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Abstract An important problem in software engineering is the auto-
mated discovery of noncrashing occasional bugs. In this work we address
this problem and show that mining of weighted call graphs of program
executions is a promising technique. We mine weighted graphs with a
combination of structural and numerical techniques. More specifically,
we propose a novel reduction technique for call graphs which introduces
edge weights. Then we present an analysis technique for such weighted
call graphs based on graph mining and on traditional feature selection
schemes. The technique generalises previous graph mining approaches
as it allows for an analysis of weights. Our evaluation shows that our
approach finds bugs which previous approaches cannot detect so far.
Our technique also doubles the precision of finding bugs which existing
techniques can already localise in principle.

1 Introduction

Software quality is a big concern in industry. Almost any software displays at
least some minor bugs after being released. Such bugs incur significant costs.
A class of bugs which is particularly hard to handle is noncrashing occasional
bugs, i.e., failures which lead to faulty results with some but not with any input
data. Noncrashing bugs in general are already hard to find. This is because no
stack trace of the failure is available. With occasional bugs, the situation is even
more difficult, as they are harder to reproduce. Developers usually try to find
and fix bugs by doing an in-depth code review along with testing and classical
debugging. Since such reviews are very expensive, there is a need for tools which
localise pieces of code that are more likely to contain a bug.

Research in the field of software reliability has been extensive, and various
techniques have been developed for locating bugs. Static techniques require a
large bug and version history database, which is not always available. Dynamic
techniques using instrumentation often have a poor runtime behaviour. Another
dynamic technique is the analysis of call graphs. Such a graph reflects the invoca-
tion structure of a particular program execution. Without any further treatment,
a call graph is a rooted ordered tree. The main() method1 of a program usually
is its root, and all methods invoked directly are its children. Figure 1(a) is an

1 In this paper, we use method interchangeably with function.
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abstract example of such a call graph. Recent work [1, 2] deploys graph min-
ing techniques on call graphs for bug localisation. [2] then derives a ranking of
methods which are most probable to contain a bug. Generating such a ranking
is not trivial. For instance, follow up bugs need to be identified. [2] does not
identify follow up bugs at all, and [1] only generates a backtrace-like structure
which helps the programmer to find follow up bugs.

Graph mining is a relatively new discipline in data mining, and innovative
algorithms have been developed in recent years [3, 4, 5, 6]. Various algorithms
deal with the problem of mining frequent subgraphs, i.e., discovering all sub-
graphs which are frequent in a set of graphs. A difficulty with graph mining
on raw call graphs is that the algorithms do not scale. Therefore, reduction
techniques are developed and applied first. Such techniques are not obvious:
They involve a trade-off between loss of information and the size of the resulting
graphs. An important piece of information included in the raw call graphs is the
call frequency of all methods. The reduction techniques in [1, 2] loose this infor-
mation. But it eases detection of bugs which affect the number of invocations
of a method, call frequency affecting bugs. Various reasons for such bugs exist,
e.g., wrongly specified conditions. Note that it is not only loop conditions which
cause these bugs, but any wrongly specified condition leading to method calls
within in a loop. This is because branches taken within a loop or not affect the
frequency of a certain method call. As iterations are elementary in programming
languages, a wide range of bugs is call frequency affecting. To find such bugs,
we take call frequencies into account and analyse their differences in correct and
failing executions.

Graph mining research has focused on structural and categorical techniques,
and the various graph miners available target at different kinds of graphs. Al-
most all algorithms handle categorical data in node and edge labels. However,
little attention has gone into the analysis of quantitative information, and no
algorithm is available for mining weighted graphs. Since we want to analyse call
graphs where weighted edges represent call frequencies, we must come up with a
solution. Further, finding a suitable combination of call graph reduction, graph
mining and the analysis of call frequencies is challenging.

In this work, we use conventional mining techniques for unweighted graphs in
conjunction with feature selection algorithms to analyse numerical edge weights.
More specifically, we first trace program executions and classify them as correct
or failing using a test oracle. We for our part do this by comparing execution
results to a fault-free reference. These correct results are typically available,
as test suites providing such information are widely used in quality assurance
[7]. We represent the program traces as call graphs and reduce these graphs by
deleting multiple method calls caused by iterations and introducing edge weights
representing call frequencies. We then mine the reduced graphs before taking
the edge weights into account: By applying an entropy based feature selection
algorithm to the weights of the different edges, we calculate the likelihood of both
every method invocation as well as of every method containing a bug. For a final
ranking, we combine these likelihoods with another score based on structural



properties of the graph mining results. The rationale is that this ranking is given
to a software developer who can do a code review of the suspicious methods.

