

 Atune-IL: An Instrumentation Language for Auto-Tuning Parallel Applications

Christoph A. Schaefer, Victor Pankratius, Walter F. Tichy

Institute for Program Structures and Data Organization (IPD)

University of Karlsruhe, D-76128 Karlsruhe, Germany

Abstract
Automatic performance tuning (auto-tuning) has been

used in parallel numerical applications for adapting per-

formance-relevant parameters. We extend auto-tuning to

general-purpose parallel applications on multicores.

This paper concentrates on Atune-IL, an instrumentation

language for specifying a wide range of tunable parame-

ters for a generic auto-tuner. Tunable parameters include

the number of threads and other size parameters, but also

choice of algorithms, numbers of pipeline stages, etc. A

case study of Atune-IL’s usage in a real-world application

with 13 parameters and over 24 million possible value

combinations is discussed. With Atune-IL, the search

space was reduced to 1,600 combinations, and the lines of

code needed for instrumentation were reduced from more

than 700 to 25.

1 Introduction

As multicore platforms become ubiquitous, many

software applications have to be parallelized and tuned for

performance. In the past one could afford to optimize

code by hand for certain parallel machines. Manual tuning

must be automated in the multicore world with mass mar-

kets for parallel computers. The reasons are manifold: the

user community has grown significantly, just as the diver-

sity of application areas for parallelism. In addition, the

available parallel platforms differ in many respects, e.g.,

in number or type of cores, number of simultaneously

executing hardware threads, cache architecture, available

memory, or employed operating system. Thus, the num-

ber of targets to optimize for has exploded. Even worse,

optimizations made for a certain machine may cause a

slowdown on another machine.

At the same time, multicore software has to remain

portable and easy to maintain, which means that hard-

wired code optimizations must be avoided. Libraries with

already tuned code bring only small improvements, as the

focus of optimization is often narrowed down to specific

problems or algorithms [11]. Moreover, libraries are high-

ly platform-specific, and require interfaces to be agreed

upon. To achieve good overall performance, there seems

to be no way around adapting the whole software archi-

tecture of a parallel program to the target architecture.

Automatic performance tuning (auto-tuning) [5], [10],

[19] is a promising systematic approach in which parallel

programs are written in a generic and portable way, while

their performance remains comparable to that of manual

optimization.

In this paper, we focus on the problem how to connect

an auto-tuner to a parallel application. We introduce

Atune-IL, a general instrumentation language that is used

throughout the development of a parallel program to de-

fine tunable parameters. Our tuning instrumentation lan-

guage is based on language-independent #pragma annota-

tions that are inserted into the code of an existing parallel

application. Atune-IL has powerful features that go far

beyond related work in numerics [5], [19], [14]. Our ap-

proach is aimed to improve the software engineering of

general-purpose parallel applications; it provides con-

structs to specify tunable variables, add meta-information

on nested parallelism (to allow optimization on several

abstraction layers), and vary the program architecture. All

presented features are fully functional and have been posi-

tively evaluated in the context of a large commercial ap-

plication analyzing biological data on an eight-core ma-

chine. With our approach, we were able to reduce the

code size required for instrumentation by 96%, and the

auto-tuner’s search space by 99%.

The paper is organized as follows. Section 2 provides

essential background knowledge on auto-tuning general

purpose parallel applications. Section 3 introduces Atune-

IL, our tuning instrumentation language. Section 4 shows

how program variants are generated automatically for

tuning iterations. The mechanisms employed for perfor-

mance feedback to the auto-tuner are sketched in section

5. Section 6 illustrates in an extensive case study how our

approach was applied in the context of a real-world, paral-

lel application, and discusses quantitative and qualitative

improvements. Section 7 compares our approach to re-

lated work. Section 8 offers a conclusion.

2 Automatic Performance Tuning

Search-based auto-tuners have been proposed in the li-

terature to deal with the complexity faced by compilers to

produce parallel code [2], [5], [15], [16], [17]. Compiler

optimizations are often based on static code analysis and

are part of a compiler’s internals. With the growing archi-

tectural variety of parallel systems, it is obvious that ex-

tending a compiler with optimization strategies for every

platform becomes hardly feasible.

Technical Report 2009-2

Institute for Program Structures and Data Organization (IPD)

University of Karlsruhe (TH), Germany, Januar 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197558753?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

An auto-tuner is a library or an independent applica-

tion used on top of existing compilers [10]. It dynamically

executes a parameterized application several times, and

explores the parameter search space systematically. On a

given target platform, it tries to find a value configuration

that yields the best performance. Auto-tuners work well

for numeric optimizations such as parallel matrix compu-

tations, and are superior to humans especially when non-

intuitive parameter configurations yield good perfor-

mance results [2].

2.1 Tuning General-Purpose Applications

We designed and implemented Atune, an offline tuner

that adjusts parameter values between two consecutive

executions of a parallel program. We extended the auto-

tuning principles known from numerics to work with gen-

eral-purpose parallel programs. The associated process

model is depicted in Figure 1.

