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Abstract

A new implementation scheme for reduced mechanisms based on hierarchically generated and extended
intrinsic low-dimensional manifolds (ILDMs) created ‘‘on-demand” is presented. The algorithm includes
the use of ILDMs in generalized coordinates and a new hierarchical concept for the extension of the
ILDMs into the domain of slow chemistry. Problems of pre-calculated ILDM tables are overcome by gen-
erating ILDM cells on-demand during the flame calculation, yielding an increased efficiency of the table
generation and implementation. In view of a future generation of ILDMs with adaptive dimension based
on a local online error control, the presented algorithm includes the possibility to increase the ILDM
dimension hierarchically after the stationary solution (solution after 104 s) of the first flame calculation
with an nc-dimensional ILDM is reached and to re-calculate the result of this first flame calculation using
higher-dimensional manifolds with a subsequent error test. The paper presents the generation of hierarchi-
cally extended ILDMs in generalized coordinates as well as the on-demand implementation scheme.
A sample free flame calculation for the syngas–air system validates the algorithms.
� 2009 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
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1. Introduction

Mainly driven by economical and environ-
mental requirements, the numerical simulation
of combustion systems has been subject to
increasing interest in the past decades. In these
simulations, large numbers of species and reac-
tions have to be considered, with resulting equa-
tion systems of high dimension [1]. Furthermore,
the calculation of chemical source terms is costly
and the chemical kinetics causes a stiffness of
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the equation systems [1]. Thus, reduced models
to describe the chemical kinetics are an impor-
tant tool in the context of combustion modeling.
Various methods to construct reduced chemical
mechanisms (see e.g. [2–4]) have been developed
and improved continuosly. Examples are
the partial-equilibrium- [5] and steady-state
approximations [6], the method of rate-con-
trolled constrained equilibrium (RCCE) [7,8],
computational singular perturbation (CSP)
[9–16], the method of integral or invariant man-
ifolds (MIM) [17–20], the functional iteration
method (FIM) [21–23], flamelet generated mani-
folds (FGM) [24], trajectory-generated manifolds
(TGLDM) [25,26], PIC-/ICE-PIC-Methods [27–
29] and different concepts for reaction-diffusion
ute. Published by Elsevier Inc. All rights reserved.
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manifolds (e.g. [30,31]). Another tool for mech-
anism reduction, which is based on a spectral
decomposition of the Jacobian of the chemical
source terms is the method of intrinsic low-
dimensional manifolds (ILDM) [32,33]. Both
theoretical and numerical aspects of the method
have been investigated thoroughly (see e.g. [34–
46,51] and references therein) and the use of
ILDMs as pre-calculated lookup-tables in flame
calculations has proven to be an efficient tool
(e.g. [47,48]), though there is a major drawback:
typically, no a priori knowledge is used about
the part of state space accessed by the flame cal-
culation and the pre-calculated ILDM tables
have to cover their whole domain of existence
(bounded by the mathematical existence and
by additional physical constraints like e.g. non-
negative mass fractions [40]). This is a rather
negative aspect in the implementation of pre-cal-
culated tables, because especially laminar flame
calculations access only a small part of this tab-
ulated domain. Thus, CPU-time and storage
capacity are used unnecessarily to tabulate
ILDM points that are not actually needed. An
on-demand generation of the tables during the
flame calculation can avoid this negative aspect.
Therefore, storage and retrieval procedures were
suggested like ISAT [49] or PRISM [50], which
can in principle be used in combination with
different kinds of mechanisms. In [51], an in-situ
generation of ILDMs was suggested, showing
the potential in saving CPU-time and storage.
The algorithm was based on ILDMs of fixed
dimension written in terms of species concentra-
tions. The extension of the ILDM to the slow
chemistry domain was done by setting the reac-
tion rates of major species to zero. In this
paper, we present an algorithm for the on-
demand generation of ILDMs in generalized
coordinates (generalized coordinates in the
ILDM-context are discussed in [44,45]), coupled
with a new hierarchical concept for the exten-
sion of ILDMs into the slow chemistry domain.
Furthermore, the algorithm increases the dimen-
sion of the ILDM table automatically after the
first flame calculation (note, that ‘‘first flame
calculation” is here used to refer to the whole
calculation with the nc-dimensional ILDM until
the stationary solution is obtained, not only to
one calculation step), exploiting the hierarchical
structure of ILDMs [41]. The higher-dimen-
sional table is then used to re-calculate the
result of the first flame calculation with the
lower-dimensional table, followed by a subse-
quent error test. This is a first step towards
ILDMs with adaptive dimension controlled by
an online error estimation. We present the gov-
erning equations (Section 2), the on-demand
implementation scheme (Section 3), a sample
calculation (Section 4) and give some concluding
remarks (Section 5).
2. Governing equations

