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Introduction

Lately, we celebrated the 15th anniversary of the World Wide Web. On April 30 1993,
the CERN1 put this technology for internet content in the public domain [1] and,
thereby, started the rapid growth of the internet. Nowadays, about 1.3 billion people
[2] worldwide use the internet as a source of information and a communication media.
Terabytes of data are sent all around the globe every second. The main foundation
for such ever increasing data rates has been provided by optical fiber technology.
Optical fibers are able to guide light over large distances with little propagation
loss. They provide a much larger bandwidth than electrical connections due to their
operation at higher frequencies, typically in the short-wavelength infrared (around
1.5µm, 200THz).

While optical communication clearly outperforms electronics for signal transport, it
is considerably more difficult to process signals all-optically and to build up all-optical
logical circuits. Up to now, routing in optical fiber networks, for instance, is still
done with electronics. For that, the light is converted to an electronic signal, is then
processed by some electronic circuitry, and is resubmitted to an optical fiber. This
slows down the network, narrows its bandwidth and, moreover, is power-intensive.
The electronic components tend to be the bottleneck of the communication pipeline.
Clearly, new concepts and technologies for all-optical signal processing are needed.

One step in this direction is the development of on-chip photonic integrated circuits
[3, 4]. Planar waveguiding structures on a substrate provide the basis for complex
functionality. Several materials and technologies are used, such as Silica-on-Silicon
(similar to a planar realization of an optical fiber) [5], Silicon-on-Insulator (SOI)
[6, 7] or III-V semiconductor structures. The latter are favorable for the simultaneous
integration of active components such as laser diodes and photodetectors to create and
detect light on-chip. Depending on the refractive-index contrast in the waveguiding
structures, those technologies allow to scale down the size of fabricated circuits. While
Silica-on-Silicon waveguides have a small index contrast (less than 1% between core
and cladding, both made of silica) and sizes of tens of micrometers, high-contrast
SOI Photonic Wires (silicon waveguides surrounded by air on a silica cladding, index
contrast 3.45 : 1.0 : 1.45) have dimensions of 500nm or less.

A serious limitation for the size reduction of photonic integrated circuits is the loss
of guidance at waveguide bends. If light is guided by total internal reflection, it can
escape as soon as it hits the waveguide core interface in an angle larger than the
critical angle. For low-contrast waveguides (optical fibers, Silica-on-Silicon waveg-
uides), this effect sets in for bend radii of 1cm and smaller. High-contrast Photonic

1European Organization for Nuclear Research
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Introduction

Wires exhibit bend losses, too, albeit the bends can have radii down to a few µm
[8, 9] before bend losses are significant. Nevertheless, all index-guided structures
suffer from the fact that the waveguides are not surrounded by a photonic insulator,
which would prohibit the propagation of the light outside the waveguide. Instead,
the surrounding air or low-index material is perfectly conducting for light.

all-optical microchip [10]

A solution to this problem is the use of Photonic Crys-
tals (PhCs) [11–14] as host materials for photonic inte-
grated circuits. This class of artificial materials is char-
acterized by a periodically varying dielectric permittivity
with a lattice period of the same order of magnitude as
the wavelength of light. Analogous to the scattering of
electrons at the crystal potential of an “electronic” crys-
tal, scattering of light at the periodic dielectric structure
of the PhC leads to the formation of a band structure
in the frequency spectrum. Properly designed, a PhC
can exhibit photonic band gaps (PBGs), i.e., frequency
ranges, in which propagation of light is completely pro-
hibited. For frequencies in the band gap, the PhC represents a perfect photonic
insulator, analogous to a semiconductor for electrons. Therefore, it is possible to cre-
ate sharp bends within such a PhC by introducing defects (analogous to the “doping”
of semiconductors) and to overcome the limitations of index-guided structures.

Besides the existence of band gaps, the unusual and unique dispersion properties
of PhCs and PhC waveguides give rise to many other applications. Prominent ex-
amples are the slow light propagation near band edges or in flat bands [15–17], the
superrefractivity (superprism effect) [18], and the negative refraction (superlenses)
[19, 20]. Furthermore, PhCs offer the possibility to investigate fundamental problems
in quantum optics [21, 22] and condensed matter physics. Independent of each other
in 1987, Eli Yablonovitch and Sajeev John initially proposed the use of PhCs in the
context of the inhibition of spontaneous emission [23] and of the strong localization
of photons [24], respectively. Today, they are even used in quantum-information pro-
cessing applications [25]. The deliberate creation of a “designer vacuum” with the
desired density of states for photons is an attractive vision for both theorists and
experimentalists.

Soon after the theoretical proposal of PhCs, experimentalists and material scien-
tists started to investigate different techniques and materials to build prototypes. Be-
yond the creation of one-dimensional (1D) PhCs, better known as Bragg stacks, which
exhibit periodicity in only one dimension and are homogeneous in the other direc-
tions, considerable efforts have been undertaken to experimentally realize PhCs with
periodicity in two [26–30] and three [31–41] dimensions (2D and 3D PhCs) . With
respect to photonic integrated circuits, 2D silicon PhCs [28] and PhC slabs [42, 43]
are of particular interest. High-quality 2D crystals with a large extent in the homoge-
neous z-direction have been produced by electrochemically growing nanoscale pores
in n-type silicon [44, 45]. Such high index-contrast macroporous silicon 2D PhCs can
have large band gaps for the propagation of light in the plane of periodicity. However,
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the majority of PhC structures that have been produced and characterized are PhC
slabs, in which the extent in the “homogeneous” z-direction is comparable or even
smaller than the lattice constant in the plane. In these structures, guidance with
respect to the z-direction is achieved only by total internal reflection. Furthermore,
PhC slabs with complete band gaps in the plane are rare [46]. Nevertheless, besides
well-established techniques such as electron-beam lithography, existing CMOS tech-
nology can be used in the production of PhC slab-based photonic integrated circuits
[4], which makes this option very attractive for industrial realization.

Simultaneously with the development of material and manufacturing technologies,
extensive studies about different types of functional elements built into PhCs have
been carried out over the past decade. The potential for broadband single-mode
waveguides [47] and bends [48–50] as well as for more complex devices, such as
directional couplers [51, 52] and Mach-Zehnder interferometers [53, 54] has been
demonstrated. In addition, various concepts for active tunability using liquid crystals
have been proposed [55–58].

In the face of the great design freedoms and the complexity of PhC structures, it is
of utmost importance to have powerful theoretical and computational tools to char-
acterize, simulate and optimize such structures. The plane wave expansion method
(PWM) [59–63] is widely used to calculate band structures for bulk PhCs. By using
supercells, it can also be utilized for cavity mode and waveguide dispersion calcula-
tions. Alternatively, powerful real-space methods [64, 65] can be utilized for band
structure calculations. For non-periodic structures, by far the most simulations have
been done using the Finite-Difference Time-Domain (FDTD) method [66] or other
all-purpose techniques, such as Finite Element [67] or Beam Propagation methods
[68]. While these methods are very powerful for structures with an arbitrary distri-
bution of dielectric material, they lose some efficiency in highly ordered structures
such as PhCs since they do not exploit the symmetry properties and band structure
of the underlying PhC. Furthermore, the simulation of large-scale devices is very
memory- and/or time-consuming, especially in the case when slow light regimes [53]
are involved in one of the components.

In this thesis, I develop and investigate in detail a scattering-matrix approach for
the efficient treatment of PhC circuits [69] and demonstrate its applicability to large-
scale2 2D circuits. The approach relies on the efficient calculation of the scattering
matrices of basic functional elements using an expansion of fields into photonic Wan-
nier functions [70], which represent a basis ideally suited to describe localized fields
within defect structures in PhCs.

This thesis is structured as follows. In chapter 1, I introduce the general concept
of photonic crystals and give an overview about band structures, Bloch modes and
Wannier functions. In addition, I introduce the working principles of some basic
conventional circuits such as directional couplers and Mach-Zehnder interferometers.

Chapters 2 and 3 are devoted to the detailed description of the Wannier-function

2In this context, “large-scale” means large compared to the lattice constant of the PhC, which lies
in the sub-micron regime, typically about 0.5µm.
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based scattering-matrix approach. In chapter 2, I provide technical details about
the Wannier function expansion. The wave equation is formulated in the Wannier
function basis and matrix equations for the calculation of cavity modes, waveguide
guided modes and S-matrices of functional elements are derived. I briefly discuss the
optimization of functional elements. In chapter 3, I outline the scattering-matrix for-
malism. On the one hand, I explain the calculation of individual functional elements
on the “microscopic” level using Wannier functions. On the other hand, I discuss
symmetries of S-matrices and the impact of congruences of functional elements and
formulate the combination of individual S-matrices to the circuit S-matrix.

In the last two chapters, I apply the method in two different ways. In chapter 4,
the focus is put on testing the method for accuracy and convergence. To do this, I
present Wannier function calculations of cavity modes and waveguide dispersions and
compare the results to reference solutions computed with the plane-wave based MIT
photonic bands package (MPB) [63]. Furthermore, checks of the self-consistency of
the scattering-matrix combination are carried out. In contrast to this, in chapter 5,
I demonstrate the feasibility and full power of the scattering-matrix method on the
basis of the design of an actively tunable Mach-Zehnder interferometer. The process
involves the design of basic components such as an optimized bend or a tunable delay
line using liquid-crystal infiltration.

Finally, a summary and conclusions are provided.
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1. Fundamentals

1.1. Wave Propagation in Dielectric Media

1.1.1. Maxwell’s Equations and Wave Equations

Electromagnetic wave propagation in arbitrary media is governed by the Maxwell
equations

∇ · ~D = ρ ∇ · ~B = 0 (1.1)

∇× ~E = − ∂

∂t
~B ∇× ~H = ~j +

∂

∂t
~D , (1.2)

with the electric and magnetic field ~E(~r, t) and ~H(~r, t) and the electric and mag-
netic flux density ~D(~r, t) and ~B(~r, t), respectively. These equations are generally
applied to macroscopic averages of the fields since on a microscopic scale the fields
vary strongly due to the inhomogeneous charge distribution in the medium. In the
macroscopic picture, the influence of matter is described by a polarization density ~P
and a magnetization density ~M ,1 which enter Maxwell’s equations through so-called
constitutive relations

~D = ε0 ~E + ~P ( ~E, ~H) , (1.3)
~B = µ0

~H + ~M( ~E, ~H) (1.4)

that connect the flux densities ~D and ~B to the fields ~E and ~H.
In general, ~P ( ~E, ~H) and ~M( ~E, ~H) are complicated functionals of ~E and ~H, covering

non-local, non-linear and non-Markovian effects. This gives rise to a rich variety of
optical phenomena observed in various media.

In this thesis, however, we restrict ourselves to the case of non-magnetic2 materials
with linear, local, instantaneous response. In this case, we have

~P = ε0χe
~E ~M = 0 (1.5)

~D = ε0(1 + χe) ~E = ε0ε ~E ~B = µ0
~H . (1.6)

1Higher moment densities, such as electric quadrupoles, are completely negligible in most materials
[71]. Therefore, they are left out in our considerations.

2Most conventional materials are non-magnetic at optical frequencies [71]. However, there currently
is a huge interest in constructing artificial materials (meta-materials) with magnetic response at
optical frequencies. This would allow to realize negative refractive index materials [72, 73] for
perfect lenses [74] and cloaking devices [75], for instance.
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1. Fundamentals

The material response is described by the frequency-independent dielectric permit-
tivity ε = ε(~r), which, in general, is a tensor. In most parts of this thesis, however,
we will treat ε(~r) to be a scalar unless otherwise specified3. We further assume that
there exist no free charges (ρ = 0) and currents (~j = 0) in the materials.

By multiplying the curl equation (1.2) for ~H with ε−1(~r) and again applying curl
to it, we can derive the electromagnetic wave equation for the ~H-field

∇× 1
ε(~r)
∇× ~H(~r, t) +

1
c2
∂2

∂t2
~H(~r, t) = 0 . (1.7)

The wave equation for the ~E-field,

1
ε(~r)
∇×∇× ~E(~r, t) +

1
c2
∂2

∂t2
~E(~r, t) = 0 , (1.8)

can be derived similarly. In frequency domain, these equations read

∇× 1
ε(~r)
∇× ~H(~r)− ω2

c2
~H(~r) = 0 (1.9)

1
ε(~r)
∇×∇× ~E(~r)− ω2

c2
~E(~r) = 0 . (1.10)

The major task is to develop methods for solving the wave equations for a given
dielectric permittivity ε(~r) under given boundary conditions. In band structure calcu-
lations, for instance, (1.9) is solved as a standard eigenvalue problem for the eigenval-
ues ω2/c2 with Bloch boundary conditions. For the calculation of scattering matrices
of functional elements, on the other hand, the frequency is fixed and (1.9) is solved
as a linear system of equations with mixed boundary conditions (see section 2.3.3).

1.1.2. Wave Equations in 2D Structures

For arbitrary 3D structures the wave equations (1.9) and (1.10) have to be solved as
fully vectorial problems. However, in the case of structures that are homogeneous
in one direction (ẑ-direction) and for propagation in the x-y plane it is possible to
decouple the two different polarizations, the H-polarization ( ~H-field parallel to ẑ)
and the E-polarization ( ~E-field parallel to ẑ).4 The resulting scalar wave equations
for the z-components of the fields read[

∇2 ·
1
ε(~r)
∇2

]
H(~r) +

ω2

c2
H(~r) = 0 (H-polarization) (1.11)

1
ε(~r)

∆2E(~r) +
ω2

c2
E(~r) = 0 (E-polarization) (1.12)

3The generalization to dielectric permittivity tensors is done in detail in [76]
4Often the terms TE- (transverse electric) and TM-polarization (transverse magnetic) are used in

the literature instead of H- and E-polarization, respectively. This nomenclature is sometimes
ambiguous, therefore we don’t use it here.
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1.2. Photonic Crystals

(a) 3D (b) 2D (c) 1D

Figure 1.1.: Schematic pictures of PhCs of different dimensionality. The continuous
translational symmetry is retained in (a) no, (b) one, or (c) two directions.

with the definitions

∇2 ≡
(
∂x

∂y

)
∆2 ≡ ∂2

x + ∂2
y . (1.13)

Since we can treat the two polarizations separately and the equations are scalar, this
greatly simplifies the problem. The solutions of (1.11) and (1.12) still cover the entire
space of solutions of the fully 3D wave equations for the 2D structures.

For systems structured in the x-y-plane and homogeneous but finite in the z-
direction (slab structures), the above 2D description is no longer valid since the two
polarizations couple. Nevertheless, results obtained by 2D calculations can still be
useful for qualitative discussions as the modes found in slab structures typically show
significant similarities to H- or E-polarized modes of the strictly 2D calculation. In
many cases they can be categorized as “TE-like” or “TM-like”. We will not discuss
this issue in this thesis and refer the reader to the literature [42, 43] for more details.

1.2. Photonic Crystals

Photonic Crystals (PhCs) [11–13] are periodically structured dielectric materials with
the spatial period on the order of the wavelength of light. They may consist of a
periodic arrangement of dielectric “atoms” (e.g. dielectric spheres) or the inverse
structure (e.g. air spheres in dielectric material) and can be classified by dimension-
ality. While 3D crystals exhibit a discrete translation symmetry in all three directions
of space, 2D crystals have a periodic structure in a plane but are homogeneous in
the third direction. 1D crystals have only one direction of discrete translational sym-
metry and are homogeneous in planes perpendicular to that direction. A schematic
picture of all three cases is given in Fig. 1.1.

Electromagnetic waves are scattered at interfaces between materials of different
dielectric permittivity. If these interfaces are arranged periodically, the situation is
analogous to electronic crystals where scattering of the electron wave function on the
effective crystal potential leads to the formation of an electronic band structure in

7



1. Fundamentals

the energy spectrum. Therefore, we expect similar phenomena to appear in Pho-
tonic Crystals. In particular, we expect a photonic band structure in the frequency
spectrum of the electromagnetic waves and the occurrence of band gaps, i.e. regions
of frequency where electromagnetic wave propagation is prohibited in the Photonic
Crystal. On the other hand, there also exist fundamental differences between elec-
tronic and photonic wave propagation:

• the electromagnetic field has vectorial nature,

• the photon energy (frequency) is always positive,

• the photonic crystal “potential” is frequency-dependent and vanishes for ω → 0.

Due to the vectorial nature it is, for instance, more difficult to find structures with
complete photonic band gaps. The positive photon energy and the vanishing “crystal
potential” for ω → 0 make it more difficult to achieve localization of photons.

The existence of band gaps is the most prominent feature of Photonic Crystals
(also frequently called “Photonic Band Gap Materials”, PBGs). It is the precondi-
tion for the PhC cavities, waveguides and defect structures discussed later on in this
thesis. Other applications take more emphasis on the unusual and unique dispersion
properties of Photonic Crystals, such as slow light propagation [15–17] or negative re-
fraction (superlenses) [19, 20]. In the following sections, we will give a short overview
of the concept of photonic band structures, which provides the foundation of all those
linear properties of Photonic Crystals.

1.2.1. Basic Concepts from Solid-State Theory

A PhC is characterized by a dielectric permittivity

ε(~r + ~R) = ε(~r) (1.14)

which is periodic with respect to the set R = {
∑d

i=1 ni~ai ; ni ∈ Z} of lattice vectors
~R that are generated by the primitive translations {~ai ; i = 1, . . . , d}. The set R is
referred to as the direct lattice [77].

The crystal breaks the continuous translation symmetry of homogeneous materials.
Therefore, momentum conservation is no longer fulfilled within the crystal. Never-
theless, a discrete translation symmetry is retained, which can be identified with the
conservation of the wave vector ~k up to any vector ~G that fulfills ei ~G·~R = 1. Thus
we can define a reciprocal lattice as the set G = {

∑d
i=1 ni

~bi ; ni ∈ Z} of reciprocal
lattice vectors ~G generated by primitive translations ~bi that fulfill ~bi · ~aj = 2πδij .
The reciprocal lattice is predetermined by the direct lattice (real-space lattice), and
it belongs to the same point group. The Wigner-Seitz cell of the reciprocal lattice,
i.e., the primitive unit cell that has the full symmetry of the lattice, is called first
Brillouin zone. Any wave vector ~k can be folded back into the first Brillouin zone
since it is only determined up to a reciprocal lattice vector.

8



1.2. Photonic Crystals

Group Theory

Besides the discrete translation symmetry with respect to an arbitrary lattice vector
~R, the lattice of a PhC typically exhibits rotational and mirror symmetries. Formally,
such symmetries are expressed by the space group of the lattice, which is defined by
the set of symmetry operations (elements of the group), under which the object is
invariant (is mapped onto itself). The point group of the lattice is a subgroup of
the space group that excludes translations. Many features appearing in the band
structure, such as avoided crossings or degeneracies, can be attributed to particular
properties of the point group. Therefore, a careful group-theoretical analysis is of
great importance in the study of fields within PhCs. This is especially the case for
the generation of Wannier functions discussed in section 1.2.4.

We skip the detailed discussion about group theory here. A comprehensive de-
scription can be found, for instance, in [78, 79].

Bloch theorem

Solutions of the wave equation (1.9), or (1.10),5 within a PhC are eigensolutions of a
PDE with periodic coefficients. They must obey the Bloch theorem, i.e., they must
be lattice-periodic up to a phase factor ei~k~r,

~H~k
(~r) = ei~k~r~u~k

(~r) , (1.15)

where ~u~k
(~r) is a lattice-periodic field. These so-called Bloch modes are labeled with

the wave vector ~k.
The Bloch theorem can be derived from group-theoretical considerations: The op-

erator of a PDE with periodic coefficients and the translation operator T̂~R, which
shifts a field by any lattice vector ~R, commute. Therefore, the eigensolutions of the
PDE are at the same time eigensolutions of the translation operator T̂~R. Since T̂~R

is unitary and commutes with any other translation operator T̂~R′ (unitary Abelian
group), it has only eigenvalues of the form eiφ~R (only one-dimensional unitary repre-
sentations). φ~R must be linear in ~R (since T̂~RT̂~R′ = T̂~R+~R′), so we can write it in the
form φ~R = −~k · ~R, which represents a definition for the wave vector ~k as a parameter.
So we have

T̂~R
~H(~r) ≡ ~H(~r − ~R) = e−i~k ~R ~H(~r) , (1.16)

which is equivalent to (1.15).
We can restrict the wave vector ~k to the first Brillouin zone, since ~k is equivalent

to ~k + ~G. In this case, the periodic part ~u~k
(~r) acquires an additional index n, which

labels the solutions for all equivalent wave vectors ~k + ~G, ~G ∈ G, which are folded
back into the first Brillouin zone and labeled with the same ~k now. Eq. (1.15) then
reads

~H
n~k

(~r) = ei~k~r~u
n~k

(~r) . (1.17)

5We will use the ~H-field as an example in the following discussion. However, the same arguments
can be applied to the ~E-field formulation as well.
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1. Fundamentals

Similarly, the ~E-field solutions of (1.10) obey

~E
n~k

(~r) = ei~k~r~u
n~k

(~r) , (1.18)

and both (1.17) and (1.18) can be translated to scalar solutions of the 2D wave
equations.