Figure 1: Atune’s auto-tuning cycle

We assume that we have an existing parallel program

written in a host language, which is instrumented with

Atune-IL. The instrumentation language is used to mark

tuning parameters in the code of a host language, to de-

fine value intervals for tuning, and to set monitoring

probes (e.g., for execution time or memory consumption)

at appropriate locations (cf. Section 3).

Atune’s tuning cycle works as follows (cf. Figure 1):

(1) A pre-processor parses the instrumented program and

builds up a data structure with tuning meta-

information.

(2) The tuning meta-information is passed on to the

Atune optimizer. As the internals of the optimizer are

out of scope of this paper, we sketch only the prin-

ciples here and refer to existing approaches [3], [15],

[16], [17], [18] for details. The optimizer computes a

tuple of values that represents a configuration of pa-

rameters. Atune basically moves along in an n-

dimensional search space defined by the cross prod-

uct of all parameter domains, i.e.,

1 2() () ... ()ndom p dom p dom p , to find a configu-

ration 1 n(,....,)val val with ()i ival dom p that yields

the best performance. A simple search strategy is to

systematically try out all combinations of parameter

values. However, this frequently used technique is

only feasible for small spaces. More sophisticated

strategies therefore try to prune the search space

based on different heuristics or previous tuning itera-

tions [3], [15], [16], [17], [18]. In our approach, we

designed Atune-IL in such a way that it helps Atune

reduce the search space, using the developer’s know-

ledge; most of the instrumentation constructs provide

meta-information that can be exploited by Atune’s

optimizer.

(3) Atune weaves the computed parameter values back

into the code of the parallel program. At the same

time, all Atune-IL annotations and placeholders are

removed, and measurement probes are replaced by

calls to a performance monitoring library. The output

of this stage is an executable variant of the original

program (cf. Section 4). Note that this program cor-

responds to one whose tuning parameters would have

been adjusted by hand.

(4) Next, Atune starts the program and monitors it. Data

from all monitoring probes is recorded, summarized,

and stored.

(5) The last step completes the feedback loop of the Au-

to-Tuning Cycle. The recorded monitoring results are

transformed to a format usable by the Atune optimiz-

er (cf. Section. 4.3).

The whole auto-tuning cycle (steps 2 - 5) is repeated

until some predefined condition is met; this depends on

the search strategy employed in step 2. It is therefore

sensible to let Atune control the execution of all steps.

Atune-IL establishes the connection between Atune

and the parallel application to tune. In the next section, we

present the details of Atune-IL and show how programs

are instrumented in the first step of the cycle.

3 The Tuning Instrumentation Language

Atune-IL

This section introduces in a step-by-step fashion all

features of our tuning instrumentation language. We start

Auto-Tuning Cycle

Pre-Processing

Parse

instrumented

application

Generate new

program

variant

Start and

monitor

application

Read and

prepare

performance

data

 Source code

instrumented

with ATune-IL

New

executable

program

variant

Performance

data

feedback

Meta-information

required for tuning

Performance

data

Parameter

values

Calculate new

combination of

parameter values

ATune Optimizer

1

2

34

5

3

with a simple definition of tuning parameters, explain

how to express parameter dependencies, and introduce the

concept of tuning blocks that simplify tuning on several

abstraction layers. Further on, we describe how to set

monitoring probes. Thereafter, we discuss the assump-

tions, trade-offs, and design decisions behind Atune-IL.

3.1 Defining Tuning Parameters

In many situations, programmers want to change the

values of a variable between subsequent tuning runs in

order to observe the relative performance impact. Atune-

IL helps automate this process with the SETVAR key-

word; it is used to mark a variable in the host language as

tunable and to define a set of values that the auto-tuner

will try out. Like all Atune-IL statements, SETVAR is

preceded by the #pragma atune prefix.

Defining Numeric Parameters

As an illustrative example, consider the code in Figure

2 that uses the variable numThreads to control the number

of threads in a program. To let the auto-tuner vary this

number, the programmer adds a #pragma annotation after

the variable, followed by SETVAR numThreads to mark it

as tunable. Using TYPE int, the domain of trial values is

constrained to integers. The value range is defined by

VALUES 2-16 STEP 2, implying that numThreads will be

set to the values 2,4,… ,16.

Defining Architectural Variants

A powerful feature of Atune-IL is that the TYPE of

values in a SETVAR statement need not be numeric. Thus,

architectural variants of a program can be defined as

shown in Figure 3. Assuming that this program imple-

ments a sorting routine in a generic way, we can go to the

point where the employed sorting algorithm is first instan-

tiated and insert an annotation with TYPE generic; this

allows us to include host language code for the creation of

each algorithm instance. While the auto-tuner just sees

two options that can be tried out in different tuning runs,

it will actually try out two architectural variants of the

program.

Architectural variants are useful for automating fall-

back mechanisms. For example, a parallel merge sort al-

gorithm may work well in many cases, depending on the

size of data and the characteristics of a multicore ma-

chine. However, for some borderline cases, a better per-

formance may be achieved with a sequential sort that has

less overhead than the parallel algorithm. Atune-IL is

flexible to handle as many alternatives as necessary.

Additional Support for the Optimization

The SETVAR keyword has additional options that were

not mentioned in the previous examples. A value in the

specified interval may be defined as the START value that

is tried out first. This is useful when a variable that con-

trols the number of threads should be tried out first with

the number of available hardware threads.

