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Abstract

Low order shell and more recently so-called solid-sheliredats are very popular in finite element computations
of shell structures. Meshes for low order elements canyehbsigenerated and due to the small bandwidth of the
system matrix the solution effort is relatively low. In atidh they are numerically very robust for nonlinear and
large deformation problems. At a first look a major disadagastis that many locking phenomena occur which
however, can be reduced and often removed by various mdtbfisa An often overlooked problem of low order
elements is their reduced capacity to capture the geometyreed shell structures and their deficiencies in non-
regular meshes. Subject of this study is the comparisorffeirdnt modifications of low order solid-shell elements
by means of numerical examples using adaptively generagsti@s including arbitrary shapes of the elements. A
particular focus is on the comparison of low order elemeritis kigh order elements.

Zusammenfassung

Der vorliegende Beitrag befasst sich mit dem Vergleich vofuen-Schalen-Elementen niedriger Ansatzord-
nung mit Finite-Element-Formulierungen hoher Ansatzardnanhand eines numerischen Beispiels. Es wer-
den bilineare und biquadratische Volumen-Schalen-El¢éenait verschiedenen Modifikationen zur Beseitigung
von Versteifungseffekten sowie Volumenelemente mit tgo#m und anisotropem Ansatz fir das Verschiebungs-
feld betrachtet. Um den Einfluss unregelmafiger Elementgééen auf das Konvergenzverhalten zu unter-
suchen, werden die Netze fir die Volumen-Schalen-Elemmitteniformer sowie adaptiver Netzverfeinerung
verschiedener Ausgangsdiskretisierungen generiert.

1 Introduction

Subject of this study is the comparison of different low arsleell elements based on the solid-
shell concept, e.g. [14-18], by means of numerical exangesdaptively generated meshes.
As a reference thg-version of the finite element method [11, 24] is included.

A hierarchical mesh adaptation scheme is chosen here fonéisé generation since the use of
transition elements between refined and non-refined regibtie spatial discretization auto-
matically results in distorted element geometries whiamandatory for general element tests.
In other studies, e.g. by Pitkaranta et al. [23] or Bathe .€2didistorted spatial discretizations
are introduced atrtificially.

The adaptive refinement of meshes therefore seems to be eopappe tool for the automatic
generation of suitable spatial discretizations for testotid-shell elements.

2 Effects of hierarchical adaptive mesh refinement

As itis known from several publications concerning comfpiates of shell problems, e.g. [2, 19,
22, 23] in shell analyses three types of deformation states to be distinguished: a) dominant



p()

p@)

Fig. 1 Cylindrical shell under external pressure

membrane deformation states, b) bending dominated oransiinal deformation states and c)
mixed deformation states where neither the membrane ndrehding part is dominant. The

most critical deformation state for finite element compotag using low order shell elements is
the bending dominated case. Then the results are known terpsensitive to mesh distortions.

In contrast, low order shell elements even with fairly sgomesh distortions are well-suited for
analyses of problems where the membrane energy is dominant.

The relevance of the above mentioned classification of dedtion states as well as the influ-
ence of an adaptive refinement in the cases a) and b) shalidfly loiiscussed in the following
considering an example introduced by Pitkaranta et al. 3h, e figure 1.

The cylindrical shell has the lengtti = 2 - R and consists of isotropic material with Young's
modulusFE and Poisson ratio. The shell is loaded by a normal pressure distribution on the
outer surface which is constant in x-direction and variegudarly as:

p(a) = po - cos2a (1)

The deformation state strongly depends on the boundaryittmmsl at both ends of the shell
structure. Fully clamped ends result in a dominant membdaf@mation state (case a) with
boundary layers in the vicinity of the ends. These boundaygis are always bending domi-
nated. Free ends yield a dominant bending state (case bg, that the applied loading is self
balancing and hence no boundary conditions are necessachigve equilibrium.

The problem is now computed using simple 4-noded bilineall ghements with assumed nat-

ural shear strain interpolation (ANS4-element) [12, 13l1eDo the symmetry of the problem

only one eighth of the shell is discretized. In both casefoumi and adaptive mesh refinement
is performed starting with a coarse mesh consisting of 4erhehts. The adaptive mesh refine-
ment is based on the estimation of the error in the energy ragplying the SPR-concept of

Zienkiewicz and Zhu [29, 30]. The applied refinement straisglescribed in detail in [3, 25].

