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Benchmark Computations of low and high order Shell Elementson adap-
tively generated FE Meshes

S. Kizio, K. Schweizerhof A. Düster, E. Rank
Institut für Mechanik Lehrstuhl für Bauinformatik
Universität Karlsruhe Technische Universität München

Abstract

Low order shell and more recently so-called solid-shell elements are very popular in finite element computations
of shell structures. Meshes for low order elements can easily be generated and due to the small bandwidth of the
system matrix the solution effort is relatively low. In addition they are numerically very robust for nonlinear and
large deformation problems. At a first look a major disadvantage is that many locking phenomena occur which
however, can be reduced and often removed by various modifications. An often overlooked problem of low order
elements is their reduced capacity to capture the geometry of curved shell structures and their deficiencies in non-
regular meshes. Subject of this study is the comparison of different modifications of low order solid-shell elements
by means of numerical examples using adaptively generated meshes including arbitrary shapes of the elements. A
particular focus is on the comparison of low order elements with high order elements.

Zusammenfassung

Der vorliegende Beitrag befasst sich mit dem Vergleich von Volumen-Schalen-Elementen niedriger Ansatzord-

nung mit Finite-Element-Formulierungen hoher Ansatzordnung anhand eines numerischen Beispiels. Es wer-

den bilineare und biquadratische Volumen-Schalen-Elemente mit verschiedenen Modifikationen zur Beseitigung

von Versteifungseffekten sowie Volumenelemente mit isotropem und anisotropem Ansatz für das Verschiebungs-

feld betrachtet. Um den Einfluss unregelmäßiger Elementgeometrien auf das Konvergenzverhalten zu unter-

suchen, werden die Netze für die Volumen-Schalen-Elementemit uniformer sowie adaptiver Netzverfeinerung

verschiedener Ausgangsdiskretisierungen generiert.

1 Introduction

Subject of this study is the comparison of different low order shell elements based on the solid-
shell concept, e.g. [14–18], by means of numerical exampleson adaptively generated meshes.
As a reference thep-version of the finite element method [11, 24] is included.

A hierarchical mesh adaptation scheme is chosen here for themesh generation since the use of
transition elements between refined and non-refined regionsof the spatial discretization auto-
matically results in distorted element geometries which ismandatory for general element tests.
In other studies, e.g. by Pitkäranta et al. [23] or Bathe et al. [2] distorted spatial discretizations
are introduced artificially.

The adaptive refinement of meshes therefore seems to be an appropriate tool for the automatic
generation of suitable spatial discretizations for tests of solid-shell elements.

2 Effects of hierarchical adaptive mesh refinement

As it is known from several publications concerning computations of shell problems, e.g. [2, 19,
22, 23] in shell analyses three types of deformation states have to be distinguished: a) dominant
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Fig. 1 Cylindrical shell under external pressure

membrane deformation states, b) bending dominated or inextensional deformation states and c)
mixed deformation states where neither the membrane nor thebending part is dominant. The
most critical deformation state for finite element computations using low order shell elements is
the bending dominated case. Then the results are known to be very sensitive to mesh distortions.
In contrast, low order shell elements even with fairly strong mesh distortions are well-suited for
analyses of problems where the membrane energy is dominant.

The relevance of the above mentioned classification of deformation states as well as the influ-
ence of an adaptive refinement in the cases a) and b) shall be briefly discussed in the following
considering an example introduced by Pitkäranta et al. in [23], see figure 1.

The cylindrical shell has the lengthH = 2 · R and consists of isotropic material with Young’s
modulusE and Poisson ratioν. The shell is loaded by a normal pressure distribution on the
outer surface which is constant in x-direction and varies angularly as:

p(α) = p0 · cos2α (1)

The deformation state strongly depends on the boundary conditions at both ends of the shell
structure. Fully clamped ends result in a dominant membranedeformation state (case a) with
boundary layers in the vicinity of the ends. These boundary layers are always bending domi-
nated. Free ends yield a dominant bending state (case b). Note, that the applied loading is self
balancing and hence no boundary conditions are necessary toachieve equilibrium.

