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Abstract 
Automatic performance tuning (auto-tuning) has been 

used in parallel numerical applications for adapting per-

formance-relevant parameters. We extend auto-tuning to 

general-purpose parallel applications on multicores.  

This paper concentrates on Atune-IL, an instrumentation 

language for specifying a wide range of tunable parame-

ters for a generic auto-tuner. Tunable parameters include 

the number of threads and other size parameters, but also 

choice of algorithms, numbers of pipeline stages, etc. A 

case study of Atune-IL’s usage in a real-world application 

with 13 parameters and over 24 million possible value 

combinations is discussed. With Atune-IL, the search 

space was reduced to 1,600 combinations, and the lines of 

code needed for instrumentation were reduced from more 

than 700 to 25. 

 

1  Introduction 

As multicore platforms become ubiquitous, many 

software applications have to be parallelized and tuned for 

performance. In the past one could afford to optimize 

code by hand for certain parallel machines. Manual tuning 

must be automated in the multicore world with mass mar-

kets for parallel computers. The reasons are manifold: the 

user community has grown significantly, just as the diver-

sity of application areas for parallelism. In addition, the 

available parallel platforms differ in many respects, e.g., 

in number or type of cores, number of simultaneously 

executing hardware threads, cache architecture, available 

memory, or employed operating system. Thus, the num-

ber of targets to optimize for has exploded. Even worse, 

optimizations made for a certain machine may cause a 

slowdown on another machine. 

At the same time, multicore software has to remain 

portable and easy to maintain, which means that hard-

wired code optimizations must be avoided. Libraries with 

already tuned code bring only small improvements, as the 

focus of optimization is often narrowed down to specific 

problems or algorithms [11]. Moreover, libraries are high-

ly platform-specific, and require interfaces to be agreed 

upon. To achieve good overall performance, there seems 

to be no way around adapting the whole software archi-

tecture of a parallel program to the target architecture. 

Automatic performance tuning (auto-tuning) [5], [10], 

[19] is a promising systematic approach in which parallel 

programs are written in a generic and portable way, while 

their performance remains comparable to that of manual 

optimization.  

In this paper, we focus on the problem how to connect 

an auto-tuner to a parallel application. We introduce 

Atune-IL, a general instrumentation language that is used 

throughout the development of a parallel program to de-

fine tunable parameters. Our tuning instrumentation lan-

guage is based on language-independent #pragma annota-

tions that are inserted into the code of an existing parallel 

application. Atune-IL has powerful features that go far 

beyond related work in numerics [5], [19], [14].  Our ap-

proach is aimed to improve the software engineering of 

general-purpose parallel applications; it provides con-

structs to specify tunable variables, add meta-information 

on nested parallelism (to allow optimization on several 

abstraction layers), and vary the program architecture. All 

presented features are fully functional and have been posi-

tively evaluated in the context of a large commercial ap-

plication analyzing biological data on an eight-core ma-

chine. With our approach, we were able to reduce the 

code size required for instrumentation by 96%, and the 

auto-tuner’s search space by 99%. 

The paper is organized as follows. Section 2 provides 

essential background knowledge on auto-tuning general 

purpose parallel applications. Section 3 introduces Atune-

IL, our tuning instrumentation language. Section 4 shows 

how program variants are generated automatically for 

tuning iterations. The mechanisms employed for perfor-

mance feedback to the auto-tuner are sketched in section 

5. Section 6 illustrates in an extensive case study how our 

approach was applied in the context of a real-world, paral-

lel application, and discusses quantitative and qualitative 

improvements. Section 7 compares our approach to re-

lated work. Section 8 offers a conclusion. 

2 Automatic Performance Tuning 

Search-based auto-tuners have been proposed in the li-

terature to deal with the complexity faced by compilers to 

produce parallel code [2], [5], [15], [16], [17]. Compiler 

optimizations are often based on static code analysis and 

are part of a compiler’s internals. With the growing archi-

tectural variety of parallel systems, it is obvious that ex-

tending a compiler with optimization strategies for every 

platform becomes hardly feasible. 
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An auto-tuner is a library or an independent applica-

tion used on top of existing compilers [10]. It dynamically 

executes a parameterized application several times, and 

explores the parameter search space systematically. On a 

given target platform, it tries to find a value configuration 

that yields the best performance. Auto-tuners work well 

for numeric optimizations such as parallel matrix compu-

tations, and are superior to humans especially when non-

intuitive parameter configurations yield good perfor-

mance results [2]. 

