distinct
but similar features during kernel evaluation. In this model, we still assume the basic
validity of the representation of a textual input as a vector of terms. That is, a repre-
sentation that views isolated terms as basic units of feature representation, regardless
of their mutual positions and relations within the text. As argued earlier, apart from
the semantic deficiencies, this assumption is usually not critical for topical classifica-
tion or clustering of textual data items. We will first introduce the general concept of
SSKs and then investigate its properties.

5.2.1 A General Model for Semantic Smoothing Kernels

Based on the setting of the VSM model and our general characterization of ker-
nel functions in Section 2.4, we are now able to introduce the concept of Semantic
Smoothing Kernels.

Definition 5.2 (Semantic Smoothing Kernel). The Semantic Smoothing Kernel for two
VSM vectors x, z ∈ X is given by

κ(x, z) = x′Sz =
|L|
∑
i=1

|L|
∑
j=1

xizjSij.

Whereby S is a |L| × |L| square symmetric and positive semi-definite matrix.

Hereby, the entries Sij represent the semantic similarity between the terms li and lj,
i.e. the respective dimensions of the input space X of dimensionality |L|.

Siolas and d’Alche Buc (2000) for the first time considered a Gaussian kernel func-
tion on text documents that effectively used a similar setup like SSKs for distorting
the Euclidean distance between the original term vectors. Besides our work, Basili
et al. (2005a) and Mavroeidis et al. (2005b) have recently considered kernel functions
of this type. In the following exposition, we aim provide a principled and compre-
hensive analysis of these kernels while elaborating on other work in this direction in
Section 5.5.

Validity Requirements

The requirement for S to be a positive semi-definite matrix ensures that the overall
kernel functions retains validity. This finding is summarized in the following propo-
sition.
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Proposition 5.1 (Positive Semi-definiteness of Smoothing Matrices). For any square
symmetric matrix S, a function of the form κ(x, z) = x′Sz is a valid kernel if and only if S is
positive semi-definite.

Proof. First consider the case of a given positive semi-definite smoothing matrix S.
Then, according to Definition 2.15, S has only non-negative eigenvalues and can thus
be decomposed as S = P′P. Consequently, we have that κ(x, z) = x′Sz = x′P′Pz =
〈Px, Pz〉, thus verifying that the kernel function has a representation as a dot product
and is thus indeed positive semi-definite.

Now conversely assume that κ(·, ·) is a valid kernel, but S is not positive semi-
definite. In this case, S has at least one negative eigenvalue. Let λ < 0 be
this eigenvalue and let x 6= 0 be the corresponding eigenvector. We then have
κ(x, x) = x′Sx = 〈x′S, x〉 = 〈λx, x〉 = λ〈x, x〉 < 0, thereby clearly contradicting
the positivity property of inner products (compare Definition 2.8). Thus, κ(·, ·) can
not be a valid kernel function.

As the matrix S is positive semi-definite, we can equally view its components as
evaluations of a kernel function κL(·, ·) itself. This kernel function is then defined on
the set L of lexical units (terms), i.e. κL(li, lj) = Sij. As such, assuming that terms can
be mapped to entities in lexical knowledge structures such as WORDNET, all (taxo-
nomic) similarity functions which constitute positive semi-definite functions can be
used as smoothing parameters. We will discuss the choice of appropriate smoothing
parameters in Section 5.4 while the experimental analysis of the suitability of these
measures will be the topic of Chapter 6. For the general analysis in this section, it is
sufficient to assume that the supplied smoothing parameters are valid (i.e. positive
semi-definite) and encode a useful notion of semantic similarity.

Word Sense Ambiguity Issues

We have argued in Section 5.1 that lexical similarity holds between word senses, not
between terms. Strictly speaking, a smoothing matrix Ŝ based on lexical knowledge
structures would thus encode the similarities among a set of concepts c1, c2, . . . ∈ C.
The disambiguation of word senses is the topic of word sense disambiguation (Ide and
Véronis, 1998). It would of course be possible to conduct the word sense disambigua-
tion as part of the preprocessing phase and thus just work with sense vectors.

In the following we will maintain a somewhat simplified view on the issue. Specif-
ically, we assume the existence of a somewhat informal disambiguation operator
δ : L×C 7→ 0, 1 to map from terms to one or several concept representations. Such an
operator can just as well be written as a 0/1 matrix D of dimension |C| × |L|whereby
Dij = 1 indicates that the concept ci has a lexical representation in the term li. The
actual smoothing matrix is then assembled as S = D′ŜD. Note that disambigua-
tion usually requires consideration of the occurrence context of a word such that this
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type of disambiguation is clearly a simplifying assumption. Disambiguation heuris-
tics which could be implemented in this form would be (i) the association of a given
term with all matching concepts or (ii) the association of a given term with its most
frequent sense in a lexical taxonomy. In the experiments in Chapter 6 we will solely
consider the second case. This decision is on the one hand rooted in practical con-
siderations and the observation that even state-of-the-art word sense disambiguation
systems yield substantial error rates (Ide and Véronis, 1998) and thus might intro-
duce random errors. On the other hand, it reflects the finding that a large fraction
of lexical ambiguity can be attributed to cases of polysemy, not homonymy. As an
example consider the two most prominent senses for the term “book” , according to
WORDNET (Miller et al., 1990; Miller, 1995): (i) “(book) — a written work or composition
that has been published (printed on pages bound together)” and (ii) “(book, volume) — phys-
ical objects consisting of a number of pages bound together”. Intuitively, these senses are
highly related, and either one is likely to be a proper representative of the intended
meaning in a textual input.

5.2.2 Interpretation of Semantic Smoothing Kernels

So far, we have discussed the formal adequacy of the kernel. We will now have a
closer look at its interpretation. In summary, we will see that SSKs implicitly perform a
linear transformation of the input data which aims at providing better representation.
There are two main perspectives along which the results of the Semantic Smoothing
Kernel can be interpreted.

Considering Contributions of Similar Terms

The first perspective becomes clear when looking at the right side of the SSK formula
in Definition 5.2 and comparing it with the definition of the ordinary inner product.
While the inner product is the sum over products of the term weights of identical
terms in the two argument vectors, the SSK additionally considers contributions of
all pairs of distinct terms. However, the amount of the contribution of a given pair of
terms to the overall kernel value is governed by the factors Sij, i.e. the similarity of
the corresponding terms. In some cases, these factors may be small or even zero such
that they do not change the original result very much. On the other hand, for pairs
of highly similar terms, they may alter the results substantially. This interpretation
characterizes the altered text similarity most intuitively.

Example 5.4 (SSKs – Interpretation). Consider three simple VSM vectors x′ =
(1, 0, 0), y′ = (0, 1, 0), and z′ = (0, 0, 1) Clearly, the inner product evaluations be-
tween these vectors yield values of 〈x, y〉 = 〈x, z〉 = 〈y, z〉 = 0. Now consider the
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smoothing matrix

S =




1 0.75 0
0.75 1 0

0 0 1


 .

According to this smoothing matrix, the first and the second term are related by a
factor of 0.75. These could, for example be the two terms “acquisition” and “buyout”
in the dataset introduced in Example 5.1. In contrast, some other third term, is not
related to the first two. Here, the evaluations of the SSK yield values of κ(x, y) =
0.75 on the one hand and κ(x, z) = κ(y, z) = 0 on the other. Although x and y
employ different terminology, their terminology is still similar such that x1y2S12 =
0.75 produces a positive contribution during kernel evaluation.

Implicit Feature Mapping

While this first perspective is intuitive, it does not directly reveal the feature space un-
derlying the kernel function. A second alternative perspective becomes clear when
looking at the reasoning in the proof of Proposition 5.1. Conceptually, it has shown
that S can always be decomposed as S = P′P. This decomposition reveals the under-
lying feature mapping as a linear transformation of the type φ(x) = Px. In general,
the transformation matrix P may have L columns and any number m of rows, thus
providing a linear transformation of the input document into a feature space of di-
mensionality m. Any such linear transformation can be thought of as a shifting of
weights among dimensions or even the introduction of new dimensions. This ap-
proach is similar to what is known in IR as a query expansion. We will review some of
these approaches in the context of related research work in Section 5.5.1.

Canonical Mapping Of course, for a given smoothing matrix S different matri-
ces P may constitute valid decompositions and the resulting feature spaces may
vary in dimensionality. However, despite the multitude of possible mappings for
a given smoothing matrix S, there is a canonical mapping in terms of the eigen-
decomposition of S which mirrors the basic structure of all possible mappings and
also defines the effective dimensionality of the resulting feature space. Let S = VΛV′ =
V
√

Λ
√

ΛV′ be the eigen-decomposition of S. Then, setting P =
√

ΛV′ we get an un-
derstanding of the fundamental transformation steps.

First, the left multiplication of the original VSM vectors by V′ transforms the orig-
inal VSM vectors into the eigenspace of S. As V is an unitary matrix, this kind of
operation only yields a rotation of the vectors, leaving inner products and distances
between vectors unchanged. In the eigenspace, the multiplication by the diagonal
matrix

√
Λ yields a reweighting of the new dimensions by the amount of the root of
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Figure 5.1 — Illustration of the eigenspace transformation for Semantic Smoothing
Kernels in Example 5.5. The first transformation corresponds to a rotation of the
VSM vectors, the second transformation to a rescaling of the new dimensions. The
two vectors thus move closer together.

the respective eigenvalues. It is this second step that effectively distorts the original
document similarities.

Example 5.5 (SSKs – Interpretation (cont.)). Recall the smoothing matrix S introduced
in Example 5.4. For the purpose of visualization, we will look only on the first and
the second dimension which stand in a similarity relation. The eigen-decomposition
of the matrix yields the eigenvector, eigenvalue pairs:

V ≈
(−0.71 0.71

0.71 0.71

)
Λ =

(
0.25 0

0 1.75

)

The transformation of two vectors x′ = (1, 0) and y′ = (0, 1) by V yields the vec-
tors x̃′ = x′V ≈ (−0.71, 0.71) and ỹ′ = y′V ≈ (0.71, 0.71). Figure 5.1 illustrates
the original vectors, as well as the situation after the rotation. Obviously, the two
vectors are still orthogonal. However, the new dimensions have switched some of
the weight. The square roots of the eigenvalues are given by

√
λ′ ≈ (0.5, 1.32)

and the rescaling of the dimensions in the rotated space, yield the new vectors
x̂′ = x′

√
ΛV ≈ (−0.35, 0.94) and ŷ′ = y′

√
ΛV ≈ (0.35, 0.94). Again, Figure 5.1

illustrates the resulting vectors which are now not orthogonal any more but have
moved closer together such that their inner product becomes 〈x̂, ŷ〉 = 0.75 as com-
puted above.
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Linear Dependence of Dimensions A special situation arises in the case that the
smoothing matrix S is not of full rank. For example, this situation can arise in the
case of two terms being perfect synonyms. In this situation their respective rows
and columns in S become identical and thus linearly dependent. In such cases, only
rank(S) eigenvalues of S will be positive, while the remaining ones will be equal to
zero. In the light of the discussion above, this means that the transformation P will
map two input dimensions entirely onto one dimension while the rescaling of the
second dimension by zero will eliminate it entirely.

Interpreting Varying Degrees of Self-Similarity

Note that the setting we have discussed so far does not require that the entries in
S are normalized to the [0, 1] interval and in particular it does not require constant
self-similarity (c.f. Section 4.1.1). As a result, entries on the main diagonal may vary.

To illustrate the effect of this situation, consider some positive semi-definite
smoothing matrix S and let Sdiag be a diagonal matrix obtained from S by keeping
the entries on the main diagonal and setting all other entries to zero. We now have
that √

S
−1
diagS

√
S
−1
diag = Ŝ or, equivalently,

S = SdiagŜSdiag.

Hereby, Ŝ is again a normalized smoothing matrix and the diagonal matrix
√

Sdiag
can be seen as providing a reweighting of the original input features.

5.2.3 Complexity and Optimization

We now shortly analyze the complexity of SSKs in comparison with the conventional
inner product on the one hand and with an explicit feature transformation as dis-
cussed in the previous section. Using basic multiplication as base operation, we will
refer to the complexities in Big O notation, which describes the asymptotic upper
bound of the worst case running time (Knuth, 1997). Of course the analysis in terms
of the Big O notation means that we abstract away from any constant optimizations
that can influence the run-time behaviour in practical settings.

Training Time

We assume a VSM representation in a vector space of dimensionality n and a set
of m training instances. During training of a kernel-based learning algorithm, the
kernel function has to be evaluated on all pairs of training instances. This activity
is inherently quadratic in the number of training instances, i.e. in O(m2). The inner
product is linear in the dimensionality, i.e. it requires O(n) multiplication operations.
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The resulting complexity of the plain inner product kernel thus amounts to O(n m2)
as n and m grow.

We now turn to the case of SSKs. In the naive formulation of Definition 5.2, each
kernel evaluation requires one vector-by-matrix multiplication which is in O(n2) and
one vector-by-vector multiplication. The overall training complexity for SSKs thus
requires O(n2 m2) operations as n and m grow. As we have seen above, instead of
the naive computation of the SSK function, it is possible to perform the explicit fea-
ture transformation of the type φ(x) = Px. This leads to shifting the computational
burden of vector-by-matrix multiplication to a one-time effort before training and
working with the transformed instances afterwards. Similarly, it is possible to cache
results of Sx, i.e. the first matrix-by-vector computation. In both cases, the complex-
ity of the initial transformation is O(m n2) while the actual training now requires only
O(m2 n) operations as it is sufficient to perform a vector-by-vector multiplication for
each pair of items by using the precomputed and cached version Sx for one of the
argument vectors. This yields a total complexity of O(m n (m + n)) as n and m grow.

Although the asymptotic worst case behaviour of both approaches, the plain dot
product as well as SSKs, is in the same order of magnitude as n and m grow jointly, the
situation is different for fixed training set sizes m, where the variation in the dimen-
sionality still incurs a quadratic performance for SSKs compared to a linear variation
for plain dot products. As a result, we note that the increased expressiveness of SSKs
naturally incurs an overhead during training. However, as training is a one-time
batch activity in operational settings and labelled training data is generally scarce,
this finding will not affect the applicability of the kernel in most practical settings.

Test Time

We now turn the attention to the analysis of the complexity of SSKs compared to
linear kernels during the execution of the trained classifier in an operational setting.
At test time, the kernel functions need to be evaluated between a limited number
of dual parameters, e.g. the support vectors in the case of SVMs, and each test data
point. Note again that, each kernel evaluation requires one vector-by-matrix multi-
plication and a subsequent vector-vector multiplication. It is thus possible to perform
the vector-by-matrix multiplication Sx on the dual parameters in a one-time effort. In
fact, as the basic transformation underlying SSKs is inherently linear, the linear dis-
criminant function of Equation 2.4 in dual form can be optimized even more through
the rearrangement:
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f (x) = sign

(
n

∑
i=1

αiyiκ(xi, x) + b

)

= sign

(
n

∑
i=1

αiyi(x′iSx) + b

)

= sign

(〈
n

∑
i=1

αiyiSxi, x

〉
+ b

)
(5.1)

In either case, the initial computations require only a constant amount of time dur-
ing initialization of the algorithm. However, each evaluation of a test data point now
remains in O(n), such that the overall complexity given m test data points is O(m n)
as if we had used the plain inner product. As a result, the initial overhead vanishes
as more test data points are considered and has the same complexity as the plain
dot products on the original VSM vectors thus making the use of SSKs feasible in
practical settings.

5.2.4 Extensions

The basic model of Semantic Smoothing Kernels can be extended in various ways
which we shortly discuss in the following.

On the one hand, as discussed in Section 2.4.2, it is possible to embed a Semantic
Smoothing Kernel within a kernel modifier, e.g. a Gaussian kernel or a polynomial
kernel to allow for an additional nonlinear mapping of the original input features.

On the other hand, it is possible to combine multiple SSKs by using the sum of their
respective smoothing matrices. As a special case of this situation consider the combi-
nation of the traditional dot product on the VSM representation and some smoothing
kernel:

κ(x, z) = α〈x, z〉+ βx′Sz = x′(αI + βS)z.

The combined kernel thus represents the original input vectors in their original
VSM representation and in their transformed space at the same time without requir-
ing any additional resources in terms of space or computation.

As a particularly interesting variant of this setting consider the case where the lex-
icon L explicitly indexes collocations, i.e. composite terms like “machine learning” .
This is a desirable variant as it reduces word sense disambiguation problems and
may yield more relevant similarity mappings (e.g. between “machine learning” and
“knowledge discovery” ). For backing-off the effect of the common BOW representa-
tion where collocations are not handled explicitly, we can design a “lexical” smooth-
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ing matrix which contains entries Slex
ij which denote the absolute number of individ-

ual terms common to the lexical units li and lj. The linear combination of this matrix
Slex and another semantic similarity matrix S at the same time combines collocation
handling, the ordinary VSM representation and semantic smoothing.

5.3 Semantic Syntactic Tree Kernels

With Semantic Smoothing Kernels we have investigated a technique that allows us
to exploit knowledge about semantic dependencies between terms within the tradi-
tional VSM paradigm. However, as we have argued earlier, the perception of natural
language by humans draws not only from the employed terminology and the associ-
ated meanings but also from the syntactic relationship between terms. For example,
the information whether a given noun resides in subject or object position of a partic-
ular verb or how it is modified by adjectives provides useful information about the
overall semantics of the text fragment under investigation.

The basic VSM representation does not offer any means to account for the syntac-
tic relations among terms. Of course, it is possible to manually design extensions
of the basic VSM feature space that comprise additional syntactic features such as
phrases, POS information and the like. However, the manual design of such syntax-
oriented features is cumbersome and requires substantial experience (Moschitti and
Basili, 2004). Furthermore, the number of such features can easily grow to a level that
cannot be handled any more in a straightforward way.

As an approach to deal with such problems, tree kernels have been proposed as
a means for implicitly working on large sets of syntactic features. Since tree kernels
were proposed by Collins and Duffy (2002) they have proved to be a useful technique
for quickly modeling syntactic information for various tasks in natural language pro-
cessing such as syntactic parsing (Collins and Duffy, 2001), relation extraction (Ze-
lenko et al., 2003; Zhang et al., 2008) and semantic role labeling (Moschitti, 2004).
However, despite their success in these settings, tree kernels suffer from the lack of
knowledge about semantic relationships in a similar manner as the VSM representa-
tion. Finding principled techniques for addressing issues of syntactic structure and
lexical semantics at the same time is thus a promising research line.

The aim of this section is to investigate how concepts of semantic smoothing as
encountered with SSKs can be incorporated into tree kernels. We first introduce a
few basic notions about the representation of a text as a parse tree and then explain
the basic model of tree kernels. We then introduce Semantic Syntactic Tree Kernels
(SSTKs) as a technique for jointly exploiting syntax and semantics. We deduce the
general model by motivating the feature spaces of SSTK, show how these kernels can
be computed efficiently and then investigate their properties.
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5.3.1 Context: Tree Kernels for Parse Trees

Tree kernels constitute a prominent example of kernel functions for structured data.
As all kernel functions of this type, they bluntly discard the representation of their
inputs as vectors. Rather than representing textual inputs as vectors like in the VSM
representation considered so far, tree kernels work directly on the representation of
the input sentences in terms of their parse trees which mirror their inner syntactic
structure.

Parsing and Parse Trees

We have mentioned earlier that the syntactic structure of natural language sentences
is described according to the formal grammar of the respective language (Allen, 1995;
Manning and Schütze, 1999). The analysis of natural language texts by parsing aims
at recovering their syntactic structure according to the chosen grammar paradigm.
Parse trees are classical representations of the syntactic structure of natural language
sentences for a given context-free grammar.

Various paradigms for natural language grammars exist whereby phrase structure
grammars and dependency grammars constitute the most prominent examples. These
grammars adhere to different representations but share the common goal of making
the dependency relations between terms and phrases explicit. In the following, we
will be occupied solely with the latter type, namely phrase structure grammars. The
interested reader is referred to the study by Moschitti (2006) for a comparison of tree
kernels based on the different parsing paradigms. Phrase structure grammars are, at
least at their core, context-free, i.e. of Chomsky type 2. Parse trees are a convenient
representation of natural language sentences with respect to the grammar. However,
a problem of all realistic grammars is that for a given token more than one production
may be possible, thus resulting in a conflict during parsing. Most modern parsers are
therefore at least to some extent of statistical nature. Relying on a corpus of training
data annotated with proper parses, they exploit information about the probabilities
of productions within a given context (Manning and Schütze, 1999, and references
therein).

As an example, Figure 5.2 shows a parse tree of the question sentence “What are
the names of the tourist attractions in Reims?” . The interior tree nodes of a parse
tree are labeled with non-terminal symbols of the grammar such as sentences, sentence
fragments, phrases and POS categories like nouns or verbs. For the non-terminal
symbols, we use the commonly used identifiers of the Penn Treebank Project (San-
torini, 1990; Bies, 1995) which are also summarized in Appendix B. These nodes, to-
gether with their children are associated with a grammar production rule such as [NP
→ [DT NN NNS]]. On the other hand, the leaf nodes are labeled with terminal symbols
of the grammar which correspond to the actual terms. We will also refer to the direct
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Figure 5.2 — Example of a parse tree for the question “What are the names of
the tourist attractions in Reims?” according to the Penn Treebank tagset (c.f. Ap-
pendix B).
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parents of leaf nodes, i.e. their POS categories, as pre-terminal symbols. The different
fragments of the parse tree capture information about the overall meaning of the sen-
tence under investigation such as the information that the prepositional phrase “in
Reims” extends the basic noun phrase “the tourist attractions” . The exploitation of
all this information during learning is the main motivation behind tree kernel func-
tions.

Definition 5.3 (Parse Tree). A parse tree a rooted and ordered tree structure whose
nodes are labelled by the symbols of the chosen grammar. Parse trees are denoted as
t1, t2, . . . ∈ T and the set of nodes in tree ti is denoted as n1, n2, . . . ∈ N (ti). We denote
the label of an arbitrary node ni as label(ni). As usual, we define a tree as a connected
graph with no cycles. For each tree ti, a particular node, denoted root(ti), takes the
role of a designated root and is labelled by the start symbol of the corresponding
grammar. Edges within the tree thus have a natural orientation, away from the root.
Nodes that can be reached from a given node along this direction via a single edge are
called its children. Figure 5.2 shows the example of a typical parse tree. For interior
nodes these labels correspond to the non-terminal symbols of the grammar while
for leaf nodes they correspond to the actual terms. We use the notation child(ni) to
refer to the ordered set of children of an interior node ni, i.e. the right side of the
corresponding grammar production rule. Hereby child(ni, k) denotes the k-th child
of node ni.

Tree Kernel Feature Spaces

We now introduce the basic model of tree kernels, mostly in the spirit of Collins and
Duffy (2002). The basic idea behind tree kernels is to represent trees in terms of sub-
structures (fragments) of the argument trees. We first formalise this notion.

Definition 5.4 (Tree Fragments and Equivalence). The set of connected subsets of
nodes of a given tree ti is referred to as the set of tree fragments and is denoted
f1, f2, . . . ∈ F (ti). Depending on the chosen tree kernel paradigm we will some-
times impose additional constraints on the structure of these fragments. Again, the
topmost node of a given tree or tree fragment ti is denoted root(ti). Two trees or tree
fragments fi and f j are said to match if they are isomorphic to each other with re-
spect to their labels and their connections and we denote this equivalence as fi ∼ f j.
For a given set of trees this relation thus induces a set of equivalence classes of tree
fragments which we denote as f ?

1 , f ?
2 , . . . ∈ F ?.4

Tree kernel functions implicitly represent tree structures in a n-dimensional vector
space whereby each dimension corresponds to a particular equivalence class of tree

4Note that the indices of the tree fragment equivalence classes correspond to some arbitrary but fixed
numbering. In particular, f ?

i needs not be identical with the class of tree fragments equivalent with
a particular fragment fi.
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Figure 5.3 — Sample of substructures of the parse tree for the sentence “What are the
names of the tourist attractions in Reims?” in Figure 5.2.

fragments. For each fragment class, the respective vector entry denotes the number
of times fragments of this class occur in the tree, i.e. the entry will be positive if the
tree contains such a fragment and it will be zero otherwise. Similar to the VSM for
words, tree kernels thus generate hypotheses in a high-dimensional vector space and
the implicit feature representations is very sparse.