In other words, solving the problems mentioned so far requires innovations
at different levels of analysis. Our contributions are as follows:

Reduction of software call graphs. We propose using a new variant of reduced
call graphs and present a technique to accomplish this reduction. The reduced
graphs keep much information, while they are relatively small. For example, [2]
would reduce one call graph from our evaluation from 9,946 to 50 edges. With
our technique, there are just 31 edges, while keeping more information and,
ultimately, giving way to better results.

Mining weighted graphs. We present an approach which combines numerical
analysis of edge weights with conventional graph mining. Our approach distin-
guishes between occurrences of edges which appear more than once within a
subgraph. This allows for a detailed analysis. To our knowledge, a technique
which analyses weights in the postprocessing of graph mining has not been de-
scribed before. This particular contribution is not limited to call graph analysis,
but can be transferred to any domain where weighted graphs are present.

Combination of numerical and structural techniques. There exist frequent
subgraphs which occur both in call graphs of correct and of failing executions,
as well as frequent subgraphs occurring in failing executions only. We analyse
the edge weights for subgraphs from the first class, whereas we generate purely
structural evidence from subgraphs from the second class. Our approach then
combines these different kinds of evidence, and we demonstrate its usefulness.

Evaluation. We show that our approach is particularly well suited to discover
call frequency affecting bugs. Unlike previous techniques, it also detects follow
up bugs. With regard to bugs existing techniques can already localise, our ap-
proach doubles the precision of finding them. Furthermore, it finds bugs on the
granularity of method invocations instead of the level of methods.

In this work, we do not reduce recursive calls and concentrate on iterations.
The reduction of recursions is not obvious and is beyond the scope of this study.

Paper outline: Section 2 reviews related work. Section 3 presents an overview
of graph mining with call graphs. Section 4 discusses graph reduction techniques.
Section 5 describes how to calculate probabilities of containing bugs based on
reduced graphs. Section 6 features an evaluation. Section 7 concludes.

2 Related Work

A lot of research has been done in the field of software reliability. Approaches
range from static code analysis and mining of software repositories and bug
databases [8, 9, 10] to dynamic program verification. The latter focus on the data
flow [11, 12] or, like all call graph based techniques, on the control flow [13, 14].
In the following, we will first discuss the application of data mining techniques
in this context – bug localisation is just one application. Then we concentrate on
two graph mining based approaches [1, 2] which are most related to our work.
Finally, we describe some related work in the area of mining weighted structures.



2.1 Mining software metrics and invariants

[8] maps post-release failures from a bug database to defects in static source code.
Using standard complexity measures from software engineering, the source code
is mined with regression models, which can then predict post-release failures
for new software entities. A similar study uses decision trees to predict failure
probabilities [9]. [10] uses regression techniques to predict the likelihood of bugs
based on static usage relationships between software components. All approaches
mentioned require a large collection of bugs and version history.

Dynamic program slicing [11] gives hints which parts of a program might have
contributed to a faulty execution, without ranking the locations in question. This
is done by discovering all statements that actually affect the variables involved.
Advanced techniques like [12] perform dynamic data flow focused analysis by
instrumenting the source code to gain program invariants. These are used as
features of correct and failing executions which are analysed with regression
techniques. This leads to potentially faulty pieces of code. A similar approach,
but with a focus on the control flow, is [13]. It instruments condition statements
and calculates a ranking based on its evaluation frequencies. The instrumentation
based approaches mentioned either suffer from poor runtime behaviour or miss
bugs if only sampled parts of the software are instrumented.

[14] is a technique which uses tracing and visualisation. It relies on a simple
ranking of program components based on the information which components are
executed more often in failing program executions. This ranking serves as a basis
for more sophisticated rankings in [2] as well as in our approach.