A WEIGHT number may quantify the importance of

the annotated variable for the overall optimization, and

the SCALE nominal or SCALE ordinal keyword may in-

form Atune that this variable has nominal or ordinal scale.

With this information, the optimizer may treat such va-

riables in a different way.

3.2 Defining Parameter Dependencies

The DEPENDS keyword offers Atune additional me-

ta-information that helps prune the search space. As an

example, suppose that the parallel merge sort in Figure 4

has a parameter depth defining how far the input will be

split up into partitions. This parameter could be varied in

several runs to find out the best performance on a certain

machine. As Atune’s optimizer does not know that this

parameter is only meant to work with merge sort, it would

vary it for quick sort as well. Using DEPENDS, a devel-

oper can make his intention explicit and communicate to

the optimizer to avoid unnecessary tuning iterations, thus

reducing the search space.

Figure 2: Code example using the SETVAR statement

to define a numeric tuning parameter

Figure 3: Code example using the SETVAR statement

to define a non-numeric tuning parameter

public void SETVAR_Example2()

{

 ISortAlgorithm sortAlgo = null;

 #pragma atune SETVAR sortAlgo

 TYPE generic VALUES “new QuickSort()”,

 ”new ParallelMergeSort()”

 if (sortAlgo != null)

 sortAlgo.Run();

}

public void SETVAR_Example1()

{

 int numThreads = 2;

 #pragma atune SETVAR numThreads

 TYPE int VALUES 2-16 STEP 2

 for (int i=1; i<=numThreads; i++)

 {

 Thread.Create(StartCalculation);

 }

 WaitAll();

}

= new QuickSort();

4

3.3 Defining Tuning Blocks

Tuning blocks are used to mark parallel sections

which may be tuned independently. Atune considers pa-

rallel sections enclosed in a tuning block to be indepen-

dent if they run consecutively in any of the application’s

execution paths and their tuning parameters do not inter-

fere with each other. Atune can exploit this information

throughout the optimization process to reduce the search

space.

For illustration, consider Figure 5. It shows the hypo-

thetical execution paths of a parallel program, divided

into two blocks that the developer knows to be indepen-

dent (e.g., due to design decisions). Block one has three

tuning parameters, p1,…, p3, while block two contains

five tuning parameters, p4, …, p8.

Figure 5: Concept of Tuning Blocks

Without the block instrumentations, Atune would try

out in the worst case the cross product of all parameter

domains: 1 8() ... ()dom p dom p . However, if the two

blocks are known to be independent, the worst case for

each block is reduced to the cross product of the respec-

tive parameter domains, i.e., 1 1 3: () ... ()B dom p dom p

and 2 4 8: () ... ()B dom p dom p , thus avoiding a large

number of trials, namely 1 2B B .

Figure 6 shows how to mark tuning blocks with

Atune-IL. Basically, a tuning block is enclosed by a

STARTBLOCK and ENDBLOCK statement. Tuning

blocks may have a name, so that they can be referenced

from other blocks.

It is of course technically possible to obtain clues

about independent program sections by code analysis.

However, such an analysis is complex, may require addi-

tional program executions, or may deliver imprecise re-

sults; this is why Atune-IL relies on explicit developer

annotations.

Nested Structures

Tuning blocks can be lexically nested. A significant

number of cross product operations can be saved when

nested parallel sections are marked. When nested struc-

tures are detected, Atune starts the optimization in the

tuning blocks at the innermost level and successively

combines their parameter values with those in the directly

enclosing blocks.

In situations where nested blocks cannot be expressed

in the lexical scope of their enclosing blocks, the INSIDE

keyword of the STARTBLOCK statement may be used to

specify a logically nested structure, provided that the refe-

renced blocks have a name. Figure 7 shows an example

of a routine that is nested within the parallel section in

Figure 6. Note that the code of this routine could be lo-

cated in an entirely different file.

p1

p2

p3

p4

p5

p6

p7

p8

Tuning Block 1 Tuning Block 2

Figure 7: Defining a nested tuning block inside the

parallel section shown in Figure 6

public void StartCalculation()

{

 #pragma atune STARTBLOCK nestedSection

 INSIDE parallelSection

 // Do the calculation in a nested parallel

 // section with own tuning parameters.

 #pragma atune ENDBLOCK

}

Figure 4: Code example using the DEPENDS keyword

to define a parameter dependency

public void DEPENDS_Example()

{

 ISortAlgorithm sortAlgo = null;

 #pragma atune SETVAR sortAlgo

 TYPE generic VALUES “new QuickSort()”,

 ”new ParallelMergeSort()”

 int depth = 2;

 #pragma atune SETVAR depth

 TYPE int VALUES 2-8

 DEPENDS sortAlgo VALUES

 “new ParallelMergeSort()”

 if (sortAlgo != null)

 // Run() ignores depth if QuickSort is

 // selected

 sortAlgo.Run(depth);

}

Figure 6: Atune-IL statements to define a tuning block

public void TUNINGBLOCKS_Example()

{

 #pragma atune STARTBLOCK parallelSection

 // Here follows the code shown in

 // SETVAR_Example1() in Figure 2

 #pragma atune ENDBLOCK

}

= new QuickSort();

5

Atune internally creates a tree to handle the nested

structure of tuning blocks. Therefore Atune automatically

adds a root tuning block to its data structure enclosing the

entire application. Tuning parameters specified outside a

tuning block are logically assigned to the root tuning

block.