Different kernel functions have been proposed that impose different restrictions on
the type of fragments that are considered. As an example, Vishwanathan and Smola
(2003, 2004) consider only proper subtrees, i.e. substructures that are characterized
by expanding an arbitrary internal node of the original tree until the leaf nodes. As
an alternative, the original proposal by Collins and Duffy (2002) does not require the
full expansion up to the leaves. However, it requires that if an expansion takes place,
the grammar production rule must be executed fully at the respective level. On the
contrary, the partial tree kernel proposed by Moschitti (2006) considers an even bigger
class of fragments by relaxing the requirement that the right side of a production rule
must be fully represented in the fragment.

In the remainder, we will focus on the second setting above, i.e. the original pro-
posal by Collins and Duffy (2002) which has empirically produced the best results.
Figure 5.3 shows some of the resulting substructures for the example parse tree of
Figure 5.2 on page 111. We will return to this issue in Section 5.3.5 where we discuss
variants of the basic setting.
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Computation of Tree Kernels

Naturally, when studying how to define appropriate kernel functions, trees need not
be explicitly represented as vectors of the predefined features. Instead, the dot prod-
uct of the respective feature vectors is computed directly from the two argument
trees.

Let us for a moment assume that in the feature vectors each tree fragment class
would be represented by the absolute number of matching fragments in the argu-
ment tree. The dot product could then be interpreted as the number of matching tree
substructures in both argument trees and the task of the tree kernel function would
be to efficiently count the number of these matches. Note that the number of such
fragments of a single tree can be obtained by evaluating the kernel function between
the tree with itself.

As a first step to understand the computation of tree kernels consider the indicator
function:

[ni B f ?
k ] =

{
1, if ∃ f` : root( f`) = ni and f` ∈ f ?

k
0, otherwise.

(5.2)

Clearly, the k-th dimension of the feature vector φ(ti) can then be written as

φ(ti)k = ∑
nj∈N (ti)

[nj B f ?
k ]. (5.3)

This reasoning leads us directly to the definition of the tree kernel function.

Definition 5.5 (Tree Kernel (Collins and Duffy, 2002)). Given two trees t1 and t2, the
tree kernel is defined as as:

κT (t1, t2) = ∑
ni∈N (t1)

∑
nj∈N (t2)

∆(ni, nj),

whereby
∆(ni, nj) = ∑

f ?
k ∈F ?

[ni B f ?
k ][nj B f ?

k ].

Consequently, the value of ∆ is equal to the number of matching fragments rooted
at nodes ni and nj. Obviously, the naive enumeration over all tree fragments in the
computation of ∆(ni, nj) is computationally problematic as the number of substruc-
tures that need to be considered grows exponentially in the number of nodes of the
input trees. However, as the major source of a substantial speed-up, the tree kernel
formulation by Collins and Duffy (2002) now allows to efficiently compute ∆(ni, nj)
by means of Procedure 5.1. This recursive computation of ∆(ni, nj) yields the same
result as the its formulation in Definition 5.5.
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Procedure 5.1
Tree Kernels — Computation of ∆ (Collins and Duffy, 2002)

Input: nodes ni,nj
1: if label(ni) 6= label(nj) or ∃k : label(child(ni, k)) 6= label(child(nj, k)) then

/* nodes have different productions */
2:

∆(ni, nj) ← 0

3: else if ni, nj pre-terminal symbols then
/* nodes have identical productions and represent pre-terminal symbols */

4:
∆(ni, nj) ← 1

5: else
/* nodes have identical productions but do not represent pre-terminal symbols */

6:

∆(ni, nj) ←
| child(ni)|

∏
k=1

(1 + ∆(child(ni, k), child(nj, k))).

/* recursive call to computation of ∆ */
7: end if
8: return ∆(ni, nj)

As the second step to understanding the computation of the tree kernels, the equiv-
alence with this procedure can be verified as follows. The first two cases in Proce-
dure 5.1 are obviously correct. The third recursive computation follows because for
a given pair ni and nj the number of common fragments is the product of all vari-
ants that can occur at each child node of the production. For each such child node,
there is the choice of stopping the expansion at the non-terminal symbol at this child
or consider any of the equivalent sub-fragments at that child. Thus there must be
1 + ∆(child(ni, k), child(nj, k)) variants at the k-th child.

Decay Factors for Tree Height

Usually, there will be far more tree fragments of larger depth than of smaller depth.
To account for the specificity of trees of different sizes, it makes sense to downweight
the contribution of larger tree fragments to the kernel. It is thus common to introduce
a decay factor λ, which can be added by modifying the lines (4) and (6) of Proce-
dure 5.1 as follows:
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line 4: ∆(n1, n2) ← λ,

line 6: ∆(ni, nj) ← λ
| child(ni)|

∏
k=1

(1 + ∆(child(ni, k), child(nj, k))).

The decay factor λ < 1 penalizes larger tree structures by giving them less weight
in the overall summation. This corresponds to implicitly weighting the vector entries
φ(ti)k by

√
λsize( f ?

k ). Hereby, size( f ?
k ) corresponds to the number of grammar produc-

tion rules in the fragments in f ?
k . For the case of λ = 1, the kernel result corresponds

exactly to the number of common fragments.
Furthermore, the value of κT (·, ·) will still depend very much on the size of the

trees. It is thus common to normalize tree kernel functions by using the cosine nor-
malization modifier to equal out any scaling effects of different tree sizes.

5.3.2 Feature Space Design for Semantic Syntactic Tree Kernels

We will now introduce the family of Semantic Syntactic Tree Kernels. To motivate
these kernel functions, we will first analyze how a feature space that considers both,
syntax and semantics, should be set up. We will use this reasoning to guide the design
of Semantic Syntactic Tree Kernels whereas the practical computation of these kernel
functions will be discussed subsequently.

Motivation

The basic tree kernels introduced in the previous section rely on the intuition of
counting all common substructures of two trees. However, like in the case of the VSM
representation, the variability in natural language leads to undesired deficiencies. If
two trees have substructures that represent the same syntactic phenomenon but em-
ploy different but related terminology at the leaves, these substructures will not yield
any contribution. As in the case of single VSM dimensions, this situation is an evident
drawback from the viewpoint of lexical semantics. Furthermore, it appears particu-
larly problematic when considering that many tree fragments will contain several
terminal symbols such that unintended mismatches are even more likely.

Example 5.6. Consider the fragments (i) [NP [DT [“the”] NN [“tourist”] NNS
[“attractions”]]] and (ii) [NP [DT [“the”] NN [“tourist”] NNS [“sights”]]] on
the one hand and the fragment (iii) [NP [DT [“a”] NN [“police”] NNS [“car”]]]]
on the other hand. According to the basic tree kernel, none of these fragments would
be matched (although selected subfragments would). However, from the viewpoint
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of the intended meaning, the fragments (i) and (ii) should be more similar than frag-
ments (i) and (iii) or (ii) and (iii), respectively.

Considering Semantic Similarity of Tree Fragments

We now look at techniques to simulate an effect as envisioned in Example 5.6. The
proposed approach takes up the ideas of semantic smoothing which we have en-
countered in Section 5.2 in the context of the VSM representation and recasts these
concepts in the context of tree kernels.

In analogy with the SSK formulation, we are now interested in also accounting
for partial matches between tree fragments during kernel evaluation. Let us for the
moment assume the existence of a positive semi-definite similarity function κF ?(·, ·)
defined on tree fragment classes. As the function needs to be positive semi-definite,
it can equivalently be seen as a kernel function on tree fragment classes. Interpret-
ing the resulting similarities as smoothing factors in a similar manner as in the SSK
model, we now define the overall SSTK as the sum over the evaluations of κF ? over all
pairs of tree fragment classes in the argument trees. Technically, this means changing
the summation in the second formula of Definition 5.5 as suggested by the following
definition.

Definition 5.6 (Semantic Syntactic Tree Kernel (SSTK)). Given two trees t1 and t2, we
define the Semantic Syntactic Tree Kernel as:

κT (t1, t2) = ∑
ni∈N (t1)

∑
nj∈N (t2)

∆(ni, nj),

whereby
∆(ni, nj) = ∑

f ?
k ∈F ?

∑
f ?
` ∈F ?

[ni B f ?
k ][nj B f ?

` ] κF ?( f ?
k , f ?

` ).

Proposition 5.2 (Validity of Semantic Syntactic Tree Kernels). The kernel function on
trees of Definition 5.6 is a positive semi-definite function and thus constitutes a valid kernel.

The validity is readily verified via the formulation of the kernel as crossproduct
kernel. Recall from Proposition 4.2 that such functions are valid kernels if the embed-
ded function is a valid kernel as assumed here for κF ?(·, ·).

Conceptually, the computation of ∆ is changed in that it does not only count all
identical tree fragments rooted at the two argument nodes. Instead, if two tree frag-
ments rooted at the arguments are different but somehow similar according to the
similarity notion encoded in κF ?(·, ·), their similarity will also contribute to the eval-
uation of ∆ and thus also to the evaluation of the overall kernel κT (·, ·).
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Designing Fragment Class Similarity

So far we have just assumed that κF ?(·, ·) is positive semi-definite and that it encodes
some useful notion of similarity of tree fragment classes without discussing the actual
setup of this function. We now formalise this similarity of tree fragments. First, we
require that two tree fragment classes, to be similar, need to be compatible with one
another.

Definition 5.7 (Fragment class compatibility). Two fragment classes f ?
i and f ?

j are
considered to be compatible or to match partially if they are isomorphic to each other
with respect to node labels and their connections whereby the labels of terminal sym-
bols in both fragment classes are replaced by a wildcard symbol for terminal nodes
and we denote this situation by f ?

i ∼̂ f ?
j .

A partial match thus occurs when two fragment classes differ only by their terminal
symbols, e.g. [NNS [“attractions”]]∼̂[NNS [“sights”]].

Next, in line with our motivation in Example 5.6, we require that the similarity of
two compatible fragments should be determined by the mutual lexical similarities of
the terminal symbols, i.e. the terms, at corresponding positions within the fragments of
the respective tree fragment classes.

The approach we take is based on modelling the similarity of two tree fragments
as products of the similarities of the contained pairs of terms. Note that, as the tree
fragments need to be compatible, they have the same number of terminal symbols
at compatible positions. Conceptually, this means that for similarity measures nor-
malized to the [0, 1] interval, the similarity of two tree fragments is above zero only
if all matching pairs are similar to some extent. The fragment similarity is evaluated
as the product of all semantic similarities of corresponding terminal nodes (i.e. sit-
ting at identical positions). It is maximal if all pairs have a similarity score of 1 while
it decays fast as soon as individual pairs of matching nodes have smaller similarity
values.

Example 5.7. Consider the fragments (i) [NP [DT [“the”] NN [“tourist”] NNS
[“attractions”]]] and (ii) [NP [DT [“the”] NN [“tourist”] NNS [“sights”]]] intro-
duced in Example 5.6. The two fragments ar compatible as the structure of the non-
terminal symbols is identical. Further, the terms “the” and “tourist” at terminal po-
sitions 1 and 2 are identical, i.e. they have (normalized) similarity of 1. The terms
“attractions” and “sights” at position 3 are different but similar, e.g. at a similarity
value of 0.75. The overall similarity of the two fragments is then 1 · 1 · 0.75 = 0.75.

Remark 5.1. We here generally require that the employed similarities on the tree frag-
ments are normalized to the [0, 1] interval. While it would be possible to also in-
clude non-normalized similarity functions with varying degrees of self similarity this
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would, in analogy to the analysis for SSKs lead to a reweighting of the argument
trees.

To ensure the validity of the overall fragment class kernel, the employed term sim-
ilarity needs to be a valid kernel on the terms itself. Immediately, we can note the cor-
respondence of this requirement with the requirements for SSKs to employ positive
semi-definite smoothing matrices. Taking up the notation introduced for Semantic
Smoothing Kernel, we generally denote the term similarity kernel as κL(·, ·). Based
on this reasoning, we now formally define the discussed notion of the similarity of
two tree fragment classes.

Definition 5.8. For two fragment classes f ?
i , f ?

j ∈ F ?, we define the Tree Fragment
Similarity Kernel as:

κF ?( f ?
i , f ?

j ) = [ f ?
i ∼̂ f ?

j ] ∏
`∈termindices( f ?

i )
κL(label( f ?

i , `), label( f ?
j , `))

where termindices( f ?
i ) denotes the indices of term nodes in fragments of class f ?

i in
some fixed order and label( f ?

i , k) denotes the label of the k-th node in fragments of
class f ?

i according to this order (e.g. numbered from left to right).

Proposition 5.3 (Validity of the Tree Fragment Similarity Kernel). Given, that the em-
bedded term similarity function κL(·, ·) is positive semi-definite, the kernel function on tree
fragments of Definition 5.8 is a positive semi-definite function and thus constitutes a valid
kernel on tree fragments.

Proof. Consider a vector space with dimensions corresponding to all possible tree
fragments without any terminal symbols. Let a tree fragment be represented by a
0/1 vector with a single entry of 1 at the dimension that corresponds to its structure
without the tree fragments. It is straightforward to see that the indicator function
[ f ?

i ∼̂ f ?
j ] corresponds to an inner product in this space. The overall kernel is thus a

product of kernel evaluations and, by Proposition 2.11 constitutes a valid kernel.

As with SSKs, we obviously need to choose an appropriate notion of term similarity
κL(·, ·), i.e. a valid and adequate smoothing parameter. We discuss the choice of such
term similarity kernels for both, SSKs and SSTKs in Section 5.4.

Remark 5.2 (Constrained Word Sense Ambiguity). Beside the novelty of taking into
account tree fragments that are not identical it should be noted that in contrast to
the application of lexical semantic similarities to simple term vectors in semantic
smoothing kernels, the lexical semantic similarity is now constrained in the syntactic
structures, which limit errors/noise due to incorrect (or not provided) word sense
disambiguation.
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Procedure 5.2
Semantic Syntactic Tree Kernels — Computation of ∆ (Bloehdorn and Moschitti,
2007a)

Input: nodes ni,nj
1: if label(ni) = label(nj) and ni, nj pre-terminal symbols then

/* nodes represent compatible pre-terminal symbols */
2:

∆(ni, nj) ← λ κS (label(child(ni, 1)), label(child(nj, 1))

3: else if label(ni) 6= label(nj) or ∃k : label(child(ni, k)) 6= label(child(nj, k)) then
/* nodes have different productions and do not represent pre-terminal symbols */

4:
∆(ni, nj) ← 0

5: else
/* nodes have identical productions and do not represent pre-terminal symbols */

6:

∆(ni, nj) ← λ
| child(ni)|

∏
k=1

(1 + ∆(child(ni, k), child(nj, k))).

/* recursive call to computation of ∆ */
7: end if
8: return ∆(ni, nj)

5.3.3 Efficient Computation of Semantic Syntactic Tree Kernels

In the formulation of the Semantic Syntactic Tree Kernel in Definition 5.6 we note
a basic structure similar to the one in Semantic Smoothing Kernels. However, in
contrast to SSKs, it is unrealistic to compute the kernel by summing over all pairs
of explicit term fragment features. While we could use optimizations of the type
we have encountered for SSKs, we have already noted for basic tree kernels that the
explicit representation of trees as vectors of tree fragment classes is out of scope in
any realistic scenario.

However, it turns out that it is possible to use a similar recursion structure for the
computation of ∆(·, ·) like the one for basic tree kernels to achieve the kernel evalua-
tion without any explicit representation in terms of feature vectors. This alternative
computation of ∆ is summarized in Procedure 5.2.

Procedure 5.2 for the computation of ∆(·, ·) exhibits a similar structure as Proce-
dure 5.1. However, in contrast to the original formulation in Procedure 5.1, it does
not return with a 0 value in all cases where the nodes of two labels differ. Rather, the
result of this comparison depending on whether terminal nodes or interior nodes are
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compared. In the former case, the evaluation returns the result of the similarities of
the respective terms. Only in the latter case, the evaluation yields a zero result.

The equivalence of this computation with the model of SSTKs introduced above
can be verified as follows. The first and second case in Procedure 5.2 are obviously
correct. The third recursive computation follows because for a given pair ni and nj
the number of common fragments is the product of all variants that can occur at each
child node of the production. Again, for each such child node, there is the choice of
stopping the expansion at the non-terminal symbol at this child or consider any of
the equivalent sub-fragments at that child. As soon as relevant child nodes are in-
cluded which correspond to terminal nodes, the result may differ from the original
formulation. For one pair of terms, their similarity is the sole similarity that affects
the similarity of the corresponding tree fragment classes. As any additional terminal
node enters the computation multiplicatively, this corresponds exactly to the defini-
tion of the tree fragment similarity kernel above.

5.3.4 Complexity

Given two trees with n and m nodes, the complexity of the basic tree kernels amounts
to O(nm). First, note that each pair of nodes needs to be considered for computation
in the ∆(·, ·) function. Using a naive evaluation, each computation of ∆(·, ·) might
require up to another min(n, m) operations for each pair of nodes. However, the
problem of computing ∆(·, ·) for all nodes has overlapping subproblems due to the
recursive definition which reuses the computed values on lower-level nodes. Using
ideas from the dynamic programming area, we can thus traverse the two argument
trees t1 and t2 in post-order, thereby filling up a n×m matrix of precomputed values
of ∆(·, ·) yielding only another constant factor for look-ups and products for any
higher-level tree node.

Collins and Duffy (2002) have pointed out that for the basic tree kernels, this worst
case estimate may vary substantial from the average running times which can be de-
scribed as linear in the number of node pairs ni and nj such that the productions at ni
and nj are the same. In most settings, the number of nodes with identical productions
is linear, so that the large majority of values of ∆(·, ·) is 0. Thus the running time is
close to linear in the size of the trees. Obviously, the possibility of partial matches at
the level of terms will destroy some of the sparsity of this matrix and thus the near-
linearity of the basic tree kernel computation. However, the worst case complexity
remains in O(n m).

5.3.5 Extensions

In this section we discuss a number of extensions of the basic model of Semantic
Syntactic Tree Kernels.
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Considering Other Tree Fragment Paradigms

In the beginning of this section we have discussed other classes of tree fragments
which could be considered. In particular, Vishwanathan and Smola (2003, 2004) sug-
gest to consider only proper subtrees. The feature representation for a parse tree
should thus only consider substructures that are characterized by expanding an arbi-
trary internal node of the original tree until the leaf nodes and may not stop earlier
as in the model of Collins and Duffy (2002) which we have considered so far.

For the implementation, this behaviour can be mimicked by changing Proce-
dures 5.2 as follows:

line 6: ∆(ni, nj) ← λ
| child(ni)|

∏
k=1

(∆(child(ni, k), child(nj, k))).

The only difference is thus that the term “1 +” on the right hand side is omitted
thus removing any contributions of fragments that end at an internal node.

Tuning Leaf Contribution

We have remarked that the parameter λ is well suited to reduce the contribution of
larger tree structures. On the other hand, we want to allow fragments with many
matching/similar leaves to contribute more to the overall kernel than fragments
without leaves. For this purpose, we introduce an additional parameter, α in the
computation of the ∆ function by modifying step (1) of the above computation (i.e.
leaf matching) as follows:

line 2: ∆(ni, nj) ← α λ κS (label(child(ni, 1)), label(child(nj, 1))

It is readily verified that this corresponds to implicitly weighting the vector entries

φ(ti)k by
√

α|{nj∈ti | label(nj) is terminal symbol}|. While α could of course be used to further
reduce the contribution of the leaves, we will typically select a value α > 1 to allow
for a stronger contribution.

Normalizing POS Tag Labels

In the context of tree kernels, it could also sometimes be useful to reduce the em-
ployed tag sets to simpler variants than commonly used, for example to distinguish
only between basic word categories like nouns, verbs, adjectives, adverbs etc. but
not between their precise subtypes. For example the commonly used Penn Treebank
Tagset in Appendix B distinguishes between the tag NN (noun, singular or mass) and
NNS (noun, plural). Correspondingly, we may not want to distinguish between ter-
minal symbols that have a common base form, i.e. are only inflected variants of the
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same term. In these cases, one can regard a given label as equivalent to another label
and denote this situation as label(ni) ∼ label(nj). Obviously, we can then redefine
the notion of equivalence of two fragments and implement this variant by altering
the first condition in Procedure 5.2 accordingly.

5.4 Choice of Smoothing Parameters

The central design choice for both types of kernels, SSKs and SSTKs is the employed
smoothing parameter, represented as term similarity kernel κL(·, ·) or, equivalently,
as smoothing matrix S in the case of SSKs.

A straightforward choice would be to use any given similarity function defined on
the taxonomic back-end of a knowledge structure like WORDNET as smoothing pa-
rameter. However, we have seen in Chapter 4 that many classical semantic similarity
functions of this type are, at least in the general case, not positive semi-definite and
can thus not be used directly as parameters in SSKs or SSTKs. This is particularly
true for WORDNET, which contains numerous cases of multiple inheritance at sev-
eral levels of the hypernym hierarchy. In the following subsections, we discuss the
main available possibilities. In the next chapter, we will investigate these variants
experimentally.

5.4.1 Investigating Positive Semi-Definiteness Case-by-Case

We have seen that various classical taxonomic semantic similarity functions are not
positive semi-definite and it will thus often not be possible to use them as kernels or
kernel parameters. Obviously, this does not exclude that under specific conditions a
given similarity function might yield a valid kernel. One possibility would thus be
to build up candidate smoothing matrices for a specific learning task based on such
similarity functions and investigate their positive semi-definiteness in the specific
case. Such an approach has been used by Basili et al. (2005b) in conjunction with the
Conceptual Density measure of Agirre and Rigau (1996). However, this approach is
laborious and may nevertheless eventually result in indefinite kernel functions while
omitting any practical solution for this situation.

5.4.2 Fixing Indefinite Kernels

Another approach would be to “fix” a given matrix of smoothing parameters or the
resulting kernel matrix in case that the required positive semi-definiteness can not
be shown. Haasdonk and Bahlmann (2004) mention some techniques for achieving
this effect. One solution is to modify the entries on the matrix diagonal. If these are
sufficiently big, a symmetric matrix necessarily becomes positive semi-definite. Simi-
larly, it would be possible to perform an eigendecomposition of the kernel matrix, set
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all negative eigenvalues equal to zero and reassemble the kernel matrix again. The
problem with these and other approaches in this direction is that they are on the one
hand laborious and on the other hand effectively yield new measures whose inter-
pretation becomes unclear. Furthermore, the results will vary very much depending
on the amount of “fixing” involved and will not necessarily relate any more to the
original similarity entries.

5.4.3 Matrix Squaring for Arbitrary Measures

As a way to avoid the possibility of indefinite similarity matrices, authors like Sio-
las and d’Alche Buc (2000) have enforced the positive-definiteness of S by explicitly
computing it from S = PP′ whereby the information about the mutual similarities
between all terms is now encoded in the matrix P. Conceptually this approach maps
each term to all other terms with a given similarity value. The actual similarity value
that eventually feeds into the computation of the Semantic Smoothing Kernel is then
the shared weight of all these terms. While this approach obviously ensures the va-
lidity of the kernel, the interpretation of the resulting Semantic Smoothing Kernel is
less clear. In particular, the resulting smoothing matrix depends not only on the em-
ployed similarity function but also on the overall vocabulary as different vocabulary
configurations may yield different entries within the squared matrix for the same pair
of terms.

5.4.4 Using Similarity Functions based on Taxonomic Overlap

The set of taxonomic similarity functions which are inherently positive semi-definite,
regardless of the setup of the knowledge structure or any parameters are the similar-
ity functions of the family of taxonomic overlap measures.

Because the notion of determining the similarity of two terms by means of the
amount of shared superconcepts is intuitive, measures based on the taxonomic over-
lap of superconcepts will be the focus of our subsequent experiments. Furthermore,
the possibility to use weighted variants of the the original taxonomic overlap mea-
sure allows to combine the notions of the other similarity measures with those of
taxonomic overlap.

5.5 Related Work

In this section, we review previous research work that relates to the topics presented
in this chapter. We discuss both, traditional methods as well as methods based on the
kernel paradigm.
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5.5.1 Semantic Smoothing and Query Expansion

The problem of the variability of natural language lies at the core of text mining, nat-
ural language processing and information retrieval. The class of Semantic Smoothing
Kernels thus bears connections to a variety of existing work in these fields.