2.2 Call Graph based Fault Detection

The approach from Liu et al. [1]: This first study which applies graph mining
techniques to dynamic call graphs considers so called software behaviour graphs.
These are reduced call graphs, augmented with some temporal information. Sec-
tion 4 will provide more information on these graphs. The behaviour graphs
representing correct and failing program executions are mined with a variant of
the CloseGraph algorithm [5]. This step results in frequent subgraphs which are
used as binary features characterising a program execution: A boolean feature
vector represents every execution. In this vector, every element indicates if a
certain subgraph is included in the corresponding behaviour graph. Using those
feature vectors, a support vector machine is learned which decides if a program
execution is correct or failing. More precisely, for every method, two classifiers
are learned: one based on behaviour graphs including the respective method,
one based on graphs without it. If the precision rises significantly when adding
graphs containing a certain method, this method is deemed more likely to con-
tain a bug. Experiments with five out of 130 bugs from the Siemens Programs
[15] demonstrate good classification performance, but do not evaluate the preci-
sion of the bug localisation. Furthermore, the authors do not generate a ranking
of methods suspected to contain a bug. As we do so, our approach can not be
compared directly. However, in Sect. 6, we compare the reduction techniques.



The approach from Di Fatta et al. [2]: In this work, a reduction technique is
again applied to the raw call trees first (see Sect. 4 for details). The next step
is similar to the one described before: A collection of reduced call graphs rep-
resenting correct and failing program executions is analysed with graph mining.
The authors use the tree miner FREQT [16] to find all frequent subtrees. The
call trees analysed are large and lead to scalability problems of the algorithm.
Hence the authors limit the size of the subtrees searched to values up to 4. Then
the authors identify which resulting subgraphs are frequent in the set of fail-
ing program executions, but not frequent in the set of correct ones. This set of
subgraphs is called specific neighbourhood. For all methods invoked within sub-
graphs which are part of the specific neighbourhood, a probability of containing
a bug is calculated based on support values. Like [1], [2] does not put attention
on call frequencies.

2.3 Subsumption

Frequent subgraph mining is a generalisation of previous structural knowledge
discovery techniques such as mining of itemsets, sequences and trees [17]. Early
work [18] in the area of itemsets has introduced the problem of weighted struc-
ture mining. Itemsets can be seen as graphs consisting of nodes only. In [18],
these nodes are weighted and are discretised during preprocessing. Correspond-
ing techniques are applied to graphs in transportation networks [19] and image
analysis [20]. Such discretisation leads to a loss of information, as we will discuss
in Sect. 5.2. In [21], we have already analysed tuples of weights of sequences as a
postprocessing step of sequence mining. This allows for a more detailed analysis
of weights in different structural contexts. This current work is in the field of
weighted structure mining as well – it analyses edge weights subsequent to a
graph mining step.

[22] is a preliminary and much shorter version of this paper. It directly com-
bines its results with those of [2] in order to find a wider range of bugs. It requires
two costly graph mining steps. This current work avoids this.

3 Call Graph Mining Overview

Before we focus on reduction and ranking techniques in Sections 4 and 5, we now
give an overview of the procedure of localising bugs with graph mining. Note
that [2] follows this general procedure as well. Algorithm 1 first assigns a class
(correct, failing) to every program trace (Line 4), using a test oracle. Then every
trace is reduced (Line 5), which leads to smaller call graphs. Techniques to do
so are discussed in Sect. 4. Now frequent subgraphs are mined (Line 7). For this
step, several algorithms, e.g., tree mining or graph mining in different variants,
can be used. The last step is calculating a likelihood of containing a bug. This
can either be fine granular for every method invocation or, more coarse grained,
for every method (as shown in Line 8). The calculation of the likelihood is based
on the frequent subgraphs mined and facilitates a ranking of the methods, which
can then be given to the software developer.



Algorithm 1 Generic graph mining based bug localisation procedure.
1: Input: a collection of program traces t ∈ T
2: G = ∅ // initialise a collection of reduced graphs
3: for all traces t ∈ T do
4: assign a class ∈ {correct , failing} to t
5: G = G ∪ {reduce(t)}
6: end for
7: SG = frequent subgraph mining(G)
8: calculate P (m) for all methods m; based on SG