The equations for the calculation of ILDMs
have been discussed in detail e.g. in [40,44,45].
Let us just recall, that the ILDM of a reaction sys-
tem governed by

ow

ot
¼ FðwÞ ð1Þ

can be obtained by solving the n ¼ ðnspec þ 2Þ-
dimensional (nspec: number of species) equation
system:

GðwÞ ¼ eZ fðwÞ � FðwÞ ¼ 0ePðwÞ ¼ 0:
ð2Þ

In Eqs. (1) and (2), w ¼ ðh; p;w1=M1; . . . ;wi=MiÞ,
i ¼ 1; ::; nspec, is the n-dimensional vector of therm-
okinetical state variables with h as the enthalpy, p
as the pressure; wi=Mi are specific mole numbers
with wi and Mi as mass fraction and molar mass
of the species i. Symbol t denotes the time and
FðwÞ the vector-valued function of the chemical
rates of change. The ðnf � nÞ-dimensional (nf :
number of fast processes) left invariant subspaceeZ f is spanning the same space as the ‘‘fast” eigen-
vectors of the Jacobian FwðwÞ. Symbol GðwÞ de-
notes the resulting nf ILDM-equations and ePðwÞ
is a vector-valued function of dimension np

(np ¼ n� nf ¼ nz þ nc, where nz: number of con-
served quantities, nc: number of progress vari-
ables) for the parameterization. Details on the
parameterization can be found in [40], as well as
details on the numerical procedure for the calcula-
tion of ILDMs including the multi-dimensional
continuation process for the built up of the tabu-
lation mesh.

In the slow chemistry domain (called ‘‘SCD” in
the following), where the coupling between
thermo-chemical and transport processes is strong
and the temperature is low, manifolds defined by
Eq. (2) require a very high dimension or do not
exist. Thus, alternative approaches have to be
found for this part of state space. Bykov and
Maas [43] suggest a domain-splitting algorithm,
in which the extension of the ILDM into the
SCD is constructed such that the extended mani-
fold is a locally linear hyperplane, with this hyper-
plane joining the ILDM boundary with the
unburnt point. Tables calculated with this
approach yield good results in flame calculations
[43] in the SCD, because the processes in this
domain are mostly governed by mixing and can
therefore be well approximated by a locally linear
construction of the extension. Nevertheless, more
accurate results would be obtained by an
approach that takes into account that there are
still some fast chemical processes in the SCD. This
can be achieved by a new concept called hierarchi-
cally extended ILDMs. In this concept, the exten-
sion of an nc-dimensional ILDM is constructed by
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increasing the ILDM dimension stepwise hierar-
chically by x ¼ 1; . . . ; nf once the boundary of
the nc-dimensional ILDM is reached. This dimen-
sion increase is done with the additional con-
straints, that all points of the extension should
link the manifold boundary with the unburnt
point on the shortest possible path. Concerning
the existence of higher-dimensional ILDMs at
the boundary of an nc-dimensional ILDM it
should be noted, that the existence of an
(nc þ 1)-dimensional ILDM is guaranteed unless
the (nc þ 1) ‘‘slowest eigenvalue” degenerates. In
this case, an (nc þ 2)-dimensional ILDM exists.
The movement along the higher-dimensional
ILDM causes no problems even in cases of high
curvature of the ILDM, because it is calculated
using a multi-dimensional continuation procedure
[40]. To illustrate the idea of the hierarchical
extended ILDMs, Fig. 1 shows a 1d-ILDM (black
line) and the point where it ceases to describe the
dynamics (black-filled circle) in a schematical 3d-
projection of state space. Once the last 1d-ILDM
point is reached, the number of ILDM equations
used is reduced by one, that means, the dynamics
is now moving along a 2d-manifold (black mesh).
The ‘‘missing” ILDM equation is replaced by an
additional constraint that forces the extension to
move towards the unburnt composition (note that
the 2d-ILDM is plotted for illustration purpose
only, it does not need to be calculated). For a hier-
archical extension of a 1d-ILDM, this constraint
is simply given by the direction vector defined by
the state at the local starting point for the contin-
uation procedure and the unburnt point. In case
of an extension of a 2d-ILDM, two different direc-
tions would be required to find a surface, that is a
subset of the corresponding 3d-ILDM and that
links the boundary of the 2d-ILDM with the
Fig. 1. Illustration of the concept of hierarchically
extended ILDMs. 1d-ILDM (black solid line) and point,
where the 1d-domain ends (black-filled circle). 2d-ILDM
(black mesh) and hierarchical extension of the 1d-ILDM
(dashed black line), unburnt point (unfilled circle).
unburnt composition. Two directions define this
surface, the vector between one node of the last
ILDM cell and the unburnt point and one cell vec-
tor of this cell. Cell vectors are given as vectors (or
linear combinations of those) between the nodes
of the ILDM cell; of those vectors we choose
the linear combination which has an angle with
the vector to the unburnt point closest to 90�.
The equation system for the extension, that
replaces the ILDM equation system (2) reads:

