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Abstract. For finite-dimensional systems the Hautus test is a well-known and easy
checkable condition for observability. Russell and Weiss (SIAM J. Control Optim. 32:1-
23, 1994) suggested an infinite-dimensional version of the Hautus test, which is necessary
for exact infinite-time observability and sufficient for approximate infinite-time observ-
ability of exponentially stable systems. In this paper the notion of observability is studied
for polynomially stable systems. Several known results for exponentially stable systems
are extended to the setting of polynomially stable systems. By means of an example the
obtained results are illustrated.

1. Introduction

In this paper we study the observability of the system

ẋ(t) = Ax(t), t ≥ 0,

y(t) = Cx(t), t ≥ 0, (1.1)

x(0) = x0 ,

on a Banach space X. We assume that A is the infinitesimal generator of a strongly

continuous semigroup T (·) = (T (t))t≥0 on X, and that C is a linear bounded operator

from the domain of A, denoted by X1 := D(A), to another Banach space Y . Here we

have equipped D(A) with the graph norm. By a solution of ẋ(t) = Ax(t) with initial

condition x(0) = x0 ∈ X we mean the continuous function

x(t) = T (t)x0, t ≥ 0.

These assumptions are not sufficient to guarantee that the output of the system, the

function y(·), is an element of L2
loc(R+, Y ). In order to guarantee this, we assume that

C is an admissible observation operator for T (·). The notion of admissible observation

operators was introduced by Weiss [22] as follows.

Definition 1.1. An operator C ∈ B(X1, Y ) is an admissible observation operator for

T (·) if the map Ψ∞x = CT (·)x (initially defined on X1) has a continuous extension

Ψ∞ : X → L2
loc(R+, Y ) (where L2

loc is endowed with the usual Fréchet topology).

Here B(X, Y ) denotes the set of bounded linear operators from X to Y . For further

information concerning admissibility we refer the reader to the survey [10]. In this paper

we discuss in particular the following observability concepts.
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Definition 1.2. The system (1.1) is called approximately infinite-time observable if Ψ∞ :

X → L2
loc(R+, Y ) is injective. If

‖Ψ∞x‖L2(R+,Y ) ≥ κ ‖x‖

holds for a constant κ > 0 and for every x ∈ X, then the system (1.1) is called exactly

infinite-time observable. (Here the left hand side is taken to be ∞ if Ψ∞x /∈ L2(R+, Y ).)

It is well known that for reflexive Banach spaces X and Y the concept of admissible

observation operators is dual to that of admissible control operators (see e.g. Salamon

[21]), and the notion of approximate (exact) infinite-time observability is dual to approxi-

mate (exact) infinite-time controllability (see e.g. Dolecki and Russell [6]). Controllability

and observability are important properties of a distributed parameter system, which have

been extensively studied in the literature, see for example [2], [14] and [19].

The Hautus Lemma, due to Popov [18] and Hautus [9], is a powerful and well known

test for observability of finite-dimensional systems. It states that the system (1.1) with

A ∈ Cn×n and C ∈ Cp×n is observable if and only if

rank

[
sI − A

C

]
= n for all s ∈ C. (1.2)

Russell and Weiss [20] proposed the following generalization of the Hautus test to the

infinite-dimensional situation: There exists a m > 0 such that

‖(sI − A)x‖2 + |Re(s)|‖Cx‖2 ≥ m |Re(s)|2‖x‖2 (RW)

for all complex s with negative real part and for all x ∈ D(A). Under the assumption that

the semigroup T (·) is exponentially stable, they showed that condition (RW) is necessary

for the exact infinite-time observability of (1.1) and that it is sufficient for the approximate

infinite-time observability of (1.1). In several situations, such as if A is bounded [20], A

is a Riesz-spectral operator and dim Y < ∞ [11], or A + ωI is skew-adjoint [16], [23], the

Hautus test is in fact sufficient for exact infinite-time observability. However, in general

the Hautus test does not imply exact infinite-time observability even for exponentially

stable semigroups, [12]. A counterexample in [13] shows that for strongly stable systems,

that is, T (t)x → 0 as t → ∞ for all x ∈ X, the Hautus test is not a sufficient condition

for approximate infinite-time observability.

Certain weakly damped or coupled wave equations lead to semigroups T (·) which do

not decay exponentially, but it holds

‖T (t)x‖ ≤ ct−β(‖x‖+ ‖Ax‖) ∀ t ≥ 0, x ∈ D(A)

for some constants c, β > 0; see [1], [3], and the references therein. In these situations the

spectrum of A typically belongs to the open left halfplane and approaches iR at ±i∞.