 

2.1 Tuning General-Purpose Applications 

We designed and implemented Atune, an offline tuner 

that adjusts parameter values between two consecutive 

executions of a parallel program. We extended the auto-

tuning principles known from numerics to work with gen-

eral-purpose parallel programs. The associated process 

model is depicted in Figure 1. 

 

 

Figure 1: Atune’s auto-tuning cycle  

 

We assume that we have an existing parallel program 

written in a host language, which is instrumented with 

Atune-IL. The instrumentation language is used to mark 

tuning parameters in the code of a host language, to de-

fine value intervals for tuning, and to set monitoring 

probes (e.g., for execution time or memory consumption) 

at appropriate locations (cf. Section 3).  

Atune’s tuning cycle works as follows (cf. Figure 1): 

(1) A pre-processor parses the instrumented program and 

builds up a data structure with tuning meta-

information. 

 

(2) The tuning meta-information is passed on to the 

Atune optimizer. As the internals of the optimizer are 

out of scope of this paper, we sketch only the prin-

ciples here and refer to existing approaches [3], [15], 

[16], [17], [18] for details. The optimizer computes a 

tuple of values that represents a configuration of pa-

rameters. Atune basically moves along in an n-

dimensional search space defined by the cross prod-

uct of all parameter domains, i.e., 

1 2( ) ( ) ... ( )ndom p dom p dom p   , to find a configu-

ration 1 n( ,...., )val val with ( )i ival dom p  that yields 

the best performance. A simple search strategy is to 

systematically try out all combinations of parameter 

values. However, this frequently used technique is 

only feasible for small spaces. More sophisticated 

strategies therefore try to prune the search space 

based on different heuristics or previous tuning itera-

tions [3], [15], [16], [17], [18]. In our approach, we 

designed Atune-IL in such a way that it helps Atune 

reduce the search space, using the developer’s know-

ledge; most of the instrumentation constructs provide 

meta-information that can be exploited by Atune’s 

optimizer. 

 

(3) Atune weaves the computed parameter values back 

into the code of the parallel program. At the same 

time, all Atune-IL annotations and placeholders are 

removed, and measurement probes are replaced by 

calls to a performance monitoring library. The output 

of this stage is an executable variant of the original 

program (cf. Section 4). Note that this program cor-

responds to one whose tuning parameters would have 

been adjusted by hand. 

 

(4) Next, Atune starts the program and monitors it. Data 

from all monitoring probes is recorded, summarized, 

and stored. 

 

(5) The last step completes the feedback loop of the Au-

to-Tuning Cycle. The recorded monitoring results are 

transformed to a format usable by the Atune optimiz-

er (cf. Section. 4.3).  

The whole auto-tuning cycle (steps 2 - 5) is repeated 

until some predefined condition is met; this depends on 

the search strategy employed in step 2. It is therefore 

sensible to let Atune control the execution of all steps. 

Atune-IL establishes the connection between Atune 

and the parallel application to tune. In the next section, we 

present the details of Atune-IL and show how programs 

are instrumented in the first step of the cycle. 

3 The Tuning Instrumentation Language 

Atune-IL 

This section introduces in a step-by-step fashion all 

features of our tuning instrumentation language. We start 

Auto-Tuning Cycle

Pre-Processing

Parse 

instrumented 

application

Generate new 

program 

variant

Start and 

monitor

application

Read and 

prepare 

performance 

data

 Source code 

instrumented 

with ATune-IL

New 

executable

program

variant

Performance

data

feedback

Meta-information

required for tuning

Performance

data

Parameter

values

Calculate new 

combination of 

parameter values

ATune Optimizer

1

2

34

5



3 

 

with a simple definition of tuning parameters, explain 

how to express parameter dependencies, and introduce the 

concept of tuning blocks that simplify tuning on several 

abstraction layers. Further on, we describe how to set 

monitoring probes. Thereafter, we discuss the assump-

tions, trade-offs, and design decisions behind Atune-IL. 

3.1 Defining Tuning Parameters 

In many situations, programmers want to change the 

values of a variable between subsequent tuning runs in 

order to observe the relative performance impact.  Atune-

IL helps automate this process with the SETVAR key-

word; it is used to mark a variable in the host language as 

tunable and to define a set of values that the auto-tuner 

will try out. Like all Atune-IL statements, SETVAR is 

preceded by the #pragma atune prefix. 

Defining Numeric Parameters 

As an illustrative example, consider the code in Figure 

2 that uses the variable numThreads to control the number 

of threads in a program. To let the auto-tuner vary this 

number, the programmer adds a #pragma annotation after 

the variable, followed by SETVAR numThreads to mark it 

as tunable. Using TYPE int, the domain of trial values is 

constrained to integers. The value range is defined by 

VALUES 2-16 STEP 2, implying that numThreads will be 

set to the values 2,4,… ,16. 