Kernel Methods and Semantic Smoothing

As a first approach to incorporate notions of semantic smoothing directly into kernel
functions, Siolas and d’Alche Buc (2000) used squared matrices of mutual inverted
path lengths between terms to alter the basic Euclidean distance between two vectors.
This metric was then used for k-Nearest Neigbhour (kNN) classification and with a
Gaussian kernel. The intention to design an appropriate distance function boils down
to Semantic Smoothing Kernels as introduced in this chapter when viewing the re-
sulting distance as a kernel-induced distance function as discussed in Definition 2.25.
Cristianini et al. (2002), take up the approach of Siolas and d’Alche Buc (2000) for mo-
tivating their own work on Latent Semantic Kernels (LSKs). These kernels are based
on Latent Semantic Indexing (LSI), a dimensionality reduction technique we review
below. Shawe-Taylor and Cristianini (2004) later discuss this setting in more detail.

Basili et al. (2005b, reprinted in (Basili et al., 2006)) take up the concept of SSK in
conjunction with the Conceptual Density (CD) measure of Agirre and Rigau (1996).
The basic setting is similar to the one considered in this thesis and has in fact, mo-
tivated the further joint work on SSKs in Bloehdorn et al. (2006b). In contrast to the
work in this thesis, there is no analysis whether the employed CD measure is positive
semi-definite in general. Basili et al. suggest to approach this issue by investigating
the validity of the smoothing matrix on a case-by-case basis. Finally, Mavroeidis et al.
(2005b) report on experiments with SSKs. Here, the setup of the smoothing matrix
was determined by the shared amounts of hypernyms, whereby the number of hy-
pernyms was restricted to fixed distances from the reference terms. This crisp setting
is a special case of the similarity measures based on the smoothing parameters based
on the (weighted) semantic cotopy of the reference terms as employed in this thesis.

Query Expansion and Conceptual Document Representations

In Section 5.2.2, we have seen that SSKs are strongly related to the explicit transfor-
mation of the feature vectors, at least as long as the transformation corresponds to
a linear transformation of the type φ(x) = Px. Traditionally, such approaches aim
at the expansion of the VSM vectors or documents or search queries with additional
terms derived from a thesaurus, taxonomy or ontology. Especially in the context of IR
applications, this technique is therefore also referred to as query expansion. In contrast
to the kernel-based setting as investigated in this thesis, these methods perform ex-
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plicit transformations of the feature vectors and are thus not capable of incorporating
optimization strategies like the ones considered in our formulation of SSKs.

Information Retrieval Several researchers have reported positive results concerning
query expansion in the context of IR applications. In early work on the topic, Salton
and Lesk (1971), found that expansion with synonyms improved performance, while
using broader or narrower terms produced too inconsistent results for being actu-
ally useful. Wang et al. (1985) report that a variety of lexical-semantic relations im-
proved retrieval performance. A comprehensive study by Voorhees (1994) indicated
that query expansion is especially useful when queries are relatively short.

Text Clustering and Text Classification Similar techniques have also been applied in
text classification and text clustering settings. Green (1999) uses WordNet to construct
chains of related synsets from the occurrence of terms for document representation
and subsequent clustering but does not evaluate performance of the approach in com-
parison with standard VSM representations. Other results from similar settings are
reported by Scott and Matwin (1999) as well as Wang et al. (2003).

Work on text clustering by Hotho et al. (2003); Hotho (2004) as well as own prior
work (Bloehdorn and Hotho, 2004) has shown promising results when using addi-
tional conceptual features extracted from manually engineered ontologies. de Bue-
naga Rodriguez et al. (1997) as well as Ureña et al. (2001) show a successful integra-
tion of the WORDNET resource for a document categorization task. However, their
results are based on manually constructed conceptual representations, thereby alle-
viating the problem of word sense disambiguation (WSD) altogether.

Term Clustering and Automatically Derived Knowledge Structures

Along another line, various research endeavours have focused on the use of knowl-
edge structures that were constructed automatically in an unsupervised process, e.g.
by means of ontology learning techniques (Maedche and Staab, 2001; Cimiano, 2006).

Jing and Croft (1994) could show an improvement in information retrieval tasks
by means of query expansion whereby the background knowledge resource was an
automatically constructed association thesaurus. Similar successful approaches using
automatically generated thesauri for query expansion are reported in literature (Park
and Choi, 1996; Schütze and Pedersen, 1997).

Own prior work has has investigated the question of using automatically con-
structed knowledge structures for conceptual document representations in text clus-
tering and classification (Bloehdorn et al., 2006c). The results are based on the tax-
onomy induction technique proposed by Cimiano et al. (2005) and show that such
knowledge structures can achieve results that mimic much of the positive effects
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of manually constructed knowledge structures suggesting a road for a fully inte-
grated life cycle between ontology learning from text and exploitation of the resulting
knowledge structures within text mining (Bloehdorn et al., 2005).

Another group of methods try to archive a sophisticated input representation via
word clusters thus abandoning the notion of a background ontology altogether. Here,
terms are clustered based on their joint occurrence in a given set of documents and
use cluster weights to represent the documents. For example Baker and McCallum
(1998) or Bekkerman et al. (2001) cluster words based on the class label distribution
for each word.

Latent Semantics

Finally, dimensionality reduction techniques are often used to mimic the behaviour of
conceptual representations by computing kind of semantic concepts statistically from
term co-occurrence information. In contrast to conceptual document representations
driven by lexical knowledge structures, the concept-like structures are, however, not
easily interpretable by humans. The most prominent approach is certainly the Latent
Semantic Indexing (LSI) technique proposed by Deerwester et al. (1990)). We here
review the main ideas.

Consider a corpus of documents in VSM representation, represented as a |X | × |L|
matrix X. Now consider the singular value decomposition (SVD) of X (c.f. Defini-
tion 2.16) as into X = UΣV′. Assuming that the singular values are ordered by by
size, the first k singular values represent the best (in a least squares sense) rank-k
approximation of the original data. The core idea of LSI is to work on such a lower
rank approximation to reduce the variability of the terminology used. Conceptually,
this is done by setting all but the largest k singular values to zero. Equivalently, the
corresponding columns can be deleted from V,U and Σ altogether, yielding the re-
duced matrices Vk,Uk and Σk such that X̂ = UkΣkV′

k. Note that as V is unitary, the
column-reduced matrix has the properties V′

kVk = I while in general VkV′
k 6= I. The

evaluation of the dot product on all pairs of input vectors in the reduced representa-
tion now becomes K̂ = X̂X̂′ = UkΣkV′

kVkΣU′
k = UkΣkΣkU′

k. Cristianini et al. (2002)
have used the paradigm of SSKs to motivate their work on the embedding of LSI into
kernel functions.

A probabilistic variant of LSI is the Probabilistic Latent Semantic Indexing (PLSI)
technique by Hofmann (1999) which has also successfully been applied for TC tasks
(Cai and Hofmann, 2003).

5.5.2 Syntactic Representations

Along a line between syntax and semantics, Moschitti and Basili (2004) has inves-
tigated the possibility of incorporating syntactic information like n–grams or POS
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information for terms directly into the VSM representations for text mining tasks.
However, the reported results indicate only an insignificant gain in classification ac-
curacy. Most probably, this can be explained by the fact that the incorporated infor-
mation was too shallow to yield an increase in performance as opposed to the far
richer representation by means of tree kernels. On the other hand, all reported exper-
iments related to problems of document classification by general topics, a situation
where syntactic information is not directly expected to help.

For the case of alternative tree kernel functions, Zelenko et al. (2003); Culotta and
Sorensen (2004) develop a parse tree kernel in the context of relation extraction. The
tree kernel is recursively defined on dependency parse trees in a top-down manner,
matching nodes from roots to leaf nodes. For each pair of matching nodes, a subse-
quence kernel on their child nodes is invoked, which matches either contiguous or
sparse subsequences of nodes. In a recent study, Zhang et al. (2008) has provided ev-
idence that proper convolution kernels (Haussler, 1999) like the ones covered in our
exposition are best suited for relation extraction settings.

5.5.3 Other Kernel Paradigms for Text Data

Along a radically different line, Lodhi et al. (2002) and Vishwanathan and Smola
(2003) have proposed the concept of string kernels. String kernels consider textual in-
put solely as symbol sequences. The feature space of string kernels corresponds to
the set of all (non-contiguous) substrings of symbols up to a specified length. The
more substrings two textual inputs have in common, the more similar they are con-
sidered. Similar to tree kernels, these kernels require no explicit representation of the
substrings. Instead, the kernel functions are computed by means of sequence align-
ment techniques. The combination with dynamic programming techniques makes
the computation of string kernels efficient. On the other hand, string kernels are
well suited to deal with languages for which no or little language resources exist and
which do not lend themselves to easy preprocessing (e.g. lemmatization). At the same
time, they are more robust to noise in the lexical surface forms such as e.g. spelling er-
rors. While String kernels have shown surprisingly good results in text classification
settings on selected datasets. However, these kernels require substantial amounts of
training data and usually lack the full power of text representation based on terms.

5.6 Summary and Discussion

The successful exploitation of the mutual dependencies between textual data and
knowledge structures is a long standing vision in text mining (Bloehdorn et al., 2005).
In this chapter, we have introduced two types of kernel functions which provide such
capabilities.
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5.6 Summary and Discussion

On the one hand, Semantic Smoothing Kernels (SSKs) allow to exploit the seman-
tic similarity of terms in the context of the classical Vector Space Model (VSM). On
the other hand, we have shown how to combine the merits of this type of seman-
tic smoothing with the rich syntactic representations of tree kernels. The resulting
family of Semantic Syntactic Tree Kernels (SSTKs) is the first principled approach in
the direction of jointly addressing issues of lexical semantics and syntactic structure
in kernel-based learning. For both types of kernels, we have provided an in-depth
analysis of their properties in terms of interpretation and complexity as well as a
discussion of extensions of the basic paradigms.

Both types of kernels require smoothing parameters which represent a useful no-
tion of lexical semantic similarity and at the same time ensure the validity of the
resulting kernels. The investigation of the positive semi-definiteness of various sim-
ilarity measures on formal knowledge structures in Chapter 4 provides guidance on
which of these can be used as smoothing parameters for the kernel functions pro-
posed in this chapter. In the next chapter, we provide experimental evidence that
the presented techniques improve upon the still prevailing VSM representation in
conjunction with the conventional inner product as a similarity measure.

Finally it is worth to note that although this chapter as well as the experimental
investigation in the next chapter are entirely focused on the case of textual data, the
application of the paradigm of semantic smoothing by means of Semantic Smoothing
Kernels could readily be extended to other types of data. The only requirement would
be that the conventional vectorial features can be associated with formal structures
that encode their mutual dependencies.
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Chapter 6

Experiments with Kernel Functions for
Semantic Smoothing

In the previous chapter, we have presented two types of kernel functions, namely
Semantic Smoothing Kernels and Semantic Syntactic Tree Kernels. In different ways,
both groups of kernel functions account for the variability in human language by in-
corporating background knowledge from lexical knowledge structures. In this chap-
ter, we investigate the application of both types of kernels in a series of practical text
mining experiments. As the experiments show, both approaches are effective exten-
sions of the current state-of-the-art approaches. For both types of kernels we par-
ticularly investigate how the specific design choices for smoothing parameters affect
performance.

This chapter is structured as follows. We shortly discuss the implementation of
SSKs and SSTKs in Section 6.1. In Section 6.2, we report on experiments with SSKs on
the well-known REUTERS-21578 text classification dataset. In Section 6.3, we report
on experiments with SSKs on a text classification task for AMAZON book abstracts.
Finally, Section 6.4, reports on experiments with SSTKs in the context of a question
classification task. We conclude with a short summary and discussion in Section 6.5.

6.1 Implementation

As part of this thesis, both types of kernels, SSKs and SSTKs, have been implemented
as software modules. The implementation of Semantic Smoothing Kernels is avail-
able as a plug-in for SVMLIGHT software by Joachims (1999), which constitutes one
of the most well known implementations of the SVM classification algorithms.1 The
module also implements the optimizations discussed in the context of Section 5.2.3.
Just as the core modules of SVMLIGHT, it is implemented in C++.

While this implementation provides a deep integration of Semantic Smoothing
Kernels and SVMLIGHT, a second and more generic extension of SVMLIGHT pro-
vides an interface to kernel functions that are implemented in JAVA by means of the

1The SSK kernel plug-in for SVMLIGHT (V6.01) is freely available at http://www.aifb.
uni-karlsruhe.de/WBS/sbl/software/semkernel/ together with accompanying documentation.
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Chapter 6 Experiments with Kernel Functions for Semantic Smoothing

Java Native Interface (JNI) Invocation API. Together with this extension, we pro-
vide JAVA-based implementations of SSKs and SSTKs as well as variety of other well-
known kernel functions.2 Both types of kernels, SSKs and SSTKs, as well as basic tree
kernels and various other well-known kernel functions are part of a JAVA library for
use within SVMLIGHT via the JNI kernel plug-in or for use with any other kernel-
based software infrastructure.

6.2 Experiments with Semantic Smoothing Kernels on
REUTERS-21578

In the first set of experiments, we analyze the behaviour of SSKs in a classical text
classification setting, namely the classification of news texts according to their main
topics.

6.2.1 Task and Dataset

Description of the Dataset

As a dataset, we use the well-known REUTERS-21578 collection (Lewis, 1991).
The documents in the REUTERS-21578 collection are news texts collected from the
REUTERS news wire in 1987 (Lewis, 1991).3 These texts, mostly financial news, are
annotated with one or several out of 135 thematic categories. As an example, Fig-
ure 6.1 shows three exemplary documents for the categories “earn” , “crude” , and
“ship” . The corpus was used for the first time for the evaluation of the CONSTRUE

system, a manually designed text classification system built for REUTERS by Carnegie
Group (Hayes and Weinstein, 1991). Although the corpus has repeatedly been criti-
cized because of inconsistent category assignments and a number of peculiar charac-
teristics (some of which will be discussed below) it has since then become a de-facto
standard for text classification experiments (Lewis, 1991; Yang, 1999; Yang and Liu,
1999; Sebastiani, 2002).

Training vs. Test Data

The “ModApte” split, based on the split by Apté et al. (1994), divides the REUTERS-
21578 collection into 9,603 training documents, 3,299 test documents and 8,676 un-
used documents and forms the basis for the experiments in this section. In the exper-

2The JNI kernel plug-in for SVMLIGHT (V6.01) and the corresponding kernel library are available
at http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel/ together with accompa-
nying documentation.

3The REUTERS-21578 collection is freely available at http://www.daviddlewis.com/resources/
testcollections/reuters21578/.
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COBANCO INC YEAR NET
SANTA CRUZ, Calif., Feb 26 -

Shr 34 cts vs 1.19 dlrs
Net 807,000 vs 2,858,000
Assets 510.2 mln vs 479.7 mln
Deposits 472.3 mln vs 440.3 mln
Loans 299.2 mln vs 327.2 mln
Note: 4th qtr not available.
Year includes 1985 extraordinary gain from tax carry forward of 132,000 dlrs, or
five cts per shr.
Reuter

TEXACO CANADA LOWERS CRUDE POSTINGS
NEW YORK, Feb 26 -

Texaco Canada said it lowered the contract price it will pay for crude oil 64
Canadian cts a barrel, effective today.
The decrease brings the company’s posted price for the benchmark grade,
Edmonton/Swann Hills Light Sweet, to 22.26 Canadian dlrs a bbl.
Texaco Canada last changed its crude oil postings on Feb 19.
Reuter

AGENCY REPORTS 39 SHIPS WAITING AT PANAMA CANAL
WASHINGTON, Feb 26 -

The Panama Canal Commission, a U.S.government agency, said in its daily
operations report that there was a backlog of 39 ships waiting to enter the canal
early today. Over the next two days it expects —

2/26 2/27
Due: 27 35
Scheduled to Transit: 35 41
End-Day Backlog: 31 25

Average waiting time tomorrow —
North End: 13hrs 15hrs
South End: 4hrs 26hrs

Reuter

Figure 6.1 — Example documents of the REUTERS-21578 collection. Each of the
three documents belongs to a single dedicated category, namely the categories “earn”
(news on company earnings), “crude” (news related to crude oil), and “ship” (news
on shipping and ocean freight).
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iments, only the 10 categories having the largest numbers of positive training docu-
ments were considered — a common setting for this collection (Sebastiani, 2002).

Characteristics of the Dataset

The REUTERS-21578 collection exhibits a number of peculiar characteristics which
affect the focus of our experiments as well as the interpretation of the results. While
the corpus has been repeatedly criticized because of these findings, authors like De-
bole and Sebastiani (2004) have argued that exactly this “dirty” nature makes the
REUTERS-21578 collection interesting for text classification.

Multi-Label Setting with Dependent Classes The collection conforms to a multi-label
setting where each document may belong to more than one category. However,
the target categories are often not orthogonal to each other but rather show
semantic relationships. For example, the classes “money-fx” (news related to
foreign exchange) and “interest” (news related to interest rates) are strongly re-
lated. Naturally, such situations lead to a significant overlap in category assign-
ment. For example, 141 of the 347 positive training documents for “interest”
also belong to “money-fx” .

Inhomogeneous Distribution of Classes Even for the 10 largest classes, the number of
available positive training documents differs substantially. For example, the
largest category, “earnings” has 2, 877 positive training documents associated
with it while the smallest of the 10 categories we consider, “corn” , has only
181 associated positive training documents. In all cases, when considering the
common reduction to binary classification problems that was discussed in Sec-
tion 2.2.2, the collection exhibits a dominance of negative documents. While
the largest category, “earnings” , has a ratio of roughly 2 negative training doc-
uments per positive training document, the smallest of the 10 categories consid-
ered, “corn” , yields a ratio of 52 negative vs. one positive training documents.
Table 6.2 summarizes these statistics.

Inhomogeneous Characterization of Classes Most importantly, the corpus is rather
inhomogeneous with respect to the types of patterns that can guide the classi-
fication. While some categories can be characterized by a small set of frequent
terms with high discriminative power, others require complex combinations
of medium and low frequency terms, each of which alone only has limited dis-
criminative power. As an example, consider the categories “earn” , “crude” and
“ship” . We have seen examples of a document for each of these in Figure 6.1.
For each of these categories, Table 6.1 lists the 5 most frequent terms and in-
dicates the empirical probabilities that a document in which the term appears
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Table 6.1 — Term occurrence statistics for three selected REUTERS-21578 categories.
For each of the three categories “earn” , “crude” , and “ship” , the table lists the 5 most
frequent terms that occur in documents of the respective class. For each class, the first
column names the term, the second column indicates the empirical probability P(li|c)
that the term appears in a document of the respective class while the third column
indicates the empirical probability P(c|li) that a document in which the term appears
belongs to the respective class. All numbers are percentages and computed on the
training and test documents of the REUTERS-21578 “ModApte” split. The quantity
P(c|li) is highlighted for discriminative terms, i.e. if P(c|li) > 0.75.

earn (3,964 total) crude (578 total) ship (286 total)

term P(li|c) P(c|li) term P(li|c) P(c|li) term P(li|c) P(c|li)
“cts” 73.4 93.4 “oil” 91.2 45.4 “ship” 47.9 62.6
“net” 66.9 88.9 “barrel” 50.0 82.6 “shipping” 38.1 67.3
“mln” 62.7 40.0 “crude” 48.1 77.9 “oil” 35.7 8.8
“shr” 59.7 99.4 “dlrs” 46.2 4.9 “gulf” 32.9 42.3
“qtr” 51.6 99.1 “price” 43.9 10.9 “port” 30.8 50.3

belongs to the respective class.4 It is readily verified that the category “earn”
can be described very well in terms of a few frequent and highly discrimina-
tive terms. For example, the terms “cts” and “net” appear in more than two
out of three positive documents and are at the same time highly discrimina-
tive at conditional probabilities for the class given the terms at 93.4% and 88.9%
respectively. As another extreme, the occurrence of terms is substantially less
concentrated for documents of the category “ship” . Here, even the two most
frequent terms occur in less then half of the documents while their discrimina-
tive power is only slightly above parity. The category “crude” can be seen as in
the middle of the two. Here, we still find two terms with somewhat substantial
discriminative power, “barrel” and “crude” , but they appear at most in every
second document.

4Of course, this is a simplifying analysis as we only focus on the positive classification decisions while
neglecting terms that are indicators of the negative classification. Obviously, these terms can also
substantially aid the overall classification, especially in cases of non-overlapping classes. However,
the analysis should suffice to illustrate the main points of the argument. The analysis also seems to
be in line with the more comprehensive analysis of the “earn” category by Joachims (2001, 2002).
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6.2.2 Experimental Setup

Focus of the Experiments

The popularity of the REUTERS-21578 collection mainly stems from its perception as
an inhomogeneous, partly easy and partly challenging collection for text classifica-
tion. Furthermore, its application context, the automated dispatching of news doc-
uments, exhibits substantial business relevance. These considerations and the char-
acteristics of the dataset discussed above have shaped the focus of the experiments.
In particular, the experiments in this section aim at investigating the performance of
Semantic Smoothing Kernels in the light of the following aspects:

Small Datasets Based on the reasoning in Section 5.1.3, we expect that the introduc-
tion of prior semantic knowledge typically has a small effect when sufficient
training data is available and, in situations of too much noise (e.g. as a result
of word sense ambiguity effects), might even degrade the performance com-
pared to the VSM kernel. Our experiments are thus restricted to quantifying
performance gains in those cases where little training data is available.

Heterogeneous Target Classes Documents in categories like the “earn” category,
which can be characterized almost undoubtedly by terms which occur with
high frequency do not to utilize the full variability natural language offers. On
the other hand, there are categories which do so. For example, for the category
“ship” , the terms “vessel” , “tanker” or “supertanker” are highly indicative but
occur only in the mid-frequency range. The reduction of the available training
data will thus affect performance more in the latter case, a situation where SSKs
are likely to exhibit most of their power. In the subsequent analysis, we thus
undertake not only a global, but also a per-category analysis of the results.

Classical VSM Setting For all experiments, we focus on a setting that is as close as
possible to the classical VSM setting. In particular, we avoid extensive linguistic
preprocessing.

Preprocessing

The VSM representation of the REUTERS-21578 documents was generated based on
the standard preprocessing steps, namely (i) single-word tokenization, (ii) removal
of the standard stopwords for English defined in the SMART stopword list, and (iii)
dictionary-based lemmatization. For lemmatization, we have used the lemmatization
lexicon of the statistical parser LOPAR (Schmid, 2000).5 This indexing step resulted
in a total number of 23,754 distinct term features. All term features were weighted
according to the standard TFIDF scheme.

5Available at http://www.ims.uni-stuttgart.de/tcl/SOFTWARE/LoPar.html.
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6.2 Experiments with Semantic Smoothing Kernels on REUTERS-21578

Table 6.2 — Document statistics for the REUTERS-21578 corpus. The first line (total
(+/-)) lists the total number of documents per subset of the corpus. The subsequent
lines list the number of positive training documents per category and subset.

Training Test
subset 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 100% 100%

total (+/-) 96 192 288 384 480 576 672 768 864 960 9,603 3,299

earn (+) 29 58 86 115 144 173 201 230 259 288 2,877 1,087
acq (+) 17 33 50 66 83 99 116 132 149 165 1,650 719
money-fx (+) 5 11 16 22 27 32 38 43 48 54 538 179
grain (+) 4 9 13 17 22 26 30 35 39 43 433 149
crude (+) 4 8 12 16 19 23 27 31 35 39 389 189
trade (+) 4 7 11 15 18 22 26 30 33 37 369 117
interest (+) 3 7 10 14 17 21 24 28 31 35 347 131
wheat (+) 2 4 6 8 11 13 15 17 19 21 212 71
ship (+) 2 4 6 8 10 12 14 16 18 20 197 89
corn (+) 2 4 5 7 9 11 13 14 16 18 181 56

Training Subsets

As we aim to compare the performance in those cases where little training data is
available, we prepared small subsets of the ModeApte training set. For each cate-
gory, we randomly chose 1% - 10% of the positive training documents and the same
fraction of negative training documents. To account for the inherent sampling vari-
ance, this approach was repeated 10 times for each of the 10 subset sizes resulting in a
total number of 100 different training subsets per category. Table 6.2 summarizes the
distribution of positive training documents per category and subset. Note that we
have chosen fixed percental subsets of the original training corpus to mirror the orig-
inal structure. For the analysis of the experiments, however, it is important to keep in
mind that the uneven distributions of positive documents is thus also reflected in the
subsets.