In Section 2 we briefly recall the relevant definitions and properties of such polynomially

stable semigroups. We note that every exponentially stable semigroup is polynomially

stable, and that every bounded, polynomially stable semigroup is strongly stable.

The above indicated results concerning the Hautus test cannot be applied to polyno-

mially stable semigroups. (One could apply them to the rescaled exponentially stable

semigroup (e−ωtT (t))t≥0 with ω > 0, but this would give rather crude results; e.g., the

behavior of the spectrum of A near iR would be ignored.) In this paper we want to study
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the Hautus test for polynomially stable semigroups. For these investigations it turns out

to be useful to introduce variants of the Hautus test (RW) and of approximate and exact

infinite time observability where one replaces X by fractional power spaces D((wI−A)α).

These concepts are defined and discussed in Section 3. In particular, in Definition 3.5 we

introduce the (α, 0)-Hautus test which is weaker than the Hautus test (RW). The main

result of this paper is as follows.

Theorem 1.3. Assume that the semigroup T (·) is polynomially stable. Then the (α, 0)-

Hautus test is sufficient for the approximate infinite-time observability of the system (1.1)

and necessary for the exact infinite-time observability of the system (1.1).

Theorem 1.3 is a special case of Proposition 3.6 (for the necessity part) and of Theo-

rem 3.10 (for the sufficiency part). We point out that Theorem 3.10 improves Theorem 1.6

of [20] even in the case exponentially stable semigroups. As in the case of exponentially

stable semigroups, the theory can be complemented by several results concerning infi-

nite time admissibility, finite time exact observability and sufficient conditions for exact

infinite-time observability, see Section 3. We conclude the paper with an extended exam-

ple illustrating our concepts and results in the case of diagonal systems. This example

also shows that the exponents α in our results are optimal in several respects.

2. Preliminaries on polynomially stable semigroups

In this section we fix our notation and review some results on polynomially stable

C0-semigroups. By D(B), N(B) σ(B), ρ(B), we denote the domain, kernel, spectrum,

resolvent set of a linear operator B, respectively, and we set R(λ, B) = (λI − B)−1. The

open left and right half planes of C are designated by C− and C+, respectively. We write

c = c(α, β, · · · ) for a generic constant depending on the quantities α, β, · · · . Throughout

this paper, A is the generator of a C0-semigroup T (·) on a Banach space X.

Fix a real number w such that ‖T (t)‖ ≤ Me(w−ε)t for some constants M, ε > 0 and all

t ≥ 0. We define the fractional powers of Aw := wI − A by

A−α
w =

1

2πi

∫
Γ

(w − λ)−αR(λ, A) dλ,

where α > 0 and Γ is any piecewise smooth path in the set {λ ∈ C : Re λ > w − ε, λ /∈
[w,∞)} running from ∞e−iφ to ∞eiφ for some 0 < φ < π/2, see [7, Section II.5] or [17,

Section 2.7]. We further set A0
w = I. The operator A−α

w is injective and bounded, hence it

has a closed inverse denoted by Aα
w. We endow the domain D(Aα

w) =: Xα with the norm

‖Aα
wx‖X =: ‖x‖α, α ≥ 0, where X0 = X. Observe that Xβ is continuously and densely

embedded in Xα for β ≥ α ≥ 0 and that ‖x‖n is equivalent to the usual graph norm of

An for n ∈ N. Moreover, the fractional powers commute with T (t) and A.

Definition 2.1. A C0-semigroup T (·) is called polynomially stable if there are constants

α, β > 0 such that

‖T (t)A−α
w ‖ ≤ Nt−β (2.1)

for a constant N > 0 and all t ≥ 1.

We note that inequality (2.1) is equivalent to

‖T (t)x‖ ≤ Nt−β‖x‖α ∀ x ∈ Xα. (2.2)
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Observe that estimate (2.1) with α = 0 and β > 0 already implies that T (·) is exponen-

tially stable, i.e. ‖T (t)‖ ≤ Me−εt for t ≥ 0 and some constants M, ε > 0. It was shown in

[3, Proposition 3.1] that a polynomially stable semigroup satisfies

‖T (t)A−αγ
w ‖ ≤ c(γ) t−βγ , t ≥ 1, (2.3)

for each γ ≥ 1. Moreover, inequality (2.3) holds for all γ > 0 if T (·) is polynomially

stable and bounded (i.e., ‖T (t)‖ ≤ M for some constant M ≥ 1 and all t ≥ 0). For every

semigroup T (·), estimate (2.1) with β = 1 and α > 0 implies that σ(A) ⊂ C− and that