The problem is now computed using simple 4-noded bilinear shell elements with assumed nat-
ural shear strain interpolation (ANS4-element) [12, 13]. Due to the symmetry of the problem
only one eighth of the shell is discretized. In both cases uniform and adaptive mesh refinement
is performed starting with a coarse mesh consisting of 4x4 elements. The adaptive mesh refine-
ment is based on the estimation of the error in the energy normapplying the SPR-concept of
Zienkiewicz and Zhu [29, 30]. The applied refinement strategy is described in detail in [3, 25].

Figure 2 shows the evolution of the relative error for the mesh refinements in both cases. It
can clearly be seen that the adaptive approach improves the solution behavior in case of the
membrane dominated problem. However in case of the bending dominated problem the solution
is strongly perturbed by the adaptive mesh refinement.

The improvement in case a) results dominantly from the fine discretization of the boundary
layers, i.e. the resulting mesh is graded towards the ends ofthe shell. Furthermore mainly
rectangular elements aligned to the curvature of the cylinder occur in the bending dominated
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Fig. 2 Cylindrical shell under external pressure load, variation of boundary conditions at ends:
Convergence diagrams (relative error in energy norm) for uniform and adaptive mesh
refinement

boundary layer, see figure 3. Badly shaped elements mainly occur at the transition of the bend-
ing dominated boundary layer to the membrane dominated partof the shell.

Fig. 3 Cylindrical shell: Spatial discretization in last adaptive refinement step case a) fully
clamped ends. FE model 1/8 of structure with symmetry boundary conditions

The unfavorable effect of the adaptive scheme in the bendingdominated case b) (free ends)
results from the fact that the edges of the transition elements, which are now in regions with
fairly strong bending, are not aligned with the generatrix of the shell which - as is known -
strongly perturbes the performance of low order shell elements in bending dominated problems.

3 Benchmark study

In the following a benchmark problem is introduced to compare the effects of different mod-
ifications of low order elements and their performance in a bending dominated problem. The
rest of the report is organized as follows: First the elements used in the study are presented in a
brief manner. After the introduction of the bending dominated benchmark problem the results
achieved with the different element types are compared.



3.1 Survey of elements used in the study

The elements used in the study are presented only in a very brief manner. For a more detailed
discussion of the solid-shell elements we refer to [14, 15, 18]. Basically three approaches are
used for removing the several locking phenomena, the enhanced assumed strain (EAS) approach
by Simo and Rifai [26, 27], the assumed strain approach (ANS)(e.g. [12]) and the discrete strain
gap method (DSG) [7].

3.1.1 Bilinear solid-shell elements

First solid-shell elements with bilinear interpolation inin-plane direction are discussed, i.e.
the upper and lower shell surface are discretized each by four nodes. This involves bilinear
interpolation of the geometry and of the displacements.

3.1.2 Modifications of transversal shear strains

Two approaches to remove transverse shear locking are presented here. The first is the assumed
natural strain method (ANS) where the transverse shear strains are interpolated as proposed by
Bathe and Dvorkin [12]:

EANS
ξζ (ξ, η, ζ) =

1

2
[1 − η]Eξζ(ξ = 0, η = −1, ζ) +

1

2
[1 + η]Eξζ(ξ = 0, η = +1, ζ) (2)

EANS
ηζ (ξ, η, ζ) =

1

2
[1 − ξ]Eηζ(ξ = −1, η = 0, ζ) +

1

2
[1 + ξ]Eηζ(ξ = +1, η = 0, ζ)

The second approach is the discrete strain gap method (DSG) introduced by Bletzinger et al.
[5, 7] where the so-called strain gaps (which are integrals of the transversal shear) of all nodes
are interpolated using the same Ansatz functions as for the displacements and geometry. Since
these strain gaps are displacements, the modified transversal shear strain distribution is obtained
by differentiation of the interpolated strain gaps. The modified strains then read:
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The DSG-method results in a direct modification of the displacement-strain operatorB and is
very efficient.

For elements with a constant determinant of the Jacobian of the isoparametric map the ANS
and DSG approach yield identical stiffness matrices. Therefore the two approaches do not need
to be compared in the numerical benchmark problem.