3.4 Defining Monitoring Probes

Monitoring probes are inserted into the code by the

GAUGE statement, followed by a name to identify the

type of the probe. Currently, Atune supports probe types

to monitor either execution times or memory consump-

tion. The probe types are declared globally for all probes

in a configuration file.

As an example, the probes in Figure 8 measure the ex-

ecution time of a particular code segment. For probe types

that measure execution times, two consecutive probes are

interpreted as start time and end time, and the difference

if computed automatically when the second probe is

reached.

In case that memory consumption was specified in

Figure 7 as the probes’ type, the two statements would

have been interpreted as two separate probes, both mea-

suring memory usage at that point.

3.5 Assumptions and Design Decisions

Atune-IL is designed to reduce the implementation ef-

fort for tuning instrumentation, and to help prune the

search space for Atune so that fewer executions are re-

quired in the auto-tuning cycle. There are several assump-

tions about how Atune is employed; all of them were con-

sidered carefully in order to design a flexible language for

the tuning of general-purpose parallel applications.

 Atune-IL was designed to be independent of the host

programming language and the tuned application (for

details, esp. on how we deal with library calls for

probes, see section 4). As a trade-off, this flexibility

requires the developer to take additional responsibili-

ties in situations as described next.

 The Atune-IL parser does not check for coherence be-

tween the application’s source code and its instru-

mentation statements. This would have required the

implementation of a parser of every host language.

 Except for tuning, Atune-IL has no general control

over the usage of the variables instrumented by the

SETVAR statements.

 We assume that a tuning block is opened and closed

within the same compound statement of the host pro-

gramming language, such as a method or a loop. This

applies as well for two consecutive GAUGE state-

ments measuring execution times.

 A tuning block may contain an arbitrary number of

SETVAR statements.

 For a given tuning block, we assume that no variable

is accessed from outside the block.

 A variable that is instrumented with SETVAR must be

correctly declared in the host language and initialized

with a default value. Atune will modify this value at

the point where the pragma instrumentation is lo-

cated. The programmer must avoid any other write

accesses to that variable that might interfere with the

tuning process.

 Overhead in the monitoring library affects measure-

ments. However, this overhead would also occur in

an approach without auto-tuning.

In our opinion, we think that the aforementioned trade-

offs are acceptable. In our case study (cf. section 6) these

assumptions do not cause any serious problems in prac-

tice.

4 Generating Program Variants

We now discuss the principles of program generation

used in step 3 of the auto-tuning cycle (cf. Figure 1). At

this stage, Atune’s optimizer has already determined a

value for each tuning parameter, and the values need to be

assigned to the corresponding variables in the source code

of the parallel program.

4.1 General Principles

The #pragma statements described previously are ca-

tegorized into three classes for which the variant genera-

tion process works differently. First, the SETVAR state-

ment requires language-specific code insertions to set

certain values for tunable variables. Second, statements

with meta-information for the auto-tuner, such as

STARTBLOCK or ENDBLOCK, are simply removed.

Third, monitoring probes introduced by GAUGE are re-

placed by calls to language-specific monitoring libraries.

Figure 8: Code example using the GAUGE statement

to define monitoring points

public void COMPLETE_Example()

{

 #pragma atune STARTBLOCK parallelSection

 #pragma atune GAUGE myExecTime

 int numThreads = 2;

 #pragma atune SETVAR numThreads

 TYPE int VALUES 2-16 STEP 2

 for (int i=1; i<=numThreads; i++)

 {

 Thread.Create(StartCalculation);

 }

 WaitAll();

 #pragma atune GAUGE myExecTime

 #pragma atune ENDBLOCK

}

6

4.2 Templates and Libraries for Language-

Specific Code

It may seem contradictory to require the generation of

language-specific code and keep Atune-IL independent of

the host language at the same time. We approached this

problem by using standardized templates. For every

Atune-IL construct (e.g., variable assignment with SET-

VAR), we store the corresponding code used in the host

programming language in a template file. For implemen-

tation, we employed StringTemplate [12], [13] that also

allowed us to capture the syntax of host language state-

ments. As a proof of concept, we created such template

files for several languages, including C#, Java, and Perl.

New templates can easily be added by adding such files in

a certain directory. The template to be used by Atune is

defined in the central configuration file.

We defined a general interface to the monitoring li-

brary that provides functionality for measuring execution

times and memory consumption. As a library implementa-

tion can only be used in programs written in the same

language as the library itself, we created different imple-

mentations for various languages: Java, Perl, and C#

(whose library is applicable to all programs based on the

.NET Common Language Runtime). The interface is de-

signed in such a way that developers may easily add im-

plementations for other languages as well as extensions of

probe types.