GðwÞ ¼ eZ �f ðwÞ � FðwÞ ¼ 0

HðwÞ ¼ SðwÞ � ðwub � wÞ ¼ 0ePðwÞ ¼ 0

ð3Þ

with x extension equations HðwÞ being used in-
stead of x ILDM equations GðwÞ. Symbol eZ �f is
the fast invariant ððnf � xÞ � nÞ-dimensional sub-
space. The thermokinetical state variables at the
unburnt point are included in wub; of course, it
can be replaced by any other point in state space
to which the extension should be directed, e.g. fuel
and oxidizer composition can be specified, if an
ILDM should be calculated for the use in a diffu-
sion flame calculation. In this case, the mixture
fraction is included in the ILDM as an additional
coordinate and for given mixture fractions v, the
corresponding unburnt states are chosen as
wubðvÞ. At the last already existing point of the
manifold wp, the ðx� nÞ-dimensional direction
matrix SðwÞ is calculated as

S ¼
PeZ �f Fw

� �?
� ðI � V � ðVTVÞ�1 � VTÞ; ð4Þ

with S, P, eZ �f , Fw and V being functions of w.
Symbol P denotes the ðnp � nÞ-dimensional
parameterization matrix (details in [40]), eZ �f Fw is
of dimension ððnf � xÞ � nÞ and V is an ðn� ncÞ-
dimensional matrix which contains the direction
vectors for the extension. It consists of the direc-
tion vector linking the last manifold cell and the
unburnt composition and of cell direction vectors
of the last manifold cell. In this work, we use two
steps of the extension, with x ¼ 1 and x ¼ nf . The
boundary, where x has to be increased can be
found by a definition following [44,45]: a gap
condition defines the boundary, respectively, the
existence limit of an nc-dimensional ILDM as
wboundary: Reðknc=kncþ1ÞPe^ð1=sphysÞ=Reðkncþ1ÞPe
with e as a small, user-defined value and sphys as
a physical timescale. It should finally be noted,
that using x¼nf corresponds to using the
approach presented in [43]. Figure 2 illustrates
the concept with different ILDMs of the stoichi-
ometric syngas–air system, which have been pro-
jected into the CO2–H2O–H-space. Even though
the concept of hierarchical extension can be ap-
plied to arbitrary ILDM dimensions, we use 1d-
and 2d-ILDMs here to ensure a clear graphical
representation. The 1d-ILDM is shown as black