‖R(λ, A)A−α−ε
w ‖ ≤ c(ε), Re λ ≥ 0, (2.4)

for each ε > 0, see [3, Proposition 3.3]. Conversely, if T (·) is bounded and ‖R(λ, A)A−α
w ‖

is bounded for λ ∈ iR, then

‖T (t)A−α−ε
w ‖ ≤ c(ε) t−1, t ≥ 1,

for each ε > 0 due to [3, Theorem 3.5]. We further remark that

‖R(λ, A)A−α
w ‖ ≤ c ∀ Re λ ≥ 0 ⇐⇒ ‖R(λ, A)‖ ≤ c (1+|λ|α) ∀ Re λ ≥ 0 (2.5)

for each generator A with σ(A) ⊂ C−, see e.g. [3, Proposition 3.6]. There are bounded,

polynomially stable semigroups arising from coupled wave equations whose generator

spectrum σ(A) is contained in C− and approaches iR at ±i∞ (so that these semigroups

are not exponentially stable). It may also happen that T (·) is polynomially stable, but

‖T (t)‖ grows exponentially as t → ∞ and σ(A) ⊂ {λ ∈ C : Re λ ≤ −1}. We refer to [1]

and [3] for such examples and further results and references.

3. Observability concepts of polynomially stable systems

We now return to infinite-dimensional systems described by (1.1). Throughout this

section we assume that A generates a C0-semigroup T (·) on a Banach space X and that

C is an admissible observation operator for T (·).
It is known that if T (·) is exponentially stable, then C is infinite-time admissible; i.e.,

Ψ∞ : X → L2(R+, Y ) is bounded. In the following lemma we prove a similar fact for

polynomially stable semigroups. Observe that we can always assume that β > 1/2 in

(2.1) due to (2.3), possibly after increasing the initially given α.

Lemma 3.1. Assume that T (·) is polynomially stable with constants (α, β), where β >

1/2. Then Ψ∞ : Xα → L2(R+, Y ) is bounded.

Proof. The admissibility of C and inequality (2.2) imply that

‖Ψ∞x‖2
L2(R+,Y ) =

∞∑
k=0

∫ 1

0

‖CT (t)T (k)x‖2 dt ≤ c

∞∑
k=0

‖T (k)x‖2

≤ c

∞∑
k=0

k−2β ‖x‖2
α = c(β) ‖x‖2

α

for x ∈ X1+α. This estimate yields the assertion. �

We see in Section 4 that the value of α in the above result is almost sharp. Next we

generalize the notion of exact infinite-time observability.
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Definition 3.2. Let α ≥ 0. The system (1.1) is α-exactly infinite-time observable if

‖Ψ∞x‖L2(R+,Y ) ≥ κ ‖x‖α

holds for some constant κ > 0 and for every x ∈ Xα. (Here the left hand side is taken to

be ∞ if Ψ∞x /∈ L2(R+, Y ).)

Observe that α-exact infinite-time observability implies β-exact infinite-time observabil-

ity if α ≥ β ≥ 0. An α-exactly infinite-time observable system may loose this property if

one increases the exponent α, see Section 4. Obviously, 0-exact infinite-time observability

coincides with exact infinite-time observability.

We further note that the system (1.1) is α-exactly infinite-time observable if and only

if there is a constant κ′ > 0 such that for each x ∈ Xα there is a constant tx > 0 with

‖Ψ∞x‖L2((0,tx),Y ) ≥ κ′ ‖x‖α.

If α = 0 and T (·) is exponentially stable, then tx can be chosen independently of x ∈ X

by [20, Proposition 2.8]. In other words, if T (·) is exponentially stable, then an exactly

infinite-time observable system is in fact exactly observable in a finite time t0 > 0. We

obtain similar results for polynomially stable systems.

Proposition 3.3. Assume that T (·) is polynomially stable and bounded. Let C be an

infinite-time admissible observation operator for T (·) and let α > 0. Then the following

statements are equivalent.

(a) The system (1.1) is α-exactly infinite-time observable.

(b) There exist constants κ′, t0 > 0 such that

‖Ψ∞x‖L2((0,t0),Y ) ≥ κ′ ‖x‖α ∀ x ∈ Xα.

Proof. The implication ‘(b)⇒(a)’ is obvious. Let the system (1.1) be α-exactly infinite-

time observable. Using this assumption, the infinite-time admissibility and (2.2), we

estimate

κ‖x‖α ≤ ‖Ψ∞x‖L2(R+,Y ) ≤ ‖Ψ∞x‖L2((0,t0),Y ) + ‖Ψ∞T (t0)x‖L2(R+,Y )

≤ ‖Ψ∞x‖L2((0,t0),Y ) + c ‖T (t0)x‖ ≤ ‖Ψ∞x‖L2((0,t0),Y ) + ct−β
0 ‖x‖α,

for some constants β, κ, c > 0 and every t0 > 0. Taking a sufficiently large t0 > 0, we

arrive at assertion (b). �

We can weaken the assumptions on T (·) and C in the above proposition if we restrict

ourselves to sufficiently large α.