4.3 Tunable Variables and Monitoring Probes

As an example for the handling of tunable variables

and monitoring probes, we illustrate a possible outcome

of the generation process for C# in Figure 9; the generated

variant is based on the code in Figure 8.

Figure 9: Example for a generated variant based on

the code in Figure 8

All SETVAR statements are replaced by a line of code

that assigns a parameter value to the specified variable.

For numeric parameters, a number is assigned; for non-

numeric parameters of type “generic” the value is set to

the specified string. In each of the auto-tuning iterations, a

new program variant is generated by assigning the values

obtained from Atune’s optimizer.

For monitoring probes, GAUGE statements are re-

placed by appropriate library calls. As shown in Figure 9

for C#, the call is done via a static class name chosen ac-

cording to the probe type and is followed by the method

name Set(). This method contains the actual measure-

ment functionality.

We omit the discussion of more subtle details of the

generation process and refer to [6] for details.

5 Feedback of Performance Results

In step 4 of the auto-tuning cycle (cf. Figure 1) a gen-

erated program variant is executed monitored for perfor-

mance. During runtime, the inserted calls to the monitor-

ing library are used to record performance data.

At the end of the execution, all gathered values are

written to a file. Atune reads the values from this file,

aggregates them, and computes a new value for the over-

all objective function. The results are communicated to

Atune’s optimizer that uses them in the calculation of new

parameter values.

The feedback of performance results completes the au-

to-tuning cycle.

6 Case Study

In this Section, we present a detailed case study on the

instrumentation of a parallelized version of Agilent’s Me-

taboliteID [1], a commercial analysis application for bio-

logical data. There were several reasons to choose this

application:

 MetaboliteID is a large application (more than

100.000 lines of code in C#) containing potential

parallelism at different levels of granularity.

 It is a commercial application providing a real-

world scenario.

 The size and architecture of the application is simi-

lar to other large computation-intensive programs.

First, we parallelized MetaboliteID and identified tun-

ing parameters that have an impact on the overall execu-

tion time of the program [10]. We then instrumented the

application with Atune-IL to make it ready for tuning.

6.1 Biological Data Analysis

MetaboliteID performs so-called metabolite identifica-

tion, a key method for testing new drugs. Metabolites are

the intermediate products of metabolism. Metabolism is

the set of chemical reactions taking place within cells of a

living organism.

public void Example1()

{

 ExecTimePerfLib.Set();

 int numThreads = 2;

 numThreads = 4;

 for (int i=1; i<=numThreads; i++)

 {

 Thread.Create(StartCalculation);

 }

 WaitAll();

 ExecTimePerfLib.Set();

}

numThreads = 2;

numThreads = 4;

numThreads = 16;

...

Auto-Tuning Cycle

Iterations

7

Figure 10: Parallel structure and tuning model of Agilent’s MetaboliteID

The metabolite identification process is based upon the

comparison of two body fluid samples. The first sample

(control sample) is obtained before taking the drug. At

certain times after the application of the drug, further

samples (metabolite samples) are taken. Finally, mass

spectrograms of all samples are prepared.

MetaboliteID compares each of the mass spectrograms

of the metabolite samples with the control sample to iden-

tify the metabolites caused by the drug. The application

executes a series of algorithms that identify and extract

the metabolite candidates. This sequence is repeated for

each metabolite sample.

6.2 Parallelizing MetaboliteID

We parallelized the application on different levels of

abstraction to exploit available nested parallelism, as illu-

strated in Figure 10.

On the most coarse-grained level, we implemented a

parallel pipeline to speed-up the processing of several

pairs of mass spectrograms (control and metabolite sam-

ple).

Next, we turned to the individual pipeline stages. In

principle, stage 1 reads the mass spectrograms, stages 2

and 3 are algorithm modules (A1…A8) carrying out the

metabolite identification, and stage 4 aggregates the re-

sults. In stage 2 and 3, we had some of the algorithms

work independently on disjoint parts of the mass spectro-

grams; for those algorithms, we were able to exploit task

parallelism by using a Master/Worker pattern.

Algorithm modules were the lowest abstraction level

that exploited parallelism. The internals of the algorithms

were not modified, as we were focusing on coarse-grained

application parallelization rather than on fine-granular

algorithmic engineering. The algorithm modules A1, A5,

and A6 were enhanced to support data parallel execution.

As they processed incoming fragments of mass spectro-

grams independently, we used for each module a data

decomposition strategy that split up the input data into a

number of partitions, and which created several parallel

instances of the same module.

As shown in Figure 10, the data parallel section of

module A1 is nested in the master/worker section of stage

2, while the data parallel sections of A5 and A6 are nested

in the Master/Worker section of stage 3. This complex

Master/Worker Section 1

Data-Parallel

Section 1

Pre-

Processing

Root Tuning Block

MetaboliteID Pipeline

A1 1

A1 2

lb3

numW3

pSize3

A1 n

...