Figure 2 shows the evolution of the relative error for the Imefinements in both cases. It
can clearly be seen that the adaptive approach improvesthtos behavior in case of the
membrane dominated problem. However in case of the bendimgted problem the solution
is strongly perturbed by the adaptive mesh refinement.

The improvement in case a) results dominantly from the firserdtization of the boundary
layers, i.e. the resulting mesh is graded towards the endiseo$hell. Furthermore mainly
rectangular elements aligned to the curvature of the cglimdcur in the bending dominated
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Fig. 2 Cylindrical shell under external pressure load,atson of boundary conditions at ends:

Convergence diagrams (relative error in energy norm) fofoum and adaptive mesh
refinement

boundary layer, see figure 3. Badly shaped elements maiolyr @t the transition of the bend-
ing dominated boundary layer to the membrane dominatedp#re shell.

Fig. 3 Cylindrical shell: Spatial discretization in lastagdive refinement step case a) fully
clamped ends. FE model 1/8 of structure with symmetry bogynclanditions

The unfavorable effect of the adaptive scheme in the bendamginated case b) (free ends)
results from the fact that the edges of the transition elésjavhich are now in regions with
fairly strong bending, are not aligned with the generatfixh@ shell which - as is known -
strongly perturbes the performance of low order shell elgsi@ bending dominated problems.

3 Benchmark study

In the following a benchmark problem is introduced to conepidwe effects of different mod-
ifications of low order elements and their performance in radibey dominated problem. The
rest of the report is organized as follows: First the elemesed in the study are presented in a
brief manner. After the introduction of the bending doma@thbenchmark problem the results
achieved with the different element types are compared.



3.1 Survey of elements used in the study

The elements used in the study are presented only in a vesfyrbenner. For a more detailed

discussion of the solid-shell elements we refer to [14, 8p, Basically three approaches are
used for removing the several locking phenomena, the eeldaassumed strain (EAS) approach
by Simo and Rifai [26, 27], the assumed strain approach (ANS$) [12]) and the discrete strain

gap method (DSG) [7].

3.1.1 Bilinear solid-shell elements

First solid-shell elements with bilinear interpolationimplane direction are discussed, i.e.
the upper and lower shell surface are discretized each bynfodes. This involves bilinear
interpolation of the geometry and of the displacements.

3.1.2 Modifications of transversal shear strains

Two approaches to remove transverse shear locking arepeedeere. The first is the assumed
natural strain method (ANS) where the transverse sheanst@ge interpolated as proposed by
Bathe and Dvorkin [12]:

EZN(Em.¢) = %[1—77]Es<(£=0,n=—1,<)+%[1+n]E§<(€:0,n:+1,g) )
EES(En,Q) = - EB(e = ~1n=0,0)+ [l + & By(€ = +1,0=0,0)

The second approach is the discrete strain gap method (D#@dluced by Bletzinger et al.
[5, 7] where the so-called strain gaps (which are integrbteetransversal shear) of all nodes
are interpolated using the same Ansatz functions as forifpgadements and geometry. Since
these strain gaps are displacements, the modified traa$gbesar strain distribution is obtained
by differentiation of the interpolated strain gaps. The ffied strains then read:

Nnp [ Cm Ninp i
pene) = > (N [ | N, [ Bdn | ac @)
m=1 L ¢o ‘ 70
Nnp [ Cm Nnp i
ER5C(En.¢) = Y N,E”/ ZNZ/Efcdf d¢
m=1 )
L ¢o 0

The DSG-method results in a direct modification of the dispiaent-strain operatd and is
very efficient.

For elements with a constant determinant of the Jacobiaheofsbparametric map the ANS
and DSG approach yield identical stiffness matrices. Tibeeghe two approaches do not need
to be compared in the numerical benchmark problem.



