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Using the method of integral (invariant) manifolds, the intrinsic low-dimensional manifolds (ILDM)
method is analysed. This is a method for identifying invariant manifolds of a system’s slow dynamics
and has proven to be an efficient tool in modelling of laminar and turbulent combustion. It allows treating
multi-scale systems by revealing their hidden hierarchy and decomposing the system dynamics into fast
and slow motions. The performed analysis shows that the original ILDM technique can be interpreted as
one of the many possible realizations of the general framework, which is based on a special transforma-
tion of the original coordinates in the state space. A modification of the ILDM is proposed based on a
new definition of the transformation matrix. The proposed numerical procedure is demonstrated on linear
examples and highly non-linear test problems of mathematical theory of combustion and demonstrates in
some cases better performance with respect to the existing one.
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1. Introduction

Mathematical models of chemical, biochemical and mechanical systems are often formulated as a large
set of differential equations, and for the purpose of numerical and/or analytical analysis, it is often
desirable to reduce to a smaller system without essential loss of accuracy. Experience witnesses that
a large set of differential equations describing complex chemical or mechanical phenomenon gener-
ally has a number of different time-scales of subprocesses. This hierarchical structure allows to apply
various asymptotic approaches for analysis of the system dynamics. In the geometrical version of the
interpretation of the dynamics, one can describe the multi-scale hierarchy as a progressive motion
through surfaces of lower and lower dimensionality (these surfaces are called invariant manifolds). At
present, there are a number of asymptotic tools able to treat the multi-scale system of equations and to
expose a ‘hidden’ hierarchy of the original system of governing equations. An incomplete list includes
computational singular perturbation method (Hadjinicolaou & Goussis, 1999; Lam & Goussis, 1988,
1994; Valorani & Goussis, 2001), method of integral manifolds (MIM) (Fenichel, 1979; Gol’dshtein &
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Sobolev, 1988, 1992), and intrinsic low-dimensional manifolds (ILDM) (Maas & Pope, 1992; Rhodes
et al., 1999; Kaper & Kaper, 2001).

The numeric asymptotic method (ILDM), which is particularly in the focus of our analysis in the
present piece of work, was developed originally for the investigation of the combustion phenomena.
Normally, a mathematical model for gas-phase or multi-phase chemical reaction systems consists of
a large set of partial differential equations, which describe the time-dependent development of all the
properties that determine the state of the system. The governing processes (i.e. flow, molecular transport
and chemical reactions) occur at time-scales that differ by orders of magnitude. A presence of the differ-
ent time-scales is the reason that the system of that type has an internal hierarchy. The governing ratio
behind the original algorithm of ILDM may be interpreted as a global transformation of the original
coordinates aimed to decompose processes with essentially different rates of changes. Local-dependent
relations between the original variables serve as a basis of the decomposition.

The investigation of the existing version of the ILDM technique is performed from the point of view
of some general framework based on a special transformation of the original coordinates in the phase
space (variables), so that the new introduced coordinates represent a union of the two separate sets—
fast and slow ones. It is shown that the ILDM technique de facto represents one of the many possible
realizations of the general framework. As any other method of analysis, ILDM has its own restrictions
and drawbacks. A detailed analysis of some of these restrictions allows to suggest a modification of
the existing version of the ILDM technique, which is based on another definition of the transformation
matrix and can be conditionally called TILDM. Application of the suggested TILDM technique demon-
strates that the uncovered restrictions of the ILDM method are overcome. Moreover, it turns out that the
suggested approach becomes effective in situations, which were not expected (in particular, in highly
non-linear problems of mathematical theory of combustion).

The outline of this paper is as follows. Section 2 starts with background information useful for the
rest of the article, namely, general description of the so-called singular perturbed system (SPS) of ordin-
ary differential equations (ODEs). Following a description of the basic properties of the SPS of ODEs,
we expose the possible multiple scales character of an arbitrary system (internal hierarchy), which is
generally ‘hidden’ within the system. A simple example of transformation of coordinates, which allows
to re-write the original multi-scale system in the conventional form of the SPS of ODEs, is presented.
Following the example, a general framework of determination of the fast and slow variables by an intro-
duction of the new coordinates is formulated. A brief description of the ILDM approach in the light of
the general framework based on the subdivision of the fast and slow variables closes the Section 2. Sec-
tion 3 deals with a number of artificial examples, which illustrate restrictions of the existing version of
the ILDM approach. Section 4 suggests a modification of the existing version of the ILDM approach. It
starts from the discussion concerning the geometrical sense of the linear transform of the original coordi-
nates and continues with a formulation of the suggested TILDM approach. Further, an asymptotic analy-
sis of the suggested approach in the 2D case is presented. In Section 5, we present a number of examples,
which are treated by the suggested approach (TILDM), and demonstrate the advantages of the proposed
technique. Finally, we summarize our conclusions regarding relative advantages and disadvantages of
the suggested approach and the possible ways of further investigations of its properties (Section 6).

2. Theoretical background

Many physical, biological, chemical and mechanical systems are characterized by a large amount of
unknowns and a wide range of temporal or spatial scales. These scales govern the underlying dif-
ferential equations and create serious difficulties (stiffness) for solution proceeding, no matter which
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approach—analytical or numerical—is chosen. In order to address the issues of both stiffness and phys-
ical understanding, a variety of asymptotic tools were developed, which explore the existing gap in
scales.

Most theoretical asymptotic tools deal with the systems written in the specific form of SPS of ODEs.
The distinguishing feature of this type of systems is the explicit determination of the singular parameter
(small parameter(s) of the considered physical system). To give a reader a bit more detailed description
of the SPS, let us give here a short description of this type of system of ODEs.

2.1 Singularly perturbed systems

Singularly perturbed systems (SPSs) are systems containing ODEs, which exhibit dynamic behaviour
evolving two (or more) vastly different time-scales. The conventional form of the SPS consists of a set
of equations in which derivatives of a number of variables are multiplied by a small parameter

ε
d �X
dt

= F( �X , �Y , ε), (2.1.1)

d �Y
dt

= G( �X , �Y , ε). (2.1.2)

It is worthwhile to mention here that the presentation of the original system in the form of the
set (2.1.1)–(2.1.2) is a simplification to some extent. The general problem is normally harder than
that described by the system (2.1.1)–(2.1.2) due to a possible presence of a large number of differ-
ent time-scales (the set (2.1.1)–(2.1.2) describes the pair of them only) and an absence of the explicit
small parameter(s). However, the simplification made above does not effect the nature of the performed
analysis.

When the parameter ε is small with respect to unity and the functions in the right-hand side (RHS)
of (2.1.1)–(2.1.2) are of the same order G( �X , �Y , ε)/F( �X , �Y , ε) ∝ O(1), the system (2.1.1)–(2.1.2)
exhibits a dynamical behaviour characterized by a presence of two sufficiently different time-scales.
The difference between rates of changes of the two vectors (G( �X , �Y , ε), F( �X , �Y , ε)) is determined
by the small parameter ε. For our further convenience in the present paper, we will suppose that both
functions in the RHS of (2.1.1)–(2.1.2) are sufficiently smooth (infinitely differentiable). Additionally,
we assume that the RHS of the equations do not contain a time-like variable t in the explicit form (we
will restrict ourselves to autonomous systems only).

Note here that a rate of change of the vector �X tends to infinity when ε → 0 (assume that
F( �X , �Y , ε) �= 0). According to this elementary analysis of (2.1.1)–(2.1.2), the first of the two equa-
tions is called fast subsystem, while the second is called slow subsystem.

