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Abstract 
In the present work a new approach for automatic reduction of chemical kinetics models, the so-called Global 
Quasi-Linearization (GQL) method is discussed. The suggested approach is a result of an analytical study of the 
ILDM method from the point of view of the general framework of singular perturbation theory. This method has 
been developed in order to overcome difficulties of the theoretical concept of slow manifolds in simulations of 
reacting flows. The method is implemented within the standard ILDM method and applied to a simple, but 
meaningful combustion chemistry model, namely, the carbon-monoxide system. The results of the simulations show 
a good agreement of the detailed model with reduced one and demonstrate the potential of the suggested method. 
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1. Introduction 
 

The fact that the use of detailed chemical kinetics in 
complex combustion phenomena is very important for 
accurate predictions has been commonly accepted in the 
last [1]. However, due to the large number of species 
and reactions, the computation of cost is typically high 
with detailed mechanisms and prohibits the use of detail 
chemistry in engineering applications especially with 
complicated geometries. Moreover, the mathematical 
model for the conservation laws of reacting flows is 
highly nonlinear with governing processes (i.e. 
hydrodynamics, molecular transport, chemical 
reactions) and the underlying processes occur at time 
scales differing by many orders of magnitude. This 
drastic disparity in time-scales and nonlinearities result 
in the so-called stiffness of the mathematical model and, 
therefore, courses serious difficulties in the numerical 
solution [2-4]. 

Therefore, simpler overall chemical kinetic models, 
which reduce stiffness and the system dimension, are 
desirable. Mechanism reduction has been extensively 
explored, and a range of methodologies has been 
developed in the past several decades to obtain 
simplified models of chemical kinetic (see e.g. [4] for 
more references and a detailed discussion). 

In the last decade substantial progress has been 
made in model reduction methodologies both 
theoretically (see e.g. [5] for more references) and for 
practical/numerical applications (see e.g. [6, 7]). In 
general, model reduction can be achieved by a number 
of different mathematical methods. Chemical model 
reduction is often based on the observation that the full 
chemical kinetics accesses a small part of the state space 
during the combustion process. This is because time 
scales differing by orders of magnitude characterize the 
detailed system of equations, which governs the reacting 
flow. The wide range of time scales appearing in a 
typical combustion system causes the existence of low-
dimensional manifolds in the state space, which possess 

very important properties like invariance and 
exponentially attractiveness for the system trajectory 
flow. The solution trajectories of such systems evolve 
from an arbitrary initial state with domination of the fast 
reactions, which equilibrate quickly. Thereafter, the 
evolution of the system is governed by the slow 
reactions along what is called as the slow manifold. 
Thus, when the fast part of the system dynamics is not 
so important, the composition can be assumed to be 
limited only to the slow manifold during the whole 
reaction/combustion process. 

Accordingly, if the slow manifold in the state space 
is described by means of a smaller number of species 
concentrations or other parameters, then the governing 
system of differential equations are required to describe 
merely the behaviour of those parameters. The other 
species concentrations or the whole state space can be 
recast from values of these parameters by using 
functional relations defining the manifold and, 
therefore, do not require the solution of expensive 
differential equations system of higher dimension. The 
use of the slow manifold reduced chemistry provides an 
additional computational advantage, because the 
elimination of the fast reactions reduces the stiffness 
permitting larger time steps during numerical 
integration. 
 
 
2. Motivation and Specific Objectives 
 

As a motivation to the present work, let us list the 
following questions and problems, which arise in the 
application of the slow manifold concept. The most 
important problem concerns the local character of all 
known methods [4], which are based on a linearization 
of the non-linear vector field defined by Right Hand 
Side (RHS) of the system of governing equations. 
Hence, the global behavior of the system might not be 
represented appropriate by such an analysis. Note that a 
global analysis is very important form a point of view of 
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correct representation of the reduced system of 
differential equations in terms of reduced parameters or 
variables. 