 

 

 
 

Defining Architectural Variants 

A powerful feature of Atune-IL is that the TYPE of 

values in a SETVAR statement need not be numeric. Thus, 

architectural variants of a program can be defined as 

shown in Figure 3. Assuming that this program imple-

ments a sorting routine in a generic way, we can go to the 

point where the employed sorting algorithm is first instan-

tiated and insert an annotation with TYPE generic; this 

allows us to include host language code for the creation of 

each algorithm instance. While the auto-tuner just sees 

two options that can be tried out in different tuning runs, 

it will actually try out two architectural variants of the 

program. 

Architectural variants are useful for automating fall-

back mechanisms. For example, a parallel merge sort al-

gorithm may work well in many cases, depending on the 

size of data and the characteristics of a multicore ma-

chine. However, for some borderline cases, a better per-

formance may be achieved with a sequential sort that has 

less overhead than the parallel algorithm. Atune-IL is 

flexible to handle as many alternatives as necessary. 

 

 
 

Additional Support for the Optimization 

The SETVAR keyword has additional options that were 

not mentioned in the previous examples. A value in the 

specified interval may be defined as the START value that 

is tried out first. This is useful when a variable that con-

trols the number of threads should be tried out first with 

the number of available hardware threads. 

A WEIGHT number may quantify the importance of 

the annotated variable for the overall optimization, and 

the SCALE nominal or SCALE ordinal keyword may in-

form Atune that this variable has nominal or ordinal scale. 

With this information, the optimizer may treat such va-

riables in a different way. 

 

3.2 Defining Parameter Dependencies 

The DEPENDS keyword offers Atune additional me-

ta-information that helps prune the search space. As an 

example, suppose that the parallel merge sort in Figure 4 

has a parameter depth defining how far the input will be 

split up into partitions. This parameter could be varied in 

several runs to find out the best performance on a certain 

machine. As Atune’s optimizer does not know that this 

parameter is only meant to work with merge sort, it would 

vary it for quick sort as well. Using DEPENDS, a devel-

oper can make his intention explicit and communicate to 

the optimizer to avoid unnecessary tuning iterations, thus 

reducing the search space. 

 

Figure 2: Code example using the SETVAR statement 

to define a numeric tuning parameter 

Figure 3: Code example using the SETVAR statement 

to define a non-numeric tuning parameter 

public void SETVAR_Example2() 

{ 

   ISortAlgorithm sortAlgo = null;    

   #pragma atune SETVAR sortAlgo 

      TYPE generic VALUES “new QuickSort()”,    

         ”new ParallelMergeSort()” 

    

   if (sortAlgo != null) 

      sortAlgo.Run(); 

} 

public void SETVAR_Example1() 

{ 

   int numThreads = 2;    

   #pragma atune SETVAR numThreads 

      TYPE int VALUES 2-16 STEP 2 

    

   for (int i=1; i<=numThreads; i++) 

   { 

      Thread.Create(StartCalculation); 

   } 

   WaitAll(); 

} 

= new QuickSort(); 
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3.3 Defining Tuning Blocks 

Tuning blocks are used to mark parallel sections 

which may be tuned independently. Atune considers pa-

rallel sections enclosed in a tuning block to be indepen-

dent if they run consecutively in any of the application’s 

execution paths and their tuning parameters do not inter-

fere with each other. Atune can exploit this information 

throughout the optimization process to reduce the search 

space.  

For illustration, consider Figure 5.  It shows the hypo-

thetical execution paths of a parallel program, divided 

into two blocks that the developer knows to be indepen-

dent (e.g., due to design decisions). Block one has three 

tuning parameters, p1,…, p3, while block two contains 

five tuning parameters, p4, …, p8.  

 

 
 

Figure 5: Concept of Tuning Blocks 

 

Without the block instrumentations, Atune would try 

out in the worst case the cross product of all parameter 

domains: 1 8( ) ... ( )dom p dom p  . However, if the two 

blocks are known to be independent, the worst case for 

each block is reduced to the cross product of the respec-

tive parameter domains, i.e., 1 1 3: ( ) ... ( )B dom p dom p    

and 2 4 8: ( ) ... ( )B dom p dom p   , thus avoiding a large 

number of trials, namely 1 2B B . 

Figure 6 shows how to mark tuning blocks with 

Atune-IL. Basically, a tuning block is enclosed by a 

STARTBLOCK and ENDBLOCK statement. Tuning 

blocks may have a name, so that they can be referenced 

from other blocks. 

 

 

 
 

It is of course technically possible to obtain clues 

about independent program sections by code analysis. 