Tuning Block

MasterWorker1

n = numW3

Tuning Block

MasterWorker2

Input

Queue

lb1
Master/Worker Section 2

Data-Parallel

Section 2

A5 1

A5 2

lb4

numW4

pSize4

A5 n

...

n = numW4

Data-Parallel

Section 3

A6 1

A6 2

lb5

numW5

pSize5

A6 n

...

n = numW5

lb2

Post-

Processing

A2

A3

A4

Tuning Block

DataParallel1

Tuning Block

DataParallel2

Tuning Block

DataParallel3

Atune-IL statements used to define the tuning parameters and monitoring probes

 lb1: #pragma atune SETVAR lb1 TYPE generic VALUES “LB.Dynamic“;“LB.Static“ DEFAULT “LB.Dynamic“ SCALE nominal

(similar statements for lb2, lb3, lb4, lb5)

 numW1: #pragma atune SETVAR numW1 TYPE int VALUES 1-4 STEP 1 DEFAULT 4 SCALE ordinal

(similar statements for numW2, numW3, numW4, numW5)

 pSize3: #pragma atune SETVAR pSize3 TYPE float VALUES 0.1-0.5 STEP 0.1 DEFAULT 0.1 SCALE ordinal

 DEPENDS lb3 VALUES “LB.Static“

(similar statements for pSize4, pSize5)

 pipelineExecTime: #pragma atune GAUGE execTime

numW1

Input

Queue

Input

Queue

Stage 1 Stage 2 Stage 3 Stage 4

Pair of mass

spectrograms

Metabolite

candidates

piplelineExecTime pipelineExecTime

Tuning Parameters:

numW: Number of worker threads

lb: Choice of load balancing (LB) strategy

 (static, dynamic, work-stealing)

pSize: Size of data partitions

 (depends on lbi: parameter only

 effective if static LB strategy selected)

 Tuning Parameter

 Monitoring Point

 Border of Tuning Block

 Program Execution Path

A7

A8

numW2

8

structure of the parallel program required multi-level tun-

ing.

6.3 Instrumenting the Parallel Program

After parallelizing MetaboliteID, we instrumented the

application with Atune-IL statements to provide the ne-

cessary tuning meta-information for Atune.

We started with the definition of tuning blocks. Each

of the parallel sections (e.g., each master/worker or data

parallel section) was treated as a tuning block.

We continued with the specification of tuning parame-

ters for each parallel section. We already identified in the

earlier parallelization process the parameters that influ-

enced the execution time of the application. Thereafter,

we added the corresponding variables along with the

functionality necessary to change the behavior of the ap-

plication according to the variables’ values.

For the master/worker sections, we defined the load

balancing strategy (parameter lb: static or dynamic) and

the number of worker threads (parameter numW: 2…16)

as tunable parameters, and implemented a static and a

dynamic load balancing strategy.

The data parallel sections have similar parameters for

load balancing and the number of workers. In addition,

they had a parameter to set the size of the data partition

(parameter pSize) for the case when static load balancing

was used. The parameter pSize had a depends-relationship

to the parameter lb.

Finally we defined two monitoring probes to measure

the execution time of the entire pipeline, i.e., the entire

program.

6.4 Results

Implementation Effort

The listing in Figure 10 shows the Atune-IL state-

ments we used to specify the required tuning meta-

information. We defined five tuning blocks, 13 tuning

parameters (three of them had a dependency) and two

monitoring probes. Specifying all tuning meta-

information using Atune-IL required 25 lines of instru-

mentation statements.

Without Atune-IL, one has to manually implement the

tuning parameters, value ranges, as well as all other pa-

rameter information such as data type, scale, weight, or

dependencies, as well as tuning blocks and monitoring

libraties. In addition, the data structure for the tuning

block structure and appropriate monitoring libraries must

be created.

To compare the implementation effort with and with-

out using Atune-IL, we created a separate program which

encapsulated the logic to produce multiple variants of

MetaboliteID based on tuning parameters. Apart from

that, we added code directly into MetaboliteID. To get

the same functionality as provided by the Atune-IL state-

ments, the following implementation effort was neces-

sary: the data structure for tuning blocks, tuning parame-

ters, and monitoring probes requires 350 lines of code

(LOC). The specification of a tuning block needs 8 LOC.

The definition of each tuning parameter requires 10 LOC.

In addition, 15 LOC are necessary to include a parameter

in the tuning block data structure and to perform valida-

tions. A monitoring probe requires only one LOC, as we

still used a function call. We also added functionality to

measure the execution time, which takes 30 LOC.

Table 1: Comparison of implementation effort to add

auto-tuning capabilities to MetaboliteID

 Atune-IL Manually implemented

Data structure

and validation

logic

included in

Atune-IL
350 LOC

Tuning blocks 5 2 10 LOC 5 8 40 LOC

Tuning para-

meters
13 LOC 13 (10 15) 325 LOC

Monitoring

probes
2 1 LOC 2 1 LOC

Monitoring

functionality

to measure

exec. times

included in

Atune-IL
30 LOC

Sum 25 LOC 747 LOC

 3.35% 100%

Table 1 summarizes the lines of code needed to add

auto-tuning capabilities to MetaboliteID in the same way

Atune-IL does. It shows that using Atune-IL the imple-

mentation effort is reduced by more than 96% !

Search Space Reduction

Using Atune-IL significantly reduced the search space

for Atune’s optimizer, thus saving tuning iterations.

