# Vacuum Gas Carburizing – Fate of Hydrocarbons

zur Erlangung des akademischen Grades eines DOKTORS DER INGENIEURWISSENSCHAFTEN (Dr.-Ing.)

der Fakultät für Chemieingenieurwesen und Verfahrenstechnik der Universität Fridericiana Karlsruhe (TH) genehmigte

DISSERTATION

von **M.Sc. Rafi Ullah Khan** aus Pakistan

| Tag des Kolloquiums: | 29.07.2008                  |
|----------------------|-----------------------------|
| Referent:            | Prof. DrIng. Rainer Reimert |
| Korreferent:         | Prof. Dr. Olaf Deutschmann  |

## Acknowledgements

I am highly indebted to Professor Rainer Reimert, my supervisor, for his many suggestions and constant support during this research. Without his guidance this work would not have been possible. I am also highly obliged to Professor Olaf Deutschmann, my co-supervisor, for his useful advices and providing me the DETCHEM software as well as the preprints of his joint work with Koyo Norinaga. Special thanks to Professor George Shaub for his suggestions from time to time which helped me to improve my work. I am also obliged to Professor Jürgen Warnatz and Professor Ulrich Maas for providing software HOMREA for my research work.

I am thankful to Siegfried Bajohr and Frank Graf for the guidance, discussions and providing the experimental data. I would also like to thank Walter Swady for useful CFD tips during the start of my research work. I am also thankful to Agnes von Garnier for helping me in official procedures and to explain many technical terms from German language. I am also thankful to Dominic Buchholz for useful discussions and translating the summary of my work to German language. Many thanks to Vinod M. Janardhanan, Steffan Tischer and Kyo Norinaga for their support to run the DETCHEM software.

I highly appreciate the help and support of Ms. Sabine Hecht throughout my stay at the Engler-Bunte-Institut. I am thankful to the colleagues at the Engler-Bunte-Institut, who are impossible to mention in this short paragraph, created a pleasant working environment.

I must acknowledge the financial support of Higher Education Commission of Pakistan (HEC) for my Ph.D. studies. I should also mention the German Academic Exchange Service (DAAD) who provided financial support for German language courses, administered my studies as well as arranged educational, social and recreational activities throughout my stay in Germany.

I am grateful to my family and friends in Pakistan for their moral support and encouragement during my stay abroad.

#### Abstract

Carburizing is the case-hardening process in which carbon is added to the surface of low-carbon steels at temperatures generally between 850 and 1050 °C. In the conventional gas carburizing at atmospheric pressure, the carbon potential is controlled by adjusting the flow rate of the carburizing gas. Carbon potential of the furnace atmosphere can be related to partial pressure of  $CO_2$  or  $O_2$  or vapour pressure of water by equilibrium relationships and a sensor can be used to measure it. This method of carbon-potential control cannot be used for vacuum gas carburizing due to the absence of thermodynamic equilibrium which is one of the main difficulties of the vacuum carburizing process. The formation of soot during carburization is also undesirable and the process parameters should be selected such that the formation of soot is minimized. The amount of carbon available for carburizing the steel depends on the partial pressure of the carburizing gas. The pyrolysis reactions of the carburizing gas are also affected by the contacting pattern or how the gas flows through and contacts with the steel parts being carburized.

This work focuses on gaseous reactive flows in ideal and non-ideal reactors. The objective of this research is the development of models for the numerical simulation of homogeneous reactive flows under vacuum carburizing conditions of steel with propane and acetylene. These models can be used for further investigations of heterogeneous reactions during vacuum carburizing of steel to predict the carbon flux on the complex shaped steel parts to understand and, eventually, optimize the behavior of the whole reactor.

Two different approaches have been used to model the pyrolysis of propane and acetylene under vacuum carburizing conditions of steel. One approach is based on formal or global kinetic mechanisms together with the computational fluid dynamics (CFD) tool. The other approach is based on detailed chemistry with simplified or ideal flow models. Two global mechanisms developed at the Engler-Bunte-Institut for pyrolysis of propane and acetylene respectively were used in this work. One detailed mechanism developed at the Institute of Chemical Technology by the research group of Professor Deutschmann was used for modeling the pyrolysis of both the propane and acetylene. Experimental data from investigations on vacuum carburizing conducted at the Engler-Bunte-Institut were used to validate the modeling results.

# **Table of Contents**

| Ta       | able o                 | of Con                         | tents                                                    | i             |  |
|----------|------------------------|--------------------------------|----------------------------------------------------------|---------------|--|
| 1        | Intr<br>1.1            | roducti<br>An Ov               | ion<br>verview of the Carburizing Process                | <b>1</b><br>1 |  |
|          |                        | 1.1.1                          | Gas Carburizing                                          | 2             |  |
|          |                        | 1.1.2                          | Vacuum or Low Pressure Carburizing                       | 6             |  |
|          | 1.2                    | Objec                          | tive                                                     | 7             |  |
|          | 1.3                    | Struct                         | ure of thesis                                            | 8             |  |
| <b>2</b> | Pyr                    | Pyrolysis of Carburizing Gas 9 |                                                          |               |  |
|          | 2.1                    | Pyroly                         | sis of Propane                                           | 9             |  |
|          | 2.2                    | Pyroly                         | vsis of Acetylene                                        | 11            |  |
|          |                        | 2.2.1                          | Formation of Polycyclic Aromatic Hydrocarbons (PAHs) and |               |  |
|          |                        |                                | Soot                                                     | 13            |  |
| 3        | Rea                    | ctive 1                        | Flow Modeling                                            | 16            |  |
|          | 3.1                    | Gover                          | ning equations                                           | 16            |  |
|          |                        | 3.1.1                          | Governing equations for mass, momentum and species       | 16            |  |
|          |                        | 3.1.2                          | Heat transfer                                            | 18            |  |
|          |                        | 3.1.3                          | Transport properties                                     | 18            |  |
|          |                        | 3.1.4                          | Thermodynamic properties                                 | 19            |  |
|          | 3.2                    | Model                          | ing Chemical Reactions                                   | 20            |  |
|          |                        | 3.2.1                          | Temperature Dependence of Rate Coefficients              | 22            |  |
|          |                        | 3.2.2                          | Pressure Dependence of Rate Coefficients                 | 22            |  |
| 4        | Computational Tools 25 |                                |                                                          |               |  |
|          | 4.1                    | Introd                         | uction                                                   | 25            |  |
|          | 4.2                    | DETC                           | ИЕМ                                                      | 26            |  |
|          |                        | 4.2.1                          | DETCHEM Structure                                        | 26            |  |
|          |                        | 4.2.2                          | DETCHEM Models                                           | 26            |  |
|          | 4.3                    | HOM                            | REA                                                      | 30            |  |
|          |                        | 4.3.1                          | Sensitivity Analysis                                     | 31            |  |
|          |                        | 4.3.2                          | Reaction Flow Analysis                                   | 32            |  |
|          | 4.4                    | FLUE                           | NT                                                       | 32            |  |
|          |                        | 4.4.1                          | FLUENT structure                                         | 33            |  |
|          |                        | 4.4.2                          | Species transport and reaction model                     | 34            |  |
|          |                        | 4.4.3                          | Solution Convergence in Reacting Flows                   | 34            |  |

| <b>5</b>     | $\mathbf{Exp}$ | Experimental Data                                       |       |  |
|--------------|----------------|---------------------------------------------------------|-------|--|
|              | 5.1            | Tubular Flow Reactor                                    | . 36  |  |
|              |                | 5.1.1 Operating conditions                              | . 37  |  |
|              | 5.2            | Thermogravimetric Reactor                               | . 39  |  |
|              |                | 5.2.1 Operating conditions                              | . 42  |  |
|              | 5.3            | Vacuum Reactor                                          | . 44  |  |
|              |                | 5.3.1 Operating Conditions                              | . 45  |  |
| 6            | Mo             | deling of Propane Pyrolysis                             | 46    |  |
|              | 6.1            | Tubular Flow Reactor                                    | . 46  |  |
|              |                | 6.1.1 Computational Fluid Dynamics (CFD) model          | . 46  |  |
|              |                | 6.1.2 Comparison of simulation and experimental results | . 49  |  |
|              |                | 6.1.3 Detailed chemistry model                          | . 49  |  |
|              |                | 6.1.4 Kinetic mechanism analysis                        | . 50  |  |
|              |                | 6.1.5 Comparison of simulation and experimental results | . 56  |  |
|              | 6.2            | Thermogravimetric Reactor                               | . 60  |  |
|              | 6.3            | Vacuum Reactor                                          | . 66  |  |
| 7            | Mo             | deling of Acetylene Pyrolysis                           | 68    |  |
|              | 7.1            | Computational Fluid Dynamics Modeling                   | . 68  |  |
|              |                | 7.1.1 Tubular flow reactor                              | . 68  |  |
|              |                | 7.1.2 Thermogravimetric reactor                         | . 77  |  |
|              |                | 7.1.3 Vacuum reactor                                    | . 82  |  |
|              | 7.2            | Modeling with Detailed Chemistry                        | . 88  |  |
|              |                | 7.2.1 Tubular flow reactor                              | . 89  |  |
|              |                | 7.2.2 Effect of Acetone                                 | . 95  |  |
|              |                | 7.2.3 Thermogravimetric reactor                         | . 98  |  |
|              |                | 7.2.4 Vacuum reactor                                    | . 98  |  |
| 8            | Sun            | nmary and Outlook                                       | 102   |  |
| А            | FLI            | JENT UDFs                                               | 124   |  |
|              | A.1            | FLUENT UDF for the global mechanism                     | . 124 |  |
|              | A 2            | FLUENT UDFs used for Temperature Profiles               | 130   |  |
|              | 11.2           | A 2.1 Temperature profiles in Thermogravimetric Reactor | 131   |  |
|              |                | A.2.2 Temperature profiles in Vacuum Reactor            | . 134 |  |
| в            | Pvr            | olysis of propane                                       | 138   |  |
| 2            | - ,1           |                                                         | 100   |  |
| $\mathbf{C}$ | List           | of Species and Detailed Reaction Mechanism              | 140   |  |

# Chapter 1

# Introduction

This chapter briefly introduces the carburizing process of steel. Objectives of the present work are also discussed. Finally the structure of the thesis is explained.

## 1.1 An Overview of the Carburizing Process

Carburizing is the case-hardening process in which carbon is added to the surface of low-carbon steels at temperatures generally between 850 and 1050°C, at which austenite, with its high solubility for carbon, is the stable crystal structure. Hardening is accomplished when the high-carbon surface layer is quenched to form martensite so that a high-carbon martensitic case with good wear and fatigue resistance is superimposed on a tough, low-carbon steel core. Carburizing can be done in different ways:

- Gas Carburizing
- Vacuum Carburizing
- Plasma Carburizing
- Salt Bath Carburizing
- Pack Carburizing

The vast majority of parts are carburized by gas carburizing. Vacuum carburizing and plasma carburizing are being applied at commercial level due to their usefulness. Salt bath and pack carburizing are not feasible for products with high demands on quality and reproducibility and done occasionally at commercial level.

### 1.1.1 Gas Carburizing

The carburizing process of steel can be divided into five parallel physical and chemical subprocesses as shown in Figure 1.1. The flow conditions (1) in the reactor affect the pyrolysis (2) and the transport(3) of the hydrocarbon species considerably. The pyrolysis and transport processes are followed by the carbon release at the steel surface (4). The last subprocess is the diffusion of carbon into the steel (5) which changes the carbon concentration at the steel surface.

Gas carburizing can be run as a batch or as a continuous process. Furnace atmosphere for gas carburizing usually consists of a carrier gas and an enriching gas. The carrier gas is supplied at a high enough flow rate to maintain a positive furnace pressure thereby minimizing the air entry into the furnace. The enriching gas, the source of the carbon for carburizing, is supplied at a rate sufficient to satisfy the carbon demand of the charge [1].

Carburizing atmosphere can be categorized as an uncontrolled carbon potential or controlled carbon potential. In the gas carburizing under uncontrolled carbon potential, gaseous hydrocarbons or nitrogen-hydrocarbon blends free of oxygen are used. However, most gas carburizing is done under conditions in which the carbon potential of the atmosphere is controlled rather than uncontrolled. In controlled carbon potential atmosphere, usually a CO-rich gas called an endothermic gas (Endogas) derived from air and a hydrocarbon gas such as natural gas, propane or butane is used. The derived endothermic gas is a mixture consisting of carbon monoxide, carbon dioxide, methane, nitrogen, hydrogen and water vapor. The composition of this gas depends on the type of hydrocarbon gas used for generating the endothermic gas, the processing temperature, and the amount of gas added during the process. The carbon transfer takes place by the reverse Boudouard reaction 1.1 shown below.

$$2 CO \to C + CO_2 \tag{1.1}$$

The carbon potential in the gas phase determines the carbon concentration at the surface of the steel parts being carburized. In practice, control of carbon potential is achieved by controlling one of the following:

- carbon dioxide concentration
- water vapour concentration
- oxygen partial pressure



Figure 1.1: Schematic diagram of carburizing process [2]

The principle of carbon-potential control based on carbon dioxide concentration can be shown by the equilibrium reaction 1.1 for which the equilibrium constant  $K_1$  is given by the following relationship:

$$K_1 = \frac{a_c p_{CO_2}}{p_{CO}^2} \tag{1.2}$$

The equation (1.2) can be rearranged as follows:

$$a_c = \frac{K_1 p_{CO}^2}{p_{CO_2}} \tag{1.3}$$

where  $a_c$  is the activity of carbon and  $p_{CO_2}$  and  $p_{CO}$  are the partial pressures of  $CO_2$  and CO respectively. The quantity  $a_c$  is related to the carbon potential by the equilibrium relationship.  $K_1$  is temperature dependent only and  $p_{CO}$  being in large excess remains essentially constant, the carbon potential may be controlled by varying the  $p_{CO_2}$ . The concentration of  $CO_2$  can be measured by infrared gas analysis. Similar relationships exist which demonstrate the principle of control of carbon potential by control of water vapour by dew point measurement or partial pressure of oxygen using a zirconia oxygen sensor[3]. The partial pressure of water is related to the partial pressure of carbon dioxide under equilibrium conditions. The water-gas reaction can be used to show this relationship as under:

$$H_2 + CO_2 \rightleftharpoons H_2O + CO \tag{1.4}$$

The equilibrium constant for the above reaction can be written as:

$$K_2 = \frac{p_{H_2O}p_{CO}}{p_{H_2}p_{CO_2}} \tag{1.5}$$

The above relationship can rearranged as:

$$p_{CO_2} = \frac{p_{H_2O}p_{CO}}{K_2 p_{H_2}} \tag{1.6}$$

Substituting the right side of equation 1.6 in equation 1.3:

$$a_c = K_1 K_2 \frac{p_{CO} p_{H_2}}{p_{H_2 O}} \tag{1.7}$$

Since  $p_{CO}$  and  $p_{H_2}$  remain constant in the carburizing atmosphere and  $K_1$  and  $K_2$  are temperature dependent, the carbon potential can be controlled by controlling the vapour pressure of H<sub>2</sub>O (dew point).

Partial pressure of oxygen can in principle be also used to control the carbon potential. Under equilibrium the partial pressure of oxygen is related to the partial pressure of carbon dioxide.

$$CO + \frac{1}{2}O_2 \rightleftharpoons CO_2$$
 (1.8)

The equilibrium constant  $K_3$  for the above reaction can be written as:

$$K_3 = \frac{p_{CO_2}}{p_{CO}p_{O_2}^{\frac{1}{2}}} \tag{1.9}$$

From equation 1.9, expression for  $p_{CO_2}$  can be derived as under:

$$p_{CO_2} = K_3 p_{CO} p_{O_2}^{\frac{1}{2}} \tag{1.10}$$

Substituting the equation 1.10 for  $p_{CO_2}$  in equation 1.3 gives:

$$a_c = \frac{K_1 p_{CO}}{K_3 p_{O_2}^{\frac{1}{2}}} \tag{1.11}$$

 $K_1$  and  $K_3$  are temperature dependent and  $p_{CO}$  remains constant in the carburizing atmosphere so the carbon potential can be controlled by monitoring the partial pressure of oxygen.

#### **Diffusion of Carbon**

Many researcher have studied the diffusion process of carbon during gas carburizing of steel [4–10]. At the steel/gas phase interface the carburization reaction depends on the difference between the carbon activity in the atmosphere and at the steel surface. Carbon will diffuse from the gas atmosphere to the steel surface when the activity of the carbon in the gas atmosphere is higher than the activity of carbon on the steel surface which depends on furnace temperature and the initial carbon concentration in the steel. Typical profiles of carbon in steel during carburization are shown in the Fig. 1.2.

The rate of carbon transport to the steel surface can be described by means of



Figure 1.2: Typical carbon profile for a carburized steel

Fick's law of diffusion:

$$J_i = -D_i \frac{\partial C_i}{\partial x} \tag{1.12}$$

In this equation,  $J_i$  is the flux of species *i* which in this case will be carbon, i.e. the amount of species *i* passing through unit area of reference plane per unit of time,  $C_i$  represents the concentration of species *i* and *x* is the cartesian coordinate.  $D_i$ represents the diffusion coefficient (diffusivity) of species *i* in the medium in which it is diffusing and has units of area/time. The value of  $D_i$  will depend strongly on the process temperature. The transport of carbon from the surface of the steel towards the centre can also be described by Fick's law of diffusion by equation 1.13:

$$\frac{\partial C_i}{\partial t} = D_i \frac{\partial^2 C_i}{\partial x^2} \tag{1.13}$$

Following results can be obtained for the carbon concentration as a function of distance and time, C(x, t), during carburisation of steel:

$$C(x,t) - C_0 = C_1 - C_0 \left[ 1 - erf\left(\frac{x}{2\sqrt{D_C^{\gamma}t}}\right) \right]$$
(1.14)

where  $\mathbf{x} = 0$  is defined as the surface of the steel in contact with the carburizing atmosphere,  $C(\mathbf{x},t)$  is the carbon concentration at a depth x below the surface,  $C_0$ is the basic carbon content of the steel at time t=0,  $C_1$  is the carbon content at the surface of the steel at any time t, x is the depth below the surface,  $D_C^{\gamma}$  is the diffusion coefficient of carbon in austenite depending on temperature according to equation 1.15, t is the time and erf is the error function.

$$D_C^{\gamma} = (D_0)_C^{\gamma} \exp\left[-\frac{Q_C^{\gamma}}{RT}\right]$$
(1.15)

In the above equation, the pre-exponential term  $(D_0)_C^{\gamma}$  is called the frequency factor and has units of m<sup>2</sup> s<sup>-1</sup> and  $Q_C^{\gamma}$  is called the activation energy for diffusion which has units of J mol<sup>-1</sup>. Both these properties are material specific properties i.e. material of the diffusing solute which in this particular case is carbon and the material of the matrix which in this case is steel (austenite). In this equation, R is the gas constant (8.314 J K<sup>-1</sup> mol<sup>-1</sup>) and T is the absolute temperature at which carburization is performed.

### 1.1.2 Vacuum or Low Pressure Carburizing

The vacuum carburizing or low pressure carburizing of steel with subsequent high pressure gas quenching is a modern process for the case hardening of steel parts such as cog wheels, gearbox parts or shafts that need a wear resistant, hard surface with a co-requisite ductile core. The process, as its name implies, is carried out in a vacuum furnace at pressures below normal atmospheric pressure. Vacuum carburizing using methane  $(CH_4)$  as the carburizing gas was introduced in the 1960s but this process requires higher temperatures and pressures up to 500 mbar. The problems experienced with this process were the uniformity and repeatability required to meet the quality specifications for precision parts. Other drawbacks include the formation of soot and higher hydrocarbons which can settle on furnace walls requiring higher maintenance time and cost. To overcome these problems, propane  $(C_3H_8)$ , ethylene  $(C_2H_4)$  or acetylene  $(C_2H_2)$  are being used for carburizing at pressures below 20 mbar. The steel parts are exposed to the carburizing gas at temperatures between 900-1050 °C and total pressures between 2-20 mbar. Under the high temperature the carburizing gases are pyrolyzed and form atomic carbon on the steel surface. The carbon diffuses into the steel and locally increases the carbon concentration. At the surface the concentration of carbon is about 1 mass- % and then decreases to the core concentration of typically 0.2 mass-% depending on the steel type [11–24]. The vacuum carburizing process has some advantages as compared to gas carburizing e.g.

- High temperature carburizing resulting in shorter carburizing time or increased productivity
- Creation of a surface free of oxides
- Carburization of complex shapes such as blind holes
- Reproducible and uniform results
- Environment friendliness

## 1.2 Objective

In the conventional gas carburizing at atmospheric pressure, the carbon potential is controlled by adjusting the flow rate of the carburizing gas. Carbon potential of the furnace atmosphere can be related to partial pressure of  $CO_2$  or  $O_2$  or vapour pressure of water by equilibrium relationships as discussed in the previous section and a sensor can be used to measure it. This method of carbon-potential control cannot be used for vacuum gas carburizing due to the absence of thermodynamic equilibrium which is one of the main difficulties of the vacuum carburizing process. The formation of soot during carburization is also undesirable and the process parameters should be selected such that the formation of soot is minimized. The amount of carbon available for carburizing the steel depends on the partial pressure of the carburizing gas, carbon content in the carburizing gas and the pyrolysis reactions of the carburizing gas. The pyrolysis reactions of the carburizing gas are also affected by the contacting pattern or how the gas flows through and contacts with the steel parts being carburized.

In the current work, investigations are carried out to achieve a better understanding of the reaction mechanisms of propane and acetylene pyrolysis under the vacuum carburizing condition of steel. It focuses on gaseous reactive flows in ideal and non-ideal reactors. The objective of this research is the development of models for the numerical simulation of homogeneous reactive flows under vacuum carburizing conditions of steel with propane and acetylene. The developed models can predict the gas compositions resulting from the homogeneous gas phase reactions of propane and acetylene pyrolysis. These models can be used for further investigations of heterogeneous reactions during vacuum carburizing of steel to predict the carbon flux on the complex shaped steel parts to understand and, eventually, optimize the behavior of the whole reactor.

## **1.3** Structure of thesis

Chapter 2 will review the literature on the pyrolysis mechanisms of propane and acetylene. Chapters 3 and 4 will describe the concept for modeling the reactive flows and the computational tools for the numerical simulations. In Chapter 5, the experimental data available for validating the modeling results will be described. In Chapters 6 and 7, the modeling concepts and computational tools discussed in Chapter 3 and 4 will be applied. Also the modeling results will be validated with the experimental data described in Chapter 5. Chapter 8 will provide an outlook and summary of the work.

## Chapter 2

# Pyrolysis of Carburizing Gas

Propane and acetylene are commonly used as a source of carbon during vacuum carburizing of steel. This chapter presents a literature review on the pyrolysis of propane and acetylene. The products and the mechanisms of pyrolysis are discussed.

## 2.1 Pyrolysis of Propane

Propane is a widely used feedstock in the petrochemical industry and hence much effort has been devoted to investigate the kinetics of its pyrolysis at varying conditions. These studies include at plant level, shock-tube [25–29],tubular flow reactors [30–36] and static systems. Pyrolysis of propane like that of many other hydrocarbons leads to hundreds of species and reactions. Sugiyama et al [13] suggested that most of the propane during the vacuum carburizing is cracked without coming into contact with the steel surface and such reaction products result in sooting. Following reaction sequence of furnishing carbon on the heated steel surface was suggested during vacuum carburizing with propane:

$$Fe + C_3 H_8 = Fe(C) + C_2 H_6 + H_2 \tag{2.1}$$

$$Fe + C_2 H_6 = Fe(C) + CH_4 + H_2$$
 (2.2)

$$Fe + CH_4 = Fe(C) + 2H_2$$
 (2.3)

The first stage in the pyrolysis of propane can be designated as the primary reactions wherein the propane is decomposed through free radical chain mechanism into the principal primary products such as  $CH_4$ ,  $C_2H_4$ ,  $C_3H_6$ ,  $H_2$  and other minor primary products. The second stage encompasses secondary reactions involving further pyrolysis of olefins produced by primary reactions, hydrogenation and dehydrogenation reactions of the olefins and condensation reactions wherein two or more smaller fragments combine to produce large stable structures such as cyclodiolefins and aromatics [37, 38].

The rate of propane pyrolysis has been reported in early studies to be first order but most of the studies after 1965 show that the overall rate is not well described by first order or simple order equations. The propane pyrolysis involves complicated series of consecutive and simultaneous free radical steps. At conversions less than 20%, the overall reaction may be presented as: [39, 40]

$$C_3 H_8 = C H_4 + C_2 H_4 \tag{2.4}$$

$$C_3 H_8 = C_3 H_6 + H_2 \tag{2.5}$$

Two possibilities of initiation reaction of propane pyrolysis by breaking of C-C or C-H bond have been discussed in literature [37, 41]. On the basis of the comparison of bond dissociation energies, C-C rupture is most favourable. The initiation step and following propagation steps are as follows:

$$C_3 H_8 = C_3 H_5 + C H_3 \tag{2.6}$$

$$C_3H_8 + CH_3 = CH_4 + n - C_3H_7 (2.7)$$

$$C_3H_8 + CH_3 = CH_4 + i - C_3H_7 (2.8)$$

$$C_3H_8 + C_2H_5 = C_2H_6 + n - C_3H_7 (2.9)$$

$$C_3H_8 + C_2H_5 = C_2H_6 + i - C_3H_7 (2.10)$$

The evaluated and estimated data on the kinetics of reactions involving propane as well as thermodynamic and transport properties data have been published by Tsang [42]. Kaminski and Sobkowski [43] studied the pyrolysis of propane in the presence of hydrogen, deuterium and argon in the temperature range of 890-1019 K. They observed an increase in the yields of methane, ethane and ethylene in the presence of hydrogen and deuterium while the yields of hydrogen and propylene decrease. However the reaction was not effected by the dilution of propane with argon.

Keeping in view the fact that reactor wall may play an active role in a gas phase reaction, studies to investigate the effect of surface on the pyrolysis of propane have been conducted [30, 31, 40, 44, 45]. Perrin and Martin [40] studied the pyrolysis of propane between 743 and 803 K and reported that propane pyrolysis is strongly inhibited by the walls of reactors packed with stainless steel, zirconium or palladium foils. The rates of product formation increase in the presence of hydrogen. The

inhibiting effects of metallic walls on propane pyrolysis have been interpreted by the heterogeneous termination of chains carried by hydrogen atoms. The course of a chain reaction is not effected by metallic walls when chains are not carried by hydrogen atoms. The heterogeneous reaction occurring can be represented as:

$$H \xrightarrow{\text{wall}} \frac{1}{2} H_2 \tag{2.11}$$

Kunugi et al [46] observed that quartz surface has no significant effect on the decomposition rate of propane pyrolysis. Ziegler [47] studied the influence of surface on chemical kinetics of pyrocarbon deposition obtained by propane pyrolysis. The increase of surface to volume ratio (S/V) effects the products of pyrolysis by decreasing the concentration of the gas species and more decrease is observed for unsaturated species. Bajohr [48] studied the pyrolysis of propane under the conditions of vacuum carburizing of steel and has suggested a formal kinetic mechanism which consists of 9 species and 10 chemical reactions.

## 2.2 Pyrolysis of Acetylene

Acetylene is an unsaturated hydrocarbon gas having one triple bond (H-C $\equiv$ C-H) with a heat of formation value of -226.7 kJ/mole [15]. According to Sugiyama et al [13], acetylene rapidly dissociates into carbon and hydrogen when it comes into contact with hot steel resulting in the diffusion of carbon into the steel. The following reactions rapidly occur when acetylene gas is introduced into a vacuum carburizing furnace:

$$2Fe + C_2H_2 = 2Fe(C) + H_2 (2.12)$$

$$C_2 H_2 \rightarrow 2C + H_2 \tag{2.13}$$

The above reactions are not the only reactions which occur during vacuum carburizing of steel. The thermal decomposition of acetylene has been studied by many researchers in static systems[49, 50], in flow systems [51–55], in shock tubes [56–65] and in flames [66, 67]. The temperature range covered in these studies is about 625 K to 4650 K. A radical chain mechanism was proposed in 1970s [68, 57, 69] with the assumption of following initiation reaction:

$$C_2H_2 + C_2H_2 \to C_4H_3 + H$$
 (2.14)

According to Kiefer et al [70] acetylene pyrolysis can be divided into three different temperature regimes:

(i) T < 1100 K where the homogeneous reaction is a molecular polymerization.

(ii) 1100 < T < 1800 K where the process is still dominated by a molecular polymerization, but a fragment radical chain is clearly involved.

(iii) T > 1800, where a fragment chain carried by  $C_2H$  and H drives a polymerization to polyacetylene. The core mechanism of acetylene pyrolysis has been reported as follows:

$$C_2H_2 + C_2H_2 \rightarrow C_4H_3 + H \tag{2.14}$$

$$C_2H_2 + C_2H_2 \rightarrow C_4H_4 \tag{2.15}$$

$$C_2H_2 + C_2H_2 \rightarrow C_4H_2 + H_2$$
 (2.16)

$$C_4H_4 \rightarrow C_4H_2 + H_2 \tag{2.17}$$

$$C_4H_4 \rightarrow C_4H_3 + H \tag{2.18}$$

Frenklach and coworkers [61] identified two isomers  $n-C_4H_3$  and  $i-C_4H_3$  and proposed that the reaction (2.19) shown below is the initiation reaction.

$$C_2H_2 + C_2H_2 \rightarrow n - C_4H_3 + H$$
 (2.19)

$$C_2H_2 + C_2H_2 \rightarrow i - C_4H_3 + H$$
 (2.20)

Wu et al[62] proposed that  $i-C_4H_3$  is the product after noting the discrepancy between endothermicity of the reaction (2.19) and the observed activation energy. Duran et al [71] suggested that acetylene polymerizes by isomerization to vinylidene which is further converted to vinylacetylene by the following mechanism:

$$C_2H_2 + M \rightarrow H_2CC : +M \tag{2.21}$$

$$H_2CC: +C_2H_2 \rightarrow (C_4H_4)^*$$
 (2.22)

$$(C_4H_4)^* + M \rightarrow C_4H_4 + M$$
 (2.23)

Colket et al [72] proposed a detailed radical chain mechanism for acetylene pyrolysis suggesting reaction (2.14) inconsistent with thermochemistry and acetone as a source

of initiation reaction. The initiation by acetone is described as follows:

$$CH_3COCH_3 = CH_3 + CH_3CO \tag{2.24}$$

$$CH_3CO = CH_3 + CO \tag{2.25}$$

$$C_2H2 + CH_3 = CH_3CHCH (2.26)$$

Kruse and Roth [65] studied the pyrolysis of acetylene at high temperature in shock tube and proposed a detailed mechanism for high temperature pyrolysis of acetylene. The initiation reaction consists of successive abstraction of H atoms as below:

$$C_2H_2 + M = C_2H + H + M (2.27)$$

$$C_2H + M = C_2 + H + M (2.28)$$

Krestinin [73] studied the kinetics of heterogeneous pyrolysis of acetylene to explain the carbon film formation on a hot cylinder surface. The work of Callear and Smith [74] who investigated the addition of hydrogen to acetylene provides the evidence of radical chain mechanism.

The effect of acetone on the pyrolysis of acetylene has been also studied by Dimitrijevic et al [53] at 914-1039 K and 6-47 kPa. The presence of acetone was found to accelerate the formation of vinyl acetylene and benzene.

Recently Norinaga and Deutschmann [75] studied the pyrolysis of acetylene at 900  $^{\circ}C$  for chemical vapour deposition of carbon and developed a detailed mechanism comprising of 227 species and 827 reactions. Acetylene is consumed by dimerization to  $C_4H_4$  (68 % ),  $C_4H_2$  (17 %) and formation of benzene by the combination of  $C_4H_4$  and  $C_2H_2(7\%)$ .

Graf [2] studied the pyrolysis of acetylene in a tubular flow reactor and proposed a reaction mechanism consisting of 7 species and 9 chemical reactions.

### 2.2.1 Formation of Polycyclic Aromatic Hydrocarbons (PAHs)

### and Soot

Formation of soot during carburizing of steel is not only an environmental problem but is an operational problem too. So efforts are made to avoid the formation of soot during carburizing of steel. In the previous studies, the primary and secondary products resulting from the pyrolysis of acetylene have been distinguished [50, 76]. In the lower temperature region below 1200 K vinyl acetylene ( $C_4H_4$ ) is the initial product while in the high temperature region diacetylene ( $C_4H_2$ ) is the primary molecular product. Hydrogen, methane, ethylene, butadiene and benzene are also formed in varying amounts depending on the temperature and conversion. In the early works of Bertholot, the formation of benzene via direct polymerization of acetylene was suggested. Colket [63] concluded that in case of acetylene pyrolysis below 1500 K, formation of benzene follows the following path:

$$C_2H_2 + H = C_2H_3 (2.29)$$

$$C_2H_2 + C_2H_3 = n - C_4H_5 (2.30)$$

$$C_2H_2 + n - C_4H_5 = l - C_6H_7 (2.31)$$

$$l - C_6 H_7 \quad \to \quad c - C_6 H_7 \tag{2.32}$$

$$c - C_6 H_7 \quad \rightarrow \quad C_6 H_6 + H \tag{2.33}$$

At higher temperatures above 1500 K, phenyl is formed as:

$$C_2H_2 + H = C_2H + H_2 (2.34)$$

$$C_2H_2 + C_2H = n - C_4H_3 \tag{2.35}$$

$$C_2H_2 + n - C_4H_3 = l - C_6H_5 (2.36)$$

$$l - C_6 H_5 = phenyl \tag{2.37}$$

Frenklach and Warnatz [66] suggested four pathways for the formation of first aromatic ring based on the cyclization of unsaturated aliphatic radicals:

$$n - C_6 H_5 \rightarrow phenyl$$
 (2.38)

$$i - C_8 H_5 \rightarrow C_6 H_4 C_2 H$$
 (2.39)

$$n - C_8 H_5 \rightarrow C_6 H_4 C_2 H \tag{2.40}$$

$$n - C_6 H_7 \rightarrow benzene + H$$
 (2.41)

The formation of the first aromatic ring, formation of PAHs, soot inception and its growth are believed to be the important steps of soot formation [77].

The growth of smaller molecules such as benzene to polycyclic aromatic hydrocarbons (PAHs) involve smaller molecules among which acetylene is important. The molecular precursors of soot particles are thought to be PAHs with molecular weight 500-1000 amu [61, 79, 80]. The particles grow by surface growth which follows a sequential two step process of H-abstraction- $C_2H_2$ -addition (HACA) as shown in figures 2.1 and by coagulation [78, 81] as shown in 2.2.



Figure 2.1: Growth of aromatics by  $C_2H_2$  addition [78]



Figure 2.2: Growth of aromatics by coagulation [78]

# Chapter 3

# **Reactive Flow Modeling**

## 3.1 Governing equations

In chemical reacting flows, pressure, temperature, density, velocity of the flow and concentration of species can change in time and space. These properties change as a result of fluid flow (convective transport), molecular transport, radiation and chemical reaction. Properties such as mass, momentum and energy are conserved in reacting flows. Equations governing the conserved properties can be derived by considering either a given quantity of matter or *control mass* and its extensive properties, such as mass, momentum, and energy. This approach is used to study the dynamics of solid bodies where the control mass is identified easily. In case of fluid flows, the flow within a certain spatial region called *control volume* is considered as a system. This approach is called control-volume approach and is more convenient for flow problems. The governing equations are based on conservation principles for an extensive property. By transformation of these laws into a control volume form, the fundamental variables will be intensive properties which are independent of the amount of mass considered. Density  $\rho$  (mass per unit volume) and velocity  $\vec{u}$  (momentum per unit mass) are examples of intensive properties. [82, 83, 81, 84, 85].

### 3.1.1 Governing equations for mass, momentum and species

The law of mass conservation leads to the mass continuity equation as shown below:

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = 0 \tag{3.1}$$

where  $x_j(j = x, y, z)$  are the Cartesian coordinates and  $u_j$  or  $(u_x, u_y, u_z)$  are the Cartesian components of the velocity vector  $\vec{u}$ . Although in classical chemistry mass can neither be created nor destroyed, a source term is introduced in the above equation when this is applied for modeling the continuous fluid phase of a reactor. Mass can be added to that phase or removed from that phase for example vaporization of liquid droplets or mass deposition in chemical vapour deposition. In such cases, the above equation can be used to treat the flow across the boundaries of the system using a source term and can be written as :

$$\frac{\partial \rho}{\partial t} + \frac{\partial (\rho u_j)}{\partial x_j} = S_m \tag{3.2}$$

The momentum balance for Newtonian fluids leads to the following equation:

$$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_j u_i) + \frac{\partial}{\partial x_i}p - \frac{\partial}{\partial x_j}(\tau_{ij}) = \rho g_i$$
(3.3)

where p is the static pressure,  $\tau_{ij}$  is the stress tensor, and the  $\rho \vec{g}$  denote the gravitational body force. The only body force,  $\rho \vec{g}$ , taken into account in the above equation can often be neglected when modeling chemical reactions.

$$\tau_{ij} = \mu \left( \frac{\partial}{\partial x_j} u_i + \frac{\partial}{\partial x_i} u_j - \frac{2}{3} \frac{\partial}{\partial x_k} u_k \delta_{i,j} \right)$$
(3.4)

Here  $\delta_{i,j}$  is Kronecker symbol ( $\delta_{i,j} = 1$  if i = j and  $\delta_{i,j} = 0$  otherwise). The coupled mass continuity and momentum equations have to be solved for the description of the flow field. In case of multicomponent mixtures, mixing of chemical species and reactions among them are also possible which need additional partial differential equations. The mass balance  $m_i$  of each species i in the reactor lead to the following set of equations:

$$\frac{\partial}{\partial t}(\rho Y_i) + \frac{\partial}{\partial x_j}(\rho u_j Y_i) + \frac{\partial}{\partial x_j}(j_{i,j}) = R_i^{hom} \quad (i = 1, \dots, k_g)$$
(3.5)

Here,  $Y_i$  is mass fraction of species *i* in the mixture,  $k_g$  is the number of gas phase species,  $j_{i,j}$  is component *j* of the diffusion mass flux of the species *i* and  $R_i^{hom}$  is the net rate of production of species *i* due to homogeneous chemical reactions. These additional  $k_g$  equation are coupled with Eqs. (3.1) and (3.3).

### 3.1.2 Heat transfer

Heat released by chemical reactions and its transport will lead to temperature distribution in the reactor and can be predicted by the law of energy conservation. For a multicomponent fluid flow, the governing equation can be written in the following form:

$$\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_i}(\rho h u_i) = \frac{\partial}{\partial t}p + u_i \frac{\partial}{\partial x_i}p - \frac{\partial}{\partial x_i}q_i - \tau_{ij}\frac{\partial}{\partial x_j}u_i$$
(3.6)

where h is the specific enthalpy,  $q_i$  is the heat flux which mainly result from the heat conduction and mass diffusion.

### 3.1.3 Transport properties

The viscosity of a pure species is given by the kinetic theory as under:

$$\mu_i = \frac{5}{6} \frac{\sqrt{\pi M_i k_B T / N_A}}{\pi \sigma_i \Omega^{(2,2)*} T_i^*} \tag{3.7}$$

The transport coefficients for multi-component mixtures are usually derived from the transport coefficients of the individual species and the mixture composition applying empirical approximations. The viscosity of the mixture  $\mu$  can be calculated from the viscosity of species  $\mu_i$  by the following relationship:

$$\mu = \frac{1}{2} \left[ \sum_{i}^{k_g} X_i \mu_i + \left( \sum_{i}^{k_g} \frac{X_i}{\mu_i} \right)^{-1} \right]$$
(3.8)

Heat conduction and viscosity in gases are caused by transfer of energy and momentum, respectively. Therefore, they are related to each other. The individual species conductivities are composed of translational, rotational, and vibrational contributions and can be calculated as explained by Warnatz [86].

The thermal conductivity of the mixture  $\lambda$  can be calculate from the species thermal conductivity  $\lambda_i$ 

$$\lambda = \frac{1}{2} \left[ \sum_{i}^{k_g} X_i \lambda_i + \left( \sum_{i}^{k_g} \frac{X_i}{\lambda_i} \right)^{-1} \right]$$
(3.9)

The binary diffusion coefficient can be expressed as a function of temperature T and p:

$$D_{ij} = \frac{3}{16} \frac{\sqrt{2\pi N_A k_B^3 T^3 / M_{ij}}}{p \pi \sigma_{ij}^2 \Omega_{ij}^{(1,1)*}(T_{ij}^*)}$$
(3.10)

The effective mass diffusion coefficients  $D^M$  can be estimated [83] as:

$$D_{i}^{M} = \frac{1 - Y_{i}}{\sum_{j \neq i}^{k_{g}} \frac{X_{j}}{D_{ij}}}$$
(3.11)

The approximation (3.11) violates mass conservation, therefore the diffusion fluxes have to be corrected by

$$\vec{j}_{corr} = -\sum_{i}^{k_g} \vec{j}_i \tag{3.12}$$

### 3.1.4 Thermodynamic properties

The thermodynamic properties of species i can be described by a polynomial fit of fourth order to the specific heat at constant pressure:

$$c_{p,i}(T) = \frac{R}{M_i} \sum_{n=1}^{5} a_{ni} T^{n-1} = \frac{R}{M_i} (a_{1i} + a_{2i}T + a_{3i}T^2 + a_{4i}T^3 + a_{5i}T^4)$$
(3.13)

The temperature dependence of the species heat capacities is often described by polynomials when used in computations e.g. by a polynomial of fourth order according to the NASA computer programs. The other thermodynamic properties can be calculated from the specific heat. The standard state enthalpy and standard state entropy are calculated as follows:

$$h_i(T) = h_i(T_{ref}) + \int_{T_{ref}}^T c_{p,i}(T')dT'$$
(3.14)

The specific standard enthalpy of formation  $\Delta h_{f,298,i}^0$  can be used as integration constant  $h_i(T_{ref=298.15 K, p^0=1 bar})$ 

$$s_i(T) = s_i(T_{ref}) + \int_{T_{ref}}^T \frac{c_{p,i}(T')}{T'} dT'$$
(3.15)

In the above equation, the specific standard entropy  $s_{298,i}^0$  can be used as integration constant  $s_i(T_{ref=298.15 \ K, \ p^0=1 \ bar})$ . The entropies are needed for the calculation of the equilibrium constants. Chemical reaction mechanism works with a thermodynamic database and a transport property database for the chemical species involved. These databases usually organize the thermodynamic and transport data in terms of polynomials as functions of temperature: for example, NASA database.

## **3.2** Modeling Chemical Reactions

In general, a chemical reaction can be written in the following form

$$\sum_{i=1}^{k_g} \nu'_i A_i = \sum_{i=1}^{k_g} \nu''_i A_i \tag{3.16}$$

where  $A_i$  is *i*-th species symbol and  $\nu'_i$ ,  $\nu''_i$  are the stoichiometric coefficients of the reactants and products respectively. The forward reaction rate for species *i* can be written as:

$$\dot{\omega}_{i,f} = \nu_i k_f \prod_{i=1}^{k_g} c_i^{a'_i} \tag{3.17}$$

where

$$\nu_i = \nu_i'' - \nu_i' \tag{3.18}$$

 $a'_i$  is the reaction order with respect to the species *i*. The reaction orders of elementary reactions are always integers and equal the molecularity of the reaction. Global reactions can have complex rate laws where the reaction orders are not necessarily integers. For the reverse reaction:

$$\sum_{i=1}^{k_g} \nu_i'' A_i \longrightarrow \sum_{i=i}^{k_g} \nu_i' A_i \tag{3.19}$$

The rate law can be written as:

$$\dot{\omega}_{i,b} = \nu_i k_b \prod_i^{k_g} c_i^{a_i''} \tag{3.20}$$

The net rate of creation/destruction of species i can be written as:

$$\dot{\omega}_i = \dot{\omega}_{i,f} - \dot{\omega}_{i,b} \tag{3.21}$$

At chemical equilibrium the forward and reverse reaction rate are equal:

$$\nu_i k_f \prod_i^{k_g} c_i^{a'_i} = \nu_i k_b \prod_i^{k_g} c_i^{a''_i}$$
(3.22)

and the ratio

$$\frac{k_f}{k_b} = \prod_i^{k_g} c_i^{a_i'' - a_i'} \tag{3.23}$$

is the equilibrium constant  $K_c$  which can be calculated from the thermodynamic data and  $k_r$  can be calculated as:

$$k_b = \frac{k_f}{K_c} \tag{3.24}$$

For elementary reactions, the equation 3.23 can be written as:

$$\frac{k_f}{k_b} = \prod_i^{k_g} c_i^{\nu_i} \tag{3.25}$$

### **3.2.1** Temperature Dependence of Rate Coefficients

In general, the rate coefficients of chemical reactions depend strongly on temperature in a nonlinear way. According to Arrhenius law, this temperature dependence can be described by an exponential function. An additional small temperature dependence is introduced into the model based on more accurate measurements which lead to the following modified Arrhenius expression:

$$k = A T^{b} \cdot \exp\left(-\frac{E_{a}}{RT}\right)$$
(3.26)

where A and  $E_a$  are called the pre-exponential factor and activation energy respectively. When the concept of global reactions is used, rate coefficients are fitting parameters and have no physical meanings. But when the concept of elementary reactions is applied, these parameters have physical meanings. Then the activation energy  $E_a$  is considered a barrier which has to be overcome during the reaction. The maximum value of  $E_a$  corresponds to bond energies in the molecules but it can also be much smaller or zero if new bonds are formed with breaking of old bonds during the reaction. The pre-exponential factor can be connected to a mean lifetime of an activated molecule and a collision rate, for unimolecular and bimolecular reactions, respectively [83, 81].

### **3.2.2** Pressure Dependence of Rate Coefficients

In many cases, the rate coefficients of dissociation and recombination reactions have also pressure dependence in addition to temperature dependence. This fact indicates that these reactions are not elementary and are a sequence of reactions. In these reactions another collision partner has to be present during the reaction to provide or absorb energy. Therefore, the rate coefficients of these reactions depend on the number of collisions, that means on the pressure. The pressure dependence can be understood using the Lindemann Model. According to this model, a unimolecular decomposition is only possible, if the energy in the molecule is sufficient to break the bond. So prior to the decomposition reaction energy must be added to the molecule by collision with molecules M called third bodies. Because the different chemical species, called third bodies, differ in their efficiency for providing and absorbing energy in a collision, the rate coefficient also depends on the kind of that partner, i.e., a single dissociation or recombination reaction has to be expressed by a large number of elementary reactions. Such reactions are normally written in the following form:

$$C_2H_4 + M = C_2H_2 + H_2 + M (3.27)$$

where M indicates the third body. The different collision efficiencies of the third bodies are then taken into account by defining their efficiency coefficients with respect to different reactions. The pressure dependence of the rate coefficients could be described by setting up a separate kinetic scheme for each pressure value under consideration. This procedure is not very handy, therefore, more complex expressions for the rate coefficients are commonly used. The Troe formalism has found widespread application. According to Lindemann theory, one can observe a direct proportionality in the low-pressure limit while saturation is achieved in high pressure limit [83, 81]. In Arrhenius form, the parameters are given for the low pressure limit and the high pressure limit as follows:

$$k_0 = A_0 T^{b_0} e^{-\frac{E_{a0}}{RT}} \tag{3.28}$$

$$k_{\infty} = A_{\infty} T^{b_{\infty}} e^{-\frac{E_{a\infty}}{RT}} \tag{3.29}$$

According to the Lindemann theory the rate coefficients at any pressure is taken to be:

$$k = k_{\infty} \left( \frac{p_r}{1 + p_r} F \right) \tag{3.30}$$

where  $p_r$  is the reduced pressure given by :

$$p_r = \frac{k_0[M]}{k_\infty} \tag{3.31}$$

and [M] is the concentration of the mixture which can include third-body efficiencies. F is called the pressure fall-off blending function. For the simple case when F=1 in equation 3.30,  $k \to k_0[M]$  in the low pressure limit i.e. when  $[M] \to 0$ . In the high-pressure limit,  $[M] \to \infty$  and  $k \to k_{\infty}$  i.e. a constant value.

In DETCHEM, the Troe formalism has been implemented to model this function as

under:

$$\log_{10} F = \left[ 1 + \left( \frac{\log_{10} p_r + c}{n - d(\log_{10} p_r + c)} \right)^2 \right]^{-1} \log_{10} F_{cent}$$
(3.32)

where

$$c = -0.4 - 0.67 \log_{10} F_{cent} \tag{3.33}$$

$$n = 0.75 - 1.27 \log_{10} F_{cent} \tag{3.34}$$

$$d = 0.14$$
 (3.35)

and

$$F_{cent} = (1 - \alpha)e^{-T/T^{***}} + \alpha e^{-T/T^*} + e^{-T^{**}/T}$$
(3.36)

The parameters  $\alpha$ ,  $T^{***}$ ,  $T^*$  and  $T^{**}$  are called the Troe parameters and are used to fit the experimental data.

# Chapter 4

# **Computational Tools**

This chapter introduces the computational tools for reactive flow modeling used in the present work.

## 4.1 Introduction

Reactive flow processes are often characterized by a complex interaction of transport and chemical kinetics. The chemistry may include gas phase as well as surface reactions and flow may be complex. The numerical simulation of reactive flows including detailed schemes for surface and gas phase chemistry is receiving considerable attention due to the availability of faster computers, the development of new numerical algorithms, and the establishment of elementary reaction mechanisms. A key problem is the stiffness of the governing equations because of different time scales introduced by chemical reactions including adsorption and desorption. Therefore, simulations of chemical reactors frequently use a simplified model, either of the flow field or chemistry. This simplification can be risky if there is a strong interaction between flow and chemistry. While the currently available commercial CFD codes are able to simulate even very complex flow configurations including turbulence and multi-component transport, the use of complex models for the chemical processes is still very limited to the number of species and reactions [83]. Computational tools used in the present work include DETCHEM, HOMREA and FLUENT which are discussed in the next sections of this chapter.