However, such an analysis is complex, may require addi-

tional program executions, or may deliver imprecise re-

sults; this is why Atune-IL relies on explicit developer 

annotations. 

Nested Structures 

Tuning blocks can be lexically nested. A significant 

number of cross product operations can be saved when 

nested parallel sections are marked. When nested struc-

tures are detected, Atune starts the optimization in the 

tuning blocks at the innermost level and successively 

combines their parameter values with those in the directly 

enclosing blocks. 

In situations where nested blocks cannot be expressed 

in the lexical scope of their enclosing blocks, the INSIDE 

keyword of the STARTBLOCK statement may be used to 

specify a logically nested structure, provided that the refe-

renced blocks have a name.  Figure 7 shows an example 

of a routine that is nested within the parallel section in 

Figure 6. Note that the code of this routine could be lo-

cated in an entirely different file. 

 

 

 
 

p1

p2

p3

p4

p5

p6

p7

p8

Tuning Block 1 Tuning Block 2

  

Figure 7: Defining a nested tuning block inside the 

parallel section shown in Figure 6 

public void StartCalculation() 

{ 

   #pragma atune STARTBLOCK nestedSection 

      INSIDE parallelSection 

    

   // Do the calculation in a nested parallel  

   // section with own tuning parameters.  

 

   #pragma atune ENDBLOCK 

} 

Figure 4: Code example using the DEPENDS keyword 

to define a parameter dependency 

public void DEPENDS_Example() 

{ 

   ISortAlgorithm sortAlgo = null;    

   #pragma atune SETVAR sortAlgo 

      TYPE generic VALUES “new QuickSort()”,    

         ”new ParallelMergeSort()” 

 

   int depth = 2; 

   #pragma atune SETVAR depth  

      TYPE int VALUES 2-8 

      DEPENDS sortAlgo VALUES  

         “new ParallelMergeSort()” 

    

   if (sortAlgo != null) 

      // Run() ignores depth if QuickSort is      

      // selected 

      sortAlgo.Run(depth); 

 

} 

Figure 6: Atune-IL statements to define a tuning block 

public void TUNINGBLOCKS_Example() 

{ 

   #pragma atune STARTBLOCK parallelSection 

    

   // Here follows the code shown in 

   // SETVAR_Example1() in Figure 2 

    

   #pragma atune ENDBLOCK 

} 

= new QuickSort(); 
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Atune internally creates a tree to handle the nested 

structure of tuning blocks. Therefore Atune automatically 

adds a root tuning block to its data structure enclosing the 

entire application. Tuning parameters specified outside a 

tuning block are logically assigned to the root tuning 

block. 

3.4 Defining Monitoring Probes 

Monitoring probes are inserted into the code by the 

GAUGE statement, followed by a name to identify the 

type of the probe. Currently, Atune supports probe types 

to monitor either execution times or memory consump-

tion. The probe types are declared globally for all probes 

in a configuration file. 

As an example, the probes in Figure 8 measure the ex-

ecution time of a particular code segment. For probe types 

that measure execution times, two consecutive probes are 

interpreted as start time and end time, and the difference 

if computed automatically when the second probe is 

reached. 

In case that memory consumption was specified in 

Figure 7 as the probes’ type, the two statements would 

have been interpreted as two separate probes, both mea-

suring memory usage at that point. 

 

 

 
 

3.5 Assumptions and Design Decisions 

Atune-IL is designed to reduce the implementation ef-

fort for tuning instrumentation, and to help prune the 

search space for Atune so that fewer executions are re-

quired in the auto-tuning cycle. There are several assump-

tions about how Atune is employed; all of them were con-

sidered carefully in order to design a flexible language for 

the tuning of general-purpose parallel applications. 

 Atune-IL was designed to be independent of the host 

programming language and the tuned application (for 

details, esp. on how we deal with library calls for 

probes, see section 4). As a trade-off, this flexibility 

requires the developer to take additional responsibili-

ties in situations as described next. 

 The Atune-IL parser does not check for coherence be-

tween the application’s source code and its instru-

mentation statements. This would have required the 

implementation of a parser of every host language. 

 Except for tuning, Atune-IL has no general control 

over the usage of the variables instrumented by the 

SETVAR statements.  

 We assume that a tuning block is opened and closed 

within the same compound statement of the host pro-

gramming language, such as a method or a loop. This 

applies as well for two consecutive GAUGE state-

ments measuring execution times. 

 A tuning block may contain an arbitrary number of 

SETVAR statements.  

 For a given tuning block, we assume that no variable 

is accessed from outside the block. 