Theoretical problems arising from the system (2.1.1)–(2.1.2) are elaborated rather well in the general
theory of integral (invariant) manifolds, which was developed for non-linear mechanics in a number of
works (Bogolyubov & Mitropolsky, 1961; Fenichel, 1979; Hale, 1969; Mitropolskiy & Lykova, 1968;
Strygin & Sobolev, 1988). The theory states that the system (2.1.1)–(2.1.2) has a unique integral (invari-
ant) manifold that can be represented as a series with respect to the small parameter ε. The advantage
of the manifold’s existence is the fact that the analysis of the system behaviour can be considerably
simplified by reducing the dimension of the system to the dimension of the slow variables. In O(ε) ap-
proximation of the slow invariant manifold, the analysis of the original system can be reduced to the
analysis on the slow manifold. The determination of the exact form and location of the slow manifold
is normally a rather complex problem, which can eliminate the advantage of the dimension reduction.
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Fortunately, the zeroth approximation of the exact slow manifold can be found relatively simply just by
equating the RHS of the fast equation (2.1.1) to zero. The obtained equation determines the so-called
slow surface (curve in the 2D case) and the analysis of the original system can be reduced to the analysis
on the slow surface.

On the slow surface, the changes of the slow and fast variables are comparable (i.e. fast and slow
processes are balanced). Beyond the slow surface, the slow variables are asymptotically constant (quasi-
stationary—in an O(ε) approximation). Therefore, a trajectory of the system in the phase space can be
naturally decomposed into ‘fast’ parts (which are off the slow manifold) and ‘slow’ parts (which are on
the slow manifold). The ‘fast’ and ‘slow’ parts of a trajectory can follow each other. The main types
of system trajectories can be predicted by the use of the slow surface. This technique of the asymp-
totic analysis, which got the abbreviation MIM (method of integral (invariant) manifolds), was adopted
for problems of chemical kinetics (Davis & Skodje, 1999) and combustion by Gol’dshtein & Sobolev
(1988). It has been developed for studying unravelling problems of gaseous combustion (Gol’dshtein
& Sobolev, 1988), catalysis (Babushok & Gol’dshtein, 1988; Gol’dshtein & Sobolev, 1992), non-linear
theory of control (Strygin & Sobolev, 1988), self-ignition in multi-phase media (Gol’dshtein et al., 1996;
Goldfarb et al., 1996, 1997, 1998; McIntosh et al., 1988; Bykov et al., 2002) and flame propagation in
porous media (Goldfarb et al., 1999).

2.2 Internal ‘hidden’ hierarchy

In most cases, the system of the governing equations looks like the system (2.1.1)–(2.1.2) in a rich
imagination of a pure theoretician only. In most of the engineering problems of actual importance, the
original system of governing equations contains its own internal hierarchy (i.e. a small parameter of
the considered physical system), but it is presented implicitly. To re-write the original system in the
conventional form of the SPS (2.1.1)–(2.1.2) sometimes demands non-trivial efforts. The most popular
situation is when a researcher is required to investigate a system of governing equations in the general
form (splitting of the rates of change of various processes involved exists, but it is not presented as
small parameter in the explicit form). In other words, the internal hierarchy of the system is hidden.
Two natural questions arise—whether it is possible (1) to discover an existence of and (2) to expose
the unclosed hierarchy? In the language of the present paper—whether are we able to subdivide the
processes (or their combinations) into the slow and the fast ones on the basis of the analysis of the
original system of ODEs?

To illustrate the idea, consider the Michaelis–Menten mechanism, which is the basic building block
for enzymological modelling (Laidler & Bunting, 1973). The set of governing equations for one of
realistic cases (a reader is referred to Laidler & Bunting, 1973, Roussel, 1997 and Roussel & Fraser,
2001 for more details) may be presented as following 2D system of ODEs{

dX
dt = −(X (1 − Y ) − Y ) + εY, ε � 1,

dY
dt = β(X (1 − Y ) − Y ), β ∼ O(1),

(2.2.1)

where X is the dimensionless concentration of the reactant (substrate), Y is the dimensionless concen-
tration of the enzyme–substrate complex and ε and β are parameters related to the rates of reactions
involved.

The form of the original system (2.2.1) does not allow to immediately suspect an existence of
the internal hierarchy in the system (2.2.1), and, in turn, a possibility to extract a small parameter,
which could correspond to the hierarchy. Nevertheless, a presence of the small parameter ε hints that
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there is a ‘hidden’ hierarchy in the system (2.2.1). Indeed, introducing a pair of the new auxiliary
coordinates

u = β X + Y, v = −X + βY (2.2.2)

and substituting τ = tε, we can re-write the original system (2.2.1) in the form{
du
dτ = βY (u, v) = F(u, v),

ε dv
dτ = (1 + β2)(X (u, v)(1 − Y (u, v)) − Y (u, v)) − εY (u, v) = G(u, v).

(2.2.3)

In another words, introducing a pair of the variables brings the system to the conventional form of the
SPS (slow variable u and fast one v). Note here that the substitution (2.2.2) is almost a rotation (due to
the evident fact β ∼ O(1)), a clear hierarchy exists.

As a result of the analysis of this simple example, one can conclude that there are at least some
specific cases, when an elementary linear transformation of the original coordinates (similar to (2.2.2))
solves a problem of a decomposition of the original mixed dynamics into the two separate motions—fast
and slow. Just after an application of the linear transformation, the introduced coordinates (u, v) become
the directions of the chosen types of motion (fast and slow).

The Michaelis–Menten mechanism considered above demonstrates that a linear transformation of
the type (2.2.2) allows us to disclose the ‘hidden’ hierarchy of the original system (2.2.1). It is of interest
to develop a technique, which would be able (1) to determine whether a given system of ODEs possesses
an internal hierarchy and (2) to provide us with a simple way of finding a desired transformation. It
would be natural to suppose that there is more general transformation of the original coordinates, which
allows us to gain the declared purposes. This generalization of the example presented here is described
in the following section.

2.3 General framework—subdivision into ‘fast’ and ‘slow’ variables

This section focuses on a general-type decomposition of an arbitrary vector field into fast and slow
subfields in the spirit of approach used in the previous section.

As we could see in the previous section, it is possible to find a suitable transformation of the original
coordinates, which provides us with the desired result—in the new coordinates, the fast and the slow
motions are decomposed and are performed along the new introduced axes. It is of interest to elucidate
whether the adopted approach of coordinate transformation is a universal one.