A next disadvantage and drawback of current 
methods is a lack of proper tools for the identification of 
the fast system behavior. Obviously, the slow manifold 
does not reflect the fast subsystem behavior. Moreover, 
most reduction techniques completely neglect the fast 
transient period of the system behavior. It is often 
assumed that, after a short transient period of time the 
system relaxes onto the low-dimensional slow manifold, 
but where the fast par of the system trajectory ends up 
on the manifold and how its behavior is projected (as a 
system of differential equations) onto the manifold are 
open questions for many automatic reduction methods. 
In this work, we address these issues and, in particular, 
solve the problem with projection of initial conditions 
onto manifolds. 

The next question concerns the needed reduced 
dimension, which is also a weak point of current 
approaches. Usually, it is defined according to the user 
specified tolerances [8, 9], but again has local character 
and might be different in different parts of the state 
space. 

Additionally, it is of great interest in many 
engineering applications to construct an appropriate 
tool, which would have only moderate accuracy, but 
allows to calculate the manifold very fast and robust 
with a good parameterization for a correct projection. 

In this work we address these issues and discuss the 
following aspects of the model reduction: 

 
- the problem of global identification of the fast and 

slow decomposition of the original system, 
 
- a significant simplification of the procedure of the 

slow manifold identification and description, 
 
- an approximation of the fast subsystem, which 

allows the application of the fast subsystem 
variables for parameterization of the slow manifold 
permitting more robust projection procedures. 

 
In particular, we propose an algorithm solving at 

least to a large extent these problems, which is highly 
efficient, simple to apply and can be employed for fast 
reduction when the dynamical identification of the slow 
manifold is needed. 
 
 
3. Methodology 
 
3.1 Mathematical model 
 

Mathematically, the decomposition means that we 
are looking for new coordinates representing the 
original system in the form of a Singular Perturbed 
System (SPS) [10, 11]. A key mathematical concept for 
the novel reduction is that of Singular Perturbed Vector 
Fields (SPVF) notion [12]. In a number of works [12-

14], the theory of SPS [10] is reviewed and extended 
with special emphasis on a coordinate free approach. 
The main idea of our approach is an evaluation of such 
change of the system coordinates that would provide us 
with a necessary decomposition. For this decomposition 
all the machinery of powerful methods of SPS can be 
applied to analysis, formulation of the reduction method 
and evaluation of the reduced system dynamics. 

Outline the main stages of the approximation of the 
new coordinate system and describe the implementation 
scheme. In this work we restrict ourselves by 
considering homogeneous systems described by 
autonomous ODE (1). An extension to more general 
systems of PDEs is the subject of our future research. 
Let us consider very general form of the system of 
governing equations 
 

( ) nR,F
dt
d

⊂Ω∈ψψ=
ψ

.  (1) 

 
Here the state vector ψ  is the n-dimensional vector 
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enthalpy, p the pressure, 
sn1 w,...,w  are the species 

mass fractions and sn1 M,...,M  the molar masses 

( 2nn s += ). ( )ψF  is the n-dimensional vector of the 
thermo-chemical source term and t denotes the time.  

The suggested approach is based on two main 
assumptions, first of all on the assumption that there 
exist a decomposition because of different time scales 
and, secondly, we suppose that it is valid (within a 
certain accuracy) everywhere inside our fixed domain 
Ω , which we call as the domain of interest. The 
following construction allows us define a linear 
approximation to the vector field defined by RHS of (1) 
(so called Global Quasi-Linearization) that leads to the 
desired decomposition. 
 
3.2 Suggested method 
 

In the present work, a variation of the GQL 
procedure [14] is discussed, which was motivated by 
numerical simulations. A modification needed, because 
in many practical situations the system has a 
dimensional form and, therefore, cannot be used for a 
global multi-scale analysis without a proper non-
dimensionalization procedure. Otherwise the system 
hierarchy is perturbed by naturally different scales of 
the system variables. We overcome here this problem 
suggesting a proper normalization procedure for 
systems in dimensional form. 

Suppose ( )ψF  is a vector field, which satisfies our 
assumptions about a "hidden" small parameter of the 
system, which determines the main disparity of time 
scales. The main steps of the reduction are the 



following. 
 