Fig. 2. Projection of different ILDMs into the CO2–
H2O–H space; stoichiometric syngas–air system. 1d-
ILDMs (black without symbols, black with white-filled
squares), 1d-ILDM with ðx ¼ nf Þ-extension (white-filled
black triangle symbols), hierarchically extended 1d-
ILDM (white-filled black circles), 2d-ILDM with
ðx ¼ nf Þ-extension (black mesh).
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line. Its calculation was stopped at the point,
where the solution of the ILDM equation system
(2) is not longer unique – from this point on, two
different solutions can be found (black lines with
white-filled squares). For the extension itself, dif-
ferent approaches have been used: the white-filled
black triangles show a 1d-ILDM extended with
x¼nf , yielding a linear line between the last ILDM
and the unburnt point. The open circles represent
the same 1d-ILDM which was extended hierarchi-
cally. Also shown is the 2d-ILDM of the system
(black mesh), which was generated hierarchically
and extended withx¼nf . It can well be seen, that
the ðx¼nfÞ-extension of the 1d-ILDM does not
correspond to the 2d-ILDM and is thus only a
rough approximation to the dynamics of the sys-
tem in the part of state space, where a 2d-ILDM
is still existing. Opposed to that, the hierarchical
extension of the 1d-ILDM lies within the 2d-
ILDM, which makes it a considerably better
description of the dynamics of the system. Start-
ing from the boundary of the 2d-ILDM, both
the hierarchically extended 1d- and the 2d-ILDM
were extended using x¼nf , as the locally linear
extension showed good results for 2d-ILDMs in
[44].
3. On-demand implementation scheme

Both the ILDM and its hierarchically gener-
ated extension are tabulated in terms of general-
ized coordinates [44,45], corresponding to mesh
coordinates. The mesh, which is build up during
the ILDM calculation [40], has an orthogonal
structure and is ideally suited to describe the
reaction progress. Using the mesh coordinates
as tabulation variables is not as intuitive as a
tabulation in terms of e.g. certain species or
combinations of those and has a permanently
changing physical meaning, but it avoids prob-
lems in regions, where the tabulation in terms
of certain species might be ill-conditioned or
might yield a non-unique representation of the
ILDM [44]. Also, this kind of tabulation is perfectly
suited for an on-demand generation of additional
cells. The code used for the flame calculation has
to be adapted to the use of ILDMs tabulated in gen-
eralized coordinates, which means that the equa-
tion system for a reactive flow system [1] has to be
re-written in terms of the generalized coordinates
h (see details in [44]):

oh

ot
¼ wþh FðwÞ � vgradðhÞ � 1

q
wþh Zs

eZ sdivðDwhgradðhÞÞ:

ð5Þ
Symbol wþh is the Moore–Penrose pseudo-inverse
[52] of wh; Zs is the slow invariant subspace of
FwðwÞ and eZ s is the inverse of Zs. The variables
w, wh, D, Zs and eZ s are functions of the general-
ized coordinate h only and can therefore be
calculated on each mesh point of the ILDM and
its extension independently from the flame
calculation.

In this work, we use a new on-demand
implementation scheme for the hierarchically
extended ILDMs in generalized coordinates.
Only a small starting ILDM table is calculated
beforehand, allowing the flame calculation to
generate a starting profile. Once the flame calcu-
lation has been started, needed values are inter-
polated from the ILDM table and if they cannot
be found, the following algorithm is used to add
the needed cells:

(1) Transform generalized coordinates requested
by the flame calculation into vertex coordi-
nates for the cell to be generated.

(2) Search the table for already existing neigh-
boring cells.

(3) Check, whether new cell is in the ILDM- or
extension-domain.

(4) Generate the new cell using either ILDM-
or extension-equations.

(5) Check, whether there are unclosed cells and
if yes, close them.

(6) Check the manifold for convexity and add
cells, if necessary to reach convexity. For
a discussion of manifold convexity see [53].

(7) Calculate the transport data for Eq. (5).
(8) Return extended table and proceed with

flame calculation.

After the flame calculation is finished, the on-
demand calculated ILDM is adapted to the calcu-
lation and includes only cells – except maybe some
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of the starting cells – that are really needed during
the calculation. Therefore, the on-demand ILDM
generation according to the steps 1–8 overcomes
the drawback of too large tabulated domains in
pre-calculated ILDM tables. Nevertheless, there
is another problem appearing when pre-calculated
tables are used, namely the fixed table dimension,
that has to be defined for the table setup before
the flame calculation – mostly with no sufficient
a priori knowledge, which dimension suits best.
Previous implementations did neither offer the
possibility of a dimension change for the whole
table, nor of a local change of the dimension in
a single computational cell in the flame calcula-
tion. Of course, the latter would be the best solu-
tion: a full adaptivity of the dimension of the
table, corresponding to the local situation at the
momentarily calculated grid point and time step.
Implementing such fully adaptive tables is possi-
ble, but yields complex procedures e.g. for storage
organization. A first step towards such an adap-
tive dimension is to change the dimension of the
whole table and to calculate the flame based on
two different table dimensions. Our algorithm
includes this possibility, with the following steps
being performed after the first flame calculation
based on an nc-dimensional ILDM is finished:

(A) Delete the ðx ¼ nfÞ-part of the hierarchical
extension from the nc-dimensional table.
This is necessary, as it has not been proven
yet, whether a hierarchical dimension
increase can be applied for this part of the
extension. The points with x ¼ 1 and the
points of the nc-dimensional ILDM remain
in the table, as they are already points of the
ðnc þ 1Þ-dimensional ILDM.

(B) Generate the ðnc þ 1Þ-dimensional ILDM
hierarchically [41] with the table being
restricted to a small domain only.

(C) Add the ðx ¼ nfÞ-extension to the new
ILDM.

(D) Calculate the necessary data for Eq. (5)
(transport matrix, projection matrix,
reduced source terms) and pass the new
ðnc þ 1Þ-dimensional table to the flame
calculation.

(E) Re-start the flame calculation using the
ðnc þ 1Þ-dimensional ILDM-table; the solu-
tion of the previous calculation with the nc-
dimensional table is used as starting profile
for faster convergence.

(F) Generate further cells on-demand following
steps 1–8, if necessary.

(G) Calculate the error to show the effect of
increasing the dimension of the table.

The error test in step G is performed by calcu-
lating the relative error between the solutions
obtained for the nc- and the ðnc þ 1Þ-dimensional
ILDM (or the solutions for an nc-dimensional
ILDM and the detailed solution) with the relative
error for a species i being defined by

�rel;i ¼
j wncþ1

i � wnc
i j

maxða; j wncþ1
i jÞ

; ð6Þ

with a as a lower error threshold.
With the presented algorithm, it is possible to

calculate the flame based on different table dimen-
sions and to compare the results, what can be con-
sidered a first step towards an optimization of the
used table dimension without the need for an a
priori knowledge about the ideal dimension.
4. Sample calculations

A sample 1d-calculation for a free, adiabatic,
premixed syngas–air flame in a laminar flow field
is presented to validate the algorithms. For such
validation purposes, the syngas–air system is a
good reference system and it has been discussed
in previous publications on ILDM (e.g. [44] and
references therein). Also, the system is simple (13
species, 67 elementary reactions), but nevertheless
a representative test case, showing all characteris-
tics of a typical combustion system. We consider a
stoichiometric mixture with an unburnt tempera-
ture of 298 K at a constant pressure of 1 bar.
A simplified transport model (equal diffusivities,
Lewis number equal to unity) is used (for complex
transport models in the ILDM-context see [35];
for the case of non-equal diffusivities see [44,45]).
It should be noted, that the described on-demand
algorithm does not depend on neither the system
simplicity nor on the use of simplified transport
models. First, the different steps of the algorithms
shall be discussed. Figure 3 illustrates the flame
calculation with a 1d-ILDM and the subsequent
automatical hierarchical generation of a 2d-table.
Part (a) of the figure shows the starting ILDM for
the first flame calculation, a hierarchically
extended 1d-ILDM (black line). Also shown is
the starting profile of the flame calculation
(dashed black line); it is generated by linking
burnt and unburnt composition by a straight line
in detailed variables and projecting this line onto
the reduced variables. The stationary solution
(solution after 104 s) of the flame calculation
(square symbols) lies on the 1d-ILDM. Of course,
the solution for a 1d-ILDM is a good approxima-
tion only in a very small part of state space, but it
should be noted, that the computational results
provided by the hierarchically extended 1d-ILDM
are in better agreement with the detailed solution
(triangle symbols) than those obtained for an
ILDM extended with x ¼ nf (dash-dotted black
line). Then, the 1d-ILDM is used to automatically
generate a 2d-ILDM according to steps A–G. Part
(b) of the figure shows the remaining ILDM after