 A variable that is instrumented with SETVAR must be 

correctly declared in the host language and initialized 

with a default value. Atune will modify this value at 

the point where the pragma instrumentation is lo-

cated. The programmer must avoid any other write 

accesses to that variable that might interfere with the 

tuning process. 

 Overhead in the monitoring library affects measure-

ments. However, this overhead would also occur in 

an approach without auto-tuning. 

In our opinion, we think that the aforementioned trade-

offs are acceptable. In our case study (cf. section 6) these 

assumptions do not cause any serious problems in prac-

tice. 

4 Generating Program Variants 

We now discuss the principles of program generation 

used in step 3 of the auto-tuning cycle (cf. Figure 1). At 

this stage, Atune’s optimizer has already determined a 

value for each tuning parameter, and the values need to be 

assigned to the corresponding variables in the source code 

of the parallel program. 

 

4.1 General Principles 

The #pragma statements described previously are ca-

tegorized into three classes for which the variant genera-

tion process works differently. First, the SETVAR state-

ment requires language-specific code insertions to set 

certain values for tunable variables. Second, statements 

with meta-information for the auto-tuner, such as 

STARTBLOCK or ENDBLOCK, are simply removed. 

Third, monitoring probes introduced by GAUGE are re-

placed by calls to language-specific monitoring libraries. 

Figure 8: Code example using the GAUGE statement 

to define monitoring points 

public void COMPLETE_Example() 

{ 

   #pragma atune STARTBLOCK parallelSection 

 

   #pragma atune GAUGE myExecTime 

    

   int numThreads = 2;    

   #pragma atune SETVAR numThreads 

      TYPE int VALUES 2-16 STEP 2 

    

   for (int i=1; i<=numThreads; i++) 

   { 

      Thread.Create(StartCalculation); 

   } 

   WaitAll(); 

 

   #pragma atune GAUGE myExecTime 

    

   #pragma atune ENDBLOCK 

} 
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4.2 Templates and Libraries for Language-

Specific Code 

It may seem contradictory to require the generation of 

language-specific code and keep Atune-IL independent of 

the host language at the same time. We approached this 

problem by using standardized templates. For every 

Atune-IL construct (e.g., variable assignment with SET-

VAR), we store the corresponding code used in the host 

programming language in a template file. For implemen-

tation, we employed StringTemplate [12], [13] that also 

allowed us to capture the syntax of host language state-

ments. As a proof of concept, we created such template 

files for several languages, including C#, Java, and Perl. 

New templates can easily be added by adding such files in 

a certain directory. The template to be used by Atune is 

defined in the central configuration file. 

We defined a general interface to the monitoring li-

brary that provides functionality for measuring execution 

times and memory consumption. As a library implementa-

tion can only be used in programs written in the same 

language as the library itself, we created different imple-

mentations for various languages: Java, Perl, and C# 

(whose library is applicable to all programs based on the 

.NET Common Language Runtime). The interface is de-

signed in such a way that developers may easily add im-

plementations for other languages as well as extensions of 

probe types. 

4.3 Tunable Variables and Monitoring Probes 

As an example for the handling of tunable variables 

and monitoring probes, we illustrate a possible outcome 

of the generation process for C# in Figure 9; the generated 

variant is based on the code in Figure 8. 

 

 
Figure 9: Example for a generated variant based on 

the code in Figure 8 

 
All SETVAR statements are replaced by a line of code 

that assigns a parameter value to the specified variable. 

For numeric parameters, a number is assigned; for non-

numeric parameters of type “generic” the value is set to 

the specified string. In each of the auto-tuning iterations, a 

new program variant is generated by assigning the values 

obtained from Atune’s optimizer. 

For monitoring probes, GAUGE statements are re-

placed by appropriate library calls. As shown in Figure 9 

for C#, the call is done via a static class name chosen ac-

cording to the probe type and is followed by the method 

name Set(). This method contains the actual measure-

ment functionality. 

We omit the discussion of more subtle details of the 

generation process and refer to [6] for details. 

5 Feedback of Performance Results 

In step 4 of the auto-tuning cycle (cf. Figure 1) a gen-

erated program variant is executed monitored for perfor-

mance. During runtime, the inserted calls to the monitor-

ing library are used to record performance data.  

At the end of the execution, all gathered values are 

written to a file. Atune reads the values from this file, 

aggregates them, and computes a new value for the over-

all objective function. The results are communicated to 

Atune’s optimizer that uses them in the calculation of new 

parameter values. 

The feedback of performance results completes the au-

to-tuning cycle. 