• First, we select n linearly independent points 

(vectors) Ω∈ψψ n1,...,  in such a way that the set of 

vectors defined by the vector field ( ) ( )n1 F,...,F ψψ  is 
also linearly independent; this is possible because we 
assume additionally that all linear integrals define the 
conserved subspace of the system were removed from 
its final form (1). 
 

• These vectors form the columns partitioning of 
the matrices  
 

( ) ( )[ ] [ ]n1n1 ,...,,F,...,FF ψψ=Ψψψ=
==

. 
 

The matrix 
!

FT
−==

Ψ=  is the GQL of the system 
(1). It has a simple geometrical interpretation. It is the 
matrix for the linear mapping that transforms the vectors 

n1,...,ψψ  to ( ) ( )n1 F,...,F ψψ ; 
• Finally, we exploit the invariant eigenspaces of 

the the matrix T and define the decomposition. If the 
matrix T is decomposed into invariant subspaces 
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then, similar to the assumption of the ILDMs method 
(see e.g. [15, 16] for more details), the fast relaxed 
processes define an approximation of the low 
dimensional manifold within the state space as 
 

( ) 0FZ~f =ψ ,    (4) 
 
i.e. the manifold where the reaction rates in direction of 
the fast processes vanish defines an approximation to 
the slow manifold. The invariant eigenspaces define a 
reduced system dimension since sZ  and sZ~  are the 

right and left invariant subspaces belonging to the sm  

eigenvalues having the smallest real parts ( sN ) and fZ  

and fZ~  are the right and left invariant subspace, 
correspondingly, related to the fast relaxing processes 
with fm  eigenvalues ( fN ) having the largest negative 

real parts respectively ( nmm fs =+ ). The equation 

(4) is then defined globally in Ω  and it implicitly 
represents an sm -dimensional slow manifold in the 
state space. 

It has to be mentioned that the present algorithm is 
similar to the ILDMs concept with the difference of 
using GQL - T instead of the system Jacobian matrix. 
Consequently, all previous developments of the ILDM 

can be applied to implement the method with only 
minor changes in the numerical code structure. 
Furthermore, because T  is defined globally, the time 
consuming decomposition of the matrix has (in contrast 
to ILDM) only to be performed once in the generation 
of the manifold. The reduced system dimension is 
defined as a gap between the sN  and fN  eigenvalues, 
in such a way that the absolute value of the ratio of the 
maximal eigenvalue by absolute value in small group 

sN  to minimal in large part fN  stands for a small 
system parameter. Thus, after we get the linear 
decomposition, high order approximations according to 
standard SPS approach allow improving the 
decomposition itself and increase performance of the 
method. The last is the subject of forthcoming works. 
 
3.3 Choice of reference vectors/points 
 

Of course the efficiency and the accuracy of this 
procedure depends essentially on choice of n1,...,ψψ . 
Roughly speaking, practical recommendations for the 
choice are following: ( ) ( )n1 F,...,F ψψ  should not be 
too close because it can result in degeneration of the 

matrix 
=

Ψ . Additionally, the values of vector field 
( )iF ψ  should represent "different" behavior for 

different n,..,1i = . This choice is a crucial point of the 
algorithm and must be adapted to every particular 
model. At present, the following algorithm for choice of 
reference set of points/vectors is proposed. Note, 
however, that other possibilities of the choice of 
reference points can exist, but theoretically, their results 
differ only in higher orders of approximations with 
respect the system small parameter (see e.g. [13, 14] for 
details and the definition (6)). 
 
• First, by performing quasi-stochastic uniform 

distribution, an "initial set" { }N1N ,...,S ψψ=  

consisting of points ( nN >> ) uniformly 
distributed in the domain Ω  is formed. 