Smoothing Parameters

For all experiments, we used the noun hierarchy of the lexical database WORDNET

(Miller et al., 1990; Miller, 1995) described in Example 4.1 as the taxonomic backbone
for our experiments. For the setup of the smoothing matrices as discussed in Sec-
tion 5.4 we used two variants:

• Unnormalized taxonomic overlap of superconcepts (c.f. Definition 4.14) and
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weighted taxonomic overlap of superconcepts (c.f. Definition 4.15), whereby
we used the popular path- and information content (IC)- based measures of
semantic similarity of Sections 4.3.1–4.3.4 as weighting schemes.

• Cosine-normalized variants of these with an additional term of “1” on the main
diagonal of the resulting smoothing matrix S as discussed in Section 5.2.4.

Table 6.3 on page 139 summarizes the descriptions and coding of these configura-
tions as well as those used in any of the other experiments. Frequency counts needed
for the calculation of the measures making use of IC were obtained from the complete
REUTERS-21578 collection. Furthermore, as discussed in Section 5.2.1, for mapping
between terms and senses, we used a simple disambiguation strategy δ : L → C
whereby each term is mapped to its most frequent noun sense according to the usage
statistics provided by WORDNET. Note that this approach implies an inherent word
sense disambiguation side effect, both with respect to the respective Part–of–Speech
as well as to the chosen noun sense. While this effect is likely to have a negative im-
pact on the results, the error introduced by this approach is systematic. In the light
of these considerations, the results can also be seen as a pessimistic estimate of the
potential effectiveness given a perfectly disambiguated input. All pairs of entries for
which this mapping failed were implicitly assumed to take the default values (i.e.
zero and one for off-diagonal and diagonal entries respectively) during kernel evalu-
ation. Note that this procedure (a so-called zero-extension of the smoothing matrix)
always leaves the smoothing matrix in a positive semi-definite state.

6.2.3 Results

Binary classification experiments were then conducted for each category and each
subset resulting in a total number of 1,000 individual experiments for each SSK con-
figuration. While in each of these experiments the SVM classifier was trained using
the respective subset, the corresponding testing was conducted using the full Mod-
eApte test set as specified in Table 6.2. The soft margin parameter C that controls the
influence of misclassified examples as discussed in Section 2.3.2 was set to C = 0.1
in all experiments. This decision was motivated by the findings in preliminary ex-
periments that its variation had no or only minor effects for the results obtained on
the subsets. This can be explained by the fact that all subproblems are linearly sep-
arable such that the value of C does not really affect the optimization problem of
the soft-margin SVM.6 In this section, we report on the results of the classification
experiments.7

6Note that this finding is consistent with the analysis by Joachims (2002) which indicates that even on
the full training data all but three of the 10 largest REUTERS-21578 categories are linearly separable.

7Note that the results reported in this section slightly differ from earlier experiments (Bloehdorn et al.,
2006a,b). This fact needs to be attributed to different preprocessing which did not remove number
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Table 6.3 — Configurations of smoothing parameters used in the experiments in this
chapter. Descriptions of each smoothing parameter configuration together with its
respective short code used in the remainder.

Short name Description

vsm (string) Term identity only – no smoothing, i.e. corresponding to plain
dot products in the case of SSKs.

hyp–full Smoothing similarities as unnormalized taxonomic overlap of
superconcepts, c.f. Definition 4.14.

hyp–resnik Smoothing similarities as weighted taxonomic overlap of super-
concepts, c.f. Definition 4.15. Weighting between the reference
concept and the respective superconcept via the similarity mea-
sure of Resnik (1999).

hyp–lin As above, but using the similarity measure of Lin (1998).
hyp–wupalmer As above, but using the similarity measure of Wu and Palmer

(1994).
hyp–path1 As above, but using the inverted path length similarity measure

with a decay factor of α = 1.
hyp–path2 As above, but using the inverted path length similarity measure

with a decay factor of α = 2.

simsq–resnik Squared smoothing similarities according to the similarity mea-
sure of Resnik (1999).

simsq–lin As above, but using the similarity measure of Lin (1998).
simsq–wupalmer As above, but using the similarity measure of Wu and Palmer

(1994).
simsq–path1 As above, but using the inverted path length similarity measure

with a decay factor of α = 1.
simsq–path2 As above, but using the inverted path length similarity measure

with a decay factor of α = 2.

{*}–norm Suffix indicating that any of the above configurations is modi-
fied by using normalized smoothing measures according to the
cosine normalization.

{*}–add1 Suffix indicating that any of the above configurations is mod-
ified by increasing the weight of pairs of matching terms by
increasing the values on the main diagonal of the smoothing
matrix by 1.0 (c.f. Section 5.2.4).
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Global Analysis

We first analyze the results on the full dataset from a birds-eye perspective in terms of
the absolute macro F1 values obtained over the different subsets of REUTERS-21578.
These results are summarized in Table 6.4. The choice of the macro-averaging scheme
is motivated by the fact that, due to the grossly uneven class distribution, micro-
averaged scores would be dominated entirely by the largest categories “earn” and
“acq” . We will account for the differences between the different classes by means of
a differentiated analysis in the next section.

As we can see in table Table 6.4, all SSKs can achieve substantial improvements
over the VSM baseline for the smallest subsets. Consistent with out prior analysis,
the improvement diminishes as more training data becomes available and sometimes
deteriorates compared to the VSM baseline.

For the first group of (unnormalized) SSK parameters, we find the largest improve-
ments for the small datasets but at the same time, these settings are typically more
unstable as more training data becomes available. The hyp-full scheme is most prob-
lematic in this respect. While it achieves good improvements for 1%–3%, results fall
below the VSM baseline starting from 5%. The situation is similar for the hyp-resnik
scheme which does not show any improvements starting from 7%. In both cases the
mixed performance is most likely to be due to the fact that for hyp-full no weight-
ing scheme is employed at all, thus leading to identical similarities for two terms
just below their common Lowest Super Ordinate (LSO) and for two terms which also
share this LSO but are situated far apart. This property is shared by the hyp-resnik
scheme which also neglects the distance of a superconcept to the reference concept
even though it attributes less weight to more general concepts far up in the taxonomy.

The remaining four schemes, which employ more fine-grained weighting schemes
behave differently. For these configurations, the relative improvement over the vsm
baseline is depicted in Figure 6.2. The hyp-wupalmer scheme accounts for the dis-
tances between a superconcept and the reference concept such that it achieves good
results up to the 8% level. The most successful scheme for the smaller training sets
is the hyp-lin scheme which is taken over by the hyp-path1 and hyp-path2 after the
5% level. This finding confirms the intuitive assumption on the desired structure of
the weighting scheme as the hyp-lin scheme respects both the overall depth of the
respective superconcept by virtue of the information content as well as the distance
from the base concept by means of the difference in information content. For the in-
terpretation of the hyp-path1 and hyp-path2 schemes it seems important to note that
the superconcept weights decrease very fast, thus leaving most of the contribution
to the pairwise similarities to superconcepts in the immediate neighbourhood of the
reference terms. Correspondingly, the resulting smoothing matrices have shown sub-

items and to the different sampling strategy for the subsets. The general structure of the results is,
however, consistent.
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Table 6.4 — Macro-averaged F1 results for different REUTERS-21578 subsets and dif-
ferent Semantic Smoothing Kernel configurations. All numbers are percentages. The
three best results per subset are highlighted.

Configuration 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

vsm 29.5 40.7 49.5 54.5 57.9 60.6 63.9 65.3 67.0 68.5

hyp-full 36.4 44.7 51.2 55.0 57.4 59.7 61.9 62.9 64.6 65.4
hyp-resnik 37.6 46.8 53.0 56.8 59.3 61.2 63.2 64.0 65.4 65.8
hyp-wupalmer 37.5 46.7 53.4 57.6 60.3 62.5 64.6 65.5 66.9 67.7
hyp-lin 39.8 48.5 54.9 59.0 61.5 63.5 65.4 66.3 67.7 68.4
hyp-path1 34.6 46.3 53.7 58.5 61.8 64.5 66.9 67.6 69.1 70.0
hyp-path2 31.9 44.3 53.1 57.6 61.2 63.7 66.5 67.6 69.4 70.4

hyp-full-norm-add1 31.3 41.8 49.5 55.1 58.7 61.2 64.1 65.1 66.6 67.7
hyp-resnik-norm-add1 32.6 44.0 51.7 56.7 60.2 62.8 65.6 66.8 68.1 69.4
hyp-wupalmer-norm-add1 32.2 43.5 51.1 56.2 60.0 62.5 65.4 66.4 67.7 68.9
hyp-lin-norm-add1 32.4 43.4 50.9 56.0 59.7 62.3 65.3 66.2 67.6 68.7
hyp-path1-norm-add1 32.1 44.0 51.8 56.9 60.8 63.4 66.4 67.6 69.0 70.3
hyp-path2-norm-add1 30.4 42.7 51.6 56.2 59.9 62.6 65.5 66.8 68.7 69.9

stantially smaller similarity values for most pairs of terms. As a result, these schemes
still allow to relate strongly related terms, but limit the effects of noise for weakly re-
lated terms. In contrast to the other schemes, the structure of the original VSM model
is largely maintained. This analysis also explains that the improvements are small in
case of little training data but are still maintained in situations of more training data.

For the second group of SSK parameters, where the smoothing parameters are nor-
malized via the (nonlinear) cosine normalization and are implicitly complemented by
the plain inner product on the original VSM, the situation is different. Except for the
hyp-full-norm-add1 scheme, which does not always improve compared to the plain
VSM representation, all schemes consistently lead to improved results compared to
the plain VSM setting. However, the improvements are in all cases less distinctive
than for the unnormalized setting. While the unnormalized measures achieved abso-
lute improvements between 2.4% (hyp-path2 ) and 10.4% (hyp-lin) for the 1% subset
and up to 1.9% (hyp-path2 ) for the 10% subset, the improvement in the second group
of measures always ranges between 1.0% and 3.3%. Similar to the analysis for the un-
normalized hyp-path1 and hyp-path2 schemes, this can be explained by the fact that
all variants are much “closer” to the original VSM representation.
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Table 6.5 — F1 results for the REUTERS-21578 categories “earn” , “crude” , “grain”
and “ship” , different subsets and different Semantic Smoothing Kernel configura-
tions, averages over 10 samples. All numbers are percentages. Results marked with
one star are significantly better than the corresponding VSM baseline according to the
(one-sided) paired T-Test at a significance level of α = 0.05 while two stars indicate
the same for α = 0.01.

“earn” “crude”

Configuration 1% 5% 10% 1% 5% 10%

vsm 90.8 95.3 96.0 19.4 62.2 72.3

hyp-full 83.3 92.7 94.3 ??41.4 64.1 69.1
hyp-resnik 82.7 88.8 89.4 ??40.8 ?65.7 70.0
hyp-wupalmer 86.6 94.0 95.0 ??40.2 ?65.9 71.2
hyp-lin 87.4 94.1 95.1 ??44.5 ?67.2 71.7
hyp-path1 90.6 ?95.5 96.3 ??31.7 ??66.5 72.4
hyp-path2 ?91.6 ??95.6 ??96.3 ??23.2 ??64.8 72.0

hyp-full-norm-add1 90.3 95.1 96.2 ??27.1 62.6 71.3
hyp-resnik-norm-add1 91.4 ??95.5 ?96.4 ??24.6 63.7 71.9
hyp-wupalmer-norm-add1 91.2 95.4 ?96.4 ??25.7 63.5 72.1
hyp-lin-norm-add1 91.1 95.3 ??96.4 ??25.5 63.7 71.8
hyp-path1-norm-add1 91.8 ??95.9 ??96.5 ??24.6 ??64.6 72.5
hyp-path2-norm-add1 ?91.5 ??95.7 ??96.3 ??21.2 ??64.0 72.5

“grain” “ship”

Configuration 1% 5% 10% 1% 5% 10%

vsm 24.4 65.1 75.1 1.1 16.8 43.2

hyp-full ??44.8 68.0 75.7 ??17.6 ??39.9 ??53.4
hyp-resnik ??49.5 ?70.4 76.7 ??10.6 ??40.2 ??55.4
hyp-wupalmer ??47.8 ??71.1 ?77.0 ??13.8 ??40.2 ??54.5
hyp-lin ??52.4 ??72.2 ??78.2 ??13.2 ??42.3 ??56.3
hyp-path1 ??37.8 ??72.0 ??78.4 ?5.2 ??32.1 ??51.7
hyp-path2 ??28.8 ??69.9 ??77.6 1.5 ??22.1 ??47.4

hyp-full-norm-add1 ??32.9 ??67.7 75.8 ??8.0 ??31.3 ??49.6
hyp-resnik-norm-add1 ??34.9 ??69.8 ??77.7 2.8 ??27.5 ??49.8
hyp-wupalmer-norm-add1 ??34.3 ??69.6 ??76.9 ?4.2 ??29.9 ??50.2
hyp-lin-norm-add1 ??34.6 ??69.3 ??76.9 ?3.8 ??29.2 ??49.9
hyp-path1-norm-add1 ??30.4 ??69.2 ??77.7 2.4 ??26.2 ??49.9
hyp-path2-norm-add1 ??25.8 ??67.8 ??76.9 1.5 ??19.7 ??45.8
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Figure 6.2 — Relative improvement of macro F1 values on REUTERS-21578 subsets
for Semantic Smoothing Kernels based on the hyp-lin, hyp-wupalmer, hyp-path1
and hyp-path2 schemes versus the vsm baseline.

Per-Category Analysis

The analysis in the previous section has focused on the averaged performance over
all categories for the respective subsets. All categories were treated as equally rele-
vant, regardless of the actual number of positive training documents and the specific
characteristics of the individual classes. While this analysis allows to draw conclu-
sions on the performance from the macro perspective, it blurs the substantial differ-
ences between the individual classes which we have noted in the prior analysis. This
section thus provides on a more detailed analysis of the behaviour of the different
classes. For space reasons, we focus on four exemplary categories. While each of the
10 classes has different characteristics and exhibits different results, these classes can
be seen as roughly representative in terms of the distributions in the number of train-
ing documents and in their behavior results. Specifically, these are the categories
“earn” (many positive training documents, poor performance), “crude” (medium
number of positive training documents, performance varies between strong and poor
for subsets), “grain” (medium number of positive training documents, good perfor-
mance for all subsets), and “ship” (few positive training documents, very good per-
formance for all subsets).

For each of these categories, Figure 6.3 plots the F1 values achieved by the Semantic
Smoothing Kernels on all subset samples against the VSM results on the same sample.
Table 6.5 summarizes the macro-averaged results F1 for these categories and the 1%,
5% and 10% subsets.

The “earn” category achieves fairly high F1 values of over 90% even for the 1%
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Figure 6.3 — Scatterplot of F1 values on selected REUTERS-21578 categories. F1 val-
ues for all SSKs configurations, subsets and samples are plotted against the corre-
sponding F1 value for the results of the plain VSM representation on the correspond-
ing sample.

subset. One the one hand, this is certainly due to the large fraction of positive training
examples. On the other hand, it also complies with the earlier analysis of indicative
terms for this category. On this category, is generally tough for SSKs to compete
against the VSM baseline. For the unnormalized smoothing parameters, only the
path-based weighting schemes can compete with the VSM baseline while all other
schemes even degrade performance. For the normalized measures with extra VSM
weights, most SSKs achieve only slight (tough nevertheless sometimes statistically
significant) improvements or assume similar values.

The situation changes for the “crude” category. Here, at the 1% subset, all SSK con-
figurations yield substantial and significant improvements, especially for the “crisp”,
unnormalized smoothing parameters. For the 5% subset, the improvements begin to
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diminish but remain significant in many cases. At the 10% level, no SSK configura-
tion can beat the VSM baseline any more. It appears that at this level, the number of
training documents is sufficient to equal out any variation in the used terminology.

The categories “grain” and “ship” generally appear amenable for Semantic
Smoothing Kernels. For “grain” , we find improvements for all subsets and all SSK
configurations, in most cases substantial and in almost all cases statistically signifi-
cant. The same situation applies for “ship” , even though the general level of the F1
values for VSM representation and SSKs is very low, especially for the very small
subsets. Due to the extremely small number of training documents in the 1% subset,
these results should be considered with care.

6.3 Experiments with Semantic Smoothing Kernels on AMAZON

Data

In a second set of experiments, we analyze the behaviour of SSKs for the classification
of editorial reviews of scientific books according to the covered topic on the AMAZON

collection (Ifrim and Weikum, 2006).

6.3.1 Task and Dataset

Description of the Dataset

The AMAZON dataset was compiled by Ifrim and Weikum (2006) and contains edito-
rial reviews of books for sale by the online book retailer AMAZON.COM. The texts are
organized into classes according to the categorization provided by AMAZON.COM.
The dataset contains a total of 5,634 editorial reviews for books in the three categories
“Biology” (2,047 reviews), “Mathematics” (2,258 reviews), and “Physics” (1,329 re-
views).

Training vs. Test Data

The dataset does not provide a breakdown into training and test documents. We
thus randomly selected 500 documents of each class which together formed the test
collection for the experiments, the remaining documents formed the corresponding
training collection.

Characteristics of the Dataset

The AMAZON dataset differs from the REUTERS-21578 dataset in various aspects.
On the one hand, the vocabulary is richer and the language ambiguity is higher. On
the other hand, the different categories are much more homogeneous with respect to
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their characteristics. While in the REUTERS-21578 dataset, as discussed above, vari-
ous classes can be identified solely on the basis of a small number of discriminative
keywords which occur frequently, all classes in the AMAZON dataset are character-
ized by a large number of topic-related scientific terms which occur at medium or low
frequency. For example, the category “mathematics” is characterized sufficiently well
by means of terminology as diverse as “calculus” , “Fourier analysis” , “geometry” ,
“set theory” etc. Clearly, all of these are branches of mathematics and their similarity
is reflected by their neighbourhood in the WORDNET noun hierarchy.

6.3.2 Experimental Setup

Focus of the Experiments

In this experiment, we aim at investigating the performance of Semantic Smoothing
Kernels in the light of the following aspects:

Small Datasets Similar to the previous experiments on the REUTERS-21578 dataset,
we again aim at quantifying performance gains in settings where little training
data is available.

Comparison of Different SSK Paradigms While we have investigated smoothing pa-
rameters based on the taxonomic overlap of superconcepts, we this time aim to
also compare this representation to the performance of SSKs that use squared
matrices of the semantic similarities defined between all terms.

Consideration of Compound Terms The AMAZON dataset is characterized by a sub-
stantial frequency of compound expressions (e.g. “computer science” ) with dis-
tinct meaning. As such expressions are usually not affected by lexical ambiguity
when mapping to term senses, we this time choose to use this kind of represen-
tation.

Preprocessing

We prepared the VSM representation of the documents based on the standard pre-
processing steps. After initial tokenization we used the WORDNET dictionary and
morphology module in conjunction with a sliding window of length 2 to detect com-
pound expressions and to lemmatize the expressions. Standard stopwords for En-
glish defined in the SMART stopword list were again removed. This indexing step
resulted in a total number of 38,530 distinct terms. All term features were weighted
according to the standard TFIDF scheme.
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Training Subsets

As we want to quantify performance gains in settings where very little training data
is available, we again prepared subsets of the overall training. For each category, sub-
sets of different sizes were prepared. The subsets were built by randomly choosing
5, 10, . . . , 50 as well as 100, 200 documents of each category, whereby the target cate-
gory contributed the positive training documents and the remaining two categories
contributed the nagative training documents. This means that when we refer to a
subset size, e.g. to the “10” subset, this corresponds to the subset of 3 times 10 doc-
uments (“3× 10”). Like in the previous experiments, this technique was repeated 10
times for each subset size and for each target category to minimize random effects.
Overall this procedure thus results in 80 training subsets per category. We further
prepared a single sample of 500 documents per category.

Smoothing Parameters

As in the case of the REUTERS-21578 experiments, we use the noun hierarchy of the
lexical database WORDNET (c.f. Example 4.1) as the taxonomic backbone. For the
setup of the smoothing matrices as discussed in Section 5.4 we used two variants:

• Unnormalized taxonomic overlap of superconcepts (c.f. Definition 4.14) and
weighted taxonomic overlap of superconcepts (c.f. Definition 4.15), whereby
we used the popular path- and IC- based measures of semantic similarity of
Sections 4.3.1–4.3.4 for weighting.

• Squared smoothing matrices of the popular path- and IC- based measures of
semantic similarity discussed in Sections 4.3.1–4.3.4.

Frequency counts needed for the calculation of any of the similarity measures mak-
ing use of IC were this time obtained from the Brown corpus (Kucera and Francis,
1967). Recall that Table 6.3 summarizes the descriptions of the smoothing matrix
configurations used in the experiments. Again, we used the simple (and noisy) dis-
ambiguation heuristic of choosing the most frequent term sense for a given linguistic
expression in the index. As the corpus contains a substantial fraction of terms which
occur only in very few documents, we further restricted the off-diagonal matrix en-
tries to terms which occur at least five times in the overall corpus. All pairs of entries
which were ignored this way or for which the sense mapping failed were again as-
sumed to take the default values (i.e. zero and one for off-diagonal and diagonal
entries respectively) during kernel evaluation.
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6.3.3 Results

Binary classification experiments were then conducted for each category and each
subset resulting in a total number of 243 experiments for each configuration. In each
run, the SVM classifier was trained using the respective subset and the correspond-
ing testing was conducted using the full test set. The soft margin parameter C that
controls the influence of misclassified examples as discussed in Section 2.3.2 was set
to C = 0.1 in all experiments. Again, this decision was based on preliminary experi-
ments that showed that its variation in the common [0.1, 10] range had little effect for
the obtained results, even though a perfect linear separation was not always possible.

Global Analysis

For each of the investigated configurations, Table 6.6 summarizes the absolute macro
F1 values obtained over the different subsets of the AMAZON dataset. The choice
of the macro averaging scheme is motivated by the fact that the number of positive
training examples is identical for all three target classes. As the three target classes
are, in contrast to the REUTERS-21578 experiments, more uniform in their character-
istics and the training subsets are chosen to contain equal numbers of all classes, we
also include the results of the paired T-Test on an improvement of the macro-averaged
F1 based on the 10 samples per subset size and configuration (except for the 3× 500
subset which was sampled only once).

Again we note that all types of SSKs achieve substantial and statistically signifi-
cant improvements over the VSM baseline for the smallest subsets of up to 50 ex-
ample documents per class (i.e. a dataset of 150 documents). Similar to the previous
experiment on REUTERS-21578, the improvement diminishes as more training data
becomes available and eventually deteriorates in some of the cases when compared
to the VSM baseline.

However it is again crucial to distinguish the different types of configurations.
When considering the representations based on the (weighted) taxonomic overlap
of superconcepts we note that the hyp-full scheme performs well in the beginning
but falls behind the competing configurations already at the 3× 10 subsets. The hyp-
resnik schemes is among the best performing weighting schemes until the 3× 100
subset. The hyp-lin scheme and, slightly lagging behind, the hyp-wupalmer schemes
can achieve performance gains up to the 3× 200 subsets. The hyp-path1 and hyp-
path2 schemes show only moderate tough still statistically significant gains com-
pared to the VSM baseline at smaller subset sizes but remain stable also in situations
of more available training data.

The results of SSKs based on squared full similarity matrices seem to support our
earlier analysis that this kind of representation is likely to introduce too much noise
and is thus inadequate in the general case. While the initial results on the 3 × 5
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Table 6.6 — Macro-averaged F1 results for different AMAZON subsets and different
Semantic Smoothing Kernel configurations. All numbers are percentages. For sub-
sets of 5 documents per category until 200 documents per category, values are macro
averages over all classes and samples. Results marked with one star are significantly
better than the corresponding VSM baseline according to the (one-sided) paired T-
Test at a significance level of α = 0.05 while two starts indicate the same but for the
tighter significance level of α = 0.01. For the subset of 500 documents per category,
values are macro-averages over all classes (only one sample, no significance testing).