3.1.3 Modification of membrane strains

The modifications of the membrane strains are introduced to remove membrane locking. Here
two approaches are discussed. The first approach is the enhancement of the in-plane strains
with the enhanced assumed strain method (EAS) originally proposed by Simo and Rifai [26]:

E
EAS
ip =





Eξξ

Eηη

2Eξη



 = E
c
ip + Mα (4)

The vectorEip contains the in-plane Green-Lagrange strains, whereE
c
ip are the strains com-

patible to the displacements. For brevity no further details on the construction of the enhanced
strains are discussed here. For the proper incorporation ofthe method into the solid-shell con-
cept and for the discussion of the different versions we refer to [14, 15, 18].

The second approach is the modification of the strains with the discrete strain gap method
[7, 21]:

EDSG
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3.1.4 Thickness locking

Solid-shell elements suffer from thickness locking if a linear displacement assumption in thick-
ness direction is used. The normal thickness strainEζζ is then constant in thickness direction.
However, sinceEζζ is coupled with the in-plane normal strainsEξξ andEηη via the Poisson-
ratio,Eζζ must be distributed linearly in thickness direction in order to capture bending domi-
nated deformation states.

For all solid-shell elements used in the study thickness locking is removed by a linear en-
hancement of the thickness normal strains applying the EAS-method with 4 additional element
parametersαi, see [9, 10]:

EEAS
ζζ = Ec

ζζ +
1

detJ
ζ [1 ξ η ξη]









α1

α2

α3

α4









(6)

HereindetJ denotes the determinant of the Jacobian of the isoparametric map.



3.1.5 Curvature-thickness-locking

Curvature-thickness-locking is the artificial coupling ofpure bending states with the normal
thickness strainsEζζ . This phenomenon occurs when the directors at the element edges - resp.
the vector pointing from the lower to the upper node of the edge of the solid-shell element -
are not perpendicular to the element midplane. This problemautomatically arises in case of a
regular discretization of a curved geometry when the directors should be perpendicular to the
exact shell geometry. See for example the regular discretization of a cantilever curved shell
shown in figure 4, where all directors point to the center of curvature O.

di dj

t

R O

Fig. 4 Curvature-thickness-locking: Regular discretization of a curved cantilever shell

To avoid this locking behavior an assumed transverse normalstrain distribution was proposed
by Betsch and Stein [4], see also Bischoff and Ramm [6]. The strainsEζζ are evaluated at the
element edges and a bilinear strain interpolation in in-plane direction is achieved using bilinear
Lagrange shape functions̄Ni(ξη) = 1

4
(1+ ξiξ)(1+ηiη), which leads to the following equation:

Ẽζζ = N̄1(ξ, η)Eζζ(ξ1 = −1, η1 = −1) + N̄2(ξ, η)Eζζ(ξ2 = 1, η2 = −1) + (7)

N̄3(ξ, η)Eζζ(ξ3 = 1, η3 = 1) + N̄4(ξ, η)Eζζ(ξ4 = −1, η4 = 1)

A closer look shows that the identical strain distribution can be achieved applying the DSG-
method for the thickness normal strainsEζζ .

EDSG
ζζ =

nnp
∑

i=1

N i
,ζ

ζi
∫

ζ0

Eζζdζ (8)

3.1.6 Nomenclature

In order to simplify the distinction of the used bilinear elements the nomenclature given in
Table 1 is introduced. The structure of the notation is ’xxx3Dyyy’, where ’xxx’ represents the
in-plane approximation and ’yyy’ the thickness approximation. The numbers in brackets refer
to the equations used for the interpolation.

3.2 Biquadratic solid-shell elements

The only biquadratic solid-shell element used in the benchmark study is the ’MI9k3DEAS-at’
- element which uses the modifications described in the following subsections. For a more



Elementname in-plane approximation thickness approximation
ANS3DEAS (2) (6)
DSG3DEAS (3) (6)

ANS3DEAS-at (2) (6) and (7)
DSG3DEAS-ds (3) (6) and (8)
dsg3DEAS-ds (3) and (5) (6) and (8)
EAS3DEAS-at (2) and (4) (6) and (7)

Tab. 1 Nomenclature of bilinear elements - modified to removelocking

detailed description we refer to [14, 15]. The major expectation is to capture curved geometries
in a better fashion than with bilinear interpolation.