Proposition 3.4. Assume that T (·) is polynomially stable with constants (α, β), where

β > 1/2. Let C be an admissible observation operator for T (·) and let α ≥ α0 := 2α.

Then the following statements are equivalent.

(a) The system (1.1) is α-exactly infinite-time observable.

(b) There exist constants κ′, t0 > 0 such that

‖Ψ∞x‖L2((0,t0),Y ) ≥ κ′ ‖x‖α ∀ x ∈ Xα.
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Proof. Assume that (a) holds. Then Lemma 3.1 and estimate (2.1) yield

κ‖x‖α ≤ ‖Ψ∞x‖L2(R+,Y ) ≤ ‖Ψ∞x‖L2((0,t0),Y ) + ‖Ψ∞T (t0)x‖L2(R+,Y )

≤ ‖Ψ∞x‖L2((0,t0),Y ) + c ‖(ωI − A)αT (t0)x‖

≤ ‖Ψ∞x‖L2((0,t0),Y ) + ct−β
0 ‖(ωI − A)αx‖α

≤ ‖Ψ∞x‖L2((0,t0),Y ) + ct−β
0 ‖x‖α

for some constants κ, c > 0 and every t0 > 0, where we also used α ≥ 2α. As in the

previous proof, assertion (b) follows. The other implication is again obvious. �

In order to characterize observable polynomially stable systems, we introduce the fol-

lowing version of the Hautus-test (RW) from the introduction.

Definition 3.5. Let α, β ≥ 0. We say that the system (1.1) satisfy the (α, β)-Hautus

test if there is a constant m > 0 such that for all x ∈ X1+α ∩Xβ and λ ∈ C− there is a

constant mλ ≥ 0 with

‖(λI − A)x‖2
α + mλ ‖Cx‖2 ≥ m2 |Re λ|2 ‖x‖2

β. (3.1)

If α = β = 0, then we say that (1.1) satisfies the Hautus test.

Observe that the (α, β)-Hautus test implies the (α′, β)-Hautus test if α′ ≥ α ≥ 0 and

the (α, β′)-Hautus test if 0 ≤ β′ ≤ β. It may happen that a valid Hautus test fails if

one decreases α for fixed β, or if increases β for fixed α, cf. Section 4. We remark that

on the right hand side of (3.1) the dependence on λ can be weakened considerably, see

Remark 3.13, but for simplicity we work with the concept given in Definition 3.5.

In view of the Hautus test introduced by Russell and Weiss in [20], see the introduction,

we say that the system (1.1) satisfies the (α, β)-Hautus test (RW) if the system (1.1)

satisfies the (α, β)-Hautus test with mλ = |Re λ|. The Hautus test (RW) with α = β = 0

is well studied in the literature, as discussed in the introduction. We recall that Russell

and Weiss proved in [20] that exact infinite-time observability implies the Hautus test

(RW) and that the Hautus-test (RW) implies approximate infinite-time observability, for

exponentially stable semigroups. We shall extend several known results for exponentially

stable systems to the setting of polynomially stable semigroups, starting with a necessary

condition for β-exact infinite-time observability. In Section 4 we show that this condition

cannot be improved, in general.

Proposition 3.6. Let α, β ≥ 0. Suppose that Ψ∞ : Xα → L2(R+, Y ) is bounded (e.g., if

T (·) is polynomially stable with constants (α, β), where β > 1/2) and that the system (1.1)

is β-exactly infinite-time observable. Then the system (1.1) satisfies the (α, β)-Hautus test

(RW).

Proof. We proceed as in [20] where the case α = β = 0 was considered. Let x ∈ Xα+2

and λ ∈ C−. Set eλ(t) = eλt for t ≥ 0 and eλ(t) = 0 for t < 0. We then have

T (t)x = eλtx +

∫ t

0

eλ(t−s)T (s)(A− λI)x ds, t ≥ 0,

Ψ∞x = eλCx + eλ ∗Ψ∞(A− λI)x.
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Thus Young’s inequality and our assumptions imply that

κ ‖x‖β ≤ ‖Ψ∞x‖L2(R+,Y ) ≤
1√

2 |Re λ|
‖Cx‖+

c

|Re λ|
‖(λI − A)x‖α.