The Bloch theorem applies not only to the solutions of the wave equation in ideal
PhCs but also to the guided modes of waveguides within PhCs. In such waveg-
uides, the discrete translation symmetry is retained in the direction of the waveguide.
Therefore, the wave vector of guided modes is always parallel to this direction.

1.2.2. Band Structure and Band Gaps

As alluded to above, scattering of light by the periodic distribution of the dielectric
permittivity in a Photonic Crystal leads to the formation of a photonic band struc-
ture in the frequency spectrum of light. The linear dispersion relation (light cone)
in vacuum or homogeneous materials is distorted by both the occurrence of Bragg
resonances, which result from constructive interference of back-scattered waves from
different lattice sites, and of Mie resonances, which are caused by the resonant scat-
tering of the light at individual scatterers (“atoms”) in a regime where the wavelength
of light is of the order of the scatterer size. The interplay of these two scattering
mechanisms gives rise to the complicated and feature-rich structure of the frequency
spectrum of light in Photonic Crystals.

If we consider wave propagation into one direction, Bragg scattering always leads
to the formation of frequency ranges, in which no propagating solutions are found.
These so-called stop bands vary when the propagation direction is changed. If the
stop bands for all possible directions have an overlap, this frequency range is called
photonic band gap. If the band gap persists for all possible polarizations, we talk
about a complete photonic band gap. The existence of (complete) band gaps depends
on the strength of the Bragg and Mie resonances, which determine the extent of the
individual stop bands. It also depends on the geometry and topology of the crystal
lattice, which influences the relative position of the stop bands with respect to each
other. In crystals with a more “circular” or “spherical” unit cell, wave propagation
tends to be more isotropic, so that stop bands have a larger overlap. Therefore, such
crystal geometries are more favorable for the formation of (complete) photonic band
gaps.

As an example, Fig. 1.2 shows a band structure of a 2-dimensional PhC, in which
the two polarizations are plotted within the same diagram. While the band gaps for
one polarization, such as the first band gap for H-polarization, can be very large,
there is only a small complete band gap when considering both polarizations. This
is also seen in Fig. 1.3, where the first band gap is plotted as a function of the radius
of the air holes in the triangular lattice. It is difficult to get complete band gaps in
2D structures. The structure shown in Fig. 1.2 (triangular lattice of cylindrical air
holes with radius r = 0.45a in silicon) has such a complete band gap. Later on, we
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Figure 1.2.: Band structure of a 2D Photonic Crystal (triangular lattice of cylindrical
air holes of radius r = 0.45a in silicon (εSi = 12.0). Results for both polarizations
(E- and H-polarization) are plotted into one diagram. The hatched areas depict the
band gaps. For this structure, the first band gaps of the two polarizations overlap,
so there exists a complete band gap in the vicinity of a/λ = 0.4.
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Figure 1.3.: Gap map for a triangular lattice of cylindrical air holes of different radii
in silicon. A complete band gap (overlapping region of the band gaps for E- and
H-polarization) is only present for radii in the range r = [0.405a, 0.503a].
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1. Fundamentals

will concentrate on the large first band gap in H-polarization, in which single-mode
waveguiding can be achieved.

1.2.3. Bloch Modes and Wannier Functions

First of all, to avoid unnecessary duplication of equations for ~H- and ~E-field Bloch
modes, which are otherwise equivalent, we would like to use Dirac notation where
appropriate and define

∣∣n~k〉 ≡ {
~H

n~k
(~r) in ~H-field formulation,

~E
n~k

(~r) in ~E-field formulation,
(1.19)

so that we can write scalar products more formulation-independent as

〈
n~k | n′~k′

〉
≡


∫

Rd

ddr ~H∗
n~k

(~r) ~H
n′~k′(~r) ,∫

Rd

ddr ~E∗
n~k

(~r) ε(~r) ~E
n′~k′(~r) .

(1.20)

We will return to the explicit notation when necessary.
The Bloch theorem, Eq. (1.17), forces that the time-harmonic solutions of the wave

equation within a PhC (so-called Bloch modes) are plane waves ei~k~r modulated with
an arbitrary lattice-periodic field ~u

n~k
(~r). There exist infinitely many Bloch modes

for each wave vector ~k in the first Brillouin zone. Altogether, the set of Bloch modes
for all wave vectors in the first Brillouin zone constitutes a complete and orthonormal
basis, normalized with respect to a Wigner-Seitz cell of the PhC,〈

n~k | n′~k′
〉

= δnn′δ(~k − ~k′) . (1.21)

Each Bloch mode
∣∣n~k〉 is a representation of a symmetry group that is determined

by the point group of the lattice, the symmetry group of the structure in the unit
cell, and the symmetry group of the wave vector ~k. For well-placed spherical or cylin-
drical “atoms” in the unit cell, having the maximum possible symmetry (continuous
rotation symmetry), we can ignore the influence of the unit-cell structure. The wave
vector typically has reduced symmetry and, therefore, the symmetry of an arbitrary
Bloch mode is also reduced. At the Γ-point (~k = 0) or certain other high-symmetry
points in the Brillouin zone (like the K-point in the 2D triangular lattice), the Bloch
modes have the full lattice symmetry (C6v in the 2D triangular lattice), while along
symmetry lines (e.g., ΓK) or at high-symmetry points with reduced symmetry (e.g.,
the M -point in the 2D triangular lattice) they only retain the symmetry of a sub-
group of the lattice point group. At arbitrary wave vectors in the Brillouin zone, the
symmetry is completely lifted and the Bloch modes can be arbitrarily distributed.

The Bloch mode basis is well suited to describe fields within a slightly perturbed
PhC, since the basis is complete, knows about all symmetries of the lattice and the
unit cell structure, and incorporates information about the dispersion relation and
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1.2. Photonic Crystals

the band gaps of the PhC. Nevertheless, the Bloch modes are extended functions in
space, so they are inefficient for describing localized fields such as defect states around
local perturbations (defects) within the PhC. Therefore, it is useful to introduce a
basis equivalent to the Bloch mode basis but consisting of localized functions. This
is the Wannier function basis.

Wannier functions [80, 81] are derived from the Bloch modes by a lattice Fourier
transform,

~Wn~R(~r) ≡
∣∣n~R〉

:=
VWSC

(2π)3

∫
BZ

d3k e−i~k ~R
∣∣n~k〉 , (1.22)

where we integrate in wave-vector space over the first Brillouin zone of the reciprocal
lattice. The Wannier functions are indexed by lattice vector ~R, so each of them is
associated to a specific site in the direct lattice, in contrast to a Bloch mode, which is
assigned to a specific wave vector ~k. By construction, Wannier functions at different
lattice sites are related to each other by a simple shift in space,

~Wn~R(~r) = ~Wn~0(~r − ~R) . (1.23)

This means that it is only necessary to construct the Wannier functions ~Wn~0(~r)
associated to the origin site. The basis can then be easily completed by shifting
these origin Wannier functions to every other lattice site ~R.

The Wannier functions inherit many other properties of the Bloch modes they are
constructed from. In particular, they form a complete and orthonormal basis,〈

n~R | n′ ~R′〉 = δnn′δ(~R− ~R′) , (1.24)

which contains all information about symmetries and band gaps of the underlying
PhC. But in contrast to the Bloch modes, the Wannier functions can be generated
such that they are localized (see section 1.2.4 below). This makes them ideally
suited to describe localized defect states in a locally perturbed PhC. Fig. 1.4 gives a
schematic illustration of the construction of Wannier functions from the Bloch modes
and shows the first nine Wannier functions for the example system in Fig. 1.2. It
also suggests that the generation of Wannier functions is a highly nontrivial task.

1.2.4. Wannier Function Generation

Despite the clear formal definition of Wannier functions, Eq. (1.22), computing them
directly via (1.22) leads to functions with poor localization properties and erratic
behavior. This has basically two reasons.

1. Indeterminacy of Bloch modes: The Bloch functions ~H
n~k

(~r) are determined
except for a global phase factor,

~H
n~k

(~r)←→ ~H
n~k

(~r)eiφ
n~k , (1.25)

where φ
n~k

can be chosen for each Bloch mode individually. Numerically computed
Bloch modes may therefore show a random relationship of the individual phases φ

n~k
.
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1. Fundamentals

Γ MK

Figure 1.4.: Schematic illustration of the construction of Wannier functions from
Bloch modes. The example shows the 2D band structure and Bloch modes (Hz

component) corresponding to Fig. 1.2. While the first band can be treated separately
and reveals a monopole-like Wannier function, it is apparent that the upper bands
are significantly entangled and have to be treated simultaneously. Two dipole-like
Wannier functions and a star of six hybridized Wannier functions can be constructed
when taking bands two to nine into account. [82].

As a consequence, the Wannier functions resulting from (1.22) are not unique and
may be largely extended and asymmetric.

2. Entanglement of bands: The band index n for entangled bands is a poor crite-
rion for extracting single bands, since it orders the Bloch modes by their frequency
only and completely neglects symmetries and mode structure. When band crossings
occur, the band index is not constant along a band of certain symmetry and mode
structure. Bloch modes with the same band index may have totally different symme-
tries and mode structure. Consequently, Wannier functions constructed from such
Bloch modes with the same band index typically have poor symmetry properties.

These two complications make it inevitable to generalize Eq. 1.22 to account for
both the adjustment of global phase factors of Bloch modes and the disentanglement
of bands. We therefore allow the Bloch modes at each wave vector ~k to be mixed by

a unitary transformation U (~k)
mn, ∣∣n~k〉 ∑

m

U (~k)
mn

∣∣m~k〉 . (1.26)

This transformation includes the global phase adjustment of a single band, in which
case the sum has only one summand m = n, and the unitary transformation reduces
to a phase factor eiφ

n~k like in (1.25). We call the new basis functions in (1.26)
generalized Bloch modes since, in general, these functions are no longer eigensolutions
of the wave equation for a certain frequency. Finally, by using generalized Bloch
modes, (1.26), as input for the generation of Wannier functions, (1.22), we get enough
free parameters to be able to construct highly localized and symmetric Wannier
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1.2. Photonic Crystals

functions.
Nevertheless, the difficulty is now only shifted to the determination of appropriate

unitary transformations U (~k)
mn that make the Wannier functions fit some predefined

criteria best. Criteria may be maximal localization and/or symmetry of the Wannier
functions. The localization, for instance, can be quantified by the spread functional,

Ω =
∑
m

[〈
m~0

∣∣~r 2
∣∣m~0〉

−
(〈
m~0

∣∣~r∣∣m~0〉)2
]

= min. (1.27)

Furthermore, the grouping of bands, reflected by the range of the summation index
m in (1.26) and (1.27) has to be carefully chosen.

For further details, we would like to refer the reader to the dissertation of Matthias
Schillinger [82], in which he outlines and extends the instructions for Wannier function
generation by Marzari, Vanderbuilt and Souza [83, 84], originally developed in the
context of electronic band structure theory.

1.2.5. Single-Pore Infiltration

The diverse fabricational techniques to realize PhCs and PhC defect structures [26–
41] can not be covered in detail here. Instead of reviewing this subject, we shortly
discuss only one technique, namely the single-pore infiltration of 2D PhCs [50], which
we will use as a basis for the circuit design in chapter 5.

In macroporous silicon 2D PhCs, such as model system 2 used in chapters 4 and 5,
defects can be created by infiltrating individual pores with materials of different
dielectric permittivity, for instance, low-index materials such as polymers. Point
defects can be created very flexibly inside an existing 2D PhC with this technique. It
allows to separate the creation of the ideal PhC and the writing of customized defect
structures inside the crystal into a two-step process. It may even be possible to
rewrite circuits inside the PhC by using appropriate materials that can be removed.
First successful experiments with single-pore infiltration have been reported in [85].

Furthermore, the infiltration of tunable materials such as nematic liquid crystals
(LCs) [55] allows us to incorporate actively tunable functional elements [57, 58, 76, 86]
into PhC circuits. LCs can be tuned by applying an external electric field, which
aligns the anisotropic LC molecules such that their (nematic) director (the averaged
orientation of the molecules) points along the field. The LC is characterized by
an ordinary and an extraordinary component of the dielectric tensor, εo and εe,
respectively. In addition, the director angle θ within the plane of propagation in
the 2D PhC fixes the orientation of the LC. Those parameters are illustrated in
Fig. 1.5. More details can be found in the diploma thesis of Patrick Mack [76].
The complete alignment of the LC molecules along the external electric field is a
simplification compared to the experimental situation, where the molecules are, for
instance, largely influenced by surface forces [45]. Nevertheless, we are confident that
this concept is experimentally realizable.

Another option is to infiltrate single pores with magneto-optical materials to obtain
non-reciprocal functionality, such as an optical isolator or circulator [87], within PhC
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1. Fundamentals

Figure 1.5.: Liquid crystals and their tunability by an electric field. The three
parameters εo, εe and θ fully characterize the LC in this simplified picture. In reality,
surface forces may strongly influence the alignment. Pictures by courtesy of Patrick
Mack [76].

circuits.
The single-pore infiltration has the potential to become a flexible and powerful

alternative to well established technologies, such as focussed ion beam techniques.
The point defects within model system 2 discussed later on will all be based on
single-pore infiltration. Although the defect pore permittivity is the only remaining
degree of freedom for creating defects in the PhC, i.e., no radius or shape variations
or hole displacements are allowed, there still is enough flexibility to design large-scale
PhC circuits, as will be demonstrated in chapter 5.

1.3. Conventional Circuits

In view of chapter 5, where directional couplers and Mach-Zehnder interferometers
in PhCs are investigated, we briefly introduce in the present section some general
concepts and working principles concerning those two device classes.

1.3.1. Directional Coupler

Directional couplers (DCs) were introduced as passive components for microwave
circuits and have a long history, reaching back to the year 1922 [88]. Since then, a
huge number of variants have been designed, and the concept has been extended to
optical components; however, the basic working principles remained the same.

A DC consists of two waveguides that are coupled over a certain distance. To be
specific, we first consider a typical fiber-optical DC schematically depicted in Fig. 1.6.
It consists of two fibers approaching each other so that light can couple between
them. We assume that the fibers are identical (symmetric DC) and single-mode, and
we ignore reflections. Light enters the DC through the waveguide ports 1 or 2. In
the coupling section, the field is a superposition of the two fundamental modes of the
dual-mode waveguide formed by the two coupled fibers. Those modes are even and
odd with respect to a mirror reflection on the plane parallel to and equidistant from
both fibers. They propagate with different wave vectors keven and kodd, respectively.
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Figure 1.6.: Typical fiber-optical DC consisting of two fibers approaching each other,
so that light can couple between them over a certain distance. Light entering in
ports 1 and 2 (on the left) exits in ports 3 and 4 (on the right), assuming that no
reflections occur. The ratio of the output amplitudes in ports 3 and 4 depends on
the length of the coupling section and the wavelength of the light. The insets depict
the fundamental modes in the coupling section, an even and an odd mode, composed
of the original modes in the single fibers.

(a) bar state (b) 3dB coupling (c) cross state

Figure 1.7.: Modes of operation of a typical fiber-optical DC. Light launched into one
waveguide (a) exits in the same waveguide, (b) is split up equally into both waveg-
uides, or (c) is coupled over to the other waveguide. In this particular illustration, the
wavelength of the light is varied instead of the length of the coupler (wider/narrower
ellipses).

Due to mode beating, the resulting field shifts periodically between the two fibers
with a period of LB = 2π/|keven−kodd|, called beat length. At the end of the coupling
section, the resulting field pattern determines how much light exits the DC in the
waveguide ports 3 and 4.

Thus, if the coupler length L is equal to LB (or a multiple of it), light launched into
one of the waveguides exits in the same waveguide (bar state), while if the coupler
length is half the beat length (or an odd multiple of it), the light is completely coupled
over to the other waveguide (cross state). In between (i.e. for L = 1/4LB, 3/4LB, . . .),
the coupler splits up the light equally into both waveguides (3dB coupling). These
modes of operation are illustrated in Fig. 1.7.
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1. Fundamentals

Figure 1.8.: Four-port MZI composed of two DCs and a phase shifting component
in the upper arm. By manipulating the relative phase shift ∆φ in the upper arm,
signals input in port 1 and 2 can be flexibly routed to ports 3 and 4.

1.3.2. Mach-Zehnder interferometer

Interferometers represent an important building block for modern optical circuitry.
The underlying principle is the manipulation of the intensity of an output signal by
applying controlled phase shifts to the signal within the device. The type of inter-
ferometer proposed by Zehnder [89] and Mach [90] and named after them consists of
two separate arms, in which the phase of the signal can be manipulated separately.
The simplest realization of a Mach-Zehnder interferometer (MZI) is composed of a
beam splitter and a beam combiner, which are connected over two separate waveg-
uides. In such a setup, a beam is split into two equal beams that are in phase. After
the controlled phase shifts within the interferometer arms, the beams are combined
and interfere with each other. Depending on the relative phase, the interference is
constructive or destructive, resulting in an amplitude modulation of the output beam.

A slightly more complicated Mach-Zehnder interferometer is shown in Fig. 1.8.
This version has two input ports 1 and 2, which can be independently operated. They
are coupled over a certain distance (see the previous section about the directional
coupler, DC) before the signal is split again into the two separate MZI arms. The
combination of the arms is again accomplished by a DC, so that there are two output
ports 3 and 4. The simple MZI with only one input port and an equal partitioning
into the two arms can, for instance, be reproduced by a single input in port 1 and an
operation wavelength, for which the DC at the input side splits up the signal equally
(3dB coupling) and the DC at the output side combines two phase-matched signals
into one output port. Besides this special case, such a more general MZI can be
operated in many different ways.

As an example, we present the operation of the MZI in Fig. 1.8 as an optical
switch, which routes a signal from input port 1 to either output port 3 or 4. The
two states of the switch, illustrated in Fig. 1.9, correspond to different relative phase
shifts ∆φ = 0 and π, respectively. In chapter 5, we will discuss exactly this case for
an MZI based on a PhC with phase shifts induced by tuning the director angle of
nematic liquid crystals infiltrated in the PhC.
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(a) ∆φ = 0

(b) ∆φ = π

Figure 1.9.: Two states of a switch based on an MZI. A signal input in port 1 is
routed either into port 3 or port 4, depending on the relative phase shift ∆φ between
the two arms.
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2. Wannier Function Expansion

In this chapter, we introduce the Wannier function expansion as a method to dis-
cretize the wave equation for defect structures in Photonic Crystals. First, we con-
ceptually introduce defect structures as additional contributions to the periodic di-
electric constant of a Photonic Crystal. Then, we expand the fields into Wannier
functions, insert the expansion into the wave equation, and get a finite matrix prob-
lem by truncating the Wannier function basis both in real space and in band index.
Details about the overlap matrices involved in this process are given. The overlap
matrices can be calculated once for a given Photonic Crystal and for different point
defect prototypes, and can be reused afterwards for any constellation of point defects.
This allows a rapid design of functional elements in a given Photonic Crystal, once
the Wannier functions and corresponding overlap matrices are generated. Finally,
we give precise instructions on how to calculate cavity modes, waveguide modes and
scattering matrices of functional elements and discuss the optimization of functional
elements.