To formalize the question, consider an arbitrary system of ODEs of the type

dZ

dt
= Φ(Z), Z ∈ Rn . (2.3.1)

Reduction of the original problem (2.3.1) to the conventional SPS form (it may be understood
to some extent as vector field decomposition) may be formalized according to the following proce-
dure. Consider a decomposition of the type n → n = nf + ns, where the subscripts f and s relate
to the fast and slow new variables, respectively. Suppose that there exists a smooth matrix Q̃(Z) =
( Q̃f(Z)

Q̃s(Z)
), det Q̃(Z) �= 0 (Q̃f is an nf × n matrix and Q̃s is an ns × n matrix), such that the matrix Q̃

produces a desired decomposition of the original variables of the system (2.3.1) into the two groups of
the fast and slow new variables

W =
(

U
V

)
= Q̃ Z =

(
Q̃f(Z)

Q̃s(Z)

)
Z , U = Q̃f(Z)Z =

⎛⎜⎝u1
...

unf

⎞⎟⎠ , V = Q̃s(Z)Z =
⎛⎜⎝ v1

...
vns

⎞⎟⎠ . (2.3.2)
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Now, re-write the system (2.3.1) in the new introduced variables

dU

dt
= dQ̃f(Z)

dt
Z + Q̃f(Z)

dZ

dt
= dQ̃f(Z)

dt
Z + Q̃f(Z)Φ(Z), (2.3.3)

dV

dt
= dQ̃s(Z)

dt
Z + Q̃s(Z)

dZ

dt
= dQ̃s(Z)

dt
Z + Q̃s(Z)Φ(Z). (2.3.4)

RHS of the last two equations is written for some solution Z = Z(W ) of the equation W = Q̃(Z)Z ,
i.e. for this solution we can simply write

dU

dt
= dQ̃f(W )

dt
Z(W ) + Φf(W ), Φf(W ) = Q̃f(Z)Φ(Z), (2.3.5)

dV

dt
= dQ̃s(W )

dt
Z(W ) + Φs(W ), Φs(W ) = Q̃s(Z)Φ(Z). (2.3.6)

According to our assumption, the part U of the new variable W should be fast, whereas the part V
should be slow. It means that each component of the fast part of the vector field (determined by the RHS
of (2.3.5)) must be essentially larger than any other component of its slow counterpart∣∣∣∣dui

dt

∣∣∣∣ 	
∣∣∣∣dv j

dt

∣∣∣∣ , ∀ i = 1, . . . , nf, ∀ j = 1, . . . , ns,

⇒
∣∣∣∣(dQ̃f(W )

dt
Z(W ) + Φf(W )

)
i

∣∣∣∣ 	
∣∣∣∣∣
(

dQ̃s(W )

dt
Z(W ) + Φs(W )

)
j

∣∣∣∣∣ . (2.3.7)

On the other hand, having in mind a clear presumption that the dynamics of the system is governed by
the vector field (Φ) and not by the transformation matrix Q̃, one can formulate an additional restriction
for the matrix Q̃: it should be almost constant. More correctly, the following relations should be valid∣∣∣∣(dQ̃f(W )

dt
Z(W )

)
i

∣∣∣∣ � |(Φf(W ))i |, ∀ i = 1, . . . , nf. (2.3.8)

Once the conditions (2.3.7) and (2.3.8) are fulfilled, the transformation of the original system (2.3.1)
reaches its aim and the derived system (2.3.5)–(2.3.6) actually represents the SPS. As a result, the
general theory of the invariant manifolds is applicable. Under the aforementioned requirements, the fast
subsystem of the system (2.3.5)–(2.3.6) can be re-written in the simpler form

dU

dt
≈ Φf(W ), (2.3.9)

which allows us to determine a location of the manifold (more correctly, its approximation). Recalling
here that the zeroth approximation of the exact slow manifold can be determined by equating the RHS
of the fast subsystem to zero. In accepted terms, this can be re-written as Φf(W ) = 0, which gives us
the definition of the slow manifolds in the framework of the suggested transformation of the original
coordinates in the form

Φf(W ) = Q̃f(Z)Φ(Z) = 0. (2.3.10)

To perform reduction in such a way, we need a special machinery that can permit to construct
fast–slow decompositions of vector fields. In other words, we need to build an algorithm allowing to
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determine the transformation matrix Q̃. It is clear that the prospective algorithm should contain some
necessary steps, which can be formulated as follows: (a) evaluation of dimensions of fast and slow
subfields on the basis of the analysis of the original vector field (Φ(Z)), (b) construction of the transfor-
mation matrix Q̃ for transition from the original variables Z to the new variables W and (c) verification
of whether the conditions (2.3.7) and (2.3.8) of the algorithm are fulfilled.

The ILDM procedure of the decomposition of the original system of ODEs, which will be briefly
described in the next section, can be considered as one of the numerical algorithms built according to
the general approach discussed in this section.

2.4 Method of ILDM (Maas & Pope, 1992)

Let us describe here very briefly the essential steps of the ILDM in the light of the general framework
discussed in the previous section. Assume that the system of ODEs of the type (2.3.1) can be represented
locally as a multi-scale system for a corresponding choice of a local basis. The last depends on the
choice of an arbitrary point Z in the n-dimensional Euclidian space Rn . It means that in this local basis,
a separation of variables in accordance with their rates of changes is possible (i.e. the considered system
can be re-written in this local basis for some neighbourhood of the point Z as SPS of ODEs). According
to the assumption, the system can be subdivided locally into fast relaxing and slow or non-relaxing
subsystems. Suppose that the fast subsystem has the same dimension nf (nf < n) at any point Z ⊆ R

n .
For typical situations, a set of all steady states of the fast subsystem represents an ns-dimensional

slow manifold (ns = n − nf) and our aim is to determine its location. The authors of ILDM suggested
that the dynamics of the overall system from arbitrary initial condition should decay very quickly onto
this ns-dimensional manifold. The ILDM allows to identify approximately (as a set of separate points)
the slow invariant manifolds (the so-called ILDM).

These manifolds can be found in the following manner (Maas & Pope, 1992 and Maas, 1994).
Suppose a local basis of the original phase space is formed by the invariant subspaces of the Jacobi
matrix MJ (Jacobian) of the vector field Φ at an arbitrary point Z0. If the set of eigenvalues λi can be
subdivided into two groups

max{Re[λi ], i = 1, . . . , nf} � τ < min{Re[λi ], i = nf + 1, . . . , n}, τ < 0, (2.4.1)

one can introduce invariant subspaces Tf and Ts. Tf is spanned by the eigenvectors corresponding to the
eigenvalues with large negative (fast) real parts. In turn, the subspace Ts is spanned by the eigenvectors
corresponding to the eigenvalues with small negative or positive (slow) real parts. Therefore, the transi-
tion matrix Q(Z) from this local basis to the standard one that is constructed from the eigenvectors of
the Jacobi matrix and its inverse Q−1(Z) can read like two block matrices

Q = (Qf Qs), Q−1 =
(

Q̃f

Q̃s

)
,

(
Q̃f

Q̃s

)
(Qf Qs) =

(
I 0

0 I

)
, (2.4.2)

where matrices Qf and Qs correspond to the fast and slow subspaces (Qf is a matrix n × nf of the fast
eigenvectors, Qs is a matrix n × ns of the slow eigenvectors, Q̃f is a matrix nf × n and Q̃s is a matrix
ns × n). The parameter τ is a time-scale splitting parameter. This splitting parameter determines the
dimensions of the slow (ns) and fast (nf = n − ns) subspaces.

Using a standard linearization of the RHS of (2.3.1) at the point Z0, we get

dZ

dt
= Φ(Z) ≈ Φ(Z0) + ∂Φ

∂ Z

∣∣∣∣
Z=Z0

(Z − Z0). (2.4.3)
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The Jacobian at the point Z0 can be represented as a product of three matrices: the transition matrix Q, a
two-block representation JM of the Jacobian (MJ) in the eigenvectors basis and inverse of the transition
matrix Q−1

∂Φ

∂ Z

∣∣∣∣
Z=Z0

= MJ(Z0) = Q JMJ Q−1 = MJ = (Qf Qs)

(
JMf 0

0 JMs

)(
Q̃f

Q̃s

)
. (2.4.4)

The square matrix JMJ is decomposed into two-block structured matrices that correspond to fast and
slow invariant subspaces. The matrix JMJ is n × n, JMs is ns × ns and JMf is nf × nf .