3.2.1 Transverse shear and membrane locking

To suppress transverse shear and membrane locking the assumed natural strain method as pro-
posed by Bucalem and Bathe [8] is employed. The assumed membrane strains
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and the assumed transverse shear strains
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The evaluation points for the strain interpolation are depicted in figure 5.
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3.2.2 Thickness locking

The phenomenon of thickness locking has already been described for the bilinear solid-shell
elements. As for the bilinear elements thickness locking isremoved by enhancing the thickness
normal strains by use of the EAS method as proposed by Büchterand Ramm [9]. Here 9
additional element parametersαi are necessary:

EEAS
ζζ = Ec

ζζ +
1

detJ
ζt2

33
[1 ξ η ξη ξ2 η2 ξ2η ξη2 ξ2η2]







α1

...
α9






(11)

The factor

t33 = G3(ξ, η, ζ) · G3(0, 0, 0)

is needed for the transformation of the enhanced strains to the covariant coordinate system at
the element mid-point.

3.2.3 Curvature-thickness-locking

An assumed strain interpolation for the transversal normalstrains is used for removing
curvature-thickness-locking. Therefore biquadratic Lagrange functions

N̄i(ξ, η) =

(

1

2
ξξi(1 + ξξi) + (1 − ξ2)(1 − ξ2

i )

)

(

1

2
ηηi(1 + ηηi) + (1 − η2)(1 − η2

i )

)

are taken as follows:

Ēζζ = N̄1Eζζ(ξ1 = −1, η1 = −1) + N̄2Eζζ(ξ2 = 1, η2 = −1) + N̄3Eζζ(ξ3 = 1, η3 = 1)

N̄4Eζζ(ξ4 = −1, η4 = 1) + N̄5Eζζ(ξ5 = 0, η5 = −1) + N̄6Eζζ(ξ6 = 1, η6 = 0)

N̄7Eζζ(ξ7 = 0, η7 = 1) + N̄8Eζζ(ξ8 = −1, η8 = 0) + N̄9Eζζ(ξ9 = 0, η9 = 0). (12)



3.3 Higher order elements (p-FEM)

The results for the higher order elements were provided by the group of Rank and Düster [11,
24]. A p-version FEM based on a hexahedral element was applied to discretize the weak form of
the three-dimensional equations of linear elasticity. Therefore, a hierarchic family of high order
solid finite elements with an anisotropic Ansatz was constructed. The thin-walled structure
situation was taken into account by choosing an appropriatepolynomial degree for the three
displacement components in the three (local) directions. Due to the hierarchic concept only
one finite element implementation is needed and a whole family of different elements can be
obtained by simply defining a so-called polynomial degree template [11]. Since the element
size is not reduced as the polynomial degree is increased, the description of the geometry has to
be independent of the number of elements. Therefore the blending function method was applied
to accurately discretize the geometry of the problem [11, 28].

Two different methods for the definition of a polynomial degree template were used. The case
in which all elements have the same polynomial degree for all(local) directions and all dis-
placement components is denoted asisotropic discretization. The polynomial degree for the
displacement components was successively increasedp = 1, ..., 14. Theanisotropic discretiza-
tion refers to the situation where for all elements and all displacement components the polyno-
mial degreeq in thickness direction is chosen separately from the in-plane polynomial degree
p. In the anisotropic case the polynomial degree in thicknessdirection is limited toq ≤ 4.
For more detailed information about implementation and application of high order elements for
shell problems we refer to [11, 24].