This estimate easily yields the assertion. �

Remark 3.7. The proof of Proposition 3.6 also implies the following result: Suppose

that Ψ∞ : Xα → L2(R+, Y ) is bounded for some α ≥ 0 and that the system (1.1) is

approximately infinite-time observable. Then

‖(λI − A)x‖2
α + |Re λ| ‖Cx‖2 > 0

for every x ∈ X1+α\{0} and λ ∈ C−. 3

In the following two propositions we show that for certain classes of systems the (α, α)-

Hautus test (RW) is even sufficient for α-exact infinite-time observability. Recall that a

Riesz basis of a Hilbert space H is a sequence (φn)n∈N in H such that φn = Sen for an

invertible operator S ∈ B(H) and an orthonormal basis (en)n∈N of H. A Riesz-spectral

operator A on H is an operator possessing a Riesz basis of eigenvectors. We also note

that in the following result one can weaken the assumption that C is admissible to α +1-

admissibility; i.e, C is admissible for the restriction of T (·) to Xα, see [15].

Proposition 3.8. Let X be a Hilbert space and A be a Riesz-spectral operator. Suppose

that the eigenvalues of A are contained in the open left half plane, that dim Y < ∞, and

that Ψ∞ : Xα → L2(R+, Y ) is bounded for some α ≥ 0. Then the following statements

are equivalent.

(a) The system (1.1) is α-exactly infinite-time observable.

(b) The system (1.1) satisfies the (α, α)-Hautus test (RW).

Proof. The assertion is a consequence of Theorem 2 in [11] if we consider the system (1.1)

on the space Xα. �

The next result improves [8, Theorem 3.2] where it was shown that the Hautus-test

(RW) with m = 1 implies exact infinite-time observability if the semigroup T (·) is expo-

nentially stable. Recall that T (·) is called strongly stable if T (t)x → 0 as t → ∞ for all

x ∈ X.

Proposition 3.9. Assume that X is a Hilbert space, that T (·) is strongly stable and that

α ≥ 0. If there exists a sequence (sn)n∈N ⊂ (−∞, 0) such that limn→∞ sn = −∞ and

‖(snI − A)x‖2
α + |sn| ‖Cx‖2 ≥ |sn|2‖x‖2

α ∀ n ∈ N, x ∈ X1+α, (3.2)

then the system (1.1) is α-exactly infinite-time observable.

Proof. Property (3.2) is equivalent to

‖Cx‖2 +
1

|sn|
‖Ax‖2

α ≥ −〈Ax, x〉α − 〈x, Ax〉α forall n ∈ N, x ∈ X1+α.

Letting n →∞, we obtain for each t ≥ 0 and x ∈ X1+α the inequality

‖CT (t)x‖2 ≥ −〈AT (t)x, T (t)x〉α − 〈T (t)x, AT (t)x〉α.
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Let t0 > 0. Integrating this inequality from 0 to t0, we deduce∫ t0

0

‖CT (t)x‖2dt ≥ ‖x‖2
α − ‖T (t0)x‖2

α

for x ∈ X1+α. The assertion now follows from this estimate combined with the strong

stability of the semigroup T (·). �

We now give a sufficient condition for approximate infinite-time observability improving

Theorem 1.6 of [20] in two ways: We only require that T (·) is polynomially stable (instead

of exponentially stable), and we use the (α, 0)-Hautus test instead of the stronger Hautus

test (RW). A counterexample in [13] shows that one cannot further reduce polynomial

stability to mere strong stability. In the next section we present an approximately infinite-

time observable and polynomially stable system which violates the (α, 0)-Hautus test for

every choice of α ≥ 0 and mλ > 0; i.e., the converse of Theorem 3.10 does not hold.

Theorem 3.10. Let T (·) be polynomially stable and assume that the system (1.1) satisfies

the (α, 0)-Hautus test for some α ≥ 0. Then the system (1.1) is approximately infinite-

time observable.

For the proof of Theorem 3.10 we need the following lemma, which relies on the Phrag-

men Lindelöf principle: Let Z be a Banach space and f : {λ ∈ C : Re λ ≥ a} → Z be a

continuous function which is holomorphic for Re λ > a and satisfies |f(λ)| ≤ c eb |λ|γ for

Re λ ≥ a and constants a ∈ R, c, b ≥ 0, and 0 ≤ γ < 1. Then it holds

sup
Re λ≥a

‖f(λ)‖ = sup
Re λ=a

‖f(λ)‖.

This fact is shown in e.g. [4, Corollary VI.4.2] for Z = C and can be extended to general

Z using linear forms.