2.1. Defect Structures in Photonic Crystals

Defect Structures embedded in PhCs, as they are illustrated in Fig. 2.1, can be con-
ceptually described by an additional contribution to the periodic dielectric constant
of a PhC,

ε(~r) = εp(~r) + δε(~r) . (2.1)

=⇒ +

Figure 2.1.: Illustration of defect structures embedded in a PhC. The structure can
be described by an additional contribution to the periodic dielectric permittivity of
the underlying PhC. This contribution itself can typically be split into contributions
of point defects that are located at different lattice sites.
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2. Wannier Function Expansion

Alternatively, we can use the inverse periodic dielectric constant ηp(~r) := ε−1
p (~r) as

a reference and write
η(~r) := ε−1(~r) = ηp(~r) + δη(~r) , (2.2)

so that

δη(~r) =
−δε(~r)

εp(~r)
[
εp(~r) + δε(~r)

] . (2.3)

The defect part δε(~r) (or δη(~r), respectively1) often has a complicated structure.
However, in most cases, it can be further simplified by decomposing it into a sum of
point defect contributions.

2.1.1. Point Defects

We define point defects as zero-dimensional defects that are restricted to one unit cell
of the Photonic Crystal.2 A point defect at the origin lattice site can be described
by

δε(~r) = ∆ε ·Θ(~r) , (2.4)

where Θ(~r) is a form factor describing the shape of the defect and ∆ε is the defect
strength. For simple point defects, such as filled or shifted pores in macroporous
silicon, missing rods or rods with different radius in rod systems, Θ(~r) is piecewise
constant,

Θsimple(~r) =

{
±1 for ~r in regions with changed dielectric constant,
0 for ~r elsewhere.

(2.5)

For more complex point defects, Θ(~r) may be a continuous function in the inter-
val [−1, 1].

In this work we are mainly considering two-component Photonic Crystals that
consist of a background matrix with dielectric constant εb, in which pores (or rods)
with dielectric constant εa are arranged periodically. Point defects are created by
modifying one pore (or rod, respectively) in the Photonic Crystal. On the one hand,
we can change the shape of the pore, increase or decrease the radius or dislocate the
pore within the unit cell. In these cases, the defect strength is given by ∆ε = εb− εa.
On the other hand, we can incorporate other materials into the two-component PhC,
e.g. by infiltrating a single pore and thereby changing the dielectric constant inside it.
In this case, the defect strength is given by ∆ε = εdef − εa, where εdef is the dielectric
constant of the infiltrated material. In general, the freedoms of creating simple point
defects can be combined arbitrarily to form complex point defects.

1 Since the treatment of δη(~r) is perfectly analogous to δε(~r), we restrict ourselves to the discussion
of δε(~r) in most cases but use the developed expressions in both contexts later on.

2We could define point defects in a more general sense, also allowing them to exceed one unit
cell. We use the restriction to one unit cell only for the sake of simplicity when defining overlap
matrices below.
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Figure 2.2.: Defect structure split up into point defects, whose dielectric permittivity
can be expressed as a product of defect strength times form factor. The triangle defect
is an example for a point defect that is composed of two form factors.

By combining several point defects at different positions ~Rm,

δε(~r) =
∑
m

δεm(~r − ~Rm) with δεm(~r) = ∆εmΘm(~r) , (2.6)

complex defect structures in a PhC can be easily composed. In a typical situation,
only a few different prototypes of point defects δεm(~r) are used and the complex
structures are built by just copying a prototype and moving the copy to the proper
lattice site ~Rm.

2.2. Wave Equations in Wannier Basis

As explained in section 1.2.3, Wannier functions represent an orthonormal basis of
localized functions, which is adapted to the specific PhC host material. This basis
is ideally suited to describe localized fields in the perturbed PhC. Each Wannier
function Wn~R(~r) is labeled by a band index n and the lattice vector ~R of the lattice
site where it is centered. The band index does not necessarily correspond to a single
band in the band structure, due to the entanglement of bands, which is resolved in
the generation of the Wannier functions. If we take an infinite number of bands and
lattice vectors into account, the Wannier basis is complete. By suitably truncating
the number of bands and the spacial region, we obtain a finite basis that covers the
localized fields well within the extent of the PhC defect structure. To simplify the
notation, we introduce a composite index α = {n, ~R}, denoted by Greek letters, so
that Wα(~r) ≡Wn~R(~r). Any overlap matrix element connecting two specific Wannier
functions Wn~R(~r) and Wn′ ~R′(~r) can then be written in the form Mαβ ≡ Mnn′

~R~R′ , with
only two indices.
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2. Wannier Function Expansion

2.2.1. 2D H-polarization

We start with the wave equation (1.11) for H-polarized fields in 2D systems,

[
∇2 ·

{
ηp(~r) + δη(~r)

}
∇2 +

ω2

c2

]
H(~r) = 0 , (2.7)

where the contributions to η(~r) of the periodic crystal and the defect structure have
been separated and emphasized by different colors. We expand the field H(~r) into
Wannier functions,

H(~r) =
∑
β

HβWβ(~r) , (2.8)

insert this expansion into (2.7), and project onto an arbitrary Wannier function
W ∗

α(~r) to get ∑
β

[
Cαβ +Dαβ − ΛAαβ

]
Hβ = 0 ∀α (2.9)

with

Aαβ =
∫

d2r W ∗
α(~r)Wβ(~r) (2.10)

Cαβ =
∫

d2r
(
∇2W

∗
α(~r)

)
ηp(~r)

(
∇2Wβ(~r)

)
(2.11)

Dαβ =
∫

d2r
(
∇2W

∗
α(~r)

)
δη(~r)

(
∇2Wβ(~r)

)
(2.12)

and

Λ =
ω2

c2
. (2.13)

In the expressions for Cαβ and Dαβ , the gradient operator has been shifted to the
Wannier function on the left,∫

d2r W ∗
α(~r) ∇2 · η(~r)∇2 Wβ(~r) = −

∫
d2r

(
∇2W

∗
α(~r)

)
η(~r)

(
∇2Wβ(~r)

)
, (2.14)

resulting in the minus sign in (2.9). Note that the matrix Aαβ , Eq. (2.10), becomes
an identity matrix, Aαβ = δαβ , if the Wannier functions are orthonormalized with
respect to the H-field scalar product, (1.20). Since the orthonormality condition
is not always fulfilled, for instance when extending the Wannier function basis by
some auxiliary functions that may improve convergence (cf. chapter 4), we take into
account the numerically calculated matrixAαβ instead of assuming it to be an identity
matrix. Thus we are able to easily use non-orthonormal bases without adjustments
to the algorithms presented later on.
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2.2. Wave Equations in Wannier Basis

2.2.2. 2D E-polarization

The wave equation (1.12) for E-polarized fields in 2D systems,

[
∆2 +

ω2

c2
{
εp(~r) + δε(~r)

}]
E(~r) = 0 , (2.15)

is treated similarly. The expansion into Wannier functions,

E(~r) =
∑
β

EβWβ(~r) , (2.16)

inserted into (2.15), leads to an algebraic equation formally identical to (2.9),∑
β

[
Cαβ +Dαβ − ΛAαβ

]
Eβ = 0 ∀α , (2.17)

albeit with different definitions of the overlap matrices and the frequency term,

Aαβ = −
∫

d2r W ∗
α(~r) ∆2 Wβ(~r) (2.18)

Cαβ =
∫

d2r W ∗
α(~r) εp(~r) Wβ(~r) (2.19)

Dαβ =
∫

d2r W ∗
α(~r) δε(~r) Wβ(~r) (2.20)

and

Λ =
c2

ω2
. (2.21)

Note that in this case, the matrix Cαβ (instead of Aαβ in the H-polarized case)
becomes an identity matrix, Cαβ = δαβ , if the Wannier function basis is orthonor-
malized.

2.2.3. 3D wave equations

It is straightforward to show that the 3D wave equations (1.7) and (1.8) can be cast
into the same formal matrix equation (2.9) (or (2.17)), but with different definitions
of the overlap matrices and the frequency term. In 3D, fields and Wannier functions
become vector-valued, but the Wannier function basis is still indexed by band index
n and lattice site ~R, and the overlap matrix elements are again scalar quantities.
Therefore, the numerical treatment of the 3D wave equations formulated in terms of
overlap matrices is the same as in 2D. Since we will only consider the 2D case later
on, we skip the detailed definitions of the overlap matrix elements in 3D here.
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2. Wannier Function Expansion

2.2.4. Splitting into Point Defect Contributions

If the defect contribution δε(~r) to the dielectric permittivity (or δη(~r), respectively)
can be decomposed into point defects according to (2.6), the same decomposition can
be applied to the defect overlap matrix Dαβ ,

Dαβ =
∑
m

∆εmB
(m)

α−~Rm,β−~Rm
(2.22)

with
B

(m)
αβ =

∫
d2r W ∗

α(~r) Θm(~r) Wβ(~r) . (2.23)

The overlap matrix B(m)
αβ only depends on the form factor Θm(~r) of the m-th point

defect, independent of its location. The displacement ~Rm of the m-th point defect
is accounted for in (2.22) by the shift of the indices α → α − ~Rm and β → β − ~Rm.
This is possible because of the special translation property (1.23) of the Wannier
functions, so that∫

d2r W ∗
α(~r) Θm(~r − ~Rm) Wβ(~r) =

∫
d2r W ∗

α−~Rm
(~r) Θm(~r) Wβ−~Rm

(~r) (2.24)

or, in other words, the relative shift of the form factor can be cast into a shift in the
indices of the Wannier functions involved in the overlap integral and, consequently,
into a shift of the indices of the overlap matrix B(m)

αβ itself.
The splitting of the defect overlap matrix Dαβ into contributions of point defects

allows to assemble many different defect configurations within a PhC from only a
few form-factor overlap matrices B(m)

αβ . In simple cases where all point defects have
the same form factor, e.g., in the case of holes filled with different materials in
macroporous silicon, only one form-factor overlap matrix Bαβ is necessary. The
dielectric permittivity difference of the filling materials is cast into the defect strength
∆εm. The matrices B(m)

αβ can be precomputed and stored on disk once like the other
overlap matrices Aαβ and Cαβ .

2.2.5. Properties of Overlap Matrices

The overlap matrices have some useful properties, which we want to point out sepa-
rately. First of all, they all are constructed from the Wannier function basis, which
has the special translation property Wα+~R(~r) = Wα(~r − ~R), Eq. (1.23). Since Aαβ

exclusively involves Wannier functions, and Cαβ additionally contains only the peri-
odic contribution to the dielectric permittivity, εp(~r), these two overlap matrices are
invariant under a simultaneous translation of their indices α and β by an arbitrary
lattice vector ~R,

Aα−~R,β−~R = Aαβ Cα−~R,β−~R = Cαβ . (2.25)

On the other hand, the defect overlap matrices B(m)
αβ , from which the matrix Dαβ

is constructed, do not have this index translation symmetry, since the form factor
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2.3. Classes of Defect Structures

(a) Aαβ (b) Cαβ (c) Dαβ (d) B
(m)
αβ

Figure 2.3.: Integration domains for overlap matrices. The localized Wannier func-
tions

∣∣α〉
and

∣∣β〉
(and their derivatives) have a finite support, symbolized by gray

hexagonal domains. The overlapping region is the integration domain for the ma-
trices Aαβ , Cαβ and Dαβ , which involve different parts in the wave equation. The
defect overlap matrix Dαβ can be further decomposed into matrices B(m)

αβ , for which
the integration is only performed over the form factor of the m-th point defect.

Θm(~r) is fixed at the origin lattice site. The index translation symmetry can be used
to minimize the number of overlap matrix elements that need to be computed and
stored.

Secondly, due to the rapid decay of Wannier functions (and their derivatives) with
distance to their central lattice site, overlap integrals quickly become very small
when the distance

∣∣~Rα − ~Rβ

∣∣ between the centers of two Wannier functions Wα(~r)
and Wβ(~r) increases. Therefore, we introduce a numerical parameter Rmax ∈ N that
measures the maximum distance of two Wannier function centers, above which any
overlap integral is neglected,

Mαβ ≡ 0 ∀α, β with
∣∣~Rα − ~Rβ

∣∣ > Rmaxa . (2.26)

Typically, it is safe to neglect overlap integrals of Wannier functions whose central
lattice sites are separated by more than Rmax = 4 lattice constants. In many cases, it
is even sufficient to use Rmax = 3. This largely depends on the localization properties
of the Wannier functions though. Note that the choice of Rmax = 1, which would
correspond to a tight-binding approximation with only nearest-neighbor interaction
in electronic structure calculations, generally does not give satisfying results.

2.3. Classes of Defect Structures

Next, we distinguish three classes of defect structures in PhCs, depicted in Fig. 2.4.
They are treated differently within the Wannier function expansion. Therefore, each
class is discussed in a separate subsection. Furthermore, the optimization of func-
tional elements is handled separately.
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2. Wannier Function Expansion

(a) cavity (b) waveguide (c) functional element

Figure 2.4.: Classes of defect structures within a PhC. We distinguish (a) cavities,
(b) waveguides and (c) functional elements. Each class is treated differently within
the Wannier function expansion.

2.3.1. Calculation of Cavity Modes

Cavities are 0-dimensional defect structures, composed of one or more point defects,
i.e. they are isolated inside a PhC and therefore support localized eigenmodes with
a discrete spectrum. The defect dielectric function of a cavity can be written as

δε(cav)(~r) =
Np∑

m=1

δεm(~r − ~Rm) , (2.27)

where m runs over all Np point defects at their positions ~Rm. Figure 2.4(a) shows a
cavity composed of Np = 6 point defects.

We are interested in the eigenfrequencies and corresponding field distributions
supported by a given configuration of point defects forming a photonic cavity. In this
case, the wave equation states a generalized eigenvalue problem,∑

β

(
Mαβ − ΛAαβ

)
Eβ = 0 with Mαβ = Cαβ +Dαβ , (2.28)

where the eigenvalue Λ and the eigenvector Eβ are related to the frequency and
field distribution of the cavity mode, respectively. The boundary conditions arise
naturally by taking only sites in the vicinity of the defects (e.g., with distances up to
3a to any defect) into account. This is appropriate, since for frequencies in the band
gap of the underlying PhC, fields decay exponentially into the bulk PhC. Therefore,
coefficients corresponding to Wannier functions far away from defect sites are zero
for any valid solutions of the wave equation.

For the analysis of cavity modes, it is helpful to introduce a measure Vn for the
strength of the contributions of the individual Wannier function associated with band
n,

Vn =
∑

~R

∣∣En~R

∣∣2 . (2.29)

Based on this quantity, it is possible to sort the important Wannier functions out
from the less important ones in order to find an optimal set of Wannier functions.
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2.3. Classes of Defect Structures

2.3.2. Calculation of Waveguide Modes

By arranging point defects periodically along a fixed lattice direction

~Swg =
∑

i

wi~ai with wi ∈ N0

one can create a line defect that possibly supports guided modes, i.e. modes that are
localized in the transversal direction but propagate along the line defect. Properly
designed, such PhC waveguides allow the efficient guiding of light for frequencies
within a band gap.

As depicted in Fig. 2.4(b), the waveguide is split up into slices that represent its
structural unit cells. The defect dielectric function can then be written as

δε(wg)(~r) =
∞∑

i=−∞

Np∑
m=1

δεm(~r − ~R(i)
m ) with ~R(i)

m = ~R0 + i~Swg︸ ︷︷ ︸
slice

+~ρm . (2.30)

Here, the sum over i addresses all slices and the sum over m runs over all Np point
defects inside one slice. Furthermore, the local lattice coordinate ~ρ within one slice
was introduced.

To calculate the propagating and evanescent guided modes supported by the waveg-
uide, we treat the frequency in the wave equation as a parameter only,∑

β

Mαβ(ω)Eβ = 0 with Mαβ(ω) = Cαβ +Dαβ − Λ(ω)Aαβ . (2.31)

The Bloch theorem holds in the direction of periodicity of the waveguide. Therefore,
we have to calculate solutions of (2.31) satisfying the Bloch boundary condition

E(~r + ~Swg) = ei~k(ω)~SwgE(~r) (2.32)

and therefore characterized by a complex wave vector ~k(ω). Since ~k must be parallel
to ~Swg, we can restrict ourselves to the calculation of scalars k(ω).

The waveguide modes are eigenmodes of a transfer matrix, which can be con-
structed as follows. We partition all relevant quantities according to the slicing of
the waveguide introduced above. Therefore, we define a vector ~Ei =

{
Eα

}
i
, which

consists of the amplitudes of all Wannier functions centered in slice i. Similarly,
we define the submatrices M̂i,j that contain all matrix elements Mαβ that couple
slice i with slice j. Due to the translational invariance of the waveguide, we have
M̂i,j ≡ M̂i−j . We assume that the coupling between slices separated by a distance
exceeding some maximum distance La can be neglected,

M̂i−j ≡ 0 for
∣∣~Ri − ~Rj

∣∣ ≥ La . (2.33)

Putting the above definitions together, we arrive at the matrix equation

i+L∑
j=i−L

M̂i−j(ω)~Ej = 0 , (2.34)
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2. Wannier Function Expansion

which is equivalent to (2.31). This equation can be rewritten in a transfer matrix
form by defining ~Fi =

{
Êi, Êi+1, . . . , Êi+2L−1

}
. As a result, we obtain

~Fi−1 = T̂ (ω)~Fi , (2.35)

where the transfer matrix T̂ (ω) =
{
T̂i,j(ω)

}
has non-zero submatrix entries only for

T̂1,j(ω) = −M̂−1
L (ω)M̂L−j(ω) for j = 1, 2, . . . , 2L , (2.36)

T̂j+1,j(ω) = 1 for j = 1, 2, . . . , 2L− 1 . (2.37)

Combining equation (2.35) with the Bloch theorem (2.32) allows us to identify the
guided modes and corresponding wave vectors,

T̂ (ω) ~φ(`)(ω) = ei~k`(ω)~Swg φ(`)(ω) . (2.38)

Note that the resulting wave vectors ~k`(ω) are not necessarily real. In fact, most
of them have a non-vanishing imaginary part, which means that the corresponding
modes are evanescent in the direction of the waveguide. Therefore, equation (2.38)
allows to calculate the propagating and evanescent guided modes of the waveguide.
This is a very important prerequisite for the construction of the S-matrix of functional
elements.

2.3.3. Calculation of the S-matrix of Functional Elements

The third class of defect structures are the functional elements (FEs). As the name
already suggests, a functional element is designed to provide a specified functionality
with respect to light guidance. A waveguide bend, for instance, tries to guide light
around a corner without reflecting back too much light, whereas a beam splitter splits
light incident from one waveguide equally into two outgoing waveguides. A functional
element typically has several ports, i.e. connectors for waveguides, where light can
come in and go out. As will be discussed in detail in chapter 3, the functionality of
such a functional element can be characterized by its scattering matrix (S-matrix)
containing all the information about the scattering of incoming field amplitudes into
outgoing field amplitudes.3

The defect dielectric function of a functional element can be written as

δε(fe)(~r) =
∑
m

~Rm∈ΩC

δεm(~r − ~Rm) +
∑
m

~Rm∈ΩW

δεm(~r − ~Rm) . (2.39)

The first term includes all defects located in the central region ΩC of the FE, while
the second term comprises the defects located in the region ΩW of the waveguides

3In fact, as the reader may have noticed, waveguides can be seen as functional elements as well.
The reason to define them as a separate class of defect structures is their special importance
for the scattering matrix formalism, since the guided modes of the waveguides connected to a
functional element are used as incoming/outgoing channel modes for a specific frequency.
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2.3. Classes of Defect Structures

connected to the ports. Note that the waveguides are now only semi-infinite, i.e.
they start at the respective port positions and reach out to infinity in the outward
direction. That means that the FE breaks the periodicity of the waveguides.

As for the calculation of waveguide guided modes in the previous section, we take
a fixed frequency, which only acts as a parameter. The calculation of the S-matrix
then involves the solution of the wave equation in Wannier function basis as a linear
system of equations, written in the Wannier function basis as∑

β

Mαβ(ω)Eβ = 0 with Mαβ(ω) = Cαβ +D
(fe)
αβ − Λ(ω)Aαβ , (2.40)

where the indices α and β run over the whole domain of the FE, including parts of
the waveguides attached to the FE. We are interested in solutions to (2.40) under the
constraint that there is a given field distribution coming in (namely only one incoming
guided mode in one attached waveguide is excited). By analyzing the solution, i.e.,
the outgoing field distribution as a response to the incoming field, we can derive the
amplitudes of outgoing guided modes and therefore the S-matrix for the FE. The
details for this procedure are given in the following chapter in section 3.2.