We instrumented MetaboliteID with 13 tuning para-

meter definitions. Normally, the search space would have

been the cross product of all parameter domains

(24,576,000 parameter value combinations). Based on

Atune-IL’s tuning blocks, Atune could determine inde-

pendent (nested) parallel sections, i.e. (nested) parallel

sections running one after another in any of the applica-

tion’s execution paths and thus not interfering with each

other.

Three independent parallel sections that could be

tuned separately (cf. Figure 10):

 Tuning block MasterWorker1 and the nested tun-

ing block DataParallel1 (640 parameter value

combinations)

 Tuning block MasterWorker2 and the nested tun-

ing block DataParallel2 (480 parameter value

combinations)

 Tuning block MasterWorker2 and the nested tun-

ing block DataParallel3 (480 parameter value

combinations)

Thus, the search space consisted in the worst case was

reduced to 640 + 480 + 480 = 1.600 combinations to be

9

tried out. Compared to the original search space with

24,576,000 combinations, we had a reduction of more

than 99%. In fact, 1,600 combinations were tried out by

Atune.

Finally we tuned the instrumented version of Metabo-

liteID using Atune. The auto-tuner was able to generate

the 1.600 necessary program variants that were all ex-

ecuted. Between the best and the worst parameter confi-

guration, Atune determined a difference in execution time

of approximately 45%. This result underlines that auto-

tuning is helpful in a large parallel application such as

ours.

7 Related Work

Search-based auto-tuning has been previously investi-

gated in the area of numerical software and high-

performance computing. Some approaches employ in-

strumentation languages developed specifically for this

context.

The Fastest Fourier Transform in the West (FFTW)

[5] uses generative programming techniques to generate a

complete FFT application from scratch. In principle, the

approach composes pre-defined blocks of code and tries

out combinations until it finds the best result on a certain

hardware platform.

The Automatically Tuned Linear Algebra Software

(ATLAS) system [19] generates a platform-specific linear

algebra library. Before the library is generated, the Auto-

mated Empirical Optimization of Software (AEOS) com-

ponent executes micro benchmarks on a target platform

and determines the hardware-specific parameters that

yield the best performance. The optimization process is

especially focused on memory characteristics such as la-

tency or cache sizes.

XLanguage [4] uses a #pragma approach to direct a C

or C++ pre-processor to perform certain code transforma-

tions. Contrary to the other related work, the optimization

step is not part of the language. XLanguage provides use-

ful constructs to generate loop unrollings explicitly in the

high-level code, which is often applied to improve the

performance of matrix multiplications. Although the lan-

guage allows for various extensions, it lacks constructs

that are required for tuning general-purpose parallel ap-

plications.

Parameterized Optimizing for Empirical Tuning

(POET) [20] uses a language that embeds the segments of

code that are used to generate an application directly into

POET code. The code generation process is driven by

transformation rules that are specified by the developer.

This approach is flexible, but the software engineering of

large applications is difficult. The syntax is verbose, so

that even simple loop unrolling for numeric optimizations

needs several dozens of lines of code.

SPIRAL [14] focuses on digital signal processing in

general. A mathematical problem is coded in a so-called

Signal Processing Language, a domain-specific language.

Various platform-dependent versions are created and

tested for performance. It works for sequential code only.

The Framework of Install-time, Before Execute-time

and Run-time optimization (FIBER) [7] is a software

framework that employs compiler directives and the script

language ABClibscript to automate the optimization

process. Similar to Atune-IL, FIBER can mark tunable

variables and define values to be tried out. However, the

entire approach focuses on numerics and was not de-

signed for general-purpose parallel applications.

We summarize related work in Table 2 and compare

each language with respect to several key characteristics.

Atune-IL provides several capabilities in one single lan-

guage. Note that contrary to other approaches, we sepa-

rated the optimizer from the instrumentation language to

gain more flexibility. Furthermore, our approach does not

generate programs from scratch; it assumes that an al-

ready existing parallel program will be tuned.

Table 2: Comparison with existing approaches

F
F

T
W

A
T

L
A

S

X
L

a
n

g
u

a
g

e

P
O

E
T

S
P

IR
A

L

F
IB

E
R

A
tu

n
e-

IL

Usable with

any host pro-

gramming

language

- - - - -

Independent

of application

domain
- - - -

Monitoring

support - - - - - -
Support for

nested paral-

lelism
- - - - - -

#pragma-

based ap-

proach
- - - - -

Program gen-

eration from

scratch
 - - - -

Numeric code

optimizations

included
 - - - -

8 Conclusion

The increasing diversity of multicore platforms will

make auto-tuning indispensable. Atune-IL connects a

generic auto-tuner to general-purpose parallel applica-

tions. Portability is improved, as platform-specific per-

formance optimization can now be easily sourced out to

an auto-tuner. Additional key contributions of Atune-IL

10

are the support for search space reduction, the ability to

specify architectural variants, and the definition of differ-

ent types of monitoring probes.

Of course, Atune-IL is in an early stage and can be

improved in many ways. For example, the syntax for the

definition of architectural variants can be adapted to work

with pre-defined source code files. In addition, other types

of monitoring probes could be added. Support for online-

tuning during program execution is interesting as well.