• Then we calculate mean value of the vector field 

over the sequence NS  as ( )∑
=

ψ=
N

1i
iF

N
1F , and 

take a subset of NS  as following  
 

( ){ }FF:SS iNiK >ψ∈ψ=  (5) 

 
where K,..,1i = , 1k,nkK >>⋅= . The set KS  is 
called the "control set". It consists of the points, which 
are sufficiently far away from the slow manifold and, 
therefore, can be safely used to estimate the fast 
subspace (see e.g. [13, 14] for more details). Note that 
any subset of length of n of the control set KS  can be 



used as the reference set to get T, but there is a 
degeneration problem of the chosen subset of the 
control set if some of points/vectors are close one to 
another or some points are still close to the slow 
manifold. This can lead to a degeneration of the matrix 
=

Ψ  and, consequently, to a wrong decomposition. 
Accordingly, not every subset of KS  of length of n can 
be used as the reference one. To overcome this problem 
we need to take a subset of vectors such that it spans the 
simplex of volume that can be compared to the volume 
of the domain Ω . To resolve this problem we suggest 
further exploiting existing decomposition. Accordingly, 
we form arbitrarily sequences of length of n from the 
control set and choose the best one, which gives the best 
decomposition (small parameter). Namely,  
 
• we build up the sequence of GQL approximations 

k,..,1i,Ti =  based on subsets of the control set 
 

{ } k,...,1i,,..., ni1n)1i( =ψψ +− ; 
 
• The final reference sequence { }

ni1n)1i( ** ,...,ψψ
+−

 

and the final GQL approximation are found 
simultaneously as *i

TT =  by a maximal gap for 

given dimension of the reduced model sm : 
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where ( ) n,...,1j,Tij =λ  are eigenvalues of iT  
ordered in increasing order by absolute values. Then, 

the reciprocal value 
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small system parameter. As it was mentioned above, 
once we have the decomposition and the small 
parameter then, following the SPVF, its improvement 
up to arbitrary order of magnitude is possible [14]. The 
suggested algorithm has been successfully implemented 
in the numerical code for the standard ILDM. 
 
 
4. Results and Discussion 

 
As a test example the syngas/air combustion system 

has been chosen. This model is not too complicated, but 
nevertheless, sufficient for illustrations and introduction 
of the suggested method. The chemical kinetic model 
consists of 13 species [17]. The overall dimension of the 
considered example is then equals to 15. A detailed 
system solution and the manifold mesh are generated by 
using the in-house HOMREA code [18, 19]. The 
program was originally developed to simulate 
homogeneous reactors, later it was extended to tackle 

the ILDM table generation and then used for the IC 
engine cycle simulation. In numerical simulations we 
define the domain of interest on a basis of the system 
solution trajectories. Namely, we take a sequence of the 
system trajectories ( ) ( )t;t 0

jj ψψ=ψ  starting at 

different initial states 0
jψ  and calculate the maximal 

values for the species molar numbers over this sequence 
 

( )t;max 0
j

i

0t,j

i
max

ψψ=ψ
>

.  (7) 

 
The maximal values then determines the boundary of 
the domain ( )n

max
1
maxmax ,...,ψψ=ψ , except the 

conserved quantities which values remain equal to the 
initial ones. Thus, the domain of interest in our case is 
 

{ }n,..,1i,0:R iin
max

=ψ<ψ<∈ψ=Ω . 
 

The implementation scheme introduced above one 
can evaluate the GQL manifold by equation 

( ) 0FZ~f =ψ , fast subsystem (up to a leading order of 
approximation) 
 

( )
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and the slow subsystem governs the system dynamics 
on the manifold 
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Fig. 1. The state space projection onto the so-called 
major species molar numbers H2O-CO2-OH. 



 
In the case of the standard ILDM and similar 

approaches uses Jacobian matrix, this representation is 
defined locally, because the dependence of the 
transformation matrices fs Z~,Z~  on the point in the 
state space. 

In figures 1-3 a typical structure of 2D slow 
manifold together with results of application of the 
method is presented in projections to different species 
subspaces. The solid blue line is the solution trajectory 
of the detailed system (1); the initial state for this 
solution was taken to be close to a boundary of 
existence of ILDM manifold, which is represented here 
by red mesh. The solid cyan line shows the fast 
subsystem solution (8). The green mesh shows the slow 
manifold based on GQL method, where by red cubes the 
final set of reference point is presented, so exactly those 
points were used to obtain the decomposition. 
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Fig. 2. The state space projection onto the so-called 
minor species molar numbers H2O-CO2-HCO. 
 