4 Call Graph Reduction

In the related work on call graph mining (see Sect. 2.2), two different approaches
exist which lead to reduced call graphs (as specified in Line 5 of Algorithm 1).
The reduction technique used in [1] projects every node representing the same
method in the call graph to a single node in the reduced graph. We call this
technique total reduction. Note that this may give way to the existence of loops
and limits the size of the graph (in terms of nodes) to the total number of
methods in the program analysed. As an example, the raw ordered call tree in
Fig. 1(a) would result in the reduced graph displayed in Fig. 1(b). In addition to
the reduction, so called temporal edges are inserted between all methods which
are executed consecutively and are invoked by the same method. This technique
integrates the temporal order from the raw ordered call trees into the graph
representations. Technically, temporal edges are directed edges having another
label, e.g., “temporal”, compared to other edges which are labelled, say, “call”.
Figure 1(c) serves as an example of a graph using the reduction technique and
temporal edges (dotted), called software behaviour graph. This reduction is rather
severe, e.g., from several millions of nodes to several hundreds. It allows graph
mining based bug localisation even with larger software projects. In contrast,
much information about the program execution is lost. This concerns frequen-
cies of the execution of methods as well as information on different structural
patterns within the graphs. In particular, the information in which context a
certain substructure is executed is lost (see Sect. 5.2). Furthermore, the tempo-
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Figure 1. Variants of reduced call graphs.



ral edges increase the size of the graphs significantly. An increased precision of
fault detection by using temporal edges has not been evaluated.

The approach in [2] keeps more information. It omits substructures of sub-
sequent executions, which are invoked more than twice in a row from the same
node. See Fig. 1(d) for an example. This reduction ensures that many equal
substructures called within a loop do not lead to call graphs of an extreme size.
In contrast, the information that some substructure is executed several times is
still encoded in the graph structure, but without exact numbers. Compared to
[1], much more information about a program execution is kept, compromised by
a call graph which is generally much larger. For example, graphs are reduced
from several millions of nodes to several ten thousand nodes.

In our approach, we try to overcome the shortcomings of both approaches
and try to keep most of the information available. We reduce subtrees executed
iteratively by deleting all but the first one and inserting the call frequencies as
edge weights. This makes the graphs relatively small and keeps a lot of informa-
tion. An example is given in Fig. 1(e). The introduction of edge weights allows
for a detailed analysis. If, e.g., a bug is hidden in a loop condition, this might
lead to hundreds of iterations of the loop, compared to just a few in correct
program executions. Note that, with both previous graph representations, the
graph of the correct and of the failing execution is reduced to exactly the same
structure in this case. In our approach, the edge weights would be significantly
different. Analysis techniques can then discover this.
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Figure 2. A raw call tree, its first and second transformation step.

For our graph reduction approach, which implements the functionality spec-
ified in Line 5 of Algorithm 1, we organise the call tree into n horizontal levels.
The root node is in level 1, all other nodes are in subsequent levels, increasing
with the distance to the root. See Fig. 2(a). A näıve approach to reduce our
example call tree in Fig. 2(a) would be to start at level 1 with Node a. There,
one would find two child subtrees having a different structure – one could not
merge anything. Therefore, we work level by level, starting from level n− 1, as
described in Algorithm 2. In our example in Fig. 2(a), we have to start in level 2.
The left node b has two different children. Thus, nothing can be merged there.
In the right b, the two children c are merged by adding the edge weights of the
merged edges, yielding the tree in Fig. 2(b). In the next level, level 1, we process



the root node a. Here, the structure of the two succeeding subtrees is the same.
We merge them, resulting in the tree in Fig. 2(c).

Algorithm 2 Subtree reduction algorithm.
1: Input: a call tree organised in n levels
2: for level = n− 1 to 1 do
3: for each node in level do
4: merge all identical child-subtrees of node, sum up corresponding edge weights
5: end for
6: end for

Our reduction technique obviously is not lossless. The size of the resulting
graphs would be prohibitive. With large pieces of software, graph mining may
not scale with the size of the call graphs, even if the reduction technique applied
is effective. To deal with this problem, it seems promising to use graphs of coarser
granularity: Instead of using methods as nodes in call graphs, it is possible to,
say, use classes as a coarser abstraction. Such call graphs would have classes as
nodes and inter class method calls as edges. Obviously, such a coarser abstraction
would lead to less detailed bug localisation as well.