## 4.2 DETCHEM

The DETCHEM (DETailed CHEMistry) software package applies detailed models for the description of chemical reactions and transport processes. It has been designed for a better understanding of the interactions between transport and chemistry. The chemistry may include gas phase as well as surface reactions. It can assist in reactor development and process optimization [87, 88]. DETCHEM can also be coupled to commercial CFD codes such as FLUENT [89, 90].

### 4.2.1 DETCHEM Structure

DETCHEM is a library of FORTRAN routines, which have been developed and applied for the simulation of chemically reacting gaseous flows focusing on the implementation of complex models for the description of heterogeneous chemical reactions. The structure of DETCHEM is shown in Fig. 4.1.

### 4.2.2 DETCHEM Models

### One dimensional model

DETCHEM<sup>PLUG</sup> is a computational tool that simulates one dimensional reacting flows with and without mass and heat transfer. Plug-flow equations enormously reduce the computational cost by simplifying the balance equations for mass, species and energy. These equations are derived based on the assumptions of (a) negligible axial diffusion and (b) infinite mixing in the radial direction. Assumption (b) means that there is no variation in the transverse direction. Furthermore, DETCHEM<sup>PLUG</sup> is a steady-state model. Hence, the 1-D partial differential conservation equations become ordinary differential equations with the axial coordinate as time-like variable. Schematic diagram of the plug flow is shown in Fig. 4.2.

With these assumptions, the system of differential-algebraic equations (DAE) consist of the continuity equation (governing equations in general form already discussed in section 3.1.1)

$$A_c \frac{d\left(\rho u\right)}{dz} = A_s \sum_{k=1}^{k_g} \dot{s}_k M_k \tag{4.1}$$



Figure 4.1: Structure of DETCHEM [83]



Figure 4.2: Schematic diagram of the plug flow

the equation for conservation of the k-th species  $(k = 1, \ldots, k_g)$ 

$$A_c \frac{d\left(\rho u Y_k\right)}{dz} = M_k (A_s \dot{s}_k + A_c \dot{\omega}_k) \tag{4.2}$$

the energy equation

$$\rho u A_c \frac{d(c_p T)}{dz} + \sum_{k=1}^{k_g} \dot{\omega}_k h_k M_k A_c + \sum_{k=1}^{k_g} \dot{s}_k h_k M_k A_s = U A_s (T_w - T)$$
(4.3)

and the ideal gas law is assumed as equation of state

$$p\bar{M} = \rho RT \tag{4.4}$$

In the absence of surface reactions, the term  $\dot{s}_k$  becomes zero and equations 4.1, 4.2 and 4.3 can be written as:

$$A_c \frac{d\left(\rho u\right)}{dz} = 0 \tag{4.5}$$

$$A_c \frac{d\left(\rho u Y_k\right)}{dz} = M_k A_c \dot{\omega}_k \tag{4.6}$$

$$\rho u A_c \frac{d(c_p T)}{dz} + \sum_{k=1}^{k_g} \dot{\omega}_k h_k M_k A_c = U A_s (T_w - T)$$

$$\tag{4.7}$$

In these equations  $\rho$  is the density, u is the velocity,  $A_c$  is the area of cross section,  $A_s$  is the surface area per unit length,  $k_g$  is the number of gas phase species,  $\dot{s}_k$  is the molar rate of production of species k by surface reactions,  $\dot{\omega}_k$  is the molar rate of production of species k by gas-phase reactions,  $M_k$  is the molecular mass of the species k,  $Y_k$  is the mass fraction of species k,  $c_p$  is the specific heat capacity,  $h_k$  is the specific enthalpy of the species k, U is the overall heat transfer coefficient, T is the gas temperature,  $T_w$  is the wall temperature, p is the pressure, and  $\overline{M}$  is the average molecular weight. All the terms containing  $\dot{s}_k$  vanish in the absence of surface reactions. The DAE system is integrated using the solver LIMEX. The input consists of kinetic parameters for reactions in the Arrhenius format and thermodynamic data as polynomial fits in temperature.

### Two-dimensional model

DETCHEM<sup>CHANNEL</sup> is a computational tool that solves a parabolic system of differentialalgebraic equations, which are obtained by simplifying the Navier-Stokes equations using the same assumptions as in the boundary-layer approximation. That is, since there is a preferred direction of transport due to convection along the axis of a channel, the diffusive transport in axial direction is neglected. However, in radial direction the diffusive transport is dominating and radial pressure gradients vanish.

The CHANNEL model solves the following steady-state equations in cylinder symmetric form:

Continuity equation

$$\frac{\partial \rho u}{\partial z} + \frac{1}{r} \frac{\partial (r\rho v)}{\partial r} = 0 \quad , \tag{4.8}$$

conservation of axial momentum

$$\rho u \frac{\partial u}{\partial z} + \rho v \frac{\partial u}{\partial r} = -\frac{\partial p}{\partial z} + \frac{1}{r} \frac{\partial}{\partial r} \left( \mu r \frac{\partial u}{\partial r} \right) \quad , \tag{4.9}$$

conservation of radial momentum (radial pressure gradients vanish)

$$0 = \frac{\partial p}{\partial r} \quad , \tag{4.10}$$

conservation of species k  $(k = 1, \ldots, k_g)$ 

$$\rho u \frac{\partial Y_k}{\partial z} + \rho v \frac{\partial Y_k}{\partial r} = -\frac{1}{r} \frac{\partial (rj_{k,r})}{\partial r} + \dot{\omega}_k M_k \quad , \tag{4.11}$$

and conservation of thermal energy

$$\rho c_p \left( u \frac{\partial T}{\partial z} + v \frac{\partial T}{\partial r} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left( r \lambda \frac{\partial T}{\partial r} \right) - \sum_{k=1}^{k_g} c_{pk} j_{k,r} \frac{\partial T}{\partial r} - \sum_{k=1}^{k_g} h_k \dot{\omega}_k M_k \quad . \quad (4.12)$$

Here, in addition r is the radial coordinate, v is the radial velocity,  $\mu$  is the viscosity,  $\lambda$  is the thermal conductivity, and  $j_{k,r}$  is the radial component of the mass flux vector.

Again, ideal gas law (Eq. 4.4) is used as equation of state. The bounday conditions for a steady state at the catalytic wall require that the gas-phase species mass flux produced by heterogeneous chemical reactions must be balanced by the diffusive and convective flux of that species in the gas in radial direction:

$$\dot{s}_k M_k = -(j_{k,r} + \rho Y_k v_{stef}) \quad (k = 1, \dots, k_g)$$
(4.13)

with the Stefan velocity

$$v_{stef} = -\frac{1}{\rho} \sum_{k=1}^{k_g} \dot{s}_k M_k \quad .$$
(4.14)

The above model equations are semi-discretized in the radial direction r by the method of lines with non-uniform grid discretization leading to a structured system of differential-algebraic equations. The DAEs are solved by an implicit method, based on the backward differentiation formulas (BDF), with variable order, variable step size control methods and an efficient modified Newton method for the solution of the nonlinear equations arising from the BDF discretization [91]

## 4.3 HOMREA

As reported [92], HOMREA is a software package for computing time dependent homogeneous reaction systems under various operational assumptions. Included are systems at constant pressure, constant volume, constant temperature or adiabatic conditions. Furthermore, it is possible to simulate systems with user-specified time-dependent profiles for pressure, volume, or temperature. The program has the following features:

- Calculation of ignition delay time
- Calculation of time-varying concentration of species, temperature and pressure
- Computation of sensitivity coefficients
- Determination of chemical flows

The governing equations are derived from the Navier-Stokes equations with the following assumptions (1) The ideal gas is valid, and (2) the heat flux caused by radiation of gases is negligible [93].

### 4.3.1 Sensitivity Analysis

Sensitivity analysis of a reaction mechanism is performed to identify the rate limiting reaction steps in the mechanism. It indicates the change in solution of the system with respect to the change in system parameters. For a reaction mechanism with  $k_g$  species and R reactions, rate laws can be written in the following form:

$$\dot{\omega}_i = F_i(C_1, \dots, C_{k_g}; k_1, \dots, k_R) \qquad (i = 1, \dots, k_g)$$

$$(4.15)$$

$$C_i (t = t_0) = C_i^0 (4.16)$$

Here the time t is independent variable, the concentrations  $C_i$  of species *i* are dependent variables,  $k_r = k_1, \ldots, k_R$  are the parameters of the system and  $C_i^0$  denote the initial conditions at time  $t_0$ .

The solution of the differential equation system i.e. the values of concentration at time t, depend on initial conditions and on the parameters  $k_r$  (rate coefficients) of reactions in the mechanism. The change in the parameter values will change the solution. Comparatively the change in some of these parameters or rate coefficients largely effect the solution of the system. So these reactions are rate-determining or rate-limiting steps and their rate coefficients need to be determined accurately.

The dependence of the solution  $C_i$  (concentrations of species) on the parameters  $k_r$  (rate coefficients) is called the sensitivity. Absolute and relative sensitives are defined as:

$$E_{i,r} = \frac{\partial C_i}{\partial k_r} \tag{4.17}$$

$$E_{i,r}^{rel} = \frac{k_r}{C_i} \frac{\partial C_i}{\partial k_r} = \frac{\partial \ln C_i}{\partial \ln k_r}$$
(4.18)

where  $E_{i,r}$  and  $E_{i,r}^{rel}$  are absolute and relative sensitivity coefficients respectively.
## 4.3.2 Reaction Flow Analysis

Reaction flow analysis is performed to identify the important reactions in the mechanism based on their contribution to the formation or consumption of species in the mechanism. A reaction can be regarded as unimportant if its contribution to the formation or consumption of all species is below a certain limit e.g. 1%. Two types of reaction flow analysis can be performed with HOMREA.

(1) Integral reaction flow analysis which considers the formation and consumption of species during the whole reaction time

(2) Local reaction flow analysis which considers the formation and consumption of species at specific times [81].

## 4.4 FLUENT

FLUENT is a commercially available computational fluid dynamics (CFD) computer program for modeling fluid flow and heat transfer in complex geometries. It is reported [94]that FLUENT provides mesh flexibility, including the ability to solve problems using unstructured meshes that can be generated about complex geometries. Different mesh types that can be used with this program include 2D triangular/quadrilateral, 3D tetrahedral/hexahedral/pyramid/wedge, and mixed (hybrid) meshes. The program also allows to refine or coarsen the grid based on the flow solution. Since it is written in the C computer programming language, dynamic memory allocation, efficient data structures, and flexible solver control are all possible. In addition, it uses a client/server architecture, which allows it to run as separate simultaneous processes on client desktop workstations and powerful compute servers. This architecture allows for efficient execution, interactive control, and complete flexibility between different types of machines or operating systems. All functions required to compute a solution and display the results are accessible through an interactive, menu-driven user interface.

Following are the basic procedural steps to solve a problem using this program:

- Define the modeling goals.
- Create the model geometry and grid.
- Set up the solver and physical models.
- Compute and monitor the solution.
- Examine and save the results.



Figure 4.3: Structure of FLUENT [94]

• Consider revisions to the numerical or physical model parameters, if necessary.

## 4.4.1 FLUENT structure

The program structure is shown in the Fig. 4.3. The package includes (i) FLUENT, the solver (ii) GAMBIT, the preprocessor for geometry modeling and mesh generation (iii) TGrid, an additional preprocessor that can generate volume meshes from existing boundary meshes. (iv) Filters (translators) for import of surface and volume meshes from CAD/CAE packages. In the present work GAMBIT will be used to generate the mesh for the FLUENT solver. FLUENT also uses a utility called cortex that manages the user interface and basic graphical functions. The FLUENT serial solver manages file input and output, data storage, and flow field calculations using a single solver process on a single computer. FLUENT's parallel solver allows to compute a solution using multiple processes that may be executing on the same computer, or on different computers in a network. Parallel processing in FLUENT involves an interaction between FLUENT, a host process, and a set of compute node processes. FLUENT interacts with the host process and the collection of compute nodes using the cortex user interface utility. Table 4.1 provides a comparison of main features of computational tools DETCHEM, HOMREA and FLUENT.

## 4.4.2 Species transport and reaction model

FLUENT can model the mixing and transport of chemical species by solving conservation equations describing convection, diffusion, and reaction sources for each component species. Multiple simultaneous chemical reactions can be modeled, with reactions occurring in the bulk phase (volumetric reactions) and/or on wall or particle surfaces, and in the porous region. Species transport modeling both with and without reactions is possible. To solve conservation equations for chemical species, FLUENT predicts the local mass fraction of each species,  $Y_i$ , through the solution of a convection-diffusion equation (3.5) already discussed in Section 3.1 for the ith species. A source term is also added to account for any addition by the dispersed phase or user defined sources. Since the mass fractions of the species must sum to unity, the mass fraction of the last species is determined as one minus the sum of the all other solved mass fractions. To minimize numerical error, the last species should be selected as that species with the overall largest mass fraction.

## 4.4.3 Solution Convergence in Reacting Flows

Obtaining a converged solution in a reacting flow can be difficult for a number of reasons. First, the impact of the chemical reaction on the basic flow pattern may be strong, leading to a model in which there is strong coupling between the mass/momentum balances and the species transport equations. This is especially true in combustion, where the reactions lead to a large heat release and subsequent density changes and large accelerations in the flow. All reacting systems have some degree of coupling, however, when the flow properties depend on the species concentrations. These coupling issues are best addressed by the use of a two-step solution process. In this process, the flow, energy, and species equations are solved with reactions disabled (cold-flow or unreacting flow). When the basic flow pattern has thus been established, the reactions are reenabled and calculations are continued. The cold-flow solution provides a good starting solution.

A second convergence issue in reacting flows involves the magnitude of the reaction source term. When the FLUENT model involves very rapid reaction rates (reaction time scales are much faster than convection and diffusion time scales), the solution of the species transport equations becomes numerically difficult. Such systems are termed stiff systems and can be solved using either the segregated solver with the Stiff Chemistry Solver option enabled, or the Coupled Solver in FLUENT.

| DETCHEM                       | HOMREA                   | FLUENT                        |
|-------------------------------|--------------------------|-------------------------------|
| Detailed reaction mecha-      | Detailed Reaction        | Reaction mechanism upto       |
| nism can be used in 1D or     | mechanism can be used    | 50 species can be used in     |
| 2D to simulate the reactive   | in 0D to simulate the    | 2D or 3D to simulate the      |
| flows                         | reactive flows           | reactive flows                |
| Ideal flows e.g. parabolic    | Computes time depen-     | Ideal or non-ideal flows can  |
| flow in a channel, Plug flow  | dent reaction system     | be simulated                  |
| or CSTR can be simulated      |                          |                               |
| Requires no other software    | Requires no other soft-  | Requires GAMBIT or            |
| for grid construction. Re-    | ware for grid construc-  | other softwares for grid      |
| actor dimensions and grid     | tion. Residence time     | construction. The grid        |
| size is defined in the form   | in the reactor should be | should be imported to         |
| of a text input file.         | provided as input.       | simulate the reactor.         |
| Provides no graphical user    | Provides no graphical    | Provides graphical user in-   |
| interface(GUI). All the in-   | user interface(GUI). All | terface(GUI). No format-      |
| put should be provided as     | the input should be pro- | ted text files required for   |
| formatted text files.         | vided as formatted text  | input.                        |
|                               | files.                   |                               |
| Sensitivity or reaction flow  | Sensitivity analysis as  | Sensitivity analysis or reac- |
| analysis can not be per-      | well as reaction flow    | tion flow analysis can not    |
| formed for the current ver-   | analysis can be per-     | be performed                  |
| sion 2.0 but will be possible | formed                   |                               |
| with the coming versions in   |                          |                               |
| near future                   |                          |                               |
| Homogeneous and surface       | Only homogeneous re-     | Homogeneous and surface       |
| reactions can be used in      | actions can be used in   | reactions can be used in      |
| the reaction mechanism        | the reaction mechanism   | the reaction mechanism        |
| No built in post process-     | Can plot the results     | Has built in post processor   |
| ing tool. The post process-   | as output. The post      | which can plot the results.   |
| ing can be performed by       | processing can be per-   | Also the contours and an-     |
| a third party spreadsheet     | formed by a third party  | imation of results possible   |
| software or Tecplot           | spreadsheet software.    | with the built in post pro-   |
|                               |                          | cessor. The results can       |
|                               |                          | be exported and processed     |
|                               |                          | with a third party spread     |
|                               |                          | sheet or many other CFD       |
|                               |                          | post processing tools.        |
| Can be obtained for aca-      | Can be obtained          | Commercial software. Li-      |
| demic or research pur-        | tor academic or re-      | cence tee payable even for    |
| poses (non-commercial) at     | search purposes(non-     | academic or research pur-     |
| a nominal cost                | commercial)              | poses                         |

 Table 4.1: Comparison of Reactive Flow Modeling Tools

# Chapter 5

## **Experimental Data**

This chapter summarizes the available experimental data and briefly explains the experimental setups, reactor dimensions and operating conditions for the pyrolysis of propane and acetylene. The vacuum carburizing of steel with propane or acetylene is performed normally under these operating conditions on industrial scale.

## 5.1 Tubular Flow Reactor

The laboratory scale apparatus used for the experiments consists of the gas feed system, the reactor and the product gas analysis as shown in Fig.5.1. The gas feed system consists of 5 mass flow controllers (Brooks Model 5850) for the hydrocarbon gas (propane or acetylene),  $N_2$ ,  $H_2$ ,  $O_2$  and iso-butane (i- $C_4H_{10}$ ). Nitrogen is used as an inert carrier gas,  $O_2$  for burning the deposited carbon from pyrolysis and isobutane as internal standard for gas chromatography as it is only formed in negligible amounts during the propane or acetylene pyrolysis under the investigated reaction conditions. There is also a facility to bypass the reactor and analyze the inlet gas composition for calibration purposes. The reactor shown in Fig.5.2 consists of a ceramic pipe with an inner diameter of 20 mm, outer diameter of 25 mm and a length of 600 mm. A ceramic filter is placed at the outlet of the reactor to separate any possibly formed solid carbon from the gas stream. The gaseous products of pyrolysis are measured by a gas chromatograph (Hewlett-Packard GC Type 5890 with a 30 m column). Detected products include C<sub>3</sub>H<sub>8</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub> and C<sub>3</sub>H<sub>6</sub>. The higher hydrocarbons are measured by a second gas chromatograph (Hewlett-Packard GC Type 5890 with a 50 m column) which can separate hydrocarbons containing up to 30 carbon atoms. Hydrogen, not measured in the pyrolysis product stream,



Figure 5.1: Simple flow sheet of the lab scale apparatus used for the experimental investigations [48]

is calculated by a hydrogen mass balance not taking into account any traces of  $H_2$  eventually bound in the deposited carbon. The carbon deposited is burned with a mixture of 5 vol. %  $O_2$  in  $N_2$ . Both CO and  $CO_2$  formed by burning the deposited carbon are analysed by an infra red analyser and are used for the carbon balancing. The temperature profile is measured at the center of the reactor as shown in Fig.5.2.

## 5.1.1 Operating conditions

#### Propane pyrolysis

Operating parameters for the pyrolysis of propane are summarized in table 5.1. The flow rate of propane is 150 lit/hr(NTP) and the concentration is 0.5 mol% (8 mbar partial pressure) in all experiments. The total pressure is 1.6 bar. The temperature is varied from 640 to 1010 °C. These temperatures are not isothermal reactor temperatures but there is a temperature profile for each of these equivalent temperature values shown in the table 5.1.



Figure 5.2: Sketch of the reactor used for the experimental investigations [48]

| leactor   |                  |                                                         |                                                                      |
|-----------|------------------|---------------------------------------------------------|----------------------------------------------------------------------|
| Flow Rate | Total Pressure   | Concentration                                           | Equivalent Teperature                                                |
| l/h       | bar              | propane $mol\%$                                         | $^{\circ}\mathrm{C}$                                                 |
|           |                  |                                                         | 640                                                                  |
|           |                  |                                                         | 690                                                                  |
|           |                  |                                                         | 730                                                                  |
|           |                  |                                                         | 780                                                                  |
| 150       | 1.6              | 0.5                                                     | 830                                                                  |
|           |                  |                                                         | 870                                                                  |
|           |                  |                                                         | 920                                                                  |
|           |                  |                                                         | 960                                                                  |
|           |                  |                                                         | 1010                                                                 |
|           | Flow Rate<br>l/h | Image: Total Pressure<br>l/hTotal Pressure<br>bar1/h1.6 | IterationTotal Pressure<br>barConcentration<br>propane mol%1/hbar0.5 |

Table 5.1: Operating conditions for propane pyrolysis measurements in Tubular Flow Reactor

| Flow Rate | Total Pressure | Concentration  | Controller Temperature |
|-----------|----------------|----------------|------------------------|
| l/h       | bar            | acetylene mol% | $T_R$ in °C            |
|           |                |                | 500                    |
|           |                |                | 550                    |
|           |                | 0.625          | 600                    |
|           |                | 0.025          | 650                    |
|           |                |                | 700                    |
| 150       | 1.6            |                | 750                    |
| 150       | 1.0            | and            | 800                    |
|           |                |                | 850                    |
|           |                | 1.95           | 900                    |
|           |                | 1.20           | 950                    |
|           |                |                | 1000                   |
|           |                |                | 1050                   |

Table 5.2: Operating conditions for acetylene pyrolysis measurements in Tubular Flow Reactor

## Acetylene pyrolysis

Operating parameters for the pyrolysis of acetylene are summarized in table 5.2. The flow rate of acetylene is 150 l/h (NTP) and the concentration is 0.625 mol% and 1.25 mol%(10 and 20 mbar partial presuure) respectively in all experiments. The total presuure is 1.6 bar. The temperature is varied from 650 to 1050 °C. These temperatures are temperature controller values rather than reactor isothermal temperature values. There is an axial temperature profile for each of these temperature values shown in the table 5.2.

## 5.2 Thermogravimetric Reactor

The flow sheet of the thermogravimetric apparatus is shown in Fig. 5.4. The apparatus consists of the thermobalance (type NETZSCH STA-409 CD) connected with the gas feed system and with the gas analysis system. In the gas feed system, the flow rates can be regulated and mixed by maximally six different gases by means of mass flow controllers (MFC) (type Bronkhorst EL-FLOW). Over three-way Valves they can be directed either to a calibration system or in a common line into the reactor of the thermobalance. The weighing mechanism is not separated from the reaction space of the thermobalance, therefore the balancing system must be protected from damage caused by the entrance of particles, corrosive or reactive gases. The weighing mechanism is also thoroughly flushed with an inert gas (argon). The flow rate of the cleaning gas is measured by a mass flow controller in a pulse box. With this pulse box two sample gas streams with a specified volume can be fed into



Figure 5.3: Simple Process Flow diagram of the Thermogravimetric apparatus

the thermo balance (TGA). Over a valve the reactor can be flooded also directly with inert gas. The maximum flow rate (NTP) should not exceed 9 l/h, since otherwise the sample carrier begins to swing and the weighing accuracy is strongly affected from the incident flow. Under the low flow rates, the Bodenstein No. values are approximately smaller than 20. From the reactor exit, the product or exhaust gases flow through a bypass to the outlet or through a 200 °C heated line to a Fourier transform infrared spectrometer (type Bruker Tensor 27). In order to protect the following analytic devices against tar-like hydrocarbons and soot particles, a heated fine filter made of sinter metal with a pore diameter of 15  $\mu$ m is used upstream. After going through the IR gas measuring cell, the hydrogen content of the exhaust gas is measured in a heat conductivity detector (type ABB Caldos 17). In addition, part of the exhaust gas passes through a Micro Gas Chromatograph (type Varian CP 4900). After leaving the analyzers, the exhaust gases are led to the outlet. An oil-free vacuum pump (BOC Edward XDS5-S) is attached to the thermo balance, with which the equipment including the gas measuring cell of the FTIR can be evacuated. The maximum positive pressure in the apparatus should not exceed 0.1 bar.



Figure 5.4: Sketch of the Thermobalance (NETZSCH STA-409 CD) with typical temperature profiles [2]

| gravimetric Reactor |                |                               |                      |
|---------------------|----------------|-------------------------------|----------------------|
| Controller Temp.    | Vol. Flow Rate | Inlet $Propane(C_3H_8)$ Conc. | Total Pressure       |
| $T_R$ in °C         | (l/h)          | $\mathrm{vol}\%$              | $\operatorname{atm}$ |
| 900                 | 6              | 1.08                          | 1                    |
| 1000                |                | 1.00                          | 1 I                  |

Table 5.3: Operating conditions for propane pyrolysis measurements in Thermogravimetric Reactor

Fig. 5.4 shows the sketch of the thermo balance used for experimental investigations. The thermo balance has a measuring range from 0 to 18 gram and a measuring accuracy of  $\pm 5 \,\mu g$ . A sample carrier rod holds a ceramic crucible containing the test sample. Two axial temperature profiles for temperature controller values of 950 and 1000 °C are shown in Fig. 5.4. The reactor, the sample carrier and the protection shields in the heating zone are all made of  $Al_2O_3$  and are appropriate for temperatures up to 1600 °C. At the upper end of the sample carrier a thermocouple (type S) measures the temperature in the sample. The reactor is heated from the outside with an electrical resistance heating. The furnace temperature is regulated by the temperature measurement at the sample carrier. The reaction gas passes through an annular ring from downside of the reactor and after passing through the protection shields flows toward the sample. The highest temperature is reached at the end of the sample carrier. By the interior pipe at the reactor entrance, the cleaning gas flows through the balancing system into the reactor. In order to exclude the possibility that carburizing is disturbed by nitriding of the steel sample with nitrogen  $(N_2)$ , argon (Ar) is used as a carrier gas. Cylinders with different dimensions made from 16MnCr5 steel are used as samples for studying the carburizing process.

## 5.2.1 Operating conditions

#### Propane pyrolysis

Operating conditions for the pyrolysis of propane are summarized in table 5.3. Pyrolysis of propane at two different temperature values 900 and 1000 °C has been performed. These temperatures are temperature controller values rather than the reactor isothermal temperatures. There is an axial temperature profile for these temperature values. Total flow rate is 6 l/h (NTP), the inlet propane ( $C_3H_8$ ) concentration is 1.08 vol% whereas rest of the mixture consist of argon(Ar). The total pressure is 1 atm.

| Controller Temp. | Vol. Flow Rate | Inlet acetylene $(C_2H_2)$ Conc. | Total Pressure       |
|------------------|----------------|----------------------------------|----------------------|
| $T_R$ in °C      | (l/h)          | vol%                             | $\operatorname{atm}$ |
| 900              | 6              | 1.62                             |                      |
|                  |                | 0.25                             |                      |
|                  | 2              | 0.5                              |                      |
|                  | 5              | 1                                |                      |
|                  |                | 1.62                             |                      |
|                  |                | 0.25                             |                      |
| 050              | 6              | 0.5                              |                      |
| 900              | 0              | 1                                |                      |
|                  |                | 1.62                             |                      |
|                  |                | 0.25                             |                      |
|                  | 0              | 0.5                              |                      |
|                  | 5              | 1                                |                      |
|                  |                | 1.62                             |                      |
|                  |                | 0.25                             |                      |
|                  | 3              | 0.5                              | 1                    |
|                  | 0              | 1                                |                      |
|                  |                | 1.62                             |                      |
|                  |                | 0.25                             |                      |
| 1000             | 6              | 0.5                              |                      |
| 1000             | 0              | 1                                |                      |
|                  |                | 1.62                             |                      |
|                  |                | 0.25                             |                      |
|                  | o o            | 0.5                              |                      |
|                  | J              | 1                                |                      |
|                  |                | 1.62                             |                      |

Table 5.4: Operating conditions for pyrolysis measurements in Thermogravimetric Reactor

## Acetylene pyrolysis

Operating parameters for the pyrolysis of acetylene are summarized in table 5.4 for the Thermogravimetric Reactor. Pyrolysis of acetylene at three different temperature values 900, 950 and 1000 °C has been performed. These temperatures are temperature controller values rather than the reactor isothermal temperatures as in the case of propane pyrolysis discussed above. The flow rate of acetylene is 3, 6 and 9 l/h (NTP) and the concentrations are 0.25, 0.5, 1, 1.62 vol%. Argon (Ar) is used as a dilution gas. The total pressure is 1 atm.



Figure 5.5: Flow diagram of Vacuum Reactor [2]

## 5.3 Vacuum Reactor

The flow diagram of the system is shown in the Fig.5.5. The apparatus consists of an oven (Xerion XRetort 1150/80) with electric heating for temperatures up to 1150 °C. There are also temperature, pressure and flow controllers (Eurotherm 2408) simultaneously for three gas streams. After passing through the reactor, the gas flows into an analysis unit, with which different analyses of the exhaust gases can be performed at reduced pressure and at ambient pressure.

The required pressures are achieved with an oil-free Scroll pump (BOC Edward GVSP30). The unlubricated operating pump is required since with a conventional lubricated rotary vane pump oil diffuses towards the furnace and is found in the gas analysis. Gas analysis is continuously performed in the vacuum range with a H2-Sensor (WLD detector), a carbon -FID to measure the carbon content of the exhaust gas and a gas sample system for glass ampoules, developed at the Institute. With this sample system gas samples can be collected at the intervals of 2-minutes. The representative gas samples collected in the glass ampoules are analyzed with an external gas chromatograph for hydrocarbons by means of GC-FID. Apart from this quasi-continuous measurement of the pyrolysis product gases, the carbon content of the carburized steel samples is measured gravimetrically after completion of the experiment.

The reactor is made of a high temperature nickel alloy (Nicrofer HT 6025) and is heated in a horizontal furnace over a length of 400 mm by an electric resistance heating. Before the start of experiments, the reactor is sufficiently carburized to avoid any loss of carbon resulting from the carburization of the reactor itself. As shown in the Fig. 5.5, there are three inlets for the feed gases (V01 - V03) and a

| Feed gas  | Controller Temp. | Flow rate | Total Pressure |
|-----------|------------------|-----------|----------------|
|           | $T_R$ in °C      | (l/h)     | (mbar)         |
| Propane   | 1000             | 10        | 10             |
|           |                  | 6.3       |                |
|           | 980              | 9         |                |
| Acetylene |                  | 12        | 10             |
|           |                  | 6.3       | 10             |
|           | 1050             | 9         |                |
|           |                  | 12        |                |

Table 5.5: Operating conditions for acetylene pyrolysis in Vacuum Reactor

discharge opening for the exhaust or product gases (V08). There is also a connection for the pressure and for the temperature measurement (V06, V07). In order to protect the seal of the flange connection against thermal damage, the front part of the reactor is cooled by a cooling jacket with a glycol/water mixture (V04, V05). The reactor has an inside diameter of 135 mm and a length of 680 mm with a wall thickness of 3 mm. Radiation protection shields are located in the front as well as in the end part of the reactor. The piping consists of 3/4 inch high-grade steel and is heated to approximately 200 °C, in order to prevent the condensing of higher hydrocarbons. For taking gas samples via glass ampoules a defined gas volume can be locked with pneumatic driven ball valves.

## 5.3.1 Operating Conditions

Operating parameters for the pyrolysis of propane and acetylene in the Vacuum Reactor are summarized in table 5.5. Pyrolysis of propane has been performed at 1000 °C and pyrolysis of acetylene has been performed at two different temperature values of 980 and 1050 °C. These temperatures are temperature controller values rather than reactor isothermal temperatures. There is an axial temperature profile measured at the centre of reactor for these temperature values. The flow rate of propane is 10 lit/hr while that of acetylene has different values of 6.3, 9 and 12 lit/hr (NTP) and the total pressure is 10 mbar i.e the reactor is operated under vacuum without any dilution with inert gas.

# Chapter 6 Modeling of Propane Pyrolysis

## 6.1 Tubular Flow Reactor

The geometry and the experimental conditions are already discussed in chapter 5. The conditions given in table 5.1 were used to simulate the reactor behaviour. The diameter of the reactor is small and the Bodenstein No. is approximately 43 [48] so the diffusion in the axial direction may be negligible.

## 6.1.1 Computational Fluid Dynamics (CFD) model

Computational Fluid Dynamics (CFD) modeling tool FLUENT discussed in chapter 5 was used to model the pyrolysis of propane. Gambit software was used to generate a three dimensional (3-D) grid according to the reactor dimensions. The grid was imported into FLUENT and scaled to actual dimensions of the reactor. For the reactive flow modeling of pyrolysis of propane, a kinetic mechanism is required. Although the pyrolysis of propane follow a complex scheme of reactions, there are limitations on the use of detailed mechanisms in CFD codes. So a simple mechanism consisting of 9 species and 10 reactions was selected from the previous work of Bajohr [48]. The mechanism consists of 9 species which include carbon  $C_{(s)}$ , H<sub>2</sub> and hydrocarbons consisting of CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>6</sub>, C<sub>3</sub>H<sub>8</sub>, C<sub>6</sub>H<sub>6</sub>. The overall mechanism consists of 10 reactions shown in table 6.1. These are the major products of propane pyrolysis at the investigated operating conditions. The species  $C_{(s)}$ represents the carbon content of soot or hydrocarbons higher than benzene (C<sub>6</sub>H<sub>6</sub>). Since the reactor is not operated isothermally, the measured temperature profile in the form of the polynomial fit (6.1) as shown below was used in the simulations for

|    | rate constant $k_f = A e^{-E_a/RT}$                                    |                     |               |  |  |  |
|----|------------------------------------------------------------------------|---------------------|---------------|--|--|--|
| Nr | Reaction                                                               | $A(mol, m^3, s)$    | $E_a(kJ/mol)$ |  |  |  |
| 1  | $C_3H_8 \rightarrow CH_4 + C_2H_4$                                     | $5.1 \cdot 10^{6}$  | 144.0         |  |  |  |
| 2  | $C_3H_8 \rightarrow C_3H_6 + H_2$                                      | $6.2 \cdot 10^{10}$ | 228.0         |  |  |  |
| 3  | $C_3H_8 + C_2H_4 \rightarrow C_2H_6 + C_3H_6$                          | $8.5 \cdot 10^{7}$  | 143.0         |  |  |  |
| 4  | $2 \ \mathrm{C}_3\mathrm{H}_6 \to 3 \ \mathrm{C}_2\mathrm{H}_4$        | $1.2 \cdot 10^{11}$ | 181.0         |  |  |  |
| 5  | $C_3H_6 \rightarrow C_2H_2 + CH_4$                                     | $2.2 \cdot 10^{10}$ | 212.0         |  |  |  |
| 6  | $C_2H_6 \rightarrow C_2H_4 + H_2$                                      | $6.0 \cdot 10^{6}$  | 140.0         |  |  |  |
| 7  | $C_2H_4 \rightarrow C_2H_2 + H_2$                                      | $9.0 \cdot 10^{8}$  | 216.0         |  |  |  |
| 8  | $3 \mathrm{C}_2\mathrm{H}_2 \to \mathrm{C}_6\mathrm{H}_6$              | $8.0 \cdot 10^{-8}$ | -223          |  |  |  |
| 9  | $2 \operatorname{CH}_4 \to \operatorname{C_2H_6} + \operatorname{H_2}$ | $5.5 \cdot 10^{13}$ | 329.0         |  |  |  |
| 10 | $C_6H_6 \rightarrow 6 C_{(s)} + 3 H_2$                                 | 237                 | 46.4          |  |  |  |

 Table 6.1: Operational kinetic mechanism of propane pyrolysis [48]

the description of the temperature field.

$$T(T_e, z) = (a \cdot z^2 + b \cdot z + c) \cdot T_e + d \cdot z^2 + e \cdot z + f$$
(6.1)

 $T(T_e, z)$  represents the temperature as a function of the position z along the reactor length, whereas  $T_e$  represents an equivalent temperature and a, b, c, d, e, f are the polynomial coefficients with values of -0.00223 /cm<sup>2</sup>, 0.066 /cm, 0.65, 0.37 °C/cm<sup>2</sup>, -3.20 °C/cm, -110 °C respectively. So the measured temperatures can be computed from the above single equation by substituting the values of given polynomial coefficients and equivalent temperature  $T_e$  at any position z in centimeters. The conversion of propane is related by the following relationship [48]:

$$f_{C_3H_8}(T_e) = \frac{1}{L_R} \int_{z=0}^{L_R} f_{C_3H_8}\left(T(T_e, z)\right) dz$$
(6.2)

The temperature profile was implemented by using the polynomial (6.1) through the user defined functions (UDFs) in FLUENT. These functions are written in a C programming language and need to be compiled before they can be used. The species transport and reaction model was used to implement the mechanism with parameters shown in table (6.1). The other options activated for the FLUENT solver include segregated, steady state, implicit and laminar. The solution was converged to species residuals of  $10^{-6}$  and the data was processed by the FLUENT built in postprocessor. Also the mole fractions were exported to spreadsheet software Microsoft Excel for further processing and plotting the results.



Figure 6.1: Comparison of CFD simulations and experimental results for pyrolysis of propane in a lab scale tubular flow reactor.



Figure 6.2: Comparison of CFD simulations and experimental results for pyrolysis of propane in a lab scale tubular flow reactor.



Figure 6.3: Comparison of CFD simulations and experimental results for pyrolysis of propane in a lab scale tubular flow reactor

## 6.1.2 Comparison of simulation and experimental results

The results of CFD simulations are compared with the experimental results in Fig. 6.1 to 6.3. The species  $C_2H_x$  represents the sum of  $C_2H_2$ ,  $C_2H_4$  and  $C_2H_6$ . The comparison of of simulation and experimental results reveals that the model can predict well the concentrations of propane, propylene and  $C_2H_x$ . However the model overpredicts the concentration of CH<sub>4</sub> and underpredicts H<sub>2</sub> above 850 °C. The model was unable to predict benzene and soot because these were formed in negligible amounts as compared to experimental data so the comparison is not shown.

## 6.1.3 Detailed chemistry model

Simulations were carried out by using PLUG and CHANNEL modules of DETCHEM 2.0 discussed in chapter 4. A detailed kinetic mechanism[75] was used which consists of 227 species and 827 reactions. The mechanism was developed for the pyrolysis of light hydrocarbons. The measured temperature profile in the form of the polynomial (6.1) as shown above was used in the simulations for the description of the temperature field.



Figure 6.4: Temperature profiles in the lab scale tubular flow reactor for different typical values of equivalent temperature  $T_e$ 

Typical plots of the temperature profiles for different equivalent temperature values are shown in Fig. 6.4.

In 2-D simulations, the temperature profile was not implemented by the polynomial (6.1) because it requires wall temperature  $T_w$  as well as gas temperature T. So the measured inlet gas temperature T was specified only at the inlet of the reactor while  $T_w$  takes the values according to the measured temperature profile. The temperature profile was divided into small pieces and a piecewise linear temperature profile was implemented by providing two pairs of values of position z and  $T_w$ .

Table 6.2 summarizes the products distribution obtained from the propane pyrolysis at various temperatures.

## 6.1.4 Kinetic mechanism analysis

The detailed reaction mechanism consists of 227 species and 827 elementary reactions most of which are reversible. The mechanism was developed for modeling pyrolysis of light hydrocarbons at temperatures of approximately 900 °C. The mechanism

| I /         | (I         | 10001)   |                 |          |          |          |          |         |               |
|-------------|------------|----------|-----------------|----------|----------|----------|----------|---------|---------------|
| $T_e$ in °C | $T_e$ in K | $C_3H_8$ | CH <sub>4</sub> | $C_2H_2$ | $C_2H_4$ | $C_2H_6$ | $C_3H_6$ | $C_5 +$ | Soot & Pyr. C |
| 640         | 913        | 99.46    | 0.00            | 0.00     | 0.00     | 0.00     | 0.27     | 0.27    | 0             |
| 690         | 963        | 94.35    | 1.70            | 0.00     | 0.00     | 0.00     | 3.14     | 0.81    | 0             |
| 730         | 1003       | 84.35    | 2.06            | 0.00     | 5.41     | 0.78     | 5.24     | 2.15    | 0             |
| 780         | 1053       | 56.20    | 6.36            | 0.3      | 19.75    | 3.32     | 10.80    | 3.14    | 0.13          |
| 830         | 1103       | 21.74    | 11.95           | 3.11     | 40.70    | 5.71     | 9.55     | 6.63    | 0.62          |
| 870         | 1143       | 3.99     | 14.93           | 10.16    | 50.92    | 4.57     | 4.62     | 8.61    | 2.22          |
| 920         | 1193       | 0.00     | 15.54           | 19.72    | 47.96    | 2.06     | 1.48     | 9.41    | 3.83          |
| 960         | 1233       | 0.00     | 15.58           | 26.29    | 40.16    | 0.51     | 0.54     | 12.19   | 4.73          |
| 1010        | 1283       | 0.00     | 14.34           | 38.19    | 28.06    | 0.00     | 0.00     | 12.28   | 7.13          |

Table 6.2: Product distribution in %C based on feed carbon (C1) at various temperatures (experimental)

and the thermodynamic data for all the species has already been published [75]. The mechanism does not describe the deposition of solid carbon from the gas phase.

The reaction flow analysis and sensitivity analysis was performed by HOMREA software package at 870  $^{\circ}$ C for 0.8 sec residence time. The reactions and their contribution to the consumption or formation of the species of interest are discussed below.

#### Consumption and formation of propane

The consumption of propane occurs by six different reactions as shown below:

| $C_2H_5 + CH_3 = C_3H_8$                                | 32% |
|---------------------------------------------------------|-----|
| $C_3H_8 + CH_3 = N \cdot C_3H_7 + CH_4$                 | 5%  |
| $C_3H_8 + CH_3 = I - C_3H_7 + CH_4$                     | 4%  |
| $C_3H_8 + H = N \cdot C_3H_7 + H_2$                     | 27% |
| $C_3H_8 + H = I - C_3H_7 + H_2$                         | 27% |
| $C_{3}H_{8} + C_{2}H_{5} = I - C_{3}H_{7} + C_{2}H_{6}$ | 3%  |

Species symbols and the reaction's parameters can be found in the appendix C. The relative importance of these reactions varies with temperature. At the flow reactor and shock tube temperatures these reactions are important with the unimolecular decomposition dominating[34, 95]. The sensitivity analysis with respect to propane is shown in Fig.6.5 which reveals the importance of decomposition step of propane resulting in the formation of  $C_2H_5$  and  $CH_3$  radicals. The first stage in the pyrolysis of propane can be designated as the primary reactions wherein the propane is decomposed through free radical chain mechanism into the principal primary products such as  $CH_4$ ,  $C_2H_4$ ,  $C_3H_6$ ,  $H_2$  and other minor primary products.

The reactions responsible for the formation of propane under the assumed conditions along with their contributions are given below:

$$\begin{split} C_2H_3 + I- & C_3H_7 = C_2H_2 + C_3H_8 & 12\% \\ C_2H_5 + I-C_3H_7 = C_2H_4 + C_3H_8 & 41\% \\ AC_3H_5 + I-C_3H_7 = AC_3H_4 + C_3H_8 & 41\% \\ I-C_3H_7 + I-C_3H_7 = C_3H_6 + C_3H_8 & 2\% \end{split}$$

Most of the propane is formed from the I-  $C_3H_7$  radical when it reacts with other radicals such as  $C_2H_5$  and  $AC_3H_5$ .

### Formation and consumption of methane

Methane is formed mainly by the  $CH_3$  radical which reacts with hydrogen, ethylene, ethane and propane.

| $\mathrm{H} + \mathrm{CH}_3 + \mathrm{M} = \mathrm{CH}_4 + \mathrm{M}$                                  | 1%  |
|---------------------------------------------------------------------------------------------------------|-----|
| $H_2 + CH_3 = CH_4 + H$                                                                                 | 40% |
| $\mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_5 = \mathrm{CH}_4 + \mathrm{CH}_3$                               | 2%  |
| $C_2H_4 + CH_3 = CH_4 + C_2H_3$                                                                         | 16% |
| $\mathrm{CH}_3 + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_4 + \mathrm{C}_2\mathrm{H}_5$                   | 9%  |
| $C_3H_6 + CH_3 = CH_4 + AC_3H_5$                                                                        | 2%  |
| $\mathrm{CH}_3 + \mathrm{C}_3\mathrm{H}_8 = \mathrm{CH}_4 + \mathrm{N}\text{-}\mathrm{C}_3\mathrm{H}_7$ | 11% |
| $\mathrm{CH}_3 + \mathrm{C}_3\mathrm{H}_8 = \mathrm{CH}_4 + \mathrm{I}\text{-}\mathrm{C}_3\mathrm{H}_7$ | 10% |

The consumption of methane takes place by its reaction with  $C_6H_5$  radical producing benzene and  $CH_3$  radical. Although this reaction consumes most of the methane, relative contribution to the overall formation of benzene is not significant under the assumed operating conditions.

 $CH_4 + C_6H_5 = C_6H_6 + CH_3 \quad 99\%$ 

## Formation and consumption of acetylene

Acetylene is formed mainly by the decomposition of  $C_2H_3$  and  $SC_3H_5$  radicals according to the reactions shown below.

| $C_2H_3 + M = C_2H_2 + H + M$ | 75% |
|-------------------------------|-----|
| $SC_3H_5 = C_2H_2 + CH_3$     | 14% |
| $C_3H_6 = CH_4 + C_2H_2$      | 1%  |
| $C_4H_6 = C_2H_2 + C_2H_4$    | 1%  |

Acetylene plays an important role in the formation and growth of higher hydrocarbons.

 $\begin{array}{ll} C_2H_2 + AC_3H_5 = L - C_5H_7 & 1\% \\ C_2H_2 + AC_3H_5 = H + C_5H_6 & 48\% \\ C_2H_2 + C_5H_5 = C_7H_7 & 38\% \\ C_2H_2 + C_7H_7 = C_9H_8 + H & 10\% \end{array}$ 

#### Formation and consumption of ethylene

Formation of ethylene results mainly by the decomposition of  $C_2H_5$  and  $N-C_3H_7$  radical. The decomposition of  $C_2H_5$  is also a source for H radicals which react with propane to produce  $N-C_3H_7$  and  $I-C_3H_7$  radicals.

| $C_2H_5 + M = C_2H_4 + H + M$     | 43% |
|-----------------------------------|-----|
| $C_2H_3 + C2H6 = C_2H_4 + C_2H_5$ | 1%  |
| $C_3H_6 + H = C_2H_4 + CH_3$      | 6%  |
| $N-C_3H_7 = C_2H_4 + CH_3$        | 42% |
| $I-C_3H_7 = C_2H_4 + CH_3$        | 6%  |

Ethylene is consumed mainly by its reactions with H and  $CH_3$  radicals by the following reactions.

| $C_2H_4 + H = H_2 + C_2H_3$    | 50% |
|--------------------------------|-----|
| $C_2H_4 + CH_3 = CH4 + C_2H_3$ | 41% |
| $C_2H_4 + C_2H_3 = C_4H_6 + H$ | 4%  |

#### Formation and consumption of ethane

Ethane is formed mainly (87%) by the recombination of  $CH_3$  radicals. The reaction of  $C_2H_5$  radical with propane also produces propylene as shown below.

$$\begin{array}{ll} CH_3 + CH_3 + M = C_2H_6 + M & 87\% \\ C_2H_5 + C_3H_8 = C_2H_6 + I\text{-}C_3H_7 & 12\% \end{array}$$

Ethane is mainly consumed by its reactions with H and CH<sub>3</sub> radicals.

| $\mathrm{H} + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_4 + \mathrm{CH}_3$               | 1%  |
|---------------------------------------------------------------------------------------|-----|
| $\mathrm{H} + \mathrm{C}_2\mathrm{H}_6 = \mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_5$     | 71% |
| $\mathrm{CH}_3 + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_4 + \mathrm{C}_2\mathrm{H}_5$ | 21% |
| $C_2H_3 + C_2H_6 = C_2H_4 + C_2H_5$                                                   | 5%  |

#### Formation and consumption of propylene

The formation of propylene takes place mainly by the dissociation of the  $i-C_3H_7$  radical while the dissociation of  $n-C_3H_7$  produces comparatively small amounts of propylene. The other reactions which form the propylene include the recombination of radical  $AC_3H_5$  with H radical and  $CH_3$  radical with  $C_2H_3$  radical.

| $\mathrm{CH}_3 + \mathrm{C}_2\mathrm{H}_3 = \mathrm{C}_3\mathrm{H}_6$ | 4%  |
|-----------------------------------------------------------------------|-----|
| $H+AC_3H_5=C_3H_6$                                                    | 8%  |
| $I-C_3H_7 + M = C_3H_6 + H + M$                                       | 81% |
| $N-C_3H_7 = C_3H_6 + H$                                               | 3%  |

The consumption of propylene takes place by the attack of H and  $CH_3$  radicals on propylene resulting in the formation of smaller molecules  $CH_4$  and  $C_2H_4$  as well as other radicals as shown below.

$$\begin{array}{ll} C_{3}H_{6}+H=C_{2}H_{4}+CH_{3} & 43\% \\ C_{3}H_{6}+H=H_{2}+AC_{3}H_{5} & 40\% \\ C_{3}H_{6}+H=H_{2}+SC_{3}H_{5} & 1\% \\ C_{3}H_{6}+CH_{3}=CH_{4}+AC_{3}H_{5} & 8\% \\ C_{3}H_{6}+CH_{3}=CH_{4}+SC_{3}H_{5} & 1\% \end{array}$$

#### Formation and consumption of benzene

The propargyl radical, C3H3, plays an important role in the formation of benzene. Benzene is formed mainly by the recombination of  $C_3H_3$  with  $AC_3H_4$  and  $AC_3H_5$ . The radical H attacks on toluene is also responsible for the formation of significant amount of benzene as shown in the following reactions.

| $\mathrm{AC}_3\mathrm{H}_4 + \mathrm{C}_3\mathrm{H}_3 = \mathrm{C}_6\mathrm{H}_6\mathrm{+H}$                                 | 9%  |
|------------------------------------------------------------------------------------------------------------------------------|-----|
| $\mathrm{C}_3\mathrm{H}_3 + \mathrm{A}\mathrm{C}_3\mathrm{H}_5 = \mathrm{C}_6\mathrm{H}_6 \mathrm{+}\mathrm{H} + \mathrm{H}$ | 54% |
| $C_2H_2 + N-C_4H_5 = C_6H_6 + H$                                                                                             | 1%  |
| $H_2 + C_6 H_5 = C_6 H_6 + H$                                                                                                | 4%  |
| $A1C_2H_3 + H = C_6H_6 + C_2H_3$                                                                                             | 2%  |
| $C_2H_6 + C_6H_5 = C_6H_6 + C_2H_5$                                                                                          | 2%  |
| $C_6H_{813} = H_2 + C_6H_6$                                                                                                  | 2%  |
| $\mathrm{C}_{7}\mathrm{H}_{8}\mathrm{+}\mathrm{H}=\mathrm{C}_{6}\mathrm{H}_{6}+\mathrm{C}\mathrm{H}_{3}$                     | 16% |
|                                                                                                                              |     |

Consumption of benzene leads to the formation of higher molecular weight hydrocarbons. Most of the benzene is consumed by its reaction with benzyl radical to form benzylbenzene. Biphenyl is also produced by the reaction of benzene with phenyl radical.

$$\begin{array}{ll} C_6H_6+C_6H_5=P2+H& 9\%\\ C_6H_6+C_7H_7=H+BENZYLB& 90\% \end{array}$$

#### Formation and consumption of Hydrogen

The dissociation of propane molecules results in the formation of  $C_2H_5$  and  $CH_3$  radicals as discussed above. Dissociation of  $C_2H_5$  results in the formation of H radicals which react with  $C_3H_8$ ,  $C_3H_6$   $C_2H_6$  and  $C_2H_4$  to produce most of the hydrogen by the following reactions.

| $\mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_3 = \mathrm{C}_2\mathrm{H}_4 + \mathrm{H}$                   | 10% |
|-----------------------------------------------------------------------------------------------------|-----|
| $\mathrm{H} + \mathrm{C}_2\mathrm{H}_6 = \mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_5$                   | 15% |
| $C_3H_6 + H = H_2 + AC_3H_5$                                                                        | 6%  |
| $\mathrm{H} + \mathrm{C}_3\mathrm{H}_8 = \mathrm{H}_2 + \mathrm{N}\text{-}\mathrm{C}_3\mathrm{H}_7$ | 29% |
| $\mathrm{H} + \mathrm{C}_3\mathrm{H}_8 = \mathrm{H}_2 + \mathrm{I}\text{-}\mathrm{C}_3\mathrm{H}_7$ | 29% |
| $C_4H_8 + H = H_2 + N - C_4H_7$                                                                     | 1%  |
| $\mathrm{H} + \mathrm{C}_5\mathrm{H}_6 = \mathrm{H}_2 + \mathrm{C}_5\mathrm{H}_5$                   | 2%  |

The consumption of hydrogen is mainly caused by its reactions with  $CH_3$  and  $C_2H_5$  radicals to produce the methane.

| $\mathrm{CH}_4 + \mathrm{H} = \mathrm{H}_2 + \mathrm{CH}_3$               | 94% |
|---------------------------------------------------------------------------|-----|
| $\mathrm{CH}_4 + \mathrm{CH}_3 = \mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_5$ | 5%  |

The second stage encompasses secondary reactions involving further pyrolysis of olefins produced by primary reactions, hydrogenation and dehydrogenation reactions of the olefins and condensation reactions wherein two or more smaller fragments com-



Figure 6.5: Sensitivity analysis with respect to propane at 870  $^{\circ}\mathrm{C}$  performed by HOMREA software

bine to produce large stable structures such as cyclodiolefins and aromatics [37, 38].