2.3.4. Optimization of Functional Elements

As will become apparent in chapter 5, it is often necessary to optimize FEs in a circuit
such that they perform their individual operation best over a broad range of frequen-
cies. For instance, an ideal bend would have no reflections for all frequencies, an ideal
waveguide crossing would have no reflections and no crosstalk. Since in the scatter-
ing matrix framework (cf. chapter 3) each FE is fully characterized by its S-matrix,
the relevant quantities to be optimized are all contained in the S-matrix, either as
a single entry (e.g., reflectance at one port) or a combination of entries (e.g., sum
of reflectance and crosstalk transmittance in a waveguide crossing). Therefore, the
optimization procedure basically involves the calculation of the S-matrix for possible
configurations of the FE.

In the first step, the parameter space has to be specified, in which the FE is
varied. A reasonable restriction is to allow a limited set of lattice sites in the FE to
take on different but discrete states. For instance, in a pore PhC, a set of pores may
be filled with different materials. This leads to a discrete and finite configuration
space. However, the number of configurations Nconf soon gets very large with an
increasing number of point defects Nsites and/or states per single point defect Nstates

involved, since Nconf = NNstates
sites . Therefore, a very efficient treatment of individual

configurations is necessary, which is provided by the Wannier function expansion.
Once the configuration space is fixed, an appropriate optimization scheme is ap-

plied. Besides brute-force optimization (all configurations are checked), there exist a
number of global optimization algorithms, such as simulated annealing [91] and ge-
netic algorithms [92]. We do not go into details of the individual methods. Instead,
we concentrate on the similarities between them and on resulting implications to the
Wannier function expansion.
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2. Wannier Function Expansion

In all optimization algorithms, the configuration space is scanned by evaluating
a sequence of configurations and making decisions about which configurations are
chosen next. In the Wannier function expansion, configurations only differ in their
defect constellation, expressed by the defect overlap matrix Dαβ in the wave equation
(2.40). Therefore, the sequential evaluation of different configurations can be carried
out by updating Dαβ according to

Dαβ −→ Dαβ + δDαβ , (2.41)

where δDαβ expresses the differences between two configurations. If the optimization
algorithm uses sequences of “neighboring” configurations4, each update involves only
changes of the state at one lattice site. Thus, the rank of δDαβ is small compared to
the rank of the total system matrix. This allows us to avoid solving a full system of
equations for each configuration separately. Instead, we can use a small-rank update
to the inverse of the system matrix as follows. The system of equations5 to obtain
the S-matrix of an updated configuration is given by(

T + δD
)
~X = ~B ⇐⇒ ~X =

(
T + δD

)−1 ~B . (2.42)

Note that in general, the inversion of the system matrix is much more expensive than
the direct solution of the system. However, in the present case, in which δD has small
rank, the inverse of the updated system matrix,

(
T + δD

)−1, can be expanded in
terms of the known inverse of the original system matrix, T−1, using the Woodbury
formula [93],(

T + UV T
)−1 = T−1 −

[
T−1U

(
1 + V TT−1U

)−1︸ ︷︷ ︸
small rank

V TT−1
]
. (2.43)

Here, we have decomposed δD = UV T into two rectangular matrices U and V with
dimensions N × P with P � N , while the system matrix T has dimensions N ×
N . Correspondingly, the matrix

(
1 + V TT−1U

)
, which has to be inverted in the

update process, has small dimensions P × P . Therefore, each update from one FE
configuration to another is accelerated by the ratio of times it takes to invert a P ×P
matrix and to solve a N ×N system of equations.

Clearly, the acceleration factor largely depends on the rank of δD, which increases
with the number of Wannier functions involved in it. For larger ranks, the inversion
of the “small” matrix, which has complexity O(N3), gets more expensive than the
solution of the larger system of equation, which scales with O(N2). For instance,
the rank of δD is 294 if taking six Wannier functions on a domain of 7 × 7 lattice

4The term “neighboring configurations” is not well defined in general, but can be specified easily
for each particular application. In our case, two configurations are “neighbors”, if they can be
transformed into each other by changing the state at only one lattice site. In simulated annealing,
such an update scheme is inherent. For the brute-force optimization, there always exists a se-
quence of neighboring configurations that covers all possible configurations. In computer science,
this sequence is known as a Gray code [93].

5A detailed derivation of the system of equations is given in section 3.2 in the next chapter.
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sites into account for an update of a single point defect. Compared to this, a system
of 20 × 20 sites with six Wannier functions at each site has a system size of 2400.
For this case, small-rank updates are considerably faster than the solution of the full
system of equations. However, if twenty-six Wannier functions are necessary, as is
the case in chapter 5, the solution of the full system of equation is more efficient.
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3. Scattering Matrix Formalism

In this chapter, we describe the basic concepts of the scattering matrix approach. We
discuss in detail the method to obtain the scattering matrix of individual functional
elements and how these individual S-matrices are combined to the circuit S-matrix.
Furthermore, the importance of symmetries of functional elements is emphasized.

3.1. Basic Concept

In wave physics, the scattering of waves by a physical structure is of great importance.
In the framework of scattering theory, complex amplitudes of outgoing waves (at
t → ∞) are related to complex amplitudes of incoming waves (at t → −∞) by the
scattering matrix (S-matrix). Therefore, the S-matrix quantitatively characterizes
a given physical structure with respect to its scattering properties. The incoming
and outgoing waves are expressed in terms of channels. The channel modes are
typically chosen in accord with the symmetries and boundary conditions of the system
under consideration. They can, for instance, be plane waves (for planar structures)
or spherical waves (for radially confined structures). To accurately describe the
asymptotics of the scattering process, the channel modes should form a complete
basis for the incoming and outgoing waves far away from the scatterer.

In our context, namely electromagnetic fields guided and scattered inside a PhC
for frequencies in the band gap, light enters and leaves the structures only at clearly
defined locations, the ports of the device. Waveguides are connected to these ports
and the device acts as a scatterer for the incoming guided modes in these waveguides.
Thus, the natural choice is to use these guided modes of the waveguides as channel
modes in the framework of scattering theory. In this picture, the device is fully char-
acterized by an S-matrix, which relates amplitudes of incoming to outgoing guided
modes. We refer to this form of S-matrix as a guided-mode scattering matrix. This
concept is depicted in Fig. 3.1.

The S-matrix relation can be formulated as
b1
b2
...
b`
...

 =



S11 S12 . . . . . . . . .
S21 S22 . . . . . . . . .
...

...
. . . . . . . . .

...
...

... S``′ . . .
...

...
...

...
. . .




a1

a2
...
a`′

...

 or b` =
Nch∑
`′=1

S``′ a`′ , (3.1)

where Nch is the number of channels and a` and b` are complex amplitudes of in-
coming and outgoing guided modes, respectively. The elements S``′ of the S-matrix
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3. Scattering Matrix Formalism

Figure 3.1.: Concept of the guided-mode scattering-matrix approach. A device is
described by a scattering matrix S, which connects incoming (blue) to outgoing
(red) guided-mode amplitudes, a` and b`, in the waveguides connected to the ports
of the device.

are complex quantities as well and contain information about the intensity (trans-
mittances and reflectances) as well as the phase of the scattered field. Therefore,
the S-matrix fully determines the outgoing field, Hout(~r) =

∑
` b`G

out
` (~r), for a given

incoming field H in(~r) =
∑

` a`G
in
` (~r), where Gin/out

` (~r) denote the incoming and out-
going guided modes, respectively.

Besides the computation of transmittances and reflectances of single devices, the
S-matrix formalism allows to treat large-scale circuits that would otherwise be nu-
merically expensive, if not impractical to treat. The basic idea is to split a large
circuit into certain basic functional elements (FEs), such as bends or Y-splitters, and
to interconnect them via waveguides of different length. This principle is depicted in
Fig. 3.2. The S-matrices of the individual FEs can be computed with much less effort
as compared to the full circuit S-matrix. Once they are obtained, the full S-matrix
of the entire circuit is easily calculated for any lengths of the waveguides connecting
the individual basic FEs. Thus, length-dependent characteristics of the circuit can
be easily obtained. Due to this feature, the scattering matrix approach provides a
very powerful design tool for large-scale PhC circuits.

3.2. S-Matrix of Individual Functional Elements

After the discussion of the general concept, we show in detail how to calculate the
S-matrix of a particular FE inside a PhC using a Wannier function expansion. We
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Figure 3.2.: Circuit description in the guided-mode scattering-matrix approach. The
S-matrices of the individual FEs that compose the circuit are combined to the circuit
S-matrix. There is no fundamental difference between the S-matrix of an FE and
that of the circuit.

start with the wave equation in Wannier function basis, cf. Eq. (2.40),∑
β

Mαβ(ω)Hβ = 0 for α, β ∈ ΩC ∪ ΩW , (3.2)

where the composite indices α and β cover the whole region of the FE. The frequency
dependence of the matrix Mαβ is omitted in the following for simplicity. Next,
we divide the FE into two regions: the waveguiding region, ΩW (union of all port
regions), where the field can be described by incoming and outgoing guided modes,
and the central region of the FE, ΩC , where the scattering of incoming into outgoing
modes takes place. These two regions are illustrated in Fig. 3.3. The guided modes
in the waveguiding region ΩW can either be propagating or evanescently decaying
into or away from the device. They are consecutively labeled over all waveguides.
Thus, in the case of identical ports, each of them having n` incoming and n` outgoing
modes, the guided modes in port 1 that propagate or grow into the same direction are
marked by ` = 1, . . . , n`, those in port 2 by ` = n` + 1, . . . , 2n`, and so on. The total
number of channels counted over all ports is then given by Nch = Nports · n`. This
compact notation avoids an additional notational overhead related to summations
over the ports of the FE. In (3.2), we separate the unknowns Hβ belonging to ΩC

from those belonging to ΩW ,∑
β∈ΩC

MαβHβ +
∑

β∈ΩW

MαβHβ = 0 for α ∈ ΩC ∪ ΩW . (3.3)

The main objective is to compute the S-matrix, which relates incoming and outgoing
guided mode amplitudes. Therefore our strategy is to replace the Wannier coefficients

37



3. Scattering Matrix Formalism

Figure 3.3.: Division of a given FE into two regions, ΩC and ΩW . In the waveguiding
region, ΩW (shaded), the electromagnetic field can be described by incoming and
outgoing guided modes and, therefore, the Wannier coefficients Hβ can be replaced
by guided mode amplitudes, a` (incoming) and b` (outgoing), in that region.

Hβ in the waveguiding region by incoming and outgoing guided mode amplitudes a`

and b`, respectively. To begin with, we expand the field in one of the waveguide
regions into guided modes Gin

l (~r) and Gout
l (~r),1

H(~r) =
Nch∑
l=1

(
alG

in
l (~r) + blG

out
l (~r)

)
. (3.4)

The guided modes themselves can also be expanded into Wannier functions,

G
in/out
l (~r) =

∑
β

G
in/out
βl Wβ(~r) . (3.5)

By inserting (3.5) into (3.4) and comparing with H(~r) =
∑

β HβWβ(~r),

H(~r) =
∑
β

Nch∑
l=1

(
alG

in
βl + blG

out
βl

)
Wβ(~r) !=

∑
β

HβWβ(~r) , (3.6)

we see that the Wannier coefficient Hβ in the waveguide region can be replaced by

Hβ =
Nch∑
l=1

(
alG

in
βl + blG

out
βl

)
. (3.7)

1Note that since the FE destroys the periodicity of the waveguides along their respective direction,
the guided modes are no longer exact solutions of the wave equation in the waveguide region ΩW.
Nevertheless, the FE contains a buffering region, resembling the waveguide, between the port and
the defects that destroy the periodicity in the center. The fields scattered by the FE form the
guided modes rapidly inside this buffering region, so that the guided modes can be considered
to be good approximations to the exact solutions of the wave equation in the waveguide regions
outside the buffer.
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The wave equation (3.3) can thus be written as

∑
β∈ΩC

MαβHβ +
∑

β∈ΩW

Mαβ

Nch∑
l=1

(
alG

in
βl + blG

out
βl

)
= 0 . (3.8)

With the definition of
F

in/out
αl :=

∑
β∈ΩW

MαβG
in/out
βl (3.9)

and by separating incoming from outgoing amplitudes we get

∑
β∈ΩC

MαβHβ +
Nch∑
l=1

F out
αl bl = −

Nch∑
l=1

F in
αlal . (3.10)

The incoming amplitudes are placed on the right-hand side since they correspond
to amplitudes we provide for the calculation. By contrast, we put the outgoing
amplitudes, which are the unknowns to be solved for, on the left-hand side. We can
write (3.10) in the matrix form

Mαβ F out
αl


︸ ︷︷ ︸

T̂



Hβ

bl


︸ ︷︷ ︸

~X

=


−F in

αl



 al



︸ ︷︷ ︸
~B

. (3.11)

Finally, by setting al = δlj (i.e. only one incoming guided mode is excited) and
solving (3.11) for ~X (i.e. for the outgoing amplitudes bl), we obtain the j-th column
of the S-matrix,

Slj ≡ bl for al = δlj . (3.12)

If we solve (3.11) for several right hand sides, al = δlj , j = 1 . . . Nch, we naturally get
the full S-matrix of the FE.

As a side product, the solution vector ~X contains Wannier coefficients Hβ corre-
sponding to the field distribution in the device region ΩC for a given incoming guided
mode.

3.2.1. Reduced S-Matrix

The waveguides connected to the ports of an FE usually support only a few propagat-
ing guided modes; the vast majority of guided modes is evanescent. These evanescent
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modes play an important role in the near field of structures that break the transla-
tional symmetry of the waveguide. In addition, they are necessary to correctly de-
scribe field components that evanescently decay away from defect structures. There-
fore, we have to take them into account when computing the S-matrices of individual
FEs.

On the other hand, outgoing evanescent field components die out very rapidly away
from the FE and, therefore, have only negligible overlap with fields in a neighboring
FE, provided that the FEs are sufficiently far separated. For the computation of
the circuit S-matrix, it is, therefore, possible to work with reduced S-matrices of
individual FEs, in which only the propagating modes are retained after the S-matrix
has been computed with the help of all modes.

3.3. Symmetries

In this section, we consider various aspects related to symmetries of the structures we
are interested in. We consider fundamental symmetries, such as energy conservation
and reciprocity, as well as geometrical symmetries of certain functional elements.
Finally, we will discuss the congruence of FEs, which is, strictly speaking, not a
“symmetry” of the structures but which helps to relate S-matrices of different but
related FEs. Exploiting symmetries and congruence of FEs may lead to a great
alleviation of the computational effort necessary to treat large-scale circuits.

As an example, we will refer to the S-matrix of a general two-port device, which
can be written as

S =
(
r t
t̄ r̄

)
, (3.13)

with the forward reflection and transmission coefficients r and t and the reverse
coefficients r̄ and t̄, which, in general, can be matrices, if there is more than one
propagating channel in the ports.

3.3.1. Reciprocity

Structures in which the dielectric permittivity tensor is symmetric and which do not
have nonlinear response show a fundamental symmetry called reciprocity. This sym-
metry is found not only in electromagnetism but in many other fields, too, including
particle scattering, Green’s function methods and electrical network theory. Here, we
give only a brief overview of the subject and refer the reader to the literature [94–96]
for a more detailed discussion. A comprehensive survey on reciprocity in optics and
a large list of further references can especially be found in a review article by Potton
[97].

Reciprocity, in general, can be summarized in the sense that the positions of cause
and effect are interchangeable:

If a current at point A generates a field at point B, then the same current,
placed at point B, would produce exactly the same field in magnitude and
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phase at point A, irrespective of the scattering and absorption taking
place between point A and point B.

For instance, antennae typically show exactly the same characteristics for transmis-
sion and reception. In the context of energy flow in a photonic circuit, reciprocity
means that if energy is input via channel one and transmitted into channel two, the
reverse energy flow from channel two to channel one would be exactly the same.
This has the severe implication that it is not possible to build an optical isolator
(the analogue of the diode in electronics) without breaking reciprocity. One needs
non-reciprocal media, such as magneto-optical or nonlinear materials, to be able to
construct an optical isolator.

On the other hand, reciprocity does not mean that reciprocal devices can not have
different effects on waves in opposite directions. For example, a stack consisting of
a linear polarizer combined with a quarter wave plate produces a linearly polarized
output for one direction of illumination and circularly polarized output for the other
direction of illumination. Nevertheless, it is still reciprocal. Reciprocity always con-
nects channels in pairs, irrespective of other channels, so the resulting functionality
of devices does not need to be symmetric at all for reciprocal devices.

There exist many different formulations of reciprocity, even in electromagnetism.
Each of them applies to different aspects of the systems under consideration. In
electromagnetism, the vector nature (polarization) of the fields has to be taken into
account, and thus there is even more space for differentiation, for instance consid-
ering polarizers and chiral materials. We do not go into more details here, since it
is not necessary for our discussion below. Instead, we would like to point out that
the reciprocity principle can be obtained in a very general form [94], only assuming
Maxwell’s equations in linear form and symmetric dielectric permittivity tensors of
the constituent materials. So the distinction of whether a given structure is reciprocal
or not is basically independent of the structure geometry. Therefore, geometric asym-
metries, chirality or similar properties do not destroy the reciprocity of a structure.
This, for instance, implies that it is on principle not possible to design a Faraday
rotator by using reciprocal materials only, even if it has complicated chiral structure.

In the context of the guided-mode scattering matrix formalism, reciprocity implies
that the S-matrix in (3.1) is symmetric, i.e.,

S``′ = S`′` , (3.14)

or, for the two-port example in (3.13),

t̄ = t . (3.15)

This reduces the number of independent matrix elements significantly, since only the
upper (or lower) triangle of the S-matrix has to be considered. Therefore, the number
of scattering parameters that fully characterize a device is also reduced for a large
class of structures.

In addition, reciprocity allows to make precise, but somewhat non-intuitive, state-
ments about device performance. An example of such a case is shown in Fig. 3.4.
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Figure 3.4.: Example for the strong implications of reciprocity. The ideal splitter on
the left can not be used as an efficient combiner. Reciprocity determines that only
half of the input intensity is output in the combined port.

An ideal splitter, which splits an incoming beam of intensity 1.0 (arbitrary units)
into two output beams of intensity 0.5, may intuitively be seen as a candidate for an
ideal combiner when operated in reverse direction. But instead of fully merging two
incoming beams of intensities 0.5 into one beam of intensity 1.0, reciprocity requires
that each incoming beam must be attenuated by a factor of one half. Therefore,
the resulting combined beam has an intensity of only 0.5, the splitter can not be
used as an efficient combiner. This limitation for combiners is fundamental, unless
reciprocity is broken by the underlying material.

3.3.2. Energy conservation

For structures built from media in which the energy is conserved the S-matrix is
unitary. For a two-port device with the S-matrix

S =
(
r t
t̄ r̄

)
, (3.16)

the unitarity of S means that rows and columns sum up to one, which, more precisely,
is formulated as

t†t = 1− r†r
r̄†r̄ = r†r

t̄†t̄ = t†t
. (3.17)

Transmission coefficients are, therefore, complementary to reflection coefficients, and
the reverse coefficients r̄ and t̄ are equal to the forward coefficients r and t, up to
unitary transformations (phase factors).

3.3.3. Geometric Symmetries

In many cases, FEs exhibit additional geometric symmetries, i.e., they are invariant
under spatial symmetry operations.

As with the fundamental symmetries discussed above, such symmetries are re-
flected in the S-matrix of the FE. They further reduce the number of independent
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Figure 3.5.: Geometric symmetries of certain FEs, schematically illustrated for a
bend (left picture) and a Y-splitter (right picture). The geometric symmetries are
reflected in symmetries of the S-matrix and reduce the number of independent matrix
elements of the S-matrix.

matrix elements. Fig. 3.5 schematically shows two examples, a waveguide bend and
a Y-splitter. The bend is symmetric with respect to one mirror reflection (symmetry
group D1). This leads to an S-matrix of the form

Sbend =
(
r t
t r

)
, (3.18)

which is reduced to only two independent matrix blocks, r and t, one reflection and
one transmission block, respectively. While the two identical transmission blocks
can already be interpreted as a consequence of reciprocity, the equality of the two
reflection blocks, even for cases without energy conservation, results exclusively from
the geometric symmetry.