5 The Ranking Framework

So far, we have discussed how to reduce call graphs. Now we will describe
our framework for deriving a ranking of potentially buggy method invocations
(edges) and methods (nodes) from such graphs. Before we focus on the individual
components in the following subsections, we give an overview of our framework.
At first, we apply frequent subgraph mining to the reduced call graphs, with-
out considering the weights for now (Sect. 5.1). This corresponds to Line 7 in
Algorithm 1. We then partition the set of frequent subgraphs just mined and
consider two sets separately: (1) the set of subgraphs which occur in both correct
and failing executions SGcf and (2) the set of subgraphs which only occur in
failing executions SGf

2. We use SGcf to build a ranking based on the differ-
ences in edge weights in correct and failing executions (Sect. 5.2). This ranking
can be based on method invocations or on individual methods. As subgraphs
in SGf are never contained in correct executions, it is not possible to analyse
differences based on SGf . In contrast, SGf provides crucial information about
the graph structures in failing executions. Therefore, we derive a score based on
the support in SGf (Sect. 5.3) and combine it with the edge weight based one
mentioned above (Sect. 5.4). This combination is in Line 8 in Algorithm 1.

2 In preliminary experiments, we have also evaluated the influence of subgraphs which
occur in correct executions only. It has turned out that such graphs do not help to
localise bugs.



5.1 Graph Mining Step

After having reduced the call graphs gained from correct and failing program
executions, we search for frequent closed subgraphs SG in the graph dataset
G using the CloseGraph algorithm [5]. For this step, we employ the ParSeMiS
graph mining suite3. Closed mining reduces the number of graphs in the result
set significantly and increases the performance of the mining algorithm (studying
its effects on result quality is beyond the scope of this article). Furthermore, the
usage of a general graph mining algorithm instead of a tree miner allows for
comparative experiments with other graph reduction techniques (see Sect. 6).
After the graph mining step, we partition SG and derive the set of subgraphs
which occur in correct and failing executions SGcf and the set of subgraphs
which occur in failing executions only SGf .

5.2 Entropy Based Scoring

We now focus on frequent subgraphs which occur in both correct and failing
executions (SGcf ). Our goal is to develop an approach which discovers which
edge weights of call graphs from a program are most significant to discriminate
between correct and failing. To do so, one possibility is to consider different
edge types, e.g., edges having the same calling method ms (start) and the same
method called me (end). However, edges of one type can appear more than once
within one subgraph and, of course, in several different subgraphs. Therefore,
we analyse every edge in every such location, which we refer to as a context. To
specify the exact location of an edge in its context within a certain subgraph, we
do not use the method names, as they may occur more than once. Instead, we
use a unique id for the calling node (ids) and another one for the method called
(ide). All ids are valid within its subgraph. To sum up, we reference an edge in its
context in a certain subgraph sg with the following tuple: (sg , ids , ide). A certain
bug does not affect all method calls (edges) of the same type, but method calls of
the same type in the same context. Therefore, we assemble a feature table with
every edge in every context as columns and all program executions (represented
by their reduced call graphs) as rows. The table cells contain the respective edge
weights. The following table serves as an example:

a→ b a→ b a→ c
(sg1 , id1 , id2 ) (sg1 , id1 , id3 ) (sg2 , id1 , id2 ) · · · Class

g1 445 21 7 · · · failing
g2 0 0 4 · · · correct
· · · · · · · · · · · · · · · · · ·

The first column corresponds to the first subgraph (sg1 ) and the edge from
id1 (method a) to id2 (method b). The second column corresponds to the same
subgraph (sg1 ) but to the edge from id1 (method a) to id3 (method b). The third
column represents an edge from id1 to id2 in the second subgraph (sg2 ). Note
3 http://www2.informatik.uni-erlangen.de/Forschung/Projekte/ParSeMiS/



that method b occurs twice in sg1 and that ids have different meanings in sg1 and
sg2 . The last column contains the class correct or failing . The rows correspond
to all reduced call graphs g1, ..., gn ∈ G available. If a certain subgraph is not
contained in a call graph, the corresponding cells have value 0, like g2 which does
not contain sg1 . Graphs (rows) can contain a certain subgraph not just once,
but several times at different locations. In this case, we use aggregates in the
corresponding cells of the table. As minimum values would ignore bugs resulting
in increased numbers and maximum values would ignore bugs leading to reduced
numbers, we use the average. In the example, sg2 is embedded at two locations
in g1 . In one location the edge from id1 to id2 has the weight 6, in the other
one weight 8.