3.1.3 Modification of membrane strains

The modifications of the membrane strains are introducedrtive membrane locking. Here
two approaches are discussed. The first approach is the @rhant of the in-plane strains
with the enhanced assumed strain method (EAS) originatip@sed by Simo and Rifai [26]:

Eee
E;¥=| E, |=E,+Ma«a (4)
2F,

The vectorE;, contains the in-plane Green-Lagrange strains, witgeare the strains com-
patible to the displacements. For brevity no further dstail the construction of the enhanced
strains are discussed here. For the proper incorporatitmeahethod into the solid-shell con-
cept and for the discussion of the different versions wer tef§l4, 15, 18].

The second approach is the modification of the strains wighdiscrete strain gap method
[7,21]:

Nnp &
B = 3 N / Beedt )
=1
&o
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3.1.4 Thickness locking

Solid-shell elements suffer from thickness locking if aeim displacement assumption in thick-
ness direction is used. The normal thickness stfginis then constant in thickness direction.
However, sincel.. is coupled with the in-plane normal straia%, and £,, via the Poisson-
ratio, E. must be distributed linearly in thickness direction in artiecapture bending domi-
nated deformation states.

For all solid-shell elements used in the study thickneskitaris removed by a linear en-
hancement of the thickness normal strains applying the E¥e8iod with 4 additional element
parametersy;, see [9, 10]:

g

1 «

EAS _ 1c 2
Egg = Egg + —det.]dl §nén) s (6)

Qy

HereindetJ denotes the determinant of the Jacobian of the isopararmeap.



3.1.5 Curvature-thickness-locking

Curvature-thickness-locking is the artificial couplingmire bending states with the normal
thickness straing... This phenomenon occurs when the directors at the elemgatedesp.
the vector pointing from the lower to the upper node of theeedfjthe solid-shell element -
are not perpendicular to the element midplane. This prolaletomatically arises in case of a
regular discretization of a curved geometry when the dirscshould be perpendicular to the
exact shell geometry. See for example the regular disateiiz of a cantilever curved shell
shown in figure 4, where all directors point to the center afature O.

Fig. 4 Curvature-thickness-locking: Regular discret@abf a curved cantilever shell

To avoid this locking behavior an assumed transverse nastraih distribution was proposed
by Betsch and Stein [4], see also Bischoff and Ramm [6]. TrerstL, . are evaluated at the
element edges and a bilinear strain interpolation in im@ldirection is achieved using bilinear
Lagrange shape functioné (£n) = 1 (14 &:£)(1+n:m), which leads to the following equation:

Ei = Ni(&m)E(&=—1,m =—1)+ No(§,m)Ece(bo = Lmp = —1) + (7)
NB(@U)ECC(&% = 17773 - 1) + N4(§ﬂ7)E§<(€4 = _17774 = 1)

A closer look shows that the identical strain distributi@nde achieved applying the DSG-
method for the thickness normal straifig:.

Nonp Gi

B = YN [ Bt ®)
i=1

= o

3.1.6 Nomenclature

In order to simplify the distinction of the used bilinear mlents the nomenclature given in
Table 1 is introduced. The structure of the notation is »Ry8y’, where 'xxx’ represents the
in-plane approximation and 'yyy’ the thickness approximat The numbers in brackets refer
to the equations used for the interpolation.

3.2 Biquadratic solid-shell elements

The only biquadratic solid-shell element used in the beraghkrstudy is the 'MI9k3DEAS-at’
- element which uses the modifications described in theatg subsections. For a more



Elementname | in-plane approximation | thickness approximation
ANS3DEAS (2) (6)
DSG3DEAS 3 (6)

ANS3DEAS-at (2) (6) and (7)
DSG3DEAS-ds 3 (6) and (8)
dsg3DEAS-ds (3) and (5) (6) and (8)
EAS3DEAS-at (2) and (4) (6) and (7)

Tab. 1 Nomenclature of bilinear elements - modified to remogking

detailed description we refer to [14, 15]. The major expmtels to capture curved geometries
in a better fashion than with bilinear interpolation.