The Y-splitter in Fig. 3.5 belongs to the symmetry group D3, which includes all
rotations about 120◦ (cyclic group C3) plus three mirror reflections. The S-matrix
takes the form

Ssplitter =

r t t
t r t
t t r

 , (3.19)

with only two independent blocks, r and t. Again, the equality of the corresponding
transmission blocks above and below the diagonal is already explained by reciprocity,
but the equality of all reflection and transmission blocks, r and t, is a consequence
of the high geometrical symmetry of the Y-splitter.
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Figure 3.6.: Congruence of FEs: All six bends shown above are characterized by the
same S-matrix, provided that the guided modes of the waveguides connected to them,
which also appear in different orientations, are mapped exactly onto each other.

3.3.4. Congruence of Functional Elements

The S-matrix of an FE depends on the position of the ports and the scatterers in
the FE relative to each other, but it does not depend on the orientation of the FE
as a whole (including ports) within the background. For instance, in a 2D PhC with
triangular lattice, a bend can be inscribed in six orientations that all exhibit the same
S-matrix. This is depicted in Fig. 3.6.

In general, we can state that all FEs that are congruent (i.e., that can be trans-
formed into each other by translations, rotations, and mirror reflections) possess the
same S-matrix, provided that the guided modes in the ports of two congruent FEs are
mapped exactly onto each other by the congruence transformation. This condition
is fulfilled in the example in Fig. 3.6, since the waveguide connected to the ports of
the bends provides exactly one propagating guided mode, which has even symmetry
under a mirror reflection at the plane along the waveguide (cf. chapter 5 for further
discussion of that particular model system). Thus, the guided mode is mapped onto
itself for any congruence transformation including mirror reflections. In section 5.2.1,
we will discuss a counter example, the coupling section waveguide of a directional
coupler, in which the guided modes are not mapped exactly onto each other by some
congruence transformations. In such a case, the S-matrices of congruent FEs may
differ in the ordering of rows and columns.

In summary, by carefully taking into account the congruence of FEs, we can save a
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Figure 3.7.: Illustration of how to connect two individual FEs with S-matrices S
and S′ to form a complex FE. The interior ports 4 and 2′ are eliminated while the
exterior ports 1, 2, 3, 1′, and 3′ form the new ports of the combined FE. The length
of the waveguide connecting the two FEs appears as a phase factor in the switching
matrix T . In addition, the switching matrix accounts for potential mode mismatch
if the waveguides at ports 4 and 2′ are different.

major amount of computational effort when analyzing a complex circuit. For each FE,
the S-matrix needs to be calculated only in one specific orientation. The S-matrices
for all other orientations are equal to that S-matrix or can be derived according to
the simple congruence rules described above.

3.4. S-Matrix Combination

Once we have the S-matrices of all individual FEs, we need to combine them to the
overall circuit S-matrix. In this process, not only the scattering of radiation by FEs
has to be taken into account but also the phase shifts in the waveguide connections
of variable length between the FEs. Phase-sensitive features, such as Fabry-Perot
resonances, have to be treated carefully in the formalism.

The S-matrix combination is done step-by-step for each connection in the circuit.
The general procedure for resolving a single connection between two FEs is as follows.
Each individual FE has a number of ports, where each port exhibits a certain number
of channels, i.e., modes supported by the corresponding waveguide. When connecting
two FEs, the resulting combined FE inherits the exterior ports of the two FEs, i.e.,
the ports that are not involved in the connection. The interior ports, i.e., those ports
that are part of the connection between the individual FEs, are eliminated in such a
way that the coupling of the two FEs is correctly accounted for in the combined S-
matrix. Fig. 3.7 illustrates the general procedure of combining S-matrices of different
FEs. To be more specific, we formulate the following details of calculations according
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to the particular case depicted in this figure.
The actual calculation scheme to obtain the combined S-matrix can be derived

from the block-diagonal system of equations

b1
b2
b3
b4

b1′

b2′

b3′


=



S11 S12 S13 S14 0 0 0
S21 S22 S23 S24 0 0 0
S31 S32 S33 S34 0 0 0
S41 S42 S43 S44 0 0 0

0 0 0 0 S′1′1′ S′1′2′ S′1′3′

0 0 0 0 S′2′1′ S′2′2′ S′2′3′

0 0 0 0 S′3′1′ S′3′2′ S′3′3′





a1

a2

a3

a4

a1′

a2′

a3′


, (3.20)

with the additional constraint(
b4
b2′

)
=

(
0 G
GT 0

)
︸ ︷︷ ︸

=:TS

(
a4

a2′

)
, (3.21)

which accounts for the connection of ports 4 and 2′. In the typical case of an ideal
connection without mode mismatch and perfectly corresponding incoming and out-
going modes in the two connected ports, the matrix G is diagonal and contains only
phase factors corresponding to the guided-modes’ phase shifts over the length of the
waveguide,

G =


. . . 0

exp ik`L

0
. . .

 . (3.22)

Here, k` is the wave vector of the `-th guided mode and L is the length of the
connecting waveguide.

We rearrange (3.20) so that the exterior and interior ports are separated,

b1
b2
b3
b1′

b3′

b4
b2′


=



S11 S12 S13 0 0 S14 0
S21 S22 S23 0 0 S24 0
S31 S32 S33 0 0 S34 0
0 0 0 S′1′1′ S′1′3′ 0 S′1′2′

0 0 0 S′3′1′ S′3′3′ 0 S′3′2′

S41 S42 S43 0 0 S44 0
0 0 0 S′2′1′ S′2′3′ 0 S′2′2′





a1

a2

a3

a1′

a3′

a4

a2′


, (3.23)

and introduce composite symbolic indices, ’e’ for exterior and ’i’ for interior ports to
write (3.23) and (3.21) in a more compact form,(

be
bi

)
=

(
Se,e Se,i

Si,e Si,i

) (
ae

ai

)
and bi = TSai . (3.24)

46



3.4. S-Matrix Combination

Here, ae ≡ (a1, a2, a3, a1′ , a3′), ai ≡ (a4, a2′), be ≡ (b1, b2, b3, b1′ , b3′), and bi ≡ (b4, b2′).
The matrices Se,e, Se,i, Si,e and Si,i can be easily extracted from (3.23) by direct
comparison. Formally, (3.24) is a system of three equations,

be = Se,eae + Se,iai (3.25)
bi = Si,eae + Si,iai (3.26)
bi = TSai , (3.27)

in which the two interior composite vectors ai and bi can be eliminated. Inserting
(3.27) into (3.26) and solving for ai leads to

ai = (TS − Si,i)−1Si,eae . (3.28)

This can again be inserted into (3.25) to yield

be =
[
Se,e + Se,i(TS − Si,i)−1Si,e

]
ae . (3.29)

Now we can identify the combined S-matrix to be

Scombined = Se,e + Se,i(TS − Si,i)−1Si,e . (3.30)

This expression, though derived for the particular example shown in Fig. 3.7, repre-
sents the general scheme for combining S-matrices of individual FEs.
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4. Accuracy and Convergence

Before using the Wannier function based scattering matrix approach presented con-
ceptually in the previous chapters to design large-scale PhC circuits, we examine the
accuracy and convergence of the approach when applied to a number of test cases for
different host PhCs and polarizations. The results for cavity mode frequencies and
waveguide dispersions are compared to supercell calculations done with the MIT Pho-
tonic Bands (MPB) package [63]. The S-matrix method is checked for self-consistency
by comparing calculations of relatively small composed circuits, such as double bends
or simple Mach-Zehnder interferometers, which can be calculated both as one block
and as a combination of basic FEs.

4.1. Model Systems

To get an overview of the capabilities of the Wannier function approach for 2D PhCs,
we consider two different model systems that somewhat represent the huge variety
of host PhCs for both polarizations, E- and H-polarization:

Model system 1 E-polarized radiation in a square lattice of circular silicon rods with
radius r = 0.18a. Depicted in Fig. 4.1.

Model system 2 H-polarized radiation in a triangular lattice of air holes with radius
r = 0.45a in silicon. Depicted in Fig. 4.2.

The dielectric permittivity of silicon is always assumed to be εSi = 12.0, while air has
a dielectric constant of εair = 1.0.

The two systems basically differ in their topology (rods vs. holes) and the polariza-
tion used (E vs. H). The choice of radii was governed by the existence of large band
gaps for the respective polarization. In Figs. 4.1 and 4.2, the band structures for the
two systems are shown and the relevant band gaps are identified, which define the
operational frequency range for cavities, waveguides and FEs within the host PhCs.

For each model system, a finite number of Wannier functions per lattice site have
been constructed from the Bloch modes of the system. We will show that the number
of Wannier functions necessary to get converged results may vary strongly; it depends
on the system (host PhC and polarization) as well as the defect structure that has
to be modeled. Since the construction of well localized and symmetric Wannier
functions is highly non-trivial, we are limited to a maximum number of twenty-three
(model system 1) and thirty-eight (model system 2) Wannier functions. Within these
bounds, the “completeness” of the Wannier function basis will be checked. The two
sets of Wannier functions are listed in Appendices A and B, respectively.
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Figure 4.1.: Model system 1: square lattice of cylindrical silicon rods with radius
r = 0.18a for E-polarized radiation. The band structure shows the relevant band
gap between the first and second band that is used as operational frequency range
to be used later on. On the right hand side, six Wannier functions are plotted. For
a complete list of all available twenty-three Wannier functions, see appendix A.

4.1.1. Auxiliary Wannier Functions

In some cases discussed in the following sections, it is not possible to achieve con-
verged results with the finite number of Wannier functions produced for the original
PhC. Due to the completeness of the Wannier function basis, this primarily means
that more Wannier functions are necessary and would have to be generated from
higher bands. Since the construction of Wannier functions out of entangled bands
can be very cumbersome, and the entanglement typically gets worse for higher bands,
the production of more Wannier functions is not a realizable option, though.

Instead, it is sometimes possible to identify other sets of localized functions that
can be used to complement the basis of the original Wannier functions. If a defect
structure is built up of point defects supporting modes that can not be modeled by
the original Wannier functions, these fields at the point defects can be much better
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Figure 4.2.: Model system 2: triangular lattice of cylindrical air holes with radius
r = 0.45a in silicon for H-polarized radiation. The band gap between the first and
second band prescribes the operational frequency range to be used later on. On the
right hand side, a selection of Wannier functions is plotted. For a complete list of all
available thirty-eight Wannier functions, see appendix B.

represented by the Wannier functions of a PhC topologically identical to the original
PhC, but consisting of a periodic arrangement of such point defects. These auxiliary
Wannier functions live on the same direct lattice as the original Wannier functions,
so they can be easily added to the original Wannier function basis to complement it.
In addition, they contain all the information about symmetries of the lattice.

Note that in general, the resulting function basis of original and auxiliary Wannier
functions is no longer orthonormal. In addition, the choice to use Wannier functions
for a different PhC as a complement is somehow arbitrary. We could just as well use
defect modes or any other set of localized functions related to the respective point
defects. Nonetheless, auxiliary Wannier functions can, at least in theory, be generated
in an arbitrary number. Furthermore, they represent a natural way of generalizing
the Wannier function approach into the direction of structures consisting of different
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(a) r = 0.35a (b) r = 0.45a

Figure 4.3.: Sets of auxiliary Wannier functions for model system 1. They correspond
to a square lattice of silicon rods with radius (a) r = 0.35a and (b) r = 0.45a,
respectively.

Figure 4.4.: Set of auxiliary Wannier functions for model system 2, corresponding to
the inverse system, i.e., a triangular lattice of silicon rods with radius r = 0.45a.

domains, such as interfaces between two different PhCs [98].
It is important to keep in mind, that the task of the auxiliary Wannier functions is

to improve convergence. The physics, however, is contained in the original Wannier
functions. Therefore, it is favorable, and often advisable, to add auxiliary Wannier
functions only in a very narrow region around the corresponding point defects, i.e.,
only at the defect site itself or including direct neighbor sites.

For the sake of clarity, we move up the list of concrete sets of auxiliary Wannier
functions used later on. The two sets for model system 1, corresponding to a square
lattice of silicon rods of radii r = 0.35a and r = 0.45a, respectively, are depicted in
Fig. 4.3. The single set for model system 2, corresponding to the inverse system, i.e.,
a triangular lattice of silicon rods of radius r = 0.45a is shown in Fig. 4.4.

4.2. Cavity Modes

As a first check for the accuracy and convergence of the Wannier function expansion,
we calculate modes for different cavities in both model systems. We examine cavities
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(a) (b) (c)

(d) (e)

Figure 4.5.: Cavity types: model system 1 : (a) variable dielectric permittivity of a
single rod, (b) variable radius of a single, and (c) cavity composed of several defect
rods. Cavity types in model system 2 : (d) variable dielectric permittivity of a single
hole (single-pore infiltration), and (e) ring cavity composed of six filled pores.

formed by a single point defect and cavities composed of several point defects. The
resulting eigenfrequencies are compared to converged MPB supercell calculations,
which are taken as reference solutions. Fig. 4.5 shows an overview of the cavities
discussed in the following.

4.2.1. Model System 1

For model system 1, we discuss three different cavities depicted in the sub-figures (a)
to (c) of Fig. 4.5. The first two cavities investigated will consist of a single rod with
changed dielectric permittivity or with changed radius, respectively. Then we will
examine a more complex cavity, in which those two kinds of point defects are mixed.

Variable Defect Rod Permittivity: We start with a single point defect created by
changing the dielectric permittivity εdef of a single rod, Fig. 4.5(a). The defect
permittivity εdef is varied between 1.0 and 50.0. The resulting cavity modes are
plotted in Fig. 4.6. We get a monopole mode for εdef smaller than εSi = 12.0, the
permittivity of the surrounding rods, and a twofold-degenerate dipole mode for εdef

larger than 12.0. The monopole mode evolves out of the lower band with decreasing
εdef , while the dipole modes are pushed out of the upper band when increasing εdef .

To check the accuracy and convergence of the Wannier function results, we first
performed the calculation with all twenty-three Wannier functions available for model
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Figure 4.6.: Modes of a cavity created by varying the dielectric permittivity εdef of
a single rod. Frequencies calculated with the six most important Wannier functions
(symbols) are in excellent agreement with MPB results (solid lines, 7×7 supercell,
spacial resolution a/64). The right diagram shows the contributions of individual
Wannier functions to the monopole and dipole modes retrieved from a calculation
using twenty-three Wannier functions. The six most important Wannier functions
are indicated by red arrows.

system 1. This calculation gave converged results compared to the MPB supercell
results. By analyzing the contributions Vn, Eq. (2.29) on page 28, of the individual
Wannier functions to the defect modes for εdef = 1.0 (monopole mode) and εdef =
30.0 (dipole modes), we could identify the six most important Wannier functions,
which contribute the most to both the monopole mode and the dipole modes. The
recalculation of the cavity modes with only this reduced set of Wannier functions gives
perfectly converged results for the mode frequencies. This leads us to the conclusion
that it is sufficient to work with only six Wannier functions per lattice site for the
cavity with variable defect rod permittivity in order to get accurate results.

We can extrapolate this conclusion to more complex defect structures composed
of point defects with variable rod permittivity only. If the fields in such structures
are basically superpositions of the modes of the single point defects, then we can
successfully represent such fields with only six Wannier functions per lattice site. This
consideration corresponds to the Linear Combination of Atomic Orbitals (LCAO)
approximation for molecular orbitals in quantum chemistry or in solid-state physics.

Variable Defect Rod Radius: Instead of changing the permittivity, we can create
a cavity by varying the radius of one rod in the PhC. We examine defect radii in the
range of 0.18a < rdef < 0.50a. Results are plotted in Figs. 4.7 and 4.8. Similarly to
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Figure 4.7.: Dipole modes of a cavity created by varying the radius rdef of a single
rod in model system 1. Wannier function results (symbols) using six or twenty-
three Wannier functions deviate strongly from MPB results (black solid lines, 7×7
supercell, spacial resolution a/64). The results can be much improved by using three
auxiliary Wannier functions produced for a topologically identical PhC with rods of
radius r = 0.35a to complement the six original Wannier functions.

the case when the defect rod permittivity is increased, we get a doubly-degenerate
dipole mode pushed out of the upper band when increasing the radius, starting at
rdef = 0.21a (cf. Fig. 4.7). For larger defect radii rdef > 0.37, also higher-order
modes are evolving from the upper band, namely two quadrupole modes and one
higher-order monopole mode, characterized in Fig. 4.8.

In contrast to the defects with variable permittivity, the convergence of the Wannier
function results for variable defect rod radius is worse. Fig. 4.7 shows that the
frequencies taking six Wannier functions per lattice site into account deviate strongly
from the MPB reference solution. With twenty-three Wannier functions per lattice
site, the results are improved, but are still off by up to three percent. Obviously, the
number of Wannier functions per lattice site should still be increased to get accurate
results. The convergence of the Wannier function expansion with the number of
Wannier functions seems to be very slow.

Instead of further increasing the number of Wannier functions, we examine a differ-
ent way to achieve convergence. The cavity is created by a single rod of larger radius
rdef . We therefore calculate auxiliary Wannier functions for a PhC composed of rods
with that radius rdef , which is otherwise topologically identical to the original PhC.
These auxiliary Wannier functions are supposed to reproduce the field at the large-
radius defect rod better than the original Wannier functions. On the other hand,
they are unnecessary and even counterproductive outside the range of the defect rod,
since they are disturbing the band-gap information encoded in the original Wannier
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Figure 4.8.: Higher-order modes of a cavity created by varying the radius rdef of a
single rod in model system 1. The deviations of the Wannier function results for
both six and twenty-three Wannier functions from the MPB reference solution can
be improved by using 6 auxiliary Wannier functions produced for a topologically
identical PhC with rod radius r = 0.45a to complement the six original Wannier
functions.

functions. This can easily result in spurious modes if the auxiliary Wannier functions
are used at all lattice sites of the computational domain. Thus, we use original Wan-
nier functions at all lattice sites but only add auxiliary Wannier functions at lattice
sites next to the defect rod, including the lattice site of the defect rod itself. It should
also be noted that the auxiliary Wannier functions are not orthogonal to the original
Wannier functions. The resulting expansion basis is no longer orthonormal, which
may lead to numerical instabilities.

For the calculations with variable defect rod radius, auxiliary Wannier functions
were computed for two radii, r = 0.35a and r = 0.45a. The first three Wannier
functions for r = 0.35a were taken to improve results for the dipole modes, Fig. 4.7.
The first six Wannier functions for r = 0.45a served as auxiliary Wannier functions
for the higher order modes, Fig. 4.8. Those two sets of auxiliary Wannier functions
were added to the set of six original Wannier functions that was already used for
the calculations with variable defect rod permittivity. Each set of auxiliary Wannier
functions gives best results for a defect rod radius that corresponds to the radius
the auxiliary Wannier functions were computed for. Nevertheless, the results for
other defect rod radii are improved as well. The dipole mode frequencies in Fig. 4.7
deviate only up to 1.2% (maximum deviation at rdef = 0.25a) from the MPB results.
The higher-order monopole mode frequency in Fig. 4.8 is accurate for all radii up
to 1% deviation (maximum deviation at rdef = 0.50a). The two quadrupole modes
are slightly worse but still lie within a maximum deviation of 2.5% for the second
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4.2. Cavity Modes

quadrupole mode frequency at rdef = 0.40a.
In conclusion, we can accurately compute cavity modes for single-rod defects with

variable defect rod permittivity or with variable defect rod radius. We need six
original Wannier functions per lattice site and, in the case of rod radius variations, up
to six auxiliary Wannier functions per lattice site around the defects to get converged
results.

To extend the above considerations, we compute the cavity modes of a complex
cavity composed of several defects, mixing permittivity defects with radius defects.
The cavity is illustrated in Fig. 4.5. The central defect is a silicon rod of radius rdef =
0.35a and is surrounded by four defects with permittivity εdef = 30.0. The resulting
cavity mode frequencies and mode profiles are presented in Fig. 4.9. The maximum
deviation in frequency is less than 0.3% of the MPB results for all frequencies. Six
original and three auxiliary Wannier functions (computed for r = 0.35a) were used
for the computation.