3.4 Benchmark problem

In order to test the different element modifications the cantilever shell depicted in figure 6 is
introduced as a benchmark problem originally proposed by Andelfinger [1]. Due to the applied
loading the problem is bending dominated. A specific focus ison the positioning of elements
with edges not aligned to the generatrix of the shell.

x
y

z

10

R=10
mT

clamped

free

free

Fig. 6 Benchmark problem: Cylindrical cantilever shell under edge moment loading

The following strategy was chosen for the generation of meshes for the study. First the problem
was computed with standard bilinear degenerated shell elements applying different mesh refine-



ment schemes. Three series of meshes where generated starting with the initial discretizations
depicted in figure 7 by

1. uniform refinement of the regular initial mesh,

2. adaptive refinement of the regular initial mesh and

3. adaptive refinement of the deliberately distorted initial mesh.

a) regular initial discretization b) distorted initial discretization

Fig. 7 Cylindrical cantilever shell: Initial spatial discretizations for generation of mesh series

Then the problem was computed again with the above describedsolid-shell elements using the
same meshes resp. locations of the nodes. For the biquadratic solid-shell elements further nodes
were introduced at the element edges and in the middle of the elements. These nodes were then
projected onto the exact curved geometry of the shell as depicted in figure 8 .

bilinear geometry interpolation

exact geometry

projection of edge nodes

Fig. 8 Projection of additional nodes of biquadratic elements onto exact curved geometry

The reference solution was computed with121 high order solid elements (p-FEM) applying
an isotropic discretization with a polynomial degreep = 9. The geometry of the elements
was described by combining the blending function method with a polynomial interpolation of
geometry, using optimal collocation points [20, 28]. In figure 9 the hexahedral mesh with one
element in thickness direction is depicted.

3.5 Results

In the following the results for different element types anddifferent strain modifications are
given. For a better comparison the relative errors in the global energy norm of the solutions are
depicted in convergence diagrams.



Fig. 9 Cylindrical cantilever shell: Spatial discretization for reference solution withp-elements

3.5.1 Bilinear solid-shell elements - modifications of transversal normal strains

In figure 10 the comparison of the relative errors for the bilinear solid-shell elements with and
without modification of the transversal normal strain removing curvature-thickness-locking is
shown.
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c) adaptive refinement of distorted mesh

Fig. 10 Cylindrical cantilever shell, computations with different refinement strategies, modifi-
cations of transversal normal strains: ANS3DEAS vs. ANS3DEAS-at

Obviously the modified element is superior to the element without modification in the case
of the uniform refinement of the regular initial discretization, especially for coarser meshes.
This could have been expected since the modification of the transversal normal strains has been
tailored for this kind of regular discretization (see figure4) where all directors point to the
local center of curvature of the exact geometry. The transition elements which occur in case of
adaptive refinement of the regular mesh strongly perturb this positive effect of the modification.



This is to some extend caused by the fact that here the director of each node is computed via
averaging of the directors of the adjacent elements and therefore is not necessarily perpendicular
to the exact shell geometry. In case of the disturbed initialdiscretization the difference in the
performance of the two elements nearly vanishes, i.e. the at-modification does not affect the
sensitivity of the element to mesh distortions.

3.5.2 Bilinear solid-shell elements - modifications of membrane strains

In figure 11 the results for the EAS and DSG modification of the membrane strains are given
comparing the elements for uniform and adaptive refinement of the initially regular mesh.
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Fig. 11 Cylindrical cantilever shell, computations with different refinement strategies, modifi-
cation of membrane strains: EAS3DEAS-at vs. dsg3DEAS-ds

Since in this problem no significant membrane locking occursthe modification of the membrane
strains is not needed. Thus, there should be no difference inthe performance of the elements.
In this case the benchmark problem is only suited to check if the modifications have any effect
on the distortion sensitivity of the elements. Obviously there is hardly any difference between
the results of the EAS and DSG approach in case of the uniform refinement of the regular mesh.
However, the diagram for the adaptive refinement of the regular mesh shows that the currently
implemented discrete-strain-gap approach seems to be moresensitive to distortions of the mesh
than the enhanced strain modification. As a result the modified element performs even worse
than the non-modified elements (e.g. ANS3DEAS see figure 10).

3.5.3 Biquadratic solid-shell elements - MI9K3DEAS-at

Figure 12 shows the convergence diagrams of the biquadraticsolid-shell element MI9K3DEAS-
at. All additional nodes at the edges and in the middle of the elements are located on the exact
curved geometry of the shell.