3.2.1 Transverse shear and membrane locking

To suppress transverse shear and membrane locking theedsiatural strain method as pro-
posed by Bucalem and Bathe [8] is employed. The assumed raembtrains

Eee = Y > QUnQYE)Ee(&.m) (9)

By = Y. ) QUOQM)

i=1 j=1

i=1 j=1

By (&ismj)

Bep = > Y QUOQNn)Eey(&imy)

i=1 j=1

and the assumed transverse shear strains

Ex = ) > QUeQn)

i=1 j=1

Enc(&i,5) (10)

Eee = > ) QImQ5(&)Eec(&5.m:)

i=1 j=1

result from the interpolation

Ql(z) — %\/gz (\/§z+1>

Q5(2) = 1—32°
Qi) — %\/gz <\/§z—1>

The evaluation points for the strain interpolation are digal in figure 5.

() = %(1+\/§z)
() = 5(1-V52)
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Fig. 5 Evaluation points for strain interpolation= % b= \/é

3.2.2 Thickness locking

The phenomenon of thickness locking has already been tesdcfor the bilinear solid-shell
elements. As for the bilinear elements thickness lockingnsoved by enhancing the thickness
normal strains by use of the EAS method as proposed by BuahgriRamm [9]. Here 9
additional element parametersare necessary:

g
ClLEn&n & Enn® En°1 | (11)
Qg

1

EAS c
B = Eet o5

The factor

t33 = G3(£7777 C) ’ G3<07 07 0)

is needed for the transformation of the enhanced strainset@dvariant coordinate system at
the element mid-point.

3.2.3 Curvature-thickness-locking

An assumed strain interpolation for the transversal norstedins is used for removing
curvature-thickness-locking. Therefore biquadraticaage functions

men) = (360 +e)+a-e)a-)

(g1 +m) + =)0 =)

are taken as follows:

Ecc = MEq(&=—1,m=—=1)+ NoEc(§ = 1,m = —=1) + NsEc(és = 1,13 = 1)
NyEee(a=—-1,m=1)+ N;E¢c(§&5 = 0,m5 = —1) + NeEc(§6 = 1,16 = 0)
NiEee(&=0,m7 =1) + NsE¢e (s = —1,1m8 = 0) + NoEc(§9 = 0,19 = 0). (12)



3.3 Higher order elements -FEM)

The results for the higher order elements were provided éygtbup of Rank and Dister [11,
24]. A p-version FEM based on a hexahedral element was appliedae@tize the weak form of
the three-dimensional equations of linear elasticity.réf@e, a hierarchic family of high order
solid finite elements with an anisotropic Ansatz was comsédl The thin-walled structure
situation was taken into account by choosing an approppalgnomial degree for the three
displacement components in the three (local) directionge @ the hierarchic concept only
one finite element implementation is needed and a whole yamhitifferent elements can be
obtained by simply defining a so-called polynomial degreeptiate [11]. Since the element
size is not reduced as the polynomial degree is increasedgtbcription of the geometry has to
be independent of the number of elements. Therefore théiplgifunction method was applied
to accurately discretize the geometry of the problem [11, 28

Two different methods for the definition of a polynomial degtemplate were used. The case
in which all elements have the same polynomial degree fofl@kl) directions and all dis-
placement components is denotedissropic discretization The polynomial degree for the
displacement components was successively increased, ..., 14. Theanisotropic discretiza-
tion refers to the situation where for all elements and all disgri@aent components the polyno-
mial degreg; in thickness direction is chosen separately from the imglaolynomial degree
p. In the anisotropic case the polynomial degree in thickmistion is limited tog < 4.
For more detailed information about implementation andieation of high order elements for
shell problems we refer to [11, 24].

3.4 Benchmark problem

In order to test the different element modifications the itawrdr shell depicted in figure 6 is
introduced as a benchmark problem originally proposed byeXimger [1]. Due to the applied
loading the problem is bending dominated. A specific focumnishe positioning of elements
with edges not aligned to the generatrix of the shell.

free

clamped

Fig. 6 Benchmark problem: Cylindrical cantilever shell enddge moment loading

The following strategy was chosen for the generation of reg$br the study. First the problem
was computed with standard bilinear degenerated shellegitmapplying different mesh refine-



ment schemes. Three series of meshes where generatedgstath the initial discretizations
depicted in figure 7 by

1. uniform refinement of the regular initial mesh,
2. adaptive refinement of the regular initial mesh and

3. adaptive refinement of the deliberately distorted ihitiash.