Configuration 5 10 20 30 40 50 100 200 500

vsm 16.7 24.9 39.9 50.2 58.0 63.0 73.5 78.9 82.0

hyp-full ??46.9 ??53.3 ??61.3 ??66.3 ??68.9 ??71.7 ??76.4 78.9 80.3
hyp-resnik ??44.2 ??55.9 ??64.0 ??69.4 ??72.3 ??73.8 ??77.6 78.8 72.4
hyp-wupalmer ??45.5 ??54.4 ??63.1 ??68.4 ??71.1 ??73.4 ??77.8 ??80.0 81.4
hyp-lin ??44.2 ??54.3 ??63.4 ??68.7 ??71.4 ??73.6 ??77.9 ??80.1 81.4
hyp-path1 ??36.2 ??50.0 ??61.0 ??67.5 ??71.0 ??73.6 ??78.9 ??81.5 82.5
hyp-path2 ??20.5 ??32.9 ??50.6 ??60.3 ??66.5 ??70.2 ??77.3 ??81.0 82.2

simsq-resnik ??46.8 ??48.7 ??56.8 ??61.9 ??64.7 ?67.3 70.5 65.1 55.3
simsq-wupalmer ??46.1 ??48.2 ??55.9 ??60.5 ?63.4 ?66.9 72.8 69.3 46.0
simsq-lin ??46.9 ??48.4 ??56.8 ??61.3 ??64.3 ??67.6 73.4 76.4 56.6
simsq-path1 ??48.6 ??55.2 ??64.1 ??68.4 ??70.9 ??73.5 ??78.2 77.5 40.7
simsq-path2 ??41.0 ??53.4 ??63.5 ??69.3 ??72.1 ??74.3 ??78.2 77.5 82.3
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subsets are a bit more favorable than for the smoothing parameters based on the
(weighted) taxonomic overlap of superconcepts, the sim-resnik, sim-wupalmer, and
sim-lin schemes fail to hold up this margin and begin to deteriorate. Nevertheless
they show improvements compared to VSM and deteriorate only at subset sizes of
3× 100 and above. The sim-path1 and sim-path2 schemes are consistently better than
the more advanced weighting schemes but show the same general pattern compared
to VSM and the smoothing parameters based on the (weighted) taxonomic overlap
of superconcepts.

6.4 Experiments with Semantic Syntactic Tree Kernels for
Question Classification

While the last two experiments have analyzed the behaviour of Semantic Smoothing
Kernels, we now switch to Semantic Syntactic Tree Kernels. question answering (QA)
has a long history within the framework of the TREC (Text Retrieval Conference)
evaluation series.8 This long tradition has produced a large question set used by
several researchers which can be exploited for experiments on question classification
(QC) (Metzler and Croft, 2005). As we will see, the setting of question classification
is particularly sensitive to the syntactic structure of the input data which makes this
setting interesting for the use of Semantic Syntactic Tree Kernels. In fact, tree kernels
have shown to be effective means for question classification (Zhang and Lee, 2003;
Moschitti, 2004; Quarteroni et al., 2007; Li and Roth, 2006) and main focus of the
experiments will be to investigate the additional effects obtained through the use of
Semantic Syntactic Tree Kernels.

6.4.1 Task and Dataset

Description of the Question Classification Task

QC (Li and Roth, 2002) aims at detecting the type of a question, e.g. whether the
question asks for a person or for an organization which is critical to locate and extract
the right answers in QA systems. According to (Li and Roth, 2002), we can define
QC “to be the task that, given a question, maps it to one of k classes, which provide a se-
mantic constraint on the sought-after answer”. A major challenge of QC compared to
standard text classification settings is that questions typically contain extremely few
words which make this setting a typical victim of data sparseness. At the same time,
the syntactic structure of the sentence determines the relation between the statements
in the sentence to the entity referred to by the “Wh” -question word. As this sough-
after entity determines the classification of the question, the syntactic relations within

8http://trec.nist.gov
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(SBARQ (WHNP (WP What)) (SQ (VP (VBP are) (NP (NP (DT the) (NNS names))
(PP (IN of) (NP (NP (DT the) (NN tourist) (NNS attractions)) (PP (IN in) (NP
(NNP Reims)))))))) (. ?))

(SBARQ (WHNP (WP What)) (SQ (VP (VBZ ’s) (NP (NP (DT the) (JJ only) (NN
work)) (PP (IN by) (NP (NNP Michelangelo))) (SBAR (WHNP (WDT that)) (S
(VP (VBZ bears) (NP (PRP his) (NN signature)))))))) (.?))

Figure 6.4 — Examples of Question Parse Trees from the TREC QC Dataset.

the sentence provide useful classification information and need to be considered ad-
equately.

Description of the Dataset

The experiments in this section are based on a dataset that has initially been em-
ployed by authors like Li and Roth (2002) and Zhang and Lee (2003) and is freely
available.9 The free-text questions in the dataset are categorized according to differ-
ent taxonomies of different granularities. The experiments reported on in this section
consider the coarse grained classification scheme as described by Li and Roth (2002),
consisting of 6 classes: “Abbreviations” , “Descriptions” , “Entity” , “Human” , “Loca-
tion” , and “Numeric” (e.g. codes or dates).

Two examples of Question Parse Trees from the TREC QC Dataset are given in
Figure 6.4. The example parse tree in Figure 5.2 on page 111 is also taken from this
dataset. Again, refer to Appendix B for the full list of used annotations.

Training vs. Test Data

We use the standard benchmark setting devised by Li and Roth (2002). The train-
ing set consists of 5,500 questions which taken from the 4,500 English questions pub-
lished by USC (Hovy et al., 2001), about 500 questions provided by Li and Roth (2002)
and 894 questions from TREC 8 and TREC 9. The test set consists of 500 TREC 10
questions for testing.

6.4.2 Experimental Setup

Preprocessing

The reference term dictionary was compiled by tokenizing all questions sentences. To
allow for a fair comparison the preprocessing was modified compared to the standard

9http://l2r.cs.uiuc.edu/~cogcomp/Data/QA/QC/
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VSM representation by not remove any stopwords. This decision is motivated by the
intuitive finding that, as opposed to the standard topic-based classification, function
words like “What” or “Who” are highly informative for the question classification
task. Further, as in the experiments of Zhang and Lee (2003), terms were not lem-
matized to their base forms for the VSM baseline. Note that we will shortly discuss
the results for alternative features which are reported in literature (Li and Roth, 2002;
Zhang and Lee, 2003) later on. Altogether, this preprocessing led to a total number
of 8,410 distinct terms. For this VSM representation, the vector components were
again weighted according to the standard TFIDF scheme. The question parse trees
needed for the tree kernel based representations were obtained by running the parser
developed by Charniak (2000).10

Smoothing Parameters

As in the previous experiments, we used the noun hierarchy of the lexical database
WORDNET as the taxonomic backbone to compute the smoothing parameters for the
Semantic Syntactic Tree Kernels. For the setup of the smoothing matrices as discussed
in Section 5.4 we used one setting:

• Cosine-normalized variants of the taxonomic overlap of superconcepts (c.f. Def-
inition 4.14) and of the weighted taxonomic overlap of superconcepts (c.f. Def-
inition 4.15), whereby we used the popular path- and IC- based measures of
semantic similarity of Sections 4.3.1–4.3.4.

Again recall that Table 6.3 summarizes the descriptions and coding of these config-
urations as well as those used in any of the other experiments. As in the previous ex-
periments we used the mapping of terms to the most frequent noun sense associated
with their base form as disambiguation heuristic. Statistics for calculating the infor-
mation content were this time obtained from the Brown corpus (Kucera and Francis,
1967) as word frequency estimations on the TREC QC dataset itself would be rather
unreliable due to its far smaller overall size. Again, pairs of smoothing parameters
that were undefined were assumed to take the default values (i.e. zero for distinct
and one identical terms respectively).

6.4.3 Results

The experimental setup was identical to the setup of Zhang and Lee (2003) as it con-
tains the most comprehensive comparison of experiments on the TREC QC corpus.
Binary classification experiments were conducted on each of the 6 question types of
the coarse-grained classification scheme described above. To be able to compare with

10http://www.cs.brown.edu/people/ec/#software
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the literature results, the binary classifiers were further combined according the one-
vs-all multi-classification scheme. This means that for a given question, besides the
classifications vs. all classes, a single class is selected for which the corresponding
test instance produces the highest margin score of the binary SVMs. In all experi-
ments, C = 1 was used as soft-margin parameter. Furthermore, the best cost-factor
for positive vs. negative classifications in SVMs (Morik et al., 1999; Joachims, 2002)
was preliminary determined on a small validation set.

The experiments compare plain kernels based on the VSM representation, the origi-
nal tree kernel and a set of SSTK configurations with different term similarities. Based
on the findings by Zhang and Lee (2003) and Quarteroni et al. (2007), the normalized
tree kernels were in all cases additively combined with normalized VSM kernels. Fur-
thermore, for the tree kernels, different values of the decay parameter λ and the leaf
contribution parameter α (c.f. Section 5.3.5) were considered.

Analysis of the Results

For all configurations, this section reports on the F1 scores for the binary classifiers.
As the target classes are unevenly distributed in the test data, but at the same time
there is are no class which would dominate the result, the reported averages are based
on the micro-averaging scheme. Furthermore, to be able to compare with literature
results, we also report the adjusted single-label accuracy after one-vs-all processing
(c.f. Section 2.5.2) as eventually only one dedicated class should be assigned to a given
question.

Table 6.7 reports the results of the experiments. The first column indicates the value
of the α parameter of the tree kernel discussed in Section 5.3.5. The second column
shows the type of term similarity kernel used together with the kernel function of
SSTKs, whereby tree kernel indicates that the original tree kernel formulation is used.
The remaining columns report the micro-averaged F1 and the adjusted single-label
accuracy.

While the variation of the λ parameter seems to have a minor importance, the im-
provement of the tree kernels seems to be largely consistent. We can note that default
tree kernels can achieve up to 91.6% of multi-classification accuracy (for α = 2). The
above values can be improved considerably when we employ term similarity kernels.

In all cases, the additional semantic information in Semantic Syntactic Tree Kernels
improves performance whereby the improvement is highest for the hyp-wupalmer
scheme. In particular, the tree kernel based on the hyp-wupalmer similarity and
parameters α = 2 and λ = 0.05 achieves the highest multi-classification accuracy, i.e.
93.6%. For the α parameter, values over α = 2 were also investigated but could not
improve the results any further (although they did not harm, either).
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Table 6.7 — Results for different parameter settings on the TREC QC dataset. Evalu-
ation of different kernels on the question classification dataset for different values of
α, different values of λ and different semantic smoothing kernels. Evaluation results
for the VSM representation are included as baseline (obviously, the settings of λ don’t
apply here). For each combination, the table reports micro-averaged F1 measure (µF1)
and adjusted single-label accuracy (A∗). All numbers are percentages.

λ = 0.05 λ = 0.01 λ = 0.005 λ = 0.001
µF1 A∗ µF1 A∗ µF1 A∗ µF1 A∗

vsm 81.5 89.2 81.5 89.2 81.5 89.2 81.5 89.2

α
=

1

vsmn + tree kernel 89.8 90.8 89.7 91.2 89.7 91.2 89.7 91.4

vsmn + sstk hyp-full-norm 91.0 92.6 90.6 92.6 90.6 92.6 90.7 92.6
vsmn + sstk hyp-resnik-norm 91.0 92.6 90.9 92.2 90.9 92.2 90.9 92.2
vsmn + sstk hyp-lin-norm 90.9 92.2 91.2 92.4 91.2 92.4 91.3 92.4
vsmn + sstk hyp-wupalmer-norm 91.0 92.6 91.2 92.6 91.2 92.6 91.3 92.6

α
=

2

vsmn + tree kernel 89.7 91.4 89.8 91.6 89.9 91.4 90.0 91.4

vsmn + sstk hyp-full-norm 91.2 93.2 91.5 93.0 91.6 93.0 91.6 93.0
vsmn + sstk hyp-resnik-norm 91.1 92.8 91.3 92.6 91.2 92.6 91.2 92.6
vsmn + sstk hyp-lin-norm 91.1 92.4 91.4 92.6 91.2 92.6 91.5 92.6
vsmn + sstk hyp-wupalmer-norm 91.6 93.6 91.5 93.0 91.4 92.8 91.4 92.8
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Table 6.8 — Summary of literature results for the TREC QC dataset in terms of ad-
justed single-label accuracy (A∗). All numbers are percentages.

Source Algorithm & Features/Kernel A∗

Li and Roth (2006) Sparse Network of Winnow on var-
ious manually constructed features

92.5

Quarteroni et al. (2007)
SVM on VSM 90.6
SVM on tree kernel and VSM (indi-
vidually normalized)

91.8

Zhang and Lee (2003)
SVM on VSM 85.8
SVM on n-grams 87.4
SVM on (modified) tree kernel 90.0

Comparison with Literature Results

As the evaluation setting of Li and Roth (2002) which was considered in this exper-
iment has been used several times in literature, we shortly compare the results of
this section with those reported in literature. Table 6.8 summarizes the best figures
reported as well as a selection of figures on inferior representations.

First of all, note that the baseline results obtained using SVMs on the VSM repre-
sentation vary between 85.8% (Zhang and Lee, 2003) (which is substantially worse
than our baseline results, i.e. 89.2%) and 90.6% (Quarteroni et al., 2007) (which is
slightly above our results). These differences could be due to a different preprocess-
ing strategy but also due to effects relating to the setting of the C parameters or the
cost-factor. In either case, the VSM representation should not serve as the relevant
baseline as it ignores syntactic information.

More important are the results obtained using tree kernels. Zhang and Lee (2003)
used a modified formulation of the original tree kernels by Collins and Duffy (2002)
which directly integrates the VSM feature space into the tree kernel computation
yielding an overall accuracy of 90.0%. This result is already outperformed by our
basic configuration vsmn + tree kernel in the range of 90.8% – 91.6%. Similar to the
results reported here, Quarteroni et al. (2007) report their best result for this setting at
91.8% multi classification accuracy.

Li and Roth (2006) report on the use of a different classifier infrastructure, namely
Sparse Network of Winnow (Carlson et al., 1999) using a whole range of complex
and manually constructed syntactic and semantic features. Despite this elaborate
feature space design, the best multi classification accuracy reported there is 92.5% as
compared to 93.6% in the experiments of this section. The superior behaviour of all
the taxonomy-derived SSTKs thus suggests that they can accurately model complex
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feature spaces for QC tasks while requiring minimal user intervention.

6.5 Summary and Discussion

This chapter has reported on an extensive series of experiments based on the concepts
of Semantic Smoothing Kernels and Semantic Syntactic Tree Kernels which were in-
troduced in Chapter 5. In the following, we summarize the main findings:

• Semantic Smoothing Kernels are an effective means for incorporating concep-
tual background knowledge from lexical knowledge structures into the prevail-
ing VSM representation to introduce a bias in situations where there is insuffi-
cient training data to build stable statistical models. Generally, the performance
of SSKs is superior to the performance of the plain VSM model in cases where
little training data is available. In situations of “sufficient” training data, SSKs
are generally less effective and can even deteriorate the results when compared
to the VSM baseline.

• The behaviour of SSKs varies with respect to the characteristics of the target
class. If a given target classes can be characterized unambiguously by means
of a set of terms which occur frequently, SSKs appear to be less effective while
they show their potential in situations of heterogeneous use of language.

• Different SSKs configurations based on (weighted) taxonomic overlap differ
with respect to the performance that can be achieved. While “crisp” weight-
ing schemes like hyp-full and hyp-resnik can show good results for very small
training sets, they soon fail to do so as more training data becomes available.
Combined weighting schemes like hyp-wupalmer and hyp-lin can carry over
good initial results to larger training subsets. Finally, “fine-grained” weighting
schemes like hyp-path1 and hyp-path2 improve upon the baseline in virtually
all cases, including situations of larger amounts of training data but can at the
same time not achieve the high performance gains of the other schemes on very
small training sets.

• One of the alternatives to using (weighted) taxonomic overlap for configur-
ing the smoothing parameters of SSKs is to encode similarities according to
a given similarity measure directly into a matrix and square this matrix for use
as smoothing parameter. The experiments on the AMAZON corpus show that
this approach can be effective as well when compared to the VSM baseline for
smaller training subsets. However, this alternative configuration generally per-
forms worse than the configurations based on (weighted) taxonomic overlap
and sooner falls below the VSM baseline as more training data becomes avail-
able.
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• Semantic Syntactic Tree Kernels are an effective way of incorporating back-
ground knowledge about lexical semantics with tree kernels for syntactic struc-
ture. This is a desirable property on tasks like question classification where
syntactic structure is important but, at the same time, due to the short length
of questions, data sparseness is also an issue. The experimental results show
that SSTKs based on (weighted) taxonomic overlap do not only outperform the
VSM baseline and ordinary tree kernel formulations but also benchmark re-
sults from literature that employ complex manually constructed syntactic and
semantic features.

Open issues along the lines of work of this chapter include the following:

• An improved handling of word sense ambiguity. In all experiments in this
chapter, we have used the default WSD strategy of considering the most fre-
quent noun sense for a given term. In this light, the results reported in this
chapter appear to be pessimistic estimates of a perfectly disambiguated sense-
based representation. Mavroeidis et al. (2005b) have experimented with SSKs
on disambiguated term vectors, but it is not clear in how far their (mixed) re-
sults can be attributed to their WSD scheme. In fact, authors like Sanderson
(1994) have claimed that word sense ambiguity has only a minor effect on per-
formance in IR and various text mining tasks and our results seem to support
this finding. Furthermore, the impact of wrongly disambiguated terms is likely
to vary substantially between the different experiments. For example, the com-
pound indexing scheme used in the AMAZON experiments is likely to cause
a substantial reduction in wrong disambiguation of relevant words. Similarly,
for the experiments with Semantic Syntactic Tree Kernels, terms are constrained
within their respective POS classes, thus minimizing the wrong assignment of
noun senses to verb terms.

• The design of the smoothing parameters in the experiments was mostly re-
stricted to measures of (differently weighted) taxonomic overlap and normal-
ized variants thereof. While the analysis in Chapter 4 has shown that (most)
taxonomic similarity measures are unsuited for this purpose because they are
likely to yield indefinite similarity matrices, future work also needs to investi-
gate the design of new similarity measures which comply with the requirement
of positive semi-definiteness.

• We have seen in Chapter 5 that (unnormalized) smoothing parameters also in-
troduce, in addition to the semantic smoothing, a reweighting effect on the ba-
sic term representation. Future work thus needs to investigate the interplay
between weighting schemes like TFIDF and this effect.
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• Future work also includes, at least for the case of Semantic Smoothing Kernels,
measures which are based on relatedness measures as opposed to similarity
measures considered here. Practically, these measures use not only the tax-
onomic backbone of the employed knowledge structure, but also take other,
non-taxonomic, relations into account (Budanitsky and Hirst, 2006).

• Another direction of research is the use of automatically induced knowledge
structures as taxonomic backbone for the computation of semantic similarity
measures. Initial results in the context of explicit conceptual document repre-
sentations, e.g. by Bloehdorn et al. (2006c) suggest that such structures can to
some extent mimic the effect of manually constructed knowledge structures.
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Part IV

Kernels for Mining Instance Data in
Ontologies
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Chapter 7

Designing Kernel Functions for Instance Data
in Ontologies

The overall topic of this thesis is the design of kernel functions that are capable of
working with declarative knowledge encoded in formal knowledge structures. The
last chapter has covered one particular aspect of this setting, namely the question
in how far knowledge structures can provide useful complementary knowledge for
standard data representations — in our case with the specific focus on textual data. In
this chapter we investigate another aspect of this setting, namely the case of learning
with instances that are fully described within formal ontological structures. In partic-
ular, we analyze the primitives available within ontologies for modelling individuals
and derive a set of corresponding kernel functions that can be tuned and combined
for a particular learning setting. The chapter is organized as follows. Section 7.1 re-
views the application context and motivates the work of this chapter together with an
analysis of some example scenarios and the main requirements. Subsequently, Sec-
tion 7.2 formally introduces the kernel design framework. It first motivates and in-
troduces the individual kernel components and then discusses their composite struc-
ture. Where appropriate, the section provides examples of such kernels and discusses
practical issues for kernel computations. While the kernel design framework is pre-
sented in terms of the generic class-based ontology model of Chapter 3, it is meant
to be practically applied in the context of Web Ontology Language (OWL)-based on-
tologies. Section 7.3 shortly discusses implementation strategies for the kernel frame-
work. Section 7.4 points to related work in the area of kernel functions and similarity
measures for ontologies while Section 7.5 concludes with a short summary and a dis-
cussion of the presented concepts. We instantiate the kernel framework introduced
in this chapter in a set of practical experiments in the subsequent chapter.

7.1 Learning with Formal Knowledge Structures

In this section, we review the application context and motivate the work of this chap-
ter.
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7.1.1 Motivation

In Chapter 3, we have introduced the concepts of knowledge structures and on-
tologies as important building blocks of the emerging Semantic Web (Berners-Lee
et al., 2001; Shadbolt et al., 2006). Recall that the Semantic Web is the vision of
the World Wide Web as a universal medium for data, information, and knowledge
exchange where knowledge can be expressed formally in a format that can be in-
terpreted directly by computer systems, permitting them to discover and integrate
knowledge and to reason about it. Hereby, ontologies provide the vocabulary to for-
mally describe and integrate data. The standardization of the Resource Description
Framework (RDF) and the Web Ontology Language (OWL) (Horrocks et al., 2003)
have led to an increasing amount of available reference ontologies and a rising num-
ber of semantic annotations. As of March 2008, the statistics of the Semantic Web
search engine SWOOGLE1 count a total of 1, 359, 231 publicly available “error-free pure
Semantic Web documents” containing a number of 606, 394, 051 “triples [that] could be
parsed from all Semantic Web documents”.

With the increased availability of data sources of this type, engineers of intelligent
applications are facing the question how these data sources can be used in data min-
ing scenarios. While the prevailing paradigm for working with formal ontologies is
deductive reasoning, this view takes the paradigm of working with formal ontologies
by means of inductive reasoning. The particular appeal of this approach lies in the
fact that it enables the linking of the formal logical underpinning of current Semantic
Web technology with machine learning techniques. This approach be seen charac-
terized as learning from the Semantic Web — a complementary activity to work in
ontology learning, i.e. learning for the Semantic Web (Buitelaar et al., 2005, and refer-
ences therein). Despite early interest in the topic, also phrased Semantic Web Mining
(Berendt et al., 2002) at that time, principled approaches for mining Semantic Web
data by means of statistical machine learning methods are still missing.

Example 7.1 (Bibliographical Data). Consider the case of a knowledge structure de-
picted in Figure 7.1 which describes the domain of research, including persons, in-
stitutions and publications. Assume a user, who has read some of the publications
stored in the knowledge structure, some of which were judged positive, others nega-
tive. How could a statistical learning algorithm use the overall knowledge structure
to learn a predictive model for publications liked or disliked by the author and thus
help him to retrieve relevant publications faster?

The kernel framework proposed in this chapter thus serves two main purposes.
On the one hand, it provides a general and unifying framework for mining Semantic
Web data sources with kernel methods. Just as the Semantic Web aims to abstract

1http://swoogle.umbc.edu/
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ResearchStaff

Person

PhDStudent AssociateProfessor

“Stephan Bloehdorn” “York Sure”

“Kernel Methods for . . . ”

“Ontologies for Machine Learning” “Knowledge Processes and Ontologies”

person204 person111institute234

publication100

publication104 publication204

subClassOf

subClassOf

subClassOf

instanceOf instanceOf

affiliation

affiliation

author

author

author author

name
name

title title

title

Figure 7.1 — Example ontology fragment. The fragment depicts a simplified frag-
ment of the AIFB dataset, described according to the primitives of the SWRC ontol-
ogy (Sure et al., 2005).
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away from specific data formats and provide a general framework for data items, the
family of kernel functions in this chapter aims to abstract away from special purpose
kernel functions which are designed for a specific data structure. On the other hand,
it provides a clean and flexible interface for integrating intensional knowledge into the
learning process. Due to the formal semantics of these languages, kernel functions on
Semantic Web data items can rely on deductive reasoning engines when comparing
characteristics of two instances. As most data sources exhibit complex relationships,
implicit domain knowledge specified within ontologies can provide valuable extra
information.