0.3 0.35 0.4 0.45

frequency  a/λ

0.37 0.38

Figure 4.9.: Cavity modes of a complex cavity in model system 1. Wannier function
results are depicted by red diamonds and compared to MPB results (7×7 supercell,
spacial resolution a/64). The frequencies agree up to a maximum deviation of 0.3%.

4.2.2. Model System 2

In model system 2, we restrict ourselves to defects created by single-pore infiltration
as explained in section 1.2.5. We first examine a cavity created by filling a single pore
with variable dielectric permittivity εdef . The resulting cavity modes and frequencies
are displayed in Figs. 4.10 and 4.11. For weak defects, εdef < 4.0, only a doubly-
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Figure 4.10.: Dipole cavity modes for a single point defect with variable dielectric
permittivity εdef in model system 2. For weak defects (highlighted region), Wannier
function results (17 or 38 WFs) agree very well with MPB calculations (7×7 super-
cell, spacial resolution a/64). For stronger defects, εdef > 4.0, there is a significant
mismatch. It can be alleviated by adding nine auxiliary Wannier functions computed
for the inverse PhC (silicon rods of radius r = 0.45a on a triangular lattice).
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Figure 4.11.: Higher-order cavity modes for a single point defect with variable dielec-
tric permittivity εdef in model system 2. As in Fig. 4.10, the large mismatch between
results of thirty-eight Wannier functions and MPB can be alleviated by using nine
auxiliary Wannier functions.
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degenerate dipole mode is supported by the cavity. For stronger defects, εdef > 4.0,
higher-order modes start to evolve. Firstly, a doubly-degenerate quadrupole mode
appears at the upper band edge for εdef ≈ 4.0. Then a monopole and a hexapole
mode are supported for increasing defect permittivity εdef .

The dipole mode for weak defects is well represented with thirty-eight or seven-
teen Wannier functions, cf. Fig. 4.10. The seventeen Wannier functions have been
selected out of the thirty-eight Wannier functions by taking the ones with the largest
contribution Vn to the dipole mode for εdef = 12.0 according to (2.29). It is apparent
though from Figs. 4.10 and 4.11 that for stronger defects, such as non-etched pores
(εdef = 12.0), both the dipole mode frequency and the higher order mode frequencies
deviate significantly from the MPB reference solution even when taking into account
all thirty-eight Wannier functions available. It would be necessary to use even more
Wannier functions.

One reason for the slow convergence with number of Wannier functions may be
the strict boundary conditions imposed on H-polarized fields. The Wannier functions
show significant kinks at discontinuities of the dielectric permittivity in the host PhC.
Such kinks may be counterproductive when a cavity mode for a non-etched pore (i.e.,
continuous dielectric permittivity at the central pore) has to be modeled.

Instead of increasing the number of Wannier functions, we use the same strategy
as for the radius defect cavity calculations in model system 1 in order to get better
converged results. We introduce auxiliary Wannier functions to complement the
original Wannier function basis by appropriate additional field components that are
supposed to better reproduce fields at infiltrated-pore defects or non-etched pores.
In the present case, the H-polarization Wannier functions for the inverse system,
i.e., a triangular lattice of silicon rods of radius r = 0.45a, may be a good choice
as a set of auxiliary Wannier functions. Therefore, we have computed the first nine
Wannier functions for the inverse system, depicted in Fig. 4.4. It is apparent from
Figs. 4.10 and 4.11 that the use of those nine functions at the defect lattice site and
the immediate neighbors together with the thirty-eight original Wannier functions
at all lattice sites of the computational domain leads to much more accurate results
for strong defects, both for the dipole modes and the higher-order modes, except for
the hexapole mode, which is still not represented very well by the extended Wannier
function basis.

The use of auxiliary Wannier functions is still under investigation and has to be
further tested. For the cases discussed so far, both for model system 1 and 2, the
results are very promising. Nevertheless, for the circuit design in chapter 5, we
restrict ourselves to the case of weak defects for model system 2, for which the
Wannier function expansion works fine without using auxiliary Wannier functions.

Finally, we calculate the cavity modes of a more complex cavity that consists
of a ring of six pores filled with a low-index material with dielectric permittivity
εdef = 2.89. The resulting mode profiles and frequencies are depicted in Fig. 4.12.
The frequencies are in perfect agreement with MPB reference results.
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Figure 4.12.: Complex cavity (ring) in model system 2. Six pores are filled with low-
index material with εdef = 2.89. The relative difference between Wannier function
results (red diamonds) and converged MPB results (black crosses, supercell 9×9,
spacial resolution a/64) is less than 0.5 percent.

4.3. Waveguide Dispersion

Next, we discuss calculations of waveguide dispersions for different line defects in
model systems 1 and 2 and compare them to MPB reference calculations. The line
defects are composed of the same point defects already discussed in the previous sec-
tion about cavity modes. Many conclusions about the necessary number of Wannier
functions and the use of auxiliary Wannier functions can be adopted here.

4.3.1. Model System 1

In model system 1, we begin with the case of two line defects created by removing
a row of rods or changing the dielectric permittivity of the rods to εdef = 30.0,
respectively. Such line defects are directly related to the cavity class of a single rod
with variable dielectric permittivity discussed in Fig. 4.6, for which we got excellent
agreement with MPB by using only the six most important Wannier functions per
lattice site. Consequently, Fig. 4.13 shows that the waveguide dispersion of such line
defects is accurately reproduced using only six Wannier functions.

Similarly, we construct a line defect of one row of rods with radius rdef = 0.35a,
corresponding to the cavity class supporting a degenerate dipole mode, discussed in
Fig. 4.7. As for the cavity modes, the MPB reference waveguide dispersion, plotted
in Fig. 4.14, is reproduced only qualitatively by using six Wannier functions. It can
be improved by taking twenty-three Wannier functions into account, but there is still
a certain offset to the reference solution. Nevertheless, to get quantitative agreement
with MPB, we can use three auxiliary Wannier functions computed for a topologically
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Figure 4.13.: Waveguide dispersion of a line defect of missing rods (blue circles) and
rods with εdef = 30.0 (green triangles) in model system 1. In both cases, the calcu-
lated results using six Wannier functions agree perfectly with MPB results (supercell
size 9a, spacial resolution a/64).

identical PhC with rods of radius r = 0.35a in addition to the six original Wannier
functions. These results are consistent with the ones obtained in Fig. 4.7.

The third class we consider is a line defect created by changing the radius of a row
of rods to rdef = 0.45a. This waveguide corresponds to the cavity class discussed
in Fig. 4.8, which supports several higher-order modes. Accordingly, the waveguide
dispersion in Fig. 4.15 shows a richer spectrum of guided modes. This spectrum can
hardly be reproduced by using only six Wannier functions per lattice site. Again,
the use of twenty-three Wannier functions improves the results significantly. Almost
quantitative agreement to the MPB reference solution can be obtained by applying
auxiliary Wannier functions computed for a topologically identical PhC with rods
of radius r = 0.45a in addition to the six original Wannier functions. However,
the use of auxiliary Wannier functions leads to the appearance of a spurious mode
in the waveguide dispersion for this particular case. The spurious mode arises in
Fig. 4.15 as a steep band with quadratic dispersion at the Brillouin zone edge. For the
calculations, we used five out of the six auxiliary Wannier functions for r = 0.45a in
Fig. 4.3(b) and applied them only at the defect sites. We left out the first, monopole-
like Wannier function for r = 0.45a, since it lead to even more spurious modes
appearing at different wave vectors in the dispersion.

The origin of spurious modes can be clearly attributed to the auxiliary Wannier
functions, which introduce field components that are in conflict with the band gap
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Figure 4.14.: Waveguide dispersion of a line defect of rods with radius r = 0.35a
in model system 1. While the results using six as well as twenty-three Wannier
functions (dashed lines) reproduce the MPB reference solution (solid lines, supercell
size 9a, spacial resolution a/64) only qualitatively, the results become quantitatively
correct when we use six original Wannier functions plus three auxiliary Wannier
functions computed for a topologically identical PhC with rods of radius r = 0.35a,
see Fig. 4.3(a).

of the underlying PhC. Since the Wannier function basis consists of only a small
number of very specialized functions, the projection of the exact, infinite problem to
the finite Wannier basis must be such that the number and characteristics of solutions
is retained. This prerequisite seems to be broken in some cases when we use auxiliary
Wannier functions. On the other hand, the non-orthogonality of the basis may lead
to numerical instabilities. Both statements may be the reason for the appearance of
spurious modes. This problem is still under investigation. Note, however, that the
present case, radius defects with rdef = 0.45a, is a very strong deviation from the
underlying periodic structure. Weaker defects, for example the ones with rdef = 0.35a
discussed above, can be handled more successfully with auxiliary Wannier functions
without getting spurious modes.

Finally, we compute the waveguide dispersion of a more complicated line defect
created by changing three adjacent rows of the PhC. In the central row, we put
rods with radius rdef = 0.35a, while in the other two rows, we remove the rods
or replace them with rods of different permittivity εdef = 30.0, respectively. The
dispersion of this asymmetric waveguide is plotted in Fig. 4.16. It shows excellent
agreement between Wannier function results and MPB reference calculations. We
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Figure 4.15.: Waveguide dispersion of a line defect of rods with radius r = 0.45a in
model system 1. The MPB reference solution (solid lines, supercell size 9a, spacial
resolution a/64) can not be reproduced by using six Wannier functions, and the
results for twenty-three Wannier functions deviate significantly. Using five auxiliary
Wannier functions computed for a topologically identical PhC with rods of radius
r = 0.45a (WFs 2-6 in Fig. 4.3(b)) improves the quantitative agreement to MPB.
However, a spurious mode appears, highlighted by the red ellipse in the top-right
corner of the spectrum.

used six original Wannier functions plus three auxiliary Wannier functions for a PhC
with rods of radius r = 0.35a.

4.3.2. Model System 2

In model system 2, we investigate three different waveguides in the framework of
single-pore infiltration. The simplest one is formed by a row of pores filled with a
low-index material of dielectric permittivity εdef = 2.89. The point defects in this
waveguide correspond to the cavity discussed in Fig. 4.10 in the regime of weak
defects. A single point defect of this type supports two dipole modes only, therefore,
the waveguide dispersion, depicted in Fig. 4.17, shows two bands crossing each other.
The results calculated using the first twenty-six Wannier functions of model system 2
are in very good agreement with the MPB reference solution.

Next, we discuss a one-row waveguide formed by stronger defects, in which the
pores are not etched or, equivalently, are filled with silicon (εdef = 12.0). Fig. 4.18
shows that this waveguide is strongly multi-mode over wide frequency ranges, as
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Figure 4.16.: Complex waveguide in model system 1 consisting of one row of missing
rods, one row of rods with radius rdef = 0.35a and one row of rods with permittivity
εdef = 30.0. Results calculated with six original Wannier functions plus three aux-
iliary Wannier functions for a PhC with r = 0.35a (cf. Fig. 4.3(a)) are in excellent
agreement with MPB calculations (supercell size 11a, spacial resolution a/64).

the single non-etched pore supports seven cavity modes (cf. Fig. 4.11), which are all
reflected in the waveguide dispersion. It is apparent from Fig. 4.18 that it is not
possible to get quantitatively correct results with the full set of thirty-eight original
Wannier functions for model system 2. Some bands can be qualitatively identified,
but they are significantly shifted to higher frequencies. Again, we examine the results
when taking nine auxiliary Wannier functions for the complementary system of rods
into account. Indeed, the results get quantitatively better. However, the deviation,
especially for higher bands, is still large.

We complete the discussion of waveguide dispersions by an example for a more
complex waveguide in model system 2, which is formed by three adjacent rows of
filled pores. The pores in the two outer rows are filled with a material of εdef = 2.89,
while the central pores are filled with a material of εdef = 2.40. The dispersion of
this waveguide is depicted in Fig. 4.19. This waveguide only consists of pores filled
with low-index material. Consequently, using twenty-six Wannier functions, we get
good agreement as compared to the reference solution.
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Figure 4.17.: Low-index waveguide in model system 2. A row of holes is filled with
material of εdef = 2.89. The Wannier function results computed with the first twenty-
six Wannier functions agree well with MPB calculations (super cell extent 9, spatial
resolution a/96). The deviation exceeds 1% only near the upper band edge.
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Figure 4.18.: Waveguide formed by a row of non-etched pores in model system 2.
Similar to the cavity mode calculations for a single non-etched pore (εdef = 12.0),
the calculations using thirty-eight Wannier functions significantly differ from the
reference calculations using MPB (super cell extent 9, resolution a/96). The use
of nine auxiliary Wannier functions for the complementary rod system relieves the
deviation a bit.
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Figure 4.19.: Complex waveguide formed by three adjacent rows of filled pores in
model system 2. The outer two rows are filled with a material of εdef = 2.89, the
central row with a material of εdef = 2.40. Results using twenty-six Wannier functions
agree well with the MPB reference solutions (super cell extent 11, spacial resolution
a/64).

4.4. Waveguide as a Functional Element

The S-matrix of a waveguide of finite length L has a very simple form. It is reflec-
tionless and contains only exponentials of the guided-modes’ phase shifts over the
length of the waveguide,

Swg =
(

0 G
GT 0

)
with G =


. . . 0

exp(ik`L)

0
. . .

 . (4.1)

As a check, we can either calculate this S-matrix using the waveguide dispersion,
or we can treat the waveguide as an ordinary two-port FE and compute the S-
matrix for this FE. Fig. 4.20 shows the resulting comparison. By construction, the
S-matrix derived from dispersion data, (4.1), has zero reflectance and a phase of
the transmission elements φT (ω) = k(ω) · L. Therefore, we plot the reflectance of
the FE-computed S-matrix, which should physically be zero, and the transmission
phase deviation ∆φ of the FE-computed S-matrix with respect to the phase φT (ω)
from dispersion data. These values can give an indication for the necessary distance
between two ports of an FE. For short distances, the direct coupling between the
two ports may lead to wrong results for the S-matrix of an FE. It is apparent from
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Figure 4.20.: Finite waveguide section of a single-mode waveguide (εdef = 2.89)
in model system 2 treated as a functional element. The reflectance, which should
physically be zero, and the phase deviation ∆φ from dispersion-derived data are
plotted against frequency. For lengths L ≥ 3a, the numerically calculated reflectance
is less than 10−3 and ∆φ is well below 10−1. Thirty-eight Wannier functions were
used.

Fig. 4.20 that a distance of L ≥ 3 is sufficient to get reasonably low direct coupling
between ports in this particular case. The reflectance does not exceed 10−3 and the
phase deviation is well below 0.1.

We may conclude that the distance between ports of FEs may be chosen quite
small. Note, however, that this can not be generalized to arbitrary kinds of FE.

4.5. Double Bend

According to section 3.2.1, we reduce the individual S-matrices of basic FEs to
the blocks relating propagating guided modes only. S-matrix entries for evanescent
guided modes are ignored. For this case, the S-matrix combination to obtain the
full S-matrix of a large-scale circuit becomes numerically extremely simple, since the
matrices involved are very small (typically 2×2 or 4×4). This approximation requires
that the field components that evanescently decay away from the individual FEs have
negligible overlap between the FEs, and only the propagating guided modes in the
waveguides between the FEs contribute to the coupling of the FEs. That means, we

67



4. Accuracy and Convergence

Figure 4.21.: Comparison of combined and monolithic S-matrices taking the double
bend as an example. The validity of the reduced S-matrix approximation is checked,
since ignoring the S-matrix entries corresponding to evanescent guided modes may
lead to deviations of the combined from the monolithic S-matrix, especially for small
distances of individual FEs.

have to check how far away from each other FEs must be placed to ensure that the
reduced S-matrix approximation is valid. Therefore, for mid-size devices that can be
divided into basic FEs, we compare the composed S-matrix, i.e., the full S-matrix
that results by combining individual S-matrices of basic FEs, with the monolithic
S-matrix, which results from treating the whole device as one block.

To be specific, we look at simple double bends depicted in Fig. 4.22. These devices
are composed of two opposite bends that are concatenated with a certain distance
L between their centers. We first consider the double bend in model system 1,
Fig. 4.22(a), for which the transmittance and phase spectra are displayed in Fig. 4.23
for four different distances L = a, 3a, 5a and 7a. Except for the L = a case, the
transmittance extracted from the combined S-matrix agrees well with the monolithic
S-matrix calculation. The same is true for the transmission and reflection phases.
Some small shifts in frequency of the transmittance and the reflection phase are
visible for L = 3a and L = 5a. However, we can conclude that the double bend with
a quite short distance of L = 3a can already be accurately handled by a reduced
S-matrix combination. The evanescent coupling between the two single bends seems
to be small compared to the propagating parts, even at such short distances.

Note that we use negative waveguide lengths between the two single bends if the
distance L is shorter than the distance that results when two single bends are con-
nected without any space between them. Negative waveguide lengths correspond to
negative phase shifts that eliminate the phase shifts already encoded in the S-matrices
of the single bends due to the short waveguide stubs at their ports.

Next, we turn to the double bend in model system 2, Fig. 4.22(b). The spectra for
this system are plotted in Fig. 4.24. Again, the overall agreement between combined
and monolithic S-matrix data is very good, even for short distances. There are some
deviations for L = a and, to a smaller extent, for L = 3a. The agreement for L = 5a
and 7a is excellent, though. We conclude that a distance of L = 5a is sufficient for a
good accuracy of combined S-matrix computations in this particular case.

Note that, in general, the necessary distance between two FEs may strongly depend
on the resonant behavior of the FEs. In the above cases, the guidance in the two bends
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(a) in model system 1

(b) in model system 2

Figure 4.22.: Double bends in the two model systems. The S-matrix of the entire
double bend can either be calculated by combining S-matrices of single bends or
by directly computing the S-matrix of a monolithic double bend. When combining
S-matrices, we can simulate shorter double bends by assuming that the waveguide
in between the two single bends (shaded region) has a negative length, which is
equivalent with a negative phase shift.

is non-resonant, so the effect of the propagating field components is dominating the
FE behavior. The evanescent components may play a much bigger role for resonantly-
coupled FEs, for which we may need larger distances of FEs in a circuit to get accurate
results for combined S-matrices.

4.6. Simple Mach-Zehnder Interferometer

As another simple check for the S-matrix approach, we consider a slightly more
complicated composed device that can still be computed en bloc, such as a simple
Mach-Zehnder interferometer (MZI) in model system 1, depicted in Fig. 4.25. The
circuit can be decomposed into two T-splitters and four bends. Since the distance
between the T-splitter and the bends is very small, the connections between those
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Figure 4.23.: Double bend in model system 1: Transmittance and transmis-
sion/reflection phase spectra for different distances of the single bends, L =
a, 3a, 5a, 7a, are plotted. Results computed by combining S-matrices of two opposite
bends (solid lines in color) are compared to results for the S-matrix of one monolithic
double-bend. It is apparent that even for small distances, L = 3a, the results are in
good agreement. Both cases were calculated using six Wannier functions, according
to Fig. 4.6. The S-matrix combination for the smaller lengths L = a, 3a, 5a was done
using negative lengths for the connecting waveguide, which is equivalent to negative
phase shifts.

FEs are treated as waveguides with negative lengths. This trick is the same as for
the double bends discussed in the previous section.

Similar to the double bend, we compare the combined and the monolithic circuit
S-matrix of the MZI. Both are computed using the six Wannier functions in Fig. 4.2.
The corresponding transmittance and transmission/reflection phases are plotted in
Fig. 4.26. We find that the agreement between the combined and the monolithic
S-matrix is very good. The Fabry-Perot dips are well reproduced in both their
depth and their frequency. Individual peaks and dips seem to be slightly shifted in
frequency. However, this shift is well below 1%.

The simple MZI is a testbed for large-scale circuits, which will be discussed in the
following chapter. The circuits discussed there are too large to be handled monolith-
ically.
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Figure 4.24.: Double bend in model system 2: Transmittance and transmis-
sion/reflection phase spectra for different distances of the single bends, L =
a, 3a, 5a, 7a. Results computed by combining S-matrices of two opposite bends (solid
lines in color) are compared to results for the S-matrix of one monolithic double-
bend. While there are some deviations for L = a and 3a, the agreement for L = 5a
and L = 7a is excellent. The first twenty-six Wannier functions were used for the
calculations.