## 6.1.5 Comparison of simulation and experimental results

The comparisons of the 1-D, 2-D simulation and experimental results are shown in Fig. 6.6 to 6.10 at various temperatures [96]. In general the agreement between simulation and experimental results is good for 2-D and satisfactory for 1-D simulations (Figures 6.6 – 6.9). The conversions of propane predicted by the 1-D model are slightly higher than the experimental measurements. The deviations can be explained by the differences in the treatment of radial transport limitations of the 1-D and 2-D models. While the 2-D model does not need additional assumptions about the radial transport, the 1-D simulation requires empirical models for heat and mass transfer coefficients. Therefore, the conversion of propane is slightly higher than in experiments. Moreover, the comparison indicates that the reaction mechanism used is suitable to simulate the pyrolysis of propane properly under the given conditions.

A typical parabolic mole fraction profile of propane in 2-D is shown in Fig. 6.11. The hydrocarbons measured as  $C_5$ + are compared to the simulation results of  $C_6H_6$  as shown in Fig. 6.10. The difference between simulation and experimental results in this case is most probably due to the amount of hydrocarbons other than the  $C_6H_6$  present in the gas phase leading to soot or solid carbon.



Figure 6.6: Comparison of 1-D, 2-D simulation and experimental results for the lab scale tubular flow reactor – exit concentrations of smaller hydrocarbons

The 2-D simulations are more time consuming than 1-D simulations and the accuracy of the latter is sufficient for our further discussions, therefore the axial profiles of the 1-D simulations only are compared for several temperatures.

Figure 6.12 shows the 1-D model results for propane at selected temperatures. The decomposition of propane gradually increases with increase of temperature and complete conversion can be achieved only at a fraction of the reactor length at higher temperatures.

Figure 6.13 shows 1-D model results for  $CH_4$ . The formation of methane is barely affected at temperatures above 850 °C and only a small decrease is observed at temperatures above 950 °C as shown in Fig. 6.6.

Figure 6.14 shows the model predictions for  $C_2H_2$ . The selectivity for  $C_2H_2$  gradually increases with temperature as shown in Fig. B.1. Yields of species are also shown in Fig. B.2.

Figure 6.15 shows the mole fraction profiles of  $C_2H_4$  along the reactor length at various selected temperatures. The maximum amount of  $C_2H_4$  formed shifts toward



Figure 6.7: Comparison of 1-D, 2-D simulation and experimental results for the lab scale tubular flow reactor – exit concentrations of  $C_2H_6$ 



Figure 6.8: Comparison of 1-D, 2-D simulation and experimental results for the lab scale tubular flow reactor – exit concentrations of  $C_3H_6$ 



Figure 6.9: Comparison of 1D, 2-D simulation and experimental results for the lab scale tubular flow reactor – exit concentrations of hydrogen

the reactor inlet at higher values of equivalent temperature  $T_e$ . So the selectivity for  $C_2H_4$  increases up to a temperature of about 900 °C and then decreases.

The formation of further products of pyrolysis  $C_2H_6$  and  $C_3H_6$  is shown in Figures 6.16 and 6.17 respectively. The maximum amount increases up to a temperature of approximately 800 °C at the reactor outlet and then gradually decreases to very low amounts at higher temperatures.

Figure 6.18 shows the mole fractions of  $H_2$  formed at various temperatures. The amount of  $H_2$  formed increases with the increase of temperature.

Thus, the validated model can now be used to study the homogeneous pyrolysis of propane under the technical operating conditions of vacuum carburizing of steel. Further investigations on the heterogeneous reactions leading to the carburizing of steel are required. The model developed in the present work needs to be extended by including such reactions so that it can be used to control the vacuum carburizing process.



Figure 6.10: Comparison of 1D, 2-D simulation and experimental results for the lab scale tubular flow reactor – exit concentrations of higher hydrocarbons  $(C_5+)$ 

## 6.2 Thermogravimetric Reactor

To simulate the Thermogravimetric Reactor, PLUG module of DETCHEM 2.0 coupled with the detailed mechanism (discussed in the previous section) was used. The use of computational fluid dynamics (CFD) to model the reacting flows with such detailed mechanism is difficult due to the computational cost and hence the limit of maximum number of species by the modeling software (FLUENT). The convergence of solution for reacting flows with large number of species also becomes a challenge due to the stiffness of the governing equations as discussed in chapter 4. The experimentally measured species include H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>4</sub>H<sub>4</sub>, C<sub>4</sub>H<sub>2</sub> and  $C_6H_6$ . The soot has not been measured experimentally but the amount of carbon in the form of soot has been calculated by mass balance with the assumption that rest of the hydrocarbons except the measured species are soot. The reactor was also simulated with the same mechanism using the HOMREA software. The results obtained by using the HOMREA software are also comparable to the DETCHEM The measured temperature profile was implemented for simulations results [75]. with DETCHEM PLUG model. In the case of simulation with HOMREA, the tem-



Figure 6.11: Propane mole fractions in 2-D model



Figure 6.12: C<sub>3</sub>H<sub>8</sub> mole fraction profiles for 1-D model at different values of equivalent temperature  $T_e$  (non-isothermal)



Figure 6.13: CH<sub>4</sub> mole fraction profiles for 1-D model at different values of equivalent temperature  $T_e$  (non-isothermal)

perature was assumed isothermal which can be justified by the small variation of temperature in the heated section of the reactor. The comparison of the simulation results of both models and experimental results is presented in Fig. 6.19 and Fig. 6.20. For these comparisons, yield of carbon  $\Psi_{i,C}$  was calculated as under:

$$\Psi_{i,C} = \frac{\phi_{i,out} \times N_{C,i}}{\phi_{f,in} \times N_{C,f}} \tag{6.3}$$

In the above equation  $\phi_{i,out}$  is the molar flow rate of species *i* at the reactor outlet,  $\phi_{f,in}$  is the molar flow rate of the carburizing gas at the reactor inlet,  $N_{C,i}$  is the number of carbon atoms in species *i* molecular formula and  $N_{C,f}$  is the number of carbon atoms in the carburizing gas molecular formula i.e. it is 3 for propane and 2 for acetylene.

The same kinetic parameters were used as in the case of tubular flow reactor. The results show the suitability of the reaction mechanism for predicting the products of pyrolysis of propane even with the ideal flow models used in these simulations.



Figure 6.14: C<sub>2</sub>H<sub>2</sub> mole fraction profiles for 1-D model at different values of equivalent temperature  $T_e$  (non-isothermal)



Figure 6.15: C<sub>2</sub>H<sub>4</sub> mole fraction profiles for 1-D model at different values of equivalent temperature  $T_e$ (non-isothermal)



Figure 6.16: C<sub>2</sub>H<sub>6</sub> mole fraction profiles for 1-D model at different values of equivalent temperature  $T_e$  (non-isothermal)



Figure 6.17: C<sub>3</sub>H<sub>6</sub> mole fraction profiles for 1-D model at different values of equivalent temperatures  $T_e$  (non-isothermal)



Figure 6.18:  $H_2$  mole fraction profiles for 1-D model at different values of equivalent temperatures  $T_e$  (non-isothermal)







Figure 6.20: Comparison of experimentally observed yields of carbon for different species at the thermogravimetric reactor outlet and those predicted by the models using a detailed reaction mechanism

## 6.3 Vacuum Reactor

The dimensions and the operating conditions of the Vacuum Reactor have been discussed already in chapter 5. So the simulations were carried out at constant temperature of 1000 °C using the HOMREA model coupled with the detailed kinetic mechanism. The main products resulting from the pyrolysis of propane are  $H_2$ ,  $CH_4$ ,  $C_2H_2$ ,  $C_2H_4$  and  $C_6H_6$  under the operating conditions used in experimental measurements. The simulation and experimental results comparison for these products is shown in Fig.6.21. The comparison reveals that the model can predict the composition of resulting gas from the homogeneous pyrolysis of propane in the vacuum reactor.



Figure 6.21: Comparison of experimentally observed species mole fractions at the outlet of bench scale reactor operated under vacuum and those predicted by the model using a detailed reaction mechanism
# Chapter 7 Modeling of Acetylene Pyrolysis

Reactor dimensions and experimental conditions have been already discussed in the chapter 5. Modeling of acetylene pyrolysis with computational fluid dynamics and detailed chemistry will be discussed. Simulations results of both models will be compared to experimental measurements.

# 7.1 Computational Fluid Dynamics Modeling

## 7.1.1 Tubular flow reactor

A 2-D grid was constructed which consist of 6000 cells to represent a reactor length of 500 mm with diameter of 20 mm. GAMBIT software [97] was used to generate the grid. The species transport and reaction model in Fluent [94] was used to implement the reaction mechanism [2] shown in table 7.1 for modeling the chemistry. The mechanism consists of 7 species which are the major products of acetylene pyrolysis under the vacuum carburizing conditions of steel. These include solid carbon  $C_{(s)}$  and hydrocarbons consisting of CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>, C<sub>4</sub>H<sub>4</sub>, C<sub>6</sub>H<sub>6</sub> along with H<sub>2</sub>. The overall mechanism consists of 9 reactions. The estimated Arrhenius parameters, activation energies and proposed reaction rates are also shown in the table 7.1. The mechanism was implemented through a user defined function (UDF) in Fluent. The operating pressure was set equal to 1.6 bar while inlet temperature and velocity boundary conditions were used corresponding to the flow rate of 150 lit/hr. For properties calculation, FLUENT offers different options. For these simulations, default options for these properties were used in the Material panel of the FLUENT. As the reactor is not operated under isothermal conditions, a temperature profile was necessary to model the temperature field. A mathematical fit in the form of a polynomial shown in equation 7.1 below was used for the temperature profile in the

| rate constant $k_f = Ae^{-E_a/RT}$ , (units of A vary in $mol, m^3, s$ ) |                                                                        |                                                             |                     |                |  |  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------|---------------------|----------------|--|--|
| Nr                                                                       | Reaction                                                               | Rate Expression                                             | A                   | $E_a$ (KJ/mol) |  |  |
| 1                                                                        | $C_2H_2 + H_2 \rightarrow C_2H_4$                                      | $r_1 = k_{f1}.c_{C_2H_2}.c_{H_2}^{0.36}$                    | $4.4 \cdot 10^{3}$  | 103.0          |  |  |
| 2                                                                        | $C_2H_4 \rightarrow C_2H_2 + H_2$                                      | $r_2 = k_{f2} \cdot c_{C_2 H_4}^{0.5}$                      | $3.8 \cdot 10^{7}$  | 200.0          |  |  |
| 3                                                                        | $C_2H_2 + 3 H_2 \rightarrow 2 CH_4$                                    | $r_3 = k_{f3}.c_{C_2H_2}^{0.35}.c_{H_2}^{0.22}$             | $1.4 \cdot 10^{5}$  | 150.0          |  |  |
| 4                                                                        | $2 \operatorname{C}H_4 \to \operatorname{C_2H_2}+3 \operatorname{H_2}$ | $r_4 = k_{f4} \cdot c_{CH_4}^{0.21}$                        | $8.6 \cdot 10^{6}$  | 195.0          |  |  |
| 5                                                                        | $C_2H_2 \rightarrow 2 C_{(s)} + H_2$                                   | $r_5 = k_{f5} \cdot \frac{c_{C_2H_2}^{1.9}}{1 + 18C_{H_2}}$ | $5.5 \cdot 10^{6}$  | 165.0          |  |  |
| 6                                                                        | $C_2H_2 + C_2H_2 \rightarrow C_4H_4$                                   | $r_6 = k_{f6} \cdot c_{C_2 H_2}^{1.6}$                      | $1.2 \cdot 10^{5}$  | 120.7          |  |  |
| 7                                                                        | $C_4H_4 \rightarrow C_2H_2 + C_2H_2$                                   | $r_7 = k_{f7} \cdot c_{C_4 H_4}^{0.75}$                     | $1.0 \cdot 10^{15}$ | 335.2          |  |  |
| 8                                                                        | $C_4H_4 + C_2H_2 \rightarrow C_6H_6$                                   | $r_8 = k_{f8}.c_{C_2H_2}^{1.3}.c_{C_4H_4}^{0.6}$            | $1.8 \cdot 10^{3}$  | 64.5           |  |  |
| 9                                                                        | $C_6H_6 \to 6 C_{(s)} + 3 H_2$                                         | $r_9 = k_{f9} \cdot \frac{c_{C_6H_6}^{0.75}}{1+22C_{H_2}}$  | $1.0 \cdot 10^{3}$  | 75.0           |  |  |

Table 7.1: Operational kinetic mechanism acetylene pyrolysis

simulations.

$$T(x) = (a \cdot x^2 + b \cdot x + c) \cdot T_c + d \cdot x^2 + e \cdot x + f$$

$$(7.1)$$

T(x) represents the temperature as a function of the position x in relation to the reactor length.  $T_c$  represents controller temperature. This temperature profile was also implemented through a user defined function (UDF) and compiled before loading into Fluent using the default procedures in Fluent. Typical temperature profiles implemented in Fluent are shown in Fig. 7.1. Since the reactor is heated in the middle, the temperature is higher in the centre of the reactor. The contours of velocity predicted by Fluent at 900 °C is shown in Fig. 7.2. The velocity vectors at 900 °C are shown in the Fig. 7.3. Values of Reynold No. predicted by Fluent simulation at 900 °C on different cells of the grid are shown in the Fig.7.4. The flow in the reactor under these experimental conditions is laminar as indicated by the Reynold no. values which are less than 28 as shown in this figure. The solution was converged to species residuals of  $10^{-6}$  or less so that there was no further variation of these residuals. The convergence was fast and achieved in less than 500 iterations.

#### Comparison of experimental and simulation results

The measured products of pyrolysis which include solid carbon,  $CH_4$ ,  $C_2H_2$ ,  $C_2H_4$ ,  $C_4H_4$ ,  $C_6H_6$  have been reported as percentage of input feed carbon content at different temperatures. The experimental results are compared with the simulation results of Fluent version 6.2. The amount of hydrogen was calculated by material balance and is also compared with the simulation results. Fig. 7.5 and Fig. 7.7 represent two of the typical contours of mole fractions obtained from simulations



Figure 7.1: Temperature profiles at different controller temperatures  $T_c$  for the lab scale tubular flow reactor



Figure 7.2: Contours of velocity at 900  $^o\mathrm{C}$  predicted by CFD model for the lab scale tubular flow reactor



Figure 7.3: Contours of velocity vectors at 900  $^o\mathrm{C}$  predicted by CFD model for the lab scale tubular flow reactor



Figure 7.4: Contours of Reynold no. at 900  $^o\mathrm{C}$  predicted by CFD model for the lab scale tubular flow reactor



Figure 7.5: Contours of mole fraction of  $C_2H_2$  at 900 °C and 20 mbar partial pressure of acetylene predicted by CFD model for the lab scale tubular flow reactor [98]



Figure 7.6: Contours of mole fraction of  $C_6H_6$  at 900 °C and 20 mbar partial pressure of acetylene predicted by CFD model for the lab scale tubular flow reactor



Figure 7.7: Contours of mole fraction of  $C_{(s)}$  at 900 °C and 20 mbar partial pressure of acetylene predicted by CFD model for the lab scale tubular flow reactor



Figure 7.8: Comparison of experimentally observed unconverted percentage of acetylene at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 10 mbar acetylene partial pressure



Figure 7.9: Comparison of experimentally observed percentage yield of carbon in the form of soot at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 10 mbar acetylene partial pressure



Figure 7.10: Comparison of experimentally observed percentage carbon yields for different species at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 10 mbar acetylene partial pressure



Figure 7.11: Comparison of experimentally observed hydrogen volume percent at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 10 mbar acetylene partial pressure



Figure 7.12: Comparison of experimentally observed unconverted percentage of acetylene at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 20 mbar acetylene partial pressure



Figure 7.13: Comparison of experimentally observed percentage yield of carbon in the form of soot at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 20 mbar acetylene partial pressure



Figure 7.14: Comparison of experimentally observed percentage carbon yields for different species at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 20 mbar acetylene partial pressure



Figure 7.15: Comparison of experimentally observed hydrogen volume percent at the outlet of lab scale tubular flow reactor and CFD model results for pyrolysis of acetylene at 20 mbar acetylene partial pressure

for two important species  $C_2H_2$  and  $C_{(s)}$  at 900 °C and 20 mbar partial pressure of acetylene. Fig. 7.8 shows the comparison of experimental and simulation results for acetylene at 10 mbar partial pressure for a controller temperature variation of 650 °C to 1050 °C. The carbon content carried by unconverted acetylene in the mixture decreases from 99 % at 650 °C to 75 % at 1050 °C for 20 mbar representing a conversion of 25 % of acetylene to other products at the outlet as shown in Fig. 7.12. The second major and important component carrying carbon among the pyrolysis products is the solid carbon for which results are shown for 10 mbar as well as for 20 mbar partial pressure of acetylene. The percentage of solid carbon increases with an increase in temperature. The formation of  $C_4H_4$  and  $C_6H_6$  increases up to a temperature of 900 °C and then gradually decreases at higher temperatures. CH<sub>4</sub> and  $C_2H_4$  are also formed but the carbon content in these compounds is less than 1 % under these experimental conditions [98].

## 7.1.2 Thermogravimetric reactor

A 2-D grid with 7296 cells was constructed to represent a reactor length of 280 mm with diameter of 28 mm as already shown in the sketch of Thermogravimetric Reactor in Chapter 5. For homogeneous pyrolysis simulations, the sample carrier shown in the sketch of the Thermogravimetric Reactor was not included. GAMBIT software was used to generate the grid. The grid was used in FLUENT version 6.2.16 for modeling the reactor behaviour. A segregated implicit 2-D laminar steady-state solver was selected with species transport and reaction model. By default FLUENT solver uses the constant dilute approximation method for the species mass diffusion coefficients i.e. a constant value for  $D_i^M$  where  $D_i^M$  is the mass diffusion coefficient for the species i in the mixture. So this default method of FLUENT used in these simulations results in a temperature independent mass diffusion coefficients  $D_i^M$ . The reaction mechanism shown in table 7.1 was implemented through user defined function (UDF) in FLUENT. Although the same activation energies values were used, it was necessary to modify some of the the Arrhenius parameters to best fit the data. The UDF used in simulations is included in the appendix. The measured temperature profiles were also implemented through UDF using a polynomial fit. The simulations were carried out till the residuals for species mole fractions were less than  $10^{-6}$  and there was no further variations in the residuals. The solution was converged approximately in less than 1000 iterations. Simulations were carried out for each set of data and results were saved. The FLUENT post processor was used for post processing the results e.g. contours of species mole fractions, temperature profile etc. The results for species mole fractions at the reactor outlet were exported



Figure 7.16: Contours of velocity vectors at 900  $^o\mathrm{C}$  predicted by CFD model for the thermogravimetric reactor



Figure 7.17: Temperature profile for controller temperature  $T_R = 1000$  °C used in CFD model to simulate the thermogravimetric reactor

from FLUENT to spreadsheet program, such as Microsoft Excel, for further processing and comparing with the experimental results. Simulation results for the contours of velocity vectors at 900 °C in Thermogravimetric Reactor are shown in Fig. 7.16. The protection shields at the entrance of the reactor effect the flow field.



Figure 7.18: Contours of acetylene mole fractions in the thermogravimetric reactor at 1000  $^{o}$ C predicted by CFD model for pyrolysis of acetylene



Figure 7.19: Contours of hydrogen mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^o\mathrm{C}$ 



Figure 7.20: Contours of soot mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^o\mathrm{C}$ 



Figure 7.21: Contours of methane mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^{o}$ C



Figure 7.22: Contours of ethylene mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^{o}$ C



Figure 7.23: Contours of vinyl acetylene mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^o{\rm C}$ 



Figure 7.24: Contours of benzene mole fractions in the thermogravimetric reactor predicted by CFD model for pyrolysis of acetylene at 1000  $^o\mathrm{C}$ 



Figure 7.25: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene [99]



Figure 7.26: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene

### Comparison of experimental and simulation results

The experimentally obtained percentage yield of carbon for different species as a function of acetylene inlet concentration is compared with the results of computational fluid dynamics simulations in Fig. 7.51 to Fig. 7.54.

In Fig. 7.51, comparison is shown for a temperature of 900 °C and a flow rate of 3 lit/hr (NTP) while the inlet concentration is varied. The conversion of acetylene to products increases with increasing the inlet concentration. The hydrocarbons higher than  $C_6H_6$  are not measured separately and are assumed as soot. The amount of  $C_6H_6$  and soot formed increases gradually with increasing the conversion of acetylene. The other species  $CH_4$ ,  $C_2H_4$  and  $C_4H_4$  are formed in low amounts of approximately less than 1%. The dcrease in the formation of  $C_6H_6$  by molecular poymerization.

In Fig. 7.26 and Fig. 7.52 the flow rate is 6 lit/hr and 9 lit/hr respectively while the other parameters are same i.e the residence times are shorter. These shorter residence times lower the conversion of acetylene to products and as a result the formation of pyrolysis products is also lowered.

Fig. 7.28 to Fig. 7.54 show the results of acetylene pyrolysis at 1000 °C at two



Figure 7.27: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene

different flow rates. For higher temperature the conversion of acetylene increases and the higher amounts of soot are formed compared to previous results at low temperature. The overall comparison of simulation and experimental results is good and show the validity of model under these experimental conditions. So the model can be used to predict the concentration of acetylene and other species discussed above resulting from homogeneous reactions on the steel samples for studying the carburizing process. In the presence of steel samples additional reactions take place on the steel surface which will account for differences in compositions of resulting product gas predicted by the developed model. These reactions may be included to extend the model for predicting the carbon flux on the steel surface.

## 7.1.3 Vacuum reactor

A similar approach as used for the Thermogravimetric Reactor was used to simulate this reactor. A 2-D grid with 23964 cells was constructed to represent a reactor length of 680 mm with diameter of 135 mm. The grid generated by GAMBIT software was used in FLUENT version 6.2.16 for modeling the pyrolysis of acety-lene under vacuum. The pressure in the reactor was set to 10 mbar. A segregated implicit 2-D laminar steady-state solver was selected with species transport and re-



Figure 7.28: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene



Figure 7.29: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene



Figure 7.30: Comparison of experimentally observed percentage carbon yields at the outlet of thermogravimetric reactor and CFD model results for pyrolysis of acetylene

action model. The reaction mechanism shown in table 7.1 was implemented through user defined function (UDF) in FLUENT with the same activation energies values and Arrhenius parameters as already optimized for Thermogravimetric Reactor simulations. So the same UDF already used for Thermogravimetric Reactor was used in these simulations. Similarly the measured temperature profiles were also implemented through UDF using a polynomial fit. The simulations were carried out till the residuals for species mole fractions were less than  $10^{-6}$  and there was no further variations in the residuals. The solution was converged approximately in less than 1500 iterations. More time was consumed to get a converged solution compared to previous cases due to the large grid size. The postprocessing of results was carried out by the same way as in previous cases already discussed.

#### Comparison of experimental and simulation results

The bench scale vacuum reactor is operated at low pressure of 10 mbar and acetylene is used without any dilution with inert gas. The inlet concentration of acetylene is comparable with the thermogravimetric reactor but the temperature range is higher as already discussed in the previous section. Here the experimentally derived carbon yields as a function of inlet flow rate are compared with the simulation results of computational fluid dynamics model. Fig. 7.40 and Fig. 7.41 show the comparison



Figure 7.31: Temperature profile for controller temperature  $T_R = 980$  °C used in CFD model to simulate the bench scale vacuum reactor



Figure 7.32: Contours of velocity (m/sec) predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.33: Contours of acetylene mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.34: Contours of hydrogen mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.35: Contours of soot mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.36: Contours of methane mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.37: Contours of ethylene mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.38: Contours of vinyl acetylene mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.39: Contours of benzene mole fractions predicted by CFD model in the bench scale vacuum reactor at 980  $^o\mathrm{C}$ 



Figure 7.40: Comparison of experimentally observed percentage carbon yields at the outlet of bench scale vacuum reactor and CFD model results for pyrolysis of acetylene at 980  $^{o}$ C

for 980 °C and 1050 °C respectively. The carbon yields at the reactor outlet for species other than soot and unconverted acetylene are less than 1 percent. The experimental results are in good agreement with the model results especially for acetylene, vinyl acetylene and soot.

# 7.2 Modeling with Detailed Chemistry

The operational kinetic or formal kinetic mechanisms have limited applicability because the parameters are determined strictly by fitting to experimental conditions. On the other hand, the use of detailed mechanisms is limited to ideal flow models but they provide more better understanding of the process and provide more accuracy and extensibility. The cylinders, in which acetylene is stored, contain some acetone for safety purposes. The presence of acetone in acetylene also affects the dissociation of acetylene which needs to be considered. The acetone pyrolysis mechanism is available in the detailed mechanism and it can be used to model the reactor behaviour. So the detailed mechanism already used for modeling the propane pyrolysis was used with HOMREA and DETCHEM software packages.



Figure 7.41: Comparison of experimentally observed percentage carbon yields at the outlet of bench scale vacuum reactor and CFD model results for pyrolysis of acetylene at 1050  $^{o}$ C

## 7.2.1 Tubular flow reactor

The reactor was simulated by using the PLUG model of DETCHEM (described in chapter 4) coupled with the detailed mechanism. The measured temperature profile was also implemented by using the polynomial (6.1). The acetylene was assumed to contain 1.5% of acetone. Sensitivity analysis and reaction mechanism analysis were performed with HOMREA software package to identify important reactions and their contribution to the formation and destruction of major species of interest.

### Simulation Results

The simulation results show that consumption of acetylene can be predicted very well as shown in Fig. 7.42. The formation of vinyl acetylene is overpredicted while the formation of benzene is predicted well at higher temperatures but underpredicted at lower temperatures as shown in Fig. 7.43. The main difference between simulation and experimental results was found in case of diacetylene. The model predicts comparatively higher amounts of diacetylene specially above 900 °C as shown in Fig. 7.44. The reaction mechanism analysis shows that following reactions are responsible for the consumption of acetylene.



Figure 7.42: Comparison of experimentally observed unconverted percentage of acetylene at the outlet of lab scale tubular flow reactor and simulations with detailed mechanism of Norinaga and Deutschmann coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

| $C_2H_2 + H + M = C_2H_3 + M$                                                    | 13% |
|----------------------------------------------------------------------------------|-----|
| $C_2H_2 + C_2H_3 = C_4H_4 + H$                                                   | 11% |
| $\mathrm{C}_2\mathrm{H}_2 + \mathrm{C}_2\mathrm{H}_2 = \mathrm{C}_4\mathrm{H}_4$ | 25% |
| $C_2H_2 + C_2H_2 = C_4H_2 + H_2$                                                 | 32% |
| $\mathrm{C}_2\mathrm{H}_2 + \mathrm{C}_4\mathrm{H}_4 = \mathrm{C}_6\mathrm{H}_6$ | 2%  |
| $SC_3H_5 = C_2H_2 + CH_3$                                                        | 4%  |
| $AC_3H_5 + C_2H_2 = C_5H_6$                                                      | 3%  |
| $C_2H_2 + C_6H_5 = A1C_2H + H$                                                   | 1%  |
|                                                                                  |     |

Most of the acetylene is consumed by the combination of two acetylene molecules to form diacetylene and hydrogen. The other reactions which consume the acetylene include the formation of vinyl acetylene and formation of benzene. So without assuming the presence of acetone, acetylene is consumed by the molecular mechanism. The results of Norinaga and Deutschmann [75] show that most of the acetylene is converted to vinyl acetylene at a temperature of 900 °C. Vacuum carburizing of steel is accomplished at temperatures higher than 900 °C and has been investigated upto 1080 °C. The model predicts that at temperatures higher than 900 °C most of



Figure 7.43: Comparison of experimentally observed percentage carbon yields at the outlet of lab scale tubular flow reactor and simulations with detailed mechanism of Norinaga and Deutschmann coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

the acetylene is converted to diacetylene which is against the experimental evidence. So the activation energy of the reaction responsible for the formation of diacetylene should be higher to reduce the amount of diacetylene formed at higher temperature. Also in the literature [70], this reaction has been reported with higher activation energy than used in this mechanism. The kinetic parameters for the following reactions were optimized to better predict the products of pyrolysis.

 $C_{2}H_{2} + H + M = C_{2}H_{3} + M$  $C_{2}H_{2} + C_{2}H_{2} = C_{4}H_{2} + H_{2}$  $C_{2}H_{2} + C_{4}H_{4} = C_{6}H_{6}$  $C_{6}H_{6} + H = C_{6}H_{5} + H_{2}$ 

With the optimized parameters, simulation results are shown in Fig.7.45 to Fig.7.48. The mechanism can predict rather well the major species such as  $C_2H_2$ ,  $C_4H_4$  and  $C_6H_6$  as well as the other species  $C_2H_4$ ,  $C_2H_6$ ,  $PC_3H_4$ ,  $C_4H_2$  and  $C_7H_8$  present in small amounts. Mechanism analysis for 950 °C and for 0.7 sec of residence time shows that the consumption of acetylene takes place mainly by the following reactions:



Figure 7.44: Comparison of experimentally observed percentage yields of diacetylene at the outlet of lab scale tubular flow reactor and simulations with detailed mechanism of Norinaga and Deutschmann coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

$$\begin{array}{ll} C_2H_2 + H + M = C_2H_3 + M & 27\% \\ C_2H_2 + C_2H_2 = C_4H_4 & 7\% \\ C_2H_2 + C_2H_3 = C_4H_4 + H & 23\% \\ C_2H_2 + C_2H_2 = C_4H_2 + H_2 & <1\% \\ C_2H_2 + C_4H_4 = C_6H_6 & 12\% \\ AC_3H_5 + C_2H_2 = C_5H_6 & 5\% \\ C_2H_2 + C_6H_5 = A1C_2H + H & 5\% \\ C_7H_7 = C_2H_2 + C_5H_5 & 5\% \\ C_7H_7 + C_2H_2 = C_9H_8 & 4\% \end{array}$$

As shown above, the consumption of acetylene takes place mainly by the formation of vinyl radical ( $C_2H_3$ ), vinyl acetylene and benzene. Vinyl radical reacts with acetylene to produce vinyl acetylene consuming a significant amount of acetylene. Some of the acetylene is consumed for the growth of higher molecular weight hydrocarbons.

The formation of methane takes place mainly by the reactions of methyl radical with other species. The presence of acetone in acetylene also contributes to the formation of methane. The reactions which contribute to the formation of methane



Figure 7.45: Comparison of experimentally observed unconverted percentage of acetylene at the outlet of lab scale tubular flow reactor and simulations with detailed mechanism coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

are summarized below:

| $\mathrm{CH}_3 + \mathrm{H} + \mathrm{M} = \mathrm{CH}_4 + \mathrm{M}$                 | 13% |
|----------------------------------------------------------------------------------------|-----|
| $\mathrm{CH}_3 + \mathrm{C}_2\mathrm{H}_6 = \mathrm{CH}_4 + \mathrm{H}$                | 38% |
| $\mathrm{CH}_3 + \mathrm{H}_2 = \mathrm{CH}_4 + \mathrm{C}_2\mathrm{H}_5$              | 1%  |
| $C_2H_4 + CH_3 = CH_4 + C_2H_3$                                                        | 2%  |
| $AC_3H_4 + CH_3 = CH_4 + C_3H_3$                                                       | 4%  |
| $\mathrm{PC}_3\mathrm{H}_4 + \mathrm{CH}_3 = \mathrm{CH}_4 + \mathrm{C}_3\mathrm{H}_3$ | 9%  |
| $C_3H_6 = CH_4 + C_2H_2$                                                               | 3%  |
| $C_4H_4 + CH_3 = CH_4 + I - C_4H_3$                                                    | 1%  |
| $\mathrm{C}_5\mathrm{H}_6 + \mathrm{CH}_3 = \mathrm{CH}_4 + \mathrm{C}_5\mathrm{H}_5$  | 4%  |
| $\mathrm{C}_6\mathrm{H}_6 + \mathrm{CH}_3 = \mathrm{CH}_4 + \mathrm{C}_6\mathrm{H}_5$  | 1%  |
| $\mathrm{C}_9\mathrm{H}_8 + \mathrm{CH}_3 = \mathrm{CH}_4 + \mathrm{C}_9\mathrm{H}_7$  | 5%  |
| $CH_3COCH_3 + CH_3 = CH_4 + CH_3COCH_2$                                                | 8%  |

The formation of ethylene takes place mainly by the reactions of vinyl radical with other species. The addition of hydrogen to acetylene also forms significant amount of ethylene. The reactions which contribute to the formation of ethylene are shown



Figure 7.46: Comparison of experimentally observed percentage carbon yields at the outlet of lab scale tubular flow reactor and simulations with the detailed mechanism coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

below:

| $C_2H_3 + C_2H_3 = C_2H_4 + C_2H_2$ | 1%  |
|-------------------------------------|-----|
| $C_2H_2 + H_2 + M = C_2H_4 + M$     | 20% |
| $C_2H_3 + H_2 = C_2H_4 + H$         | 8%  |
| $C_2H_3 + C_2H_6 = C_2H_4 + C_2H_5$ | 1%  |
| $C_3H_6 + H = C_2H_4 + CH_3$        | 14% |
| $N-C_3H_7 = C_2H_4 + CH_3$          | 2%  |
| $C_2H_3 + C_5H_6 = C_2H_4 + C_5H_5$ | 44% |
| $A1C_2H_3 + H = C_2H_4 + C_6H_5$    | 1%  |

The formation of vinyl acetylene takes place by the dimerization of two acetylene molecules and the reaction of vinyl radical with acetylene. The following reactions contribute to the formation of vinyl acetylene.

$$\begin{split} C_2 H_2 + C_2 H_2 &= C_4 H_4 & 13\% \\ C_2 H_2 + C_2 H_3 &= C_4 H_4 + H & 84\% \end{split}$$

The formation of benzene takes place mainly by the reaction of the acetylene and vinyl acetylene. The other important reaction is the combination of the two propargyl  $(C_3H_3)$  radicals. following reactions:



Figure 7.47: Comparison of experimentally observed percentage carbon yields at the outlet of lab scale tubular flow reactor and simulations with the detailed mechanism coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures

 $\begin{array}{ll} C_{3}H_{3}+C_{3}H_{3}=C_{6}H_{6} & 9\%\\ C_{2}H_{2}+C_{4}H_{4}=C_{6}H_{6} & 82\%\\ C_{5}H_{4}CH_{3}=C_{6}H_{6} & 5\% \end{array}$ 

Sensitivity analysis was also performed at 950  $^{\circ}$ C and 57 reactions were found to show sensitivity with respect to acetylene. Only 20 selected reactions relatively with higher sensitivities to acetylene are shown in Fig. 7.49

## 7.2.2 Effect of Acetone

The pyrolysis of acetylene in the presence of acetone has not been investigated often so far and specially not for vacuum carburizing conditions of steel. Only few papers were found in the literature which discuss the role of acetone in the pyrolysis of acetylene. The acetone affects the pyrolysis reaction by providing the free radicals even at lower temperatures. In the presence of acetone, the pyrolysis of acetylene is accelerated which is in agreement with the previous experimental studies [53]. As shown in the Fig.7.50, conversion of acetylene is higher in the presence of acetone



Figure 7.48: Comparison of experimentally observed percentage carbon yields at the outlet of lab scale tubular flow reactor and simulations with the detailed mechanism coupled with DETCHEM 1D model (PLUG) for pyrolysis of acetylene at various temperatures



Figure 7.49: Sensitivity analysis at 20 mbar partial pressure of a cetylene for 0.7 sec at 950  $^{\circ}\mathrm{C}$ 



Figure 7.50: Effect of acetone on pyrolysis of acetylene

under the same operating conditions. The effect of acetone on the conversion of acetylene is higher at lower temperature. The sensitivity analysis results shown in Fig. 7.49 reveal that the acetone pyrolysis reaction affects the pyrolysis of acetylene. The dissociation of acetone also leads to the formation of carbon monoxide which is also undesirable for the steel carburizing process. The proposed reactions of formation of carbon monoxide are as follows:

 $CH_3COCH_3 = CH_3 + CH_3CO$  $CH_3CO = CH_3 + CO$ 

A methyl radical formed by the dissociation of acetone adds to the acetylene to initiate a chain reaction. Further it was found that the prediction of minor species also strongly depend on the presence of acetone. Without assuming small amounts of acetone in acetylene, minor species specially the ethylene and methane are not predicted well.

## 7.2.3 Thermogravimetric reactor

The reactor was numerically simulated using the model of Norinaga and Deutschmann [75]. The model uses the HOMREA[92] software package that performs computational analysis of time-dependent homogeneous reaction systems. The detailed reaction mechanism already discussed in the previous section was used. The HOMREA requires the forward reaction rate parameters and the thermodynamic data for all of the participating species and calculates the backward rate constants for each reversible reaction in the mechanism. The temperature profile in the reactor was not considered. This can be justified to some extent by the fact that temperature in the heated section of the reactor has small variation. Further due to the presence of radiation protection shields at the inlet of the reactor, the temperature is much lower at the inlet section than the middle section and the conversion of acetylene is negligible at these temperatures. So the volume of the reactor where the variation of the temperature is small allowing to assume it isothermal.

The compounds measured at the exit of the reactor include acetylene, methane, ethylene, vinyl acetylene, diacetylene and benzene. The amount of soot formed was not measured but the hydrocarbons other than the measured were assumed to be converted to soot and carbon yield for these compounds was calculated by material balance. The comparison of experimentally measured yields of carbon and model predictions under vacuum carburizing conditions of steel with acetylene is shown in Figures 7.51 to 7.54. The model predictions are in most cases well in agreement with the experimental measurements.

## 7.2.4 Vacuum reactor

The reactor was numerically simulated using the HOMREA software package as already described in the previous chapter in case of propane pyrolysis using the detailed reaction mechanism. The results of simulations were compared with the experimental results. The simulation and experimental results comparisons are shown in Fig.7.55 to Fig.7.56. The comparison shows that the simulation results are well in agreement with the experimental results.



Figure 7.51: Comparison of experimental measurements for percentage carbon yields at the outlet of thermogravimetric reactor and simulations with detailed mechanism



Figure 7.52: Comparison of experimental measurements for percentage carbon yields at the outlet of thermogravimetric reactor and simulations with detailed mechanism



Figure 7.53: Comparison of experimental measurements for percentage carbon yields at the outlet of thermogravimetric reactor and simulations with detailed mechanism



Figure 7.54: Comparison of experimental measurements for percentage carbon yields at the outlet of thermogravimetric reactor and simulations with detailed mechanism



Figure 7.55: Comparison of experimental measurements for percentage carbon yields at the outlet of bench scale vacuum reactor operated at a pressure of 10 mbar and simulations with detailed mechanism for pyrolysis of acetylene at 980  $^{\circ}C$ 



Figure 7.56: Comparison of experimental measurements for percentage carbon yields at the outlet of bench scale vacuum reactor operated at a pressure of 10 mbar and simulations with detailed mechanism for pyrolysis of acetylene at 1050  $^{\circ}C$ 

# Chapter 8 Summary and Outlook

Carburizing is the case hardening process of steel by adding carbon to the surface of steel and letting it diffuse into the steel. The conventional process of steel carburizing is carried out at atmospheric pressures. A substantial body of literature can be found on this process. The hardening process can be controlled via the gas phase composition. Supposing a thermodynamic equilibrium between the gas phase and the carbon activity which depends on the carbon content of the steel, sensors can be used to measure the carbon potential in the gas atmosphere, e.g. via the concentration of carbon dioxide, water vapour (dew point) or oxygen. The carbon potential in the gas phase. So the process can be regulated by the carbon potential measurement. There exists models for diffusion of carbon within the steel from which one can predict the carbon profile in the steel. The steel hardness is a function of carbon profile so the desired hardness can be achieved in this way.

On the other hand the conventional carburizing process is bound by some limitations. The process is accompanied by the deposition of soot and higher hydrocarbons on the furnace walls. Further the process does not provide the uniformity and repeatability required for precision parts. Blind holes are difficult to carburize. However the vacuum carburizing process of steel does not have these limitations and the formation of soot is also lowered specially when acetylene is used as a carburizing gas. But the control of the process like conventional carburizing is difficult due to the non existence of thermodynamic equilibrium. The pyrolysis of propane or acetylene can produce large number of other hydrocarbon products leading to soot during carburizing of steel. Although there are some efforts to develop sensors to measure the carbon potential of the carburizing atmosphere but there is none available on commercial scale. The investigations on vacuum carburizing process of steel published in the literature are not sufficient to understand the process completely. The process conditions have not been thoroughly investigated. However it is important to investigations

tigate the process conditions in order to understand and optimize the steel vacuum carburizing process. The pyrolysis of carburizing gas e.g. propane or acetylene is a complex process which needs to be addressed as a first step in order to develop further understanding of the carburisation process. Investigations on the pyrolysis of propane and acetylene covering operating parameters in the regime of vacuum carburizing process are not frequently published. It is hard to find computational fluid dynamics models or detailed chemistry models which can describe the pyrolysis of acetylene or propane under the vacuum carburizing conditions of steel.

In the present work two different approaches have been used to model the pyrolysis of propane and acetylene under vacuum carburizing conditions of steel. One approach is based on formal or operational kinetic mechanisms together with CFD computational tools. The other approach is based on detailed chemistry with simplified or ideal flow models. Experimental data from investigations on vacuum carburizing conducted at the Engler-Bunte-Institut were used to validate the modeling results.

Pyrolysis of propane was modeled with operational/formal kinetics as well as with detailed kinetics under the vacuum carburizing conditions of steel. The formal kinetics can be used with the computational fluid dynamics (CFD) codes which solve the Navier Stokes Equation. Since the pyrolysis of propane follows a very complex scheme of reactions in reality, the formal kinetics have limited applicability. It is difficult to fit the kinetic parameters with the reaction network even being limited to only few species and reactions. The models which are based on the operational kinetics are not considered very reliable to predict the data under other operating conditions or even when the residence times are varied considerably under the same operating conditions. The main benefit of the formal kinetics is their low computational time requirement which makes it feasible to couple it with CFD codes so that the complex flow processes can be modeled. The formal kinetic mechanism developed at Engler-Bunte-Institut by Bajohr [48] was coupled to the CFD code Fluent. The measured temperature profile was considered when simulating the reactor. The simulations results were compared with the experimental data and this comparison was not satisfactory for all the species included in the mechanism. The model overpredicts methane and underpredicts hydrogen specially at higher temperatures. Also the model does not describe the formation of benzene and soot  $(C_{(s)})$ .

The other approach used was based on detailed kinetics. A detailed kinetics mechanism developed by Norinaga and Deutschmann [75] for the pyrolysis of light hydrocarbons such as acetylene, ethylene and propylene was selected. The mechanism
was coupled with 1-D and 2-D models of DETCHEM software and with 0D model of HOMREA software. More computational time was required for 2-D model while 1-D and 0D models computations were relatively very fast. The developed models explain very well the gas composition resulting from the homogeneous pyrolysis of propane over a wide range of temperature. The experimental data of three different reactors including a laboratory scale tubular flow reactor, thermogravimetric reactor and bench scale reactor was described by the developed model. The comparison of simulations and experimental results was found good. The same kinetic parameters were used to simulate three different reactors. The reactions which contribute to the formation and consumption of major species were identified. Sensitivity analysis also reveals the importance of different reactions under the typical selected operating conditions.

On the industrial level, the interest in use of acetylene instead of propane as a carburizing gas is growing due to its ability to carburize complex shapes with uniformity and low soot formation. The mechanism of acetylene pyrolysis at the elementary level as described in literature is controversial among various investigators. To model the pyrolysis of acetylene, a formal kinetic mechanism developed at the Engler-Bunte-Institut by Graf [2] was used with CFD code Fluent. This mechanism consists of only 7 species and 9 reactions. For higher residence times and at higher temperature the species  $CH_4$ ,  $C_2H_4$  and  $C_4H_4$  are present in very small amounts (<1%) on the reactor exit. The accurate experimental measurements are also challenging for such minor species when longer residence times are encountered. The developed model can describe the experimental data successfully over the range of parameters used for vacuum carburizing investigations. Acetone can be present in small amounts in acetylene as an impurity. However the model does not describe the effect of acetone presence in acetylene.

The detailed mechanism of Norinaga and Deutschmann was also used for modeling the pyrolysis of acetylene with 1-D model of DETCHEM and 0D model of HOMREA. The comparison of experimental and simulations results were found in agreement except diacetylene ( $C_4H_2$ ) at higher temperatures. The model overpredicts the formation of diacetylene. So arrhenius parameters for few reactions were adjusted to reduce the formation of diacetylene. One important thing which was observed was the effect of acetone presence in the acetylene. The mechanism also contains the reactions of acetone pyrolysis. The prediction of minor species was not possible without assuming the presence of small amounts (1.5%) of acetone in acetylene. The effect of acetone presence on pyrolysis of acetylene was also predicted. The results show that in the presence of acetone the pyrolysis of acetylene is accelerated. The effect of acetone presence in acetylene has not been thoroughly investigated and only few papers can be found in the litrature. Further investigations are being carried out at Engler-Bunte-Institut to understand the effect of acetone presence and surface reactions.

The use of such a detailed mechanism with CFD code FLUENT was not possible. The detailed kinetics mechanism should be reduced to certain limit (e.g 50 species in case of FLUENT software package) due to the available computational hardware limitations and to converge the solution. Although the sensitivity analysis and the reaction flow analysis reveal the important reactions and species in the mechanism it is very laborious to reduce the mechanism manually based on these results. There are some efforts on the development of such software codes which can be used to reduce the detailed mechanisms but still there use is not in common practice. However the approach of using reduced mechanisms with CFD codes will be very useful to advance the research in this field.

Further work is required on experimental as well as on modeling side to include the heterogeneous reactions. After measuring the kinetic parameters for these reactions the developed models can be extended to predict the carbon flux on the surface of steel. However the models describe successfully the homogeneous pyrolysis process under the technical operating conditions of steel.

### Zusammenfassung und Ausblick

Das Aufkohlen ist der Prozessschritt des Einsatzhärtens, bei dem Kohlenstoff der Stahloberfläche hinzugefügt wird. Der herkömmliche Prozess des Stahlaufkohlens wird bei atmosphärischem Druck durchgeführt. Dieser Prozess ist ausführlich erforscht und modelliert worden, und er lässt sich über das Kohlenstoffpotential in der Gasatmosphäre steuern, weil er sich im thermodynamischen Gleichgewicht befindet. Dabei werden die Konzentration des Kohlendioxids, des Wasserdampfs (Taupunkt) oder teilweise auch des Sauerstoffes mit Sensoren gemessen. Die Kohlenstoffkonzentration auf der Oberfläche des Stahls kann dann durch das Kohlenstoffpotential in der Gasphase berechnet werden. Es existieren Modelle für die Diffusion des Kohlenstoffs im Stahl, mit denen das Kohlenstoffprofil im Stahl vorhergesagt werden kann. Die Stahlhärte ist eine Funktion des Kohlenstoffprofils, also kann auf diese Art die gewünschte Härte eingestellt werden.