The table structure described allows for a detailed analysis of edge weights
in different contexts within a subgraph. All following steps in this subsection are
described in Algorithm 3. After assembling the table, we employ a standard fea-
ture selection algorithm to score the columns of the table and thus the different
edges. We use an entropy based algorithm from the Weka data mining suite [23]
which calculates the information gain InfoGain [24] (with respect to the class of
the executions, correct or failing) for every column (Line 2 in Algorithm 3). The
information gain is a value between 0 and 1 which we interpret as a likelihood
of being responsible for bugs. Columns with an information gain of 0, e.g., the
edges always have the same weights in both classes, are discarded immediately
(Line 3 in Algorithm 3).

a

b

1

d

2

c

1

e

2

f

6

(a)

a

b

1

d

20

c

1

e

20

f

60

(b)

Figure 3. Follow up bugs.

Call graphs of failing executions frequently contain bug-like patterns which
are caused by a preceding bug. We call such patterns follow up bugs and re-
move them from our ranked list of features. Figure 3 illustrates a follow up bug:
(a) represents a bug free version, (b) contains a bug in method a where it calls
method d. Here, this method is called 20 times instead of twice. Following our
reduction technique, this leads to the same (or a proportional) increase in the
number of calls in method d. In our entropy based ranking, the edges d→ e and
d→ f inherit the score from a→ d if the scaling of the weights is proportional.
Thus, we interpret these two edges as follow up bugs and remove them from our
ranking. More formally, we remove edges if the edge leading to its direct parent
within the same subgraph has the same entropy score (Line 4 in Algorithm 3).



In case of more than one bug in a program, this way of follow up bug detection
might not find all such bugs, but preliminary experiments have shown that it
does detect common cases efficiently. We leave aside the pathological case that
this technique classifies a real bug as follow up bug. This is acceptable, since the
probability of a certain entropy value is the same for every bug. Therefore, it is
very unlikely that two unrelated bugs lead to exactly the same entropy value,
which would lead to a ‘false positive’ classification.

Algorithm 3 Procedure to calculate Pe(ms, me) and Pe(m).
1: Input: a set of edges e ∈ E representing edges in their context, e = (sg , ids , ide)
2: assign every e ∈ E its information gain InfoGain
3: E = E \ {e | e.InfoGain = 0}
4: // remove follow up bugs:

E = E \ {e | ∃p : p ∈ E, p.sg = e.sg , p.ide = e.ids , p.InfoGain = e.InfoGain}
5: E(ms,me) = {e | e ∈ E ∧ e.ids .label = ms ∧ e.ide .label = me}
6: Pe(ms, me) = max

e∈E(ms,me)
(e.InfoGain)

7: Em = {e | e ∈ E ∧ e.ids .label = m}
8: Pe(m) = max

e∈Em

(e.InfoGain)

Now we calculate likelihoods of containing a bug for every method invocation
(described by a calling method ms and a method called me). We call this score
Pe(ms, me) as it is based on entropy. To do so, we first determine sets E(ms,me)

of edges e ∈ E for every method invocation in Line 5 of Algorithm 3. In Line 6,
we use the max() function to calculate Pe(ms, me), the maximum of all edges
(method invocations) in E(ms,me). This is necessary, as in general there are many
edges in E with the same method invocation. This is because an invocation can
occur in different contexts. With the max() function, we assign every invocation
the score from the context ranked highest. Lower scores for the same invocation
are less important, and we ignore them.

At this point, the ranking does not only provide the score for a method invo-
cation, but also the subgraphs where it occurs and the locations within it. This
information might be important for a software developer. We report this infor-
mation additionally. As we also want to compare our results to those of [2] which
does not provide information on the invocation level, we also calculate Pe(m)
for every calling method m in Lines 7 and 8 of Algorithm 3. The explanation is
analogous to the one of the calculation of Pe(ms, me) in Lines 5 and 6.

This subsection has presented a technique relying on the analysis of edge
weights in different contexts. As we will see in the evaluation (Sect. 6), the
consideration of different contexts is key for good results. As contexts are defined
based on the subgraphs mined, such a differentiated analysis is only possible
subsequent to graph mining, but not during preprocessing (see Sect. 2.3).



5.3 Structural Scoring

Our entropy based scoring (Sect. 5.2) cannot detect bugs which are not call
frequency affecting, as it analyses call frequencies only. At the same time, it
does not consider subgraphs which occur in failing executions only (SGf ). As
some bugs result in such subgraphs, these are essential to detect bugs as well.
Therefore, we calculate the score Ps(m) for individual methods based on the
support in SGf . This score is another likelihood of containing a bug, as it refers
to the frequency of method invocations in failing executions.