7.1.2 Statistical Learning vs. Inductive Logic Programming

Learning with formal knowledge structures has traditionally been the domain of
Inductive Logic Programming (ILP). The term was coined by Muggleton (1991),
to describe the research area at the intersection of machine learning and logic pro-
gramming (Lavrač and Džeroski, 1994; Muggleton and Raedt, 1994). Similar to the
techniques discussed in this chapter, ILP uses logic as the uniform representation for
examples and background knowledge. However, in ILP also the learned hypotheses
are described in terms of formal logic. Specifically, given a first-order logic encoding
of the known background knowledge and a dataset represented as a set of logical
axioms, ILP systems try to derive a logic program which explains all the positive but
none of the negative examples. Successful applications areas for ILP systems include
the learning of structure-activity rules for drug design, prediction of protein structure
and fault diagnosis rules for technical systems. The strongest point of ILP techniques
is, however, that they provide an intensional description of the positive training ex-
amples in a classification task in terms of the logical language. The results can thus
be interpreted naturally by knowledge engineers and incorporated directly into the
ontological framework.

On the other hand, ILP techniques exhibit several problems when contrasted with
the kernel-based paradigm taken in this thesis. First, the extreme computational re-
quirements for searching optimal hypotheses have shown to limit the applicability of
ILP algorithms in many practical settings. Secondly, ILP is occupied almost entirely
with classification tasks, whereas the portfolio of kernel-based learning techniques
naturally embraces all major types of learning problems, including besides classifica-
tion tasks as regression, ranking, novelty detection, clustering, and dimension reduc-
tion. Thirdly, kernel-based learning techniques can be thoroughly analyzed in terms
of statistical learning theory. Like all statistical learning algorithms, this allows for
a principled handling of noise within the training data while the complexity of the
resulting models can be controlled in terms of the norm in the implicit feature space,
thus leading to better generalization behaviour.

The main ingredient for successful kernel-based learning is naturally the choice of
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an adequate kernel function. This can be seen as an alternative to propositionaliza-
tion techniques (Kramer et al., 2001) which aim at the construction of propositional
features for logic-based representations.

7.1.3 Requirements

In the following, we collect a number of requirements for kernel functions on in-
stances in ontologies.

First of all, we have seen in Chapter 2 that kernel functions are characterized as
the set of positive semi-definite functions. As a natural formal requirement a kernel
framework for instance data in ontologies needs to ensure the validity (i.e. the posi-
tive semi-definiteness) of the resulting kernel functions under all parameter choices.

Secondly, the specific description of a given set of data items depends on the mod-
elling decisions taken by the engineer(s) of the reference ontologies. Along the same
line, the quality of a given kernel function will depend on the learning task at hand
and on the available ontological structure that can be exploited. The kernel frame-
work should thus not prescribe a specific kernel function but rather provide the user
with the flexibility to design kernel functions with respect to the given task and data.

Thirdly, kernel functions should not rely only on the explicit assertions within the
ontology but also on the intensional knowledge contained in the reference ontolo-
gies. The kernel framework should thus generally be based on all of the inferred
knowledge.

7.2 Kernel Design Framework

In this section, we introduce a general framework for kernel functions on instance
data as a formal and comprehensive foundation for mining ontological instance data.
The basic principle of the family of kernels covered by this framework is the de-
composition of instances into sets of kernel functions, each of which exploits another
descriptive primitive. Along the common lines of interpretation of similarity we will
consider two instances the more similar, the more common (or similar) characteristics
they have. We look at the modelling primitives available in class-based ontology lan-
guages and discuss the respective implications for the similarity of instances. Based
on these considerations, we suggest kernel functions that mirror the respective no-
tion of similarity. For each component, we give the formal definition and discuss
its interpretation. Depending on the learning task at hand and on the nature of the
available data, this set of component kernels has to be specified declaratively by the
kernel engineer.

Throughout this section and the rest of this chapter, we rely on the ontology
model introduced in Chapter 3. While this basic model constitutes the minimal
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set of modelling primitives, we will generally assume that ontologies will be more
richly structured in general, in particular that they use other primitives of OWL
and the associated Description Logics (DLs). Throughout this section, we will as-
sume that kernels are always computed with respect to a fixed reference ontology
O = (I , C,P0,PD,D,S). Of course in data integration scenarios, O can be any com-
bination of n individual ontologies, i.e. O = O1 ∪ . . . ∪ On. Hereby O1 ∪ O2 is the
global interpretation of the two ontologies O1, O2 which is given by the union of the
entities and axioms of the respective ontologies.2

7.2.1 Atomic Kernel Functions

This class of kernels consists of those kernel functions which do not rely on any other
individuals for computing the kernel values than the two argument individuals.

Identity Kernel

The identity layer kernel can be seen as the most simple kernel function.

Definition 7.1 (Identity Kernel for Individuals). Given two instances ind1, ind2 ∈ I
of some reference ontology O, we define the identity kernel κ≡ : I × I 7→ {0, 1} as:

κ≡(ind1, ind2) =
{

1, ifO |= ind1 ≡ ind2
0, otherwise

.

As we will see, the purpose of this kernel is mainly to serve as an argument to other
(non-atomic) kernel functions to be considered subsequently. Note that the kernel
does not compare instances based on their instance name but in terms of their asserted
equality. Recall from the discussion in Chapter 3 that in the common setting of DLs,
where the unique names assumption does not hold, this means that the two different
instance names can resolve to one and the same object. The kernel thus corresponds
to an implicit feature space in which each instance is mapped to a distinct dimension
that corresponds to its counterpart in the model domain.3

2The global interpretation of multiple ontologies is usually the desired setting. If for specific reasons
a local interpretation is desired, the framework could be extended accordingly, e.g. in terms of the
C-OWL formalism proposed by Bouquet et al. (2003).

3Such mappings enhance the independence of inputs and force learning algorithms to rely on more
data points when building a statistical model. Refer to Shawe-Taylor and Cristianini (2004) for a
discussion of the relation of this to 1-norm and 2-norm formulations of the soft margin Support
Vector Machine (SVM).
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Class-Based Kernels

The core modelling primitive for organizing instances in ontologies is the use of
classes. Named classes organize instances along basic properties and are related
amongst each other by subsumption relationships. Further, for expressive ontology
languages based on DLs, specifically OWL, complex classes can be related to com-
plex descriptions, whereby a description can make use of various constructors and
constraints (c.f. Chapter 3). In richly axiomatized ontologies, most of the interest-
ing logic deductions relate to the automated structuring of complex classes on the
subsumption hierarchy.

Classes correspond to basic properties and abstractions. The different class(es) that
are instantiated by the argument instances thus form the basic building block for their
comparison within the kernel framework. Intuitively, this type of similarity is useful
in those cases where there is some variation in the classes that are instantiated.

Definition 7.2 (Common Class Kernel). Given two instances ind1, ind2 ∈ I of some
reference ontologyO, and a set Ĉ ⊆ C of reference classes the common class kernel κclass :
I × I 7→ R is given by:

κĈclass(ind1, ind2) = ∑
C∈Ĉ

[O |= C(ind1)][O |= C(ind2)]

whereby [·] again denotes an indicator function which evaluates to ‘1’ and ‘0’ if the
bracketed expression is true or false, respectively.

The validity of the kernel is readily verified as it can be interpreted by defining the
mapping φ(·) as a mapping into a vector space whose dimensions correspond to the
classes Ĉ and the vector components correspond to the binary indicators.

Note that the scope of the kernel is defined by the selection of the classes in Ĉ. In
particular, this also comprises the case of a single class. For the case of expressive
ontology languages in the spirit of DLs, this can include complex class descriptions
such as ∃prop1.class1.

Example 7.2 (Academic Domain (cont.)). Recall the situation of Figure 7.1. The com-
mon class kernel can compare the individuals person204 and person111 based on all
classes. As both indicator functions on the right hand side evaluate to ‘1’ for the
Person and ResearchStaff classes, the kernel would yield κclass(person204, person111) =
2.

An alternative paradigm for computing class-based kernel functions is to associ-
ated an individual with its most specific concept (MSC) and employ a kernel function
on the respective classes.
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Definition 7.3 (Most Specific Class). Given an instance ind ∈ I of some reference
ontologyO, the most specific class of ind is the class msc(ind) = C such thatO |= C(ind)
and C v D ∀D with O |= D(ind).

Note however, that for many Description Logics there need not be a single atomic
class which fulfills the condition of a MSC — in this case, the MSC needs to be formed
by the conjunction over several classes (Baader et al., 2003). This setting presupposes
the definition of a valid kernel function on class descriptions κ : C × C 7→ R. Two
individuals are then assessed via this kernel function on their respective most specific
classes, i.e. κ(ind1, ind2) = κ(msc(ind1), msc(ind2)). Such kernel functions could, for
example be taxonomic similarity measures as discussed in Chapter 4 as long as pos-
itive semi-definiteness can be ensured. This approach has also been considered by
Fanizzi and d’Amato (2006) in conjunction with special kernel functions on complex
class descriptions.

Data Property Kernel Component

As a next building block for determining the similarity of two individuals we con-
sider the properties the argument individuals participate in. The general structure of
this kernel is a sum of kernel evaluations of all compatible pairings of properties.

Definition 7.4 (Data Property Kernel). Given two instances ind1, ind2 ∈ I of some
reference ontology O, and a reference data property dprop ∈ PD with associated
kernel κ(·, ·), the data property kernel κdata : I × I 7→ R is defined as:

κdprop
data (ind1, ind2) = ∑

{di | O|=dprop(ind1,di)}
∑

{dj | O|=dprop(ind2,dj)}
κ(di, dj) .

Hereby, κ(di, dj) is any valid kernel function defined on the data values of O.

Again, the kernel property can be easily verified as the kernel is an instantiation
of the crossproduct kernel of Definition 4.7. The kernel makes use of an underly-
ing base kernel that is defined on the respective datatype linked to by the respective
data property. For basic datatypes, such as strings or numeric values, a variety of
useful kernels have been defined. For String datatypes, we may for example con-
sider dot products of their Vector Space Model (VSM) representation as discussed in
Chapter 5 or the String Kernels as introduced by Lodhi et al. (2002). For numerical
values, the Gaussian Kernel defined on real numbers is a common choice. Again,
we refer to Shawe-Taylor and Cristianini (2004) for information on such kernels. The
feature space associated with this kernel is the feature space associated with the re-
spective base kernel, whereby an individual is represented implicitly as the sum of
the representation vectors of the data values linked to by the data property under
consideration.
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Example 7.3 (Academic Domain (cont.)). Recall the situation of Figure 7.1. The data
property kernel can compare the individuals publication104 and publication204 based
on the targets of their respective title properties. Depending on the employed base
kernel, the occurrence of the word “ontologies” in both titles would lead to judging
the instances as related to some extent.

7.2.2 Kernel Functions on Relational Embeddings

In a similar spirit as with the datatype property kernel, we define kernel functions on
object properties as follows.

Definition 7.5 (Object Property Kernel). Given two instances ind1, ind2 ∈ I of some
reference ontology O, and a reference object property oprop ∈ P0, with associated
kernel κ(·, ·), the object property kernel κobject : I × I 7→ R is defined as:

κoprop
object(ind1, ind2) = ∑

{indi | O|=oprop(ind1,indi)}
∑

{indj | O|=oprop(ind2,indj)}
κ(indi, indj) .

Hereby, κ(indi, indj) is any valid kernel function defined on the individuals of O.

The definition in terms of the crossproduct kernel again makes reference to an un-
derlying base kernel κ(·, ·), this time defined on instances just as the overall kernel
itself. For example, the base kernel could be the matching kernel in which case the
kernel feature space would boil down to counting the number of common targets for
oprop.

If another kernel is used as base kernel, the respective feature space also becomes
the feature space of the object property kernel, whereby the argument individuals
are represented as the sum of the vector representations of their respective target
individuals.

Recall from Remark 3.3 that in the common setting of Description Logics, the
unique names assumption does not hold. In such cases, instance retrieval of the type
{indj | O |= oprop(ind, indj)} may return multiple references to one and the same ob-
ject in the interpretation domain. If it is undesired that multiple references enter the
summation, the set of retrieved instances needs to be explicitly constrained to distinct
individuals.

Further note that the formulation of the kernel only considers target individuals. A
corresponding kernel can be formulated for comparing instances based on the source
individuals which link to the argument individuals. In the practical settings of OWL
based ontologies, this behaviour can be simulated by introducing the inverse prop-
erty and relating it to the original property by means of the inverse statement.

Example 7.4 (Academic Domain (cont.)). Recall the situation of Figure 7.1. The object
property kernel can compare the individuals person204 and person111 based on the
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targets of their respective publication properties. If the identity kernel is used as base
kernel, the result will be based on the joint publication publication100. If the data
property kernel of the previous example is used as base kernel, the kernel would yield
a more differentiated result based on the similarity between all pairs of publication
titles of the two authors.

7.2.3 Kernel Aggregation and Modification

We have so far presented isolated building blocks for kernel calculations on indi-
viduals, e.g. kernels comparing the class structure or the property extensions of the
instances. The power of kernel functions however also stems to a large extent from
the capability of combining and modifying elementary kernel functions to yield more
expressive feature spaces.

Given base kernel functions κ1(·, ·) and κ2(·, ·), they can be combined using the com-
bination operators discussed in Section 2.4.2, namely multiplication and addition.

• The interpretation of the feature space associated with the additive combination
of several kernels is that it corresponds to the composite feature space that is
made up of all dimensions of the feature spaces of the contributing kernels, i.e.
by means of the concatenation of the (implicit) argument vectors.

• The interpretation of the feature space associated with the multiplicative com-
bination of two kernels is that it corresponds to the tensor product of the two
implicit feature vectors, i.e. with the feature vector where each components cor-
responds to the product of two independent features of the original feature vec-
tors.

Similarly, basic kernel functions can be modified, by using them as argument to
known kernel modifiers such as the cosine normalization modifier, the polynomial kernel
modifier or the Gaussian kernel modifier with the corresponding interpretations.

Note that, as discussed in Chapter 2, all of these operations retain the kernel prop-
erty. As the component kernel functions as well as their combination or modification
operators are valid, the validity of the overall set of kernel functions that can be con-
structed within this framework is ensured at all times.

7.3 Implementation Strategies

From the practical perspective of the implementation, it is desirable to optimize the
efficiency of the computation of kernel functions. In the following, we discuss the
strategies to optimize the computations within the kernel framework.
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Caching

First, each component kernel maintains a cache on pairs of argument instances. At
the top level kernel, all pairs of argument individuals are usually evaluated only
once. Substantial repetitions can occur however for kernel functions that act as base
kernels for object property kernels. The effect of caching is more favourable, the more
interlinked the target instances are.

Optimizing Class-Based Kernel Functions

Secondly, the computation of class-based kernel functions can be optimized by it-
erating over the individual classes in Ĉ by traversing them along their hierarchical
order imposed by the subsumption hierarchy O in a depth-first manner. The opti-
mized strategy then returns from a given path in this hierarchy as soon as one of the
argument individuals fails to instantiate the given class. This procedure avoids the
unnecessary exploration of classes which, due to their specificity with respect to the
class for which the common instantiation has failed first, would not yield any further
positive contribution to the kernel anyway.

Optimizing References in Aggregate Kernel Functions

Thirdly, the kernel function infrastructure proposed so far often relies on the em-
bedding of base kernels within other, higher-level kernels. This nesting of kernel
functions yields a tree-like structure. In this structure, it is possible to merge those
subtrees that correspond to identical kernel chains, resulting in a kernel reference
graph that conforms to a directed acyclic graph (DAG). As a result, identical kernels
or chains of identical kernels that occur in different nesting contexts are evaluated
only once.

Consider Figure 7.2 which illustrates the concept in the context of our earlier exam-
ple from the academic domain. The aggregated kernel aims at comparing individuals
of the person class based on their affiliations, co-authors and the affiliations of the co-
authors. The top level kernel additively combines two object property kernels based
on the affiliation and author object properties. While the former kernel directly refer-
ences the identity kernel κ≡ (i.e. it directly compares the affiliations), the latter again
references another chain of kernels. In particular, the publication individuals linked
to by the author object property are compared by an aggregated kernel that additively
combines the identity kernel κ≡ and an object property kernel which again references
the affiliation object property with, again, an embedded identity kernel.

Through structuring the mutual references between the component kernels in a
DAG structure, the the identity kernel need to be evaluated only once as well as the
object property kernel based on the affiliation property. For any subsequent references,
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Figure 7.2 — Example of a Kernel Computation Graph on the SWRC ontology.

the result can be retrieved from the kernel cache.

7.4 Related Work

The work in this chapter has covered the design of kernel functions for individuals
described within formal ontologies. In this section, we shortly review related research
directions, namely those that address the design of kernels or arbitrary similarity
functions for individuals in ontologies or related forms of structured data.

Distance and Similarity Measures for Logic-Based Formalisms

A general framework for similarity measures in ontologies is proposed by Ehrig et al.
(2005). The framework is based on distinguishing several layers of similarity, namely
the data layer which takes into account syntactic similarities of the involved ontology
primitives, the ontology layer which corresponds to measures that use the ontology
structure and the context layer which takes into account how ontology entities are

172



7.4 Related Work

used in some external context. Bernstein et al. (2005) and Hefke et al. (2006) pro-
vide software frameworks for computing semantic similarity measures according to a
wide range of similarity measures. Kiefer et al. (2007b) further provide an infrastruc-
ture for integrating the similarity assessment between entities into standard Simple
Protocol and RDF Query Language (SPARQL) queries.

The main distinction of these similarity frameworks to the kernel framework pre-
sented in this section is that the proposed measures are used as heuristics for various
tasks, but not for statistical learning. The most prominent application domain for
this kind of similarity measures is the area of ontology alignment (Ehrig, 2007, and
references therein) which targets the automated discovery of correspondences within
different ontologies. Along another line, Kiefer et al. (2007a) apply their similarity
framework for retrieval of semantic business processes descriptions. Other areas that
commonly employ ontology based similarity measures are ontology-based informa-
tion retrieval, or ontology-based case-based reasoning. All these tasks impose only
minor formal requirements on the properties of the similarity functions and many of
the proposed functions will not conform to valid kernel functions.

Early endeavours for the definition of comprehensive similarity measures within
formal knowledge representation for use within learning tasks were made by Bisson
(1995), however with no practical application in mind. Several variants of similarity
and dissimilarity measures have been used in the context of relational instance based
learning, i.e. Nearest Neighbour-type learning (c.f. Section 2.3.3) on relational knowl-
edge structures (Emde and Wettschereck, 1996; Horváth et al., 2001). While these
measures are (mostly) designed to fullfill the requirement of conforming to a proper
mathematical distance, they will usually not lead to valid kernel functions. In a sim-
ilar spirit as the work in this chapter, Maedche and Zacharias (2002) propose a set
of ontology-based similarity measures for clustering ontology-based metadata de-
scriptions. However, the restriction to the application of hierarchical agglomerative
clustering poses no formal requirement on the form of the employed measures which
consequently do not always exhibit kernel characteristics.

In summary, the work on arbitrary distance or similarity functions is widely scat-
tered. However, the application context considered for these similarity functions does
not require that the respective similarity functions are positive semi-definite which
makes them not generally suited for application in kernel-based learning methods.

Convolution Kernels

Starting with the work of (Haussler, 1999), research on kernel functions for structured
data, i.e. for data that is expressed in a paradigm different from the standard vectorial
representation, has become a major topic of investigation in the machine learning
community (Gärtner, 2003).

Much of the work on kernels for structured data is rooted in the idea of the convo-
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lution kernel proposed by Haussler (1999). The idea of the kernel is to define for any
kind of “structured” objects x1, x2 ∈ X with tuples ~x1, ~x2 ∈ X1 × . . .×XD of “parts”
of these objects a relation R ⊆ (X1× . . .×XD)×X which encodes the decomposition
of an object into its “parts” R−1(x) = {~x : (~x, x) ∈ R}. In this framework, Haussler
defined a kernel as a generalized convolution as follows:

k(x1, x2) = ∑
~x1∈R−1(x1)

∑
~x2∈R−1(x2)

D

∏
d=1

kd(xd
1, xd

2), (7.1)

whereby the ki correspond to arbitrary kernels defined on Xi. The general structure
of the kernel has been highly influential for work on kernel functions for structured
data.

The universality of the convolution is also its problematic aspect as it leaves all
details on the choice of R in practical settings unspecified. In fact, for specific choices
of the relation R, most kernel functions on structured data, including the framework
considered in this chapter can be seen as instantiations of the convolution kernel.

Kernel Functions for Logic-based Formalisms

As the first work in the direction of kernel functions for logic-based representations,
Gärtner et al. (2003b) have proposed kernel functions on individuals represented as
(closed) terms in the typed higher-order logic of Lloyd (2003). The terms of the logic
are the terms of the typed λ-calculus while the basic type structure of this knowl-
edge representation formalism consists of function types, product types, and type
constructors. Neglecting most of the technicalities, this logic essentially allows the
construction of complex types like sets, lists or trees out of other types (e.g. natural
numbers). Function types can be used to represent types such as e.g. sets or multisets.
Product types can be used to represent types corresponding to tuples of other types.
Type constructors can be used to represent types corresponding to structured objects
such as lists or trees. The work presents a kernel defined inductively on the terms
in the associated logic. The basic term kernel is defined as product and sum of the
kernel functions considered for every part of a term thus allowing a proof that the
kernel is positive definite on all basic terms. This work constitutes the first principled
approach that allows to exploit a logic-based knowledge representation language by
means of kernel functions. However, the expressiveness of the proposed knowledge
representation formalism is limited as it does deliberately not consider the link struc-
ture between individuals, although the authors suggest that the framework could be
extended in this direction. The more problematic aspect is that the practical applica-
tion of the framework for describing existing data items requires a complete transla-
tion of the data into the given formalism and is thus unsuited for direct application
on Semantic Web data. As the aggregation of kernel functions on standard types is
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fixed based on the used type constructors, the approach also requires to think a-priori
about the implications of the chosen representation on the kernel function, whereas
the kernel framework proposed in this chapter allows to flexibly design kernels for
the given representation primitives.

Another approach is taken by Frasconi et al. (2004). Within this framework, objects
can be described using a restricted knowledge representation language consisting of
a simple type hierarchy, attributes, as well as a fixed set mereotopological relations
between objects. The proposed kernel, again guides the aggregation of basic kernel
evaluations based on the employed topological relations. Similar to the previous case,
users are thus required to commit themselves to the whole framework, and relating
their modelling decisions to the structure of the kernel i.e. to adapt the data to the
kernel, whereas the kernel framework of this chapter aims at adapting the kernel(s)
to the given data.

In a very different spirit, Passerini et al. (2006) have proposed kernel functions on
PROLOG proof trees. Like in the setting of this thesis, individuals are described as
first-order logic objects in the context of global background knowledge. The idea of
this kernel function is then to measure the similarity of two individuals by means
of the similarity of the proof trees of a special logic program, called the visitor pro-
gram, which probes certain characteristics of the individual that may be of interest for
the domain. Despite this innovative approach, the interplay between the interesting
characteristics of the data, the visitor program and the traces that can be observed
in the proof tree will often be unclear. Despite interesting results, the authors them-
selves acknowledge that the proof trees are likely to contain unnecessary noise that
hurts the overall performance.

On the schema-level, Fanizzi and d’Amato (2006) propose a declarative kernel for
concept descriptions in the description logicALC. Structurally, the kernel is based on a
representation of class descriptions in normal form. The kernel is then defined induc-
tively: disjunctive descriptions are treated as taking the sum of the cross-similarities
between any couple of disjuncts from the argument descriptions while conjunctive
descriptions are treated as the product of the similarities between two input descrip-
tions, distinguishing among primitive concepts, those referred in the value restric-
tions and those referred in the existential restrictions. The similarity between atomic
classes is measured in terms of the intersection of their respective extensions.

The obvious difference of this approach to the kernel framework presented in this
thesis is that it only allows to compute kernel functions on class descriptions but not
on individuals. As a consequence, Fanizzi and d’Amato suggest that the kernels on
class descriptions could also be used for describing individuals by means of repre-
senting an individual in terms of its most specific concept. In particular, this kernel is
used in Fanizzi and d’Amato (2007) to simulate the instance retrieval problem. While
this view is certainly interesting in cases of a highly differentiated network of com-
plex class descriptions, it does not provide any means to assess the characteristics of
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a given individual in terms of its object and data properties as in our framework.

7.5 Summary and Discussion

Bringing together state-of-the-art methods from machine learning and knowledge
representation is an important step towards extending the scope of current Semantic
Web applications. This chapter has introduced a framework for the design of kernel
functions on instance data in ontologies. The family of kernels introduced provides
an interface for exploiting modelled domain knowledge within statistical learning
algorithms in a principled way.