The best results are achieved with the adaptive refinement ofthe regular mesh. In contrast to the
computations with bilinear elements the introduced transition elements have no negative effect
on the convergence rate. Therefore in this case the spatially adaptive scheme is superior to the
uniform refinement scheme. Even the adaptive refinement of the distorted initial mesh yields
results comparable to the uniform refinement of the regular mesh. This is a clear indicator that
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Fig. 12 Biquadratic solid-shell elements - MI9k3DEAS-at

the quadratic interpolation is very important. It remains to be investigated whether this is a
result of the geometry or the displacement interpolation.

3.5.4 Biquadratic vs. bilinear solid-shell elements

In figure 13 the comparison of the biquadratic element MI9k3DEAS-at and the bilinear element
DSG3DEAS-ds is given.
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b) adaptive refinement of regular mesh
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c) adaptive refinement of distorted mesh

Fig. 13 Cylindrical cantilever shell, computations with different refinement strategies, bi-
quadratic vs. bilinear solid-shell elements: DSG3DEAS-dsvs. MI9K3DEAS-at



It is interesting to note that the bilinear element is clearly more efficient for the chosen bench-
mark problem in case of regular meshes. This results from thefact that the chosen benchmark
problem results in a nearly constant stress distribution which can be well captured with a linear
displacement interpolation.

The only advantage of the biquadratic elements in the given example is the fact that they are
less sensitive to mesh distortions than bilinear elements.Therefore the biquadratic element is
superior in case of irregular spatial discretizations which result from the adaptive refinement of
the regular and distorted initial discretization.

In this context one could presume that the minor sensitivityof the biquadratic elements results
from their higher order geometry interpolation which is investigated in the next subsection.

3.5.5 Biquadratic vs. bilinear interpolation of geometry

In order to distinguish if the superior behavior of the biquadratic elements for the given example
is a result of the biquadratic map of the geometry a biquadratic interpolation of the geometry is
compared to a bilinear interpolation of the geometry.
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a) uniform refinement
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b) adaptive refinement of regular mesh

 1

 10

 100

 100  1000  10000  100000

re
l. 

er
ro

r 
in

 e
ne

rg
y 

no
rm

 [%
]

degrees of freedom N

bilinear geom. interpol.
biquadratic geom. interpol.

c) adaptive refinement of distorted mesh

Fig. 14 Cylindrical cantilever shell, computations with different refinement strategies, bi-
quadratic vs. bilinear geometry interpolation (MI9K3DEAS-at)

In order to achieve a bilinear geometry interpolation for the biquadratic solid-shell elements the
middle nodes of the edges and the center nodes of the nine nodeelement were not projected onto
the exact geometry. Thus, the problem is computed with biquadratic displacement interpolation
on the geometry of the bilinear elements.



In figure 14 the comparison of the biquadratic and the bilinear interpolation of the geometry is
given. Obviously there is hardly any difference in the results in case of the uniform refinement
of the regular mesh. But the bilinear map of the geometry results in a stronger sensitivity to
mesh distortions which has already been observed for the bilinear elements in the preceding
diagrams. Therefore we can conclude that the main source of the sensitivity of the bilinear
elements is a result of the bilinear map of the geometry.

3.5.6 p-Elements - isotropic discretization

In figure 16 the results of thep-version based on an isotropic discretization withp = 1, ..., 14

are plotted. The initial meshes of theh-adaptive schemes with 9 elements shown in figure 7
were applied also for thep-version, see figure 15, in order to be able to compare theh- and
p-version FEM. In the case of thep-version, the geometry of the elements was described with
the blending function method, based on a polynomial interpolation of degreep = 8, applying
optimal collocation points [20, 28].

a) regular mesh b) distorted mesh

Fig. 15 Cylindrical cantilever shell: finite element mesheswith 9 high order solid elements

It should be mentioned that with the initial finite element meshes created for the low order
elements, boundary layers can not be captured properly and therefore the convergence rate of
thep-extension is reduced. To fully exploit the advantages of high order finite elements, proper
mesh design - resolving boundary layers and singularities -should be combined with an increase
of polynomial degree [11, 24, 28].

The results presented in figure 16 show that high order elements are less prone to distortion,
since forp ≥ 5 no significant difference between the regular and distortedfinite element mesh
can be observed. Furthermore it is evident that locking effects are removed, as the polynomial
degree is increased.