Ps(m) = supp(m, SGf ) (1)

where supp(m, SGf ) is the fraction of graphs in SGf containing a node m.

5.4 Combination

Now we calculate the overall likelihood P (m) of containing a bug for every
method m, based on the average of the normalised values for Pe(m) (see Sect. 5.2)
and Ps(m) (see Sect. 5.3). Normalisation is necessary: While both values are in
the [0, 1]-range, their maximum can be very different. Normalisation keeps us
from overemphasising one of the two rankings. P (m) is the basis for the ranking
of all methods m, which is used to locate bugs:

P (m) =
Pe(m)

2 max
n∈t∈T

(Pe(n))
+

Ps(m)
2 max

n∈t∈T
(Ps(n))

(2)

where n is a method in a program trace t in the collection of all traces T .

6 Evaluation

To evaluate bug localisation techniques, the Siemens Programs [15] are often
used [1, 2, 13] as a reference suite of C programs artificially instrumented with
different bugs. More specifically, it usually is just a small subset of this bench-
mark which is used. For example, [2] just considers three of the seven Siemens
Programs, [1] only five different bugs out of 130 available in total. As most bug
detection techniques are limited to certain classes of bugs, these techniques can-
not find every element of a standard suite of bugs. Our approach, as well as the
two most related ones [1, 2], focus on noncrashing occasional bugs.

As we rely on Java software, we use a well known Java diff tool (taken
from [25]) and instrument it with fourteen different bugs4. To do so, we have
examined the Siemens Programs and have identified five types of bugs which are
most frequent within them. Our programs contain these bugs and also the kinds
of bugs used in [1]. Most of these bugs are call frequency affecting. The Siemens

4 We provide the software versions containing the bugs used at
http://www.ipd.uka.de/~eichi/papers/eichinger08mining/



Programs mostly contain bugs in single lines and just a few programs with more
than one bug. To mimic the Siemens Programs as close as possible, we have
instrumented only two out of fourteen versions (Bugs 7 and 8) with more than
one bug. We give an overview of the kinds of bugs used in the following table:

Version Description
Bug 1, Bug 10 Wrong variable used
Bug 2, Bug 11 Additional or-condition
Bug 3 >= instead of !=
Bug 4, Bug 12 i+1 instead of i in array access
Bug 5, Bug 13 >= instead of >
Bug 6 > instead of <
Bug 7 A combination of Bug 2 and Bug 4 (in the same line)
Bug 8 i+1 instead of i in array access + additional or condition
Bug 9, Bug 14 Missing condition

Every version has been executed exactly 100 times with different input data.
The results have been classified as correct or failing executions with a test oracle
based on a bug free reference version. Based on this data, we carry out four
experiments:

1. The conventional method ranking, following [2], including its graph reduction
technique, using the same method scoring and the same mining parameters
for support and maximum subgraph size.

2. The total reduction method ranking, the total reduction from [1] with edge
weights representing call frequencies (see Fig. 1(f)) together with the com-
bined scoring (Sect. 5.4).

3. The entropy-based method ranking, our reduction technique (Sect. 4) together
with the entropy based scoring (Sect. 5.2) but without the combination.

4. The combined method ranking (Sect. 5.4), our reduction technique (Sect. 4)
together with the entropy based scoring (Sect. 5.2) and the structural scoring
(Sect. 5.3).

To keep the comparison focused, we leave aside the temporal order inside the
call graphs. We have found graphs with temporal edges as used in [1] too large
(in terms of edges) to be mined efficiently. Nevertheless, our study is fair since
we leave aside that temporal information with all alternatives.

All experiments produce ordered lists of methods. A software developer doing
a code review would start with the top ranked method in such a list. The maxi-
mum number of methods which have to be checked to find the bug is, therefore,
the line number of the faulty method in the ranked list. Sometimes two or more
subsequent lines have the same score. As the intuition is to count the maximum
number of methods which have to be checked, all lines with the same score have
the number of the last line with this score.