Der konventionelle Aufkohlungsprozess hat jedoch einige Nachteile, und er unterliegt einigen Beschränkungen, z. B. bilden sich Ruß und höhere Kohlenwasserstoffe auf den Ofenwänden. Des Weiteren liefert der Prozess nicht die Gleichförmigkeit und die Wiederholbarkeit, die für Präzisionsteile erforderlich sind. Sacklöcher sind schwierig aufzukohlen. Der Niederdruckaufkohlungsprozess unterliegt nicht diesen Beschränkungen. Er hat die Fähigkeit, Stahlteile mit Sacklöchern aufzukohlen und liefert die benötigte Gleichförmigkeit und Wiederholbarkeit. Die Ablagerung von Ruß wird speziell im Fall von Ethin als Aufkohlungsgas gesenkt. Aber die Steuerung des Prozesses ist im Vergleich zum konventionellen Gasaufkohlen schwieriger, da sich der Prozess nicht im thermodynamischen Gleichgewicht befindet. Obgleich es Bemühungen gibt, Sensoren zu entwickeln, um das Kohlenstoffpotential der Aufkohlungsatmosphäre zu messen, sind diese Sensoren noch nicht serienreif. Bisher sind in der Literatur zum Niederdruckaufkohlungsprozess sehr wenige Angaben im Vergleich zum konventionellen Gasaufkohlen zu finden. Die Prozessbedingungen sind noch nicht gänzlich erforscht worden. Jedoch ist es wichtig, die Prozessbedingungen zu erforschen, um den Niederdruckstahlaufkohlungsprozess zu verstehen und zu optimieren. Die Pyrolyse der Aufkohlungsgase, wie z.B. Propan

oder Ethin, ist ein komplexer Mechanismus, der in einem ersten Schritt verstanden werden muss, um ein Verständnis über den Prozess zu entwickeln. Obgleich die Pyrolyse von Propan und des Ethin bereits untersucht wurden, sind die Betriebsparameter der vorhergehenden Untersuchungen aus der Literatur selten denen des Niederdruckaufkohlungsprozesses ähnlich. Es ist schwierig, numerische Strömungsmodelle oder detaillierte Kinetikmodelle zu finden, die die Pyrolyse von Ethin oder Propan unter den Bedingungen des Niederdruckaufkohlens beschreiben können.

In dieser Arbeit werden zwei Ansätze verfolgt, um die Pyrolyse von Propan und Ethin unter den Bedingungen des Niederdruckaufkohlens zu modellieren. Ein Ansatz basiert auf formalen, anwendungsorientierten kinetischen Mechanismen, die mit CFD Berechnungswerkzeugen gekoppelt werden. Der andere Ansatz basiert auf detaillierten kinetischen Ansätzen mit vereinfachten oder idealen Strömungsmodellen. Die experimentellen Daten der vorhergehenden Untersuchungen zum Niederdruckaufkohlen am Engler Bunte Institut wurden verwendet, um die Modellierung zu validieren.

Die Propanpyrolyse wurde mit einer Formalkinetik sowie mit detaillierten kinetischen Ansätzen unter den Bedingungen des Niederdruckaufkohlens modelliert. Da die Propanpyrolyse in Realität einem sehr komplexen Reaktionsschema folgt, ist die Anwendbarkeit der formalkinetischen Ansätze begrenzt. Es ist schwierig, die kinetischen Parameter anzupassen, da das Reaktionsnetz auf nur wenige Spezies und Reaktionen begrenzt ist. Modelle, die auf formalkinetischen Ansätzen basieren, eignen sich nicht, um Ergebnisse für andere Betriebsbedingungen vorauszusagen und auch nicht für beträchtlich veränderte Verweilzeiten bei sonst gleichen Betriebsbedingungen. Der Hauptnutzen der formalkinetischen Ansätze ist ihr geringer Berechnungsaufwand, der es möglich macht, sie mit CFD-Modellen zu koppeln und damit komplizierte Strömungsprozesse zu modellieren. Angewendet wurde der am Engler Bunte Institut von Bajohr [48] entwickelte formalkinetische Mechanismus. Für die Simulation des Reaktors wurde ein gemessenes Temperaturprofil vorgegeben. Die Simulationsergebnisse wurden mit den experimentellen Daten verglichen. Dieser Vergleich war nicht für alle Spezies zufriedenstellend, die im Mechanismus berücksichtigt wurden. Das Modell berechnet besonders bei höheren Temperaturen den Methananteil zu hoch und den Wasserstoffanteil zu niedrig. Des Weiteren beschreibt das Modell nicht die Bildung von Benzol und von Ruß.

Als detailliertes Kinetikmodell wurde das von Norinaga und Deutschmann [75] für

die Pyrolyse von leichten Kohlenwasserstoffen wie Ethin, Ethen und Propen ausgewählt. Der Mechanismus wurde mit 1-D und 2-D Modellen der Software DETCHEM und dem 0-D Modell der Software HOMREA verbunden. Für das 2-D Modell wurde viel Rechnerzeit benötigt, während die Berechnung der 1-D und der 0-D Modelle verhältnismäßig schnell war. Das Modell beschreibt die aus der homogenen Pyrolyse von Propan resultierende Gaszusammensetzung über einer weiten Temperaturbereich sehr gut. Die experimentellen Ergebnisse von drei unterschiedlichen Reaktoren (Strömungsrohr im Labormaßstab, Thermowaage und halbtechnischer Reaktor) wurden unter Verwendung stets der gleichen kinetischen Parameter mit guter Übereinstimmung beschrieben. Die Reaktionen, die zur Bildung und zum Verbrauch der Hauptkomponenten beitragen, wurden identifiziert. Durch eine Sensitivitätsanalyse wurde der Einfluss der unterschiedlichen Reaktionen unter den typischen Betriebsbedingungen bestimmt.

In der industriellen Anwendung wächst das Interesse am Gebrauch von Ethin anstelle von Propan als Aufkohlungsgas auf Grund seiner Fähigkeit, komplizierte Geometrien gleichförmig und mit geringerer Rußbildung aufzukohlen. Der Mechanismus der Ethinpyrolyse auf der Basis von Elementarreaktionen ist noch strittig. Zunächst wurde der am Engler Bunte Institut von Graf [2] entwickelte, formalkinetische Ansatz mit einer numerischen Strömungssimulation gekoppelt. Dieser Mechanismus besteht aus nur 7 Spezies und 9 Reaktionen. Für höhere Verweilzeiten und bei höheren Temperaturen sind die Spezies  $CH_4$ ,  $C_2H_4$  und  $C_4H_4$  im Reaktorausgang in nur sehr kleinen Anteilen (<1 %) zu finden. Die genaue experimentelle Bestimmung dieser Nebenkomponenten ist für große Verweilzeiten sehr anspruchsvoll. Das entwickelte Modell kann die experimentellen Daten über einen weiten Parameterbereich der Niederdruckaufkohlungsuntersuchungen erfolgreich beschreiben. Aceton kann in kleinen Mengen in Ethin als Verunreinigung vorhanden sein. Der Effekt der Acetonanwesenheit in Ethin auf die Pyrolyse wird jedoch von diesem Modell noch nicht berücksichtigt.

Der detaillierte Mechanismus von Norinaga und Deutschmann wurde auch für das Modellieren der Pyrolyse von Ethin mit dem 1-D Modell der Software DETCHEM und dem 0-D Modell der Software HOMREA benutzt. Beim Vergleich der experimentellen mit den Simulationsergebnissen wurde eine gute Übereinstimmung mit Ausnahme von Diacetylen ( $C_4H_2$ ) bei höheren Temperaturen gefunden. Nach dem Modell wird zu viel Diacetylen gebildet. Deshalb wurden die Arrhenius-Parameter für einige Reaktionen verändert, um die Bildung von Diacetylen zu verringern. Als große Einflussquelle wurde der Effekt der Acetonanwesenheit in Ethin gefunden. Der Mechanismus enthält auch die Reaktionen der Acetonpyrolyse. Eine Vorhersage der Konzentrationen der Nebenkomponenten war ohne das Vorhandensein von etwas Aceton (1,5 %) nicht möglich. Die Ergebnisse zeigen, dass in Anwesenheit von Aceton die Pyrolyse des Ethins beschleunigt wird. Der Effekt der Acetonanwesenheit in Ethin ist noch nicht umfassend erforscht worden, und es konnten darüber nur wenige Beiträge in der Literatur gefunden werden. Weitere Untersuchungen werden Engler Bunte am Institut durchgeführt, um den Effekt der Acetonanwesenheit und der Oberflächenreaktionen zu verstehen.

Der detaillierte Mechanismus konnte mit den vorhandenen Möglichkeiten nicht mit einer detaillierten numerischen Strömungssimulation gekoppelt werden. Der detaillierte Kinetikmechanismus sollte deshalb und um die Konvergenz der Lösung zu gewährleisten, reduziert werden (z.B. 50 Spezies im Falle des Softwarepakets FLU-ENT). Obgleich die Sensitivitätsanalyse und die Reaktionsflussanalyse die wichtigen Reaktionen und Spezies im Mechanismus aufzeigen, ist es sehr arbeitsintensiv, den Mechanismus manuell auf Basis der Ergebnisse zu vereinfachen. Es gibt zwar Bemühungen, Software-Codes für die Vereinfachung detaillierter Kinetiken zu entwickeln, sie sind aber bisher schlecht verfügbar. Jedoch wäre die Verwendung solcher vereinfachter Mechanismen in Verbindung mit numerischen Strömungssimulationen sehr hilfreich, um die Forschung auf diesem Gebiet voranzubringen.

Weitere Arbeiten sind sowohl auf der experimentellen als auch auf der Modellierungsseite nötig, um die heterogenen Reaktionen einzuschließen. Nach der Messung der kinetischen Parameter für diese Reaktionen können die vorhandenen Modelle erweitert werden, um den Aufkohlungsstrom auf der Stahloberfläche berechnen zu können. Bisher können die Modelle den homogenen Pyrolyseprozess unter den Betriebsbedingungen der technischen Niederdruckstahlaufkohlung erfolgreich beschreiben.

### Bibliography

- C. Stickels. Overview of Carburizing Processes and Modeling. Carburizing: Processing and Performance, pages 1–9, 1989.
- [2] F. Graf. Aufkohlungs- und Pyrolyseverhalten von  $C_2H_2$  bei der Vakuumaufkohlung von Stahl. PhD thesis, University of Karlsruhe, Faculty of Chemical Engineering, 2007.
- [3] Metals Handbook. vol. 4. ASM International, pages 573–574, 1991.
- [4] R. Collin and D. Gunnarson, S.and Thulin. A mathematical model. for predicting carbon concentration profiles of gas-carburized steel. *Iron Steel*, 210:785– 789, 1972.
- J.I. Goldstein and A.E. Moren. Diffusion Modeling of the Carburization Process. Metall. Trans. A, 9(11):1515–1525, 1978.
- [6] H. Jiménez, MH Staia, and ES Puchi. Mathematical modeling of a carburizing process of a SAE 8620H steel. Surface & Coatings Technology, 120:358–365, 1999.
- [7] E. Gianotti. Algorithm for carbon diffusion computation in a vacuum furnace. Experimental methods predict carburizing time. *Heat Treating Progress*, 2(8):27–30, 2002.
- [8] G.S. Gupta, A. Chaudhuri, and PV Kumar. Modelling, simulation, and graphical user interface for industrial gas carburising process. *Materials Science and Technology*, 18(10):1188–1194, 2002.
- [9] P. Jacquet, D.R. Rousse, G. Bernard, and M. Lambertin. A novel technique to monitor carburizing processes. *Materials Chemistry and Physics*, 77(2):542– 551, 2003.

- [10] T. Turpin, J. Dulcy, and M. Gantois. Carbon Diffusion and Phase Transformations during Gas Carburizing of High-Alloyed Stainless Steels: Experimental Study and Theoretical Modeling. *Metallurgical and Materials Transactions A*, 36(10):2751–2760, 2005.
- [11] H.W. Westeren. Development of vacuum carburizing. Metallurgia and Metal Forming, 39(11):390–393, 1972.
- [12] W.J. Doelker. Vacuum carburizing. Metal Progress, 111(5):50–56, 1977.
- [13] M. Sugiyama, K. Ishikawa, and H. Iwata. Vacuum carburizing with acetylene. Advanced Materials & Processes, 155(4):29–33, 1999.
- [14] W. Gräfen and B. Edenhofer. Acetylene low-pressure carburising: a novel and superior carburising technology. *Heat Treat. Met*, 4:79, 1999.
- [15] M. Lohrmann, W. Grafen, D. Herring, and J. Greene. Acetylene vacuum carburising(AvaC) as the key to the integration of the case-hardening process into the production line. *Heat Treatment of Metals(UK)*, 29(2):39–43, 2002.
- [16] J. Greene. Clean vacuum carburizing using low-pressure acetylene. In Surface Engineering: Coatings and Heat Treatments, Proceedings of the 1st ASM International Surface Engineering Congress and the 13th International Federation for Heat Treatment and Surface Engineering Congress, Columbus, OH, United States, Oct. 7-10, pages 58–62, 2003.
- [17] F.S. Chen and L.D. Liu. Deep-hole carburization in a vacuum furnace by forcedconvection gas flow method. *Materials Chemistry and Physics*, 82(3):801–807, 2003.
- [18] Y. Shimosato. Low pressure vacuum carburizing and accelerated gas carburizing. In Heat Treating and Surface Engineering, Proceedings of the 22nd Heat Treating Society Conference and the 2nd International Surface Engineering Congress, Indianapolis, IN, United States, Sept. 15-17, 2003, pages 267–270, 2003.
- [19] F. Graf, S. Bajohr, and R. Reimert. Pyrolysis of propane during vacuum carburizing of steel. HTM, Härterei-Technische Mitteilungen, 58(1):20–23, 2003.
- [20] H. Iwata. Acetylene vacuum carburizing. Cailiao Rechuli Xuebao, 25(5, Pt. 1):370–374, 2004.

- [21] P. Kula, R. Pietrasik, and K. Dybowski. Vacuum carburizing-process optimization. Journal of Materials Processing Technology, 164-165:876–881, 2005.
- [22] H. Iwata. Advanced acetylene vacuum carburizing. IHI Engineering Review, 38(2):83–88, 2005.
- [23] F.J. Otto and D.H. Herring. Vacuum carburizing of aerospace and automotive components. *Heat Treating Progress*, 5(1):33–37, 2005.
- [24] C.A. Trujillo, F. Graf, S. Bajohr, and R. Reimert. Catalytic treatment of vacuum carburizing off gas. *Chemical Engineering & Technology*, 29(3):390– 394, 2006.
- [25] A.M. Benson. Pyrolysis of propane in a shock tube. AIChE Journal, 13(5):903– 908, 1967.
- [26] J.N. Bradley. Single-pulse shock tube studies of hydrocarbon pyrolysis. part 7. pyrolysis of propane. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75(12):2819–2826, 1979.
- [27] C.C. Chiang and G.B. Skinner. Resonance absorption measurements of atom concentrations in reacting gas mixtures. Pyrolysis of propane and deuteromethane behind shock waves. Symposium (International) on Combustion, [Proceedings], 18th:915–920, 1981.
- [28] M.Z. Al-Alami and J.H. Kiefer. Shock-tube study of propane pyrolysis. rate of initial dissociation from 1400 to 2300 K. *Journal of Physical Chemistry*, 87(3):499–506, 1983.
- [29] E.N. Wami. Pyrolysis of propane at reflected shock-wave temperatures from 1300 to 2700 K. Chemical Engineering & Technology, 17(3):195–200, 1994.
- [30] B.L. Crynes and L.F. Albright. Pyrolysis of propane in tubular flow reactors. kinetics and surface effects. *Industrial & Engineering Chemistry Process Design* and Development, 8(1):25–31, 1969.
- [31] J.J. Dunkleman. Kinetics and surface effects of the pyrolysis of ethane and propane in Vycor, Incoloy, and stainless steel tubular flow reactors from 750 Deg to 900 DegC. PhD thesis, 1976.
- [32] J.J. Dunkleman and L.F. Albright. Pyrolysis of propane in tubular flow reactors constructed of different materials. ACS Symposium Series, 32(Ind. Lab. Pyrolyses,):261–273, 1976.

- [33] M. Koenig, T. Reiher, D. Radeck, and S. Nowak. Modeling of propane pyrolysis. part 1. Formulation of reaction set, implementation and application of propane pyrolysis at T < 550 °C. *Chemische Technik (Leipzig, Germany)*, 32(1):29–33, 1980.
- [34] D.J. Hautman, R.J. Santoro, F.L. Dryer, and I. Glassman. An overall and detailed kinetic study of the pyrolysis of propane. *International Journal of Chemical Kinetics*, 13(2):149–172, 1981.
- [35] G. Bozga, J. Towfighi, and O. Floarea. Optimal temperature profiles for propane pyrolysis in tubular reactors. *Revue Roumaine de Chimie*, 33(1):87–96, 1988.
- [36] F. Billaud. Thermal decomposition of propane: an original method of temperature calibration in a plug flow pyrolysis apparatus. *Journal of Analytical and Applied Pyrolysis*, 21(1-2):15–25, 1991.
- [37] S.K. Layokun and D.H. Slater. Mechanism and kinetics of propane pyrolysis. Industrial & Engineering Chemistry Process Design and Development, 18(2):232– 236, 1979.
- [38] C. Juste, G. Scacchi, and M. Niclause. Minor products and initiation rate in the chain pyrolysis of propane. *International Journal of Chemical Kinetics*, 13(9):855–864, 1981.
- [39] A.G. Volkan and G.C. April. Survey of propane pyrolysis literature. Industrial & Engineering Chemistry Process Design and Development, 16(4):429–436, 1977.
- [40] D. Perrin and R. Martin. The hetero-homogeneous pyrolysis of propane, in the presence or in the absence of dihydrogen, and the measurement of uptake coefficients of hydrogen atoms. *International Journal of Chemical Kinetics*, 32(6):340–364, 2000.
- [41] G.E. Herriott, R.E. Eckert, and L.F. Albright. Kinetics of propane pyrolysis. AIChE Journal, 18(1):84–89, 1972.
- [42] W. Tsang. Chemical Kinetic Data Base for Combustion Chemistry Part 3. Propane. Journal of Physical and Chemical Reference Data, 17:887, 1988.
- [43] A.M. Kaminski and J. Sobkowski. Pyrolysis of propane in the presence of hydrogen. *Reaction Kinetics and Catalysis Letters*, 16(2-3):105–109, 1981.

- [44] G. Pratt and D. Rogers. Wall-less reactor studies. part 2. Propane pyrolysis. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 75(5):1101–1110, 1979.
- [45] K. Kanan, H. Purnell, and E. Smith. Induced Heterogeneity, a Novel Technique for the Study of Gas-Phase Reactions. Parameters for CC Bond Scission in Propane. *International Journal of Chemical Kinetics*, 15:63–73, 1983.
- [46] T. Kunugi, H. Tominaga, S. Abiko, and A. Namatame. Kinetic study of the pyrolysis of propane in the presence of hydrogen. *International Chemical En*gineering, 7(3):550–556, 1967.
- [47] I. Ziegler, R. Fournet, and P.-M. Marquaire. Influence of surface on chemical kinetic of pyrocarbon deposition obtained by propane pyrolysis. *Journal of Analytical and Applied Pyrolysis*, 73(1):107–115, 2005.
- [48] S. Bajohr. Untersuchungen zur Propanpyrolyse unter den Bedingungen der Vakuum-/Gasaufkohlung von Stahl. PhD thesis, University of Karlsruhe, Faculty of Chemical Engineering, 2002.
- [49] C.G. Silcocks. The Kinetics of the Thermal Polymerization of Acetylene. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 242(1231):411–429, 1957.
- [50] C.F. Cullis and N.H. Franklin. The pyrolysis of acetylene at temperatures from 500 to 1000 ° C. Proc. Roy. Soc. (London), 280(Ser. A;1380):139–152, 1964.
- [51] M.S.B. Munson and R. C. Anderson. Vinylacetylene as an intermediate in the formation of acetylenic carbon. *Carbon*, 1:51–54, 1963.
- [52] H.B. Palmer and F.L. Dormish. The Kinetics of Decomposition of Acetylene in the 1500° K Region. *The Journal of Physical Chemistry*, 68(6):1553–1560, 1964.
- [53] S.T. Dimitrijevic, S. Paterson, and P.D. Pacey. Pyrolysis of acetylene during viscous flow at low conversions; influence of acetone. *Journal of Analytical and Applied Pyrolysis*, 53(1):107–122, 2000.
- [54] X. Xu, P.D. Pacey, and S. Matter. Oligomerization and cyclization reactions of acetylene. *Phys. Chem. Chem. Phys*, 7:326–333, 2005.

- [55] K. Norinaga, O. Deutschmann, and K.J. Hüttinger. Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons. *Carbon(New York, NY)*, 44(9):1790–1800, 2006.
- [56] C.F. Aten and E.F. Greene. Rate of formation of carbon from the pyrolysis of acetylene in shock waves. *Discussions of the Faraday Society*, No. 22:162–166, 1956.
- [57] H. Ogura. Pyrolysis of acetylene behind shock waves. Bulletin of the Chemical Society of Japan, 50(5):1044–1050, 1977.
- [58] H. Ogura. Effect of hydrogen chloride on the pyrolysis of acetylene as studied with a single-pulse shock tube. Bulletin of the Chemical Society of Japan, 53(5):1210–1215, 1980.
- [59] A. Bar-Nun and J.E. Dove. Acetylene pyrolysis and its oxidation by water vapor behind high-temperature shock waves. In *Shock Tubes Waves, Proc. Int. Symp.*, 12th, pages 457–464, 1980.
- [60] M. Frenklach, S. Taki, M.B. Durgaprasad, and R.A. Matula. Soot formation in shock-tube pyrolysis of acetylene, allene, and 1,3-butadiene. *Combustion and Flame*, 54(1-3):81–101, 1983.
- [61] M. Frenklach, D.W. Clary, Jr. Gardiner, W.C., and S.E. Stein. Detailed kinetic modeling of soot formation in shock-tube pyrolysis of acetylene. In the Proceedings of Twentieth International Symposium on Combustion, pages 887–901, 1984.
- [62] C.H. Wu, H.J. Singh, and R.D. Kern. Pyrolysis of acetylene behind reflected shock waves. *International Journal of Chemical Kinetics*, 19(11):975–996, 1987.
- [63] M.B. Colket III. The pyrolysis of acetylene and vinylacetylene in a singlepulse shock tube. Symposium (International) on Combustion, [Proceedings], 21st.:851-864, 1988.
- [64] Y. Hidaka, K. Hattori, T. Okuno, K. Inami, T. Abe, and T. Koike. Shocktube and modeling study of acetylene pyrolysis and oxidation. *Combustion and Flame*, 107(4):401–417, 1996.
- [65] T. Kruse and P. Roth. Kinetics of C<sub>2</sub> reactions during high-temperature pyrolysis of acetylene. Journal of Physical Chemistry A, 101(11):2138–2146, 1997.

- [66] M. Frenklach and J. Warnatz. Detailed modeling of PAH profiles in a sooting low-pressure acetylene flame. *Combustion science and technology*, 51(4-6):265– 283, 1987.
- [67] V.I. Babushok and A.W. Miziolek. Condensation flame of acetylene decomposition. *Combustion and Flame*, 136(1):141–145, 2004.
- [68] M.H. Back. Mechanism of the Pyrolysis of Acetylene. Canadian Journal of Chemistry, 49(13):2199–2204, 1971.
- [69] T. Tanzawa and WC Gardiner Jr. Reaction mechanism of the homogeneous thermal decomposition of acetylene. *The Journal of Physical Chemistry*, 84(3):236–239, 1980.
- [70] J.H. Kiefer, W.A. Von Drasek, and W.A. Von Drasek. The mechanism of the homogeneous pyrolysis of acetylene. *International Journal of Chemical Kinetics*, 22(7):747–786, 1990.
- [71] R.P. Duran, V.T. Amorebieta, and A.J. Colussi. Lack of kinetic hydrogen isotope effect in acetylene pyrolysis. *International Journal of Chemical Kinetics*, 21(9):847–858, 1989.
- [72] M.B. Colket III, D.J. Seery, and H.B. Palmer. The pyrolysis of acetylene initiated by acetone. *Combustion and Flame*, 75(3-4):343–366, 1989.
- [73] A.V. Krestinin. On the kinetics of heterogeneous acetylene pyrolysis. *Kinetics and Catalysis (Translation of Kinetika i Kataliz)*, 41(6):729–736, 2000.
- [74] A.B. Callear and G.B. Smith. Recurring chains following addition of atomic hydrogen to acetylene. *The Journal of Physical Chemistry*, 90(14):3229–3237, 1986.
- [75] K. Norinaga and O. Deutschmann. Detailed Kinetic Modeling of Gas-Phase Reactions in the Chemical Vapor Deposition of Carbon from Light Hydrocarbons. *Ind. Eng. Chem. Res*, 46(11):3547–3557, 2007.
- [76] I.D. Gay, G.B. Kistiakowsky, J.V. Michael, and H. Niki. Thermal Decomposition of Acetylene in Shock Waves. *Journal of Chemical Physics*, 43(5):1720– 1726, 2004.
- [77] M.S. Skjøth-Rasmussen, P. Glarborg, M. Østberg, T. Johannessen, H. Livbjerg, A. Jensen, and T.S. Christensen. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor. *Combustion and Flame*, 136:91–128, 2004.

- [78] H. Bockhorn. Soot formation in combustion. Springer-Verlag Berlin, 1994.
- [79] H. Wang and M. Frenklach. Calculations of Rate Coefficients for the Chemically Activated Reactions of Acetylene with Vinylic and Aromatic Radicals. *The Journal of Physical Chemistry*, 98(44):11465–11489, 1994.
- [80] H. Richter and J.B. Howard. Formation of polycyclic aromatic hydrocarbons and their growth to soot - a review of chemical reaction pathways. *Progress in Energy and Combustion Science*, 26(4):565–608, 2000.
- [81] J. Warnatz, R.W. Dibble, and U. Maas. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Springer, 2001.
- [82] R.B. Bird, W.E. Stewart, and E.N. Lightfoot. Transport Phenomena, 1960.
- [83] O. Deutschmann. Interactions between transport and chemistry in catalytic reactors. PhD thesis, Heidelberg University, 2001.
- [84] J.H. Ferziger and M. Peric. Computational methods for fluid dynamics. Springer New York, 2002.
- [85] S. Tischer. Simulation Katalytischer Monolithreaktoren unter Verwendung detaillierter Modelle für Chemie und Transport. PhD thesis, Heidelberg University, 2004.
- [86] J. Warnatz. Numerical methods in flame propagation. Wiesbaden: Vieweg and Sohn, 1982.
- [87] O. Deutschmann, C. Correa, S. Tischer, D. Chatterjee, and J. Warnatz. DETCHEM. User manual, Version 2.0, 2005.
- [88] http://www.detchem.com.
- [89] J.M. Redenius, L.D. Schmidt, and O. Deutschmann. Millisecond catalytic wall reactors: I. Radiant burner. AIChE Journal, 47(5):1177–1184, 2001.
- [90] R.P. O'Connor, L.D. Schmidt, and O. Deutschmann. Simulating cyclohexane millisecond oxidation: Coupled chemistry and fluid dynamics. *AIChE Journal*, 48(6):1241–1256, 2002.
- [91] H. D. Minh. Numerical Methods for Simulation and Optimization of Chemically Reacting Flows in Catalytic Monoliths. PhD thesis, Faculty of Mathematics and Computer Science, University of Heidelberg, December 2005.

- [92] J. Warnatz. HOMREA User Guide Version 2.5, 2002.
- [93] U. Maas and J. Warnatz. Ignition processes in hydrogen-oxygen mixtures. Combustion and Flame, 74(1):53–69, 1988.
- [94] F. Inc. Fluent 6.2 User's Guide. Fluent Inc., Lebanon, NH, USA, 2005.
- [95] T. Koike and W.C. Gardiner Jr. Thermal decomposition of propane. J. Phys. Chem., 84(16):2005–2009, 1980.
- [96] R.U. Khan, S. Bajohr, D. Buchholz, R. Reimert, H.D. Minh, K. Norinaga, V.M. Janardhanan, S. Tischer, and O. Deutschmann. Pyrolysis of propane under vacuum carburizing conditions: An experimental and modeling study. *Journal of Analytical and Applied Pyrolysis*, 81(2):148–156, 2008.
- [97] F. GAMBIT. User Guide, 2001.
- [98] R.U. Khan, S. Bajohr, F. Graf, and R. Reimert. Modeling of Acetylene Pyrolysis under Steel Vacuum Carburizing Conditions in a Tubular Flow Reactor. *Molecules*, 12:290–296, 2007.
- [99] D. Buchholz, R. U. Khan, F. Graf, S. Bajohr, and R. Reimert. Modelling of the acetylene pyrolysis under the conditions of the low pressure carburization of steel. *HTM*, 62(1):5–12, 2007.

## Nomenclature

#### Latin Letters

| A                    | Arrhenius pre-exponential factor            | mol, $m^3$ , sec       |
|----------------------|---------------------------------------------|------------------------|
| $A_s$                | Surface area per unit length                | m                      |
| $A_0$                | Arrhenius pre-exponential factor for the    | mol, $m^3$ , sec       |
|                      | low pressure limit                          |                        |
| $A_c$                | Area of cross section                       | $m^2$                  |
| $a_c$                | Activity of carbon                          | -                      |
| $A_{\infty}$         | Arrhenius pre-exponential factor for the    | mol, $m^3$ , sec       |
|                      | high pressure limit                         |                        |
| $a_i^{\prime\prime}$ | Reaction order with respect to product      | -                      |
|                      | species $i$                                 |                        |
| $a_i^{\prime}$       | Reaction order with respect to reactant     | -                      |
|                      | species $i$                                 |                        |
| b                    | Temperature exponent in modified Arrhe-     | -                      |
|                      | nius expression                             |                        |
| $b_0$                | Temperature exponent in modified Arrhe-     | -                      |
|                      | nius expression for the low pressure limit  |                        |
| $b_{\infty}$         | Temperature exponent in modified Arrhe-     | -                      |
|                      | nius expression for the high pressure limit |                        |
| $c_p$                | Specific heat capacity                      | $\rm J~kg^{-1}K^{-1}$  |
| $c_{p,i}$            | Specific heat capacity of species $i$       | $\rm J~kg^{-1}K^{-1}$  |
| $C_0$                | Basic carbon content of steel               | ${\rm g}~{\rm m}^{-3}$ |
| $C_1$                | Carbon concentration at the surface of      | ${\rm g}~{\rm m}^{-3}$ |
|                      | steel                                       |                        |
| $C_i$                | Concentration of species $i$                | $mol m^{-3}$           |
| C(x,t)               | Carbon concentration at depth $x$ below     | ${\rm g}~{\rm m}^{-3}$ |
|                      | the surface                                 |                        |

| $(D_0)_C^{\gamma}$ | Frequency factor specific to the diffusing       | $m^2 sec^{-1}$                        |
|--------------------|--------------------------------------------------|---------------------------------------|
|                    | solute (carbon) and matrix (austenite)           |                                       |
| $D_C^{\gamma}$     | Diffusion Coefficient of carbon in austenite     | $m^2 sec^{-1}$                        |
|                    | at the carburisation temperature                 |                                       |
| $D_{ij}$           | Binary diffusion coefficient for species $i$     | $\mathrm{m}^2~\mathrm{sec}^{-1}$      |
|                    | into species $j$                                 |                                       |
| $D_i$              | Diffusion Coefficient of species $i$ in the      | $m^2 sec^{-1}$                        |
|                    | medium into which it is diffusing                |                                       |
| $D_i^M$            | Effective Diffusion Coefficient of species $i$   | $\mathrm{m}^2~\mathrm{sec}^{-1}$      |
|                    | into the mixture                                 |                                       |
| $E_{a0}$           | Activation energy for the low pressure           | $\rm J~mol^{-1}$                      |
|                    | limit                                            |                                       |
| $E_a$              | Activation energy                                | $\rm J~mol^{-1}$                      |
| $E_{i,r}$          | Absolute sensitivity coefficient for species     |                                       |
|                    | i                                                |                                       |
| $E_{i,r}^{rel}$    | Relative sensitivity coefficients for species    |                                       |
|                    | i                                                |                                       |
| $E_{a\infty}$      | Activation energy for the high pressure          | $\rm J~mol^{-1}$                      |
|                    | limit                                            |                                       |
| $f_i$              | fractional conversion of species $i$ , $f_i =$   | -                                     |
|                    | $rac{n_{i,in}-n_{i,out}}{n_{i,in}}$             |                                       |
| F                  | Pressure fall-off blending function              | -                                     |
| $F_{cent}$         | Troe-Modulation term                             | -                                     |
| $g_i$              | Gravitational acceleration                       | ${\rm m~sec^{-2}}$                    |
| h                  | Specific enthalpy                                | $\rm J~kg^{-1}$                       |
| $h_k$              | Specific enthalpy of the species $k$             | $\rm J~kg^{-1}$                       |
| $h_i$              | Specific enthalpy of species $i$                 | $\rm J~kg^{-1}$                       |
| $j_{i,j}$          | Component <b>j</b> of diffusion mass flux of the | $\rm kg\ m^{-2}\ sec^{-1}$            |
|                    | species $i$                                      |                                       |
| $J_i$              | Diffusion mass flux of species $i$               | mol m <sup>-2</sup> sec <sup>-1</sup> |
| $j_{k,r}$          | Radial component of the mass flux vector         | $\rm kg \ m^{-2} \ sec^{-1}$          |
| $k_g$              | Number of gas phase species                      | -                                     |
| $k_r$              | Rate coefficient for the reaction $r$            | mol, $m^3$ , sec                      |
| $k_0$              | Rate constant for low pressure limit             | mol, $m^3$ , sec                      |
| $K_1$              | Equilibrium constant for reaction $(1.1)$        | -                                     |
| $K_2$              | Equilibrium constant for reaction $(1.4)$        | $Pa^{-1}$                             |
| $K_3$              | Equilibrium constant for reaction $(1.8)$        | $\operatorname{Pa}^{\frac{-1}{2}}$    |

| $k_\infty$   | Rate constant for high pressure limit         | mol, $m^3$ , sec                          |
|--------------|-----------------------------------------------|-------------------------------------------|
| $k_B$        | Boltzmann constant                            | $J \ K^{-1}$                              |
| $k_b$        | Backward rate constant                        | mol, $m^3$ , sec                          |
| $k_f$        | Forward rate constant                         | mol, $m^3$ , sec                          |
| $L_R$        | Reactor Length                                | m                                         |
| $\bar{M}$    | Average molecular weight                      | $g mol^{-1}$                              |
| $M_i$        | Molecular mass of species $i$                 | $g mol^{-1}$                              |
| $m_i$        | Mass of species $i$                           | kg                                        |
| $M_k$        | Molecular mass of the species $k$             | $g mol^{-1}$                              |
| $N_A$        | Avogadro number = $6.022 \cdot 10^{23}$       | $\mathrm{mol}^{-1}$                       |
| $n_i$        | Number of moles of species $i$                | -                                         |
| $N_{C,f}$    | Number of carbon atoms in the carburiz-       | -                                         |
|              | ing gas molecular formula                     |                                           |
| $N_{C,i}$    | Number of carbon atoms in species $i$         | -                                         |
|              | molecular formula                             |                                           |
| $n_{i,in}$   | Number of moles of species $i$ at the reactor | -                                         |
|              | inlet                                         |                                           |
| $n_{i,out}$  | Number of moles of species $i$ at the reactor | -                                         |
|              | outlet                                        |                                           |
| p            | Pressure                                      | Pa                                        |
| $p_r$        | Reduced pressure                              | -                                         |
| $p_{CO}$     | Partial pressure of carbon monoxide           | Pa                                        |
| $p_{CO_2}$   | Partial pressure of carbon dioxide            | Pa                                        |
| $p_{H_2O}$   | Partial pressure of water                     | Pa                                        |
| $Q_C^\gamma$ | Activation energy for diffusion specific to   | $\rm J~mol^{-1}$                          |
|              | the diffusing solute (carbon) and matrix      |                                           |
|              | (austenite)                                   |                                           |
| $q_i$        | Heat flux                                     | $\rm J~m^{-2}~sec^{-1}$                   |
| R            | Gas constant                                  | $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ |
| r            | Radial coordinate                             | m                                         |
| $R_i^{hom}$  | Net mass rate of production of species $i$    | $\rm kg~m^-3~sec^-1$                      |
|              | due to homogeneous chemical reactions         |                                           |
| $S_{i,j}$    | Selectivity of species $i$ with respect to j, | -                                         |
|              | $S_{i,j} = \Psi_{i,C} / \mathrm{f}_j$         |                                           |
| $s_i$        | Specific entropy of species $i$               | $\rm J~kg^{-1}K^{-1}$                     |
| $S_m$        | Source term                                   | kg m $^{-3}$ sec $^{-1}$                  |
|              |                                               |                                           |

| $\dot{s_k}$ | Molar rate of production/removal of                  | mol m <sup>-2</sup> sec <sup>-1</sup>                |
|-------------|------------------------------------------------------|------------------------------------------------------|
|             | species $k$ by surface reactions                     |                                                      |
| T           | Temperature                                          | °C or K                                              |
| t           | Time                                                 | sec                                                  |
| $T_{ij}^*$  | Reduced temperature                                  |                                                      |
| $T_R$       | Controller Temperature                               | °C or K                                              |
| $T^*$       | Troe parameter                                       | Κ                                                    |
| $T^{**}$    | Troe parameter                                       | Κ                                                    |
| $T^{***}$   | Troe parameter                                       | Κ                                                    |
| $T_w$       | Wall temperature                                     | °C or K                                              |
| U           | Overall heat transfer coefficient                    | $\mathrm{W}~\mathrm{m}^{-2}~^{\circ}\mathrm{C}^{-1}$ |
| u           | Axial velocity                                       | ${\rm m~sec^{-1}}$                                   |
| $u_x$       | <b>x</b> components of the velocity vector $\vec{u}$ | m sec $^{-1}$                                        |
| $u_y$       | y components of the velocity vector $\vec{u}$        | m sec $^{-1}$                                        |
| $u_z$       | z components of the velocity vector $\vec{u}$        | m sec $^{-1}$                                        |
| v           | Radial velocity                                      | ${\rm m~sec^{-1}}$                                   |
| $v_{stef}$  | Stefan velocity                                      | ${\rm m~sec^{-1}}$                                   |
| x           | Cartesian coordinate                                 | m                                                    |
| $X_i$       | Mole fraction of species $i$                         | -                                                    |
| y           | Cartesian coordinate                                 | m                                                    |
| $Y_i$       | Mass fraction of species $i$                         | -                                                    |
| z           | Cartesian coordinate                                 | m                                                    |

#### Greek Letters

| $\alpha$       | Troe parameter                                                                   | -                                                    |
|----------------|----------------------------------------------------------------------------------|------------------------------------------------------|
| $\delta_{i,j}$ | Kronecker symbol $(\delta_{i,j} = 1 \text{ if } i = j \text{ and } \delta_{i,j}$ |                                                      |
|                | = 0 otherwise)                                                                   |                                                      |
| $\lambda$      | Thermal conductivity of the gas mixture                                          | $\mathrm{W}~\mathrm{m}^{-1}~^{\circ}\mathrm{C}^{-1}$ |
| $\lambda_i$    | Thermal conductivity of the species $i$                                          | $\mathrm{W}~\mathrm{m}^{-1}~^{\circ}\mathrm{C}^{-1}$ |
| $\mu$          | Viscosity of the gas mixture                                                     | $\rm kg~m^{-1}~sec^{-1}$                             |
| $\mu_i$        | Viscosity of the species $i$                                                     | $\rm kg~m^{-1}~sec^{-1}$                             |
| ν              | Net stoichiometric coefficient of the                                            | -                                                    |
|                | species $i$ in a reaction                                                        |                                                      |
| $ u_i^{''}$    | Stoichiometric coefficient of the product                                        | -                                                    |
|                | species $i$                                                                      |                                                      |

| $ u_i^{\prime}$        | Stoichiometric coefficient of the reactant    | -                     |
|------------------------|-----------------------------------------------|-----------------------|
|                        | species $i$                                   |                       |
| $\dot{\omega}_i$       | Molar rate of production/removal of           | $mol m^{-3} sec^{-1}$ |
|                        | species $i$                                   |                       |
| $\dot{\omega}_k$       | Molar rate of production/removal of           | $mol m^{-3} sec^{-1}$ |
|                        | species $k$ by gas-phase reactions            |                       |
| $\Omega^{(2,2)*}$      | Collision integral for viscosity              |                       |
| $\Omega_{ij}^{(1,1)*}$ | Collision integral for diffusion              | -                     |
| $\dot{\omega}_{i,f}$   | Forward reaction rate of species $i$          | $mol m^{-3} sec^{-1}$ |
| $\dot{\omega}_{i,b}$   | Backward reaction rate of species $i$         | $mol m^{-3} sec^{-1}$ |
| $\Psi_{i,C}$           | Species $i$ carbon yield                      | -                     |
| $\phi_{f,in}$          | Molar flow rate of carburizing gas at the     | $mol \ sec^{-1}$      |
|                        | reactor inlet                                 |                       |
| $\phi_{i,out}$         | Molar flow rate of species $i$ at the reactor | $mol \ sec^{-1}$      |
|                        | outlet                                        |                       |
| ho                     | Density                                       | kg m $^{-3}$          |
| $\sigma_i$             | Lennard-Jones collision diameter              | nm                    |
| $	au_{ij}$             | Stress tensor                                 | Pa                    |

### Appendix A

### FLUENT UDFs

#### A.1 FLUENT UDF for the global mechanism

The following UDF was used for implementing the global kinetic mechanism of acetylene pyrolysis. The kinetic parameters in this UDF are for thermogravimetric reactor and vacuum reactor. For the laboratory scale tubular flow reactor the parameters are shown in table 7.1.

```
/* UDF used for the global kinetic mechanism of pyrolysis of acetylene */
#include "udf.h"
```

```
DEFINE_VR_RATE(vol_reac_rate,c,t,r,wk,yk,rate,rr_t)
```

{

```
/*If more than one reaction is defined, it is necessary to distinguish
   between these using the names of the reactions. */
```

```
real ci, prod;
```

```
real c0,c1,c2,c3,c4,c5,c6;
```

c0 = C\_R(c,t) \* yk[0] / wk[0]\*1000; c1 = C\_R(c,t) \* yk[1] / wk[1]\*1000; c2 = C\_R(c,t) \* yk[2] / wk[2]\*1000; c3 = C\_R(c,t) \* yk[3] / wk[3]\*1000; c4 =  $C_R(c,t) * yk[4] / wk[4]*1000;$ 

 $c5 = C_R(c,t) * yk[5] / wk[5]*1000;$ 

$$c6 = C_R(c,t) * yk[6] / wk[6]*1000;$$

 $/\ast\,$  reactions included in the FLUENT speceis  $\,$  transport and reaction model  $\,$ 

(1) C2H2 +H2 =>C2H4 (2) C2H4 =>C2H2 + H2 C2H2 +3H2 => 2CH4 (3) (4) 2CH4 => C2H2 + 3H2 C2H2 (5) => 2C + H2 C6H6 (6) => 6C + 3H2 (7)2C2H2 => C4H4 (8) C4H4 => 2C2H2 (9) C4H4 + C2H2 => C6H6 \*/ if (!strcmp(r->name, "reaction-1")) { /\* Calculation of reaction rate for Reaction 1 \*/ prod = 1;prod = pow(c2, 1)\* pow(c0,0.36); \*rate = 1700 \* exp( -103000000 / (8314.47 \* C\_T(c,t)))\* prod/1000; \*rr\_t = \*rate; } 

```
else if (!strcmp(r->name, "reaction-2"))
      {
/* Calculation of reaction rate for Reaction 2 */
     prod = 1;
     prod = pow(c3, 0.5);
*rate = 38000000 * exp(- 200040000 / (8314.47 * C_T(c,t)))* prod/1000;
 *rr_t = *rate;
  }
else if (!strcmp(r->name, "reaction-3"))
      {
/* Calculation of reaction rate for Reaction 3 */
 prod = 1;
     prod = pow(c2, 0.35) * pow(c0, 0.22);
*rate = 50000 * exp( -150000000 / (8314.47 * C_T(c,t))) * prod/1000;
 *rr_t = *rate;
       }
```

```
else if (!strcmp(r->name, "reaction-4"))
      {
/* Calculation of reaction rate for Reaction 4 \, */
 prod = 1;
      prod = pow(c1, 0.21);
*rate = 8600000 * exp( -195000000 / (8314.47 * C_T(c,t)))* prod/1000;
 *rr_t = *rate;
      }
 else if (!strcmp(r->name, "reaction-5"))
      {
/* Calculation of reaction rate for Reaction 5 */
 prod = 1;
     prod = pow(c2, 2.2)/(1+18*c0);
*rate = 1.3824E-86 *pow(C_T(c,t),30)*exp(-165000000/(8314.47 * C_T(c,t)))
* prod/1000;
```

```
*rr_t = *rate;
     }
 else if (!strcmp(r->name, "reaction-6"))
     {
/* Calculation of reaction rate for Reaction 6 */
 prod = 1;
    prod = pow(c5, 0.75)/(1+22*c0);
*rate = 1000 * exp( -75000000 / (8314.47 * C_T(c,t)))* prod/1000;
 *rr_t = *rate;
      }
else if (!strcmp(r->name, "reaction-7"))
     {
/* Calculation of reaction rate for Reaction 7 */
```

prod = 1;

```
prod = pow(c2, 1.6);
*rate =90000 * exp( -120710000 / (8314.47 * C_T(c,t))) * prod/1000;
 *rr_t = *rate;
     }
else if (!strcmp(r->name, "reaction-8"))
     {
/* Calculation of reaction rate for Reaction 8 */
 prod = 1;
     prod = pow(c4, 0.75);
*rate =pow(10,15) * exp( -335180000 / (8314.47 * C_T(c,t))) * prod/1000;
 *rr_t = *rate;
       }
else if (!strcmp(r->name, "reaction-9"))
     {
/* Calculation of reaction rate for Reaction 9 */
```

## A.2 FLUENT UDFs used for Temperature Profiles

For CFD simulations, the measured temperature profiles were implemented by the FLUENT UDFs. The parameters for the laboratory scale tubular flow reactor used in these UDFs were taken from the equations 6.1 and 7.1 for propane and acetylene pyrolysis respectively. For thermogravimetric reactor and vacuum reactor following UFDs were used:

#### A.2.1 Temperature profiles in Thermogravimetric Reactor

/\* FLUENT UDF used for temperature profile at TR= 900 C
in the thermogravimetric reactor \*/
#include "udf.h"

DEFINE\_PROFILE(wall\_T\_profil\_900, t, i)
{
 real y[ND\_ND];
 real x;
 face\_t f;
 real p1, p2, p3, p4, p5,p6,p7,p8,p9,p10;

```
p1 = 2.8438098e-017
                                ;
p2 = -5.2953911e-014
                                ;
p3 = 3.9724238e-011
                                ;
p4 = -1.5707779e-008
                                ;
p5 = 3.5524681e-006
                                ;
p6 = -4.6072944e-004
                                ;
p7 = 3.1807473e-002
                                ;
p8 = -9.4320662e-001
                                ;
p9 = 1.1676736e+001
                                ;
p10 =7.8635393e+001
                                ;
```

```
begin_f_loop(f, t)
{
    F_CENTROID(y,f,t);
    x = y[0]*1000;
```

```
F_PROFILE(f, t, i) = (p1*pow(x,9) + p2*pow(x,8) + p3*pow(x,7))
                       + p4*pow(x,6) + p5*pow(x,5) + p6*pow(x,4)
                       + p7*pow(x,3) + p8*pow(x,2) + p9 *x + p10)
                       +(273)-50;
   }
 end_f_loop(f, t)
}
/* FLUENT UDF used for temperature profile at TR= 950 C
in the thermogravimetric reactor */
#include "udf.h"
DEFINE_PROFILE(wall_T_profil_950, t, i)
{
real y[ND_ND];
real x;
face_t f;
real p1, p2, p3, p4, p5, p6, p7, p8, p9, p10;
 p1 = 2.8438098e-017
                                 ;
 p2 = -5.2953911e-014
                                 ;
 p3 = 3.9724238e-011
                                 ;
 p4 = -1.5707779e-008
                                 ;
 p5 = 3.5524681e-006
                                  ;
 p6 = -4.6072944e - 004
                                 ;
 p7 = 3.1807473e-002
                                 ;
 p8 = -9.4320662e-001
                                 ;
```

132

```
}
end_f_loop(f, t)
```

}

```
/* FLUENT UDF used for temperature profile at TR=1000 °C in the
thermogravimetric reactor */
#include "udf.h"
```

```
DEFINE_PROFILE(wall_T_profil_1000, t, i)
{
   real y[ND_ND];
   real x;
   face_t f;
   real p1, p2, p3, p4, p5, p6, p7, p8, p9, p10;
```

p1 = 4.0546E-17; p2 = -6.7952E-14; p3 = 4.74255E-11; p4 = -1.78292E-08; p5 = 3.89145E-06; p6 =-0.00049246 ; p7 = 0.033502; p8 = -0.99628; p9 = 13.22012; p10 =78.5 ; begin\_f\_loop(f, t) { F\_CENTROID(y,f,t); x = y[0] \* 1000; $F_PROFILE(f, t, i) = (p1*pow(x,9) + p2*pow(x,8) + p3*pow(x,7))$ + p4\*pow(x,6) + p5\*pow(x,5) + p6\*pow(x,4) + p7\*pow(x,3) + p8\*pow(x,2) + p9 \*x + p10)+(273); } end\_f\_loop(f, t) }