Open issues in this direction include methodologies for designing adequate kernels
for a given learning problems within the proposed framework in a user-friendly way.
Among others, this requires to think about intuitive interfaces for kernel design.

As for all learning methodologies, the ideal choice of representation depends on the
setting investigated. Obviously, there is no kernel function that performs optimally
for all datasets and all types of learning tasks. Instead, the specific instantiation of the
proposed framework in a given learning setting will always remain a kernel engineer-
ing problem and the appropriateness of the resulting kernels need to be ultimately
evaluated and compared in experimental evaluations. Similarly, the success also de-
pends on which background knowledge is represented in the reference ontology. In
the next chapter, we investigate the pratical application of the kernel framework for
a set of selected learning problems.
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Chapter 8

Experiments with Kernel Functions for
Instance Data in Ontologies

In this chapter, we apply the framework for kernel function design on instance data in
ontologies which was discussed in the previous chapter in practice. We look at differ-
ent mining tasks on ontology-structured datasets, discuss the design of appropriate
kernels and evaluate their performance experimentally. This chapter is structured as
follows. We discuss the software implementation of the kernel design framework of
the previous chapter in Section 8.1. Section 8.2 discusses a small experiment with the
common class kernel in the context of an approximate reasoning task on the GALEN

ontology. Section 8.3, reports on the application of the whole kernel framework on
a classical Semantic Web dataset, the AIFB portal metadata in conjunction with the
SWRC ontology. In Section 8.4, we report on the application of the framework on the
CORA bibliographical dataset. We conclude with a short summary and a discussion
of the findings in Section 8.5.

8.1 Implementation

As part of this thesis, the kernel framework described in the previous chapter has
been implemented in the KAON2SIMILARITY system.1 The implementation is pro-
vided as part of the ontology management and reasoning infrastructure KAON2.2

KAON2 is a complete infrastructure for managing OWL-DL and F-Logic ontolo-
gies, as well as the so-called DL-safe fragment of the Semantic Web Rule Languages
(SWRLs). KAON2 provides, amongst others, a complete Application Programming
Interface (API) for programmatic management of ontologies, means for processing
ontologies in XML and RDF presentation syntax and an inference engine for answer-
ing conjunctive queries (expressed using SPARQL syntax). The infrastructure as well
as the underlying reasoning algorithms were devised by Motik (2006).

KAON2SIMILARITY provides instantiations of all the kernel functions presented in

1http://kaon2similarity.ontoware.org/
2http://kaon2.semanticweb.org/
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Figure 8.1 — Conceptual Architecture of KAON2SIMILARITY

the previous chapter, together with supporting infrastructure such as kernel modi-
fiers, kernel aggregators and a caching module that can be flexibly plugged together
for the purpose at hand. Figure 8.1 illustrates the main components of the system as
well as the interaction with KAON2. In the following, we shortly discuss the main
components.

The structure of the employed kernel functions can be specified declaratively by
the user in terms of a simple XML syntax as exemplified in Figure 8.2. This config-
uration is processed by the configuration management component and the internal
object representation of the kernel is set up. In the example of Figure 8.2, a kernel is
specified as the sum of two base kernels, namely a common class kernel and an object
property kernel based on the swrc : publication property whereby the matching kernel
is implicitly defined as the identity kernel κ≡. Alternatively, the kernels can also be
constructed programmatically via the corresponding API of KAON2SIMILARITY.

A given configured kernel can be accessed programmatically via an open interface
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<org.ontoware.kaon2similarity.aggregators.WeightedAddition>
<baseSimilarities>
<org.ontoware.kaon2similarity.individuals.CommonClassSimilarity>

<inferencing>true</inferencing>
</org.ontoware.kaon2similarity.individuals.CommonClassSimilarity>
<org.ontoware.kaon2similarity.individuals.ObjectPropertyCrossProductSim>

<inferencing>true</inferencing>
<direction>FROM</direction>
<oprop class="org.semanticweb.kaon2.ze">
<b>http://swrc.ontoware.org/ontology#publication</b>

</oprop>
</org.ontoware.kaon2similarity.individuals.ObjectPropertyCrossProductSim>

</baseSimilarities>
<baseWeights>
<double>1.0</double>
<double>1.0</double>

</baseWeights>
</org.ontoware.kaon2similarity.aggregators.WeightedAddition>

Figure 8.2 — Example of XML-based Kernel Specification in KAON2SIMILARITY

by external learning modules. The reference ontology is also specified during startup
via this interface. For example, we have already mentioned the generic extension to
the SVMLIGHT software by Joachims (1999) which provides an interface to kernel
functions that are implemented in JAVA (c.f. Appendix A) which also allows to inte-
grate kernel functions available via KAON2SIMILARITY into SVMLIGHT. This is also
the setup adopted for the experiments in this chapter.

During computation of a given kernel, KAON2SIMILARITY interacts with the
KAON2 modules, either by means of the ontology management system API of
KAON2 or via the corresponding reasoning engine. The internal caching module
avoids repeated evaluations of any kernel component.

As another way of interacting with KAON2, a given kernel configuration can also
be registered with the KAON2 built-in interface. This interface allows to integrate
extra-logical predicate evaluations with KAON2. While this mechanism is not related
to the exposure of the kernel functions to external learning modules, it allows to inte-
grate notions of similarity into interactions with KAON2, e.g. for use within SPARQL
queries.
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8.2 Common Class Kernel for the GALEN Ontology

In this section, we first illustrate the use of machine learning classification using only
the common class kernel of Definition 7.2 for approximating reasoning tasks in a
manner similar to approximate reasoning techniques (Hitzler and Vrandecic, 2005).

8.2.1 Task and Dataset

For this purpose, experiments were conducted on the OWL-DL version of the GALEN

Upper Ontology.3 The ontology contains atomic 175 classes, together with restrictions
arranged in 193 SubClassOf axioms, 51 EquivalentClasses axioms, 127 DisjointClasses
axioms and no nominals.

The task of this experiment was to imitate the classification behaviour of the ontol-
ogy given a semantically weakened ontology. The basic idea of this setup was to in-
vestigate whether it is possible to accurately train a classification model that simulates
the behaviour of a reasoning engine. As only the TBox of the ontology is available,
the ontology was randomly populated with 1000 individuals. We used 7 subclasses
of the Self_standing_entity class, namely the Biological_entity, Physical_entity, Complex,
Continuant_entity, Discrete_entity, Mass_entity and Occurent_entity classes.4 Ontology
axioms were filtered and only the basic SubClassOf and ClassMember axioms of the
basic ontology model of Chapter 3 were retained to obtain a weaker and semanti-
cally different ontology Oweak. Table 8.1 summarizes the entailment statistics for the
7 classes for the original and for the changed version of the ontology.

8.2.2 Experimental Setup

The overall instance set was split in two groups of 500 instances for training and test-
ing with class labels assigned according to the semantics of Ooriginal . SVMs with soft
margin parameter C = 1 were trained using the common class kernel in conjunction
with a cosine normalization modifier only using the information present in Oweak.
The trained models were then evaluated on the 500 test instances and Oweak and the
results were compared with their actual classifications in Ooriginal .

8.2.3 Experimental Results

The results of the test runs are reported in Table 8.1. As the results show, the com-
mon class kernel is easily able to imitate the reasoning behaviour of the complex

3http://www.cs.man.ac.uk/~rector/ontologies/simple-top-bio/
4The Non_Biological_entity, Organelle and Non_Physical_entity were ignored as they are either com-
plements of existing concepts or did not receive enough positive examples.
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Table 8.1 — Statistics and Results of the GALEN Experiment — Number of overall
positive Instances and classification results in terms of accuracy (A), precision (P),
recall (R) and F1.

GALEN Target Class # in Ooriginal # in Oweak A P R F1

Biological_entity 550 63 97.8 100.0 96.1 98.0
Physical_entity 587 11 97.8 99.3 97.0 98.1
Complex 116 88 99.2 100.0 93.1 96.4
Continuant_entity 600 96 98.2 100.0 97.1 98.5
Discrete_entity 433 78 99.2 100.0 98.2 99.1
Mass_entity 70 16 100.0 100.0 100.0 100.0
Occurrent_entity 95 0 98.0 100.0 75.0 85.7

ontology on a weaker, semantically different, ontology. These consistent positive re-
sults suggest that the weaker ontology contains sufficiently crisp patterns for certain
Class (sub-) structures that are adequately represented within the common class ker-
nel function. In fact, variations of the experiment revealed that given an alternative
parameter setting or using a non-normalized kernel can achieve 100% accuracy for
almost all classes. As the setting of this experiment is comparatively simple, it is
mainly meant to illustrate the potential for learning logical patterns in a statistical
manner.

8.3 Mining the SWRC Ontology

This section reports on experiments based on the SWRC ontology and the metadata
available within the Semantic Portal of the Institute AIFB at the University of Karl-
sruhe. The dataset has been introduced in the context of an earlier publication (Bloe-
hdorn and Sure, 2007) but has in the meantime also been used by Kiefer et al. (2008).
The results reported in this section extend the results reported earlier (Bloehdorn and
Sure, 2007).

8.3.1 Task and Dataset

The SWRC ontology initially grew out of the activities in the KA2 project and has
since then been ported to various knowledge representation languages including
OWL (Sure et al., 2005).5 The ontology generically models key classes relevant for
the research domain and the relations between them. The current version of the on-
tology comprises a total of 53 classes in a taxonomy and 42 object properties, 20 of

5http://ontoware.org/projects/swrc/
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Figure 8.3 — Main classes and properties of the SWRC Ontology.

which are participating in 10 pairs of inverse object properties. All entities are en-
riched with additional annotation information. The SWRC ontology comprises at to-
tal of six top level concepts, namely the Person, Publication, Event, Organization, Topic
and Project classes. Figure 8.3 shows a small portion of the SWRC ontology with its
main top-level concepts and relations.

The SWRC ontology is used in a number of different settings. In particular, the
vocabulary of the ontology is used for providing structured metadata for web portals
of research institutions and research projects. These metadata descriptions include
the Semantic Portal of the Institute AIFB at the University of Karlsruhe.6

The experiments in this section are based on the AIFB metadata from November
2006. The overall dataset comprises a total of 2, 547 instances. 1, 058 of these can
be deduced to belong to the Person class, whereby 178 of these have an affiliation
to one of the institute’s groups (the others correspond to external co-authors). 78
persons thereof are research staff at the timepoint of the snapshot.7 1, 232 instances
instantiate the Publication class, 146 instances instantiate the ResearchTopic class and
146 instances instantiate the Project class. The instances are connected by a total of
15, 883 object property axioms and participate in a total of 8, 705 datatype properties.

6http://www.aifb.uni-karlsruhe.de/about.html
7The entities corresponding to currently employed research staff are meant to be retrieved us-
ing the Employee class. However, the original version of the SWRC contained the OWL axioms
ResearchTopic v ∀isWorkedOnBy.AcademicStaff and AcademicStaff v Employee. The isWorkedOnBy
is meant to link from research topics to persons. The specific modelling essentially makes a DL
reasoner consider any person with associated research topic an employee, a situation that is not
necessarily true. This modelling flaw is to be removed in future versions of the ontology. For the
preparation of the datasets described below, the first of the above axioms was removed to identify
proper employees only. For the actual experiments, however, the original ontology was used.
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8.3.2 Experimental Setup

Given the information in the SWRC ontology, three different classification problems
have been devised for experimental evaluation, namely:

person2affiliation (any with affiliation) In this setting, the 178 instances of type Person
which have an affiliation with any of the institutes research groups form the
instance set. The dataset considers as the four positive target classes the mem-
bership in each of the four research groups “Business Information and Commu-
nication Systems” (73), “Efficient Algorithms” (28), “Knowledge Management”
(60) or “Complexity Management” (16).8

person2affiliation (employee) This setting corresponds to the setting considered in
(Bloehdorn and Sure, 2007). It is equivalent to the setting described above
but additionally requires that positive target instances in each of the research
groups correspond to currently employed researchers, i.e. “Business Informa-
tion and Communication Systems” (24), “Efficient Algorithms” (14), “Knowl-
edge Management” (27) or “Complexity Management” (13). The remaining
instances (i.e. former employees whose affiliation was considered in the previ-
ous setting) were considered as negative instances for each of the four target
groups.

paper2affiliation In this setting, the 1, 232 instances of type Publication form the in-
stance set. The target classes are again the four research groups of the institute
as considered above and a publication instance is considered a positive exam-
ple for a given research group if any of the authors is affiliated with it (i.e. a
multi-label setting in case of cross-research group publications).

Note that the information on the affiliations in the AIFB Portal is maintained by the
institute’s administration and can thus be considered a very clean learning problem
while the data about people’s research interests, projects or about paper metadata
may be noisy or inconsistent because this kind of data is maintained autonomously
by the researchers.

8.3.3 Results of the Person2Affiliation Experiments

In the first set of experiments, we investigated the performance of various kernel
configurations for the two person2affiliation tasks. It is important to note that a small
number of the Person individuals with affiliations are, however, not described at all
in terms of assertions other than their affiliation and basic data like name and eMail

8The “Man-Machine systems/Usability Engineering” group is ignored, because it has only one asso-
ciated person.
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Table 8.2 — Kernel configurations for SWRC experiments on the person2affiliation
tasks.

Short name Description

proj Cosine-normalized kernel on the object property
project with the identity kernel as base kernel.

pub Same for the object property publication.
top Same for the object property workedOnBy−1, i.e.

linking from instances to topic instances.

proj+top+pub Sum of the three kernels pub, proj, and top
class+proj+top+pub Sum of the three kernels pub, proj, and top and

an additional common class kernel with additive
weight 0.1.

class+proj+top Same, but without pub.

pub.title.bow Like pub, but with cosine normalized bag–of-
words type kernel on the title data property of tar-
get publications as base kernel.

class+proj+top+pub.title.bow like class+proj+top+pub but using pub.title.bow
instead of pub.

pub.author Cosine normalized object property kernel on the
publication object property, with an object property
kernel on the author property as base kernel.

pub.author.pub As pub.author, but with an additional object prop-
erty kernel on the publication property as base ker-
nel.

(pub+1)*(top+1)*(proj+1) Multiplicative combination of the three kernels
pub, proj, and top, each with an additional con-
stant of 1.
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address which does not help in discriminating the research groups. For these individ-
uals it will be generally hard to build adequate models such that the best classification
that is theoretically achievable is below 100% accuracy a-priori.

Description of Kernel Configurations

Table 8.2 on page 184 summarizes the investigated kernel configurations. Obviously,
none of the kernels used did rely directly or indirectly on the target property (affil-
iation). The basic kernels proj, pub and top are object property kernels associated
with the immediate descriptions available about the person instances, namely the
projects they are working on, the publications they have authored or the topics they
are working on. The other kernel configurations either combine the elementary ker-
nel functions or refine them by means of a specific choice of the employed base ker-
nels. For example, the configuration pub.author corresponds to an object property
kernel on the publictation object property that links from authors to their publications
which again exploits another object property kernel on the author object property
which points to all authors of the respective publication. In this case, the feature
space effectively corresponds to all instances that stand in a co-author relationship to
the argument instances. As another example, the configuration class+proj+top+pub
combines a common class kernels and all of the three basic object property kernels
mentioned above.

Visual Comparison of Kernel Configurations

Figure 8.4 on page 186 shows heatmap visualizations of the kernel matrices of the in-
stances corresponding to 78 active AIFB researchers based on the class+proj+top+pub
and the pub.author.pub kernel configurations which perform best in the experi-
ments reported on below. Both visualizations clearly mirror the structure of the
institute in terms of four independent research groups. On the first sight, the
class+proj+top+pub configuration (left) seems to generate more compact groups
while on the second sight, we note that it does not provide large mutual similarity
values for the instances in the second research group. It also appears that this repre-
sentation induces a bit more noise than the pub.author.pub configuration on the right
as some of the kernel values accross groups also show high values. These could, for
example be due to overlapping topics. The representation on the right does show
a more compact representation of the second group but on the other hand seems to
split the first group into a small and a larger group. Indeed, the first group corre-
sponds to the “Business Information and Communication Systems” research group
at AIFB which is run by two group leaders and has two subgroups.
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Figure 8.4 — Heatmap visualization of the kernel matrix of the instances correspond-
ing to 78 active AIFB researchers. Visualizations are based on the class+proj+top+pub
(top) and the pub.author.pub (bottom) kernel configurations. Each matrix cell corre-
sponds to the evaluation of the kernel on a particular pair of instances. Darker shad-
ings indicate higher values of the kernel evaluation. Instances are ordered according
to their research group affiliations.
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Experimental Results

We now turn our attention to the actual classification experiments. For each learning
problem and kernel configuration, we performed 4 binary classification experiments,
one for each research group using SVMs with soft margin parameters C = 1 and C =
10. To account for the small number of training instances, performance estimations
did not rely on a fixed training/test split of the dataset but were estimated via the
leave–one–out (LOO) cross-validation strategy.

Table 8.3 on page 188 summarizes the macro-averaged results of these classifica-
tion experiments.9 From the results, we generally note that for all kernel functions,
the precision easily reaches levels of above 90% while recall values are generally
worse. Further, as a general observation, the kernel configurations based on indi-
vidual object properties, i.e. pub, proj and top perform rather poorly. In contrast,
the combined kernel functions can substantially improve the results. When com-
paring the person2affiliation (employee) and person2affiliation (all) settings, we note that
the class+proj+top+pub configuration performs better better than the proj+top+pub
on the person2affiliation (employee) task, while the opposite is the case for the per-
son2affiliation (all) task, suggesting that the additional class information helps to dis-
tinguish employees from non-employees while the distribution to the groups is prob-
ably due the other kernel components.

In fact, the class+proj+top+pub configuration is the best performing configuration
for the person2affiliation (employee) setting at a F1 level of 70.8% for C=1. For the per-
son2affiliation (all) setting, the best results are achieved for the pub.author.pub con-
figuration at F1 levels of 86.3% and 85.6% for C=10 and C=1, respectively. Recently
Kiefer et al. (2008) have also considered the person2affiliation (all) setting in the context
of classification experiments with statistical relational learning techniques, specifi-
cally the relational Bayesian classifiers of Neville et al. (2003). The best result reported
there is a F1 measure of 83.7%, which is thus outperformed by the pub.author.pub
kernel configuration. However, the experiments described there use a single-label
classification setting such that the results are not fully comparable.

Recalling from the reasoning above that some of the Person individuals in the
knowledge base do not have any publication, project or topic information associ-
ated with them, the results also constitute a pessimistic estimate of the performance
in cases where full information would be available.

9Here, the choice of the macro-averaging scheme is rooted in practical considerations. In particular,
we have exploted the LOO estimation feature of SVMLIGHT for the computation of the class-wise
accuracy, precision and recall values as described by Joachims (2000) which were then used directly
to compute the macro-averages.
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Table 8.3 — Leave-one-out classification results for the persons2affiliation (employee)
problem on SWRC for different kernels and kernel modifiers. All numbers are per-
centages.

(a) person2affiliation (employee)

C = 1 C = 10

Configuration A P R F1 A P R F1

pub 92.3 98.1 26.3 38.5 93.4 87.0 46.8 60.5
proj 94.4 95.8 47.6 58.8 94.2 81.5 49.6 60.1
top 91.3 82.2 32.8 44.9 90.9 68.4 41.3 50.0

proj+top+pub 94.4 92.2 50.5 63.0 94.4 88.1 52.3 64.4
class+proj+top+pub 95.5 95.8 58.1 70.8 94.8 90.9 54.2 66.9
class+proj+top 94.5 93.1 53.6 66.9 93.5 86.9 49.8 62.2

pub.title.bow 93.7 79.0 54.4 63.7 93.1 74.9 53.7 62.1
class+proj+top+pub.title.bow 95.5 95.9 57.3 69.5 95.1 89.8 57.1 68.5

pub.author 93.1 75.4 54.6 63.1 93.5 74.1 67.2 69.8
pub.author.pub 93.8 77.9 65.7 70.5 93.4 74.1 61.8 67.2

(pub+1)*(top+1)*(proj+1) 92.8 87.6 41.4 55.2 93.0 87.0 43.3 56.6

(b) person2affiliation (all)

C = 1 C = 10

Configuration A P R F1 A P R F1

pub 83.2 100.0 26.0 39.3 84.1 86.4 58.0 62.6
proj 82.9 95.8 35.1 50.0 82.2 82.1 54.3 58.5
top 84.4 92.6 40.4 55.8 83.4 82.2 56.3 61.8

proj+top+pub 87.8 91.7 60.3 67.8 86.5 90.3 60.8 67.1
class+proj+top+pub 87.4 91.4 59.7 67.4 87.1 88.8 63.1 70.1
class+proj+top 88.6 93.2 59.6 68.6 87.1 88.4 62.5 70.4

pub.title.bow 88.5 82.2 65.8 70.0 88.6 81.0 65.8 70.1
class+proj+top+pub.title.bow 89.5 92.3 64.0 71.6 89.2 89.8 67.0 74.1

pub.author 93.0 93.8 78.5 83.8 93.1 93.6 79.3 84.1
pub.author.pub 93.7 94.0 81.1 85.6 94.2 94.4 81.9 86.3

(pub+1)*(top+1)*(proj+1) 87.9 92.1 61.7 69.2 86.0 86.8 63.6 68.9
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8.3.4 Results of the Paper2Affiliation Experiments

In the second set experiments, we investigated the performance of various kernel
configurations for the paper2affiliation task.

Description of Kernel Configurations

Table 8.4 on page 190 summarizes the kernel configurations investigated for this task.
As a kind of baseline, we report results on the title.bow kernel, which corresponds
to the bow cosine kernel on the title datatype property of the publications. The other
kernels combine the normalized common class kernel (again with weight 0.1), with
normalized object property kernels on the isAbout (pointing to topics), author and
hasProject properties. This time we have also employed different kernel modifiers,
namely the plain sum of the component kernels without their individual normaliza-
tion (-plain), and pg1 and pg3 kernel modifiers which correspond to the Gaussian
modifiers applied to the plain sum of kernel components with bandwidth parameters
σ equal to 1 or 3.

Experimental Results

For each learning problem and kernel configuration, we again performed 4 individ-
ual binary classification experiments with soft margin parameters C = 1 and C = 10.
Further the performance metrics were again estimated via the Leave-One-Out cross-
validation strategy.

Table 8.5 on page 190 summarizes the macro-averaged results of the classification
experiments. In summary, the papers2affiliations task has achieved virtually optimal
results that are stable over the different kernel variants whereby the best F1 result
is achieved for the class+author+top+title.bow (plain) configuration and C=10 at a
level of 97.5%.10 These good results can be traced to the fact that the object prop-
erties pointing to associated authors have been included in the kernel computation,
inherently bearing a strong correspondence to the research groups. As a general ob-
servation we note that the use of Gaussian modifiers does, at least for the investigated
configurations, not improve upon the kernel results.

10Unfortunately, the results of Kiefer et al. (2008) on this task are not comparable because in the re-
ported setting the original classification problem was changed in so far as a given paper was as-
signed to the affiliation of the majority of the authors.
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Table 8.4 — Kernel configurations for SWRC experiments on the paper2affiliation
tasks.

Short name Description

title.bow Cosine-normalized bag–of-words kernel on the
title data property

class+author+top Sum of cosine-normalized common class kernel
(with weight 0.1), and object property kernels on
isAbout (i.e. linking to topics) and author properties
with identity kernel as base kernel.

class+author+top+proj As class+author+top but with an an additional ob-
ject property kernel on the hasProject property.

class+author+top+title.bow As class+author+top but with an an additional ti-
tle.bow data property kernel.

{*} (plain) Any kernel of the above without cosine normaliza-
tion of the component kernels.

{*} (G σ) Any kernel of the above without cosine normal-
ization of the component kernels but with post-
modification by a Gaussian Kernel modifier with
bandwidth parameter σ.

Table 8.5 — Leave-one-out classification results for the papers2affiliation problem on
SWRC for different kernels and kernel modifiers. All numbers are percentages.