Conclusions about S-matrix combination

From the results of the double bend and the simple Mach-Zehnder interferometer,
we conclude that the Wannier function S-matrix calculations are self-consistent, i.e.,
the S-matrix combination gives similarly accurate results as the calculation of a
monolithic circuit.
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Figure 4.25.: Simple Mach-Zehnder interferometer in model system 1. On the left,
it is decomposed into four bends and two T-splitters, each of which is represented
by its individual S-matrix. By combining the S-matrices over waveguides of lengths
1a and −2a (negative phase shift), respectively, the combined circuit S-matrix can
be calculated. On the other hand, the monolithic circuit S-matrix can be calculated
directly for one monolithic device.
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Figure 4.26.: Transmittance and phase spectrum of a simple Mach-Zehnder interfer-
ometer in model system 1. Results calculated for the monolithic and the combined
circuit are in very good agreement, both in transmittance and in phase.
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5. Design of Large-Scale Circuits in a 2D
Photonic Crystal

In this chapter, we will discuss the design of large-scale circuits composed of basic
functional elements (FEs) on the basis of model system 2 defined in section 4.1. First,
we introduce the basic components (waveguides, optimized bends) for the circuits.
Then we will gradually increase the circuit complexity and size, starting from one of
the simplest compound devices, the directional coupler (DC) presented in section 5.2.
Within the scattering-matrix formalism, the length of the DC is easily adjustable.
This is a prerequisite for the design of more complex devices based on DCs, such as
the Mach-Zehnder interferometer (MZI) discussed in section 5.3. Finally, we present
an electrically tunable version of the MZI that can be used as a switch or modulator
device.

5.1. Basic Components

First of all, for designing a particular circuit, we have to choose the underlying PhC,
which acts as a background isolating material for frequencies within its band gaps.
Here, we take the 2D triangular lattice of air pores in silicon with radius r = 0.45a,
introduced as model system 2 in section 4.1. This system is advantageous because of
its large band gaps, especially for H-polarized light, and the overlap of band gaps for
H-polarization and E-polarization. In the following, we only make use of the large
first band gap in H-polarization (a/λ = [0.298, 0.490], ∆ω/ωc = 48.7%) and ignore
the band structure for E-polarization in our considerations. For all calculations, we
use the first twenty-six Wannier functions of model system 2 (cf. appendix B) with
Rmax = 4 according to (2.26).

5.1.1. Default Waveguide

Besides the isolation provided by the band gap of the underlying PhC, a PhC circuit
needs “conductive paths” or, in terms of photonics, it needs waveguides. Typically,
the bandwidth in which the circuit can be operated is mainly restricted by the band-
width of the waveguides used in it. It is further reduced by requiring the waveguides
to be single-mode. So it is important to make a good choice about the default
waveguides used in the circuit.

In our model system using single-pore infiltration, the canonical choice for the
default waveguide is a single line defect of pores filled with a low-index material
such as a polymer with refractive index of n = 1.70, for instance. The waveguide
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Figure 5.1.: Waveguide dispersion of the default waveguide for the circuit. The
shaded region depicts the single-mode frequency range (a/λ = [0.359, 0.409]), which
is chosen for the operation of the circuit. The supported guided mode is symmetric
with respect to the waveguide axis (see inset showing the periodic part of the mode).

dispersion of such a line defect is depicted in figure 5.1. The single-mode frequency
range is identified as a/λ = [0.359, 0.409]. In this range we choose to operate the
circuit. It corresponds to a bandwidth of ∆ω/ωc = 12.7% with respect to the midgap
frequency ωc, or ∆λ = 211nm for a midgap wavelength λc = a/ωc = 1550nm.

Fig. 5.1 also shows the periodic part of the guided mode for one frequency in the
relevant frequency range. The mode is symmetric with respect to a mirror reflection
at the waveguide axis. It is well confined to a narrow region around the waveguide.

5.1.2. Optimized Bend

The most important functional element for a PhC circuit is the waveguide bend. It
occurs in almost every circuit and has to be designed such that internal reflections are
avoided as much as possible. To fulfill this requirement, we optimize the waveguide
bend with respect to minimal total reflectance over the frequency range of interest,
allowing certain holes to be unfilled or filled with a material with variable refractive
index. To be more specific, we search in the following configuration space, which is
also depicted in figure 5.2:

• A range of 3×3 holes in the vicinity of the bend center may be unfilled or filled.

• The holes may be filled with different low-index materials with refractive indices
of n = 1.55, 1.60, 1.65 or 1.70.
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Figure 5.2.: Configuration space for the optimization of a waveguide bend for the PhC
circuit. The holes depicted with “x” may be unfilled or filled with low-index materials.
Allowed configurations must be symmetric with respect to the axis depicted in the
picture.

• Only symmetric configurations with respect to a mirror reflection on the plane
bisecting the angle enclosed by the bend are taken into account.

This results in 5 different choices for the refractive index of each hole and a total of
6 holes that can be independently switched. Thus, we have a total number of 56 =
15625 configurations to be scanned. The frequency range over which the reflectance
is summed up is given by 5 discrete frequencies a/λ = 0.370, 0.375, 0.380, 0.385 and
0.390.

Although we could use advanced techniques, such as simulated annealing, to solve
this optimization task, the configuration space is not too large in the present case, so
we used a simple brute-force optimization and computed all possible configurations.
Since the Wannier function method allows to calculate a single configuration for
a single frequency very efficiently, the task of computing all configurations for all
frequencies was possible within a few days on a 32-processor cluster of AMD Opteron
248 processors. The first 26 Wannier functions were used on a specified device range
(cf. figure 5.2). This resulted in a calculation time of approximately 1.5 minutes
per configuration and frequency and a total computation time of approximately 62
hours on the 32-processor cluster for all configurations and all frequencies together.
It has to be mentioned that the small-rank update procedure proposed in [99] (cf.
section 2.3.4) could not be used here, since it is not efficient for such a high number of
Wannier functions. This is because the singular-value decomposition and/or inversion
of matrices involved in each small-rank update scales worse than the solution of the
full system of equations for one configuration and, therefore, becomes slower at some
point when increasing the number of Wannier functions.

The results of the optimization are shown in figure 5.3. The optimized bend has
a reflectance below 10−2 = −20dB in the frequency range a/λ = [0.371, 0.386]. It
has minimal reflectance at a/λ = 0.373 and a/λ = 0.384. The deep dips at these
two frequencies will be useful for the following design of the directional couplers
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Figure 5.3.: Comparison of the performance of the simple and the optimized waveg-
uide bend. The numbers in the sketch of the optimized bend correspond to differ-
ent refractive indices according to figure 5.2. The vertical dashed lines depict the
two frequencies with minimal reflectance of the optimized bend (a/λ = 0.373 and
a/λ = 0.384). They are repeated in subsequent spectra of the directional coupler
and Mach-Zehnder interferometer.

and Mach-Zehnder interferometers, since those phase-sensitive devices work best if
internal reflections are as small as possible. We will see that in frequency ranges
where internal reflections can not be neglected, the large-scale circuit’s performance
deteriorates.

5.2. Directional Coupler

We start the discussion of large-scale circuit design in PhCs with a directional coupler
(DC). The basic working principle of the DC was already introduced in section 1.3.1
for a conventional fiber DC. On the basis of the design choices of the underlying
crystal and default waveguide, which we discussed in the previous section, we can
sketch one possible realization of a PhC DC in figure 5.4. Basically two choices have
been made:

• The two waveguide lines are separated by two rows of unfilled holes.

• The optimized bend is utilized within the lower waveguide line.

In principle, many other DC designs could be investigated as well. Nevertheless, we
restrict ourselves to the realization shown in figure 5.4 and focus on the length of the
DC as the only remaining design freedom.
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5.2. Directional Coupler

Figure 5.4.: Directional coupler built into a PhC. It is decomposed into two coupler
end pieces with a variable-length waveguide between them (gray-shaded region). We
define the length L of the coupler as the distance between the two bends in the lower
arm.

5.2.1. Additional Components

We need two additional components for the description of the coupler depicted in
Fig. 5.4 within the scattering matrix framework. The coupler consists of the two end
pieces, which we will treat as functional elements, and of a coupling section between
the end pieces, which is treated as a waveguide of variable length.

Coupling-Section Waveguide

Firstly, we have to calculate the dispersion and guided modes of the waveguide formed
by the two parallel single-mode waveguides along the coupling section. This dual-
mode waveguide is less symmetric than a typical two-fiber coupling section (cf. sec-
tion 1.3.1) due to the broken continuous translational symmetry of the underlying
PhC. However, it is still invariant under a glide reflection, i.e., a reflection on the axis
equidistant from both single-mode waveguides in combination with a translation of
a/2 in the waveguide direction. Therefore, the two fundamental modes supported by
the coupling-section waveguide are even and odd with respect to this glide reflection.
Since they propagate with slightly different wave vectors keven and kodd, a beat occurs
when a superposition of both modes is excited. The waveguide dispersion and the
mode profiles of the coupling-section waveguide are depicted in Fig. 5.5.

More precisely, the guided modes ψ(~r) of the coupling-section waveguide are even
and odd with respect to the glide reflection only up to a phase φ, which can be
derived from the Bloch theorem,

T̂aψ(~r) = eikaψ(~r) . (5.1)

The glide reflection can be expressed by the successive application of a translation
operator T̂a/2 and a mirror operator σ̂. Both operators are unitary and they commute,
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Figure 5.5.: Dispersion and mode profiles of the fundamental modes of the coupling-
section waveguide, which is part of the directional coupler discussed here. For fre-
quencies around a/λ = 0.38, there exist two modes, an even and an odd mode with
respect to a glide reflection, and they propagate with different wave vectors keven and
kodd. The dashed line represents the dispersion of the single-pore waveguide.

so the glide reflection operator is also unitary and has only eigenvalues of the form
eiφ (one-dimensional unitary representations),

T̂a/2σ̂ ψ(~r) = eiφψ(~r) . (5.2)

On the other hand, the two-fold application of the glide reflection is equivalent to a
simple translation by a distance of a, so that(

T̂a/2σ̂
)2 ≡ T̂a =⇒ e2iφ = eika (5.3)

=⇒ φ =
ka

2
+mπ m ∈ Z . (5.4)

This phase relation of the guided modes of the coupling-section waveguide is impor-
tant to correctly handle the phases of the S-matrix elements of different congruent
coupler end pieces.

Coupler End Piece

The end pieces located at either side of the DC are treated as functional elements
(FEs) that connect two single-mode waveguides with the coupling-section waveguide,
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Figure 5.6.: Reflectance and transmittance spectrum of the coupler end piece de-
picted to the right. This is a three-port FE with a 4×4 S-matrix. The curves for
matrix entries involving port 3 are labeled by letters ’e’ for even and ’o’ for odd,
corresponding to the respective mode in port 3. The optimized bend is incorporated
into one arm and ensures very low reflectances at all three ports in the optimal range
a/λ = [0.371, 0.386], including the “cross reflectance” R21.

which supports two propagating guided modes. One representation of the coupler
end piece and its reflectance and transmittance spectrum is shown in figure 5.6.
It incorporates the optimized bend from the previous section in order to keep the
reflectances as low as possible.

The coupler end piece is a three-port FE and is characterized in this case by a 4×4
S-matrix, according to the four propagating guided modes supported in the three
ports. The S-matrix takes the form

Scoupler =


r11

r21 r22

t
(e)
31 t

(e)
32 r

(ee)
33

t
(o)
31 t

(o)
32 r

(oe)
33 r

(oo)
33

 , (5.5)

where the upper right part is left out, since it is equal to the lower left part due
to reciprocity. We treat all S-matrix entries that connect the “left side” of the
coupler end piece (ports 1 and 2) with the “right side” (port 3) and vice versa as
transmission coefficients. All S-matrix entries that exclusively involve modes on either
side are treated as reflection coefficients, including the “cross reflection coefficient”
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r21. This somewhat unconventional labeling is natural for the present case, since an
ideal coupler end piece has vanishing reflection coefficients, in the sense of the above
definition, while the transmission coefficients include all features for the operation
of the FE. In addition, we label the individual S-matrix entries related to port 3
with superscripts ’e’ and ’o’, depending on whether they are associated with the even
mode or the odd mode in port 3, respectively.

The transmittance spectrum in Fig. 5.6 basically shows two interesting features.
Firstly, the transmittances into the even and odd modes in port 3 differ from each
other. The coupling of an incoming mode in port 1 to the odd mode in port 3 is
larger than its coupling to the even mode. The opposite is true for the coupling of an
incoming mode in port 2, which is coupled more into the even mode. Secondly, except
for exchanging the role of the even and the odd mode in port 3, the transmittances
T31 and T32 are nearly equal in the optimal frequency range of the bend (a/λ =
[0.371, 0.386]). Outside this range, T32 deteriorates due to the worse transmittance
through the bend.

Similarly, the reflectance spectrum in Fig. 5.6 shows features that can directly be
attributed to the performance of the optimized bend. For example, the reflectances,
including the “cross reflectance” R12, stay well below 10−2 in the optimal frequency
range of the bend. Furthermore, at the two frequencies a/λ = 0.373 and 0.384,
where the reflectance of the bend goes to zero, the two diagonal elements in R33

(even-to-even and odd-to-odd reflectance) and R12 take all the same value and the
non-diagonal terms in R33 (odd-to-even reflectance and vice versa) go to zero. At
these frequencies, ports 1 and 2 of the coupler end piece become balanced and there
is no mechanism that couples even and odd modes in the coupling-section waveguide.

5.2.2. Length-Dependent Performance and Spectrum

Now that we have characterized the necessary waveguides and FEs involved in the
directional coupler, we can analyze the entire DC as a circuit of two FEs. We first take
the length L of the coupling section, defined in Fig. 5.4, as a parameter and compute
the length-dependent performance of the DC for one fixed frequency a/λ = 0.373.
At this frequency, the optimized bend (cf. section 5.1.2), which is incorporated into
the coupler end piece, exhibits minimal reflectance. The results are depicted in
Fig. 5.7. The DC nicely reproduces the behavior of a typical DC as described in
the introduction (section 1.3.1). For instance, light entering port 1 is transmitted
to port 3 (“bar transmittance” T31) and port 4 (“cross transmittance” T41), where
the respective fractions depend on the length of the coupler. Therefore, the “bar
transmittances” T31 = T42 and the “cross transmittances” T41 = T32 alternate when
increasing the DC length. All reflectances (including the “cross reflectance” R21) are
below 10−2. There is a slight asymmetry between T31 and T41 that stems from the
asymmetry created by the bends in the lower coupler arm. From Fig. 5.7, we can
estimate the beat length to be LB = 95a. This is in very good agreement with the
expected value of LB = 2π/|keven−kodd| = 94.1 derived directly from dispersion data
in Fig. 5.5.
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Figure 5.7.: Length-dependence of the reflectances and transmittances of the direc-
tional coupler shown in Fig. 5.4 for one fixed frequency a/λ = 0.373. The “bar
transmittances” T31 = T42 and the “cross transmittances” T41 = T32 alternate. The
reflectances do not exceed 10−2.

The entire length-dependent performance of the DC can be computed easily, once
the basic components are characterized. This means that we have to calculate the
guided modes of the involved waveguides and the S-matrices of the coupler end pieces
for one frequency. The congruence of the waveguides and coupler end pieces helps to
reduce this effort. Then, the coupler length is tuned by only adjusting the length of
the coupling-section waveguide when combining the S-matrices of the two opposite
coupler end pieces. The actual effort to evaluate the S-matrix combination by means
of Eq. (3.30) is negligible, it involves – for a given frequency – only 4 × 4 matrices.
Therefore, the S-matrix approach is ideal for the characterization of circuits, in which
the length of connections acts as a parameter.

Instead of varying the length of the DC for a fixed frequency, we now calculate the
frequency spectrum of a fixed-length DC. The results are plotted in Fig. 5.8. Since
the transmittance of an incoming field into a specific output port depends on the ratio
of the coupler length and the beat length, and the beat length LB(λ) is wavelength-
dependent, we get an oscillating behavior of the transmittances with frequency. This
is at least the case in frequency regions where the reflectances (“back reflectances”
R11 and R22 as well as “cross reflectance” R21) are small. In other frequency regions,
the device performance is mainly governed by Fabry-Perot oscillations due to non-
negligible reflectances and resonant behavior. These effects can completely destroy
the characteristic features of a DC. Again, we identify the optimal frequency range
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Figure 5.8.: Reflectance/transmittance spectrum of a fixed-length DC as shown in
Fig. 5.4 with L = 97a. For this length, the DC is in the bar state (maximum
transmittance along one arm 1→ 3 or 2→ 4) for a/λ = 0.373 and in the cross state
(maximum transmittance across the two arms) for a/λ = 0.384.

a/λ = [0.371, 0.386] of the bend (cf. section 5.1.2), in which the DC can be operated
with good performance.

Note that for the frequency spectrum, the guided modes of the involved waveguides
and the S-matrices of the coupler end pieces have been calculated for each frequency.
No additional data would be necessary to calculate the length-dependent performance
of the DC for each frequency.

5.3. Mach-Zehnder Interferometer

On the basis of the DC discussed in the previous section, our next goal is to design
and characterize a Mach-Zehnder interferometer in a 2D PhC. We specify that the
MZI consists of two DCs as designed in the previous section, which are interconnected
via two separate arms. One arm (or both) may include a delay line to create relative
phase shifts between the two arms. A sketch of the device is shown in Fig. 5.9.

5.3.1. Additional Components

Besides the optimized bend and the DC components, we need two additional ele-
ments for the description of delay lines that may appear in the arms of the MZI.
Those components are (i) the waveguide that forms the delay line (called delay-line
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Figure 5.9.: Sketch of a Mach-Zehnder interferometer (MZI) in a 2D PhC. It consists
of two couplers whose ports are interconnected via two separate arms. A delay line is
incorporated in the upper arm by filling the pores of the waveguide with a different
material over a certain length.

waveguide) and (ii) an additional FE to account for the transitions from the standard
waveguide to the delay-line waveguide and back. Due to the congruence of the two
transitions, only one FE is necessary to describe both of them.

Delay-Line Waveguide

By definition, a delay-line waveguide must have a dispersion different from the dis-
persion of the standard waveguide. Thus, a delay line of a certain length LD creates
a relative phase shift ∆φ as compared to a standard waveguide of the same length.
Since we want to stay in the framework of single-pore infiltration, the most straight-
forward choice for composing the delay-line waveguide is by using a different infil-
tration material as compared to the standard waveguide fill material. Therefore, the
only design freedom we retain is the contrast of the refractive indices of the delay-line
and standard waveguide fill materials nD : nref .

There are two constraints that constrict good choices for the index contrast. The
stronger it is, the shorter the delay line needs to be to achieve a certain phase shift.
To minimize the device size, a strong index contrast is favorable. On the other hand,
within the PhC, the delay-line length LD can only be increased or decreased by integer
multiples of the lattice constant. Therefore, ∆φ is also quantized. The steps in which
∆φ can be increased or decreased are smaller for weaker index contrast. Therefore,
a weak index contrast is favorable for fine-tuning of the delay line’s relative phase
shift.

A good compromise between these two constraints is an index contrast of nD :
nref = 1.65 : 1.70. Fig. 5.10 shows the dispersion of such a delay-line waveguide in
comparison to the standard waveguide. The step in which ∆φ is increased per unit
length of the delay line lies in the range of ∆ka ≈ [0.08π, 0.04π] in the frequency
range a/λ = [0.37, 0.39]. This corresponds to delay-line lengths of LD ≈ 12a to 25a
to achieve a relative phase shift of ∆φ = π at the respective frequencies.
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Figure 5.10.: Comparison of the dispersion of a delay-line waveguide (ndef = 1.65)
and the default waveguide (ndef = 1.70). The difference in wave vector ∆k at a given
frequency determines the relative phase shift ∆φ per unit length of the delay line.

Delay-Line Transition

Besides the delay-line waveguide, the delay-line is formed by a transition from the
standard to the delay-line waveguide and a transition back, which are handled as
simple two-port FEs. Both FEs are described by the same S-matrix, since they are
congruent. Therefore, we only need to compute the S-matrix of one transition.

An ideal delay line would work like a reflectionless phase shifter, so we design the
delay-line transitions such that they are smooth enough to get low reflectance over a
broad frequency range. Fig. 5.11 shows the reflectance of two instances, an abrupt and
a smooth transition. In the latter, two holes are filled with materials of intermediate
refractive index, ndef = 1.667 and 1.683. Although the reflectance of the abrupt
transition is not that bad, the smooth transition has even more reduced reflectance.
In the following, we choose the smooth transition for the MZI calculations.