In order to evaluate the accuracy of the results, the line of the ranking where
the first instrumented bug is found needs to be identified. If the first instrumented
bug is, e.g., reported in the third line, this is a fairly good result. A software



developer only has to do a code review of maximally three out of 25 methods
from our target program. Furthermore, in the entropy-based and the combined
method ranking, there usually is more information available where a bug is
located within a method and in which context it appears. Thus, our comparison
is conservative, i.e., it does not demonstrate the full capabilities of our approach.

We present the results (the number of the first line in which a bug is found)
of the four experiments for all fourteen bugs in the following table. For versions
with two bugs, we concentrate on finding the first of the two bugs contained.
Value 25 refers to a bug which is not discovered with the respective approach.

Experiment \ Bug Version Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Conventional method ranking (1) 3 25 1 4 6 4 3 3 1 6 4 4 25 4
Total reduction method ranking (2) 1 5 1 4 3 5 5 2 25 2 5 4 6 3
Entropy-based method ranking (3) 3 3 1 1 1 3 3 1 25 2 3 3 3 3
Combined method ranking (4) 3 2 1 1 1 2 2 1 8 2 2 3 3 3

Comparing the results from (1) and (3), the entropy-based approach almost
always performs as good or better than the conventional one. This shows that
analysing numerical call frequencies is adequate to locate bugs. Bugs 2, 9 and 13
illustrate that both approaches alone cannot find certain bugs. Bug 9 can not
be found by comparing call frequencies (3), as a condition has been modified
which now always leads to the invocation of a certain method. Therefore, the call
frequency is always the same (not call frequency affecting). Bugs 2 and 13 are not
found with the purely structural conventional approach (1). Both are typical call
frequency affecting bugs: Bug 2 is in a condition inside a loop and leads to more
invocations of a certain method. In Bug 13, a modified for-condition slightly
changes the call frequency of a method inside the loop. With the reduction
technique used in (1), this leads in Bug 2 and Bug 13 to the same graph structure
both with correct and with failing executions. Thus, it is not possible to identify
structural differences.

To ease presentation, we first describe the combined approach (4) before we
discuss (2). Experiment (4) is intended to take important structural information
into account as well and therefore to improve the results from (3). We do achieve
this goal: We retain the already good results from (3) in nine cases and improve
them in five. In particular, (4) finds Bug 9, which is not possible with (3) alone.
Therefore, the combination of numerical and structural techniques turns out to
be superior. When calculating averages of the improvement of certain approaches
in the following, we leave aside Bugs 2, 9 and 13. This is because high values
would have a too strong influence on the results. Note that this lets our approach
look somewhat worse, as it does find all three bugs. Bugs 7 and 8 illustrate that
our approach analyses versions with more than one bug successfully as well. In
(4), both bugs are ranked at Position 1 and 2. This is not worse than versions
with one bug only.

Experiment (2) is intended to evaluate the graph reduction technique in [1].
Except for the graph reduction technique, the approach is identical to the one in
(4). In almost all cases, (2) performs worse than (4). This confirms that our graph



reduction technique is reasonable and that it is worth to keep more structural
information than the total reduction does.

Summing up, our experiments show that weighted graph mining on call
graphs reduced with our method is appropriate for precise software bug localisa-
tion. Even if previous approaches are able to detect call frequency affecting bugs,
our approach can detect them with a much higher degree of precision. This is
because it explicitly analyses call frequencies. Furthermore, our approach finds
bugs in settings with more than one bug and doubles the precision of [2] on
average.

7 Conclusions

In this work we have addressed the problem of localising noncrashing occasional
software bugs. This localisation is important as such bugs are hard to detect
manually and cause significant costs. Our approach is dynamic and control flow
centred as it relies on call graphs of program executions. We have presented a
novel technique to reduce such graphs. It keeps the size of the resulting graphs
relatively small while keeping more important information. In particular, it in-
troduces edge weights representing call frequencies. As none of the recently de-
veloped graph mining algorithms analyse weighted graphs, we have developed a
combined approach which does so. It consists of conventional frequent subgraph
mining and subsequently scoring of numerical edge weights using an entropy
based algorithm. Our experiments do not just show a doubled precision of bug
localisation. They also show that our approach detects bugs which previous
approaches can not find in principle. We demonstrate that the numerical in-
formation kept with our call graph reduction technique is important for good
results. We have shown that our combination of structural and numerical mining
techniques is key for precise localisations.

Future work will address recursive method invocations. Another direction is
mining of call graphs with constraint based and approximative techniques.
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