Various directions could be explored to integrate auto-

tuners directly into compilers and extend programming

languages by native constructs for tuning.

Acknowledgements

We thank Agilent Technologies Inc. for providing the

source code of Metabolite ID as well as Agilent Technol-

ogies Foundation for financial support. We also appre-

ciate the support of the excellence initiative in the Univer-

sity of Karlsruhe. Last but not least, we thank Thomas

Karcher for his implementation of the Atune-IL parser.

References

[1] Agilent Technologies. MassHunter MetaboliteID software.

http://chem.agilent.com/. Last accessed January 2009.

[2] K. Asanovic et al. “The landscape of parallel computing

research: A view from Berkeley”. Technical Report

UCB/EECS-2006-183, EECS Department, University of

California, Berkeley, December 18 2006.

[3] R. Chung, J.K. Hollingsworth, “Using Information from

Prior Runs to Improve Automated Tuning Systems”. Pro-

ceedings of the ACM/IEEE SC2004 Conference, pp. 30-38,

Nov. 2004.

[4] S. Donadio, J. Brodman, T. Roeder, K. Yotov, D. Barthou,

A. Cohen, M. Garzarn, D. Padua, and K. Pingali, “A lan-

guage for the compact representation of multiple program

versions”, in 18th International Workshop Languages and

Compilers for Parallel Computing (LCPC), ser. LNCS, no.

4339, pp. 136–151, 2006

[5] M. Frigo and S. Johnson, “FFTW: An adaptive software

architecture for the FFT,” Acoustics, Speech and Signal

Processing, 1998. Proceedings of the 1998 IEEE Interna-

tional Conference on, vol. 3, pp. 1381–1384 vol.3, 1998.

[6] T. Karcher. “Eine Annotationssprache zur automatisierba-

ren Konfguration paralleler Anwendungen”, Master’s The-

sis, August 2008, Institute for Program Structures and Data

Organization (IPD), University of Karlsruhe, Germany.
[7] T. Katagiri, K. Kise, H. Honda, and T. Yuba, “FIBER: A

generalized framework for auto-tuning software”, High

Performance Computing, pp. 146–159, 2003.

[8] A. Morajko, E. César, T. Margalef, J. Sorribes, and

E. Luque, “MATE: Dynamic performance tuning environ-

ment,” Euro-Par Parallel Processing, vol. 3140, pp. 98–

107, 2004.

[9] A. Morajko, P. Caymes-Scutari, T. Margalef, and E. Luque,

“MATE: Monitoring, analysis and tuning environment for

parallel/distributed applications”, Concurrency and Com-

putation: Practice and Experience, vol. 19, pp. 1517–1531,

2007.

[10] V. Pankratius, C. A. Schaefer, A. Jannesari, and W. F.

Tichy. “Software engineering for multicore systems: an ex-

perience report”. IWMSE '08: Proceedings of the 1st inter-

national workshop on Multicore software engineering, pp.

53-60, New York, NY, USA, 2008. ACM.

[11] V. Pankratius, A. Jannesari, W. F. Tichy. “Parallelizing

BZip2. A case study in multicore software engineering”.

Accepted September 2009 for IEEE Software.

[12] T. Parr. “A Functional Language for Generating Structured

Text”. May 2004.

[13] T. Parr. The StringTemplate Homepage.

http://www.stringtemplate.org/. Last accessed September

2008.

[14] M. Puschel, J. Moura, J. Johnson, D. Padua, M. Veloso,

B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y. Voronenko,

K. Chen, R. Johnson, and N. Rizzolo, “SPIRAL: Code gen-

eration for dsp transforms”, Proceedings of the IEEE,

vol. 93, no. 2, pp. 232–275, 2005.

[15] A. Qasem, K. Kennedy, and J. Mellor-Crummey, “Auto-

matic tuning of whole applications using direct search and

a performance-based transformation system”, The Journal

of Supercomputing, vol. 36, no. 2, pp. 183–196, 2006.

[16] V. Tabatabaee, A. Tiwari, and J. Hollingsworth, “Parallel

parameter tuning for applications with performance varia-

bility”, Supercomputing, 2005. Proceedings of the

ACM/IEEE SC 2005 Conference, pp. 57–57, 2005.

[17] C. Tapus, I.-H. Chung, and J. Hollingsworth, “Active Har-

mony: Towards automated performance tuning”, Super-

computing, 2002. Proceedings of the ACM/IEEE SC 2002

Conference, pp. 44–44, 2002.

[18] O. Werner-Kytölä, W. F. Tichy, “Self-Tuning Parallelism”,

Proceedings of the High Performance Computing and Net-

working Europe 2000, Springer LNCS #1823, p. 300-312,

2000

[19] R. Whaley, A. Petitet, and J. J. Dongarra, “Automated em-

pirical optimizations of software and the ATLAS project”.

Parallel Computing, 27(1-2), pp. 3-35, Jan. 2001

[20] Q. Yi, K. Seymour, H. You, R. Vuduc, and D. Quinlan,

“Poet: Parameterized optimizations for empirical tuning”,

Parallel and Distributed Processing Symposium, 2007.

IPDPS 2007, pp. 1–8, 2007.