Fig. 3. Projections of state space into the CO2–H2O-
space; stoichiometric syngas–air system. (a) Hierarchi-
cally extended 1d-ILDM (solid black line), starting
profile (dashed black line) and stationary solution
(square symbols) of the free flame calculation. Station-
ary solution of the free flame calculation for a ðx ¼ nf Þ-
extended ILDM (dash-dotted black line). Solution of the
detailed system (triangle symbols). (b) 1d-ILDM after
removal of the ðx ¼ nfÞ-extension. (c) Hierarchically
generated 2d-ILDM. (d) 2d-ILDM with ðx ¼ nf Þ-exten-
sion (black mesh) and starting solution for the second
flame calculation (black line, corresponds to stationary
solution of the first calculation).

Fig. 4. Projections of state space into the CO2–H2O-
space in (a)–(c); stoichiometric syngas–air system. (a) 2d-
ILDM after first cell was added on-demand (black mesh)
and flame trajectories (black lines), t 6 8 � 10�6 s. (b)
On-demand extended 2d-ILDM (black mesh) and flame
trajectories (black lines), t 6 2 � 10�5 s. (c) On-demand
extended 2d-ILDM (black mesh) and flame trajectories
(black lines) after stationary solution has been reached.
(d) Relative errors between 1d- and 2d-ILDM based
(dashed lines), 1d-ILDM based and detailed (solid lines)
and 2d-ILDM based and detailed (dash-dotted line)
calculation for species H2O (lines with circle symbols)
and OH (lines without symbols), plotted over CO2.
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step A, corresponding to the 1d-ILDM and its
hierarchical extension with x ¼ 1 and Part (c)
shows the hierarchically generated 2d-ILDM after
step B. Note, that the hierarchically extended 1d-
ILDM is better suited for the hierarchical genera-
tion than a non-extended 1d-ILDM: the points of
the ðx ¼ 1Þ-extension are elements of the 2d-
ILDM and therefore, the hierarchically extended
ILDM increases the number of already known
points, yielding increased efficiency and stability
of the hierarchical generation. Following the hier-
archical generation, some more cell rows are
added to the ILDM to provide enough cells for
the first integrations during the second flame cal-
culation (this means the whole calculation done
with the (nc þ 1)-dimensional ILDM) and to
increase the stability of the extension algorithm.
Afterwards, the ðx ¼ nfÞ-extension is added to
the ILDM, with the result being shown in Part
(d) of the figure (black mesh). The black line is
the starting profile for the second flame calcula-
tion based on the 2d-ILDM; it corresponds to
the stationary solution obtained from the first
flame calculation with the 1d-ILDM (used for fas-
ter convergence). Figure 4 illustrates the steps of
the second flame calculation with the 2d-ILDM,
including the on-demand addition of cells accord-
ing to the steps 1–8. Part (a) shows the 2d-ILDM
(black mesh) after the first cell has been added on-
demand at around 8 � 10�6 s after the flame calcu-
lation has been started; the black lines show the
temporal evolution of the flame solution. It can
be seen, that the hierarchical generated 2d-ILDM
is well suited to the reaction progress which makes
it an optimal starting manifold for the on-demand
addition. All added cells are calculated automati-
cally in a direction, that suits the reaction progress
and in most cases, the cell addition has to be per-
formed in only one direction. To generate the
cells, the parameterization of the already existing
neighbouring cells can be used (with an update,
if enough information is given [40]), which makes
the cell calculation efficient and yields a mesh, that
is optimally adjusted to the dynamics of the sys-
tem and that contains cells of uniform structure.
Such an optimal structure of the mesh can only
be guaranteed by an on-demand generation based
on a hierarchical concept. Part (b) of the figure
shows the further on-demand cell generation and
evolution of the flame trajectories after 2 � 10�5 s.
‘‘Trajectory” is here used for the solution of a
flame calculation in state space at a certain time.
The figure again shows the optimal direction of
the on-demand generated cells with the mesh fol-
lowing the reaction progress. The final ILDM
(after a stationary solution of the flame calcula-
tion is obtained) can be seen in Part (c) of the fig-
ure together with the flame trajectories; the ILDM
does only contain the needed cells and is perfectly
adapted to the part of state space accessed by the
flame trajectories. In Part (d), the relative errors
calculated in step G are shown for the species
H2O (lines with circle symbols) and OH (lines
without symbols), with the errors comparing the
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1d- and 2d-ILDM based results (dashed) and the
1d-ILDM, respectively, 2d-ILDM based results
with the detailed solution (solid and dash-dotted).
It can well be seen, that the dimension increase
yields a considerable improvement of the obtained
stationary solutions. Compared to the solution of
the detailed system, the 2d-ILDM based calcula-
tion provides good results with small relative
errors. Such comparisons between detailed and
reduced results are well known from previous
publications (see e.g. the ILDM literature cited
in Section 1 and references therein), they will
therefore be not discussed in detail here (see [45]
for the effect of a further dimension increase from
2 to 3). Finally, to illustrate the efficiency of the
algorithm, Fig. 5 shows a comparison between a
full syngas–air ILDM-table (thin black mesh)
and the on-demand extended table (white-filled
black mesh). Additionally, the hierarchically
extended 1d-ILDM is plotted as black line; all
ILDMs are being shown as projections into the
CO2–H2O–OH-space. It can clearly be seen, that
the on-demand generated table covers only a
small part of the full table; with 427 cells being
contained in the on-demand, 2691 cells in the full
table. Thus, the saving in storage capacity is
accordingly high, as it is reduced by 82% in this
example. Further reduction of the storage capac-
ity can be achieved by deleting already used cells.
The algorithm results in a saving of � 22% CPU-
time in the discussed example (compared to the
CPU-time needed for the generation of a full 1d-
and a full 2d-ILDM-table and flame calculations
with these tables). Note, however, that in the
Fig. 5. Projection of state space into the CO2–H2O–OH-
space, stoichiometric syngas–air system. 2d-ILDM with
ðx ¼ nfÞ-extension covering the whole domain (thin
black mesh), 2d-ILDM after on-demand generation
(white-filled black mesh) during the free flame calcula-
tion. Hierarchically extended 1d-ILDM (black line).
one-dimensional case a model reduction is not
needed, because the flame calculation can be done
with detailed mechanisms at low computational
cost. The field of the proposed algorithm is in
the simulation of multi-dimensional flames, where
the computational effort will be reduced
considerably.
5. Conclusions