#### A.2.2 Temperature profiles in Vacuum Reactor

```
/* FLUENT UDF used for temperature profile at TR = 980 C in the vacuum reactor \ast/
```

```
#include "udf.h"
DEFINE_PROFILE(wall_T_profil_980, t, i)
{
real y[ND_ND];
real x;
face_t f;
real p1, p2, p3, p4, p5, p6, p7, p8, p9, p10;
 p1 = 7.9135713e+006
                                 ;
 p2 = -2.5861517e+007
                                 ;
 p3 = 3.5456470e+007
                                 ;
 p4 = -2.6156006e+007
                                 ;
 p5 = 1.0950872e+007
                                 ;
 p6 = -2.4658451e+006
                                 ;
 p7 = 2.3420008e+005
                                  ;
 p8 = -3.3075014e+003
                                 ;
 p9 = 2.5783665e+003
                                 ;
 p10 = 3.8837052e+002
                                 ;
begin_f_loop(f, t)
 {
```

```
F_CENTROID(y,f,t);
```

x = y[0];

 $F_PROFILE(f, t, i) = (p1*pow(x,9) + p2*pow(x,8) + p3*pow(x,7) +$ 

```
p4*pow(x,6) + p5*pow(x,5) + p6*pow(x,4) + p7*pow(x,3) + p8*pow(x,2) +
  p9 *x + p10)+(273);
  }
 end_f_loop(f, t)
}
/* FLUENT UDF used for temperature profile at TR = 1050 C
    in the vacuum reactor */
#include "udf.h"
DEFINE_PROFILE(wall_T_profil_1050, t, i)
{
real y[ND_ND];
real x;
face_t f;
real p1, p2, p3, p4, p5, p6,p7,p8, p9, p10;
 p1 = 7.9135713e+006
                               ;
 p2 = -2.5861517e+007
                               ;
 p3 = 3.5456470e+007
                               ;
 p4 = -2.6156006e+007
                               ;
 p5 = 1.0950872e+007
                               ;
 p6 = -2.4658451e+006
                               ;
 p7 = 2.3420008e+005
                               ;
 p8 = -3.3075014e+003
                              ;
 p9 = 2.5783665e+003
                              ;
```

```
p10 = 4.5837052e+002 ;
begin_f_loop(f, t)
{
    F_CENTROID(y,f,t);
    x = y[0];
    F_PROFILE(f, t, i) = (p1*pow(x,9) + p2*pow(x,8) + p3*pow(x,7) +
    p4*pow(x,6) + p5*pow(x,5) + p6*pow(x,4) + p7*pow(x,3) + p8*pow(x,2) +
    p9 *x + p10)+(273);
}
end_f_loop(f, t)
```

}

# Appendix B

# Pyrolysis of propane



Figure B.1: Selectivities of different species as a function of temperature for pyrolysis of propane in the tubular flow reactor



Figure B.2: Yields of carbon for different species as a function of temperature for pyrolysis of propane in the tubular flow reactor
## Appendix C

# List of Species and Detailed Reaction Mechanism

| Abbreviation | Formula or name     | Abbreviation | Formula or name      |
|--------------|---------------------|--------------|----------------------|
| Н            | hydrogen radical    | C4H52        |                      |
| H2           | hydrogen            | C4H6         | 1,3-butadine         |
| С            | carbon              | C4H612       | 1,2-butadine         |
| СН           | methylidyne         | C4H61        | 1-butyne             |
| 1CH2         | methylene (singlet) | C4H62        | 2-butyne             |
| 3CH2         | methylene (triplet) | I-C4H7       | <u> </u>             |
| CH3          | methyl radical      | N-C4H7       |                      |
| CH4          | methane             | C4H8         | 1-butene             |
| C2           | dicarbon            | C5H4         | cyclopentatriene     |
| C2H          | ethynyl radical     | L-C5H4       | 1,2-pentadiene-4-yne |
| C2H2         | acetylene           |              |                      |
| C2H3         | vinyl radical       | C5H5         |                      |
| C2H4         | ethylene            | L-C5H5       | <u> </u>             |
| C2H5         | ethyl radical       | C5H4H        | <u>·</u> ··          |
| C2H6         | ethane              | 001111       |                      |
| C3H2         | propadienylidene    | C5H6         | cyclopentadiene      |
| C3H3         | <b>=</b> •          | C5H7         | $\sim$               |
| AC3H4        | allene              |              |                      |
| PC3H4        | propyne             | L-C5H7       | — <u> </u>           |
| CYC3H4       | cyclopropene        | C5H8         | cyclopentene         |
| AC3H5        | <b></b> .           | L-C5H8       | 1,4-pentadiene       |
| TC3H5        | <u></u> •           | C6H          | <u> </u>             |
| SC3H5        | •                   | C6H2         | triacetylene         |
| C3H6         | propene             | C6H3         | <u> </u>             |
| N-C3H7       |                     | C-C6H4       |                      |
| I-C3H7       |                     | 0 00111      | benzyne              |
| C3H8         | propane             | L-C6H4       |                      |
| C4H          | <b>=</b> :          |              | ×=                   |
| C4H2         | diacetylene         | C6H5         |                      |
| N-C4H3       | <b></b> .           |              |                      |
| I-C4H3       | <del></del>         | N-C6H5       | <u> </u>             |
| C4H4         | vinylacetylene      | I-C6H5       | <u> </u>             |
| N-C4H5       | <u> </u>            | C6H6         | benzene              |
| I-C4H5       | <u> </u>            | L-C6H6       | 1,3-hexadiene-5-yne  |
| C4H512       |                     | N-C6H7       | <u> </u>             |
| N-C4H51      | ≡                   |              | <u> </u>             |
| I-C4H51      | ≡─੶、                | 0.0011       |                      |

#### Species included in the detailed mechanism [75]

| I-C6H7   | <u> </u>                  | A1C2H3    | styrene                |
|----------|---------------------------|-----------|------------------------|
|          | $\mathbf{k}$              | A1C2H5    | ethylbenzene           |
| C5H4CH3  | $\langle \rangle$         |           |                        |
| L-C6H8   | hexatriene                | ACH3CH2   |                        |
| C6H813   | 1,3-cyclohexadiene        |           |                        |
| C6H814   | 1,4-cyclohexadiene        | ACH3CH3   | xylene                 |
|          | 1                         | C8H12     | 4-Vinylcyclohexene     |
| C5H5CH3  | $\bigcirc$                | C9H7      |                        |
| 1-C6H12  | 1-hexene                  | C9H8      | indene                 |
| C-C6H12  | cyclohexane               |           |                        |
| 4m1pent  | 4-methyl-1-pentene        | A1C2H)2   |                        |
| C7H7     |                           | A2-1      |                        |
| С6Н4СН3  | <u> </u>                  | A2-2      |                        |
| C7H8     | toluene                   | A2T1      |                        |
| C8H2     | tetraacetylene            |           |                        |
| 00112    |                           | A2T2      |                        |
| A1C2H-   |                           | A2        | naphthalene            |
| -        | <u> </u>                  | C10H9     |                        |
|          |                           |           |                        |
| A1C2H*   | Ċ.                        | indyICH3  |                        |
| A1C2H    | phenylacetylene           | C10H10    | 1,2-dihydronaphthalene |
| N-A1C2H2 |                           | indeneCH3 |                        |
| I-A1C2H2 |                           | A2CH2-1   |                        |
| C8H8     | 1,3,5,7-Cyclooctatetraene | A2CH2-2   | ĊĊĊ.                   |
|          |                           | A2CH3-1   | 1-methylnaphthalene    |
| A1C2H3*  |                           | A2CH3-2   | 2-methylnaphthalene    |

| A2C2H-1*  |                          | BIPHEN    |                         |
|-----------|--------------------------|-----------|-------------------------|
|           |                          | BIPHENH   |                         |
| A2C2H-2*  |                          | P2-       |                         |
| A2C2H-23  |                          | P2        | biphenyl                |
| A2C2H-1   | 1-ethynylnaphthalene     | BENZYLB*  | (). ()                  |
| A2C2H-2   | 2-ethynylnaphthalene     | BENZYLB   | benzylbenzene           |
|           | <i>[</i> ]               | fluorene  | fluorene                |
| A2C2U2 1  |                          | A2R5E-1   | 1-ethynylacenaphthylene |
| A202112-1 |                          | A2R5E-3   | 3-ethynylacenaphthylene |
|           |                          | A2R5E-4   | 4-ethynylacenaphthylene |
|           |                          | A2R5E-5   | 5-ethynylacenaphthylene |
| A2C2H2-2  |                          |           | <i>I</i> .              |
| A2C2H3-2  | 2-vinylnaphthalene       | A2R5E12   |                         |
| A2C2H5    | ethylnaphthalene         |           |                         |
| A2R5-1    |                          | A2R5E45   |                         |
| A2R5-3    |                          | A2D5E54   |                         |
| A2R5-4    |                          |           |                         |
| A2R5-5    |                          | A2R5E34   |                         |
| A2R5      | acenaphthylene           |           |                         |
| HA2R5     |                          | A2R5E43   |                         |
| A2R5H2    |                          | A206114 4 |                         |
| A2C2H)2   | 1,2-diethynylnaphthalene | A2U0H4-1  |                         |

| A2C6H4-2 |                                                                                                                      |          |                                     |
|----------|----------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------|
| A2C6H5-2 | 2-phenylnaphthalene                                                                                                  |          |                                     |
|          |                                                                                                                      | A3CH3    | 4-methylphenanthrene                |
| FLTHN-1  |                                                                                                                      | A3C2H-1* |                                     |
|          | ~~~~··                                                                                                               | A3C2H-1  | 1-ethynylphenanthrene               |
| FLTHN-3  |                                                                                                                      | A3C2H-2* |                                     |
|          | $ \land \land$ | A3C2H-2  | 2-ethynylphenanthrene               |
|          |                                                                                                                      | A3C2H-4  | 4-ethynylphenanthrene               |
| FLTHN    | fluoranthene                                                                                                         | A3C2H2-4 |                                     |
| A3-1     | , i                                                                                                                  |          | /                                   |
| A3-2     | ~~~··                                                                                                                | A3LE-1P  | · ·                                 |
| A3-4     |                                                                                                                      | A3LE-2P  | C .                                 |
| A3-9     |                                                                                                                      | A3LE-2S  |                                     |
|          |                                                                                                                      | A3LE-1   | 1-ethynylanthracene                 |
| A3L-1    |                                                                                                                      | A3LE-2   | 2-ethynylanthracene                 |
|          |                                                                                                                      | A3R5-7   |                                     |
| A3L-2    |                                                                                                                      |          |                                     |
| A3L-9    |                                                                                                                      | A3R5-10  |                                     |
| A3       | phenanthrene                                                                                                         | A3R5     | acephenanthlyrene                   |
| A3L      | anthracene                                                                                                           |          |                                     |
| A3CH2    |                                                                                                                      | A3LR5*   |                                     |
| A3CH2R   | cyclopenta[def]phenanthrene                                                                                          |          | not distinguished radical positions |
|          |                                                                                                                      | A3LR5    | aceanthrylene                       |

|          | •                   | A4C2H-1      | 1-ethynylpyrene            |
|----------|---------------------|--------------|----------------------------|
|          |                     | A4C2H-2      | 2-ethynylpyrene            |
| A4-1     |                     | A4C2H-4      | 4-ethynylpyrene            |
|          |                     | BGHIF-       | ·<br>·                     |
| A4-2     |                     | BGHIF        | benzo[ghi]fluoranthene     |
|          |                     | CPCDFL*      |                            |
| ۵4-4     | ~~~~·               | CPCDFL       | cyclopenta[cd]fluoranthene |
| A4       | pyrene              | CPCDA4*      |                            |
| A4L*     |                     | CPCDA4       | cyclopenta[cd]pyrene       |
| A4L      | naphthacene         |              |                            |
| C17H12   | benzo[b]fluorene    | CRYSN-1      |                            |
| BENZNAP* |                     |              |                            |
| BENZNAP  | 2-benzylnaphthalene | CRYSN-4      |                            |
| A4C2H-1* |                     | CRYSN-5      |                            |
|          |                     | CRYSN        | chrysene                   |
| A4C2H-2* |                     | BAA3L-1      |                            |
|          |                     | BAA3L-12     | CCC.                       |
| A4C2H-4* |                     | BAA3L-4      |                            |
|          | -                   | <b>BAA3L</b> | benzo[a]anthracene         |

145

| PERYLN*        |                                                                 | BBFLTHN*                   |                                |
|----------------|-----------------------------------------------------------------|----------------------------|--------------------------------|
|                |                                                                 | BBFLTHN                    | benzo[b]fluoranthene           |
| PERYLN         | perylene                                                        | BKFLTHN                    | benzo[k]fluoranthene           |
|                |                                                                 | ANTHAN                     | anthanthracene                 |
| CPBFL*         |                                                                 | INA4                       | indeno[1,2,3-cd]pyrene         |
| CPBFL<br>DCPA4 | cyclopenta[cd]benzo[ghi]fluoranthe<br>dicyclopenta[cd,fg]pyrene | <sup>ene</sup> BGHIPE*     |                                |
| BAPYR*         |                                                                 | BGHIPE<br>CORONEN          | benzo[ghi]perylene<br>coronene |
| BAPYR          | benzo[a]pyrene                                                  | CH3COCH3                   | acetone                        |
| BEPYR*         |                                                                 | CH3CO<br>CH3COCH2<br>CH2CO |                                |
|                |                                                                 | CO                         | Carbon Monoxide                |
| BEPYR          | benzo[e]pyrene                                                  |                            |                                |

# **Detailed Reaction Mechanism [75]** $k=AT^{n}exp(-E_{a}/RT) A: cm^{3} mole^{-1}s^{-1} Ea: kJ/mol$

\*\*\*\* 1. H2 REACTIONS

| ****        | *******  | ********      | *******  | ****        |        |             |          |         |                            |
|-------------|----------|---------------|----------|-------------|--------|-------------|----------|---------|----------------------------|
| 1.          | н        | +H            | +M(1)    | =H2         | +M(1)  | 0.100E+19   | -1.0     | 0.0     | !Miller&Melius1992         |
| 2           | 110      |               |          | 110         |        | 0 2000 10   | 0 0      | 0 0     | INiller Meling1002         |
| 2.          | пи       | +π            | +n       | =n2         | +nZ    | 9.2006+16   | -0.6     | 0.0     | :MILLEL@MELLUS1992         |
| * * * * *   | *******  | ********      | ******** | ****        |        |             |          |         |                            |
| * * * *     | 2. C1 RE | ACTIONS       |          |             |        |             |          |         |                            |
| ++++        |          | *****         |          | ****        |        |             |          |         |                            |
| ~ ~ ~ ~ ~ / |          |               |          |             |        |             |          |         |                            |
| 3.          | CH       | +H            | =C       | +H2         |        | 1.500E+14   | 0.0      | 0.000   | !Miller&Melius1992         |
| 4           | СН       | +H2           | = 3 CH2  | +H          |        | 1 107E + 08 | 1 79     | 6 990   | Wang&Frenklach1997         |
| -           | C11      |               | - 5 C112 | 111         |        | 1.10/11/00  | 1.75     | 0.550   |                            |
| 5.          | CH       | +H2           | =CH3     |             |        | 3.190E+25   | -4.99    | 11.34   | !Richter&Howard2002        |
| 6           | 3CH2     | +H            | +M(2)    | =CH3        | +M(2)  | 2.500E+16   | -0.8     | 0.000   | !Wang&Frenklach1997        |
| T OF 1      | 2 0112   |               | 140      | F 1 F 0     |        | 2.0002.10   | 0.0      | 0.000   | Mangar Fonnfaonf55,        |
| LOW         | 3.2      | 200E+27 -3    | 3.140    | 5.150       |        |             |          |         |                            |
| TROE        | 0.6800   | 78.0          | 1995.0   | 5590.0      |        |             |          |         |                            |
| 7           | 2012     | 100           | _CU2     | , U         |        |             | 2 0      | 20 250  | Wangs Franklagh 1007       |
| / <b>.</b>  | JCHZ     | +nz           | =CH3     | +11         |        | 0.3006+00   | 2.0      | 30.230  | : Wallgar Lelik Lacil 997  |
| 8.          | 3CH2     | +C            | =C2H     | +H          |        | 0.500E+14   | 0.0      | 0.000   | !Wang&Frenklach1997        |
| 9           | 3042     | +CH           | -C2H2    | тĦ          |        | 0 4008+14   | 0 0      | 0 000   | Wang&Frenklach1997         |
| J.          | JCIIZ    | +CII          | -02112   | <b>T</b> 11 |        | 0.4000414   | 0.0      | 0.000   | : Waligar Telik Tacili 557 |
| 10.         | 3CH2     | +CH           | =C2H     | +H          | +H     | 5.490E+22   | -2.41    | 48.20   | !Westmoreland1986          |
| 11.         | 3CH2     | +CH           | =C2H3    |             |        | 3.090E+14   | -1.98    | 2.59    | !Westmoreland1986          |
| 10          | 2 0112   | . 2 0112      | 00110    |             |        | 7 1000.01   | 2.0      | 10.00   | Westmannel and 1000        |
| 12.         | 3CH2     | +3CHZ         | =CZH3    | +H          |        | 7.1208+21   | -3.9     | 10.29   | iweschorerand1986          |
| 13.         | 3 CH2    | +3CH2         | =C2H4    |             |        | 1.110E+20   | -3.43    | 8.66    | !Westmoreland1986          |
| 1 /         | 20112    | . 20112       | COLLO    | . 110       |        | 2 2000.12   | 0 0      | 0 000   | Wang Eraphiagh 1007        |
| 14.         | 3CHZ     | +3CHZ         | =CZHZ    | +==         |        | 3.2006+13   | 0.0      | 0.000   | : Wallg&Freiktach1997      |
| 15.         | 1CH2     | +H            | =CH      | +H2         |        | 0.300E+14   | 0.0      | 0.000   | !Wang&Frenklach1997        |
| 16          | 1 CH2    | +H            | = 3 CH2  | +H          |        | 2 000E+14   | 0 0      | 0 0     | Miller&Melius1992          |
| 10.         | 1 0112   |               | - 5 0112 |             |        | 2.00001111  | 0.0      | 0.0     |                            |
| 17.         | ICH2     | +H2           | =CH3     | +H          |        | 0.700E+14   | 0.0      | 0.000   | !Wang&Frenklach1997        |
| 18.         | 1CH2     | +1CH2         | =C2H2    | +H2         |        | 3.010E+13   | 0.0      | 0.0     | !Zhang&Mckinnon1995        |
| 10          | 1 0110   | 1 0110        | COTTO    |             |        | 0.000.0.10  | 0 0      | 0 0     | LTreeple Treet 1004        |
| 19.         | ICHZ     | +ICHZ         | =CZH3    | +H          |        | 2.0008+13   | 0.0      | 0.0     | Prank&JUSL1984             |
| 20.         | CH3      | +H            | +M(2)    | =CH4        | +M(2)  | 1.270E+16   | -0.630   | 1.60    | !Wang&Frenklach1997        |
| TOW         | 2 4      | 770.22 /      | 1 760    | 10 21       |        |             |          |         | 5                          |
| TOM         | 2.4      | ://6+33 -4    | 1.700    | 10.21       |        |             |          |         |                            |
| TROE        | 0.7830   | 74.0          | 2941.0   | 6964.0      |        |             |          |         |                            |
| 21          | СНЗ      | +C            | -C2H2    | тĦ          |        | 0 5008+14   | 0 0      | 0 000   | Wang&Frenklach1997         |
| 21.         | 0115     | 10            | -02112   |             |        | 0.50001114  | 0.0      | 0.000   |                            |
| 22.         | CH3      | +CH           | =C2H3    | +H          |        | 0.300E+14   | 0.0      | 0.000   | !Wang&Frenklach1997        |
| 23          | CH3      | +3CH2         | =C2H4    | +H          |        | 0.400E+14   | 0.0      | 0.000   | !Wang&Frenklach1997        |
| 23.         | GIID     | 2 0112        | CONT     |             |        | 0.10001111  | 0.0      | 0.000   | Wangar reintraenrys,       |
| 24.         | CH3      | +3CH2         | =C2H5    |             |        | 2.530E+20   | -3.49    | 8.49    | !Westmoreland1986          |
| 25.         | CH3      | +1CH2         | =C2H4    | +H          |        | 0.120E+14   | 0.0      | -2.380  | !Wang&Frenklach1997        |
| 26          | CH3      | +1CU2         | -0215    |             |        | 1 1111111   | -3 20    | 7 4 5   | Westmoreland1986           |
| 20.         | CIIS     | +ICIIZ        | -02115   |             | ( - )  | 1.1115+19   | -3.20    | 7.45    | :weschorerandryso          |
| 27.         | CH3      | +CH3          | +M(2)    | =C2H6       | +M(2)  | 2.120E+16   | -0.97    | 2.59    | !Wang&Frenklach1997        |
| TIOW        | 1.7      | 70E+50 -9     | 9.670    | 26.03       |        |             |          |         |                            |
|             |          | 102100 1      | 1000     | 10700       |        |             |          |         |                            |
| TROE        | 0.5325   | 151.0         | 1038.0   | 4970.0      |        |             |          |         |                            |
| 28.         | CH3      | +CH3          | =C2H4    | +H2         |        | 1.000E+16   | 0.0      | 134.02  | !Warnatz1984               |
| 20          | CUD      | CUD           | -0215    | , U         |        | 4 0000012   | 0 1      | 44 250  | Wangs Franklagh 1007       |
| 29.         | СПЭ      | +CH3          | =CZH5    | +11         |        | 4.9906+12   | 0.1      | 44.330  | : Wallg@FIEllKIaCII1997    |
| 30.         | CH4      | +H            | =CH3     | +H2         |        | 0.660E+09   | 1.62     | 45.360  | !Wang&Frenklach1997        |
| 31          | CH4      | +CH           | =C2H4    | +H          |        | 0 600E+14   | 0 0      | 0 000   | Wang&Frenklach1997         |
|             | G111     | 0.011         | - 02111  |             |        | 0.00001111  | 0.0      | 0.000   |                            |
| 32.         | CH4      | +3CH2         | =CH3     | +CH3        |        | 0.246E+07   | 2.0      | 34.600  | !Wang&Frenklach1997        |
| 33.         | CH4      | +1CH2         | =CH3     | +CH3        |        | 0.160E+14   | 0.0      | -2.380  | !Wang&Frenklach1997        |
| 24          | CIT 4    |               | dotte    |             |        | 0 0000.10   | 0 0      | 1 (7 )7 | Imahama ahi (Dawam1070     |
| 34.         | CH4      | +CH3          | =CZH6    | +H          |        | 8.0008+13   | 0.0      | 167.37  | !labayasni&Bauer1979       |
| 35.         | CH4      | +CH3          | =C2H5    | +H2         |        | 1.000E+13   | 0.0      | 96.24   | !Tabayashi&Bauer1979       |
| *****       | *******  | *******       | *******  | ****        |        |             |          |         | -                          |
|             |          |               |          |             |        |             |          |         |                            |
| * * * *     | 3. C2 RE | EACTIONS      |          |             |        |             |          |         |                            |
| * * * * *   | *******  | *******       | *******  | ****        |        |             |          |         |                            |
|             | ~ ~      |               | ~ ~ ~ ~  |             |        |             | <u> </u> |         |                            |
| 36.         | C2       | +H2           | =C2H     | +H          |        | 4.000E+05   | 2.4      | 4.18    | !Miller&Melius1992         |
| 37.         | C2H      | +M(1)         | =C2      | +H          | +M(1)  | 4.680E+16   | 0.0      | 518.84  | !Colket1986                |
| 20          | COTT     | . TT          | M(2)     | COTTO       | M(2)   | 1 0000.17   | 1 0      | 0 000   | Wangs Examining the 1007   |
| 38.         | CZH      | +H            | +№ (∠)   | =CZHZ       | +№ (∠) | 1.0008+1/   | -1.0     | 0.000   | !wang&Frenklach1997        |
| LOW         | 3.7      | '50E+33 -4    | 1.800    | 7.95        |        |             |          |         |                            |
| TROF        | 0.6464   | 132 0         | 1315 0   | 5566 0      |        |             |          |         |                            |
| 2.001       | 0.0101   |               |          |             |        | 4 0005 5-   | 0 -      | 0 0 0   |                            |
| 39.         | CZH      | +H∠           | =C2H2    | +H          |        | 4.9008+05   | 2.5      | 2.34    | :wang&rrenklach1997        |
| 40.         | C2H      | +1CH2         | =CH      | +C2H2       |        | 1.810E+13   | 0.0      | 0.0     | !Tsanq1986                 |
| <u>4</u> 1  | C2H      | +3CII)        | -CH      | +C2D2       |        | 1 810 - 12  | 0 0      | 0 0     | Zhang&Makinnon1005         |
| 41.         | СZП      | + SCHZ        | =CH      | +CZHZ       |        | 1.0106+13   | 0.0      | 0.0     | : Zhangamekinnoni 995      |
| 42.         | C2H      | +CH3          | =C3H3    | +H          |        | 2.410E+13   | 0.0      | 0.0     | !'I'sang1986               |
| 43          | C2H      | +CH3          | =PC3H4   |             |        | 8.070E+49   | -11.305  | 183 27  | !Richter&Howard2002        |
|             | <br>COT  | . 0114        | 2 00110  | . 0112      |        | 1 0100.10   |          |         |                            |
| 44.         | CZH      | +CH4          | =CZHZ    | +CH3        |        | 1.0105+12   | 0.0      | ∠.09    | : 1 Paulatago              |
| 45.         | C2H      | +C2H          | =C4H2    |             |        | 1.800E+13   | 0.0      | 0.0     | !Fournet1999               |
| 16          | COL      | +024          | -0242    | + C2        |        | 1 8100.10   | 0 0      | 0 0     | LTgang1986                 |
| <b>TO</b> . | CZ11     | гс <u>а</u> п | -0202    | TC2         | / - `  | I.0IUB+IZ   | 0.0      | 0.0     | . 15ally 1900              |
| 47.         | C2H2     | +H            | +M(2)    | =C2H3       | +M(2)  | 0.560E+13   | 0.0      | 10.04   | !Wang&Frenklach1997        |
| TOM         | 2 0      | 800E+40 -     | 7.270    | 30.21       |        |             |          |         | -                          |
|             | 0 7      |               | 1200 -   | 4165 6      |        |             |          |         |                            |
| TKOF        | 0.7507   | 98.5          | 1302.0   | 4167.0      |        |             |          |         |                            |
| 48.         | C2H2     | +H2           | =C2H4    |             |        | 1.410E+41   | -9.06    | 213.945 | !Richter&Howard2002        |
| 4.0         | COLTO    | L CU          |          | , U         |        | 2 00011.12  | 0 0      | 0 0     | Warnat #1002               |
| 49.         | CZHZ     | +Сп           | =∪3H2    | +n          |        | 3.UUUE+13   | 0.0      | 0.0     | :wallacz1983               |
| 50.         | C2H2     | +3CH2         | =C3H3    | +H          |        | 1.200E+13   | 0.0      | 27.70   | !Böhland1986               |
| 51          | CORO     | +1000         | -0202    | - U         |        | 2 0001012   | 0 0      | 0 0     | Wangs Franklagh 1007       |
| <u>эт.</u>  | C2112    | TICHZ         | -сэпз    | +n          |        | ∠.∪∪∪⊡+⊥3   | 0.0      | 0.0     | . wangerrenktach199/       |
| 52.         | C2H2     | +1CH2         | =3CH2    | +C2H2       |        | 4.000E+13   | 0.0      | 0.0     | !Miller&Melius1992         |
| 53          | C2H2     | +1CH2         | =СҮСЗН4  |             |        | 1.660E+38   | -8.65    | 25.48   | !Richter&Howard2002        |
|             | 22.12    | 1 0110        | 2203114  |             |        | 1.00001.00  | 0.00     | 23.10   |                            |
| 54.         | C2H2     | +1CH2         | =AC3H4   |             |        | 7.460E+39   | -8.78    | 26.57   | !Kichter&Howard2002        |
| 55.         | C2H2     | +1CH2         | =PC3H4   |             |        | 2.620E+40   | -8.86    | 26.82   | !Richter&Howard2002        |
| 56          | CORO     | + CII 3       | -702114  | - U         |        | 2 8705-21   | _2 74    | 102 77  | IDean Weatmorel and 1007   |
| 50.         | CZNZ     | +СПЭ          | =AC3H4   | +1          |        | 2.0/UE+21   | -2./4    | 103.11  | :Deallaweschoreralid198/   |
| 57.         | C2H2     | +CH3          | =PC3H4   | +H          |        | 1.000E+13   | -0.53    | 56.07   | !Dean&Westmoreland1987     |
| 58          | C2H2     | +CH3          | =АСЗНЕ   |             |        | 1.400 -     | 2.21     | 69 04   | Diau1994                   |
| 50.         | 00110    | . CIIJ        | -ACOILO  |             |        | 1.1000704   | 2.2×     | 02.04   |                            |
| 59.         | C2H2     | +C2H          | =C4H2    | +H          |        | 9.6U0E+13   | 0.0      | 0.0     | wang&Frenklach1997         |

| 60.                                         | C2H2                                                 | +C2H                                                   | =N-C4H3                                                                   |                                          |        | 1.300E+30                                        | -6.12                    | 10.5                      | !Wang&Frenklach1997                                                                   |
|---------------------------------------------|------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------|--------|--------------------------------------------------|--------------------------|---------------------------|---------------------------------------------------------------------------------------|
| 61.                                         | C2H2                                                 | +C2H                                                   | =I-C4H3                                                                   |                                          |        | 1.600E+34                                        | -7.28                    | 20.21                     | !Wang&Frenklach1997                                                                   |
| 62.                                         | C2H2                                                 | +C2H2                                                  | =C4H2                                                                     | +H2                                      |        | 1.500E+13                                        | 0.0                      | 178.67                    | !Fournet1999                                                                          |
| 63.                                         | C2H2                                                 | +C2H2                                                  | =C4H4                                                                     |                                          | ( - )  | 5.500E+12                                        | 0.0                      | 154.65                    | !Duran1989                                                                            |
| 64.                                         | C2H3                                                 | +H                                                     | +M(2)                                                                     | =C2H4                                    | +M(2)  | 0.608E+13                                        | 0.27                     | 1.170                     | !Wang&Frenklach1997                                                                   |
| LOW                                         | 1.4                                                  | 008+30 -3                                              | .860                                                                      | 13.89                                    |        |                                                  |                          |                           |                                                                                       |
| TROE                                        | 0.782                                                | 207.5                                                  | 2663.0                                                                    | 6095.0                                   |        | 2 0000.12                                        | 0 0                      | 0 000                     | Warres Breaklasch 1007                                                                |
| 65.<br>66                                   | C2H3                                                 | +n<br>. Cu                                             | =C2H2                                                                     | + 112                                    |        | 5.000E+13                                        | 0.0                      | 0.000                     | Miller Meliug 1997                                                                    |
| 67                                          | C2H3                                                 | +01                                                    | =3CH2                                                                     | +C2H2                                    |        | 1 810E+13                                        | 0.0                      | 0.0                       | ITcanc1986                                                                            |
| 68                                          | C2H3                                                 | +3CH2                                                  | =C2H2                                                                     | +CH3                                     |        | 1 810E+13                                        | 0.0                      | 0.0                       | Zhang&Mckinnon1995                                                                    |
| 69.                                         | C2H3                                                 | +3CH2                                                  | =AC3H4                                                                    | +H                                       |        | 3.000E+13                                        | 0.0                      | 0.0                       | Miller&Melius1992                                                                     |
| 70.                                         | C2H3                                                 | +CH3                                                   | =AC3H5                                                                    | +H                                       |        | 7.200E+13                                        | 0.0                      | 0.0                       | !Fahr1999                                                                             |
| 71.                                         | C2H3                                                 | +CH3                                                   | =C2H2                                                                     | +CH4                                     |        | 3.920E+11                                        | 0.0                      | 0.0                       | !Tsang1986                                                                            |
| 72.                                         | C2H3                                                 | +CH3                                                   | =C3H6                                                                     |                                          |        | 2.500E+13                                        | 0.0                      | 0.0                       | !Tsanq1986                                                                            |
| 73.                                         | C2H3                                                 | +C2H                                                   | =C2H2                                                                     | +C2H2                                    |        | 3.000E+13                                        | 0.0                      | 0.0                       | !Miller&Melius1992                                                                    |
| 74.                                         | C2H3                                                 | +C2H                                                   | =C4H4                                                                     |                                          |        | 2.120E+60-                                       | -13.45                   | 115.27                    | !Richter&Howard2002                                                                   |
| 75.                                         | C2H3                                                 | +C2H                                                   | =N-C4H3                                                                   | +H                                       |        | 1.800E+13                                        | 0.0                      | 0.0                       | !Tsang1986                                                                            |
| 76.                                         | C2H3                                                 | +C2H2                                                  | =C4H4                                                                     | +H                                       |        | 4.600E+16                                        | -1.25                    | 35.15                     | !Wang&Frenklach1994                                                                   |
| 77.                                         | C2H3                                                 | +C2H2                                                  | =N-C4H5                                                                   |                                          |        | 2.400E+31                                        | -6.95                    | 23.43                     | !Wang&Frenklach1994                                                                   |
| 78.                                         | C2H3                                                 | +C2H2                                                  | =I-C4H5                                                                   |                                          |        | 1.000E+37                                        | -8.77                    | 41.01                     | !Wang&Frenklach1994                                                                   |
| 79.                                         | C2H3                                                 | +C2H3                                                  | =C2H2                                                                     | +C2H4                                    |        | 1.440E+13                                        | 0.0                      | 0.0                       | !Fahr1991                                                                             |
| 80.                                         | C2H3                                                 | +C2H3                                                  | =C4H6                                                                     |                                          |        | 1.500E+52-                                       | -11.97                   | 67.37                     | !Wang&Frenklach1997                                                                   |
| 81.                                         | C2H3                                                 | +C2H3                                                  | =I-C4H5                                                                   | +H                                       |        | 7.200E+28                                        | -4.49                    | 59.83                     | !Wang&Frenklach1997                                                                   |
| 82.                                         | C2H3                                                 | +C2H3                                                  | =N-C4H5                                                                   | +H                                       | ( - )  | 4.600E+24                                        | -3.38                    | 61.51                     | !Wang&Frenklach1997                                                                   |
| 83.                                         | C2H4                                                 | +M(2)                                                  | =C2H2                                                                     | +H2                                      | +M(2)  | 0.800E+13                                        | 0.44                     | 371.43                    | !Wang&Frenklach1997                                                                   |
| LOW                                         | 7.0                                                  | 00E+50 -9                                              | 9.310 4                                                                   | 17.83                                    |        |                                                  |                          |                           |                                                                                       |
| TROE                                        | 0./345                                               | 180.0                                                  | 1035.0                                                                    | 5417.0<br>COUE                           | M(2)   | 1 0000.10                                        | 0 4 5 4                  | 7 ()                      | Wang Franklagh 1007                                                                   |
| 04.<br>TOW                                  | 1 2                                                  | +n<br>00E-40 5                                         | +M(2)                                                                     | =C2H5                                    | +M (2) | 1.0006+12                                        | 0.454                    | 7.62                      | :wallg&Frenkrachr99/                                                                  |
| TROF                                        | 0 0752                                               | 210 0                                                  | 007 0                                                                     | 29.10<br>1271 0                          |        |                                                  |                          |                           |                                                                                       |
| 85                                          | C2H4                                                 | <br>_H                                                 | -C2H3                                                                     | -1374.0<br>-142                          |        | 1 3308+06                                        | 2 53                     | 51 21                     | Wang&Frenklach1997                                                                    |
| 86                                          | C2H4                                                 | +CH                                                    | = AC3H4                                                                   | +H                                       |        | 1.750E+15                                        | -0.38                    | 0 42                      | Richter&Howard2002                                                                    |
| 87.                                         | C2H4                                                 | +CH                                                    | =AC3H5                                                                    | 111                                      |        | 1.670E+34                                        | -7.60                    | 15.44                     | !Richter&Howard2002                                                                   |
| 88.                                         | C2H4                                                 | +1CH2                                                  | =C3H6                                                                     |                                          |        | 9.030E+13                                        | 0.0                      | 0.0                       | !Zhang&Mckinnon1995                                                                   |
| 89.                                         | C2H4                                                 | +3CH2                                                  | =AC3H5                                                                    | +H                                       |        | 3.190E+12                                        | 0.0                      | 22.11                     | !Zhang&Mckinnon1995                                                                   |
| 90.                                         | C2H4                                                 | +CH3                                                   | =C2H3                                                                     | +CH4                                     |        | 0.227E+06                                        | 2.0                      | 38.49                     | !Wang&Frenklach1997                                                                   |
| 91.                                         | C2H4                                                 | +C2H                                                   | =C4H4                                                                     | +H                                       |        | 1.200E+13                                        | 0.0                      | 0.0                       | !Tsang1986                                                                            |
| 92.                                         | C2H4                                                 | +C2H3                                                  | =C4H6                                                                     | +H                                       |        | 7.400E+14                                        | -0.66                    | 35.23                     | !Wang&Frenklach1997                                                                   |
| 93.                                         | C2H4                                                 | +C2H3                                                  | =I-C4H7                                                                   |                                          |        | 2.110E+22                                        | -4.70                    | 4.980                     | !Richter&Howard2002                                                                   |
| 94.                                         | C2H4                                                 | +C2H4                                                  | =C2H3                                                                     | +C2H5                                    |        | 4.820E+14                                        | 0.0                      | 299.33                    | !Tsang1986                                                                            |
| 95.                                         | C2H5                                                 | +H                                                     | +M(2)                                                                     | =C2H6                                    | +M(2)  | 0.521E+18                                        | -0.99                    | 6.610                     | !Wang&Frenklach1997                                                                   |
| LOW                                         | 1.9                                                  | 90E+41 -7                                              | .08                                                                       | 27.97                                    |        |                                                  |                          |                           |                                                                                       |
| TROE                                        | 0.8422                                               | 125.0                                                  | 2219.0                                                                    | 6882.0                                   |        |                                                  |                          |                           |                                                                                       |
| 96.                                         | C2H5                                                 | +H                                                     | =C2H4                                                                     | +H2                                      |        | 0.200E+13                                        | 0.0                      | 0.00                      | !Wang&Frenklach1997                                                                   |
| 97.                                         | C2H5                                                 | +1CH2                                                  | =C2H4                                                                     | +CH3                                     |        | 9.030E+12                                        | 0.0                      | 0.0                       | !Zhang&Mckinnon1995                                                                   |
| 98.                                         | C2H5                                                 | +1CH2                                                  | =C3H6                                                                     | +H                                       |        | 9.030E+12                                        | 0.0                      | 0.0                       | !Zhang&Mckinnon1995                                                                   |
| 99.                                         | C2H5                                                 | +3CH2                                                  | =C2H4                                                                     | +CH3                                     |        | 1.810E+13                                        | 0.0                      | 0.0                       | 2nang&Mckinnon1995                                                                    |
| 100.                                        | CZH5                                                 | +CH3                                                   | =C2H4                                                                     | +CH4                                     |        | 1.950E+13                                        | -0.5                     | 0.0                       | Paulah1004                                                                            |
| 101.                                        | C2H5                                                 | +C13                                                   | -C3H3                                                                     | + CH3                                    |        | 1 810E+13                                        | 0.0                      | 0.0                       | ITcang1986                                                                            |
| 102.                                        | C2H5                                                 | +C2H                                                   | -C2H4                                                                     | +C2H2                                    |        | 1 810E+13                                        | 0.0                      | 0.0                       | ITsang1986                                                                            |
| 104                                         | C2H5                                                 | +C2H3                                                  | =C2H6                                                                     | +C2H2                                    |        | 4 820E+11                                        | 0.0                      | 0.0                       | Zhang&Mckinnon1995                                                                    |
| 105.                                        | C2H5                                                 | +C2H3                                                  | =C4H8                                                                     | 102112                                   |        | 1.500E+13                                        | 0.0                      | 0.0                       | ITsang1986                                                                            |
| 106.                                        | C2H5                                                 | +C2H5                                                  | =C2H6                                                                     | +C2H4                                    |        | 1.390E+12                                        | 0.0                      | 0.0                       | !Zhang&Mckinnon1995                                                                   |
| 107.                                        | С2Н6                                                 | +H                                                     | =C2H5                                                                     | +H2                                      |        | 1.150E+08                                        | 1.9                      | 31.51                     | !Wang&Frenklach1997                                                                   |
| 108.                                        | C2H6                                                 | +1CH2                                                  | =C2H5                                                                     | +CH3                                     |        | 0.400E+14                                        | 0.0                      | -2.30                     | !Wang&Frenklach1997                                                                   |
| 109.                                        | C2H6                                                 | +CH3                                                   | =C2H5                                                                     | +CH4                                     |        | 0.614E+07                                        | 1.74                     | 43.72                     | !Wang&Frenklach1997                                                                   |
| 110.                                        | C2H6                                                 | +C2H                                                   | =C2H5                                                                     | +C2H2                                    |        | 3.600E+12                                        | 0.0                      | 0.0                       | !Tsang1986                                                                            |
| 111.                                        | C2H6                                                 | +C2H3                                                  | =C2H5                                                                     | +C2H4                                    |        | 1.500E+13                                        | 0.0                      | 41.8                      | !Hidaka1985                                                                           |
| * * * * *                                   | *******                                              | *******                                                | *****                                                                     | * * * *                                  |        |                                                  |                          |                           |                                                                                       |
| * * * *                                     | 4. C3 RE                                             | ACTIONS                                                |                                                                           |                                          |        |                                                  |                          |                           |                                                                                       |
| *****                                       | ******                                               | *******                                                | ******                                                                    | ****                                     |        |                                                  |                          |                           |                                                                                       |
| 112.                                        | C3H2                                                 | +CH                                                    | =C4H2                                                                     | +H                                       |        | 5.000E+13                                        | 0.0                      | 0.0                       | !Wang&Frenklach1997                                                                   |
| 113.                                        | C3H2                                                 | +3CH2                                                  | =N-C4H3                                                                   | +H                                       |        | 5.000E+13                                        | 0.0                      | 0.0                       | wang&Frenklach1997                                                                    |
| ⊥⊥4.<br>11⊑                                 | C3HZ<br>C2H2                                         | +CH3                                                   | =C4H4                                                                     | +H                                       |        | 5.UUUE+12                                        | 0.0                      | 0.0                       | :wang&rrenkiach1997                                                                   |
| 116                                         | СЗИЗ                                                 | +C3H2                                                  | =C4n2<br>-C6U2                                                            | +CZEZ<br>+H2                             |        | 2.000E+13<br>2.000E+13                           | 0.0                      | 355 66                    | Kern1991                                                                              |
| 117                                         | C3H3                                                 | =C3H5                                                  | -CONZ<br>+H                                                               | T112                                     |        | 5 200₽±13                                        | 0.0                      | 328 24                    | IScherer2000                                                                          |
| 118                                         | СЗНЗ                                                 | -00112<br>+H                                           | +M(2)                                                                     | =АСЗН4                                   | +M(2)  | 3.000F±13                                        | 0.0                      | 0 0                       | !Wang&Frenklach1997                                                                   |
| LOW                                         | 1 4                                                  | 00E+31 -5                                              | 5.0 -                                                                     | 25.11                                    |        | 2.0000713                                        | 0.0                      | 5.0                       | augur reinstacht 997                                                                  |
| TROE                                        | 0.500                                                | 2000.0                                                 | 10.0 1                                                                    | 0000.0                                   |        |                                                  |                          |                           |                                                                                       |
| 110                                         |                                                      |                                                        | V()                                                                       | -DC3H4                                   | +M(2)  | 3.000E+13                                        | 0.0                      | 0.0                       | !Wang&Frenklach1997                                                                   |
| <i>.</i>                                    | СЗНЗ                                                 | +π                                                     | +№ (∠)                                                                    | -rcon+                                   |        |                                                  | -                        |                           |                                                                                       |
| LOW                                         | C3H3<br>1.4                                          | +п<br>00E+31 -5                                        | +M(2)<br>5.0 -                                                            | 25.11                                    |        |                                                  |                          |                           | 2                                                                                     |
| LOW<br>TROE                                 | C3H3<br>1.4<br>0.500                                 | +H<br>00E+31 -5<br>2000.0                              | +M(2)<br>5.0 -<br>10.0 1                                                  | 25.11<br>0000.0                          |        |                                                  |                          |                           | 2                                                                                     |
| LOW<br>TROE<br>120.                         | C3H3<br>1.4<br>0.500<br>C3H3                         | +H<br>00E+31 -5<br>2000.0<br>+H                        | +M(2)<br>5.0 -<br>10.0 1<br>=C3H2                                         | 25.11<br>0000.0<br>+H2                   |        | 5.000E+13                                        | 0.0                      | 4.18                      | Miller&Melius1992                                                                     |
| LOW<br>TROE<br>120.<br>121.                 | C3H3<br>1.4<br>0.500<br>C3H3<br>C3H3                 | +H<br>00E+31 -5<br>2000.0<br>+H<br>+CH                 | +M(2)<br>5.0 -<br>10.0 1<br>=C3H2<br>=N-C4H3                              | 25.11<br>0000.0<br>+H2<br>+H             |        | 5.000E+13<br>7.000E+13                           | 0.0                      | 4.18<br>0.0               | Miller&Melius1992!<br>Miller&Melius1992                                               |
| LOW<br>TROE<br>120.<br>121.<br>122.         | C3H3<br>1.4<br>0.500<br>C3H3<br>C3H3<br>C3H3         | +H<br>00E+31 -5<br>2000.0<br>+H<br>+CH<br>+CH          | +M(2)<br>5.0 -<br>10.0 1<br>=C3H2<br>=N-C4H3<br>=I-C4H3                   | 25.11<br>0000.0<br>+H2<br>+H<br>+H       |        | 5.000E+13<br>7.000E+13<br>7.000E+13              | 0.0<br>0.0<br>0.0        | 4.18<br>0.0<br>0.0        | Miller&Melius1992<br>Miller&Melius1992<br>Miller&Melius1992                           |
| LOW<br>TROE<br>120.<br>121.<br>122.<br>123. | C3H3<br>1.4<br>0.500<br>C3H3<br>C3H3<br>C3H3<br>C3H3 | +H<br>00E+31 -5<br>2000.0<br>+H<br>+CH<br>+CH<br>+3CH2 | +M(2)<br>5.0 -<br>10.0 1<br>=C3H2<br>=N-C4H3<br>=I-C4H3<br>=C4H4<br>=C4H4 | 25.11<br>0000.0<br>+H2<br>+H<br>+H<br>+H |        | 5.000E+13<br>7.000E+13<br>7.000E+13<br>2.000E+13 | 0.0<br>0.0<br>0.0<br>0.0 | 4.18<br>0.0<br>0.0<br>0.0 | !Miller&Melius1992<br>!Miller&Melius1992<br>!Miller&Melius1992<br>!Wang&Frenklach1997 |