Introduce the intermediate variable φ = Z − Z0 and re-write the previous expression in the form
dφ

dt
= Φ(Z0) + MJ(Z0)φ = Φ(Z0) + Q(Z0)JMJ(Z0)Q−1(Z0)φ. (2.4.5)

Multiply both sides of the equation by the inverse matrix Q−1(Z0)

Q−1(Z0)
dφ

dt
= Q−1(Z0)Φ(Z0) + JMJ(Z0)Q−1(Z0)φ (2.4.6)

and introduce the new variable (this is a point of the transition from the original variables to the new
ones, which allow to decompose fast and slow motions—see (2.3.2) in the previous section)

Ψ = Q−1(Z0)φ. (2.4.7)

With respect to the new variable, the equation can be written in the form

dΨ

dt
= φ

d(Q−1(Z0))

dt
+ Q−1(Z0)Φ(Z0) + JMJ(Z0)Ψ. (2.4.8)

One can show that the first term in the RHS of (2.4.8) is negligible under certain special conditions
(Maas, 1994; Maas & Pope, 1992) (compare with the condition (2.3.8)). Equation (2.4.8) is reduced to
the simple equation in the form (recalling that the Jordan form JMJ of the Jacobian (MJ) is decomposed
into two invariant subspaces)

dΨ

dt
= Q−1(Z0)Φ(Z0) + JMJ(Z0)Ψ. (2.4.9)

If
Q̃f(Z0)Φ(Z0) = 0, (2.4.10)

then with the initial condition Ψ f = 0, when Ψ = (ψf, ψs)
�, the fast variables will remain zero for

t > 0. Thus, according to the original algorithm of Maas and Pope (1992), the ILDM is determined by
an underdetermined system of nf equations for n unknowns

Q̃f(Z)Φ(Z) = 0, (2.4.11)

which corresponds to the relation (2.3.10) of the general framework.
To recap the description of the ILDM approach, it would be worthwhile to interpret the aforemen-

tioned procedure into the geometric language. Indeed, the ILDM approach represents a numerical algo-
rithm of creation of a new global coordinate system, in which the treated system of ODEs is transformed
to the conventional form of the SPS. The creation of the new coordinate system is based on the local
determination of the fast and slow directions (in the new desired metrics, these directions should serve
as coordinates). Application of ILDM algorithm contains the following essential steps: (a) a determina-
tion of a dimension of a fast vector subfield (equal to a number of ‘big’ eigenvalues of Jacobi matrix);
(b) introduction of transition matrix (transition to invariant fast and slow subspaces) and (c) analysis of
restrictions (for practical situations, a variation of transition matrix is small enough).
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3. Problematic points—application of ILDM

In this section, we will consider an application of ILDM technique to some simple examples, which
were chosen to illustrate the restrictions of the existing version of the ILDM (as we will see, further
ILDM approach does not properly work on the examples). Our aim here is to realize the reasons of
these unexpected results of the ILDM application.

Let us start from the general discussion. The condition (2.3.8) imposes definite restrictions on the
type of the system of ODEs, which can be treated by the approach, presented in Section 2.3. In particular,
one can deduce that the linear systems of ODEs are the most suitable object of a possible application
of the ILDM technique. Indeed, a constant vector field Φ(Z) provides us with the constant eigenvectors
and the constant transition matrix Q̃. This automatically satisfies the condition (2.3.8)—a derivative of
the matrix Q̃ with respect to time t equals to zero. Therefore, it would be natural to expect that the
ILDM procedure would work properly being applied to linear systems of ODEs. Two further sections
show that our expectations were groundless.

3.1 Linear planar system—real eigenvalues

The next example demonstrates that even for SPSs, division into fast and slow eigenvectors not necessary
exists. Let us start from a simplest possible non-trivial case of the system (2.3.1){

ẋ(t) = x + 1
ε y,

ẏ(t) = y,

dZ

dt
= Φ(Z), Z =

(
x
y

)
, Φ(Z) = AZ , A =

(
1 1

ε

0 1

)
, ε � 1.

(3.1.1)
It is obvious that the Jacobian in the considered system equals to the matrix A. Eigenvalues of the

matrix A are real and they are equal to each other (unity). According to the traditional interpretation
of the ILDM approach, this fact witnesses that there is no internal hierarchy in the considered system
(3.1.1) and the analysis cannot be further proceeded. Nevertheless, as one can readily see, the original
system (3.1.1) has essentially different rates of change (at least in the region, where functions x(t) and
y(t) are of the same order: x(t) is fast and y(t) is slow). Moreover, multiplying by ε the first equation
of the system (3.1.1), we can re-write it in the conventional SPS form.

Φ(Z) =
(

x + 1
ε y

y

)
=

(
Φf(Z)

Φs(Z)

)
, Φf(Z) = x + 1

ε
y, Φs(Z) = y. (3.1.2)

This example leads us to the conclusion that even in the simplest linear cases with strongly deter-
mined hierarchy, the eigenvalues of the Jacobian do not always provide us with correct information
regarding possible reduction to singularly perturbed form.

3.2 Linear planar system—complex eigenvalues

The main idea of this 2D example is to demonstrate a drawback of the ILDM approach in the case of
an existence of complex eigenvalues of a corresponding Jacobi matrix. Consider the following planar
version of the system (2.3.1){

ẋ(t) = y,

ẏ(t) = − 1
ε x + y,

Φ(Z) = AZ , Z =
(

x
y

)
, A =

(
0 1
− 1

ε 1

)
, ε � 1. (3.2.1)
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Similar to the example studied in Section 3.1, the system (3.2.1) can be easily written in the conventional
form of the SPS. Nevertheless, the ILDM method cannot produce any ILDM because the real parts of
the two complex eigenvalues are equal

λ2 − λ + 1

ε
= 0, λ1,2 = 1

2

(
1 ±

√
1 − 4

ε

)
= 1

2

(
1 ± i

√
4

ε
− 1

)
,

4

ε
− 1 > 0 (3.2.2)

and, therefore, there is no distinction in rates of change of the two processes involved.
In the geometrical language, the traditional ILDM procedure fails to decompose the vector field

Φ(Z) (determined by the RHS of the system (3.2.1)) into two components: fast and slow. This unex-
pected result looks a bit confusing, especially in the light of the evident decomposition of the original
vector field into the fast and slow components

Φ(Z) =
(

y

− 1
ε x + y

)
=

(
Φs(Z)

Φf(Z)

)
. (3.2.3)

3.3 Summary

To summarize the analysed above two linear examples and other studies (Goldfarb et al., 2004), we
can formulate shortly two main practical problems of the ILDM technique, which are illustrated by the
following examples:

1. In the case of complex eigenvalues (or when the real parts of the eigenvalues are close), directions
of ‘fast’ and ‘slow’ motions obtained by the ILDM algorithm can be very different from ‘fast–
slow’ motions of the original system.

2. Transition zones (turning manifolds) between different invariant manifolds cannot be correctly
described by ILDM methods because for these zones division onto ‘big’ and ‘small’ eigenvalues
typically do not exist.

On the other hand, it was proved (Rhodes et al., 1999) that in a small neighbourhood of a stable
invariant manifold for an SPS, there exists an ILDM. Moreover, numerical simulation demonstrates that
in small neighbourhoods of invariant manifolds, this conclusion is correct.