W

a) regular initial discretization b) distorted initial discretization
Fig. 7 Cylindrical cantilever shell: Initial spatial digtizations for generation of mesh series
Then the problem was computed again with the above descsitlletishell elements using the
same meshes resp. locations of the nodes. For the biquasivhd-shell elements further nodes

were introduced at the element edges and in the middle ol¢heemits. These nodes were then
projected onto the exact curved geometry of the shell astipin figure 8 .

exact geometr'
projection of edge nodes --C ,i; o0
-~ . \\
N \
N \
N \

7

bilinear geometry interpolation

Fig. 8 Projection of additional nodes of biquadratic eleta@mto exact curved geometry

The reference solution was computed wittl high order solid element{FEM) applying
an isotropic discretization with a polynomial degnee= 9. The geometry of the elements
was described by combining the blending function methoth wipolynomial interpolation of
geometry, using optimal collocation points [20, 28]. In fig® the hexahedral mesh with one
element in thickness direction is depicted.

3.5 Results

In the following the results for different element types afifferent strain modifications are
given. For a better comparison the relative errors in thealenergy norm of the solutions are
depicted in convergence diagrams.



Fig. 9 Cylindrical cantilever shell: Spatial discretizatifor reference solution with-elements
3.5.1 Bilinear solid-shell elements - modifications of trasversal normal strains

In figure 10 the comparison of the relative errors for thenleiéir solid-shell elements with and
without modification of the transversal normal strain remgwurvature-thickness-locking is
shown.
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10

rel. error in energy norm [%]
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Fig. 10 Cylindrical cantilever shell, computations witlifeient refinement strategies, modifi-
cations of transversal normal strains: ANS3DEAS vs. ANSABEt

Obviously the modified element is superior to the elemenhaevit modification in the case
of the uniform refinement of the regular initial discretipat especially for coarser meshes.
This could have been expected since the modification of #mswersal normal strains has been
tailored for this kind of regular discretization (see figyrewhere all directors point to the
local center of curvature of the exact geometry. The traorsélements which occur in case of
adaptive refinement of the regular mesh strongly pertugbgbsitive effect of the modification.



This is to some extend caused by the fact that here the diretach node is computed via

averaging of the directors of the adjacent elements andftreris not necessarily perpendicular
to the exact shell geometry. In case of the disturbed indligtretization the difference in the

performance of the two elements nearly vanishes, i.e. timeogification does not affect the

sensitivity of the element to mesh distortions.

3.5.2 Bilinear solid-shell elements - modifications of mentane strains

In figure 11 the results for the EAS and DSG modification of thehrane strains are given
comparing the elements for uniform and adaptive refinemethieainitially regular mesh.

100 100
EAS3DEAS-at—%— EAS3DEAS-at —%—

dsg3DEAS-ds—H— dsg3DEAS-ds—H—

10 10

rel. error in energy norm [%)]
rel. error in energy norm [%)]

1
100 1000 10000 100000 100 1000 10000 100000
degrees of freedom N degrees of freedom N

a) uniform refinement b) adaptive refinement of regular mesh

Fig. 11 Cylindrical cantilever shell, computations witlifeient refinement strategies, modifi-
cation of membrane strains: EAS3DEAS-at vs. dsg3DEAS-ds

Since in this problem no significant membrane locking octihesnodification of the membrane
strains is not needed. Thus, there should be no differenteiperformance of the elements.
In this case the benchmark problem is only suited to chedteifmodifications have any effect
on the distortion sensitivity of the elements. Obviouslgrthis hardly any difference between
the results of the EAS and DSG approach in case of the unifefimement of the regular mesh.
However, the diagram for the adaptive refinement of the s¥gukesh shows that the currently
implemented discrete-strain-gap approach seems to besaoséive to distortions of the mesh
than the enhanced strain modification. As a result the mod#iement performs even worse
than the non-modified elements (e.g. ANS3DEAS see figure 10).

3.5.3 Biquadratic solid-shell elements - MISK3DEAS-at

Figure 12 shows the convergence diagrams of the biquaddiishell element MISK3DEAS-
at. All additional nodes at the edges and in the middle of tements are located on the exact
curved geometry of the shell.