6 Case Study 

In this Section, we present a detailed case study on the 

instrumentation of a parallelized version of Agilent’s Me-

taboliteID [1], a commercial analysis application for bio-

logical data. There were several reasons to choose this 

application: 

 MetaboliteID is a large application (more than 

100.000 lines of code in C#) containing potential 

parallelism at different levels of granularity. 

 It is a commercial application providing a real-

world scenario. 

 The size and architecture of the application is simi-

lar to other large computation-intensive programs. 

First, we parallelized MetaboliteID and identified tun-

ing parameters that have an impact on the overall execu-

tion time of the program [10]. We then instrumented the 

application with Atune-IL to make it ready for tuning. 

6.1 Biological Data Analysis 

MetaboliteID performs so-called metabolite identifica-

tion, a key method for testing new drugs. Metabolites are 

the intermediate products of metabolism. Metabolism is 

the set of chemical reactions taking place within cells of a 

living organism. 

public void Example1()

{

   ExecTimePerfLib.Set();

   int numThreads = 2;   

   numThreads = 4;

   for (int i=1; i<=numThreads; i++)

   {

      Thread.Create(StartCalculation);

   }

   WaitAll();

   ExecTimePerfLib.Set();

}

numThreads = 2;

numThreads = 4;

numThreads = 16;

...

Auto-Tuning Cycle 

Iterations
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Figure 10: Parallel structure and tuning model of Agilent’s MetaboliteID 

The metabolite identification process is based upon the 

comparison of two body fluid samples. The first sample 

(control sample) is obtained before taking the drug. At 

certain times after the application of the drug, further 

samples (metabolite samples) are taken. Finally, mass 

spectrograms of all samples are prepared. 

MetaboliteID compares each of the mass spectrograms 

of the metabolite samples with the control sample to iden-

tify the metabolites caused by the drug. The application 

executes a series of algorithms that identify and extract 

the metabolite candidates. This sequence is repeated for 

each metabolite sample. 

 

6.2 Parallelizing MetaboliteID 

We parallelized the application on different levels of 

abstraction to exploit available nested parallelism, as illu-

strated in Figure 10. 

On the most coarse-grained level, we implemented a 

parallel pipeline to speed-up the processing of several 

pairs of mass spectrograms (control and metabolite sam-

ple).  

Next, we turned to the individual pipeline stages. In 

principle, stage 1 reads the mass spectrograms, stages 2 

and 3 are algorithm modules (A1…A8) carrying out the 

metabolite identification, and stage 4 aggregates the re-

sults. In stage 2 and 3, we had some of the algorithms 

work independently on disjoint parts of the mass spectro-

grams; for those algorithms, we were able to exploit task 

parallelism by using a Master/Worker pattern.  

Algorithm modules were the lowest abstraction level 

that exploited parallelism. The internals of the algorithms 

were not modified, as we were focusing on coarse-grained 

application parallelization rather than on fine-granular 

algorithmic engineering. The algorithm modules A1, A5, 

and A6 were enhanced to support data parallel execution. 

As they processed incoming fragments of mass spectro-

grams independently, we used for each module a data 

decomposition strategy that split up the input data into a 

number of partitions, and which created several parallel 

instances of the same module.  

As shown in Figure 10, the data parallel section of 

module A1 is nested in the master/worker section of stage 

2, while the data parallel sections of A5 and A6 are nested 

in the Master/Worker section of stage 3. This complex 
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Atune-IL statements used to define the tuning parameters and monitoring probes

 lb1: #pragma atune SETVAR lb1 TYPE generic VALUES “LB.Dynamic“;“LB.Static“ DEFAULT “LB.Dynamic“ SCALE nominal 

(similar statements for lb2, lb3, lb4, lb5)

 numW1: #pragma atune SETVAR numW1 TYPE int VALUES 1-4 STEP 1 DEFAULT 4 SCALE ordinal

(similar statements for numW2, numW3, numW4, numW5)

 pSize3: #pragma atune SETVAR pSize3 TYPE float VALUES 0.1-0.5 STEP 0.1 DEFAULT 0.1 SCALE ordinal 

      DEPENDS lb3 VALUES “LB.Static“ 

(similar statements for pSize4, pSize5)

 pipelineExecTime: #pragma atune GAUGE execTime

numW1

Input

Queue

Input

Queue

Stage 1 Stage 2 Stage 3 Stage 4

Pair of mass 

spectrograms

Metabolite 

candidates

piplelineExecTime pipelineExecTime

Tuning Parameters:

numW: Number of worker threads

lb: Choice of load balancing (LB) strategy  

     (static, dynamic, work-stealing)

pSize: Size of data partitions 

     (depends on lbi: parameter only  

      effective if static LB strategy selected)

            Tuning Parameter

            Monitoring Point

            Border of Tuning Block

            Program Execution Path

A7

A8

numW2
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structure of the parallel program required multi-level tun-

ing. 