5.3.2. Balanced and Unbalanced MZI

Next, we put all components together and characterize the full MZI depicted in
Fig. 5.9. In this large-scale circuit, we have three adjustable design parameters: the
lengths L1 and L2 of the two couplers involved in the circuit and the length LD of
the delay line in one of the MZI arms. To get an idea of the MZI performance with
respect to the different lengths, we first consider an MZI in which the delay line is left
out completely, and we scan through the two coupler lengths L1 and L2. This case
represents a balanced MZI, in which the two arms have equal optical path lengths.
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Figure 5.11.: Reflectance of the abrupt and the smooth delay-line transition between
the default waveguide (ndef = 1.70) and the delay-line waveguide (ndef = 1.65). In
the smooth transition, two holes are filled with materials of intermediate refractive
index (ndef = 1.667 and 1.683).

Fig. 5.12 gives an overview about the results of the parameter scan for L1 and L2.
The balanced MZI is equivalent to a DC of length L1 +L2. This is because light does
not accumulate relative phases along the two arms, so that the exit phase relation at
coupler 1 is the same as the input phase relation at coupler 2. Thus, the effects of
both couplers simply add up. The transmittance spectrum of a specific realization
of the balanced MZI (L1 = L2 = 49a) is plotted in Fig. 5.13. We have chosen this
particular combination of lengths because a DC of length L = 97a is in the cross
state (T41 ≈ 1.0) for the frequency a/λ = 0.384 (cf. Fig. 5.8). Consequently, the
balanced MZI with L1 + L2 = 98a shows a very similar overall behavior. This can
be verified by directly comparing Figs. 5.13 and 5.8.

In the next step, we incorporate the delay line into one arm and thereby create an
unbalanced MZI, in which the optical path length of one arm is larger than that of
the other arm. This induces a relative phase shift ∆φ for light travelling along the
modified arm. The phase shift for a fixed delay-line length is frequency-dependent.
In Fig. 5.14 we plot the spectrum of ∆φ for three different delay-line lengths, LD =
6a, 10a, and 17a. We see that ∆φ varies slowly within the shown frequency range.
Note that for LD = 17a, the relative phase shift is ∆φ = π at the frequency a/λ =
0.384. In an unbalanced MZI with two identical couplers of equal lengths L1 = L2, a
relative phase shift of π is special, since for this case, the effect of the first coupler on
the incoming field is exactly reverted by the second one, if the couplers are sufficiently
close to ideal. This means that the light always exits in the arm it was launched.
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Figure 5.12.: Parameter scan for the balanced MZI. Transmittance spectra are plot-
ted for different lengths L1 and L2 of the couplers. The red number in each subgraph
corresponds to L1, while L2 is represented by the color of each curve.
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Figure 5.13.: Transmittance of the MZI depicted in figure 5.9 with L1 = L2 = 49a
without the delay line (both arms have the same optical length). This balanced MZI
performs similar to a DC of length L1 + L2 = 98a. Compare with figure 5.8.
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Figure 5.14.: Spectra of the reflectance and relative phase shift ∆φ for delay lines
(with smooth transitions) of different lengths (LD = 6a, 10a, 17a).
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Figure 5.15.: Transmittance of the MZI depicted in figure 5.9 with L1 = L2 = 49a
and a delay line of variable length LD = 17a (solid curves), 10a (dashed curves) and
6a (dotted curves). For LD = 17a, the relative phase shift approximately corresponds
to ∆φ = π at a/λ = 0.384, leading to T31 ≈ 1.0. For shorter delay lines, it takes some
value 0 < ∆φ < π at a/λ = 0.384, so the transmittances tend to change towards the
results for the balanced MZI. Compare with Fig. 5.13 (∆φ = 0 for all frequencies).
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Figure 5.16.: Actively tunable MZI incorporating a liquid-crystal filled delay line in
the upper arm. The lower arm includes a reference delay line whose length is always
adjusted to the length LD of the LC delay line. The LC director angle θ represents
the tuning parameter for the MZI.

5.4. Actively Tunable Mach-Zehnder Interferometer

We now go one step further and design an MZI with tunable relative phase shift
between the two arms. It is illustrated in Fig. 5.16. The tunability is provided by
a liquid-crystal (LC) filled delay line in one arm, where the LCs can be orientated
by applying an external electric field. In the other arm, we add a reference delay
line that has (almost) the same dispersion as the LC delay line for a certain director
angle θ = 60◦ of the LCs. So we can tune the relative phase shift to values 0 ≤ ∆φ ≤
∆φ(max) by adjusting the director angle. The maximum relative phase shift ∆φ(max)

we can achieve grows with the delay line length. The resulting circuit can be used as
a electrically operated optical switch or modulator.

5.4.1. Additional Components

Besides the passive MZI components we discussed above, we need to describe the
tunable delay line, which includes anisotropic LCs. As briefly mentioned in sec-
tion 1.2.5, the Wannier function approach can handle anisotropic materials [76]. We
treat the LC-filled pores like normal point defects. The director angle θ is specified
as a parameter. The tunable delay line is split into two FEs, the transitions to and
from the delay-line, and the tunable delay-line waveguide. Due to the congruence of
the transitions, we only need to characterize one transition.

Tunable Delay Line

In our calculations, we use LCs with ordinary and extraordinary refractive index
no = 1.5 and ne = 1.7, respectively, for the tunable material incorporated in the
delay line. Analogous to the static delay line components discussed in section 5.3.1,
we smooth the transitions by filling three pores with LCs of intermediate refractive
index (ne = 1.7, no = 1.55, 1.60, 1.65) to ensure low reflectance at the transitions.
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Figure 5.17.: Reflectance and relative phase shift for a tunable delay line with LC
director angle θ = 60◦. The dispersion of the LC delay line is almost identical to the
dispersion of the reference delay line. Therefore, the relative phase shift is very small
and the length of the delay lines is not important.
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Figure 5.18.: Reflectance and relative phase shift ∆φ for a tunable delay line with LC
director angle θ = 90◦. The dispersions of the LC delay line and the reference delay
line differ. Therefore, ∆φ varies with frequency and can be increased or decreased
by adjusting the length LD of the delay lines.

The dispersion of the delay-line waveguide can be tuned by adjusting the director
angle θ of the LCs. Figs. 5.17 and 5.18 show the reflectance and relative phase
shift ∆φ for LC delay lines of different lengths. ∆φ is calculated with respect to
the reference delay line, whose length is always increased or decrease by the same
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Figure 5.19.: Transmittance spectrum for the actively tunable MZI with a director
angle θ = 60◦ in the liquid-crystal delay line with length LD = 25a (solid curve).
Since both delay lines have nearly the same dispersion, this case is comparable to
the balanced MZI discussed in Fig. 5.13. The effect of changing the delay line length
(dashed curves, LD = 6a, 10a, 15a, 20a) is very small.

amount as LD is. See Fig. 5.16 for the absolute lengths of the delay lines relative to
each other, including transitions. The dispersion of the LC delay line for θ = 60◦ is
almost equal to the dispersion of the reference delay line, so the relative phase shift
for θ = 60◦ is nearly zero for all frequencies. On the other hand, the LC delay line
generates a relative phase shift for θ = 90◦, which varies slowly with frequency.

5.4.2. Application: Switch or Modulator

Putting it all together, we characterize the tunable MZI depicted in Fig. 5.16 with
respect to the design parameters L1, L2 and LD. We take two values for the tuning
parameter (the director angle), θ = 60◦ and 90◦. The design goal is that the circuit
behaves like a balanced MZI for θ = 60◦ and like an unbalanced MZI with ∆φ = π
at a given frequency, a/λ = 0.384, for θ = 90◦. The lengths L1 and L2 of the two
couplers involved in the MZI can be adopted from the designs in section 5.3, where
we found that L1 = L2 = 49a is suitable. For θ = 60◦, the delay line length LD

is irrelevant, so the only design parameter remaining is the delay line length LD

for θ = 90◦. In Fig. 5.18, we see that a delay line with length LD = 25a causes a
relative phase shift of ∆φ = π at a/λ = 0.384. Therefore, this length fulfills our
design requirements. In Figs. 5.19 and 5.20, the transmittance spectrum is plotted
for θ = 60◦ and 90◦, respectively. It is apparent that the bar transmittance T31 is
approximately zero at a/λ = 0.384 for θ = 60◦, while for θ = 90◦, it is nearly one.
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Figure 5.20.: Transmittance spectrum for the actively tunable MZI with a director
angle θ = 90◦ in the liquid-crystal delay line with length LD = 25a (solid curve).
The relative phase shift is ∆φ = π between the two arms of the MZI at the frequency
a/λ = 0.384. For shorter delay lines LD = 6a, 10a, 15a, 20a (dashed lines), ∆φ takes
values 0 < ∆φ < π at a/λ = 0.384. This case is comparable to the unbalanced MZI
discussed in Fig. 5.15.

In conclusion, we have designed an MZI that can be switched from the cross state
(T31 ≈ 0.0) to the bar state (T31 ≈ 1.0) by tuning the LC director angle θ by means
of an external electric field. This design could serve as a starting point for a minia-
turized switch or modulator device in wavelength-division multiplexing applications.
Of course, the result can be further optimized.

91



5. Design of Large-Scale Circuits in a 2D Photonic Crystal

92



Summary and Conclusions

A key requirement in the development and optimization of nanophotonic structures is
the availability of powerful computational methods. In this thesis, I have presented
a guided-mode scattering-matrix approach for the efficient treatment of photonic
crystal circuits (published in [69]). The approach relies on the efficient calculation
of scattering matrices of basic functional elements via the Wannier-function tech-
nique [70]. Fields within a functional element are expanded into photonic Wannier
functions. I have discussed in detail the accuracy and convergence of the Wannier-
function expansion and demonstrated the applicability of the approach to large-scale
circuits.

The technical and conceptual framework has been given in chapters 2 and 3. In
chapter 2, basic matrix equations have been derived for the treatment of cavities,
waveguides and functional elements using a Wannier-function expansion basis. The
main point is that, ideally, only a few Wannier functions per lattice site are needed to
obtain converged results. Furthermore, overlap matrix elements of Wannier functions
can be precomputed and reused for the characterization of any defect constellation
in a host photonic crystal. This is what makes the Wannier-function expansion very
efficient.

The general concept of scattering matrices (S-matrices) has then been introduced
in chapter 3. A functional element (FE) is fully characterized by its S-matrix, which
contains information about amplitudes and phases of scattered fields. In the present
case, the incoming and outgoing fields are guided modes of waveguides connected
to the ports of the FE. A circuit, which is a composition of connected FEs, can
again be described by an S-matrix. While the S-matrices of FEs are computed on
a “microscopic” level using Wannier functions, the circuit S-matrix is constructed
by combining those S-matrices. In this procedure, it is of great importance that
fundamental symmetries such as reciprocity and congruences of FEs are taken into
account. It is then possible to minimize the number of individual FE S-matrices
that have to be computed on the costly “microscopic” level. The combination of
S-matrices is extremely fast, since it includes only matrix elements of propagating
guided modes, resulting in S-matrices of very small size.

A significant part of this work has been the investigation of the accuracy and con-
vergence of the Wannier-function expansion for some representative test cases. In
chapter 4, two model systems have been chosen, in which cavity modes and waveg-
uide dispersions have been calculated with the Wannier-function method and checked
against reference solutions computed with the MIT Photonic Bands package [63].
Based on the results, I arrive at the following conclusions. Firstly, the Wannier-
function expansion works nicely in some cases, in which only very few Wannier func-
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tions per lattice site are necessary to get converged results. For instance, defect rods
in model system 1 in which the permittivity is changed require only six Wannier
functions per lattice site. In model system 2, weak defects, i.e., pores filled with a
low-index material, can be accurately handled with twenty-six Wannier functions.
Secondly, there exist defects for which the Wannier-function expansion shows very
slow convergence with the number of Wannier functions. For radius defects in model
system 1, it has been observed that the twenty-three available Wannier functions for
this system were not sufficient to get quantitatively correct results. Similarly, strong
defects in model system 2, i.e., non-etched pores can not be quantitatively described
by the thirty-eight available Wannier functions for this system. The third conclusion
is that auxiliary Wannier functions, i.e., Wannier functions computed for a comple-
mentary photonic crystal, can help to improve the accuracy of the Wannier-function
expansion. For instance, the results for radius defects in model system 1 could be
improved significantly. Although the additional basis functions destroy some desir-
able features of the original Wannier-function basis, such as the orthonormality and
the information about band structure, they provide a shortcut to a more complete
basis for a specific set of defects in a specific host material. However, they should be
applied with care to avoid spurious modes.

In the last part, chapter 5, the Wannier-function based scattering-matrix approach
has then been applied to design an actively-tunable Mach-Zehnder interferometer in
a photonic crystal. The main purpose of this part was to demonstrate that with
this approach, it is indeed possible to design large-scale circuits in photonic crystals
very efficiently. Starting from basic components such as waveguides and optimized
bends, successively more complex circuits have been composed. For the directional
coupler (DC) presented next, it is apparent that the scattering-matrix approach
allows to efficiently handle circuits in which intermediate straight waveguide sections
are arbitrarily long. The Mach-Zehnder interferometer (MZI) design based on two
connected DCs involves three freely adjustable lengths, including the length of a
delay line incorporated into one arm of the MZI. Finally, an actively tunable version
of the MZI has been considered by means of filling the pores in the delay line with
liquid crystals. The phase shift in the delay line can be designed such that, for one
specific frequency, the MZI transmits all light into one output port for one orientation
of the liquid-crystal directors, while for another orientation, all light goes into the
other output port. Therefore, the resulting device might be used as a switch or a
modulator.

Large-scale nanostructured circuits as presented in chapter 5 are very difficult to
treat with standard all-purpose techniques such as Finite-Difference Time-Domain
(FDTD) [66] or Finite Elements [67] due to the computational expenses they require.
The scattering-matrix method based on Wannier functions fills this gap and provides
a powerful tool to overcome the limitations of the all-purpose techniques. Clearly,
the presented method will not supersede FDTD or Finite Elements for arbitrarily
structured media. Rather, it is an alternative approach in the field of photonic crystal
based structures. However, since the scattering-matrix approach is not limited to the
use of Wannier functions to obtain S-matrices of individual functional elements, it
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could be applied to photonic wire circuits [6] as well. The main requirement for
the computation of the S-matrices of individual functional elements is the correct
treatment of the phase of the involved fields.

The present work gives rise to a number of new questions and future prospects.
Concerning the Wannier-function expansion, further investigation of the use of aux-
iliary Wannier functions is necessary. It would be desirable to work out the problem
of slow convergence with the number of original Wannier functions in greater de-
tail. Unfortunately, the generation of Wannier functions is highly complex [82], so
the number of available Wannier functions is limited in practice. Another interest-
ing project would be the formulation and implementation of a time-domain method
using Wannier functions as an expansion basis for the fields. This would allow to
investigate nonlinear circuits, for instance. Furthermore, in the area of wavelength
division multiplexing/demultiplexing (WDM) [100], there are interesting concepts
for the wavelength flattening of the device performance [101–103], which could be
investigated using photonic crystal circuits. Last but not least, the application of the
method to circuits in 3D photonic crystals and 2D photonic crystal slabs is certainly
another interesting project.

95



Summary and Conclusions

96



A. Model System 1

In this appendix, we present data for model system 1. This is a square lattice of silicon
rods with radius r = 0.18a. E-polarized radiation is considered. Figs. A.2 and A.3
show the band structure and the twenty-three Wannier functions, respectively. The
Wannier functions were generated according to [82] using the band groupings and
frequency windows listed in table A.1.

Figure A.1.: Square lattice of silicon rods with radius r = 0.18a in E-polarization.

bands inner frequency window outer frequency window
1 - -

2–4 - -
5–9 0.947 1.365

10–16 1.390 1.750
17–23 1.750 2.100

Table A.1.: Band groupings for the construction.
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Figure A.2.: Band structure of model system 1. The inner and outer frequency
windows are depicted by horizontal lines. Band 1 and bands 2–4 are treated as
isolated band groups.

98



A. Model System 1

Figure A.3.: Twenty-three Wannier functions of model system 1.
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B. Model System 2

In this appendix, we present data for model system 2. This is a triangular lattice
of air holes with radius r = 0.45a in silicon. H-polarized radiation is considered.
Figs. B.2 and B.3 show the band structure and the thirty-eight Wannier functions,
respectively. The Wannier functions are the ones generated in [82] using the band
groupings and frequency windows listed in table B.1.

Figure B.1.: Triangular lattice of air holes with radius r = 0.45a in silicon. with
H-polarized light.

bands inner frequency window outer frequency window
1 - -

2–9 0.88 1.12
10–17 1.30 1.49
18–26 1.6 1.715
27–38 - -

Table B.1.: Band groupings for the construction according to [82].
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Figure B.2.: Band structure of model system 2. The inner and outer frequency
windows are depicted by horizontal lines. Band 1 is treated as an isolated band.
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Figure B.3.: Thirty-eight Wannier functions of model system 2. [82]
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Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

BZ (first) Brillouin zone

DC directional coupler

FE functional element

FDTD finite-difference time-domain

FEM finite element method

LC liquid crystal

LCAO linear combination of atomic orbitals

MPB MIT photonic bands package

MZI Mach-Zehnder interferometer

PhC photonic crystal

PBG photonic band gap

PDE partial differential equation

PWM plane wave expansion method

TE transverse electric

TM transverse magnetic

WDM wavelength division multiplexing/demultiplexing

WF Wannier function

WSC Wigner-Seitz cell
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[40] S. Wong, M. Deubel, F. Pérez-Willard, S. John, G. A. Ozin, M. Wegener, and
G. von Freymann. Direct laser writing of three-dimensional photonic crystals
with complete a photonic bandgap in chalcogenide glasses. Adv. Mater. 18 (3),
265 (2006).
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[53] M. Soljačić, S. G. Johnson, S. Fan, M. Ibanescu, E. Ippen, and J. D. Joannopou-
los. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity . J.
Opt. Soc. Am. B 19 (9), 2052 (2002).

[54] K. Guven and E. Ozbay. Coupling and phase analysis of cavity structures in
two-dimensional photonic crystals. Phys. Rev. B 71 (8), 085108 (2005).

[55] K. Busch and S. John. Liquid-crystal photonic-band-gap materials: The tunable
electromagnetic vacuum. Phys. Rev. Lett. 83 (5), 967 (1999).

[56] K. Yoshino, Y. Shimoda, Y. Kawagishi, K. Nakayama, and M. Ozaki. Temper-
ature tuning of the stop band in transmission spectra of liquid-crystal infiltrated
synthetic opal as tunable photonic crystal . Appl. Phys. Lett. 75 (7), 932 (1999).

[57] H. Takeda and K. Yoshino. Tunable light propagation in Y-shaped waveguides
in two-dimensional photonic crystals utilizing liquid crystals as linear defects.
Phys. Rev. B 67 (7), 073106 (2003).

[58] T. Yasuda, Y. Tsuji, and M. Koshiba. Tunable light propagation in photonic
crystal coupler filled with liquid crystal . IEEE Photonics Technol. Lett. 17 (1),
55 (2005).

[59] K. Busch. Photonic band structure theory: assessment and perspectives.
Comptes Rendus Physique 3 (1), 53 (2002).

[60] K. M. Ho, C. T. Chan, and C. M. Soukoulis. Existence of a photonic gap in
periodic dielectric structures. Phys. Rev. Lett. 65 (25), 3152 (1990).

[61] R. D. Meade, A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L.
Alerhand. Accurate theoretical analysis of photonic band-gap materials. Phys.
Rev. B 48 (11), 8434 (1993).

[62] K. Busch and S. John. Photonic band gap formation in certain self-organizing
systems. Phys. Rev. E 58 (3), 3896 (1998).

[63] S. Johnson and J. Joannopoulos. Block-iterative frequency-domain methods for
Maxwell’s equations in a planewave basis. Opt. Express 8 (3), 173 (2001).

[64] D. Dobson. An efficient method for band structure calculations in 2D photonic
crystals. J. Comput. Phys. 149 (2), 363 (1999).

[65] D. Hermann, M. Frank, K. Busch, and P. Wölfle. Photonic band structure
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