An algorithm for the on-demand generation of
hierarchically extended and hierarchically gener-
ated ILDMs in generalized coordinates has been
presented. An approach for the hierarchical
extension of ILDMs into the domain of slow
chemistry is discussed which does not only
increase the accuracy of calculation results, but
also provides a good basis for a subsequent hier-
archical generation of a higher-dimensional
ILDM. Both the ILDM and its extension are
being tabulated in terms of generalized coordi-
nates and are therefore optimally suited for the
on-demand addition of cells during the flame cal-
culation. The on-demand generation itself is an
efficient way of implementing ILDM tables in
flame calculations, as only the actually accessed
part of state space is tabulated and therefore,
CPU-time and storage capacity can be saved. By
exploiting the hierarchical structure of ILDMs
to increase the dimension of the ILDM table to
ðnc þ 1Þ after the stationary solution of a first
flame calculation based on an nc-dimensional
ILDM has been reached, the algorithm provides
the possibility to re-calculate the result of the first
calculation using a higher-dimensional table. A
subsequent error test allows to estimate the bene-
fit of the dimension increase. The use of a hierar-
chically generated ILDM for the second
calculation ensures, that the table is ideally
adjusted to the reaction progress and increases
the efficiency of the on-demand cell generation.
Sample calculations for a free syngas–air flame
validate the algorithm and show the potential
of hierarchically extended ILDMs as well as of
the on-demand algorithm combined with hierar-
chically generated ILDMs. The algorithms can
be used for systems and ILDMs of arbitrary
dimension and it should be noted, that the effi-
ciency of the algorithms increases with increas-
ing table dimension and system complexity.
The algorithm can e.g. be applied for partially
premixed turbulent flames. Future work focuses
on a fully adaptive implementation of ILDM
tables based on an online error control, which
would allow to adjust the ILDM dimension
locally during the calculation. In the region of
slow chemistry, the new REDIM-method [31]
could be implemented instead of the hierarchical
extension in order to further increase the accu-
racy of the results.
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