The best results are achieved with the adaptive refineméhéaégular mesh. In contrast to the
computations with bilinear elements the introduced ttéosielements have no negative effect
on the convergence rate. Therefore in this case the sya@diptive scheme is superior to the
uniform refinement scheme. Even the adaptive refinementeofligtorted initial mesh yields

results comparable to the uniform refinement of the regukshmThis is a clear indicator that
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Fig. 12 Biquadratic solid-shell elements - MI9k3DEAS-at

the quadratic interpolation is very important. It remaiosbe investigated whether this is a
result of the geometry or the displacement interpolation.

3.5.4 Biquadratic vs. bilinear solid-shell elements

In figure 13 the comparison of the biquadratic element MI9E3[3-at and the bilinear element

DSG3DEAS-ds is given.
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Fig. 13 Cylindrical cantilever shell, computations withffelient refinement strategies, bi-
guadratic vs. bilinear solid-shell elements: DSG3DEASsISMIOK3DEAS-at



It is interesting to note that the bilinear element is chganbre efficient for the chosen bench-
mark problem in case of regular meshes. This results fronfeittehat the chosen benchmark
problem results in a nearly constant stress distributioicvban be well captured with a linear
displacement interpolation.

The only advantage of the biquadratic elements in the gixamele is the fact that they are
less sensitive to mesh distortions than bilinear eleméerterefore the biquadratic element is
superior in case of irregular spatial discretizations whigsult from the adaptive refinement of
the regular and distorted initial discretization.

In this context one could presume that the minor sensitdiityhe biquadratic elements results
from their higher order geometry interpolation which isestigated in the next subsection.

3.5.5 Biquadratic vs. bilinear interpolation of geometry

In order to distinguish if the superior behavior of the bidraic elements for the given example
is a result of the biquadratic map of the geometry a biquarirgterpolation of the geometry is
compared to a bilinear interpolation of the geometry.
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c) adaptive refinement of distorted mesh

Fig. 14 Cylindrical cantilever shell, computations withffelient refinement strategies, bi-
guadratic vs. bilinear geometry interpolation (MI9K3DEAS

In order to achieve a bilinear geometry interpolation fa biquadratic solid-shell elements the
middle nodes of the edges and the center nodes of the ninestexdent were not projected onto
the exact geometry. Thus, the problem is computed with loicuies displacement interpolation

on the geometry of the bilinear elements.



In figure 14 the comparison of the biquadratic and the bilinerpolation of the geometry is

given. Obviously there is hardly any difference in the resin case of the uniform refinement
of the regular mesh. But the bilinear map of the geometrylt®su a stronger sensitivity to

mesh distortions which has already been observed for tiveebil elements in the preceding
diagrams. Therefore we can conclude that the main sourdeeo$ensitivity of the bilinear

elements is a result of the bilinear map of the geometry.

3.5.6 p-Elements - isotropic discretization

In figure 16 the results of the-version based on an isotropic discretization witk 1, ..., 14

are plotted. The initial meshes of ttheadaptive schemes with 9 elements shown in figure 7
were applied also for thg-version, see figure 15, in order to be able to compare:thend
p-version FEM. In the case of theversion, the geometry of the elements was described with
the blending function method, based on a polynomial intetpm of degreep = 8, applying
optimal collocation points [20, 28].

<

a) regular mesh b) distorted mesh

Fig. 15 Cylindrical cantilever shell: finite element meshath 9 high order solid elements

It should be mentioned that with the initial finite elementsies created for the low order
elements, boundary layers can not be captured properlyramndfore the convergence rate of
thep-extension is reduced. To fully exploit the advantages ghtarder finite elements, proper
mesh design - resolving boundary layers and singularisesuld be combined with an increase
of polynomial degree [11, 24, 28].

The results presented in figure 16 show that high order elesvaer less prone to distortion,
since forp > 5 no significant difference between the regular and distdrtei® element mesh
can be observed. Furthermore it is evident that lockingcedfare removed, as the polynomial
degree is increased.