At first glance, we can see that the GQL manifold is 
close to the ILDM manifold where it exists, but starting 
near the boundary of existence it deviates from the 
ILDM. This fact is in agreement with theoretical 
predictions [22]. The explanation is that the ILDM 
manifold, as it was shown in a number of works [21, 
22], defines the first order approximation being applied 
to the standard SPS system, while our current methods 
provides us with the zero order approximation. If the 
small system parameter tends to zero we should not see 
a difference between two approaches, but because the 
assumption is only asymptotically valid, we obtain these 
differences. The small parameter for the 2D slow 
manifold varies in this case from 0.005 to 0.02 
depending on realization of the algorithm due to 
stochastic nature of the reference point’s choice. The 
slow manifold, however, does not reflect this. In 
different realizations, there were insignificant deviations 

from one realization to another near the boundary only. 
Let us consider this part of the domain in more 

detail, according the SPS theory, in the vicinity of the 
ILDM boundary there is so called turning manifold that 
separates two distinct parts of the slow manifold its 
attractive and repulsive parts [12], moreover, close to 
the turning manifold first order approximation is far 
away from the real system dynamics. 

Now, to illustrate this, let us compare the 
constructed slow manifolds with the stationary flame 
structure. In figures 1-3 by magenta lines stationary 
solutions of the free flat laminar flames [20] are 
presented. It is seen, in particular for minor species (Fig. 
1 and 2), that stationary system solutions approach the 
slow system manifold along the repulsive part of the 
system invariant manifold (see close to the boundary, 
where the ILDM vanishes). In this region the 2D 
dimensional manifold does not approximate properly 
the system dynamics and we should increase the 
dimension. 
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Fig. 3. The state space projection onto the so-called 
minor species molar numbers H2O-CO2-HO2. 
 

Although, there are some problems with our new 
method right near the origin (see [23] for instance), it 
nevertheless allows better approximation of the reduced 
system dynamics without any increase of the system 
dimension in the so-called boundary domain [23]. 

Finally, even if we do not take into account the fact 
of wider range of the manifold existence, the new 
method (of course for relatively small system 
parameter) being much simpler then the other methods, 
agrees well with both the ILDM and detailed system 
solutions. Hence, there is a potential of this approach 
and we are going to improve it in our further works in 
order to increase its accuracy. This is possible by 
considering higher order approximations according to 
the standard SPS theory, which now can be applied with 
all its powerful, sophisticated and well developed 
methods. 

Furthermore, the application of the suggested 



method to more complex reacting flows and geometries 
as well as to turbulent flows will also be subject of our 
future research. 
 
 
5. Conclusions 

 
A new method of automatic mechanism reduction is 

developed in the current work. It is a realization of the 
general scheme of an automatic reduction procedure 
based on the ILDM approach, with the difference that 
an invariant manifold of low dimension and system 
decomposition is approximated by the developed GQL 
procedure instead of the system Jacobian. 

In principle, the suggested approach follows well-
known ideas from the standard ILDM method, but there 
are some important novelties making it very efficient in 
realization of the general scheme of automatic 
reductions. First of all, the global decomposition is 
found using invariant subspaces of the GQL in the 
whole domain of interest of the state space. This allows 
us to use developed ILDM codes to implement the 
method. A next, the reduced system dimension is 
defined by the spectrum analysis of the GQL and the 
structure of the decomposition remains constant 
throughout the whole domain of interest. This permits 
identification of a fast subsystem behavior such that 
correct projection becomes available. Thus, numeric for 
evaluation of the manifold’s equation is significantly 
simplified because of computationally expensive 
procedure of decomposition into invariant subspaces is 
not longer needed. Finally, an estimation of the system 
small parameter (6) is obtained by the suggested 
approach. 

Reduced and detailed calculations were performed 
in order to verify the method and compare it to the 
standard ILDM method. The simulations show that 
relatively simple flame structures yield a good 
agreement. Furthermore, the fast part of the detailed 
system solution trajectory is approximated surprisingly 
well not only by the local ILDM method, but by the 
constant GQL decomposition showing the potential of 
the suggested method. 
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