C = 1 C = 10

Configuration A P R F1 A P R F1

title.bow 92.5 86.8 47.8 56.0 93.8 91.1 63.1 72.4

class+author+top 99.3 99.8 94.5 97.1 99.4 99.2 95.0 97.0
class+author+top (plain) 99.3 99.7 95.1 97.3 99.4 99.7 95.2 97.4
class+author+top (G 1) 93.2 96.4 57.0 67.8 93.9 96.8 61.2 72.1
class+author+top (G 3) 98.6 99.6 90.1 94.5 99.3 99.8 94.9 97.3

class+author+top+proj 99.3 99.5 94.5 96.9 99.3 98.8 94.9 96.8
class+author+top+proj (plain) 99.2 99.8 94.7 97.1 99.3 99.7 95.0 97.3
class+author+top+proj (G 1) 92.4 95.9 53.1 63.8 93.4 96.3 60.1 70.9
class+author+top+proj (G 3) 98.6 99.6 90.3 94.6 99.2 99.6 94.6 97.0

class+author+top+title.bow 99.3 99.6 94.5 97.0 99.2 99.7 94.5 97.0
class+author+top+title.bow (plain) 99.4 99.7 95.4 97.5 99.4 99.7 95.4 97.5
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8.4 Mining the Cora Dataset

In this section, we consider a further small experiment on the CORA dataset com-
piled by McCallum et al. (2000). The results reported in this section are based on
experiments which are also reported in a recent report (Bloehdorn and Sorg, 2008).

8.4.1 Task and Dataset

The dataset we consider is the CORA classification dataset compiled from the exam-
ple application of an intelligent web portal (McCallum et al., 2000).11 The dataset con-
sists of about 50, 000 scientific publications classified into several thematic categories.
For each of the documents, basic bibliographical metadata, i.e. paper abstracts and
author information are provided. Furthermore, relational information about the mu-
tual citation among the papers is provided. While the original dataset is not described
with respect to a formal Semantic Web-type ontology the dataset shows an interest-
ing relational structure that can readily be translated into RDF or and Semantic Web
formalisms.

We shortly review the primitives of the knowledge structure that were considered
in the experiments. The dataset consists of instances of type document. These in-
stances are described by the datatype properties title and abstract which link to titles
and abstracts of the documents, respectively. Documents are further linked to in-
stances of type Person by means of the object property author and to other documents
by means of the cites property with the obvious interpretations, i.e. the relation to
the document authors and their citation relationships. For the purpose of our experi-
ments, we introduce a generic citation property and the axioms (i) citation w cites and
(ii) citation w cites−1, i.e. the new citation property comprises all (undirected) citation
relations between any two document instances.

In the experiments, we aimed at comparing the performance of classical VSM rep-
resentation of the document abstracts versus kernel functions based on the relational
information provided by citation and author relations.

8.4.2 Experimental Setup

The experiments are based on a subset of the CORA dataset similar to the subset used
by Lu and Getoor (2003). The target categories correspond to 7 subcategories of the
category “Computer Science” containing about 4, 500 publications. Any documents
which did not contain any mutual citation information were removed, effectively
yielding a number of 3, 641 document instances for publication. For the experiments
the dataset was randomly split into four parts whereby all 7 target classes were en-
sured to have the same share of positive examples in all splits. The first three parts

11The dataset is available for download from http://www.cs.umass.edu/~mccallum/data/.
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were used for training and parameter tuning while the fourth part was used for the
evaluation.

In the experiments, we considered the following kernel functions. First of all,
as a kind of a baseline, the configuration abstract.bow refers to a cosine normal-
ized datatype property kernel on the abstract property, using the standard Bag-of-
Words (BOW) representation with the inner product as base kernel. Next, the kernel
author.publication corresponds to an object property kernel on the author property,
with an embedded object property kernel on the publication property. This means that
the overall kernel counts the number of joint documents that have common authors
with the argument instances. We primarily investigate the repeated nesting of this
kernel whereby author.publicationn corresponds to nesting the author.publication
n times within itself, i.e. it points to all publications that are exactly n steps away
in a graph whereby the links constitute common authors between two publica-
tions. The overall kernel author.publicationn∗ is then assembled as the weighted
sum β1 author.publication1 +β2 author.publication2 + . . . +βn author.publicationn.
Hereby, β < 1 specifies a decay factor to account for targets further away from the
reference individuals. Similarly, the kernel citation corresponds to an object property
kernel on the citation property, whereby citationn and citationn∗ are defined analo-
gously to the previous case. In all cases, the overall kernels were normalized using
the cosine normalization modifier.

The procedure taken for the experiments was as follows. For all kernel configura-
tions, preliminary experiments were conducted using different parameters β and n as
well different SVM soft margin parameters C on two quarters of the overall dataset
and evaluated on a third quarter. After optimization of the parameters with respect
to the training error on the evaluation set, a SVM was trained on all three parts and
the generalization capability was evaluated on the fourth quarter.

For comparison, we ran also experiments based on the diffusion kernel proposed by
Kondor and Lafferty (2002). Like the object property kernels, this kernel makes use
of the graph structure but aims at capturing its overall structure by means of expo-
nentials of the graph adjacency matrix. The kernel also takes a single parameter, β
which was optimized in analogously to the parameters above. Refer to the exposition
by Kondor and Lafferty (2002) for more information on this kernel function.

8.4.3 Experimental Results

The micro-averaged results of the experiments are shown in Table 8.6. As we can see,
both types of kernels based on the object property relations perform better than the
basic VSM representation of the titles. In particular, at a F1 level of 83.2% the object
property kernels on citations perform better in the classification problem than those
based on joint authors at a F1 level of 71.6%. In fact, the graph of mutual citations is
quite dense and almost completely connected. In contrast, the common author graph
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Table 8.6 — Results of the classification experiment on the CORA publication dataset
using individual kernels.

Configuration A µP µR µF1

abstract.bow 90.9 90.5 40.8 56.3

citation∗ 95.5 89.2 78.0 83.2
author.publication∗ 92.8 82.1 63.5 71.6

citation∗ (diffusion) 95.3 88.3 77.0 82.3
author.publication∗ (diffusion) 92.0 84.2 53.8 65.6

has fewer links and consists of many unconnected subgraphs. The citation graph
seems therefore to be more appropriate to be used in this classification experiment
as input for kernel functions on the respective object properties. The table also in-
cludes results based on the diffusion kernel by Kondor and Lafferty (2002) which are,
however not superior to the use of the (local) object property kernels.

8.5 Summary and Discussion

In this chapter, we have discussed the application of the kernel framework introduced
in Chapter 7 on three real-world datasets. In the following, we summarize the main
findings:

• While all three different tasks have addressed different learning targets and
used different representations, we have seen that the kernel framework pro-
posed in Chapter 7 allows to naturally define powerful kernel functions.

• As the task of learning from Semantic Web data has not yet been addressed
actively, comparative evaluations are difficult due to the lack of standardized
evaluation data sets. The experiments reported on this section thus need to be
seen mostly as an exploratory approach to evaluating the power of different
kernel configurations.

• For the SWRC dataset, the results are however competitive with new results
reported in literature recently while for the CORA dataset, the results do out-
perform the common VSM representation.

Open issues along the work reported in this chapter include the practical applica-
tion of the kernel framework on further datasets. The datasets in this section, espe-
cially the SWRC dataset, at the same time provide an anchor point for experiments
with future systems on Semantic Web datasets.
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In any case, the results reported in this chapter demonstrate that powerful ker-
nel functions on ontological instance data can be designed flexibly by exploiting the
available modelling primitives within the ontologies considered.
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Chapter 9

Conclusion

Machine learning techniques are a successful engineering paradigm for a large class
of practical data analysis problems. Ontologies and knowledge structures allow to
model a domain of interest in terms of declarative knowledge. While these for-
malisms have been studied for some time, principled approaches for the exploitation
of knowledge structures within machine learning settings are still a major subject of
research.

In this thesis, we have recasted the question of the combination of these two fields
into the field of kernel methods. Kernel methods are a successful paradigm for in-
corporating knowledge about the domain of interest into classical machine learning
techniques or for interacting with data structures that do not lend themselves natu-
rally to a vector-based representation. The core of this approach is the definition of
appropriate kernel functions for a given scenario. Conceptually, kernel functions can
be regarded as special purpose similarity functions that implicitly allow an interpre-
tation as dot products of vectors of real numbers in a corresponding feature space.
The so-called kernel trick refers to the idea of rewriting standard learning algorithms
entirely in dual form such that all information about the geometry of the feature space
and the learned models can be expressed in terms of pairwise dot products or, equiv-
alently, in terms of kernel functions. Via the paradigm of kernel functions, this thesis
combines techniques from the area of knowledge representation and machine learn-
ing in a principled way. In the following, we summarize the work of this thesis and
sketch paths for future research activities.

9.1 Summary of Contributions

This thesis started out with a comprehensive introduction to both underlying re-
search areas, namely machine learning with kernel methods and formalisms for
knowledge structures. The main contribution of this thesis has been the design of
kernel functions that either use knowledge structures as complementary background
knowledge or directly operate on instances defined within these knowledge struc-
tures themselves. On the theoretical side, we have (i) analyzed existing similarity
functions for entities in taxonomic structures in terms of their suitability as kernel
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functions, (ii) proposed two types of expressive and adequate kernel functions for
textual data that employ linguistic background knowledge resources to address prob-
lems of variability in natural language, and (iii) proposed a framework for kernel
functions on data items that are formally described as instances of an ontological
structure. On the practical side, we have (iv) evaluated the kernel functions pro-
posed in (ii) and (iii) in an extensive series of experiments. In the following, we take
up on the main contributions of this thesis in closer detail.

Kernel Functions for Entities in Taxonomic Structures

On the basis of a theoretical analysis, Chapter 4 of this thesis has investigated
the question whether, or under which conditions, the most prominent and well-
motivated similarity functions for entities in taxonomic structures can be given an
interpretation as kernel functions. This analysis has been conducted by showing
whether the respective similarity functions conform to positive semi-definite func-
tions. The results of this section provide the first comprehensive analysis of taxo-
nomic similarity functions with respect to this question. While the results are both
theoretically and practically interesting for themselves, they also lie at the core of
the kernel functions discussed in the subsequent parts. In particular, this question
is important to decide whether these similarity functions can be used as smoothing
parameters for Semantic Smoothing Kernels or Semantic Syntactic Tree Kernels.

Kernel Functions for Semantic Smoothing in Text Mining

Chapter 5 of this thesis has then systematically investigated the concept of Semantic
Smoothing Kernels as a technique for minimizing the effects of the variability of nat-
ural language in the common Vector Space Model for text mining applications. The
analysis has been conducted both in terms of their theoretical interpretation and prac-
tical properties. The same chapter of this thesis has then introduced Semantic Syntac-
tic Tree Kernels as a generalization of tree kernel functions which directly combines
semantic background knowledge with the analysis of syntactic structure of textual
inputs. To the best of the author’s knowledge, Semantic Syntactic Tree Kernels con-
stitute the first principled framework for kernel functions that build upon linguistic
structure and background knowledge about the semantic dependencies of terms at
the same time.

Semantic Smoothing Kernels and Semantic Syntactic Tree Kernels have then been
implemented as part of a modular software infrastructure. Subsequently, both meth-
ods have been evaluated in an extensive experimental analysis in terms of three
sets of text classification experiments. As the analysis showed, Semantic Smooth-
ing Kernels are an effective and powerful paradigm for leveraging the performance
of text classifiers in situations where training data is scarce and the underlying pat-
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terns are not dominated by a small set of frequently occurring terms. This finding
suggests that Semantic Smoothing Kernels can significantly reduce the labelling ef-
fort for training data thus allowing for “fast prototyping” of new classifiers. For text
mining settings in which more training data is available, the positive effect of Seman-
tic Smoothing Kernels fades bit by bit. Similarly, the experiments on the question
classification setting suggest that the smoothing component within Semantic Syntac-
tic Tree Kernels leads to a superior performance compared to ordinary tree kernels.
For the dataset used, the results also outperform all results reported in literature so
far. As, for both types of kernels, we have not used any proper word sense disam-
biguation strategy, the reported results also need to be seen as a pessimistic estimate
of their potential on fully disambiguated output.

Kernel Functions for Instance Data in Ontologies

Chapter 7 of this thesis has addressed the question how instances which are formally
described within ontological knowledge structures can become the subject of ma-
chine learning techniques. In particular, the chapter has introduced a framework for
designing kernel functions on instance data in ontologies that is on the one hand
flexible but on the other hand ensures the validity of the corresponding kernel re-
gardless of parameter choices. Again, on the practical side, these kernel functions for
instance data in ontologies have been implemented as software modules as part of the
KAON2SIMILARITY API. The application of these kernel functions has been demon-
strated in three sets of practical experiments in Chapter 8 of this thesis. The analysis
has demonstrated that powerful kernel functions on ontological instance data can
be designed flexibly and intuitively by exploiting the available modelling primitives
within the ontologies considered. As the task of learning from Semantic Web data has
not yet been addressed actively, comparative evaluations are not easy due to the lack
of standardized evaluation data sets. For the SWRC dataset, the results are however
competitive with new results reported in literature recently. For the CORA dataset,
the results show that kernels defined within the proposed framework do outperform
the popular Vector Space Model (VSM) representation.

9.2 Outlook

In this section, we investigate some of the paths for future work at the intersection of
kernel-based machine learning and formal knowledge representation.

Kernel Functions for Mining Whole Knowledge Structures

While this thesis has investigated means for mining both, instances external to a given
knowledge structure and internal to a given knowledge structure, the classification of
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approaches for machine learning with knowledge structures in Chapter 1 has already
pointed to a third alternative, namely the mining of whole knowledge structures, i.e.
sets of statements. Practical applications of this direction of work lie in the discov-
ery of mappings between knowledge structures or fragments thereof (Ehrig, 2007;
Udrea et al., 2007), in the automated discovery of “interesting” substructures (Ra-
makrishnan et al., 2005) or in predictive settings, e.g. the prediction of the reasoning
complexity of an ontology.

Existing work in the direction of defining kernel functions for knowledge struc-
tures as a whole have usually neglected any semantic aspects and focused on the
syntactic graph structure. However, in contrast to special purpose graphs like the
case of trees investigated in Chapter 5, kernels for arbitrary graphs have proved to be
more difficult to design.

Gärtner et al. (2003a); Gärtner (2005) provide an analysis which suggests that com-
puting a complete graph kernel, i.e. a kernel which is capable of taking onto account
the full structure of the argument graphs is at least as hard as solving the graph iso-
morphism problem. The analysis also shows that computing an inner product in a
feature space indexed by all possible graphs, where each feature counts the number of
isomorphic subgraphs is NP-hard. These results suggest that it will be very unlikely
to find sufficiently efficient kernel functions that are based on the full structure of the
argument graphs. At the same time, these findings motivate the investigation of ker-
nel functions where the requirements on the structure of the graphs are weakened or
where the requirements on the structures to be discovered are weakened. In the same
work, Gärtner et al. (2003a) suggest kernels based on walks within the graph, which
can be computed from the product graph of the arguments in polynomial time. The
suggested kernels on labelled pairs assume that only the distance between the pairs
of nodes (of some label) is of interest while those based on contiguous walks in the ar-
gument graphs implicitly define a feature space where each dimension corresponds
to a particular label sequence and a graph is represented by counting for each of
these sequences how many walks in a graph match this sequence. Kashima et al.
(2003) propose a similar kernel on transition graphs. Horváth et al. (2004) propose
kernel functions for a different group of descriptive features, namely features based
on the cyclic patterns within a graph. Although kernels based on cyclic patterns are
generally not efficiently computable, several restrictions aid the efficient computation
in special cases.

Future work in the direction of mining whole knowledge structures will be based to
some extent on existing graph kernels but will also need to take the formal semantics
of the argument structures into account.
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Formal Knowledge Structures for Feature/Kernel Specification

A different research direction is the use of formal knowledge structures to design
kernel functions in the first hand. Along this line, Cumby and Roth (2003a) have
proposed to use a simple Description Logic to describe the desired structure of fea-
ture spaces for given learning problems in terms of a feature description language.
Later, Cumby and Roth (2003b) show that some of the explicit feature encoding
can be performed implicitly by defining corresponding kernel functions which are
parametrized by the given feature descriptions.

The basic approach of designing knowledge structures for guiding a kernel func-
tion in computing their results appears to be a promising line for future research.
Challenges on this way include to move from the comparatively simple Description
Logic (DL) employed by Cumby and Roth (2003b) to more expressive DLs along the
lines of current activities in the context of the Semantic Web research area.

Learning with Indefinite Kernel Functions

Much of the work of this thesis was occupied with the question whether and how
the kernel function under investigation can be ensured to be valid, i.e. to constitute
positive semi-definite functions on the input arguments. In Section 2, we have de-
rived this requirement as a direct consequence of the implicit representation in a
Reproducing Kernel Hilbert Space (RKHS). This interpretation provides the basis
for the proper analysis of many models and algorithms in terms of statistical learning
theory and most kernelized learning algorithms directly build on the notion of such
an inner product space, such as e.g. the margin maximization principle for Support
Vector Machines (SVMs).

Nevertheless, it seems natural to wonder in how far kernel methods could be used
in conjunction with arbitrary symmetric similarity functions, even if not positive
semi-definite. Despite the missing interpretation, various studies report results on ex-
periments with indefinite kernel functions (Haasdonk, 2005, and references therein).
However, the results of these studies are mixed, indicating performance gains in se-
lected situations but worse results in others.

Haasdonk (2005) provide a theoretical and geometrical framework in terms of
pseudo-Euclidean spaces and provide an analysis of the behaviour of SVMs in sit-
uations of indefinite kernel functions. The analysis shows that SVMs can produce
optimal hyperplane classifiers not by margin maximization, but by minimization of
distances between convex hulls in pseudo-Euclidean spaces. The analysis also pro-
vides rough criteria, for example the number of negative eigenvalues of the kernel
matrix, for checking whether a given indefinite kernel is promising.

Ong et al. (2004) provide a first deeper analysis of the general implications of in-
definite kernel functions in terms of the Reproducing Kernel Kreı̌n Space (RKKS),
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a generalized type of functional space which corresponds to the RKHS in selected
aspects.

Using indefinite kernels has not only consequences for the geometrical interpreta-
tion but also on the practical implications for the numerical optimization problem, as
convexity is lost. Specifically, in the case of SVMs, the optimization is usually solved
with quadratic programming methods. However, as in the cases no unique global
optimum exists, quadratic programming approaches are in most cases not able to
find satisfying solutions at all or do not even terminate. Along this line, Mierswa
(2006)has proposed a first practical solution to the issue of learning SVMs equipped
with potentially indefinite kernel functions. The issue is addressed by approaching
the constrained optimization problem of the SVM by means of evolutionary algo-
rithms which produced good initial results.

Whether these results will open up the road towards arbitrary kernel functions that
still exhibit the statistical stability is questionable. The careful investigation whether
the constraint of positive semi-definiteness can be relaxed in selected cases is, how-
ever, a line of interesting research that will also naturally affect the field of kernel
functions for knowledge structures.

Learning with Structured Output Spaces

Along a different line, we now turn our attention away from kernel functions in par-
ticular and sketch another road for the interaction of machine learning and formal
knowledge structures.

Recently, there has been increased interest a field called Learning with Structured
Output Spaces. In contrast to the classical supervised learning setting, the target vari-
able is not constrained to take the form of a single value but can have a complex struc-
ture (Tsochantaridis et al., 2004). Without going into the technical details of this area,
it has to be remarked that these learning problems — at their core — also boil down
to the one-variable case but take advantage of an elegant formulation of the learning
problem as a whole, together with algorithms tailored to the specific setting. While
such techniques can on the one hand be used to directly optimize SVM classifica-
tion with respect to specific performance measures like precision or recall (Joachims,
2005), they can, on the other hand, provide a tool for incorporating knowledge about
the output space. Extending existing ideas from classification into hierarchically or-
ganized classes (Cai and Hofmann, 2004), it would be interesting to investigate cases
where the output classes can be structured by mutual logical constraints, such as in
ontologies based on expressive DLs.
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9.3 Final Remarks

In summery, this work has provided several elements of a kernel infrastructure for
formal knowledge structures. It can be seen as a contribution to the vision of hybrid
intelligent systems which jointly build on formal knowledge-based and informal sta-
tistical paradigms of artificial intelligence, i.e. systems that combine deductive and
inductive reasoning techniques. While the increased availability of data sources on
the World Wide Web, the increased availability of formal domain models as part of
the envisioned Semantic Web and the constant advance in computing power con-
tribute to this goal, several additional research questions have to be addressed to
fully achieve it. Together with several ongoing complementary research activities in
the area of kernel functions for structured data, this thesis provide a solid basis for
initial practical application as well as for future research.
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Appendix A

Implementation

JNI Adapter for SVMLIGHT and Kernel Library

This software is an extension of the SVMLIGHT software (V6.01) developed by
Joachims (1999) available at
http://svmlight.joachims.org/

which constitutes one of the most common implementations of the SVM algorithms.
The extension, which is available at
http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/jnikernel/

provides an interface to kernel functions that are implemented in JAVA by means
of the Java Native Interface (JNI) Invocation API. Technically, the custom C/C++p
kernel module of SVMLIGHT now becomes a proxy that is tightly coupled to
the JAVA class edu.unika.aifb.jnikernel.KernelManager. This class delegates
all kernel evaluation calls to a user-specified JAVA class that implements the
edu.unika.aifb.kernels.api.Kernel interface. Thus, SVMLIGHT can directly (i.e.
without further modifications) work with any Java class that implements this inter-
face. The interface can be used to implement whatever kernel, as long as it imple-
ments the edu.unika.aifb.kernels.api.Kernel interface.

Semantic Smoothing Kernel Adapter for SVMLIGHT

For historical and performance reasons, the plain semantic smoothing kernels are also
available as a standalone plugin for SVMLIGHT, implemented in C++. This kernel
plugin is available at:
http://www.aifb.uni-karlsruhe.de/WBS/sbl/software/semkernel/

together with accomanying documentation.
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Appendix B

Penn Treebank Tagset

For a full documentation, please refer to the Penn Treebank Manuals (Santorini, 1990;
Bies, 1995).

Clause Level Annotations

S simple declarative clause, i.e. one that is not introduced by a (possible
empty) subordinating conjunction or a wh-word and that does not exhibit
subject-verb inversion. SBAR - Clause introduced by a (possibly empty)
subordinating conjunction.

SBARQ Direct question introduced by a wh-word or a wh-phrase. Indirect ques-
tions and relative clauses should be bracketed as SBAR, not SBARQ. SINV
- Inverted declarative sentence, i.e. one in which the subject follows the
tensed verb or modal.

SQ Inverted yes/no question, or main clause of a wh-question, following the
wh-phrase in SBARQ.

Phrase Level Annotations

ADJP Adjective Phrase.

ADVP Adverb Phrase.

CONJP Conjunction Phrase.

FRAG Fragment.

INTJ Interjection. Corresponds approximately to the part-of-speech tag UH.

LST List marker. Includes surrounding punctuation.
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Appendix B Penn Treebank Tagset

NAC Not a Constituent; used to show the scope of certain prenominal modifiers
within an NP.

NP Noun Phrase.

NX Used within certain complex NPs to mark the head of the NP. Corresponds
very roughly to

N-bar level but used quite differently. PP - Prepositional Phrase.

PRN Parenthetical.

PRT Particle. Category for words that should be tagged RP.

QP Quantifier Phrase (i.e. complex measure/amount phrase); used within
NP.

RRC Reduced Relative Clause.

UCP Unlike Coordinated Phrase.

VP Vereb Phrase.

WHADJP Wh-adjective Phrase. Adjectival phrase containing a wh-adverb, as in how
hot.

WHAVP Wh-adverb Phrase. Introduces a clause with an NP gap. May be null
(containing the 0 complementizer) or lexical, containing a wh-adverb such
as how or why. WHNP - Wh-noun Phrase. Introduces a clause with an NP
gap. May be null (containing the 0 complementizer) or lexical, containing
some wh-word, e.g. who, which book, whose daughter, none of which, or
how many leopards.

WHPP Wh-prepositional Phrase. Prepositional phrase containing a wh-noun
phrase (such as of which or by whose authority) that either introduces a
PP gap or is contained by a WHNP. X - Unknown, uncertain, or unbrack-
etable. X is often used for bracketing typos and in bracketing the...the-
constructions.

Word Level Annotations

CC Coordinating conjunction

CD Cardinal number

210



DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

PRP$ Possessive pronoun (prolog version PRP-S)

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form
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Appendix B Penn Treebank Tagset

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun (prolog version WP-S)

WRB Wh-adverb
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