| LOW         | 2.             | 600E+58-11                | L.94             | 40.88          |               |                        |            |        |                     |
|-------------|----------------|---------------------------|------------------|----------------|---------------|------------------------|------------|--------|---------------------|
| TROE        | 0.175          | 1340.0 6                  | 50000.0          | 9769.0         |               |                        |            |        |                     |
| 125.        | C3H3           | +C2H3                     | =C5H5            | +H             |               | 9.630E+40              | -7.8       | 120.59 | !Marinov1996        |
| 126.        | C3H3           | +C3H3                     | =C6H5            | +H             |               | 3.000E+12              | 0.0        | 0.0    | !Marinov1996        |
| 127.        | AC3H4          | =PC3H4                    | aa               |                |               | 2.500E+12              | 0.0        | 246.87 | !Hidaka1989         |
| 128.        | AC3H4          | +H                        | =C3H3            | +H2            |               | 1.150E+08              | 1.9        | 31.51  | !Wang&Frenklach1997 |
| 129.        | AC3H4          | +CH3                      | =C3H3            | +CH4           |               | 1.000E+12              | 0.0        | 33.4/  | HIDAKA1992          |
| 131         | АСЗП4<br>АСЗЦИ | +C2H3                     | =C2H2            | +C2H2          |               | 1.000E+13              | 0.0        | 41 84  | Wallg&FlelkIaChi997 |
| 132         | AC3H4          | +AC3H4                    | =AC3H5           | +C3H3          |               | 5 000E+14              | 0.0        | 270 9  | Dagaut 1990         |
| 133.        | PC3H4          | +H                        | =C3H3            | +H2            |               | 1.150E+08              | 1.9        | 31.51  | !Wang&Frenklach1997 |
| 134.        | PC3H4          | +H                        | +M(2)            | =TC3H5         | +M(2)         | 6.500E+12              | 0.0        | 8.37   | !Wagner1972         |
| LOW         | 8.             | 450E+39 -7                | 7.27             | 27.52 !M       | arinov1996    |                        |            |        |                     |
| TROE        | 0.5            | 1E+30                     | 1E+30            |                |               |                        |            |        |                     |
| 135.        | PC3H4          | +CH3                      | =C3H3            | +CH4           |               | 1.000E+12              | 0.0        | 33.47  | !Hidaka1992         |
| 136.        | PC3H4          | +C2H                      | =C2H2            | +C3H3          |               | 1.000E+13              | 0.0        | 0.0    | !Wang&Frenklach1997 |
| 137.        | PC3H4          | +C2H3                     | =C3H3            | +C2H4          |               | 2.200E+00              | 3.5        | 19.6   | !Ziegler2005        |
| 138.        | PC3H4          | +C2H5                     | =C3H3            | +C2H6          |               | 2.200E+00              | 3.5        | 27.6   | !Ziegler2005        |
| 139.        | CYC3H4         | =AC3H4                    |                  |                |               | 1.510E+14              | 0.0        | 210.88 | !Karni1988          |
| 140.        | CYC3H4         | =PC3H4                    |                  |                |               | 7.080E+13              | 0.0        | 182.85 | !Karni1988          |
| 141.        | AC3H4          | +H                        | +M(2)            | =AC3H5         | +M(2)         | 1.200E+11              | 0.69       | 12.58  | !Tsang1991          |
| LOW         | 5.             | .560E+33 -5               | 5.0              | 18.61 !M       | arınov1996    |                        |            |        |                     |
| TROE        | 0.5            | 1E+30                     | 1E+30            | maatte         |               | 0 4000 10              | 0 0        | 0 3 7  |                     |
| 142.<br>TOW | AC3H4          | +H<br>110E-24             | +M(2)            | =TC3H5         | +M(2)         | 8.4908+12              | 0.0        | 8.37   | !wagner1972         |
| TROR        | 05             | 1E+34 -5                  | 18+30            | 10.01 !M       | ar 1110v 1996 |                        |            |        |                     |
| 143         | 0.5<br>AC3H5   | +H                        | =AC3H4           | +H2            |               | 1 000E+13              | 0 0        | 0 0    | Westbrook&Pitz1984  |
| 144         | AC3H5          | +1CH2                     | =C4H6            | +H             |               | 3.010E+13              | 0.0        | 0.0    | ITsang1991          |
| 145.        | AC3H5          | +CH3                      | =AC3H4           | +CH4           |               | 3.010E+12              | -0.32      | 0.55   | !Tsang1991          |
| 146.        | AC3H5          | +C2H                      | =C3H3            | +C2H3          |               | 2.000E+01              | 0.0        | 0.0    | !Tsang1991          |
| 147.        | AC3H5          | +C2H                      | =AC3H4           | +C2H2          |               | 1.500E-01              | 0.0        | 0.0    | !Tsang1991          |
| 148.        | AC3H5          | +C2H                      | =C5H6            |                |               | 4.820E+13              | 0.0        | 0.0    | !Tsang1991          |
| 149.        | AC3H5          | +C2H2                     | =L-C5H7          |                |               | 3.190E+10              | 0.0        | 29.10  | !Tsang1991          |
| 150.        | AC3H5          | +C2H3                     | =AC3H4           | +C2H4          |               | 2.410E+12              | 0.0        | 0.0    | !Tsang1991          |
| 151.        | AC3H5          | +C2H3                     | =C3H6            | +C2H2          |               | 4.820E+12              | 0.0        | 0.0    | !Tsang1991          |
| 152.        | AC3H5          | +C2H3                     | =C5H6            | +H             | +H            | 1.590E+65-             | -14.00     | 256.34 | !Marinov1996        |
| 153.        | AC3H5          | +C2H4                     | =C5H8            | +H             |               | 6.030E+09              | 0.0        | 48.06  | !Tsang1991          |
| 154.        | AC3H5          | +C2H5                     | =AC3H4           | +C2H6          |               | 9.640E+11              | 0.0        | -0.55  | !Tsang1991          |
| 155.        | AC3H5          | +C2H5                     | =C3H6            | +C2H4          |               | 2.590E+12              | 0.0        | -0.55  | !'I'sang1991        |
| 156.        | AC3H5          | +AC3H5                    | =AC3H4           | +C3H6          |               | 8.430E+10              | 0.0        | -1.10  | Pisang1991          |
| 157.        | AC3H5          | +C3H3                     | =C6H6            | +H             | +H            | 5.600E+20              | -2.54      | 146 2  | Legier2005          |
| 150.        | C3U5           | =PC3H4                    | +1               |                |               | 1.400E+13              | 0.0        | 154 7  | IWeiggman1989       |
| 160         | SC3H5          | -AC3113<br>+H             | =C3H6            |                |               | 1 000E+14              | 0.0        | 134.7  | Allara1980          |
| 161.        | SC3H5          | +CH3                      | =AC3H4           | +CH4           |               | 1.000E+11              | 0.0        | 0.0    | Ziegler2005         |
| 162.        | SC3H5          | +C2H3                     | =AC3H4           | +C2H4          |               | 1.000E+11              | 0.0        | 0.0    | !Ziegler2005        |
| 163.        | SC3H5          | +C2H5                     | =AC3H4           | +C2H6          |               | 1.000E+11              | 0.0        | 0.0    | !Zieqler2005        |
| 164.        | SC3H5          | =C2H2                     | +CH3             |                |               | 1.300E+13              | 0.0        | 139.75 | !Dean1985           |
| 165.        | SC3H5          | +H                        | =PC3H4           | +H2            |               | 2.000E+13              | 0.0        | 0.0    | !Marinov1996        |
| 166.        | SC3H5          | +H                        | =AC3H5           | +H             |               | 1.000E+14              | 0.0        | 0.0    | !Marinov1996        |
| 167.        | TC3H5          | +H                        | =PC3H4           | +H2            |               | 4.000E+13              | 0.0        | 0.0    | !Marinov1996        |
| 168.        | TC3H5          | +H                        | =AC3H5           | +H             |               | 1.000E+14              | 0.0        | 0.0    | !Marinov1996        |
| 169.        | AC3H5          | +H                        | =C3H6            |                |               | 2.000E+14              | 0.0        | 0.0    | !Tsang1991          |
| 170.        | TC3H5          | +H                        | =C3H6            |                |               | 1.000E+14              | 0.0        | 0.0    | !Allara1980         |
| 170         | TC3H5          | +H                        | =AC3H4           | +HZ            |               | 3.300E+12              | 0.0        | 0.0    | Dagaut1991          |
| 173.        | тсзиб          | +C13                      | =AC3H4           | +C244          |               | 1.000E+11<br>1.000E+12 | 0.0        | 0.0    | LeungeLindstedt1995 |
| 174         | тсзн5          | +C2H5                     | =AC3H4           | +C2H6          |               | 1 000E+12              | 0.0        | 0.0    | Leung&Lindstedt1995 |
| 175.        | СЗН6           | =C2H2                     | +CH4             | 102110         |               | 1.800E+12              | 0.0        | 292.7  | Hidaka1992          |
| 176.        | C3H6           | =PC3H4                    | +H2              |                |               | 2.000E+13              | 0.0        | 334.74 | !Hidaka1992         |
| 177.        | C3H6           | +H                        | +M(2)            | =I-C3H7        | +M(2)         | 5.700E+09              | 1.16       | 3.66   | !Seakins1993        |
| LOW         | 1.             | 640E+54-11                | L.1              | 39.18          |               |                        |            |        |                     |
| TROE        | 1.000          | 1E-15                     | 260.0            | 3000.0         |               |                        |            |        |                     |
| 178.        | C3H6           | +H                        | =CH3             | +C2H4          |               | 3.400E+13              | 0.0        | 14.64  | !Hidaka1992         |
| 179.        | C3H6           | +H                        | =AC3H5           | +H2            |               | 6.000E+12              | 0.0        | 6.28   | !Rao&Skinner1989    |
| 180.        | C3H6           | +H                        | =TC3H5           | +H2            |               | 1.300E+15              | 0.0        | 95.40  | !Hidaka1992         |
| 181.        | C3H6           | +H                        | =SC3H5           | +H2            |               | 2.500E+15              | 0.0        | 95.40  | !Hidaka1992         |
| 182.        | C3H6           | +1CH2                     | =AC3H5           | +CH3           |               | 7.230E+11              | 0.0        | 25.91  | !'I'sang1991        |
| 183.        | C3H6           | +CH3                      | =AC3H5           | +CH4           |               | 2.210E+00              | 3.5        | 23.75  | !Tsang1991          |
| ⊥84.<br>10⊑ | C3H6           | +CH3                      | =1C3H5           | +CH4           |               | 1.1UUE+11              | 0.0        | 46.44  | Inidaka1992         |
| 105.<br>106 | СЗНО           | +CH3<br>+C2 <sup>11</sup> | =5C3H5           | +CH4<br>+C2H2  |               | ∠.100E+11<br>1 210E-12 | 0.0        | 40.44  | ITeand1001          |
| 187         | СЗНО           | +C2H3                     | =FC3H4<br>=SC3H2 | +C2H3<br>+C2H4 |               | 1 300F±00              | 0.0<br>3 5 | 45 6   | ITsang1991          |
| 188         | C3H6           | +C2H3                     | =AC3H5           | +C2H4          |               | 2.200E+00              | 3.5        | 19.6   | !Tsang1991          |
| 189.        | C3H6           | +C2H3                     | =TC3H5           | +C2H4          |               | 0.800E+00              | 3.5        | 40.5   | !Tsang1991          |
| 190.        | СЗН6           | +C2H3                     | =C4H6            | +CH3           |               | 7.230E+11              | 0.0        | 20.96  | !Tsanq1991          |
| 191.        | СЗН6           | +C2H5                     | =AC3H5           | +C2H6          |               | 2.230E+00              | 3.5        | 27.77  | !Tsang1991          |
| 192.        | C3H6           | +C3H6                     | =AC3H5           | +I-C3H7        |               | 2.530E+14              | 0.0        | 231.0  | !Tsang1991          |
| 193.        | C3H6           | +C3H6                     | =AC3H5           | +N-C3H7        |               | 4.880E+13              | 0.0        | 219.0  | !Tsang1991          |
| 194.        | C3H6           | +C3H6                     | =1-C6H12         | 2              |               | 1.270E+02              | 2.5        | 154.0  | !Tsang1991          |

| 195.                                                                                                                                                                                                                                                                                                     | C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =4mlpent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.686E+03                                                                                                                                                                                                                                                                                                                                                  | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 150.0                                                                                                                                                                                                                                                               | !Tsang1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 196.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 2.000E+10                                                                                                                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161.3                                                                                                                                                                                                                                                               | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 197.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.260E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 161.0                                                                                                                                                                                                                                                               | !Dean1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 198.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.210E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 126.0                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 199.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1.000E+14                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 200.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 1.810E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 201.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.000E+14                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Allara1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 202.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +3CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.810E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang19880                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 203.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +3CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1.810E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 204.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1.140E+13                                                                                                                                                                                                                                                                                                                                                  | -0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 205.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 6.030E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 206.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.210E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 207.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.210E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsanq1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 208.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.210E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 209.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.150E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 210.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.450E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsanq1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 211.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 2.530E-01                                                                                                                                                                                                                                                                                                                                                  | 3.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.83                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 212.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =AC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 7.230E+11                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -0.55                                                                                                                                                                                                                                                               | !Tsang1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 213.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 2.230E+00                                                                                                                                                                                                                                                                                                                                                  | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.77                                                                                                                                                                                                                                                               | !Tsang1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 214.                                                                                                                                                                                                                                                                                                     | N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.690E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsanq1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 215.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.000E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 145.0                                                                                                                                                                                                                                                               | !Konar1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 216.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 3.610E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsanq1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 217.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 2.000E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Warnatz1984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 218.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 5.000E+13                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 219                                                                                                                                                                                                                                                                                                      | Т-СЗН7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 9.410E+10                                                                                                                                                                                                                                                                                                                                                  | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                 | ITsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 220                                                                                                                                                                                                                                                                                                      | T-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 3.610E+12                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                 | ITsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 220.                                                                                                                                                                                                                                                                                                     | T-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 2 770E+10                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27 21                                                                                                                                                                                                                                                               | ITsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 221.                                                                                                                                                                                                                                                                                                     | I -C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1 520E+14                                                                                                                                                                                                                                                                                                                                                  | -0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0 0                                                                                                                                                                                                                                                                 | ITsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 222.                                                                                                                                                                                                                                                                                                     | T-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.520E+14                                                                                                                                                                                                                                                                                                                                                  | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | ITcapc1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 225.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +C2115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -03110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + C2112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 2 2000-12                                                                                                                                                                                                                                                                                                                                                  | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | LTappa1088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 224.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 2.300E+13                                                                                                                                                                                                                                                                                                                                                  | -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | I Saligi 966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 225.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 1.040E+13                                                                                                                                                                                                                                                                                                                                                  | -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26.47                                                                                                                                                                                                                                                               | I Saligi 966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 220.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C2H0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 6.440E-UI                                                                                                                                                                                                                                                                                                                                                  | 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.47                                                                                                                                                                                                                                                               | ISang1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 227.                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +ACSH5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =C3H0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +AC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 4.560E+12                                                                                                                                                                                                                                                                                                                                                  | -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -0.55                                                                                                                                                                                                                                                               | ISang1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 228.                                                                                                                                                                                                                                                                                                     | 1-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 6.620E-02                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 33.77                                                                                                                                                                                                                                                               | Isang1991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 229.                                                                                                                                                                                                                                                                                                     | 1-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 5.130E+13                                                                                                                                                                                                                                                                                                                                                  | -0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | Isang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 230.                                                                                                                                                                                                                                                                                                     | I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +1-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                         | 2.110E+14                                                                                                                                                                                                                                                                                                                                                  | -0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 231.                                                                                                                                                                                                                                                                                                     | C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 1.330E+06                                                                                                                                                                                                                                                                                                                                                  | 2.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28.27                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 232.                                                                                                                                                                                                                                                                                                     | СЗН8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =1-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | 1.300E+06                                                                                                                                                                                                                                                                                                                                                  | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18.71                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 233.                                                                                                                                                                                                                                                                                                     | СЗН8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 9.0408-01                                                                                                                                                                                                                                                                                                                                                  | 3.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.93                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 234.                                                                                                                                                                                                                                                                                                     | C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =1 - C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 1 5108+00                                                                                                                                                                                                                                                                                                                                                  | 3.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22.93                                                                                                                                                                                                                                                               | !'l'sang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 1.5101100                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                     | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 235.                                                                                                                                                                                                                                                                                                     | СЗН8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 8.440E-04                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 235.                                                                                                                                                                                                                                                                                                     | C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8<br>*******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +I-C3H7<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | 8.440E-04                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 235.<br>****<br>****                                                                                                                                                                                                                                                                                     | C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +N-C3H7<br>*********<br>EACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C3H8<br>********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 8.440E-04                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 235.<br>****<br>****                                                                                                                                                                                                                                                                                     | C3H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +N-C3H7<br>*********<br>EACTIONS<br>********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =C3H8<br>*********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +I-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                         | 8.440E-04                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77                                                                                                                                                                                                                                                               | !Tsang1988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 235.<br>****<br>****<br>236.                                                                                                                                                                                                                                                                             | C3H8<br>********<br>5. C4 R1<br>********<br>C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =C3H8<br>*********<br>*********<br>+M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +I-C3H7<br>****<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +M(2)                   | 1.000E+17                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77                                                                                                                                                                                                                                                               | !Tsang1988<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 235.<br>****<br>****<br>236.<br>LOW                                                                                                                                                                                                                                                                      | C3H8<br>5. C4 RI<br>C4H<br>3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33 -4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =C3H8<br>*********<br>+M(2)<br>4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +I-C3H7<br>****<br>=C4H2<br>7.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)                   | 1.000E+17                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>-1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 235.<br>****<br>236.<br>LOW<br>TROE                                                                                                                                                                                                                                                                      | C3H8<br>5. C4 RI<br>C4H<br>0.6464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +I-C3H7<br>+X***<br>=C4H2<br>7.95<br>55566.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +M(2)                   | 1.000E+17                                                                                                                                                                                                                                                                                                                                                  | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                 | !Tsang1988<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 235.<br>****<br>****<br>236.<br>LOW<br>TROE<br>237.                                                                                                                                                                                                                                                      | C3H8<br>5. C4 R1<br>*******<br>C4H<br>3.<br>0.6464<br>C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +I-C3H7<br>+X***<br>=C4H2<br>7.95<br>5566.0<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)                   | <pre>1.010100<br/>8.440E-04<br/>1.000E+17<br/>4.900E+05<br/>000E+05</pre>                                                                                                                                                                                                                                                                                  | 4.00<br>-1.0<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.77<br>0.0<br>2.34                                                                                                                                                                                                                                                | !Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.                                                                                                                                                                                                                                                      | C3H8<br>5. C4 RI<br>C4H<br>3.<br>0.6464<br>C4H<br>C4H<br>C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)                   | 4.900E+05<br>9.600E+13                                                                                                                                                                                                                                                                                                                                     | 4.00<br>-1.0<br>2.5<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.77<br>0.0<br>2.34<br>0.0                                                                                                                                                                                                                                         | !Wang&Frenklach1997<br>!Wang&Frenklach1997<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.                                                                                                                                                                                                                                              | C3H8<br>5. C4 R1<br>C4H<br>0.6464<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M(2)                   | 4.900E+05<br>9.600E+13<br>2.000E+13                                                                                                                                                                                                                                                                                                                        | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0                                                                                                                                                                                                                                  | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.                                                                                                                                                                                                                                      | C3H8<br>5. C4 R1<br>C4H<br>0.6464<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C4H<br>=C6H2<br>=C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +M(2)                   | 4.900E+05<br>9.600E+13<br>2.000E+13<br>9.600E+13                                                                                                                                                                                                                                                                                                           | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                           | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.                                                                                                                                                                                                                              | C3H8<br>5. C4 R1<br>C4H<br>3. C4H<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +M(2)                   | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30                                                                                                                                                                                                                                                                                              | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>0.0<br>-6.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>0.0<br>10.5                                                                                                                                                                                                                   | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.                                                                                                                                                                                                                      | C3H8<br>5. C4 RJ<br>C4H<br>3.<br>0.6464<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C6H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +M(2)                   | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>9.600E+13<br>1.300E+30<br>1.200E+14                                                                                                                                                                                                                                                                    | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>0.0<br>-6.12<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>0.0<br>10.5<br>0.0                                                                                                                                                                                                            | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.                                                                                                                                                                                                              | C3H8<br>5. C4 R1<br>C4H<br>3.<br>0.6464<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H                                                                                                                                                                                                                                                                                   | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +I-C3H7<br>****<br>=C4H2<br>7.95<br>55566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +M(2)                   | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+33<br>1.200E+14<br>1.510E+13                                                                                                                                                                                                                                                                    | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67                                                                                                                                                                                                         | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.                                                                                                                                                                                                      | C3H8<br>5. C4 R1<br>C4H<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +M(2)                   | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51-</pre>                                                                                                                                                                                                                                                      | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-1.245                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39                                                                                                                                                                                               | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>245.                                                                                                                                                                                              | C3H8<br>5. C4 RI<br>C4H<br>3.<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +M(2)<br>+M(2)          | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14</pre>                                                                                                                                                                                                                                            | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-12.45<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63                                                                                                                                                                                     | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Mang&amp;Frenklach1997<br/>!Miller&amp;Melius1992</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>241.<br>242.<br>243.<br>244.<br>245.<br>LOW                                                                                                                                                                       | C3H8<br>5. C4 RJ<br>C4H<br>3.<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>25.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +M(2)<br>+M(2)          | 8.440E-04<br>1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14                                                                                                                                                                                                                            | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-12.45<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63                                                                                                                                                                                     | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Miller&amp;Melius1992</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>241.<br>242.<br>243.<br>244.<br>245.<br>LOW<br>TROE                                                                                                                                                               | C3H8<br>5. C4 RJ<br>C4H<br>3.7<br>0.6464<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>25.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +M(2)<br>+M(2)          | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14</pre>                                                                                                                                                                                                                                            | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-12.45<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63                                                                                                                                                                                     | <pre>!Tsang1988<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Miller&amp;Melius1992</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.                                                                                                                                                               | C3H8<br>5. C4 RI<br>C4H<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>12<br>E+30<br>=I-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>25.53<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +M(2)<br>+M(2)          | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11</pre>                                                                                                                                                                                                                                  | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-12.45<br>0.0<br>0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51                                                                                                                                                                            | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Miller&amp;Melius1992</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.                                                                                                                                                               | C3H8<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>25.53<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)<br>+M(2)          | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20                                                                                                                                                                                                               | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>12.45<br>0.0<br>0.63<br>-1.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39                                                                                                                                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Miller&amp;Melius1992<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>248.                                                                                                                                       | C3H8<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>25.53<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +M(2)<br>+M(2)          | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42</pre>                                                                                                                                                                                                                        | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>12.45<br>0.0<br>0.63<br>-1.85<br>-9.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29                                                                                                                                                          | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Frenklach&amp;Warnatz1987<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Kern1991<br/>!Kern1991<br/>!Wang&amp;Frenklach1997<br/>!Miller&amp;Melius1992<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>242.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>248.<br>249.                                                                                                                                       | C3H8<br>5. C4 RJ<br>6. C4 RJ<br>7. C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +I-C3H7<br>****<br>=C4H2<br>7.95<br>55566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)<br>+M(2)          | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13</pre>                                                                                                                                                                                                    | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-1.2.45<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0                                                                                                                                                   | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 Frenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 </pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>248.<br>249.<br>249.<br>250.                                                                                                                       | C3H8<br>5. C4 RJ<br>64H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H2<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +M(2)<br>+M(2)          | 8.440E-04<br>1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19                                                                                                                                             | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>0.0<br>-12.45<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.77 0.0 2.34 0.0 0.0 10.5 0.0 178.67 213.39 150.63 12.51 12.39 29.29 0.0 55.23                                                                                                                                                                                    | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997</pre>  |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>245.<br>LOW<br>TROE<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>245.<br>244.<br>245.<br>245.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249                                         | C3H8<br>5. C4 RJ<br>6. C4 RJ<br>7. C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3                                            | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+C2H2<br>+H<br>+H2<br>+C2H2<br>+H<br>+H2<br>+H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)<br>+M(2)          | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33</pre>                                                                                                                                                                                | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.77 $0.0$ $2.34$ $0.0$ $0.0$ $10.5$ $0.0$ $178.67$ $213.39$ $150.63$ $12.51$ $12.39$ $29.29$ $0.0$ $55.23$ $57.32$                                                                                                                                                | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997 Kern1991 Wang&amp;Frenklach1997 Wang&amp;Frenk</pre> |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>244.<br>244.<br>244.<br>249.<br>248.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249                                                        | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>6464<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+                               | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C6H5<br>=C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +M(2)<br>+M(2)          | 8.440E-04<br>1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19<br>4.100E+33<br>9.800E+68-                                                                                                                                | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88                                                                                                                       | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997 Kern1991 Wang&amp;Frenklach1997 Wang&amp;Frenk</pre> |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>248.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249.<br>249                                                                                | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H                | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C2H3<br>+                         | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)<br>+M(2)          | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-1<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19<br>4.100E+33<br>9.800E+68-3<br>3.500E+41                                                                                                                              | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24                                                                                                              | ITsang1988<br>IVang&Frenklach1997<br>IWang&Frenklach1997<br>IFrenklach&Warnatz1987<br>IFrenklach&Warnatz1987<br>IWang&Frenklach1997<br>IKern1991<br>IKern1991<br>IWang&Frenklach1997<br>IWiller&Melius1992<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                                       | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N        | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>11<br>E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H<br>+H2<br>+H2<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +M(2)<br>+M(2)          | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19<br>4.100E+33<br>9.800E+68-<br>3.500E+41<br>9.800E+68-                                                                                                                  | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>12.45<br>0.0<br>12.45<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>17.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88                                                                                                    | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997</pre>  |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N- | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+M<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2                | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)<br>+M(2)<br>+M(2) | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19<br>4.100E+33<br>9.800E+68-<br>1.000E+14                                                                                                                                | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>12.45<br>0.0<br>12.45<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>17.58<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13                                                                                          | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 IWang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Kern1991 Kern1991 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IWang&amp;Frenklach19</pre>                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4                 | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+H<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+ | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C4H4<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+33 1.300E+30 1.200E+14 1.510E+13 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 3.500E+41 9.800E+68- 1.000E+14</pre>                                                                                                                                                 | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-1.245<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>-17.58<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13                                                                                          | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Kern1991 Kern1991 Wang&amp;Frenklach1997 W</pre>     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>********<br>5. C4 RJ<br>********<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3          | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+M(2)<br>000E+15<br>1E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C4H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>21<br>E+30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+C4H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+ | +M(2)<br>+M(2)<br>+M(2) | 1.000E+17<br>4.900E+05<br>9.600E+13<br>2.000E+13<br>2.000E+13<br>1.300E+30<br>1.200E+14<br>1.510E+13<br>1.000E+51-<br>1.000E+14<br>9.200E+11<br>1.300E+20<br>1.100E+42<br>1.500E+13<br>1.800E+19<br>4.100E+33<br>9.800E+68-<br>3.500E+41<br>9.800E+68-<br>1.000E+14                                                                                        | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.58<br>-8.63<br>-7.75<br>-7.00<br>-7.58<br>-7.00<br>-7.58<br>-7.00<br>-7.58<br>-7.58<br>-7.00<br>-7.58<br>-7.58<br>-7.00<br>-7.58<br>-7.58<br>-7.00<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.58<br>-7.                                           | 19.77 $0.0$ $2.34$ $0.0$ $0.0$ $10.5$ $0.0$ $178.67$ $213.39$ $150.63$ $12.51$ $12.39$ $29.29$ $0.0$ $55.23$ $57.32$ $110.88$ $96.24$ $110.88$ $230.13$                                                                                                             | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IWang&amp;Frenklach1</pre>                 |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>250.<br>251.<br>252.<br>255.<br>LOW<br>TROE<br>256.                                                                                                | C3H8<br>********<br>5. C4 RJ<br>********<br>C4H<br>3.<br>0.6464<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4  | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+C2H3<br>+H<br>+C4H3<br>+H<br>+C4H3<br>+H<br>+C4H3<br>+H<br>+C4H3<br>+H<br>+C4H3<br>+C4H3<br>+H<br>+C4H3<br>+C4H3<br>+H<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H2<br>+C2H4<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H4<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H4<br>+C2H2<br>+C2H2<br>+C2H4<br>+C2H2<br>+C2H2<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H4<br>+C4H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>2<br>1E+30<br>=C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +I-C3H7<br>****<br>=C4H2<br>7.95<br>55566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+C2H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 3.500E+41 9.800E+68- 1.000E+14 3.700E+22</pre>                                                                                                                                      | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-1.2.45<br>0.0<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>-7.12<br>17.58<br>-8.63<br>-17.58<br>0.0<br>-2.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51                                                                                 | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997</pre>  |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>248.<br>250.<br>251.<br>252.<br>253.<br>255.<br>LOW<br>TROE<br>255.<br>257.                                                 | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>644<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3                     | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>21<br>E+30<br>=C2H2<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+C2H2<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 3.500E+41 9.800E+68- 1.000E+14 3.700E+22 5.300E+46-</pre>                                                                                                                 | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-0.0<br>12.45<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>-1.7.58<br>0.0<br>-2.50<br>10.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79                                                                        | ITsang1988<br>ITsang1988<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IFrenklach&Warnatz1987<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 235.<br>****<br>236.<br>UOW<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>244.<br>245.<br>244.<br>245.<br>244.<br>245.<br>251.<br>255.<br>254.<br>255.<br>LOW<br>TROE<br>246.<br>255.<br>254.<br>255.<br>254.<br>255.<br>255.<br>255.<br>255 | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>4.44<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N         | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H2<br>=C4H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C6H3<br>=C8H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C7<br>=C8H2<br>=C8H2<br>=C7<br>=C8H2<br>=C7<br>=C8H2<br>=C7<br>=C8H2<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C8H2<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7<br>=C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+10<br/>8.440E-04<br/>1.000E+17<br/>4.900E+05<br/>9.600E+13<br/>2.000E+13<br/>1.300E+30<br/>1.200E+14<br/>1.510E+13<br/>1.000E+51-<br/>1.000E+14<br/>9.200E+11<br/>1.300E+20<br/>1.100E+42<br/>1.500E+13<br/>1.800E+19<br/>4.100E+33<br/>9.800E+68-<br/>3.500E+41<br/>9.800E+68-<br/>1.000E+14<br/>3.700E+22<br/>5.300E+46-<br/>3.000E+13</pre> | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>-7.12<br>-7.12<br>-7.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>-10.68<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0                                                                 | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 IWang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 IWang&amp;Frenklach1997 IWang&amp;Frenklach1</pre>                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3                     | +N-C3H7<br>*********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H2<br>=C4H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 3.500E+41 9.800E+68- 1.000E+14 3.700E+22 5.300E+46 3.000E+13 5.010E+10</pre>                                                                                                        | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>-1.25<br>0.0<br>-1.95<br>-7.12<br>-7.12<br>-7.12<br>-7.58<br>-8.63<br>-7.12<br>-7.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>-10.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68                                                        | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IWang&amp;Frenklach19</pre>             |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>C4H<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C                  | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H<br>+C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>1E+30<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>= | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>25.53<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+33 9.800E+68 3.500E+41 9.800E+68 1.000E+14 3.700E+22 5.300E+46 3.000E+13 5.010E+10 2.000E+13</pre>                                                                                                                              | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-6.12<br>0.0<br>-1.245<br>0.0<br>-1.25<br>0.0<br>-1.95<br>-7.12<br>-17.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>-10.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68<br>0.0                                                 | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 IWang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 IWang&amp;Frenklach1997 IWang&amp;Frenklach1</pre>                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>242.<br>243.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>********<br>5. C4 RJ<br>*******<br>C4H<br>3.<br>0.6464<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3                    | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H2<br>+C2H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C4H4<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>21<br>E+30<br>=C2H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H5<br>=C6H2<br>=C6H2<br>=C6H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C6H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2  | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+33 1.300E+30 1.200E+14 1.510E+13 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 1.000E+14 3.700E+22 5.300E+46 3.5010E+10 2.000E+13 1.000E+13 1.000E+12</pre>                                                                                                         | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.12.45<br>0.0<br>12.45<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>10.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68<br>0.0<br>0.0                                          | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 IWang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 Wang&amp;Frenklach1997 Kern1991 Kern1991 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IWan</pre>                     |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>243.<br>244.<br>244.<br>244.<br>244.<br>244.<br>244                                                                                                                                                               | C3H8<br>********<br>5. C4 RJ<br>*******<br>C4H<br>3.<br>0.6464<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3                    | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C2H2<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C4H4<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=A1C2H-<br>=C4H2<br>0.0<br>21<br>E+30<br>=C2H2<br>=C6H5<br>=C6H5<br>=C6H4<br>=A1C2H-<br>=C4H4<br>=C4H2<br>=C2H2<br>=C4H4<br>=C4H2<br>=C2H2<br>=C4H4<br>=C4H2<br>=C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68-3.500E+41 9.800E+68-1.000E+14 3.700E+22 5.300E+46 3.000E+13 5.010E+10 2.000E+13 1.000E+12 6.000E+12 6.000E+12 </pre>                                                                            | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>-10.68<br>0.0<br>0.0<br>-2.50<br>-0.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0. | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IWang&amp;Fr</pre>             |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>244.<br>249.<br>250.<br>251.<br>252.<br>253.<br>255.<br>255.<br>255.<br>255.<br>255.<br>259.<br>260.<br>261.<br>262.<br>263.        | C3H8<br>********<br>5. C4 RJ<br>*******<br>C4H<br>3.<br>0.6464<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3                     | +N-C3H7<br>********<br>EACTIONS<br>*********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3H3<br>+C3                                                                                        | =C3H8<br>*********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C4H2<br>=C6H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>0.0<br>1E+30<br>=I-C4H3<br>=C2H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C4H2<br>0.0<br>21<br>1E+30<br>=C2H2<br>=C4H2<br>0.0<br>21<br>1E+30<br>=C2H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=C2H2<br>=C4H2<br>=C4H2<br>=C6H5<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M(2)<br>+M(2)<br>+M(2) | <pre>1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68 -3.500E+41 9.800E+68 1.000E+14 3.700E+22 5.300E+46 3.000E+13 5.010E+10 2.000E+13 1.000E+12 1.260E+15</pre>                                                                                      | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>0.63<br>-1.85<br>-9.65<br>0.0<br>-1.95<br>-7.12<br>17.58<br>-8.63<br>-17.58<br>0.0<br>-2.50<br>-10.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.                    | <pre>ITsang1988 ITsang1988 IWang&amp;Frenklach1997 Wang&amp;Frenklach1997 IFrenklach&amp;Warnatz1987 Wang&amp;Frenklach1997 IWang&amp;Frenklach1997 IBraun-Unkhoff1989</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 235.<br>****<br>236.<br>LOW<br>TROE<br>237.<br>238.<br>239.<br>240.<br>241.<br>242.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>244.<br>245.<br>LOW<br>TROE<br>246.<br>247.<br>248.<br>250.<br>251.<br>252.<br>253.<br>255.<br>LOW<br>TROE<br>255.<br>255.<br>259.<br>260.<br>261.<br>263.<br>264.         | C3H8<br>5. C4 RJ<br>5. C4 RJ<br>644<br>C4H<br>C4H<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H2<br>C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>N-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I-C4H3<br>I                | +N-C3H7<br>*********<br>EACTIONS<br>**********<br>+H<br>750E+33<br>132.0<br>+H2<br>+C2H2<br>+C2H<br>+C2H<br>+C2H<br>+C4H<br>+C4H<br>+C4H2<br>=I-C4H3<br>+M(2)<br>000E+14<br>1E+30<br>+H<br>+H<br>+H<br>+H<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H3<br>=C4H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =C3H8<br>**********<br>+M(2)<br>4.80<br>1315.0<br>=C4H2<br>=C6H2<br>=C6H2<br>=C6H3<br>=C8H2<br>=C8H2<br>=C8H2<br>=C8H2<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=L-C6H4<br>=N-C6H5<br>=C6H5<br>=C-C6H4<br>=A1C2H-<br>=C4H2<br>0.0 21<br>1E+30<br>=C2H2<br>=C4H4<br>=C4H2<br>=C4H2<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H2<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H4<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H5<br>=C4H    | +I-C3H7<br>****<br>=C4H2<br>7.95<br>5566.0<br>+H<br>+H<br>+C2H2<br>+H<br>+H<br>+H2<br>+C2H2<br>+H<br>+H2<br>+H2<br>+H<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)<br>+M(2)<br>+M(2) | <pre>8.440E-04 1.000E+17 4.900E+05 9.600E+13 2.000E+13 1.300E+30 1.200E+14 1.510E+13 1.000E+51- 1.000E+14 9.200E+11 1.300E+20 1.100E+42 1.500E+13 1.800E+19 4.100E+33 9.800E+68- 3.500E+41 9.800E+68- 3.500E+14 3.700E+22 5.300E+68- 3.000E+13 5.010E+10 2.000E+13 1.000E+12 6.000E+13 1.000E+12 1.260E+15 1.100E+50-</pre>                                | 4.00<br>-1.0<br>2.5<br>0.0<br>0.0<br>-6.12<br>0.0<br>-1.2<br>0.0<br>-1.245<br>0.0<br>-1.95<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.12<br>-7.58<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0. | 19.77<br>0.0<br>2.34<br>0.0<br>0.0<br>10.5<br>0.0<br>178.67<br>213.39<br>150.63<br>12.51<br>12.39<br>29.29<br>0.0<br>55.23<br>57.32<br>110.88<br>96.24<br>110.88<br>230.13<br>21.51<br>38.79<br>0.0<br>83.68<br>0.0<br>0.0<br>396.24<br>56.07                       | ITsang1988<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IFrenklach&Warnatz1987<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IWang&Frenklach1997<br>IZiegler2005<br>IPope&Miller2000<br>IBraun-Unkhoff1989<br>IWang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 266.    | C4H4     | +H             | =N-C4H3   | +H2             | 6.650E+05 2.53         | 51.21  | !Wang&Frenklach1997    |
|---------|----------|----------------|-----------|-----------------|------------------------|--------|------------------------|
| 267.    | C4H4     | +H             | =I-C4H3   | +H2             | 3.330E+05 2.53         | 38.66  | !Wang&Frenklach1997    |
| 268.    | C4H4     | +CH3           | =I-C4H3   | +CH4            | 6.300E+11 0.0          | 66.9   | !Ziegler2005           |
| 269     | C4H4     | +CH3           | =N-C4H3   | +CH4            | 6.300E+11 0.0          | 77.3   | Ziegler2005            |
| 200.    | САНА     | +C2H           | -T-C4H3   | +C2H2           | 4 000E+13 0 0          | 0.0    | I Fournet 1999         |
| 270.    | САНА     | +C2H           | -N-C4H3   | +C2H2           | 4 000E+13 0 0          | 0.0    | IKiefer1985            |
| 271.    | CAHA     | 10211          | -0442     | 102112          | 1 000E+13 0 0          | 0.0    | -Kicfor1985            |
| 272.    | C4H4     | +C2H           | =C4HZ     | +C2H3           | 1.000E+13 0.0          | 126.00 | Rielei1985             |
| 273.    |          | +C2H2          | =C6H5     | +H              | 1.000E+09 0.0          | 126.00 | Selison1992            |
| 274.    | C4H4     | +CZHZ          | =C6H6     |                 | 4.4/0E+II 0.0          | 126.00 | !Channugathas1986      |
| 275.    | C4H4     | +C2H3          | =L-C6H6   | +H              | 1.900E+17 -1.32        | 44.35  | Wang&Frenklach1997     |
| 276.    | C4H4     | +C2H3          | =N-C4H3   | +C2H4           | 5.000E+11 0.0          | 68.20  | !Colket1986            |
| 277.    | C4H4     | +C2H3          | =1-C4H3   | +C2H4           | 5.000E+11 0.0          | 68.20  | !Colket1986            |
| 278.    | C4H4     | +C3H3          | =N-C4H3   | +AC3H4          | 1.000E+13 0.0          | 94.1   | !Ziegler2005           |
| 279.    | C4H4     | +C3H3          | =I-C4H3   | +AC3H4          | 1.000E+13 0.0          | 81.5   | !Ziegler2005           |
| 280.    | C4H4     | +AC3H5         | =I-C4H3   | +C3H6           | 1.000E+13 0.00         | 81.5   | !Ziegler2005           |
| 281.    | C4H4     | +C4H4          | =A1C2H3   |                 | 0.750E+14 0.0          |        |                        |
|         | 159.00   | !estimate      | ed/Lundga | rd&Heicklen1984 |                        |        |                        |
| 282.    | C4H4     | +C4H4          | =C8H8     |                 | 4.370E+10 0.0          | 76.99  | !Lundgard&Heicklen1984 |
| 283.    | N-C4H5   | =I-C4H5        |           |                 | 4.900E+66-17.26        | 231.80 | !Wang&Frenklach1994    |
| 284.    | N-C4H5   | +H             | =I-C4H5   | +H              | 1.000E+34 -5.61        | 77.41  | !Wang&Frenklach1997    |
| 285.    | N-C4H5   | +H             | =C4H4     | +H2             | 1.500E+13 0.0          | 0.0    | !Wang&Frenklach1997    |
| 286.    | N-C4H5   | +C2H2          | =N-C6H7   |                 | 1.100E+14 -1.27        | 12.13  | !Wang&Frenklach1994    |
| 2.87    | N-C4H5   | +C2H2          | =C-C6H7   |                 | 5.000E+24 - 5.46       | 19.25  | !Wang&Frenklach1994    |
| 288     | N-C4H5   | +C2H2          | -L-C6H6   | +H              | 5 800F+08 1 02         | 45 61  | Wang&Frenklach1994     |
| 200.    | N_CAU5   | +C2H2          | -C646     | - U             | 2 100E+15 -1 07        | 20.08  | Wang&Frenklach1994     |
| 209.    | N CAUE   | +C2112         | -CCUC     | - UO            | 2.1000413 -1.07        | 20.00  | Weatmoreland1989       |
| 290.    | N-C4H5   | +C2H3          | CCURIO    | +HZ             | 2.800E-07 5.83         | -7.91  | Westmoreland1989       |
| 291.    | N-C4H5   | +C2H3          | =C6H813   |                 | 5.500E+15 -1.67        | 6.15   | Westmoreland1989       |
| 292.    | N-C4H5   | +C2H3          | =N-C6H7   | +H              | 8.300E-28 II.89        | 20.9   | westmoreland1989       |
| 293.    | N-C4H5   | +C2H3          | =L-C6H8   |                 | 2.900E+15 -0.78        | 4.2    | !Westmoreland1989      |
| 294.    | N-C4H5   | +AC3H4         | =C7H8     | +H              | 2.000E+11 0.0          | 15.48  | !Kern1988              |
| 295.    | N-C4H5   | +PC3H4         | =C7H8     | +H              | 3.160E+11 0.0          | 15.48  | !Cole1984              |
| 296.    | N-C4H5   | +C4H2          | =A1C2H    | +H              | 3.160E+11 0.0          | 7.53   | !Cole1984              |
| 297.    | N-C4H5   | +C4H4          | =A1C2H3   | +H              | 3.160E+11 0.0          | 2.51   | !Cole1984              |
| 298.    | I-C4H5   | +H             | =C4H4     | +H2             | 3.000E+13 0.0          | 0.0    | !Wang&Frenklach1997    |
| 299.    | I-C4H5   | +H             | =C3H3     | +CH3            | 2.000E+13 0.0          | 8.37   | !Wang&Frenklach1997    |
| 300.    | I-C4H5   | +H             | =C4H52    | +H              | 3.000E+13 0.0          | 0.0    | !Marinov1996           |
| 301.    | C4H52    | +H             | =C3H3     | +CH3            | 1.000E+14 0.0          | 0.0    | !Marinov1996           |
| 302.    | C4H52    | +C3H3          | =C7H7     | +H              | 3.000E+12 0.0          | 0.0    | !Marinov1996           |
| 303.    | C4H52    | +C4H52         | =ACH3CH2  | +H              | 3.000E+12 0.0          | 0.0    | !Marinov1996           |
| 304     | C4H512   | =C4H4          | +H        |                 | 3.000E+13 0.0          | 188.29 | Hidaka1993             |
| 305     | N-C4H51  | =T-C4H51       |           |                 | 5 000E+12 0 0          | 156 3  | Belmekki2002           |
| 306     | N-C4H51  | -C4H4          | тH        |                 | 3 000E+13 0 0          | 188 29 | IHidaka1993            |
| 307     | N_C4H51  | -C2U           | + C2 H4   |                 | 2 000E+14 0 0          | 238 50 | Illidaka1993           |
| 207.    | T CAUE1  | -0211<br>-M(2) | -0444     | , Ш., M.(2)     | 1 000E:12 0.0          | 200.00 | Maripow1996            |
| тоw     | 1-C4IID1 |                |           | 11 0            | 1.0001413 0.0          | 204.0  | :Mai 1110 1 9 9 0      |
| TOM     | 2.U      | 12.20          | 112.20    | ±1.0            |                        |        |                        |
| IRUE    | 0.5      | 16+30          | 16+30     | , dita          | 1 00000 14 0 0         | 0 0    |                        |
| 309.    | 1-C4H51  | +H             | =C3H3     | +CH3            | 1.000E+14 0.0          | 0.0    | Marinov1996            |
| 310.    | 1-C4H51  | +H             | =C4H4     | +H2             | 2.000E+13 0.0          | 0.0    | Miller&Mellus1992      |
| 311.    | 1-C4H51  | +C3H3          | =C'/H'/   | +H              | 3.000E+12 0.0          | 0.0    | !Marinov1996           |
| 312.    | I-C4H51  | +I-C4H51       | =ACH3CH2  | +H              | 3.000E+12 0.0          | 0.0    | !Marinov1996           |
| 313.    | C4H6     | =I-C4H5        | +H        |                 | 3.300E+45 -8.95        | 484.95 | !Wang&Frenklach1997    |
| 314.    | C4H6     | =N-C4H5        | +H        |                 | 8.500E+54-11.78        | 533.49 | !Wang&Frenklach1997    |
| 315.    | C4H6     | =C2H4          | +C2H2     |                 | 6.400E+13 0.0          | 322.60 | !Hidaka1996            |
| 316.    | C4H6     | =C4H4          | +H2       |                 | 2.520E+15 0.0          | 396.24 | !Hidaka1996            |
| 317.    | C4H6     | +H             | =N-C4H5   | +H2             | 1.330E+06 2.53         | 51.21  | !Wang&Frenklach1997    |
| 318.    | C4H6     | +H             | =I-C4H5   | +H2             | 6.650E+05 2.53         | 38.66  | !Wang&Frenklach1997    |
| 319.    | C4H6     | +CH3           | =N-C4H5   | +CH4            | 4.000E+14 0.0          | 95.40  | !Hidaka1993            |
| 320.    | C4H6     | +CH3           | =I-C4H5   | +CH4            | 2.000E+14 0.0          | 95.40  | !Hidaka1993            |
| 321     | C4H6     | +C2H2          | =C6H814   |                 | 2.300E+12 0.0          | 146.45 | Westmoreland1989       |
| 322     | C4H6     | +C2H3          | =N-C4H5   | +C2H4           | 5 000E+14 0 0          | 95 40  | lHidaka1993            |
| 322.    | CAHE     | +C2H3          | -T-C4H5   | +C2H4           | 5.000E+14 0.0          | 82.8   | IZiegler2005           |
| 321     | CANE     | +C2H3          | -L-C6H8   | 1 U 1           | 1 000E+10 1 05         | 58 5   | Westmoreland1989       |
| 224.    | CAILC    | - C2113        |           |                 | 1.000E+10 1.05         | 04 14  | Weschorerandrydy       |
| 325.    | C4H6     | +C3H3          | =N-C4H5   | +ACSH4          | 1.000E+13 0.0          | 94.14  | : Kern1000             |
| 320.    | C4H6     | +0303          | =1-C4H5   | +AC3H4          | 1.000E+13 0.0          | 94.14  | !Kernigoo              |
| 327.    | C4H6     | +AC3H5         | =1-C4H5   | +C3H6           | 1.000E+13 0.0          | 81.5   | 12legler2005           |
| 328.    | C4H6     | +AC3H5         | =N-C4H5   | +C3H6           | 1.000E+13 0.0          | 94.1   | !Ziegler2005           |
| 329.    | C4H6     | +C4H6          | =C8H12    |                 | 1.380E+11 0.0          | 112.26 | !Rowley&Steiner1951    |
| 330.    | C4H612   | =C4H6          |           |                 | 2.500E+13 0.0          | 263.60 | !Hidaka1995            |
| 331.    | C4H612   | +H             | =AC3H4    | +CH3            | 6.000E+12 0.0          | 8.79   | !Hidaka1993            |
| 332.    | C4H612   | +H             | =C4H512   | +H2             | 6.500E+13 0.0          | 39.33  | !Hidaka1993            |
| 333.    | C4H612   | +H             | =C4H6     | +H              | 2.000E+13 0.0          | 16.74  | !Wang&Frenklach1997    |
| 334.    | C4H612   | +H             | =I-C4H5   | +H2             | 1.700E+05 2.5          | 10.42  | !Wang&Frenklach1997    |
| 335.    | C4H612   | +H             | =C4H52    | +H2             | 1.500E+07 2.0          | 25.1   | !Marinov1996           |
| 336.    | C4H612   | +H             | =I-C4H51  | +H2             | 3.000E+07 2.0          | 27.2   | !Marinov1996           |
| 337.    | C4H612   | +CH3           | =I-C4H5   | +CH4            | 2.200E+00 3.5          | 23.8   | !Ziegler2005           |
| 338.    | C4H612   | +CH3           | =C4H512   | +CH4            | 1.000E+14 0.0          | 81.59  | Hidaka1993             |
| 339     | C4H612   | +C2H3          | =C4H512   | +C2H4           | 7.500E+12 0.0          | 41.84  | !Hidaka1993            |
| 340     | C4H612   | +C2H5          | =I-C4H5   | +C2H6           | 2.200E+00 3.5          | 27.6   | !Ziegler2005           |
| 341     | C4H612   | +C3H3          | =C4H512   | +AC3H4          | 5.000E+12 0.0          | 81 59  | !Hidaka1993            |
| · · · · | CATICI   | COTTO          | . 0112    |                 | 2 000E-15 0 0          | 217 10 | Luidala 1000           |
| 342     | CARDI    | =              | +CH 3     |                 | 3.000 <u>5</u> +13 0.0 | 31/.10 | Iniuakaiyyo            |