4. TILDM—suggested modification of ILDM

Suppose for a moment that we are asked to investigate a dynamical behaviour of some arbitrary system
of ODEs, which is NOT written in the conventional form (2.1.1)–(2.1.2) of the SPS (say, it has a general
form (2.3.1)). Common sense states that there are only two possibilities: (i) the system under considera-
tion does not have internal hierarchy and (ii) the considered system does represent a multi-scale system.
Let us focus on the second option as on the most interesting one from the point of view of an asymptotic
analysis. An existence of a dispersion of time-scales of the ODEs of the system allows us to suggest that
there is a system of coordinate (differing from the original one), where the given system of ODEs can be
re-written in the conventional SPS form (2.1.1)–(2.1.2). Ideally, this desired system of new coordinates
should have a number (nf) of axes, directions which are close to the directions of the slow motion, and
direction of the others (ns)—close to the fast motions. Our task may be formulated as to find this system
of new coordinates and to determine a transformation transforming the original variables into the new
ones. ILDM method is supposed to give an answer to this question. Recalling that it uses matrix built
from the eigenvectors of the Jacobian of the RHS of the original system as a transformation matrix (see
Section 2.4 for details).
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4.1 Main idea of TILDM

Let us explain shortly a main idea of the suggested modification of the ILDM method (which can be
called as TILDM) on the simple 2D case (we will see further what the sense of the letter T is).

It is clear that the Jacobian of the original system contains a full information concerning the system
dynamics in the case of the linear vector field Φ (2.3.1) only. Assuming that Φ is a linear mapping, we
can conclude that it has directions of the maximal and minimal stretch, which in the accepted language
of the present paper can be interpreted as the fast and slow directions. Therefore, it would be ideal, if we
could build a transformation, which converts the original coordinates (variables) into these fast and slow
directions. The latter can be found using a general theory of linear algebra. It teaches that an arbitrary
linear non-degenerated transformation (mapping) maps the unit circle with the centre in the origin to an
ellipse with the centre in the origin. Hence, we can identify the directions of the fast and slow motions
with directions of the large and small semi-axes of the ellipse, respectively. To build the desired transfor-
mation, remember that elementary linear algebra provides us with a well-known technical procedure of a
determination of the semi-axes of the ellipse. Consider a matrix M of an arbitrary non-degenerate linear
transformation and its transpose matrix M∗. The eigenvalues of the matrix M M∗ represent the length
squares of the ellipse’s semi-axes and the corresponding eigenvectors coincide with the directions of the
semi-axes. One of the distinguishing features of the matrix of the type M M∗ is an absence of complex
eigenvalues (all eigenvalues are real and corresponding eigenvectors are orthogonal). Assuming that the
Jacobian J of the considered system contains the relevant information regarding the system dynamics
(hierarchy of the system), we can conclude that the matrix of the transformation chosen as J J ∗ provides
us with more accurate information regarding the subdivision that the Jacobian J does.

4.2 Description of the TILDM algorithm

Note here that the main purpose of the suggested TILDM method coincides with that of the ILDM
approach: our aim is a determination of the ‘fast’ and ‘slow’ directions (subspaces, subsystems) and a
construction of the corresponding TILDM for the system (2.3.1).

Consider the system (2.3.1) and let us describe here very briefly the essential analytical steps of the
TILDM construction following the same scheme as for the ILDM case (see Section 2.4). For an arbitrary
point Z :

1. Build matrix M(Z) = J (Z)J ∗(Z) and determine its eigenvalues λi (i = 1, 2, . . . , n).

2. Check whether a splitting exists (its absence means that at that point the suggested procedure is
inapplicable). If ‘yes’, re-order the obtained eigenvalues as follows
λi 	 τ > λ j ; τ > 0, i = 1, . . . , nf, j = nf + 1, . . . , n.

3. Build matrices Q(Z) and Q−1(Z) = Q̃(Z) along the rules used during a derivation of (2.4.2).

4. Obtain a system of equations Q̃f(Z)Φ(Z) = 0 describing the TILDM.

The aforementioned formalized algorithm needs some comments. Due to the stated above property
of the symmetric matrix, the transformation matrix M(Z) = J (Z)J ∗(Z) has no complex eigenvalues.
It means that we are able to establish a relation between the processes involved in the whole phase
space (and not in the region only, where the eigenvalues of the Jacobian are real, as in the conventional
ILDM procedure). On the other hand, this evident advantage has its own drawback—all eigenvalues are
positive, i.e. an information regarding the stability of the corresponding parts of the unknown manifolds
is lost. Nevertheless, an analysis of the stability can be performed on the basis of the suitable analysis
of the Jacobi matrix J at any point Z0 that belongs to TILDM. Once a spectrum of Q̃f(Z0)J Qf(Z0)
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has negative real parts, we can deduce that the corresponding TILDM is stable. In any other case,
the corresponding TILDM is unstable. Remarks regarding necessary smallness of the variations of the
matrix field Q (Section 2.3) still remains crucial for TILDM as well as for ILDM.

4.3 Asymptotics—planar case

A general theorem can be formulated, which states that the aforementioned TILDM algorithm results in
the surface, which asymptotically tends to the slow manifold. The rigorous proof of the general theorem
regarding an arbitrary system of ODEs with internal hierarchy represents a rather complicated problem
and cannot be performed in the framework of the present work. Nevertheless, it is possible to demon-
strate the essence of the suggested method analysing the simple planar version of the general system.
This will allow the authors to present the main idea of the proof, whereas the rigorous mathematical
description will be the subject of future publications.

Consider the SPS of the type (2.3.1) in the planar case. It reads

dz

dt
= Φ(x, y), z =

(
x(t)

y(t)

)
, Φ(x, y) =

(
1
ε f (x, y)

g(x, y)

)
. (4.3.1)

Following the algorithm presented in Section 4.2, we build Jacobian J , its conjugate J ∗ and their mul-
tiplication (transformation matrix M)

J (x, y) =
(

fx
ε

fy
ε

gx gy

)
, J ∗(x, y) =

( fx
ε gx

fy
ε gy

)
,

(4.3.2)

M = J (x, y) J ∗(x, y) =
(

M11 M12
M21 M22

)
=

⎛⎝ f 2
x + f 2

y

ε2
fx gx + fy gy

ε

fx gx + fy gy
ε g2

x + g2
y

⎞⎠ .

Eigenvectors (non-normalized) of the transformation matrix M , the matrix Q and its inverse Q−1 have
the following form

λ1,2 = 1

2

(
Tr(M) ∓

√
(Tr(M))2 − 4Det(M)

)
, (4.3.3)

Tr(M) = M11 + M22, Det(J ) = M11 M22 − M12 M21,

λ = λ1 ⇒ ζ1 =
( −M12

M11 − λ1

)
, λ = λ2 ⇒ ζ2 =

( −M12
M11 − λ2

)
. (4.3.4)

To determine, which of the two eigenvalues is the largest, it is worthwhile to expand the expressions
with respect to the small parameter of the problem (ε). The expansions look as follows

λf = f 2
x + f 2

y

ε2
+ ( fx gx + fy gy)

2

f 2
x + f 2

y
+ O(ε2),

λs = ( fy gx − fx gy)
2

f 2
x + f 2

y
+ O(ε2).