3.5.7 p-Elements - anisotropic discretization

In figure 17 the results obtained with anisotropic high ordersolid elements are depicted. The
in-plane polynomial degreep = 1, ..., 14 is successively increased while the polynomial degree
in thickness directionq is kept constant at either1, 2, 3 or 4. The computations are based on
the distorted mesh as presented in figure 15-b). For comparison the corresponding results of the
biquadratic MI9k3DEAS-at element and the isotropic discretization based on thep-version are
also plotted in figure 17.
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Fig. 16 Cylindrical cantilever shell,p-FEM: isotropic discretization
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Fig. 17 Cylindrical cantilever shell,p-FEM: isotropic and anisotropic discretization,
MI9k3DEAS-at added for comparison

Considering the different polynomial degreesq in thickness direction it can be observed that
for q ≤ 3 the relative error in energy norm does not decrease further as the in-plane polyno-
mial degreep is increased. This is due to the fact that the choice of the polynomial degreeq in
thickness direction can be interpreted as a model assumption. Therefore, selectingq ≤ 3 corre-
sponds to accepting a certain model error. However, if we chooseq = 4 the model error (with
respect to the fully three-dimensional solution) is strongly reduced. As expected the anisotropic
discretization withq = 4 is more efficient than the isotropic discretization since itaccounts for
the fact that a shell is a thin-walled structure which claimsfor a higher order interpolation in
in-plane direction than in thickness direction.

It is interesting to note that - for this particular mesh - theresults for the biquadratic solid-shell
element are comparatively well and that the applied modifications of the strains in thickness
directions are sufficient to obtain an approximation with anaccuracy not being dominated by
the model error.
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Fig. 18 Cylindrical cantilever shell,p-FEM: anisotropic discretization based on the tensor pro-
duct space, isotropic trunk space added for comparison

It might be surprising that a polynomial degree in thicknessdirection as high asq = 4 is needed
in order to obtain an approximation which is not dominated bythe model error. This relatively
high polynomial degreeq is due to the fact that the results of thep-extension presented in
this paper are based on the trunk space. In [11, 24, 28] three different trial spaces have been
compared, the trunk space, the tensor product space and the anisotropic tensor product space.
The main difference between the three trial spaces is the number of shape functions which are
provided for a given polynomial degree. The trunk space provides the lowest number of shape
functions while the tensor product space yields the highestnumber of shape functions.

In figure 18 the results obtained with the tensor product space with q = 1 and q = 2 are
plotted. For comparison, the results of the isotropic discretization based on the trunk space
are also displayed. Applying the tensor product space to thecomputation of the cylindrical
cantilever shell one finds that a polynomial degree in thickness direction ofq = 2 is sufficient
to obtain an approximation which is not dominated by the model error. This can be explained
by the fact that forq = 2 the tensor product space offers shape functions which are not yet
present in the trunk space, i.e. are introduced in the trunk space for higher polynomial degrees.
Although the application of the trunk space calls for slightly higher polynomial degrees, detailed
numerical studies have demonstrated that the trunk space incombination with an anisotropic
Ansatz provides the most efficient discretizations. For further information the reader is referred
to [11, 24, 28].

4 Conclusions

The study deals with the comparison of different - so-calledmixed - modifications of bilin-
ear and biquadratic solid-shell elements and higher orderp-elements in a bending dominated
numerical example. In order to generate irregular spatial discretizations for the solid-shell el-
ements a hierarchical adaptive mesh refinement scheme was applied. Interestingly all mod-
ifications for the low order - in particular the bilinear - elements only work well for regular
discretizations capturing the curvature of the shell well.In case of distorted meshes most of the



modifications do not affect and thus not improve the solutionbehavior in this bending dominated
problem. The results of the biquadratic elements show that abiquadratic map of the geometry
reduces the sensitivity of the elements improved with mixedmodifications to mesh distortions
and therefore results in a more robust scheme. The biquadratic element MI9k3DEAS-at leads
to good results even compared to thep-version of the finite element method which - as expected
- yields the best convergence rates. It should be noted that all the conclusions drawn here are
in most instances restricted to the chosen benchmark problem and can not yet be generalized to
all types of problems.
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