6.3 Instrumenting the Parallel Program 

After parallelizing MetaboliteID, we instrumented the 

application with Atune-IL statements to provide the ne-

cessary tuning meta-information for Atune. 

We started with the definition of tuning blocks. Each 

of the parallel sections (e.g., each master/worker or data 

parallel section) was treated as a tuning block. 

We continued with the specification of tuning parame-

ters for each parallel section. We already identified in the 

earlier parallelization process the parameters that influ-

enced the execution time of the application. Thereafter, 

we added the corresponding variables along with the 

functionality necessary to change the behavior of the ap-

plication according to the variables’ values. 

For the master/worker sections, we defined the load 

balancing strategy (parameter lb: static or dynamic) and 

the number of worker threads (parameter numW: 2…16) 

as tunable parameters, and implemented a static and a 

dynamic load balancing strategy.  

The data parallel sections have similar parameters for 

load balancing and the number of workers. In addition, 

they had a parameter to set the size of the data partition 

(parameter pSize) for the case when static load balancing 

was used. The parameter pSize had a depends-relationship 

to the parameter lb. 

Finally we defined two monitoring probes to measure 

the execution time of the entire pipeline, i.e., the entire 

program. 

6.4 Results 

Implementation Effort 

The listing in Figure 10 shows the Atune-IL state-

ments we used to specify the required tuning meta-

information. We defined five tuning blocks, 13 tuning 

parameters (three of them had a dependency) and two 

monitoring probes. Specifying all tuning meta-

information using Atune-IL required 25 lines of instru-

mentation statements.  

Without Atune-IL, one has to manually implement the 

tuning parameters, value ranges, as well as all other pa-

rameter information such as data type, scale, weight, or 

dependencies, as well as tuning blocks and monitoring 

libraties. In addition, the data structure for the tuning 

block structure and appropriate monitoring libraries must 

be created.  

To compare the implementation effort with and with-

out using Atune-IL, we created a separate program which 

encapsulated the logic to produce multiple variants of 

MetaboliteID based on tuning parameters. Apart from 

that, we added code directly into MetaboliteID.  To get 

the same functionality as provided by the Atune-IL state-

ments, the following implementation effort was neces-

sary: the data structure for tuning blocks, tuning parame-

ters, and monitoring probes requires 350 lines of code 

(LOC). The specification of a tuning block needs 8 LOC. 

The definition of each tuning parameter requires 10 LOC. 

In addition, 15 LOC are necessary to include a parameter 

in the tuning block data structure and to perform valida-

tions. A monitoring probe requires only one LOC, as we 

still used a function call. We also added functionality to 

measure the execution time, which takes 30 LOC. 

 

Table 1: Comparison of implementation effort to add 

auto-tuning capabilities to MetaboliteID 

 Atune-IL Manually implemented 

Data structure 

and validation 

logic 

included in 

Atune-IL 
350 LOC 

Tuning blocks 5 2 10  LOC 5 8 40  LOC 

Tuning para-

meters 
13 LOC 13 (10 15) 325   LOC 

Monitoring 

probes 
2 1  LOC 2 1  LOC 

Monitoring 

functionality 

to measure 

exec. times 

included in 

Atune-IL 
30 LOC 

Sum 25 LOC 747 LOC 

 3.35% 100% 

 

Table 1 summarizes the lines of code needed to add 

auto-tuning capabilities to MetaboliteID in the same way 

Atune-IL does. It shows that using Atune-IL the imple-

mentation effort is reduced by more than 96% ! 

Search Space Reduction 

Using Atune-IL significantly reduced the search space 

for Atune’s optimizer, thus saving tuning iterations. 

We instrumented MetaboliteID with 13 tuning para-

meter definitions. Normally, the search space would have 

been the cross product of all parameter domains 

(24,576,000 parameter value combinations). Based on 

Atune-IL’s tuning blocks, Atune could determine inde-

pendent (nested) parallel sections, i.e. (nested) parallel 

sections running one after another in any of the applica-

tion’s execution paths and thus not interfering with each 

other.  

Three independent parallel sections that could be 

tuned separately (cf. Figure 10): 

 Tuning block MasterWorker1 and the nested tun-

ing block DataParallel1 (640 parameter value 

combinations) 

 Tuning block MasterWorker2 and the nested tun-

ing block DataParallel2 (480 parameter value 

combinations) 

 Tuning block MasterWorker2 and the nested tun-

ing block DataParallel3 (480 parameter value 

combinations) 

Thus, the search space consisted in the worst case was 

reduced to 640 + 480 + 480 = 1.600 combinations to be 
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tried out. Compared to the original search space with 

24,576,000 combinations, we had a reduction of more 

than 99%. In fact, 1,600 combinations were tried out by 

Atune. 