(4.3.5)

At the present stage of the analysis, we can build matrices Q and Q−1. They read

Q =
( −M12 −M12

M11 − λ1 M11 − λ2

)
, Q−1 = 1

Det[Q]

(−M11 − λ2 −M12
M11 − λ1 −M12

)
. (4.3.6)
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The TILDM, in accordance to the aforementioned algorithm, is given by the equation Q̃f Φ (recalling
here that the matrix Q−1 is represented in the form (2.4.2)). To realize the mathematical sense of the
cumbersome derived relations, let us expand the two expressions Q̃s Φ and Q̃f Φ with respect to the
small parameter ε. The expansions can be written in the form

Q̃s Φ(Z) = ( f 2
x + f 2

y )g − fx gx f − fy gy f

f 2
x + f 2

y
+ O(ε2),

Q̃f Φ(Z) = ( f 2
x + f 2

y ) f

( fx gx + fy gy)ε2
(4.3.7)

g − f ( fy gx − fx gy)
2

( fx + fy)2( fx gx + fy gy)

As one can easily see, the term of leading order in the expressions (4.3.7) for Q̃f Φ is proportional to
ε−2. In addition, its nominator contains two multipliers, one of them—the function f

Q̃f Φ(Z) ≈ ( f 2
x + f 2

y ) f

( fx gx + fy gy)
(4.3.8)

Equating the RHS of (4.3.8) to zero gives us two options: (i) f = 0 and (ii) a nominator of the ra-
tio in the RHS of (4.3.8) is equal to zero. The first one of these two options naturally provides us
with the conclusion that in the zeroth approximation, the TILDM coincides with the slow curve of
the system (2.3.1) in the planar case.

Note here that the second option has its own sense, but its detailed analysis lies beyond the scope of
the present piece of work. Let us remark here that in fact the single equation f 2

x + f 2
y = 0 is equivalent

to a system of the two new separate equations: fx = 0 and fy = 0. In the geometrical language, an
existence of the two independent equations means that we have possibly problematic points (instead of
curves in the case of the single equation in a plane).

This outcome justifies our suggestion to use a multiplication of the Jacobi matrix and its conjugate
as a transformation matrix for transformation to a new coordinate system, where there is distinction
between rates of change of different directions.

5. TILDM—how it works

In this section, we will demonstrate how the suggested TILDM method works in a number of particular
cases, where the traditional ILDM approach faces problems.

5.1 Linear example—Jacobian with real eigenvalues

Consider the linear example (3.1.1) (Section 3.1) and apply the suggested TILDM approach. The Jacobi
matrix J , its conjugate J ∗ and the transformation matrix M read

J (x, y)
by def= A =

(
1 1

ε

0 1

)
, J ∗(x, y)

by def= A∗ =
(

1 0
1
ε 1

)
, J J ∗ =

(
1 + 1

ε2
1
ε

1
ε 1

)
. (5.1.1)
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The eigenvalues of the transformation matrix M are both real (please note that the matrix M is symmetric
according to its definition) and look as follows

λ1,2 = 1

2

⎛⎝(
2 + 1

ε2

)
∓

√(
2 + 1

ε2

)2

+ 4

ε2

⎞⎠ . (5.1.2)

The expansions of the eigenvalues with respect to the small parameter of the system read (the leading
orders of asymptotics are presented)

λ1 = 1

ε2
+ 2 − ε2 + O(ε3), λ2 = ε2 + O(ε3) (5.1.3)

e1 =
(

1
ε

)
, e2 =

(−ε
1

)
. (5.1.4)

It can be readily seen that the eigenvectors (5.1.4) coincide with the corresponding directions of the fast
and slow motions: the eigenvector e1 is asymptotically close to the direction of the fast motion (parallel
to the x-axis), whereas the eigenvector e2 is orthogonal to e1.

The equation for TILDM reads

Φ∗
f (Z) = x + 1

ε
y + εy = 0. (5.1.5)

Note that (5.1.5) differs from (3.1.2) (the term εy is added) and coincides with the slow curve
equation (see Section 3.1) up to the first order of magnitude by ε.

5.2 Linear example—Jacobian with complex eigenvalues

The situation with the second linear example (Section 3.2) appears to be a bit simpler. A corresponding
symmetric matrix M (transformation matrix) reads

J (x, y)
by def= A =

(
0 1

− 1
ε 1

)
, J ∗(x, y)

by def= A∗ =
(

0 − 1
ε

1 1

)
, M = J J ∗ =

(
1 1
1 1 + 1

ε2

)
.

(5.2.1)
The eigenvalues are real and equal to (for the leading order of magnitude)

λ1,2 = 1

2

⎛⎝(
2 + 1

ε2

)
∓

√(
2 + 1

ε2

)2

+ 4

⎞⎠ , (5.2.2)

λ1 = 1

ε2
+ 1 + ε2 + O(ε3), λ2 = 1 − ε2 + O(ε3), (5.2.3)

and the corresponding eigenvectors

e1 =
(

ε2

1

)
, e2 =

(
1

−ε2

)
. (5.2.4)

It is not hard to see that in this example as well as in previous examples, fast and slow directions are
close to original ones; moreover, the last example shows that the problem of complex eigenvalues does
not exist for the modification of the ILDM.
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The equation for TILDM reads

Φ∗
f (Z) = −1

ε
x + y + ε2 y = 0. (5.2.5)

Note that similar to the example studied in Section 5.1, (5.2.5) differs from (3.2.3) (the term ε2 y is
added) and coincides with the slow curve equation (see Section 3.2) up to the second order of magnitude
by ε.

5.3 Artificial example

This section illustrates a well-known unwritten regularity stating that a good theory is normally valid far
beyond formal bounds of its applicability. As it was already pointed out, the application of the suggested
TILDM approach is formally restricted by the linear differential systems. Nevertheless, it turns out that
the proposed technique succeeds to reach the desired aims in much more complex problems.

Consider a system of the type (2.3.1), where the vector field Φ(Z) reads

Φ(Z) =
(− 1

ε (x + sin(x) + sin(y))
−y

)
, ε � 1. (5.3.1)

The Jacobian of the vector field (5.3.1) looks as follows

J =
(−1−cos(x)

ε
−cos(y)

ε

0 −1

)
(5.3.2)

and due to its upper triangular structure its eigenvalues are evident

λ1 = −1 − cos(x)

ε
, λ2 = −1. (5.3.3)

At a first glance, it seems that a relation between these two eigenvalues is obvious: λ1 is the larger
eigenvalue and λ2 is the smaller one. A bit more deeper consideration shows that there are infinite
number of regions (vertical bands close to the points π + 2kπ) in the (x, y) plane, where values of the
expression (cos(x) + 1) are of the order of ε and smaller. This means that according to ILDM (!), the
system’s hierarchy (which is valid in most points of the plane) changes to the opposite in these regions.
This misleading outcome causes the fact that ILDM provides us with a number of artificial manifolds
(which can be conditionally called ‘ghosts’) and a wrong fast direction. Figure 1(a) demonstrates an
existence of the artificial manifolds (dotted curves), obtained as a result of ILDM run on the system
(5.3.1).

In the present example, there are no complex-valued eigenvalues. Nevertheless, there are domains
where a direction of the real fast motion is almost perpendicular to that produced by the ILDM approach
and this is the reason for appearance of the ‘ghosts’—artificial manifolds, which have no sense in the
system dynamics. A discrimination of these ‘artificial’ objects represents one of the main complications
for a regular use of the ILDM method.