Lemma 3.11. Assume that S(·) is a polynomially stable C0-semigroup with generator B

on a Banach space Z such that

‖(λI −B)(wI −B)αx‖ ≥ m |Re λ| ‖x‖ (3.3)

for x ∈ Z1+α = D(B1+α
w ), λ ∈ C−, some α ≥ 0, a sufficiently large w ∈ R, and a constant

m > 0. Then Z = {0}.

Proof. Since S(·) is polynomially stable there are constants α, β, N > 0 such that (2.1)

holds for all t ≥ 1. Here we may assume that β = 1. (Use (2.3) with γ > 1 if β ∈ (0, 1)

initially.) Due to (2.4) and (2.5), we know that σ(B) ⊂ C− and

‖R(λ, B)‖ ≤ K(1 + |λ|γ) =: ϕ(|λ|)

for Re λ ≥ 0 and some constants K, γ ≥ 0. If σ(B) 6= ∅, then there would exist λ ∈ σ(B)

and λn ∈ ρ(B) such that Re λn ≤ Re λ/2 =: −δ < 0 for n ∈ N and λn → λ as n → ∞.

Hence, ‖R(λn, B)‖ → ∞ as n →∞. Take a natural number k ≥ α. The identity

R(λn, B)B−k = λ−k
n R(λn, B) +

k∑
j=1

λ−j
n B−k−1+j
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yields ‖R(λn, B)B−k‖ → ∞ as n →∞. On the other hand, (3.3) implies that

‖R(λn, B)B−k‖ = ‖Bα
wB−k R(λn, B)B−α

w ‖ ≤ c

mδ
,

which is a contradiction. As a result, B has empty spectrum.

Let λ ∈ C and z ∈ Zα. If 0 ≥ Re λ ≥ −(2ϕ(| Im λ|))−1, then

‖R(λ, B)‖ ≤ 2ϕ(| Im λ|) ≤ 2ϕ(|λ|)

by a standard perturbation argument. The estimate (3.3) further yields

‖R(λ, B)z‖ ≤ 1

m |Re λ|
‖z‖α ≤

2ϕ(| Im λ|)
m

‖z‖α ≤
2ϕ(|λ|)

m
‖z‖α (3.4)

if Re λ ≤ −(2ϕ(| Im λ|))−1. Summing up, we have established that

‖R(λ, B)z‖ ≤ K ′(1 + |λ|γ) ‖z‖α (3.5)

on every right half plane {λ ∈ C : Re λ ≥ −r}. Then [4, Corollary VI.4.2] and (3.3) show

‖R(λ, B)z‖ ≤ sup
s∈R

‖R(−r − is, B)z‖ ≤ ‖z‖α

mr

for all Re λ ≥ −r and r > 0. Letting r →∞, we obtain R(λ, B)z = 0 for all (fixed) λ ∈ C
and z ∈ Zα. The density of Zα in Z implies that R(λ, B) = 0, and thus Z = {0}. �

Proof of Theorem 3.10: We have to show that Z = N(Ψ∞) is trivial. The admissibility

of C implies that Z is a closed subspace of X, and it is easy to see that Z is T (·)-invariant.

Thus the restriction T̃ (t) of T (t) to Z yields a C0-semigroup on Z generated by the

restriction Ã of A to Z. Observe that T̃ (·) is still polynomially stable. If x ∈ D(Ã), then

Cx = (Ψ∞x) (0) = 0. Thus the (α, 0)-Hautus test implies that

‖(λI − Ã)(wI − Ã)αx‖ ≥ m |Re λ| ‖x‖ (3.6)

for λ ∈ C− and x ∈ D(Ã) ∩X1+α. Since (3.6) is precisely (3.3) for B = Ã on the space

Z, Lemma 3.11 shows that Z = {0}. �

Remark 3.12. Theorem 3.10 still holds if one replaces the assumption of polynomial

stability by the hypothesis that σ(A) ⊂ C− and ‖R(λ, A)‖ ≤ ϕ(|λ|) for Re λ ≥ 0 and an

increasing function ϕ : R+ → R+ satisfying ϕ(s) ≤ c exp(bsγ) for constants b, c > 0 and

0 ≤ γ < 1. The proofs of Theorem 3.10 and Lemma 3.11 carry over to this more general

setting. 3

Remark 3.13. Theorem 3.10, Lemma 3.11, and Remark 3.12 remain valid if we replace

in the Hautus test (3.1) and in the lower estimate (3.3) the factor m |Re λ| by µ(|Re λ|),
where µ : R+ → (0,∞) is an increasing unbounded function such that µ(r) ≥ crν for

some constants c, ν > 0 and small r > 0. One only has to observe that in the proof of