Finally we tuned the instrumented version of Metabo-

liteID using Atune. The auto-tuner was able to generate 

the 1.600 necessary program variants that were all ex-

ecuted. Between the best and the worst parameter confi-

guration, Atune determined a difference in execution time 

of approximately 45%. This result underlines that auto-

tuning is helpful in a large parallel application such as 

ours. 

 

7 Related Work 

Search-based auto-tuning has been previously investi-

gated in the area of numerical software and high-

performance computing. Some approaches employ in-

strumentation languages developed specifically for this 

context. 

The Fastest Fourier Transform in the West (FFTW) 

[5] uses generative programming techniques to generate a 

complete FFT application from scratch. In principle, the 

approach composes pre-defined blocks of code and tries 

out combinations until it finds the best result on a certain 

hardware platform. 

The Automatically Tuned Linear Algebra Software 

(ATLAS) system [19] generates a platform-specific linear 

algebra library. Before the library is generated, the Auto-

mated Empirical Optimization of Software (AEOS) com-

ponent executes micro benchmarks on a target platform 

and determines the hardware-specific parameters that 

yield the best performance. The optimization process is 

especially focused on memory characteristics such as la-

tency or cache sizes. 

XLanguage [4] uses a #pragma approach to direct a C 

or C++ pre-processor to perform certain code transforma-

tions. Contrary to the other related work, the optimization 

step is not part of the language. XLanguage provides use-

ful constructs to generate loop unrollings explicitly in the 

high-level code, which is often applied to improve the 

performance of matrix multiplications. Although the lan-

guage allows for various extensions, it lacks constructs 

that are required for tuning general-purpose parallel ap-

plications. 

Parameterized Optimizing for Empirical Tuning 

(POET) [20] uses a language that embeds the segments of 

code that are used to generate an application directly into 

POET code. The code generation process is driven by 

transformation rules that are specified by the developer. 

This approach is flexible, but the software engineering of 

large applications is difficult. The syntax is verbose, so 

that even simple loop unrolling for numeric optimizations 

needs several dozens of lines of code. 

SPIRAL [14] focuses on digital signal processing in 

general. A mathematical problem is coded in a so-called 

Signal Processing Language, a domain-specific language. 

Various platform-dependent versions are created and 

tested for performance. It works for sequential code only. 

The Framework of Install-time, Before Execute-time 

and Run-time optimization (FIBER) [7] is a software 

framework that employs compiler directives and the script 

language ABClibscript to automate the optimization 

process. Similar to Atune-IL, FIBER can mark tunable 

variables and define values to be tried out. However, the 

entire approach focuses on numerics and was not de-

signed for general-purpose parallel applications. 

We summarize related work in Table 2 and compare 

each language with respect to several key characteristics. 

Atune-IL provides several capabilities in one single lan-

guage. Note that contrary to other approaches, we sepa-

rated the optimizer from the instrumentation language to 

gain more flexibility. Furthermore, our approach does not 

generate programs from scratch; it assumes that an al-

ready existing parallel program will be tuned. 

 

Table 2: Comparison with existing approaches 
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Usable with 

any host pro-

gramming 

language 

- - -  - -  

Independent 

of application 

domain 
- -   - -  

Monitoring 

support - - - - - -  
Support for 

nested paral-

lelism 
- - - - - -  

#pragma-

based ap-

proach 
- -  - - -  

Program gen-

eration from 

scratch 
  - -  - - 

Numeric code 

optimizations 

included 
  - -  - - 

 

8 Conclusion 

The increasing diversity of multicore platforms will 

make auto-tuning indispensable. Atune-IL connects a 

generic auto-tuner to general-purpose parallel applica-

tions.  Portability is improved, as platform-specific per-

formance optimization can now be easily sourced out to 

an auto-tuner. Additional key contributions of Atune-IL 
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are the support for search space reduction, the ability to 

specify architectural variants, and the definition of differ-

ent types of monitoring probes.  

Of course, Atune-IL is in an early stage and can be 

improved in many ways. For example, the syntax for the 

definition of architectural variants can be adapted to work 

with pre-defined source code files. In addition, other types 

of monitoring probes could be added. Support for online-

tuning during program execution is interesting as well. 

Various directions could be explored to integrate auto-

tuners directly into compilers and extend programming 

languages by native constructs for tuning. 
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