The real slow manifold of the system under consideration is located in the vicinity of the y-axis (one
of the dotted curves, produced by the ILDM, lies close to it). The dashed curve represents the slow curve
(zeroth approximation of the real slow manifold, Fig. 1(b)), which can be derived according to the MIM
approach and the equation of which reads

x + sin(x) + sin(y) = 0. (5.3.4)
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FIG. 1. Characteristic curves and a typical trajectory of the system (5.3.1) in the state plane (x , y). Letters denote: (a) results of
application of the TILDM procedure, approximation of the real manifold (curve, close to the axis y) and ghost objects (dotted
curves); (b) slow curve (solid curve) and part of the results of TILDM running (dashed curve); (c) solid curve and the results of
TILDM running (solid and dashed coinciding curves, respectively), a typical trajectory starting from the point Pin.
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Figure 1(b) depicts the slow curve (solid line) of the system, the part of ILDM running results close
to y-axis (dashed) and the trajectory of the system (dotted), which starts at some chosen point in the
(x ,y) plane. One can easily see that a trajectory is naturally subdivided into the two different stages.
Within the first one, the trajectory moves fast from the initial point Pin towards the slow manifold. Once
the system trajectory approached the close proximity of the slow manifold, it begins to move along the
manifold being ‘glued’ to it.

Figure 1(c) compares the slow curve (solid) and the results of the TILDM running (dashed). We can
readily see that the two curves coincide with a rather good accuracy. Moreover, TILDM does not pro-
duce any artificial objects like ILDM does. This justifies our previous theoretical conclusion regarding
better ability of the TILDM approach proposed here to determine the slow manifolds of the multi-scale
systems.

5.4 Semenov’s model of thermal explosion

In this section, we consider a realistic example taken from the mathematical theory of combustion—
Semenov’s model of thermal explosion with heat losses.

In the dimensionless form, the relevant mathematical model of this classical problem (Semenov,
1928, Frank-Kamenetskii, 1969) can be presented as

γ
dθ

dt
= η exp

(
θ

1 + βθ

)
− δθ = F1(θ, η), θ(0) = 0, (5.4.1)

dη

dt
= −η exp

(
θ

1 + βθ

)
, η(0) = 1. (5.4.2)

Here, θ is a dimensionless temperature, η is a dimensionless concentration, δ is a dimensionless heat
loss parameter, γ is a reciprocal of the dimensionless adiabatic temperature rise and β is a dimensionless
ambient temperature. The parameters γ and β are normally small with respect to unity and γ serves as
the singular parameter of the system. Therefore, the system (5.4.1)–(5.4.2) can be treated as a multi-scale
system.

Note that the dynamics of the system (5.4.1)–(5.4.2) is known well from previous studies. In par-
ticular, the detailed analysis of the considered Semenov model was performed in the previous paper of
the authors (Goldfarb et al., 2004). The scrutiny of the system dynamics along the lines of the MIM
approach and detailed analysis of the application of the ILDM technique are presented there. Therefore,
here we restrict ourselves by the short summary of the results only.

It is worthwhile here to determine the slow curve of the system (5.4.1)–(5.4.2) before an application
of TILDM. According to Gol’dshtein & Sobolev (1992, 1988), the slow curve Ω1 of the system (5.4.1)–
(5.4.2) is given by

F1(η, θ) ≡ η exp

(
θ

1 + βθ

)
− δθ = 0. (5.4.3)

Let us now compare the results of the applications of the suggested TILDM procedure and ILDM
technique. Figure 2(a) shows that the TILDM (thick dashed line) coincides almost exactly with the slow
curve Ω1 (thin solid line). A good accuracy of the approximation of the slow curve Ω1 by the TILDM
witnesses in favour of the suggested algorithm. The thin dotted line represents the trajectory of the
system (numerical simulation). It starts at the point I (0, 1) and moves fast towards the attractive branch
of the manifold with the slow variable remaining practically constant (fast stage IN, η = 1). Far from the
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FIG. 2. The characteristic curves and the typical trajectories of the system (5.4.1)–(5.4.2) in the state plane θ–η. (a) Slow curve
(thin solid curve), TILDM (bold dashed line) and sample numerical trajectory (dotted line); (b) slow curve (dashed line), results
of application of the TILDM procedure, region of the complex eigenvalues (band bounded by PN and UW).
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slow manifold, the trajectory is characterized by the constant (asymptotically) value of the slow variable
(η = 1 in the considered example). At the point N (intersection with the slow curve), it reaches the close
proximity of the stable (attractive) branch of the manifold (relative rates of the processes are comparable
on the slow curve) and begins to move along the slow curve towards the final point (slow stage NO of
the trajectory).

An application of the ILDM procedure provides us with more complex results, which demand add-
itional non-trivial analysis even in the simple 2D case. A presence of two different eigenvectors leads to
the determination of two curves, L1 and L2,

L1: (J11 − λ1)F(θ, η) + γ J12G(θ, η) = 0, (5.4.4)

L2: (J11 − λ2)F(θ, η) + γ J12G(θ, η) = 0, (5.4.5)

which are built on the basis of the large negative eigenvalue (with respect to its absolute value) and
the corresponding second eigenvalue of the Jacobian, respectively (Jij—elements of the Jacobian of the
system (5.4.1)–(5.4.2)). The curve L1 contains branches AB and EF, whereas the curve L2 consists of the
branches BC and FG (Fig. 2(b)). As it was shown (Goldfarb et al., 2004), only branches AB and FG have
physical sense, they approximate the attractive and repulsive branches of the real manifold (compare
with the AT and TV of the slow curve). To exclude the curves BC and EF from the consideration, we
need to develop and apply some criteria for their disqualification. Moreover, within the band bounded by
the curves PBN and UFW, the eigenvalues of the Jacobian are complex, there is no splitting (according
to ILDM!) between the two processes involved and the ILDM procedure is not applicable. As it was
mentioned in Goldfarb et al. (2004), the band contains the turning point of the slow curve of the original
system (5.4.1)–(5.4.2).

5.5 Ignition of spray (two reactants model)

Here, we consider a mathematical model of the ignition of the cool fuel spray in the hot combustible
mixture. A formulation of the physical model and detailed asymptotic analysis of the dynamics of the
corresponding system of the governing equations along the lines of the MIM approach can be found in
Bykov et al. (2002). The finally reduced system of ODEs contains two equations and reads

γ
du

dτ
= η(u, r)aξ(u, r)b exp

(
u

1 + βu

)
− ε1r(u + θ0) = F2(u, r), u(0) = 0, (5.5.1)

ε2
d(r3)

dτ
= −ε1r(u + θ0), r(0) = 1, (5.5.2)

η(u, r) = η0 − γ u − ε2(νfψ − 1)(1 − r3)

νf
, ξ(u, r) = 1 − γ u + ε2(1 − r3)

νo
. (5.5.3)

Here, u is a dimensionless temperature, η and ξ are dimensionless concentrations of the fuel and oxi-
dizer, respectively, r is droplet radius, γ is a reciprocal of the dimensionless adiabatic temperature rise
and β is a dimensionless initial temperature. The parameters γ and β are normally small with respect to
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unity. The parameter γ serves as the singular parameter of the system. The value of the parameter ε2 can
essentially vary and it can serve as a singular parameter too. Therefore, the system (5.5.1)–(5.5.2) can
be treated as a multi-scale system. Unlike Semenov’s model, the system (5.5.1)–(5.5.2) has two small
parameters and the relation fast–slow depends on the value of the ratio γ /ε2. For our purposes, let us
restrict ourselves by the case of the fast temperature (γ /ε2 � 1). Assuming this, the slow curve Ω2 of
the system (5.5.1)–(5.5.2) is given (Gol’dshtein & Sobolev, 1992) by

F2(u, r) ≡ η(u, r)aξ(u, r)b exp

(
u

1 + βu

)
− ε1r(u + θ0) = 0, (5.5.4)

where the chosen system parameters for the example presented here look as follows: β = 0.04, γ =
0.001, ε1 = 1, ε2 = 0.1, ψ = 15, νf = 0.127, νo = 0.327, a = 0.25, b = 1.5, θ0 = 1.5 and η0 = 0.25.
The slow curve Ω2 can be readily obtained by solving the equation F2(u, r) = 0, whereas the equations
for the ILDM as well as for the TILDM are solved numerically using the continuation method ALCON
(Deuflhard et al., 1987; see Fig. 3(c,d)).