Lemma 3.11 the inequality

‖R(λ, B)z‖ ≤
[
µ
(

1
2
ϕ(|λ|)−1

)]−1 ‖z‖α

holds instead of (3.4) and the inequality

‖R(λ, B)z‖ ≤ max
{

2ϕ(|λ|),
[
µ
(

1
2
ϕ(|λ|)−1

)]−1
}
‖z‖α.

holds instead of (3.5). The other arguments can be used without changes. 3
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4. Applications to diagonal systems

We want to illustrate the concepts introduced in the previous section and the results

established there. Let X = `2 be the space of square summable complex sequences

x = (xn) = (xn)n∈N with the canonical basis vectors en. Given µn = −n−γ + in for

n ∈ N = {1, 2 · · · } and some γ > 0, we define Ax = (µnxn) for x ∈ D(A) = {x ∈ `2 :

(µnxn) ∈ `2}. Then the norm ‖x‖α is equivalent to the norm ‖(nαxn)‖X and A generates

the contractive C0-semigroup T (·) on X given by T (t)x = (eµntxn). It is easy to see that

T (·) is polynomial stable with (sharp) constants (γ, 1), see [3, Proposition 4.2]. Hence,

(2.1) holds for α = rγ and β = r with arbitrary r > 0 because of (2.3). Given a complex

valued sequence (cn), we define Cx =
∑

n cnxn. This operator is admissible for A if and

only if (cn) is bounded, thanks to the Carleson measure criterion applied to A − I, see

Proposition 7.1 in [22] and the references therein. We thus assume that (cn) is bounded.

Suppose that Ψ∞ ∈ B(Xα, L2(R+)) for some α ≥ 0. Taking x = en, we obtain that

n2α ≥ c̃ ‖en‖2
α ≥ c ‖Ψ∞en‖2

L2(R+) = c

∫ ∞

0

e2Re µnt|cn|2 dt =
cnγ

2
|cn|2 ,

and thus

|cn| ≤ c nα− γ
2 (4.1)

for some constants c, c̃, c > 0 and all n ∈ N. (Since cn is bounded, condition (4.1) always

holds with c = ‖(cn)‖∞ if α ≥ γ/2.) Conversely, if (4.1) is valid for all n ∈ N, then the

operator C(−A)γ/2−α is admissible for A by the above observations. So we can estimate

‖Ψ∞x‖2
L2(R+) =

∞∑
k=0

∫ 1

0

|C(−A)γ/2−αT (τ)T (k)(−A)α−γ/2x|2 dτ

≤ c
∞∑

k=0

‖T (k)(−A)α−γ/2x‖2

= c ‖(−A)α−γ/2x‖2 + c

∞∑
k=0

∫ 1

0

‖T (τ)T (k + 1− τ)(−A)α−γ/2x‖2 dτ

≤ c ‖x‖2
α + c

∫ ∞

0

‖T (t)(−A)α−γ/2x‖2dt

= c ‖x‖2
α + c

∞∑
n=1

∫ ∞

0

e2Re µntn2α−γ|xn|2 dt

≤ c ‖x‖2
α

for x ∈ Xα and α ≥ 0. As a result, Ψ∞ : Xα → L2(R+) is bounded if and only if (4.1)

holds for all n ∈ N. In particular, if (cn) satisfies

inf
n∈N

|cn| > 0, (4.2)

then Ψ∞ ∈ B(Xα, L2(R+)) if and only if α ≥ γ/2. So Lemma 3.1 is almost sharp.

Going back to a general admissible C, we assume that the system is α-exactly infinite-

time observable for some α ≥ 0. Taking x = en, we then deduce that

n2α ≤ ‖en‖2
α ≤ c

∫ ∞

0

|eµntcn|2 dt ≤ cnγ |cn|2 , hence, |cn| ≥ c nα− γ
2 (4.3)

10



for constants c, c > 0, obtaining a necessary condition for the α-exact infinite-time ob-

servability of our diagonal system. In particular, α must be smaller or equal γ/2 since

(cn) is bounded. In the critical case α = γ/2, the estimate (4.3) coincides with (4.2).

An inequality analogous to (4.3) is necessary for the (α, β)-Hautus test (RW). In fact,

for x = en and λ = µn, this test implies that

|cn|2 ≥ m2 |Re µn| |µn|2β ≥ c n2β−γ

with a constant c > 0. In particular, β ≤ γ/2 by the boundedness of (cn). Moreover, let

C fulfill (4.2) and the (α, β)-Hautus test (RW). Take x = cnen+1− cn+1en and λ = µn−1.