| 343.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | =C4H612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 2.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 271.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Hidaka1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 344.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | =I-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 7.700E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 367.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 345.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | =N-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | arro.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 9.100E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 416.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 346.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =AC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1.300E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Hidakal993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 347.<br>348                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C4H61<br>C4H61                                                                                                                       | +H<br>+U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +C2H2<br>+U2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |    | 6.500E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.18<br>39.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HIGAKA1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 349                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4H61                                                                                                                                | +11<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =N-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 6 500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 29 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4H61                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =T-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 351.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 352.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 1.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 353.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +AC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 354.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =I-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +PC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 4.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 355.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H61                                                                                                                                | +I-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =I-C4H51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C4H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 2.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 54.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 356.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | =C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 3.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 271.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 357.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | =C4H612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 3.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 280.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 358.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | =C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 5.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 365.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Dean1985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 359.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =PC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 2.600E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 360.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 3.400E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 361.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H62                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 2.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Hidaka1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 362.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H6Z                                                                                                                                | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 1.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HIDAKA1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4H62                                                                                                                                | +C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =C4H52<br>=C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +AC3H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.59<br>58 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | IRelmerki 2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 365                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | C4H62                                                                                                                                | +T-C4H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C4H52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +C4H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 5.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Belmekki2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N-C4H7                                                                                                                               | >C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 104114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 1 800E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 139 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heyberger2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 367.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I-C4H7                                                                                                                               | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 2.500E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Dente1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 368.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I-C4H7                                                                                                                               | >C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 3.200E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 200.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Weissman1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 369.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I-C4H7                                                                                                                               | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 1.810E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !Richter&Howard2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 370.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | I-C4H7                                                                                                                               | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =C4H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | !Richter&Howard2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 371.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | =AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    | 1.100E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 325.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Knyazev&Slagle2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 372.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 1.300E+07                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Chevalier1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 373.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =I-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | 5.400E+04                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 374.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 3.000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 33.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Chevalier1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 375.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =I-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | 1.000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 376.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 377.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =I-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 4.400E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 378.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C2H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 4.000E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 379.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =1-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C2H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 4.400E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 380.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 1.300E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dente1983                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 30I.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H0                                                                                                                                 | +AC3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =1-C4H/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 8.0006+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 90.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Delicer 963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAUO                                                                                                                                 | - CC2UE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -N CAU7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 2 000 - 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20 E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1710glor2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8                                                                                                                                 | +SC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =N-C4H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +C3H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.<br>383.<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>********                                                                                                             | +SC3H5<br>+SC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =N-C4H7<br>=I-C4H7<br>********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +C3H6<br>+C3H6<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 3.000E+11<br>4.400E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.5<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | !Ziegler2005<br>!Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.<br>383.<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>********<br>6. C5 RI                                                                                                 | +SC3H5<br>+SC3H5<br>********<br>EACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =N-C4H7<br>=I-C4H7<br>********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +C3H6<br>+C3H6<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 3.000E+11<br>4.400E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.5<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | !Ziegler2005<br>!Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.<br>383.<br>****<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>*********<br>6. C5 RI                                                                                                | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =N-C4H7<br>=I-C4H7<br>*********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6<br>+C3H6<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 3.000E+11<br>4.400E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.5<br>17.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | !Ziegler2005<br>!Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.<br>383.<br>****<br>****<br>384.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>6. C5 RH<br>C5H4                                                                                                     | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =N-C4H7<br>=I-C4H7<br>*********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6<br>+C3H6<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |    | 3.000E+11<br>4.400E+00<br>1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>3.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 38.5<br>17.1<br>25.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 382.<br>383.<br>****<br>****<br>384.<br>385.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>*********<br>6. C5 RH<br>*********<br>C5H4<br>L-C5H5                                                                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +C3H6<br>+C3H6<br>****<br>****<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0<br>3.5<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 38.5<br>17.1<br>25.11<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 382.<br>383.<br>****<br>****<br>384.<br>385.<br>386.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>*********<br>6. C5 RI<br>********<br>C5H4<br>L-C5H5<br>L-C5H5                                                        | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +C3H6<br>+C3H6<br>****<br>****<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>3.5<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.5<br>17.1<br>25.11<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 382.<br>383.<br>****<br>****<br>384.<br>385.<br>386.<br>387.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>*********<br>6. C5 RH<br>*********<br>C5H4<br>L-C5H5<br>L-C5H5<br>L-C5H5                                             | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+H<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 382.<br>383.<br>****<br>****<br>384.<br>385.<br>386.<br>387.<br>388.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5                                                       | +SC3H5<br>+SC3H5<br>EACTIONS<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-                                                                                                                                                                                                                                                                                                                                                                                            | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>0.0<br>547.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5                                               | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>0.0<br>547.44<br>574.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>C C6U7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dear1000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>392.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>********<br>6. C5 RH<br>********<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5 | +SC3H5<br>+SC3H5<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>-C5H5CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41                                                                                                                                                                                                                                                                                                                                      | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 R1<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>-C5H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13                                                                                                                                                                                                                                                                                                                         | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>386.<br>388.<br>389.<br>390.<br>391.<br>392.<br>392.<br>393.<br>394.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6.C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                  | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+C13<br>+AC3H5<br>+C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12                                                                                                                                                                                                                                                                                                            | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.<br>393.<br>395.<br>396.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>6.C5 R1<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                  | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+AC3H5<br>+C5H5<br>=C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+11<br>3.400E+80-                                                                                                                                                                                                                                                                                 | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>0.0<br>19.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ \\ 0.0\\ \\ 547.44\\ \\ 574.95\\ \\ 402.46\\ \\ 0.0\\ \\ 164.27\\ \\ 0.0\\ \\ 164.27\\ \\ 0.0\\ \\ 33.47\\ \\ 427.90\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 382.<br>383.<br>****<br>384.<br>384.<br>385.<br>386.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>395.<br>397.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6.C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                  | +SC3H5<br>+SC3H5<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+AC3H5<br>+C5H5<br>=C3H3<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+11<br>3.400E+80-<br>2.800E+13                                                                                                                                                                                                                                                                    | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ \\0.0\\ \\547.44\\ \\574.95\\ 402.46\\ 0.0\\ \\164.27\\ 0.0\\ \\164.27\\ 0.0\\ \\33.47\\ \\427.90\\ 9.45\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>395.<br>395.<br>397.<br>398.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>C5H5<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                             | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+AC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H4<br>=C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+11<br>3.400E+13<br>2.190E+08                                                                                                                                                                                                                                                                                  | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ \\0.0\\ \\547.44\\ \\574.95\\ 402.46\\ 0.0\\ \\164.27\\ 0.0\\ \\164.27\\ 0.0\\ \\33.47\\ \\427.90\\ 9.45\\ 12.55\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>385.<br>386.<br>389.<br>390.<br>391.<br>392.<br>393.<br>393.<br>395.<br>395.<br>396.<br>395.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>307. | C4H8<br>C4H8<br>C4H8<br>C5H5<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                             | +SC3H5<br>+SC3H5<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =N-C4H7<br>=I-C4H7<br>**********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+11<br>3.400E+80-<br>2.800E+13<br>2.190E+08<br>2.800E+13                                                                                                                                                                                                                                          | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ 0.0\\ \\547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+AC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H4<br>=C5H4<br>=C5H4H<br>=AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +Н | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14                                                                                                                                                                                                                                                        | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ \\547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Roy1998</pre>                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+AC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H4<br>=C5H4<br>=C5H4H<br>=AC3H5<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.400E+80-<br>2.800E+13<br>2.190E+08<br>2.800E+13<br>6.600E+14<br>3.110E+11                                                                                                                                                                                                                | 0.0<br>3.5<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ \\547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!stimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Roy1998<br/>!Marinov1996</pre>                                                                                                                                                                                                                                                                                                                                                                                                           |
| 382.<br>383.<br>****<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>391.<br>392.<br>393.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>397.<br>398.<br>399.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>398.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>396.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>397.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400.<br>400. | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+C3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+C3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H4<br>=C5H4<br>=AC3H5<br>=C5H4H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>1.000E+11<br>3.400E+80-<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01                                                                                                                                                                                                                             | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} 38.5\\ 17.1\\ \\25.11\\ 0.0\\ 0.0\\ \\547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Roy1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 382.<br>383.<br>****<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>391.<br>392.<br>393.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C3H4<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+C3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C          | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H4H<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+C2H2<br>+CH4<br>+CH4<br>+CH4<br>+C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12                                                                                                                                                                                                    | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>19.20<br>0.0<br>19.20<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ 547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\\ 0.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!ziegler2005<br/>!Dean1990<br/>!setimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Roy1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emdee1992</pre>                                                                                                                                                                                                                                                                                                                                                                           |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>6. C5 R1<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C3H3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01                                                                                                                                                                                       | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>19.20<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>4.0<br>0.0<br>4.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ \\ 547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\\ 0.0\\ 0.0\\ 0.0\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Richter&amp;Howard2002<br/>!Emde1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Zhong&amp;Bozzelli1998</pre>                                                                                                                                                                                                                                                                                                     |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>389.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 R1<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C3H3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +C3H6<br>+C3H6<br>+C3H6<br>+***<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+C2H2<br>+CH4<br>+CH4<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6<br>+C3H6 | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.220E-01                                                                                                                                                                          | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ \\ 547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Richter&amp;Howard2002<br/>!Emde1995<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Zhong&amp;Bozzelli1988<br/>!Zhong&amp;Bozzelli1988<!--Emde1000</pre--></pre>                                                                                                                                                                                                                                                                |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405.<br>405. | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C3H3<br>=L-C5H5<br>=C3H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+C145<br>+C145<br>+C1445<br>+C1445<br>+C1445                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +C3H6<br>+C3H6<br>+C3H6<br>+***<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+CH4<br>+H2<br>+CH2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12                                                                                                                                                                          | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ \\ 0.0\\ 547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!Estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Marinov1996</pre>                                                                                                                                                                                                                                                                                                              |
| 382.<br>383.<br>****<br>384.<br>385.<br>386.<br>387.<br>388.<br>390.<br>391.<br>392.<br>392.<br>394.<br>395.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>402.<br>403.<br>405.<br>406.<br>407.<br>406.<br>407.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +C3H6<br>+C3H6<br>+C3H6<br>+***<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+CH4<br>+H2<br>+CH2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+13<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+14<br>3.160E+14                                                                                                                                                | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 38.5\\ 17.1\\ \\ 25.11\\ 0.0\\ 0.0\\ \\ 0.0\\ 547.44\\ 574.95\\ 402.46\\ 0.0\\ 164.27\\ 0.0\\ 164.27\\ 0.0\\ 33.47\\ 427.90\\ 9.45\\ 12.55\\ 147.03\\ 51.65\\ 23.01\\ 137.58\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!stimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Richter&amp;Howard2002<br/>!Emde1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emde1992<br/>!Marinov1996<br/>!Emde1992<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Arends1993</pre>                                                                                                                                                                                                                                |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>392.<br>392.<br>394.<br>395.<br>396.<br>397.<br>398.<br>397.<br>398.<br>397.<br>398.<br>397.<br>400.<br>402.<br>403.<br>405.<br>406.<br>407.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408.<br>408. | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=L-C5H8<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +C3H6<br>+C3H6<br>+C3H6<br>+***<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+C2H4<br>+C2H2<br>+C2H2<br>+CH4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C3H6<br>+C4H6<br>+C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+12<br>1.000E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>3.160E+15                                                                                                                                                | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!stimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Roy1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Marinov1996<br/>!Arends1993</pre>                                                                                                                                                                                                                                    |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>392.<br>392.<br>394.<br>395.<br>396.<br>397.<br>398.<br>397.<br>398.<br>397.<br>400.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>408.<br>409.<br>410.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5 | +C3H6<br>+C3H6<br>+C3H6<br>+***<br>+H2<br>+CH4<br>+H<br>+CH4<br>+H<br>+H2<br>+CH4<br>+H2<br>+C2H2<br>+C2H2<br>+CH4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C3H6<br>+C4H6<br>+C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+12<br>1.000E+13<br>3.400E+08<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>3.160E+15                                                                                                                      | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Ziong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Marinov1996<br/>!Arends1993<br/>!Ziegler2005</pre>                                                                                                                                                                                                     |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>394.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>403.<br>405.<br>406.<br>407.<br>408.<br>407.<br>408.<br>411.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>c4H8<br>c5H4<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H4H<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>2.190E+08<br>2.800E+13<br>2.190E+08<br>2.800E+13<br>3.100E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12<br>3.160E+15<br>1.000E+14<br>3.600E+12                                                                                                         | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0  | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Roy1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Marinov1996<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005</pre>                                                                                                                                                                                                    |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>408.<br>410.<br>412.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>c4H8<br>c5H4<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5 | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>3.400E+08<br>2.800E+13<br>3.100E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.100E+13                                                                                                         | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>0.0<br>246.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Marinov1996<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!RickbornSF1986</pre>                                                                                                                                                               |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>394.<br>395.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>411.<br>412.<br>413.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>C4H8<br>C5H4<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>*********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H4H<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>3.100E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>1.200E-11<br>3.160E+15<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.100E+13<br>7.000E+06                                                                               | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>0.0<br>246.0<br>20.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Marinov1996<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!RickbornSF1986<br/>!Marinov1996</pre>                                                                                                                                                                                              |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>394.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>408.<br>411.<br>412.<br>413.<br>414.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>C4H8<br>C5H4<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H5<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=AC3H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5 | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>1.000E+13<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>2.800E+13<br>3.100E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.100E+13<br>7.000E+06<br>3.350E+08                                                     | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>0.0<br>246.0<br>20.92<br>8.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Marinov1996<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Marinov1996<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Anends1993<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!RickbornSF1986<br/>!Marinov1996<br/>!Marinov1996</pre>                                                                                                                                                                                                   |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>395.<br>395.<br>395.<br>396.<br>397.<br>398.<br>395.<br>396.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>408.<br>411.<br>412.<br>413.<br>415.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>c4H8<br>c5H4<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                               | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+CH3<br>+CH3<br>+C145<br>+C145<br>+C145<br>+C145<br>+C145<br>+C2H3<br>+C2H3<br>+C3H5<br>+C2H3<br>+C3H5<br>+C2H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C          | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H5<br>=C5H4<br>=C5H4<br>=C5H4<br>=C5H5<br>=C5H4H<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H7<br>=C5H | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>2.190E+08<br>2.800E+13<br>3.100E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>1.200E-01<br>1.200E+14<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.100E+13<br>7.000E+06<br>3.350E+08<br>1.700E+05                                                                  | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>4.0<br>0.0<br>0.0<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>33.47<br>427.90<br>9.45<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>0.0<br>246.0<br>20.92<br>8.37<br>10.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!RickbornSF1986<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Arends1993</pre>                                                                                                                                                                                                        |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>395.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>411.<br>412.<br>415.<br>416.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>********<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5     | +SC3H5<br>+SC3H5<br>+SC3H5<br>EACTIONS<br>EACTIONS<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+CC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CC3H5<br>+N-C4H5<br>+I-C2H5<br>+H<br>=C5H6<br>=L-C5H6<br>+H<br>+H<br>+H<br>+H<br>+H<br>+C4H5<br>+C3<br>+C2H3<br>+C2H3<br>+C2H5<br>+N-C4H5<br>+I-C2H7<br>+C3<br>+C2H5<br>+N-C4H5<br>+I-C2H7<br>+C3<br>+C2H5<br>+C2H5<br>+C2H5<br>+C2H5<br>+C2H5<br>+C2H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5        | =N-C4H7<br>=I-C4H7<br>***********<br>=L-C5H4<br>=C5H6<br>=L-C5H4<br>+C2H2<br>=C5H6<br>=C-C6H7<br>=C5H5CH3<br>=C5H6<br>>A2<br>+C2H2<br>=C5H4<br>=C5H5<br>=C5H4H<br>=C5H5<br>=C5H4H<br>=C5H5<br>=C5H5<br>=C5H5<br>=C5H5<br>=L-C5H8<br>+H<br>=C5H8<br>=C5H6<br>+H2<br>=L-C5H7<br>=AC3H5<br>=C5H7<br>=C5H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+CH4<br>+H2<br>+C2H2<br>+CH4<br>+C2H4<br>+C2H4<br>+C2H4<br>+C3H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+13<br>2.800E+13<br>2.190E+08<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>2.000E-01<br>1.200E-01<br>1.200E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>3.160E+15<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.100E+13<br>7.000E+06<br>3.350E+08<br>1.700E+05<br>2.200E+00 | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>4.0<br>4.0<br>4.0<br>4.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>165.25<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>137.58<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>20.92<br>8.37<br>10.5<br>23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Dean1990<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Marinov1996<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!RickbornSF1986<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<!--Ziegler2005<!Ziegler2005</pre--></pre>                                                                                                                                            |
| 382.<br>383.<br>****<br>384.<br>385.<br>385.<br>385.<br>387.<br>388.<br>390.<br>391.<br>392.<br>393.<br>392.<br>393.<br>395.<br>395.<br>395.<br>396.<br>397.<br>398.<br>399.<br>400.<br>401.<br>402.<br>403.<br>404.<br>405.<br>406.<br>407.<br>408.<br>407.<br>411.<br>412.<br>413.<br>414.<br>415.<br>416.<br>****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C4H8<br>C4H8<br>C4H8<br>6. C5 RI<br>C5H4<br>L-C5H5<br>L-C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5<br>C5H5                 | +SC3H5<br>+SC3H5<br>********<br>EACTIONS<br>*********<br>=L-C5H4<br>+H<br>+H<br>+CH3<br>=C3H3<br>=L-C5H5<br>=C5H4H<br>+H<br>+CH3<br>+C13<br>+AC3H5<br>+C5H5<br>=C3H3<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>+CC3H3<br>+C13<br>+C2H3<br>+AC3H5<br>+N-C4H5<br>+I-C2H5<br>+H<br>=C5H6<br>=L-C5H7<br>+H<br>+H<br>+H<br>+H<br>+CH3<br>*C2H3<br>+AC3H5<br>+N-C4H5<br>+I-C4H5<br>+I-C4H5<br>+I<br>+C4H5<br>+I<br>+C4H5<br>+I<br>+C4H5<br>+I<br>+C4H5<br>+I<br>+C4H5<br>+I<br>+C4H5<br>+I<br>+C3H3<br>+C5H6<br>=C5H6<br>+I<br>+H<br>+H<br>+C3H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C2H3<br>+C3H5<br>+C3H3<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3H5<br>+C3 | =N-C4H7<br>=I-C4H7<br>************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +C3H6<br>+C3H6<br>+C3H6<br>****<br>+H2<br>+CH4<br>+H<br>+AC3H4<br>+H<br>+H2<br>+H2<br>+H2<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+CH4<br>+C2H2<br>+CH4<br>+C2H4<br>+C3H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6<br>+C4H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +H | 3.000E+11<br>4.400E+00<br>1.000E+13<br>1.810E+12<br>1.000E+14<br>1.950E+13<br>2.790E+79-<br>1.640E+96-<br>5.170E+80-<br>2.000E+14<br>2.440E+41<br>1.000E+13<br>1.000E+12<br>1.000E+14<br>3.100E+13<br>3.190E+08<br>2.800E+13<br>6.600E+14<br>3.110E+11<br>1.800E-01<br>6.000E+12<br>1.000E+14<br>3.160E+15<br>3.160E+15<br>3.160E+15<br>1.000E+14<br>3.600E+12<br>1.000E+14<br>3.160E+15<br>3.160E+15<br>1.000E+14<br>3.500E+06<br>3.350E+08<br>1.700E+05<br>2.200E+00              | 0.0<br>3.5<br>0.0<br>0.0<br>0.0<br>-0.5<br>18.30<br>23.50<br>20.40<br>0.0<br>-7.989<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>1.77<br>0.0<br>0.0<br>4.0<br>4.0<br>4.0<br>4.0<br>0.0<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38.5<br>17.1<br>25.11<br>0.0<br>0.0<br>547.44<br>574.95<br>402.46<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>164.27<br>0.0<br>12.55<br>147.03<br>51.65<br>23.01<br>137.58<br>0.0<br>0.0<br>0.0<br>137.58<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>150.63<br>165.28<br>0.0<br>0.0<br>20.92<br>8.37<br>10.5<br>23.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <pre>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Ziegler2005<br/>!Richter&amp;Howard2002<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Moskaleva&amp;Lin2000<br/>!Ziegler2005<br/>!Dean1990<br/>!estimated<br/>!Moskaleva&amp;Lin2000<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Richter&amp;Howard2002<br/>!Emdee1992<br/>!Zhong&amp;Bozzelli1998<br/>!Zhong&amp;Bozzelli1998<br/>!Emdee1992<br/>!Emdee1992<br/>!Marinov1996<br/>!Arends1993<br/>!Arends1993<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Marinov1996<br/>!Ziegler2005<br/>!Ziegler2005<br/>!Ziegler2005<!--Ziegler2005</pre--></pre> |

| 417. | C6H     | +H             | +M(2)     | =C6H2   | +M(2) | 1.000E+17 -1.0                   | 0.0            | !Wang&Frenklach1997  |
|------|---------|----------------|-----------|---------|-------|----------------------------------|----------------|----------------------|
| LOW  | 3.7     | 750E+33 -4     | 1.80      | 7.95    |       |                                  |                |                      |
| TROE | 0.6464  | 132.0          | 1315.0    | 5566.0  |       |                                  |                |                      |
| 418. | C6H     | +H2            | =H        | +C6H2   |       | 4.900E+05 2.5                    | 2.34           | !Wang&Frenklach1997  |
| 419. | C6H2    | +H             | =C6H3     |         |       | 2.600E+46-10.15                  | 64.86          | !Wang&Frenklach1997  |
| 420. | C6H3    | +H             | =C4H2     | +C2H2   |       | 3.700E+22 -2.5                   | 21.51          | !Wang&Frenklach1997  |
| 421. | C6H3    | +H             | =L-C6H4   |         |       | 5.300E+46-10.68                  | 38.79          | !Wang&Frenklach1997  |
| 422. | C6H3    | +H             | =C6H2     | +H2     |       | 3.000E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 423. | L-C6H4  | +H             | =N-C6H5   |         |       | 2.600E+43 -9.53                  | 75.73          | Wang&Frenklach1994   |
| 424. | L-C6H4  | +H             | =C6H5     |         |       | 4.700E+78-20.10                  | 123.43         | Wang&Frenklach1994   |
| 425. | L-C6H4  | +H             | =C-C6H4   | +H      |       | 9.700E+48-10.37                  | 112.97         | Wang&Frenklach1994   |
| 426. | L-C6H4  | +H             | =C6H3     | +HZ     |       | 6.650E+06 2.53                   | 38.66          | Wang&Frenklach1997   |
| 427. | L-C6H4  | +CZH           | =C6H3     | +CZHZ   |       | 2.000E+13 0.0                    | 0.0            | Wangs Franklach 1004 |
| 420. | C-C6H4  | +n<br>+C-C6H4  | -BIDUEN   |         |       | 1.000E+71-10.000                 | 143.10         | PortersSteinfeld1968 |
| 429. | N-C6H5  | -C645          | =DIFREN   |         |       | 4.000E+12 0.0<br>1 300E+59-14 78 | 1/8 96         | WangsErenklach1994   |
| 431  | N-C6H5  | =C-C6H4        | +H        |         |       | 1.500E+64-15 32                  | 257 33         | Wang&Frenklach1994   |
| 432  | N-C6H5  | -0 00111<br>+H | =T-C6H5   | +H      |       | 9 200E+11 0 63                   | 12 51          | Wang&Frenklach1997   |
| 433  | N-C6H5  | +H             | =C4H4     | +C2H2   |       | 1.300E+20 - 1.85                 | 12.39          | Wang&Frenklach1997   |
| 434. | N-C6H5  | +H             | =L-C6H6   | · OBIIE |       | 1.100E+42 - 9.65                 | 29.27          | !Wang&Frenklach1997  |
| 435. | N-C6H5  | +H             | =L-C6H4   | +H2     |       | 1.500E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 436. | I-C6H5  | +H             | =C4H4     | +C2H2   |       | 3.700E+22 -2.50                  | 21.51          | !Wang&Frenklach1997  |
| 437. | I-C6H5  | +H             | =L-C6H6   |         |       | 5.300E+46-10.68                  | 38.79          | !Wang&Frenklach1997  |
| 438. | I-C6H5  | +H             | =L-C6H4   | +H2     |       | 3.000E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 439. | C6H5    | +H             | +M(2)     | =C6H6   | +M(2) | 1.000E+14 0.0                    | 0.0            | !Wang&Frenklach1997  |
| LOW  | 6.6     | 500E+75-10     | 5.30 2    | 29.29   |       |                                  |                | -                    |
| TROE | 1.0000  | 0.1            | 584.9     | 5113.0  |       |                                  |                |                      |
| 440. | C6H5    | +H             | =C-C6H4   | +H2     |       | 4.400E-13 7.831                  | 38.75          | !Mabel2001           |
| 441. | C6H5    | +CH3           | =C7H8     |         |       | 1.070E+65-15.64                  | 95.06          | !Richter&Howard2002  |
| 442. | C6H5    | +CH3           | =C7H7     | +H      |       | 4.440E+33 -5.45                  | 101.63         | !Richter&Howard2002  |
| 443. | C6H5    | +C2H2          | =N-A1C2H2 | 2       |       | 9.900E+41 -9.26                  | 65.69          | !Wang&Frenklach1994  |
| 444. | C6H5    | +C2H2          | =A1C2H    | +H      |       | 8.320E+22 -2.68                  | 72.81          | !Richter&Howard2002  |
| 445. | C6H5    | +C2H2          | =A1C2H3*  |         |       | 7.900E+51-12.41                  | 74.35          | !Richter&Howard2002  |
| 446. | C6H5    | +C2H           | =A1C2H    |         |       | 2.540E+17 -1.489                 | 6.45           | !Zhang&Mckinnon1995  |
| 447. | C6H5    | +C2H3          | =A1C2H3   |         |       | 3.900E+38 -7.63                  | 53.98          | !Wang&Frenklach1997  |
| 448. | C6H5    | +C2H3          | =I-A1C2H2 | 2+H     |       | 5.800E+18 -1.00                  | 112.14         | !Wang&Frenklach1997  |
| 449. | C6H5    | +C2H3          | =N-A1C2H2 | 2+H     |       | 5.100E+20 -1.56                  | 131.38         | !Wang&Frenklach1997  |
| 450. | C6H5    | +C2H4          | =A1C2H3   | +H      |       | 2.500E+12 0.0                    | 25.94          | !Fahr&Stein1988      |
| 451. | C6H5    | +C2H5          | =A1C2H5   |         |       | 5.000E+12 0.0                    | 0.0            | !Ziegler2005         |
| 452. | C6H5    | +N-C4H3        | =A2       |         |       | 1.510E+75-17.845                 | 165.69         | !Richter&Howard2002  |
| 453. | C6H5    | +N-C4H3        | =A2-2     | +H      |       | 1.840E+72-16.129                 | 241.14         | !Richter&Howard2002  |
| 454. | C6H5    | +C4H4          | =A2       | +H      |       | 9.900E+30 -5.07                  | 88.29          | !Appel2000           |
| 455. | C6H5    | +C4H4          | =A1C2H    | +C2H3   |       | 3.200E+11 0.0                    | 5.65           | !Harris1988          |
| 456. | C6H5    | +C4H6          | =A1C2H3   | +C2H3   |       | 3.200E+11 0.0                    | 7.95           | !Harris1988          |
| 457. | C6H5    | +C5H6          | =C5H5     | +C6H6   |       | 1.000E-01 4.0                    | 0.0            | !Zhong&Bozzell11998  |
| 458. | C6H5    | +C6H5          | =P2       |         |       | 5.940E+42 -8.83                  | 57.87          | !Richter&Howard2002  |
| 459. | C6H5    | +C6H5          | =P2-      | +H      |       | 8.600E+13 0.50                   | 145.69         | Wang&Frenklach1997   |
| 460. | L-C6H6  | +H             | =N-C6H7   |         |       | 1.500E+16 -1.69                  | 6.69           | Wang&Frenklach1994   |
| 461. | L-C6H6  | +H             | =C-C6H7   |         |       | 4.700E+27 -6.11                  | 15.90          | Wang&Frenklach1994   |
| 462. | L-C6H6  | +H             | =C6H6     | +H      |       | 8.700E+16 -1.34                  | 14.64<br>51.01 | Wang&Frenklach1994   |
| 403. | L-C6H6  | +11            | =N-C6H5   | + 112   |       | 0.050E+05 2.53                   | 51.21<br>20 CC | Wang&Frenklach1997   |
| 404. | D-COHO  | +n<br>, u      | =1-C6H3   | +112    |       | 3.330E+03 2.55                   | 12 /           | Mobol 1997           |
| 405. | COHO    | +n<br>+U       | =C-C6H7   | + 11-2  |       | 5.200E+13 0.0                    | 70.2           | IMebel1997           |
| 400. | CONO    | +1CU2          | -C748     | +11Z    |       | 1 200E+14 0 0                    | ,0.2           | IBöbland1989         |
| 468  | Сене    | +3CH2          | =C7H8     |         |       | 5 000E+13 0 0                    | 37 50          | Böhland1989          |
| 469  | Сбне    | +CH3           | =C6H5     | +CH4    |       | 2.000E+12 0.0                    | 62.7           | Zhang1989            |
| 470. | C6H6    | +C2H           | =A1C2H    | +H      |       | 5.000E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 471. | C6H6    | +C2H3          | =A1C2H3   | +H      |       | 0.800E+12 0.0                    | 26.78          | !Fahr&Stein1989      |
| 472. | C6H6    | +C2H3          | =C6H5     | +C2H4   |       | 6.000E+11 0.0                    | 54.3           | !Ziegler2005         |
| 473. | C6H6    | +C2H5          | =C6H5     | +C2H6   |       | 6.000E+11 0.0                    | 62.7           | !Zhanq1989           |
| 474. | C6H6    | +C3H3          | =C6H5     | +PC3H4  |       | 6.300E+11 0.0                    | 83.6           | !Ziegler2005         |
| 475. | C6H6    | +I-C4H3        | =C6H5     | +C4H4   |       | 6.300E+11 0.0                    | 83.6           | !Ziegler2005         |
| 476. | C6H6    | +C6H5          | =P2       | +H      |       | 9.500E+75-18.90                  | 165.15         | !0.5 Park1999        |
| 477. | N-C6H7  | =C-C6H7        |           |         |       | 3.600E+27 -7.54                  | 24.27          | !Wang&Frenklach1994  |
| 478. | N-C6H7  | =C6H6          | +H        |         |       | 8.800E+24 -4.86                  | 56.07          | !Wang&Frenklach1994  |
| 479. | N-C6H7  | +H             | =I-C6H7   | +H      |       | 1.600E+42 -8.18                  | 91.22          | !Wang&Frenklach1997  |
| 480. | N-C6H7  | +H             | =L-C6H8   |         |       | 6.700E+65-15.64                  | 97.07          | !Wang&Frenklach1997  |
| 481. | N-C6H7  | +H             | =L-C6H6   | +H2     |       | 1.500E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 482. | I-C6H7  | +H             | =L-C6H8   |         |       | 1.400E+55-12.32                  | 80.76          | !Wang&Frenklach1997  |
| 483. | I-C6H7  | +H             | =L-C6H6   | +H2     |       | 3.000E+13 0.0                    | 0.0            | !Wang&Frenklach1997  |
| 484. | C-C6H7  | =C5H4CH3       |           |         |       | 5.500E+10 0.0                    | 117.0          | !Ritter1990          |
| 485. | C-C6H7  | +H             | =C6H6     | +H2     |       | 1.000E+13 0.0                    | 0.0            | !Louw&Lucas1973      |
| 486. | C-C6H7  | +H             | =C6H813   |         |       | 6.000E+13 0.0                    | 0.0            | !Berho1999           |
| 487. | C-C6H7  | +H             | =C6H814   |         |       | 6.000E+13 0.0                    | 0.0            | !Berho1999           |
| 488. | C-C6H7  | +CH3           | =C6H6     | +CH4    |       | 3.000E+12 -0.32                  | 0.4            | !DaCosta2003         |
| 489. | C-C6H7  | +C6H5          | =C6H6     | +C6H6   |       | 1.000E+12 0.0                    | 0.0            | !Louw&Lucas1973      |
| 490. | C-C6H7  | +C-C6H7        | =C6H813   | +C6H6   |       | 1.940E+15 -1.0                   | 0.0            | !Berho1999           |
| 491. | C-C6H7  | +C-C6H7        | =C6H814   | +C6H6   |       | 1.670E+15 -1.0                   | 0.0            | !Berho1999           |
| 492. | C5H4CH3 | =C6H6          | +H        |         |       | 3.000E+13 0.0                    | 215.3          | !Ziegler2005         |

| 493.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C5H5CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 494.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Ritter1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 495.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6H814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C-C6H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | 2.800E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 9.45                                                                                                                                                                                                                                                                                                                                                              | !Roy1998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 496.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6H814                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C6H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.050E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 178.62                                                                                                                                                                                                                                                                                                                                                            | Ellis&Frey1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 497.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6H813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C0H0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +HZ<br>-C-C647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + 112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 4.700E+13<br>1 100E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.5                                                                                                                                    | 257.75                                                                                                                                                                                                                                                                                                                                                            | Dayma 2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С6Н813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C-C6H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 2 000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 30 5                                                                                                                                                                                                                                                                                                                                                              | Dayma2003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-C6H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C6H813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0 00117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 7.900E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 125.4                                                                                                                                                                                                                                                                                                                                                             | !Weissman1989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 501.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-C6H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =N-C6H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | 1.600E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5                                                                                                                                    | 41.0                                                                                                                                                                                                                                                                                                                                                              | !Zieqler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 502.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L-C6H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =N-C6H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 4.000E+00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.5                                                                                                                                    | 48.9                                                                                                                                                                                                                                                                                                                                                              | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 503.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5H5CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C5H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | 2.200E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.77                                                                                                                                   | 12.5                                                                                                                                                                                                                                                                                                                                                              | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 504.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5H5CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C5H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 5.4                                                                                                                                                                                                                                                                                                                                                               | !Ritter1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 505.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C5H5CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C5H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 3.100E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 23.0                                                                                                                                                                                                                                                                                                                                                              | !Ziegler2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 506.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C-C6H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =1-C6H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 5.010E+16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 369.0                                                                                                                                                                                                                                                                                                                                                             | !Tsang1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 507.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1-C6H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =AC3H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +N-C3H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 7.940E+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 296.0                                                                                                                                                                                                                                                                                                                                                             | !Tsang1978                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0. C/ RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ACIIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ********                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 508                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | С7Н7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C5H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 6 000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                    | 293 0                                                                                                                                                                                                                                                                                                                                                             | Colket&Seerv1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 509.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -05115<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | =C7H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 2.590E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | Baulch1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 510.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +1CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =A1C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 2.400E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Lindstedt1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 511.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +3CH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =A1C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 7.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 37.5                                                                                                                                                                                                                                                                                                                                                              | !Lindstedt1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 512.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =A1C2H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.190E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                              | !Brand&Troe1990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 513.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =C9H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 1.000E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 29.29                                                                                                                                                                                                                                                                                                                                                             | !Marinov1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 514.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C3H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =C10H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.000E+10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Marinov1996                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 515.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =BENZYLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.190E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.92                                                                                                                                                                                                                                                                                                                                                              | !Yu&Lin1993                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 516.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C6H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >BENZYLB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                     | 1.200E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 66.70                                                                                                                                                                                                                                                                                                                                                             | !Richter&Howard2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 517.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C6H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | >ACH3CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     | 1.070E+65-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -15.64                                                                                                                                 | 95.06                                                                                                                                                                                                                                                                                                                                                             | !estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C6H5+CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S=C7H8/Rid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | chter&Howa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ard2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     | 1 0005 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 518.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C'/H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C6H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 1.200E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 21.54                                                                                                                                                                                                                                                                                                                                                             | Endee1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 519.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =C/H/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +HZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                     | 1.200E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 34.46                                                                                                                                                                                                                                                                                                                                                             | Logtimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 520.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | С/по<br>Сбнатн-С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +n<br>'6H5±H2/M4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | >C0H4CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 6.000E+08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                                                                                                                                    | 10.2                                                                                                                                                                                                                                                                                                                                                              | lescimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C7H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +CH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                     | 3 160E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0                                                                                                                                    | 39 75                                                                                                                                                                                                                                                                                                                                                             | Emdee1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 522.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C6H5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +C6H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 2.100E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 18.41                                                                                                                                                                                                                                                                                                                                                             | !Emdee1992                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 523.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C7H8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +C2H3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =C7H7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +C2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     | 3.980E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 33.47                                                                                                                                                                                                                                                                                                                                                             | !Zhang&Mckinnon1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | *****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. C8 RE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ******                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | A1C2H-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ⊥H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ⊥M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | =A1C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M(2)                                | 1 000 - 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0                                                                                                                                    | 0 0                                                                                                                                                                                                                                                                                                                                                               | !Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ALCZII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 111(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1110211                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +M (Z)                              | 1.00005+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 524.<br>LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500E+75-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 29.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M (2)                              | 1.0001+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 524.<br>LOW<br>TROE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.6<br>1.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500E+75-10<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.30 2<br>584.9 (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29.29<br>5113.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +M(2)                               | 1.0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 524.<br>LOW<br>TROE<br>525.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6<br>1.0<br>A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500E+75-16<br>0.1<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.30 2<br>584.9 (<br>+M(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.29<br>6113.0<br>=A1C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +M(2)                               | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>A1C2H*<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500E+75-16<br>0.1<br>+H<br>500E+75-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.30<br>584.9<br>+M(2)<br>5.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +M(2)                               | 1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>A1C2H*<br>6.6<br>1.0<br>A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 500E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>= 2-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)                               | 1.000E+14<br>1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                               | !Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>A1C2H*<br>6.6<br>1.0<br>A1C2H*<br>A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 500E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.30 2<br>584.9 4<br>+M(2)<br>5.30 2<br>584.9 4<br>=A2-1<br>=A1(2H)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 22<br>29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +M(2)                               | 1.000E+14<br>1.000E+14<br>2.000E+72-<br>4.800E+29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>-17.74<br>-4.59                                                                                                                 | 0.0<br>153.14<br>108.79                                                                                                                                                                                                                                                                                                                                           | <pre>!Wang&amp;Frenklach1997 !Wang&amp;Frenklach1994 !Wang&amp;Frenklach1994</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>A1C2H*<br>6.6<br>1.0<br>A1C2H*<br>A1C2H*<br>A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 500E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.30 2<br>+M(2)<br>5.30 2<br>5.30 2<br>=A2-1<br>=A1C2H)2<br>=A2T1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 29<br>29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0<br>-17.74<br>-4.59<br>-14.54                                                                                                       | 0.0<br>153.14<br>108.79<br>218.42                                                                                                                                                                                                                                                                                                                                 | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1C2H*<br>6.6<br>1.0<br>A1C2H*<br>6.6<br>1.0<br>A1C2H*<br>A1C2H*<br>A1C2H*<br>A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 500E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C6H6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.30 2<br>584.9 (<br>+M(2)<br>5.30 2<br>584.9 (<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -H<br>29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)                               | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0                                                                                                | 0.0<br>153.14<br>108.79<br>218.42<br>18.03                                                                                                                                                                                                                                                                                                                        | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H<br>500E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C6H6<br>+A1C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0                                                                                         | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68                                                                                                                                                                                                                                                                                                               | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002<br>!Park1999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | AIC2H*<br>6.6<br>1.0<br>AIC2H*<br>6.6<br>1.0<br>AIC2H*<br>AIC2H*<br>AIC2H*<br>AIC2H*<br>AIC2H*<br>AIC2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C6H6<br>+A1C2H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +M(2)                               | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69                                                                               | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39                                                                                                                                                                                                                                                                                                      | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002<br>!Park1999<br>!Wang&Frenklach1994                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AIC2H4<br>6.6<br>1.0<br>AIC2H4<br>AIC2H4<br>AIC2H4<br>AIC2H4<br>AIC2H4<br>AIC2H4<br>AIC2H4<br>AIC2H4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H4<br>+C6H6<br>+A1C2H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=I-A1C2H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>6113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +M(2)                               | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69                                                                     | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39                                                                                                                                                                                                                                                                                             | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002<br>!Park1999<br>!Wang&Frenklach1994<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.<br>533.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1000E+75-16<br>0.1<br>+H<br>500E+75-16<br>0.1<br>+C2H2<br>+C2H2<br>+C2H2<br>+C2H2<br>+C6H6<br>+A1C2H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.30<br>5.84.9<br>+M(2)<br>5.30<br>5.84.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=I-A1C2H3<br>=A1C2H*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)                               | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0                                                              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95                                                                                                                                                                                                                                                                                    | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002<br>!Park1999<br>!Wang&Frenklach1994<br>!Wang&Frenklach1997<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.<br>533.<br>533.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C2H2<br>=A2C1<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C                                                                                                                                                                                                             | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0                                                       | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95                                                                                                                                                                                                                                                                           | !Wang&Frenklach1997<br>!Wang&Frenklach1994<br>!Wang&Frenklach1994<br>!Richter&Howard2002<br>!Park1999<br>!Wang&Frenklach1994<br>!Wang&Frenklach1997<br>!Wang&Frenklach1997<br>!Wang&Frenklach1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.<br>533.<br>534.<br>535.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A1C2H2<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C1<br>=A2C2H2<br>=A2C1<br>=A2C2H2<br>=A2C1<br>=A2C2H2<br>=A2C1<br>=A2C2H2<br>=A2C1<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2C2H2<br>=A2                                                                                                                                                                                                           | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0                                         | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00                                                                                                                                                                                                                                                                  | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.<br>533.<br>534.<br>535.<br>535.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H2<br>=A1C2H                                                                                                                                                                                                                             | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>-H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0                                                                                                                                                                                                                                                           | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>532.<br>533.<br>534.<br>535.<br>536.<br>536.<br>537.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0                                                                                                                                                                                                                                           | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>532.<br>533.<br>534.<br>535.<br>536.<br>537.<br>538.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>22<br>+H2<br>+CH4<br>+H<br>+H<br>24<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>18.03<br>0.0                                                                                                                                                                                                                                    | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>532.<br>533.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H                                                                                                                                                                                                                             | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)                               | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 0.0\\ 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08                                                                                                                                                                                                                                 | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>531.<br>533.<br>533.<br>533.<br>533.<br>533.<br>533.<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +M(2)                               | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64-<br>9.550E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0                                                                                                                                                                                                                 | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>531.<br>533.<br>533.<br>533.<br>533.<br>533.<br>533.<br>533                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>+H2<br>22<br>+H2<br>+H2<br>+H2<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +M(2)<br>+M(2)                      | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.0\\ 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0                                                                                                                                                                                                          | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>533.<br>533.<br>534.<br>535.<br>538.<br>539.<br>540.<br>541.<br>LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M(2)<br>+M(2)<br>+M(2)             | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.0\\ 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0                                                                                                                                                                                                          | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.<br>540.<br>541.<br>LOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H)2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+CH4<br>+H<br>+H2<br>22<br>+H2<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M(2)<br>+M(2)<br>+M(2)             | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$          | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0                                                                                                                                                                                                          | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>533.<br>533.<br>534.<br>535.<br>534.<br>535.<br>539.<br>541.<br>542.<br>543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | 111       600E+75-1(       0.1       +H       500E+75-1(       0.1       +C2H2       +C2H2       +C2H2       +C6H6       +A1C2H       +H       +H       +H       +H       +H       +H       +H       +C13       +C2H       +C6H5       2+H       +C6H5       2+H       +C2H2       +CH3       +C2H2       +H       +C6H5       2+H       +C00E+75-10       0.1       +CH3                                                                                                                                                                                                                                                                                            | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H) 2<br>=A3<br>=A4<br>=N-A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1                                                                                                                                                                                                                             | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>22+H<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>23,29<br>5113.0<br>+H<br>24,29<br>5113.0<br>+H<br>24,29<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H<br>5113.0<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51<br>2.500E+14<br>2.500E+14<br>2.500E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+13<br>1.000E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>0.0                                                                                                                                                                                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.<br>540.<br>541.<br>LOW<br>TROE<br>543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | 111         600E+75-1(         0.1         +H         500E+75-1(         0.1         +C2H2         +C2H2         +C2H2         +C6H6         +A1C2H         +H         +H         +H         +C6H5         +H         +C6H5         +H         +C6H5         +H         +C6H5         +H         +C6H5         +H         +C0E+75-16         0.1         +CH3         +C2H2                                                                                                                                                                                                                                                                                          | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H) 2<br>=A3<br>=A4<br>=N-A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H                                                                                                                                                                           | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>22+H<br>+H2<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>3.000E+13<br>1.000E+13<br>2.100E+15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>0.0<br>0.0<br>25.11                                                                                                                                                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<!--Wang&Frenklach1997</pre--></pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>533.<br>533.<br>533.<br>534.<br>535.<br>539.<br>540.<br>541.<br>LOW<br>TROE<br>543.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | 111         600E+75-16         0.1         +H         500E+75-16         0.1         +C2H2         +C2H2         +C2H2         +C6H6         +A1C2H         +H         +H         +H         +C4H3         +C2H4         +C6H5         +H         +H         +H         +C6H5         +H         +C6H5         +H         +C0E+75-16         0.1         +CH3         +C2H2         =I-A1C2H2                                                                                                                                                                                                                                                                        | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4                                                                                                                                                                                                                                | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>22+H<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>2.500E+13<br>3.000E+13<br>1.000E+13<br>2.100E+15<br>3.800E+37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>63.00<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>533.<br>533.<br>534.<br>535.<br>539.<br>541.<br>542.<br>544.<br>545.<br>545.<br>545.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>2.500E+13<br>3.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>4.200E+25<br>3.000E+13<br>3.100E+14<br>5.000E+13<br>3.100E+15<br>3.800E+37<br>1.300E+44<br>5.200E+45<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+37<br>1.300E+44<br>5.200E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15<br>3.800E+15 | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.5<br>5.                                          | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<!--Wang&Frenklach1997</pre--></pre>                                                                                                                                                                                                                                                                                                                                                                     |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>530.<br>531.<br>533.<br>533.<br>533.<br>533.<br>534.<br>535.<br>539.<br>541.<br>542.<br>544.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>N-AlC2H2<br>N-AlC2H2<br>N-AlC2H2<br>N-AlC2H2<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>AlC2H3*<br>A                                                                                                                           | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4                                                                                                                                                                                                                              | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>+H2<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.210E+14<br>1.200E+25<br>2.100E+13<br>3.000E+13<br>1.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>51.21<br>20.05                                                                               | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                                                                               |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>531.<br>532.<br>533.<br>534.<br>535.<br>537.<br>533.<br>534.<br>535.<br>539.<br>540.<br>541.<br>542.<br>LOW<br>TROE<br>543.<br>544.<br>544.<br>545.<br>544.<br>545.<br>544.<br>545.<br>544.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545.<br>545. | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>584.9<br>+M(2)<br>5.30<br>584.9<br>=A2-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H<br>+H2<br>+CH4<br>+H<br>+H2<br>22+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>+H<br>22+H<br>29<br>5113.0<br>+H<br>+H<br>22<br>24<br>+H<br>24<br>24<br>+H<br>25<br>26<br>+H<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.210E+14<br>1.210E+14<br>1.200E+25<br>2.100E+13<br>3.000E+13<br>1.000E+13<br>3.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0<br>-17.74<br>-4.59<br>-14.54<br>0.0<br>0.0<br>-11.69<br>-11.69<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.              | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>51.21<br>38.66<br>6.95                                                                                                                         | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                                                                                                       |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>529.<br>531.<br>532.<br>533.<br>534.<br>535.<br>533.<br>535.<br>537.<br>538.<br>539.<br>534.<br>539.<br>540.<br>542.<br>LOW<br>TROE<br>543.<br>544.<br>545.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>545.<br>546.<br>546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32<br>3.32 | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+CH4<br>+H<br>+H2<br>22+H<br>+H<br>+H2<br>22+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>+H<br>22+H<br>23<br>29<br>5113.0<br>+H<br>+H<br>24<br>24<br>+H<br>24<br>24<br>+H<br>25<br>26<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27<br>27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)<br>+M(2)<br>+M(2)<br>+H       | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.200E+25<br>2.100E+13<br>3.000E+13<br>1.000E+13<br>3.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$          | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46                                                                              | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997</pre>                                                                                                                                                                   |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>530.<br>531.<br>532.<br>533.<br>534.<br>535.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>539.<br>540.<br>541.<br>542.<br>545.<br>545.<br>546.<br>545.<br>546.<br>547.<br>548.<br>546.<br>547.<br>548.<br>548.<br>548.<br>548.<br>548.<br>548.<br>548.<br>548                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>2.42<br>-1<br>=A1C2H) 2<br>=A2-1<br>=A1C2H) 2<br>=A2-1<br>=A1C2H) 2<br>=A2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H2<br>22+H<br>+H<br>+H<br>22+H<br>22+H<br>+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H    | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+14<br>1.200E+14<br>1.200E+15<br>1.200E+14<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+13<br>1.200E+14<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+1 | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$          | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.24                                                                     | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Marinov1996<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Emdee1992</pre>                                                                                                                                                                                                            |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>530.<br>532.<br>533.<br>532.<br>533.<br>534.<br>535.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>537.<br>538.<br>539.<br>540.<br>542.<br>LOW<br>TROE<br>543.<br>544.<br>544.<br>545.<br>544.<br>551.<br>552.<br>552.<br>552.<br>545.<br>545.<br>545.<br>552.<br>552                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>2.42<br>-1<br>=A1C2H) 2<br>=A2-1<br>=A1C2H) 2<br>=A2-1<br>=A1C2H) 2<br>=A2<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+13<br>3.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>1.200E+13<br>3.200E+13<br>3.200E+14<br>8.500E+13<br>3.200E+14<br>8.500E+14<br>1.200E+13<br>3.200E+14<br>1.200E+13<br>3.200E+14<br>1.200E+13<br>3.200E+14<br>1.200E+13<br>3.200E+14<br>1.200E+13<br>3.200E+14<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+13<br>1.200E+14<br>1.200E+14<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+15<br>1.200E+1 | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>25.11<br>477.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79                                                           | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Emdee1992<br/>!Zhang&amp;Mckinnon1995<br/>!Clark&amp;Price1970</pre>                                                                                                                                            |
| 524.<br>LOW<br>TROE<br>525.<br>LOW<br>TROE<br>526.<br>527.<br>528.<br>530.<br>532.<br>533.<br>532.<br>533.<br>534.<br>535.<br>533.<br>534.<br>535.<br>538.<br>539.<br>538.<br>539.<br>533.<br>534.<br>538.<br>538.<br>538.<br>538.<br>538.<br>538.<br>538.<br>538                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>3.32<br>3.32<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34<br>3.34 | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+CH4<br>+H<br>+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H<br>22+H | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+14<br>5.000E+13<br>3.30E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>1.200E+13<br>3.010E+12<br>7.460E+13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} 0.0\\ 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79<br>0.33                                                            | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Endee1992<br/>!Zhang&amp;Mckinnon1995<br/>!Clark&amp;Price1990</pre>                                          |
| 524.<br>LOW TROE<br>525.<br>LOW TROE<br>526.<br>527.<br>528.<br>530.<br>532.<br>533.<br>534.<br>535.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.<br>540.<br>541.<br>542.<br>LOW TROE<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.30<br>5.30<br>2.42<br>-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=I-A1C2H2<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H4<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H3<br>=A1C2H                                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>3.200E+13<br>3.200E+13<br>3.200E+13<br>3.30E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.980E+02<br>3.980E+02<br>3.000E+14<br>3.000E+15<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.000E+13<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02<br>3.980E+02  | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79<br>0.33<br>13.05                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Endee1992<br/>!Zhang&amp;Mckinnon1995<br/>!Clark&amp;Price1970<br/>!Brand&amp;Troe1990<br/>!Marinov1996</pre>                             |
| 524.<br>LOW TROE<br>525.<br>LOW TROE<br>526.<br>527.<br>528.<br>530.<br>532.<br>533.<br>534.<br>535.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.<br>534.<br>539.<br>534.<br>535.<br>539.<br>540.<br>541.<br>542.<br>544.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>546.<br>544.<br>544                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>Al | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>-A2-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=I-A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H                                                                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>+H<br>2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+13<br>3.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>3.200E+13<br>3.200E+13<br>3.200E+13<br>3.30E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 0.0\\ 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$    | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79<br>0.33<br>13.05                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Endee1992<br/>!Zhang&amp;Mckinnon1995<br/>!Clark&amp;Price1970<br/>!Brand&amp;Troe1990<br/>!Marinov1996</pre>                             |
| 524.<br>LOW TROE<br>525.<br>LOW TROE<br>526.<br>527.<br>528.<br>530.<br>532.<br>533.<br>534.<br>535.<br>534.<br>535.<br>536.<br>537.<br>538.<br>539.<br>540.<br>541.<br>542.<br>LOW TROE<br>543.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC2H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC3H<br>AlC | <pre>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10<br/>10</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.32<br>-A2-1<br>=A1C2H) 2<br>=A2T1<br>=A3<br>=A4<br>=N-A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A1C2H:<br>=A                                                                                                                                                                                                                       | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>2<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72-<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.000E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>1.000E+14<br>5.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>1.200E+13<br>3.010E+12<br>7.460E+13<br>3.980E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$          | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>18.03<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79<br>0.33<br>13.05                                                   | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Endee1992<br/>!Zhang&amp;Mckinnon1995<br/>!Clark&amp;Price1970<br/>!Brand&amp;Troe1990<br/>!Marinov1996</pre> |
| 524.<br>LOW TROE<br>525.<br>LOW TROE<br>526.<br>527.<br>528.<br>530.<br>531.<br>532.<br>533.<br>534.<br>535.<br>537.<br>538.<br>539.<br>534.<br>535.<br>539.<br>534.<br>542.<br>LOW TROE<br>543.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.<br>544.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.6<br>1.0<br>AlC2H*<br>6.6<br>1.0<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H*<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC2H<br>AlC | 111         600E+75-1(         0.1         +H         500E+75-1(         0.1         +C2H2         +C2H2         +C2H2         +C2H2         +C2H2         +C6H6         +A1C2H         +H         +H         +H         +C6H5         +H         +C2H2         +H         +C2H2         +H         +C2H2         +H         +C2H2         =I-A1C2H2         =N-A1C2H3         +H         +H | 5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>5.30<br>2.30<br>5.30<br>2.42<br>1.41C2H) 2<br>=A2T1<br>=A1C2H) 2<br>=A2T1<br>=A1C2H<br>=A1C2H<br>=A1C2H*<br>=A1C2H*<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=I-A1C2H<br>=A1C2H<br>=I-A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H<br>=A1C2H                                                                                                                                                                      | 29.29<br>5113.0<br>=A1C2H<br>29.29<br>5113.0<br>+H<br>+H<br>+H<br>+H<br>22<br>+H2<br>+H2<br>+H2<br>+H2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +M(2)<br>+M(2)<br>+M(2)<br>+H<br>+H | 1.000E+14<br>2.000E+72<br>4.800E+29<br>5.200E+64<br>9.550E+11<br>8.510E+11<br>1.200E+51-<br>2.500E+14<br>2.500E+14<br>1.670E+12<br>5.00E+13<br>9.550E+11<br>1.210E+14<br>1.200E+25<br>2.100E+15<br>3.000E+13<br>2.100E+15<br>3.800E+37<br>1.300E+44<br>6.650E+06<br>3.330E+05<br>2.500E+14<br>8.000E+13<br>1.200E+13<br>3.980E+02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} 0.0\\ -17.74\\ -4.59\\ -14.54\\ 0.0\\ 0.0\\ -11.69\\ -11.69\\ -11.69\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 0.0<br>153.14<br>108.79<br>218.42<br>18.03<br>16.68<br>72.39<br>72.39<br>66.95<br>66.95<br>63.00<br>0.0<br>127.62<br>20.08<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.62<br>20.08<br>0.0<br>0.0<br>127.84<br>524.70<br>51.21<br>38.66<br>66.95<br>34.46<br>21.34<br>267.79<br>0.33<br>13.05                                  | <pre>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Wang&amp;Frenklach1994<br/>!Richter&amp;Howard2002<br/>!Park1999<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Wang&amp;Frenklach1997<br/>!Endee1992<br/>!Clark&amp;Price1970<br/>!Brand&amp;Troe1990<br/>!Marinov1996</pre>                                           |