It is worthwhile to follow the order of the analysis, which was adopted for the study of the Semenov
model. Figure 3(a) presents the TILDM (bold dashed line), the slow curve Ω2 (thin solid line) and a
sample numerical trajectory starting from I (IABDC, the bold dotted line). Similar to the previous case,
the TILDM and the slow curve almost coincide. One can readily see that the trajectory starts at the point
I (0, 1) and moves fast towards the attractive branch AT of the manifold. During this first fast stage, the
slow variable (r) preserves its initial value (r = 1). At the intersection point A, the relative rates of the
processes involved become comparable and the trajectory begins its slow stage (AB, movement along
the slow curve). In the vicinity of the turning point T, the stable branch of the slow curve loses its main
feature to attract the trajectories, the trajectory tears off and the second fast stage begins (BDC, final
thermal explosion).

As in the previous example, the ILDM technique yields a much more rich picture, which should be
additionally analysed (Fig. 3(b)). For our purposes, we depict two curves built on the basis of the two
eigenvalues of the Jacobian. The curve ABGR corresponds to the smaller eigenvalue λ1, whereas the
curve FJK—to the second one (λ2). The part AB of the ILDM approximates the stable branch of the
slow curve/TILDM and, in fact, represents the single desired result of the ILDM machinery application.
To understand the whole picture, we need to study a behaviour of Jacobian’s eigenvalues. The curve GEF
distinguishes the regions of the negative (left) and positive (right) values of the λ1 (λ2 is positive in the
chosen region of the variables values); therefore, the ILDM technique is absolutely not applicable right
to the curve GEF. Moreover, the ILDM machinery demands an existence of splitting of the processes
involved (essential difference in rates of changes). The curve VW presents the set of points where the
ratio |λ1/λ2|=10 is valid. We can see that left to the curve VW the ILDM manifold approximates the
slow curve quite well, whereas right to this curve the ILDM (ABGR) begins to move away from the real
trajectory (ABDC). It can be explained by the fact that the relation between the eigenvalues decreases
from 10 (on the curve VW) to the region of unity and less and this makes the application of the ILDM
technique invalid.

Additional information on the dynamical picture of the system (5.5.1)–(5.5.2) can be obtained from
Fig 3(c) and (d), which present both the relevant curves and the trajectories. Figure 3(c) depicts the
slow curve Ω2 (solid line ABTF), TILDM (circles ABTF), ILDM (solid lines ABGG and KJF),
nuances of the grey colours correspond to different values of the Jacobian eigenvalue λ1. One can easily
see that the branch AB is really attractive and the trajectories are attracted to it, whereas the branch
TF of the slow curve/TILDM is repulsive and the trajectories are rejected from it. Moreover, as we saw
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FIG. 3. The characteristic curves and the typical trajectories of the system (5.5.1)–(5.5.2) in the state plane u–r . (a) Slow curve
(thin solid curve), TILDM (bold dashed line) and sample numerical trajectory (dotted line); (b) slow curve (dashed line), results of
application of the ILDM procedure (solid lines) and sample numerical trajectory (dotted line); (c) and (d) slow curve (solid line),
results of application of the TILDM procedure (circles), results of application of the ILDM procedure (solid lines) and trajectories
(arrows), colours demonstrate the value of the eigenvalues λ1 and λ2, correspondingly.

in Fig. 3(b), in the region where λ1 becomes positive, the curve BGR losses its major property stops to
have sense.

6. Conclusions

The present paper represents a natural continuation of the authors’ work on a comparative analysis of
the two powerful asymptotic methods—ILDM and MIM. The two are based on the general theory of
integral manifolds and exploit their specific properties. Both the approaches have their own advantages
and drawbacks. The complementary properties of the two asymptotic approaches (Goldfarb et al., 2004)
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and their ideological closeness generated an idea that there is a feasible combination of the two methods.
Theoretically, this combination should be able to combine the advantages of these two approaches and
to avoid their weaknesses. Once we develop this machinery, it can sufficiently improve both analytical
and numerical study of any kind of multi-scale systems. The development of the tool is a subject of our
collaborative work and the present paper is one more step in this direction.

ILDM was originally constructed to numerically handle systems of ODEs containing a large number
of equations. The performed analysis showed that the ILDM method can be treated as a particular case
of a general approach, which in fact has the same aim: to find a new coordinate system, where the fast
and the slow motions are performed along the new axes. This all-purpose approach is formulated in the
form of some type of a universal framework for all algorithms of similar nature.

As every other algorithm, ILDM has its own restrictions, which were partly demonstrated in the
present paper on a number of elementary examples. It was shown that ILDM cannot treat the regions
of the phase space, where the eigenvalues of the Jacobian are complex (their real values are equal and
there is no splitting in rates of change of the processes involved). To overcome the discovered underwater
stones, we suggested the modification of the existed ILDM method, which can be conditionally called
TILDM. In the geometrical language, it represents an effective tool for numerical determination of a
new system of coordinates (where the directions of the fast and slow motions coincide with or are close
to the new coordinates), where the treated system of ODEs is reduced to the conventional form of the
SPS. The creation of the new coordinate system is based on the local determination of the fast and slow
directions (in the new desired metrics, these directions should serve as coordinates). We suggest to use
a product JJ∗ as the transformation matrix M .

The suggested approach (TILDM) was developed to identify the slow low-dimensional invariant
manifolds in problems arising in mathematical theory of combustion. The distinguishing feature of this
algorithm is its numerical nature and its ability to deal with large systems of ODEs (similar to ILDM).
On the other hand, the results of the TILDM are close to the zeroth approximation of the exact manifold
(similar to MIM).

The suggested TILDM algorithm successfully works with the systems having an internal hierarchy
in the regions of the complex Jacobian’s eigenvalues with close real parts. This is due to the simple
fact that the new transformation matrix is symmetric and has no complex eigenvalues. In these regions,
the ILDM algorithm is not applicable (there is no splitting—according to ILDM!), whereas the original
system can have subdivision into fast–slow subsystems.

In the examples considered in the present paper, the suggested TILDM technique has no difficulties
in the so-called transition zones (turning manifolds) between different invariant manifolds, which cannot
be correctly described by the ILDM method because for these zones a division into ‘large’ and ‘small’
eigenvalues of Jacobian typically does not exist. It is also concluded that the TILDM algorithm is more
sensitive to the ‘hidden’ hierarchy of the original system than the ILDM.

The work on the comparative analysis of the original algorithm (ILDM) and its proposed modifica-
tion (TILDM) being applied to the realistic combustion problems is currently in progress. Preliminary
results of this study provide us with a confidence that the proposed modification of the existing algorithm
is able to overcome some of the drawbacks of its original. The authors are continuing their investigation
in this direction.

Finally, we note that although the TILDM algorithm suggested here does provide a more accurate
dynamical picture than that previously obtained with the ILDM, it is not without its own deficiencies
(see, e.g. remark at the end of Section 4). It is undisputable that a more thorough theoretical study
of the suggested approach should be performed as well as scrutinized applications to other real world
problems. This direction of further improvement of suggested approach is currently under investigation.
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