3.5.7 p-Elements - anisotropic discretization

In figure 17 the results obtained with anisotropic high orstdid elements are depicted. The
in-plane polynomial degree= 1, ..., 14 is successively increased while the polynomial degree
in thickness directiory is kept constant at eithdr, 2,3 or 4. The computations are based on
the distorted mesh as presented in figure 15-b). For congpetti® corresponding results of the
biquadratic MI9k3DEAS-at element and the isotropic diszetion based on thg-version are
also plotted in figure 17.
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Fig. 16 Cylindrical cantilever shellh-FEM: isotropic discretization

100 -

10

p=1,..,14 ——
p=1,..,14,0=1——
p=1,..,14,0=2——

relative error in energy norm [%]

p=1,..,14,q=3——
p=1,..,14,q=4——
MI9K3DEAS-at v v

10 100 1000 10000 100000
degrees of freedom

Fig. 17 Cylindrical cantilever shell,p-FEM: isotropic and anisotropic discretization,
MI9k3DEAS-at added for comparison

Considering the different polynomial degreg thickness direction it can be observed that
for ¢ < 3 the relative error in energy norm does not decrease furthénein-plane polyno-
mial degreep is increased. This is due to the fact that the choice of thgnuohial degree in
thickness direction can be interpreted as a model assumgtierefore, selecting < 3 corre-
sponds to accepting a certain model error. However, if wosbg = 4 the model error (with
respect to the fully three-dimensional solution) is stilgmgduced. As expected the anisotropic
discretization with; = 4 is more efficient than the isotropic discretization sincacitounts for
the fact that a shell is a thin-walled structure which clafiorsa higher order interpolation in
in-plane direction than in thickness direction.

It is interesting to note that - for this particular mesh - tbsults for the biquadratic solid-shell
element are comparatively well and that the applied modifina of the strains in thickness

directions are sufficient to obtain an approximation withaaouracy not being dominated by
the model error.
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Fig. 18 Cylindrical cantilever shelh-FEM: anisotropic discretization based on the tensor pro-
duct space, isotropic trunk space added for comparison

It might be surprising that a polynomial degree in thickraissction as high ag = 4 is needed
in order to obtain an approximation which is not dominatedhi®/model error. This relatively
high polynomial degree is due to the fact that the results of theextension presented in
this paper are based on the trunk space. In [11, 24, 28] thffeeetht trial spaces have been
compared, the trunk space, the tensor product space andiwrapic tensor product space.
The main difference between the three trial spaces is thébauof shape functions which are
provided for a given polynomial degree. The trunk spaceipes/the lowest number of shape
functions while the tensor product space yields the highestber of shape functions.

In figure 18 the results obtained with the tensor productespeith ¢ = 1 andg = 2 are
plotted. For comparison, the results of the isotropic @zation based on the trunk space
are also displayed. Applying the tensor product space tadnmeputation of the cylindrical
cantilever shell one finds that a polynomial degree in thédsndirection off = 2 is sufficient
to obtain an approximation which is not dominated by the rhed®r. This can be explained
by the fact that for; = 2 the tensor product space offers shape functions which argeato
present in the trunk space, i.e. are introduced in the trpakesfor higher polynomial degrees.
Although the application of the trunk space calls for slightgher polynomial degrees, detailed
numerical studies have demonstrated that the trunk spacenination with an anisotropic
Ansatz provides the most efficient discretizations. Fathierrinformation the reader is referred
to [11, 24, 28].

4 Conclusions

The study deals with the comparison of different - so-calteged - modifications of bilin-
ear and biquadratic solid-shell elements and higher gredements in a bending dominated
numerical example. In order to generate irregular spaisardtizations for the solid-shell el-
ements a hierarchical adaptive mesh refinement scheme wésdaplinterestingly all mod-
ifications for the low order - in particular the bilinear - glents only work well for regular
discretizations capturing the curvature of the shell welkcase of distorted meshes most of the



modifications do not affect and thus not improve the solubemavior in this bending dominated
problem. The results of the biquadratic elements show théqwadratic map of the geometry
reduces the sensitivity of the elements improved with mixexdifications to mesh distortions
and therefore results in a more robust scheme. The biquaétatnent MIOk3DEAS-at leads
to good results even compared to fheersion of the finite element method which - as expected
- yields the best convergence rates. It should be noted bhéeaconclusions drawn here are
in most instances restricted to the chosen benchmark pnodnbel can not yet be generalized to
all types of problems.
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