| 556.        | C9H7               | +CH3        | =indenCH3         |            |       | 5.000E+12  | 0.0    | 0.0             | !Ziegler2005           |
|-------------|--------------------|-------------|-------------------|------------|-------|------------|--------|-----------------|------------------------|
| 557.        | C9H7               | +C5H5       | >A3               | +H         | +H    | 5.000E+09  | 0.0    | 0.0             | !estimated Marinov1996 |
| 558.        | C9H8               | +H          | =C9H7             | +H2        |       | 2.190E+08  | 1.77   | 12.55           | !Marinov1996           |
| 559.        | С9Н8               | +CH3        | =C9H7             | +CH4       |       | 3.100E+11  | 0.0    | 23.0            | !Ziegler2005           |
| 560.        | С9Н8               | +C2H3       | =C9H7             | +C2H4      |       | 4.400E+00  | 3.5    | 17.1            | !Ziegler2005           |
| 561.        | С9Н8               | +C2H5       | =C9H7             | +C2H6      |       | 4.400E+00  | 3.5    | 17.1            | !Ziegler2005           |
| 562.        | С9Н8               | +C3H3       | =C9H7             | +PC3H4     |       | 1.600E+11  | 0.0    | 63.1            | !Ziegler2005           |
| ****        | ******             | ******      | ******            | * * *      |       |            |        |                 |                        |
| ****        | 11. C10            | REACTIONS   |                   |            |       |            |        |                 |                        |
| ****        | *******            | ******      | *******           | * * *      |       |            |        |                 |                        |
| 563.        | A1C2H) 2           | +H          | =A2-1             |            |       | 4.000E+75- | -18.06 | 144.35          | !Appel2000             |
| 564.        | A1C2H) 2           | +H          | =A2T1             | +H         |       | 2.700E+76- | 17.32  | 243.52          | !Wang&Frenklach1994    |
| 565.        | A2T1               | +H          | =A2-1             |            |       | 5.900E+61- | -15.42 | 152.72          | !Wang&Frenklach1994    |
| 566.        | A2T1               | +C-C6H4     | =A2C6H4-1         |            |       | 4.580E+41  | -8.73  | 53.31           | !Richter&Howard2002    |
| 567.        | A2T1               | +C-C6H4     | =FLTHN            |            |       | 6.500E+39  | -7.56  | 114.06          | !Richter&Howard2002    |
| 568         | A2T1               | +C-C6H4     | =A3R5             |            |       | 5.120E+60- | -13.07 | 204.94          | !Richter&Howard2002    |
| 569.        | A2T1               | +C-C6H4     | =A31.R5           |            |       | 7.850E+55- | -11.98 | 183.23          | !Richter&Howard2002    |
| 570         | A2T2               | +C-C6H4     | -A2C6H4-2         |            |       | 4 580E+41  | -8 73  | 53 31           | IRichter&Howard2002    |
| 571         | A2T2               | +C-C6H4     | -FLTHN            |            |       | 6 500E+39  | -7 56  | 114 06          | Richter&Howard2002     |
| 572         | A212<br>A2T2       | +C-C6H4     | -2385             |            |       | 5 120E+60- | -13 07 | 204 94          | Richter&Howard2002     |
| 572.        | 7212               | +C-C6H4     | =A31.05           |            |       | 7 850E+55- | 11 98  | 193 23          | PichtersHoward2002     |
| 573.        | A212               | +C-C0II4    | =A3LK3            | + 112      |       | 3 230E+07  | 2 095  | 66 29           | Pichter&Howard2002     |
| 575         | 72                 | - U         | -A2 2             | - U2       |       | 3.230E+07  | 2.095  | 66 29           | Pichtors Howard 2002   |
| 575.        | AZ<br>AO           | +n<br>. II  | =AZ - Z           | +112       |       | 5.230E+07  | 2.095  | 00.29           | Richter & Howard 2002  |
| 576.        | AZ<br>NO           | +n<br>. aug | =CIUH9            | . 0114     |       | 5.000E+14  | 0.0    | 20.92           | 1.Dichters Herendooo   |
| 577.        | AZ<br>NO           | +CH3        | =A2-1             | +CH4       |       | 2.000E+12  | 0.0    | 63.01           | Richter&Howard2002     |
| 5/8.        | AZ<br>NO           | +CH3        | =AZ-Z             | +CH4       |       | 2.000E+12  | 0.0    | 63.UI           | !RICHLEP&HOWard2002    |
| 5/9.        | AZ<br>NO           | +C2H        | =A2C2H-1          | +H         |       | 5.000E+13  | 0.0    | 0.0             | Wang&Frenklach1997     |
| 580.        | AZ<br>NO           | +C2H        | =A2C2H-2          | +H         |       | 5.000E+13  | 0.0    | 0.0             | Wang&Frenklach1997     |
| 581.        | A2                 | +C2H3       | =A2C2H3-2         | +H         |       | 7.940E+11  | 0.0    | 26.77           | !Richter&Howard2002    |
| 582.        | A2                 | +C6H5       | >F'L'I'HN         | +H2        | +H    | 8.510E+11  | 0.0    | 16.68           | !Park1999              |
| 583.        | A2                 | +C6H5       | =A2C6H5-2         | +H         |       | 2.220E+83- | -20.79 | 196.20          | !Park1999              |
| 584.        | A2                 | +C7H7       | >BENZNAP          | +H         |       | 1.200E+12  | 0.0    | 66.70           | !Robough&Tsang1986     |
| 585.        | A2                 | +A1C2H*     | =BAA3L            | +H         |       | 8.510E+11  | 0.0    | 16.68           | !Park1999              |
| 586.        | A2                 | +A1C2H*     | =CRYSN            | +H         |       | 8.510E+11  | 0.0    | 16.68           | !Park1999              |
| 587.        | A2                 | +A2-2       | >BKFLTHN          | +H2        | +H    | 4.000E+11  | 0.0    | 16.74           | estimated Marinov1996  |
| 588.        | A2                 | +A2-1       | >BKFLTHN          | +H2        | +H    | 4.000E+11  | 0.0    | 16.74           | estimated Marinov1996! |
| 589.        | A2-1               | +H          | +M(2)             | =A2        | +M(2) | 1.000E+14  | 0.0    | 0.0             | !Wang&Frenklach1997    |
| LOW         | 3.8                | 0E+127-31   | .434 7            | 8.24       |       |            |        |                 |                        |
| TROE        | 0.2                | 122.8       | 478.4 5           | 411.9      |       |            |        |                 |                        |
| 590.        | A2-1               | +H          | =A2-2             | +H         |       | 6.500E+45  | -7.9   | 232.22          | !Wang&Frenklach1997    |
| 591.        | A2-1               | +H          | =A2T1             | +H2        |       | 4.400E-13  | 7.831  | 38.75           | !Richter&Howard2002    |
| 592.        | A2-1               | +CH3        | =A2CH2-1          | +H         |       | 1.700E+36  | -5.91  | 144.90          | !Richter&Howard2002    |
| 593.        | A2-1               | +CH3        | =A2CH3-1          |            |       | 3.050E+52- | -11.80 | 73.89           | !Richter&Howard2002    |
| 594.        | A2-1               | +C2H2       | =A2R5             | +H         |       | 1.800E+33  | -5.91  | 82.43           | !Appel2000             |
| 595.        | A2-1               | +C2H2       | =A2C2H-1          | +H         |       | 9.600E-09  | 6.44   | 36.07           | !Richter&Howard2002    |
| 596.        | A2-1               | +C2H2       | =HA2R5            |            |       | 7.740E+45- | 10.85  | 56.36           | !Richter&Howard2002    |
| 597.        | A2-1               | +C2H4       | =A2R5H2           | +H         |       | 2.510E+12  | 0.0    | 25.94           | !Richter&Howard2002    |
| 598.        | A2-1               | +C4H4       | =A3               | +H         |       | 9.900E+30  | -5.07  | 88.29           | !Appel2000             |
| 599.        | A2-1               | +C5H6       | =A2               | +C5H5      |       | 1.000E-01  | 4.0    | 0.0             | !Richter&Howard2002    |
| 600.        | A2-1               | +C6H5       | >FLTHN            | +H         | +H    | 1.390E+13  | 0.0    | 0.46            | !Park&Lin1997          |
| 601.        | A2-1               | +C6H6       | >FLTHN            | +H2        | +H    | 8.510E+11  | 0.0    | 16.68           | !Park1999              |
| 602.        | A2-1               | +A2-1       | >PERYLN           | +H         | +H    | 1.390E+13  | 0.0    | 0.46            | !Park&Lin1997          |
| 603.        | A2-1               | +A2         | >PERYLN           | +H2        | +H    | 8.510E+11  | 0.0    | 16.68           | !Park1999              |
| 604.        | A2-2               | +H          | +M(2)             | =A2        | +M(2) | 1.000E+14  | 0.0    | 0.0             | !Wang&Frenklach1997    |
| LOW         | 9.5                | 0E+129-32   | .132 7            | 8.66       | . ,   |            |        |                 |                        |
| TROE        | 0.87               | 492.7       | 117.9 5           | 652.0      |       |            |        |                 |                        |
| 605.        | A2-2               | +H          | =A2T2             | +H2        |       | 4.400E-13  | 7.831  | 38.75           | !Richter&Howard2002    |
| 606.        | A2-2               | +CH3        | =A2CH2-2          | +H         |       | 1.700E+36  | -5.91  | 144.90          | !Richter&Howard2002    |
| 607.        | A2-2               | +CH3        | =A2CH3-2          |            |       | 3.050E+52- | 11.80  | 73.89           | !Richter&Howard2002    |
| 608         |                    | +C2H2       | =A2C2H-2          | +H         |       | 1.010E+26  | -3.44  | 84.65           | !Richter&Howard2002    |
| 609         | A2-2               | +C2H2       | =A2C2H2-2         |            |       | 2.770E+46- | -10.90 | 59.46           | !Richter&Howard2002    |
| 610         | A2-2               | +C2H4       | =A2C2H3-2         | +H         |       | 2 510E+12  | 0 0    | 25 94           | Richter&Howard2002     |
| 611         | A2-2               | +C4H2       | = A312            |            |       | 4 670E+06  | 1 787  | 13 65           | Richter&Howard2002     |
| 612         | A2=2               | +C4H4       | - 23              | <b>-</b> Н |       | 9 900E+30  | -5 07  | 88 29           |                        |
| 613         | A2_2<br>A2_2       | +C4H4       | =A3T.             | - U        |       | 9 900E+30  | -5 07  | 88 29           | Lestimated Appel2000   |
| 614         | A2-2<br>A2-2       | +C546       | -A31<br>-A2       | +0545      |       | 1 000E-01  | -3.07  | 00.25           | PichtersHoward2002     |
| 615         | A2-2<br>A2-2       | +CSII0      | -A2<br>- A2CCUE 2 | +C3II3     |       | 1.000E-01  | 4.0    | 20.04           | Pichtors Howard 2002   |
| 010.<br>616 | n⊿ - ∠<br>∆? _ ?   | TCORD       | -720013-2         | - H        |       |            | 20 70  | 29.04<br>196 20 | IDark1999              |
| 617         | n4-4<br>N0-0       | +0707       |                   |            |       | 1 1000-17  | 0.02   | 120.20          | IVustin1992            |
| 01/.<br>610 | n 2 - 2<br>N 2 - 2 | 10/1/       |                   | , U        |       |            | 0.0    | 16 60           | LDark1000              |
| σ18.        | AZ-Z               | +AIC2H      | =BAA3L            | +H         |       | 0.5105+11  | 0.0    | 10.68           | LPark1999              |
| 619.        | AZ-Z               | +AIC2H      | =CKISN            | +H         |       | 0.5105+11  | 0.0    | T0.08           | Parkingyy              |
| 6∠U.        | AZ-Z               | +AZ-1       | >BKFLTHN          | +H         | +H    | 5.000E+12  | 0.0    | 0.0             | Lestimated Marinov1996 |
| 621.        | CIOHA              | +H          | =CIUHIO           |            |       | 1.0008+14  | 0.0    | 0.0             | Marinov1996            |
| 622.        | CIOH10             | +H          | =CTOH9            | +H2        |       | ∠.000±+05  | 2.5    | 10.46           | Marinov1996            |
| 623.        | indenCH3           | +H          | =indylCH3         | +H2        |       | 2.200E+08  | 1.77   | 12.5            | !Ziegler2005           |
| 624.        | indenCH3           | +H          | =C9H8             | +CH3       |       | 1.000E+13  | 0.0    | 5.4             | !∠legler2005           |
| 625.        | indenCH3           | +CH3        | =indylCH3         | +CH4       |       | 3.100E+11  | 0.0    | 23.0            | !Ziegler2005           |
| 626.        | indylCH3           | >A2         | +H                |            |       | 3.000E+13  | 0.0    | 21.3            | !Ziegler2005           |
| 627.        | indylCH3           | H++         | =indenCH3         |            |       | 5.000E+13  | 0.0    | 0.0             | !Ziegler2005           |
| 628.        | ındy⊥CH3           | +H          | =C9H7             | +CH3       |       | ⊥.000E+14  | 0.0    | υ.Ο             | !Ziegier2005           |

\*\*\*\*\* \*\*\*\* 12. C11 REACTIONS \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* 629. A2CH2-1 +H =A2CH3-1 630. A2CH3-1 +H =A2 +CH3 631. A2CH3-1 +H =A2CH2-1 =A2CH3-2 =A2CH2-1 +H2 632. A2CH2-2 +H =A2 +CH3 =A2C2H5 =A2CH2-2 +H2 633. A2CH3-2 +H +CH3 634. A2CH2-2 +CH3 635. A2CH3-2 +H \*\*\*\*\* \*\*\*\* 12. C12 REACTIONS \*\*\*\*\*\*\*\*\*\* 636. A2C2H-1\*+H +M(2) =A2C2H-1 +M(2) LOW 9.50E+129-32.132 78.66 TROE 0.87 492.7 117.9 5652.0 637. A2C2H-1\*+C2H2 =A3-4 637. A2C2H-1\*+C2H2 =A2C2H)2 +H 638. A2C2H-1\*+C2H2 639. A2C2H-1\*+C6H6 =CRYSN +H 640. A2C2H-1\*+A1C2H =BAPYR +H 641. A2C2H-2\*+H 641. A2C2H-2\*+H +M(2) =A2C LOW 3.80E+127-31.434 78.24 =A2C2H-2 + M(2)TROE 0.2 122.8 478.4 5411.9 642. A2C2H-2\*+C2H2 =A3-1 643. A2C2H-2\*+C2H2 =A2C2H)2 +H =A2C2H2-1 644. A2C2H-1 +H 645. A2C2H-1 +H =A2C2H-1\*+H2 646. A2C2H-1 +H =A2R5 +H 647. A2C2H-1 +C2H =A2C2H)2 +H 648. A2C2H-1 +A1C2H\* =BAPYR +H 649. A2C2H-2 +H =A2C2H-2\*+H2 650. A2C2H-2 +H =A2C2H-23+H2 651. A2C2H-2 +C2H =A2C2H)2 +H 652. A2C2H2-1=A2R5 +H =A2C2H-2 +H2 653. A2C2H2-2+H 654. A2C2H2-2=A2C2H-2 +H 655. A2C2H2-2+H =A2C2H3-2 656. A2C2H3-2+H =A2C2H2-2+H2 656. A2C2H3-2+H +H =A2R5-1 +H2 657. A2R5 658. A2R5 +H=A2R5-3 +H2 659. A2R5 +H =A2R5-4 +H2 660. A2R5 +H=A2R5-5 +H2 661. A2R5-1 +H =A2R5 662. A2R5-1 +C2H2 =A2R5E-1 +H 663. A2R5-3 +H =A2R5 664. A2R5-3 +C2H2 =A2R5E-3 +H 665. A2R5-4 +H =A2R5 666. A2R5-4 +C2H2 =A2R5E-4 +H 667. A2R5-5 +H =A2R5 668. A2R5-5 +C2H2 =A2R5E-5 +H 669. BIPHENH =BIPHEN +H =BIPHEN +H2 670. BIPHENH +H 671. BIPHENH =A2R5 +H 672. A2C2H-23+C2H2 =A3L-1 673. A2C2H5 +H >A2C2H3-2+H2 +H 674. HA2R5 +H =A2R5 +H2 675. HA2R5 +H =A2R5H2 +H2 676. A2R5H2 +H =HA2R5 677. A2R5H2 =A2R5 +H2 678. P2 +H =P2-+H2 +H 679. P2-+H=P2 679. P2- +H =P2 680. P2- +C2H2 =A3 \*\*\*\*\* \*\*\*\* 14. C13 REACTIONS \*\*\*\*\*\*\* 681. BENZYLB\*=fluorene+H \*\*\*\* 15. C14 REACTIONS \*\*\*\*\*\*\*\*\*\* 683. A2C2H)2 +H =A3-1 =A3-4 +M(2) 684. A2C2H)2 +H 685. A3-1 +H =A3 +M(2) 86.19 LOW 4.00E+148-37.505 TROE 1.000 1.0 144.9 5632.8 +H 686. A3-1 +H =A3-4 687. A3-1 +C2H2 =A3R5 +H+C2H2 =A3C2H-1 +H +C4H4 =CRYSN +H 688. A3-1 689. A3-1 +C6H5 >BBFLTHN +H 690. A3-1 +H

| 1 0000.14 0 0        | 0 0          | Marrin and 000              |
|----------------------|--------------|-----------------------------|
| 1.000E+14 0.0        | 0.0<br>21 E4 | Marinov1996                 |
| 3 980E+13 0.0        | 13 05        | Marinov1996                 |
| 1 000E+14 0 0        | 13.05        | Marinov1996                 |
| 1.000E+14 0.0        | 21 54        | Marinov1996                 |
| 1.200E+13 0.0        | 21.54        | Marinov1996                 |
| 3 980E+13 0.0        | 13 05        | Marinov1996                 |
| 5.9006+02 5.44       | 13.05        | :Mai 11001996               |
|                      |              |                             |
|                      |              |                             |
| 1.000E+14 0.0        | 0.0          | !Wang&Frenklach1997         |
|                      |              |                             |
| 0 0000.00 10 04      | 152 14       | Were as Breezelel e ab 1007 |
| 2.000E+72-17.74      | 153.14       | Wang&Frenklach1997          |
| 4.800E+29 -4.59      | 108.79       | !Wang&Frenklach1997         |
| 8.510E+11 0.0        | 16.68        | Park1999                    |
| 8.510E+11 0.0        | 16.68        | !Park1999                   |
| 1.000E+14 0.0        | 0.0          | !Wang&Frenklach1997         |
|                      |              |                             |
| 2.000E+72-17.74      | 153.14       | !Wang&Frenklach1997         |
| 4 800E+29 - 4 59     | 108 79       | Wang&Frenklach1997          |
| 3 300E + 51 - 11 72  | 79 08        | Wang&Frenklach1994          |
| $2 = 0.0 \pm 14$ 0 0 | 66 95        | Wangerrenklach1994          |
| 2.500E+14 0.0        | 00.95        | Wang&Frenkiachi997          |
| 1.000E+40 -7.79      | 87.87        | !wang&Frenklach1994         |
| 5.000E+13 0.0        | 0.0          | !Wang&Frenklach1997         |
| 8.510E+11 0.0        | 16.68        | !Park1999                   |
| 2.500E+14 0.0        | 66.95        | !Wang&Frenklach1997         |
| 3.230E+07 2.095      | 66.29        | !Richter&Howard2002         |
| 5.000E+13 0.0        | 0.0          | !Wang&Frenklach1997         |
| 2.200E+50-11.80      | 167.79       | !Wang&Frenklach1994         |
| 1.210E+14 0.0        | 0.0          | !Richter&Howard2002         |
| 2.740E+22 -4.061     | 154.98       | !Richter&Howard2002         |
| 4.800E+10 -0.74      | -31.93       | !Richter&Howard2002         |
| 2 000E+07 2 0        | 25 11        | Marinov1996                 |
| 3 230 E+07 2 095     | 82 85        | IMehel 1997                 |
| 2 220 - 07 2 095     | 66 20        | IMebel1997                  |
| 3.230E+07 2.095      | 66.29        | Mebel1997                   |
| 3.230E+07 2.095      | 66.29        | Mebel1997                   |
| 3.230E+07 2.095      | 66.29        | !Mebel1997                  |
| 1.240E+33 -5.68      | 37.28        | !Richter&Howard2002         |
| 1.120E+26 -3.42      | 87.32        | !Richter&Howard2002         |
| 1.150E+32 -5.37      | 35.40        | !Richter&Howard2002         |
| 1.120E+26 -3.42      | 87.32        | !Richter&Howard2002         |
| 1.150E+32 -5.37      | 35.40        | !Richter&Howard2002         |
| 1.120E+26 -3.42      | 87.32        | !Richter&Howard2002         |
| 1.150E+32 -5.37      | 35.40        | !Richter&Howard2002         |
| 2.500E-09 6.63       | 37.03        | !Richter&Howard2002         |
| 1.300E+16 0.0        | 138.93       | !Richter&Howard2002         |
| 6.020E+12 0.0        | 0.0          | !Richter&Howard2002         |
| 1 000E+13 0 0        | 83 68        | Richter&Howard2002          |
| 4 670E+06 1 787      | 13 65        | IRichter&Howard2002         |
| 8 000E+13 0 0        | 34.46        | IMarinov1996                |
| 1 910E+12 0.0        | 54.40        | IRightors Howard 2002       |
| 1.010E+12 0.0        | 0.0          | Richter Howard 2002         |
| 1.000E+14 0.0        | 0.0          | RichtersHeurad2002          |
| 5.400E+02 3.5        | 21.80        | Richler&Howard2002          |
| 4.700E+13 0.0        | 257.75       | !Richter&Howard2002         |
| 3.230E+07 2.095      | 66.29        | !Richter&Howard2002         |
| 1.170E+33 -5.57      | 36.65        | !Richter&Howard2002         |
| 4.600E+06 1.97       | 30.54        | !Wang&Frenklach1997         |
|                      |              |                             |
|                      |              |                             |
| 4.0008+11 0 0        | 50 21        | Richter&Howard2002          |
| 3 230 E+07 2 095     | 66 29        | IMehel1997                  |
| 5.2501407 2.095      | 00.29        | :MeDerryy/                  |
|                      |              |                             |
|                      |              |                             |
| 2.000E+75-18.06      | 144.35       | !Wang&Frenklach1997         |
| 2.000E+75-18.06      | 144.35       | !Wang&Frenklach1997         |
| 1.000E+14 0.0        | 0.0          | !Wang&Frenklach1997         |
|                      |              |                             |
| 0 2000,50 11 45      | 207 50       | Wangs Franklash1007         |
| 2.300E+30-11.45      | 491.50       | . wanyerrenkidChiyy/        |
| 3.59UE+22 -2.498     | 67.62        | Richler&Howard2002          |
| 1.0108-10 7.06       | 38.53        | Kichter&Howard2002          |
| 9.900E+30 -5.07      | 88.29        | estimated Appel2000         |
| 5.UUUE+12 0.0        | υ.Ο          | estimate Marinov1996        |

| 691. | A3-1               | +C6H6      | >BBFLTHN      | +H2        | +H    | 4.000E+11   | 0.0    | 16.74  | !estimate Marinov1996    |
|------|--------------------|------------|---------------|------------|-------|-------------|--------|--------|--------------------------|
| 692. | A3-2               | +H         | =A3           |            |       | 2.150E+19 - | -1.55  | 7.11   | !Richter&Howard2002      |
| 693. | A3-2               | +C2H2      | =A3C2H-2      | +H         |       | 1.030E+26 · | -3.36  | 93.09  | !Richter&Howard2002      |
| 694. | A3-2               | +C4H4      | =CRYSN        | +H         |       | 9.900E+30 - | -5.07  | 88.29  | !estimated Appel2000     |
| 695. | A3-4               | +H         | +M(2)         | =A3        | +M(2) | 1.000E+14   | 0.0    | 0.0    | !Wang&Frenklach1997      |
| LOW  | 2.1                | .0E+139-34 | 1.803         | /6.99      |       |             |        |        |                          |
| TROE | 1.000              | 1.0        | 171.4 4       | 1992.8     |       |             |        |        |                          |
| 696. | A3-4               | +CH3       | =A3CH2        | +H         |       | 5.000E+13   | 0.0    | 0.0    | !Marinov1996             |
| 697. | A3-4               | +C2H2      | =A3C2H2-4     | 1          |       | 6.500E+53-  | 12.59  | 112.55 | !Wang&Frenklach1994      |
| 698. | A3-4               | +C2H2      | =A3C2H-4      | +H         |       | 3.400E+12   | 0.34   | 82.43  | Wang&Frenklach1994       |
| 699. | A3-4               | +C2H2      | =A4           | +H         |       | 1.870E+07   | 1.787  | 13.65  | !Richter2001             |
| 700. | A3-4               | +C6H6      | >BEPYR        | +H2        | +H    | 8.510E+11   | 0.0    | 16.68  | lestimated Park1999      |
| 701. | A3-9               | +H         | =A3           |            |       | 2.150E+19 · | -1.55  | 7.11   | !Richter&Howard2002      |
| 702. | A3-9               | +C6H5      | >BBFLTHN      | +H         | +H    | 5.000E+12   | 0.0    | 0.0    | !estimate Marinov1996    |
| 703. | A3-9               | +C6H6      | >BBFLTHN      | +H2        | +H    | 4.000E+11   | 0.0    | 16.74  | !estimate Marinov1996    |
| 704. | A3                 | +H         | =A3-1         | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 705. | A3                 | +H         | =A3-2         | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 706. | A3                 | +H         | =A3-4         | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 707. | A3                 | +H         | =A3-9         | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 708. | A3                 | +C2H       | =A3C2H-4      | +H         |       | 5.000E+13   | 0.00   | 0.0    | !Wang&Frenklach1997      |
| 709. | A3                 | +C6H5      | >BEPYR        | +H2        | +H    | 8.510E+11   | 0.0    | 16.68  | estimated Park1999!      |
| 710. | A3L                | =A3        |               |            |       | 7.940E+12   | 0.0    | 271.97 | !Colket&Seery1994        |
| 711. | A3L                | +H         | =A3L-1        | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 712. | A3L                | +H         | =A3L-2        | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 713. | A3L                | +H         | =A3L-9        | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Richter&Howard2002      |
| 714. | A3L-1              | +H         | =A3L          |            |       | 2.150E+19 · | -1.55  | 7.11   | !Richter&Howard2002      |
| 715. | A3L-1              | +C2H2      | =A3LR5        | +H         |       | 3.590E+22 · | -2.498 | 67.62  | !Richter&Howard2002      |
| 716. | A3L-1              | +C2H2      | =A3LE-1       | +H         |       | 1.010E-10   | 7.06   | 38.53  | !Richter&Howard2002      |
| 717. | A3L-1              | +C4H4      | =BAA3L        | +H         |       | 9.900E+30 - | 5.07   | 88.29  | estimated Appel2000      |
| 718. | A3L-2              | +H         | =A3L          |            |       | 2.150E+19 - | 1.55   | 7.11   | !Richter&Howard2002      |
| 719. | A3L-2              | +C2H2      | =A3LE-2       | +H         |       | 1.030E+26 - | -3.36  | 93.09  | !Richter&Howard2002      |
| 720. | A3L-2              | +C4H4      | =BAA3L        | +H         |       | 9.900E+30 - | -5.07  | 88.29  | !estimated Appel2000     |
| 721. | A3L-9              | +H         | =A3L          |            |       | 2.150E+19 · | 1.55   | 7.11   | !Richter&Howard2002      |
| 722. | A3L-9              | +C2H2      | =A3LR5        | +H         |       | 1.870E+07   | 1.787  | 13.65  | !Richter2001             |
| 723. | A2R5E-3            | +H         | =A2R5E34      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 724  | A2R5E-4            | +H         | =A2R5E45      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | Mebel1997                |
| 725  | A2R5E-4            | +H         | =A2R5E43      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 726  | A2R5E-5            | +H         | =A2R5E54      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 727  | A2R5E45            | +C2H2      | =A3R5-7*      | 1112       |       | 1 870E+07   | 1 787  | 13 65  | IRichter2001             |
| 728  | A2R5E54            | +C2H2      | =A3R5-10      | *          |       | 1 870E+07   | 1 787  | 13 65  | IRichter2001             |
| 729  | A2R5E34            | +C2H2      | -A31.85*      |            |       | 1 870E+07   | 1 787  | 13 65  | IRichter2001             |
| 730  | A2R3E34            | +C2H2      | =A3LR5*       |            |       | 1.870E+07   | 1 787  | 13.65  | IRichter2001             |
| 730. | AZROE43            | +CZHZ      | =A3LK3"       | . 110      |       | 1.870E+07   | 2 005  | 13.05  | IMobol 1997              |
| 732. | A2R3E-1<br>A2D5E12 | + C 2 H 2  | -FLTUN-7      | 7112       |       | 1 870E+07   | 1 787  | 13 65  | IPichter2001             |
| **** | *********          | ********   |               | ****       |       | 1.0/05+0/   | 1.707  | 13.05  | RICHCELZOOL              |
| **** | 16 C15             |            |               |            |       |             |        |        |                          |
| **** | ±0. C±3            | ********   | ,<br>******** | ****       |       |             |        |        |                          |
| 777  | 7 2 CTT 2          |            |               | ~ ~ ~ ~    |       | 1 0000.10   | 0 0    | F0 01  | I Dight or superand 2002 |
| 133. | ASCHZ              | >ASCHZR    |               |            |       | 1.000E+13   | 0.0    | 50.21  | Richter&Howard2002       |
| 734. | ASCHZ              | +n<br>. II | =ASCHS        | . 110      |       | 1.000E+14   | 0.0    | 12.05  | Paralastin1007           |
| 735. | A3CH3              | +H         | =A3CH2        | +HZ        |       | 3.980E+02   | 3.44   | 13.05  | Park&Lin1997             |
| 130. | A3CH3              | +H         | =A3           | +CH3       |       | 5./8UE+13   | 0.0    | 33.85  | Park&LIII997             |
| **** |                    |            | ********      | * * * *    |       |             |        |        |                          |
| **** | 17. 016            | REACTIONS  | )<br>         | h ah ah ah |       |             |        |        |                          |
|      |                    |            |               | * * * *    |       | 1 4000 56   | 2 01   | 07 07  |                          |
| 737. | A3C2H-4            | +H         | =A3C2H2-4     | 1          |       | 1.400E+56-  | 13.21  | 87.87  | !Wang&Frenklach1994      |
| /38. | A3C2H-4            | +H         | =A4           | +H         |       | 4.200E+2/ - | -4.25  | 45.61  | Wang&Frenklach1994       |
| 139. | A3C2H2-4           | =A4        | +H            | L . 110    |       | 0.3008+59-1 | 14./0  | 154.40 | wang&rrenkiach1994       |
| 740. | A3C2H-1            | +H         | =A3C2H-1      | *+H2       |       | 3.230E+07   | 2.095  | 66.29  | IMebel1997               |
| 741. | A3C2H-2            | +H         | =A3C2H-2'     | *+H2       |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 742. | A3C2H-1*           | +C2H2      | =CRYSN-4      |            |       | 1.870E+07   | 1.787  | 13.65  | !Kichter2001             |
| 743. | A3C2H-2*           | +C2H2      | =CRYSN-1      |            |       | 5.600E+05   | 2.282  | 13.64  | !Richter&Howard2002      |
| 744. | A3LE-1             | +H         | =A3LE-1P      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 745. | A3LE-2             | +H         | =A3LE-2S      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 746. | A3LE-2             | +H         | =A3LE-2P      | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 747. | A3LE-1P            | +C2H2      | =BAA3L-1      |            |       | 1.870E+07   | 1.787  | 13.65  | !Richter2001             |
| 748. | A3LE-2S            | +C2H2      | =BAA3L-4      |            |       | 1.870E+07   | 1.787  | 13.65  | !Richter2001             |
| 749. | A3LE-2P            | +C2H2      | =A4L*         |            |       | 1.870E+07   | 1.787  | 13.65  | !Richter2001             |
| 750. | A4-1               | +H         | =A4           |            |       | 5.000E+13   | 0.0    | 0.0    | !Richter&Howard2002      |
| 751. | A4-1               | +C2H2      | =A4C2H-1      | +H         |       | 1.190E-09   | 6.78   | 43.81  | !Richter&Howard2002      |
| 752. | A4-1               | +C2H2      | =CPCDA4       | +H         |       | 3.800E+22 - | 2.475  | 70.63  | !Richter&Howard2002      |
| 753. | A4-1               | +C6H5      | >INA4         | +H         | +H    | 5.000E+12   | 0.0    | 0.0    | !estimate Marinov1996    |
| 754. | A4-1               | +C6H6      | >INA4         | +H2        | +H    | 4.000E+11   | 0.0    | 16.74  | !estimate Marinov1996    |
| 755. | A4-2               | +H         | =A4           |            |       | 5.000E+13   | 0.0    | 0.0    | !Richter&Howard2002      |
| 756. | A4-2               | +C2H2      | =A4C2H-2      | +H         |       | 1.260E+29 - | 4.17   | 102.35 | !Richter&Howard2002      |
| 757. | A4-4               | +H         | =A4           |            |       | 5.000E+13   | 0.0    | 0.0    | !Richter&Howard2002      |
| 758. | A4-4               | +C2H2      | =A4C2H-4      | +H         |       | 1.190E-09   | 6.78   | 43.81  | !Richter&Howard2002      |
| 759. | A4-4               | +C2H2      | =CPCDA4       | +H         |       | 3.800E+22 - | 2.475  | 70.63  | !Richter&Howard2002      |
| 760. | FLTHN              | +H         | =FLTHN $-1$   | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 761. | FLTHN              | +H         | =FLTHN $-3$   | +H2        |       | 3.230E+07   | 2.095  | 66.29  | !Mebel1997               |
| 762. | FLTHN-1            | +H         | =FLTHN        |            |       | 5.000E+13   | 0.0    | 0.0    | !Richter&Howard2002      |
|      |                    |            |               |            |       |             |        |        |                          |

| 763.<br>764 | FLTHN-1<br>FLTHN-3      | +C2H2          | =BGHIF<br>-FLTHN                                                | +H        | 1.870E+              |
|-------------|-------------------------|----------------|-----------------------------------------------------------------|-----------|----------------------|
| 764.        | FLTHN-3                 | +H<br>+C2H2    | =FLIHN<br>=CPCDFL                                               | +H        | 3.800E+2             |
| 766.        | FLTHN-7                 | +H             | =FLTHN                                                          |           | 5.000E+1             |
| 767.        | FLTHN-7                 | +C2H2          | =BGHIF                                                          | +H        | 1.870E+0             |
| 768.        | A4                      | +H             | =A4-1                                                           | +H2       | 3.230E+              |
| 769.        | A4                      | +H             | =A4-2                                                           | +H2       | 3.230E+              |
| 771.        | A4<br>A2C6H4-1          | =FLTHN         | =A4 - 4                                                         | +112      | 8.510E+              |
| 772.        | A2C6H4-2                | =A3LR5         |                                                                 |           | 8.510E+3             |
| 773.        | A3R5                    | =FLTHN         |                                                                 |           | 8.510E+1             |
| 774.        | A3R5-7*                 | +H             | =A3R5                                                           |           | 5.000E+1             |
| 775.        | A3R5-10*                | +H             | =A3R5                                                           |           | 5.000E+1             |
| 777.        | A3LR5                   | =A3R5          | -AJUKJ                                                          |           | 8.510E+1             |
| 778.        | A3LR5                   | =FLTHN         |                                                                 |           | 8.510E+1             |
| * * * * *   | ******                  | ******         | ******                                                          | * * * *   |                      |
| ****        | 18. C17                 | REACTIONS      | ﻮﻟﻮ ﻣﻮ ﻣﻮ ﻣﻮ ﻣﻮ ﻣﻮ ﻣﻮ ﻣﻮ ﻣﻮ<br>ﻣﻮ ﻣﻮ | بلد بلد ه |                      |
| 779.        | BENZNAP*                | =C17H12        | +H                                                              |           | 1.000E+1             |
| 780.        | BENZNAP                 | +H             | =BENZNAP*                                                       | +H2       | 3.230E+0             |
| * * * * *   | *******                 | ******         | ******                                                          | * * * *   |                      |
| ****        | 19. C18                 | REACTIONS      |                                                                 |           |                      |
| *****       | *********************** | ********       | *********                                                       | * * * *   | 1 0700.0             |
| 781.<br>782 | A4C2H-1*                | +C2H2<br>+C2H2 | =BAPIR*<br>=BAPYR*                                              |           | 1.870E+0             |
| 783.        | A4C2H-4*                | +C2H2          | =BEPYR*                                                         |           | 1.870E+0             |
| 784.        | A4C2H-1                 | +H             | =A4C2H-1*                                                       | +H2       | 3.230E+0             |
| 785.        | A4C2H-2                 | +H             | =A4C2H-2*                                                       | f+H2      | 3.230E+0             |
| 786.        | A4C2H-4                 | +H             | =A4C2H-4*                                                       | f+H2      | 3.230E+(             |
| 788         | RAALA<br>RAAST.         | +H<br>+H       | =A4L<br>=BAA3L-1                                                | +H2       | 3 230E+              |
| 789.        | BAA3L                   | +H             | =BAA3L-12                                                       | 2+H2      | 3.230E+              |
| 790.        | BAA3L                   | +H             | =BAA3L-4                                                        | +H2       | 3.230E+0             |
| 791.        | BAA3L-1                 | +H             | =BAA3L                                                          |           | 5.000E+1             |
| 792.        | BAA3L-1                 | +C2H2          | -BAPYR                                                          | +H        | 1.870E+(             |
| 793.        | BAA3L-12<br>BAA3L-12    | +n<br>+C2H2    | =BAASL<br>=BAPYR                                                | +H        | 1.870E+              |
| 795.        | BAA3L-4                 | +H             | =BAA3L                                                          |           | 5.000E+3             |
| 796.        | BGHIF                   | +H             | =BGHIF-                                                         | +H2       | 3.230E+0             |
| 797.        | BGHIF-                  | +C2H2          | =CPBFL                                                          | +H        | 3.800E+2             |
| 798.        | CPCDA4                  | +H             | =CPCDA4*                                                        | +H2       | 3.230E+(             |
| 800.        | CPCDA4 "                | +C2H2<br>+H    | =DCFA4<br>=CPCDFL*                                              | +H2       | 3.230E+0             |
| 801.        | CPCDFL*                 | +C2H2          | =CPBFL                                                          | +H        | 1.870E+              |
| 802.        | CRYSN-1                 | +H             | =CRYSN                                                          |           | 5.000E+1             |
| 803.        | CRYSN-4                 | +H             | =CRYSN                                                          |           | 5.000E+1             |
| 804.        | CRISN-4<br>CRISN-5      | +C2H2<br>+H    | -CRYSN                                                          | +H        | 1.8/0E+0             |
| 806.        | CRYSN-5                 | +C2H2          | =BAPYR                                                          | +H        | 1.870E+0             |
| 807.        | CRYSN                   | +H             | =CRYSN-1                                                        | +H2       | 3.230E+              |
| 808.        | CRYSN                   | +H             | =CRYSN-4                                                        | +H2       | 3.230E+              |
| 809.        | CRYSN                   | +H             | =CRYSN-5                                                        | +H2       | 3.230E+(             |
| ****        | 20. C20                 | REACTIONS      |                                                                 |           |                      |
| * * * * *   | ******                  | *****          | ******                                                          | * * * *   |                      |
| 810.        | BBFLTHN                 | +H             | =BBFLTHN*                                                       | f+H2      | 3.230E+0             |
| 811.        | BBFLTHN*                | +C2H2          | =INA4                                                           | +H        | 1.870E+0             |
| 812.<br>813 | BAPYR<br>BADVD*         | +H<br>+U       | -BAPYR*                                                         | +H2       | 3.230E+0             |
| 814.        | BAPYR*                  | +C2H2          | =BAFIR<br>=ANTHAN                                               | +H        | 1.870E+              |
| 815.        | BEPYR                   | +H             | =BEPYR*                                                         | +H2       | 3.230E+0             |
| 816.        | BEPYR*                  | +H             | =BEPYR                                                          |           | 5.000E+1             |
| 817.        | BEPYR*                  | +C2H2          | =BGHIPE                                                         | +H        | 1.870E+0             |
| 818.<br>819 | PERILN<br>DERVIN*       | +H<br>+C2H2    | -BCHIDE                                                         | +H2<br>+H | 3.230E+0             |
| 820.        | CPBFL                   | +H             | =CPBFL*                                                         | +H2       | 3.230E+(             |
| * * * * *   | ******                  | ******         | ******                                                          | * * * *   |                      |
| ****        | 21. C22                 | REACTIONS      |                                                                 |           |                      |
| *****       | ********                | ********       | ********                                                        | ***       | 2 2200               |
| ø∠⊥.<br>822 | BGHIPE<br>BGHIPE*       | +H<br>+C2H2    | =COBONEM<br>=COBONEM                                            | +π∠<br>+H | 3.230E+(<br>1 870E+( |
| *****       | ******                  | *******        | ********                                                        | * * * *   |                      |
| * * * *     | 22. Acet                | one chemi      | stry                                                            |           |                      |
| ****        | ******                  | ******         | ******                                                          | * * * *   |                      |
| 823.        | CH3COCH3                | =CH3CO         | +CH3                                                            | 0 . HO    | 1.130E+1             |
| 825         | CH3COCH3                | +CH3           | =CH3COCH2                                                       | 2+CH4     | 2.300E+0             |
| 826.        | CH3COCH2                | =CH2CO         | +CH3                                                            |           | 1.000E+              |
| 827.        | CH3CO                   | =CH3           | +CO                                                             |           | 8.740E+4             |

| 1.870E+07<br>5.000E+13<br>3.800E+22<br>5.000E+13<br>1.870E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>8.510E+12<br>8.510E+12<br>5.000E+13<br>5.000E+13<br>5.000E+13<br>8.510E+12<br>8.510E+12                                                                                                                                                                                                                                                                      | $\begin{array}{c} 1.787\\ 0.0\\ -2.475\\ 0.0\\ 1.787\\ 2.095\\ 2.095\\ 2.095\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $13.65 \\ 0.0 \\ 70.63 \\ 0.0 \\ 13.65 \\ 66.29 \\ 66.29 \\ 66.29 \\ 263.02 \\ 263.02 \\ 263.02 \\ 0.0 \\ 0.0 \\ 0.0 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.02 \\ 263.$ | <pre>!Richter2001<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Mebel1997<br/>!Mebel1997<br/>!Brouwer&amp;Troe1988<br/>!Brouwer&amp;Troe1988<br/>!Brouwer&amp;Troe1988<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Brouwer&amp;Troe1988<br/>!Brouwer&amp;Troe1988</pre>                                                                                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.000E+13<br>3.230E+07                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>2.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.21<br>66.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | !Richter&Howard2002<br>!Mebel1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.870E+07<br>1.870E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+09<br>3.230E+09<br>3.230E+07<br>5.000E+13<br>1.870E+07<br>5.000E+13<br>1.870E+07<br>3.230E+07<br>3.800E+22<br>3.230E+07<br>3.800E+22<br>3.230E+07<br>3.800E+22<br>3.230E+07<br>3.800E+22<br>3.230E+07<br>3.800E+213<br>1.870E+07<br>5.000E+13<br>1.870E+07<br>5.000E+13<br>1.870E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07<br>3.230E+07 | 1.787<br>1.787<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>0.0<br>1.787<br>0.0<br>1.787<br>0.0<br>2.095<br>-2.475<br>2.095<br>1.787<br>0.0<br>1.787<br>0.0<br>1.787<br>0.0<br>1.787<br>0.0<br>1.787<br>0.0<br>1.787<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095<br>2.095 | 13.65 13.65 13.65 13.65 13.65 13.65 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.0 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2 13.65 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>!Richter2001<br/>!Richter2001<br/>!Richter2001<br/>!Mebel1997<br/>!Mebel1997<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Mebel1997<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Richter2001<br/>!Mebel1997<br/>!Mebel1997</pre> |
| 3.230E+07<br>1.870E+07<br>3.230E+07<br>5.000E+13<br>1.870E+07<br>3.230E+07<br>5.000E+13<br>1.870E+07<br>3.230E+07<br>1.870E+07<br>3.230E+07<br>3.230E+07                                                                                                                                                                                                                                                                                                             | 2.095<br>1.787<br>2.095<br>0.0<br>1.787<br>2.095<br>0.0<br>1.787<br>2.095<br>1.787<br>2.095                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 66.29<br>13.65<br>66.29<br>0.0<br>13.65<br>66.29<br>0.0<br>13.65<br>66.29<br>13.65<br>66.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <pre>!Mebel1997<br/>!Richter2001<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Mebel1997<br/>!Richter&amp;Howard2002<br/>!Richter2001<br/>!Mebel1997<br/>!Richter2001<br/>!Mebel1997<br/>!Mebel1997</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.130E+16<br>2.300E+07<br>9.500E+03                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>2.0<br>2.0<br>2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 341.85<br>20.92<br>35.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | !Richter2001<br>!Sato2000<br>!Sato2000<br>!Sato2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1.000E+13<br>8.740E+42                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0<br>-8.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 117.16<br>93.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | !Sato2000<br>!Tsang1986                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

### \*\*\*\*\* Fitted parameters for Tubular Flow Reactor \*\*\*\*\*

| ~ ~ ~ ~ ~ ~ ~ ~ ~ |       |       |     |            |     |        |
|-------------------|-------|-------|-----|------------|-----|--------|
| Н                 | +C2H2 | >C2H3 |     | 7.195E+011 | 0.0 | 10.467 |
| C2H3              | >H    | +C2H2 |     | 1.910E+010 | 0.0 | 193.00 |
| C2H2              | +C2H2 | =C4H2 | +H2 | 8.900E+15  | 0.0 | 299.34 |
| C4H4              | +C2H2 | =C6H6 |     | 4.470E+12  | 0.0 | 133.00 |
| C6H6              | +H    | >C6H5 | +H2 | 6.512E+015 | 0.0 | 66.989 |
| C6H5              | +H2   | >C6H6 | +H  | 4.898E+012 | 0.0 | 41.031 |
|                   |       |       |     |            |     |        |