Then Cx = 0, and so n2β ≤ c(n+1)2α by this Hautus test. As a result, the (α, β)-Hautus

test (RW) for admissible C satisfying (4.2) implies that α ≥ β.

We now want to apply the implication ‘(b)⇒(a)’ in Proposition 3.8 to the above system.

Hence we have to verify the (α, α)-Hautus test (RW) with α ∈ [0, γ/2] and we have to

suppose that (4.1) and (4.3) hold. In addition, we require that γ > 1. Under these

assumptions we will obtain the α-exact infinite-time observability of our system for 0 ≤
α ≤ γ/2, whereas we already know that this property does not hold if α > γ/2. If we

consider the borderline case α = γ/2 (where (4.2) his valid), then the above observations

show that (α, β)-Hautus test (RW) fails for α < β and β > γ/2, in general. Moreover,

Proposition 3.6 gives the optimal exponents in the Hautus test in the case α = β = γ/2.

In fact, we will check the (α, α)-Hautus test (RW) for ηC for some η > 0 fixed below.

Note that the sequence (ηcn) is also bounded and satisfies (4.1) and (4.3) with c and c

replaced by ηc and ηc, respectively. So Proposition 3.8 shows the α-exact infinite-time

observability for ηC which implies the same property for C.

Observe that |µn − µj| > 1 for all n, j ∈ N with n 6= j. Take x ∈ X1+α. First let

Re λ ≤ −2. In this case we have

‖(λI − A)x‖2
α =

∞∑
n=1

|λ− µn|2 |µn|2α |xn|2 ≥ |Re λ + 1|2‖x‖2
α ≥ 1

4
|Re λ|2 ‖x‖2

α .

Second, let Re λ ∈ (−2, 0). Then there is at most one n ∈ N such that λ ∈ Bn :=

B(µn,
1
4
|Re λ|) ⊂ B(µn,

1
2
). If |λ−µn| ≥ 1

4
|Re λ| for all n ∈ N, then we see as above that

‖(λI − A)x‖2
α ≥ 1

16
|Re λ|2 ‖x‖2

α .

It remains to consider the case that λ ∈ Bn for some n ∈ N, where Re λ ∈ (−2, 0). Then

|λ− µj| ≥ 1/2 for j 6= n. Setting y = x− xnen, we can thus estimate

‖(λI − A)x‖2
α ≥

∞∑
j 6=n

|λ− µj|2 |µj|2α |xj|2 ≥ 1
4
‖y‖2

α .

Using (4.1) and γ > 1, one also deduces that C : Xα → C is bounded, say with norm ĉ.

So we can further compute

|Re λ| |ηCx|2 ≥ η2|Re λ| (| |cnxn| − |Cy| |)2 ≥ η2|Re λ| (|cnxn|2 − 2 |cnxn| |Cy|)
≥ η2|Re λ| (1

2
|cnxn|2 − 8 |Cy|2) ≥ 1

2
η2c2 |Re λ|2 |nαxn|2 − 16η2ĉ2‖y‖2

α .

We now set η = (8
√

2ĉ)−1, so that

|Re λ| |ηCx|2 ≥ 1
2
η2c2 |Re λ|2 |nαxn|2 − 1

8
‖y‖2

α .
11



On the other hand,

m2 |Re λ|2 ‖x‖2
α ≤ 2αm2 |Re λ|2 |nαxn|2 + 4m2 ‖y‖2

α .

Putting these estimates together and fixing a sufficiently small m > 0, we see that the

(α, α)-Hautus test (RW) holds for ηC, as asserted.

Finally, we construct an approximatively infinite-time observable diagonal system which

violates the (α, 0)-Hautus test for all α ≥ 0 and every choice of mλ, even in the version

of Remark 3.13. Let α ≥ 0 and let µ be a function as described in Remark 3.13 with

a corresponding exponent ν > 0. Define A as above for µn = − 2
n

+ in
2
. The sequence

bn = µ(1/n) n−α−1/2 tends to 0 as n → ∞, hence an :=
√

1− b2
n ∈ (0, 1) for n ≥ n0 and

some n0 ∈ N. For n ≥ n0, we set xn = ane2n + bne2n+1 so that ‖xn‖ = 1. For λn = µ2n

we obtain

µ(1/n)−2 ‖(λnI − A)xn‖2
α = µ(1/n)−2 |µ2n − µ2n+1|2 |µ2n+1|2α b2

n ≤ c/n.

Next, define c2n = n−κ for all n ∈ N, c2n+1 = −anc2n/bn for n ≥ n0 and c2n+1 = 1 for

n = 1, · · · , n0− 1, where κ = max{1, 3
2
+ α + ν}. Then Cxn = 0 and the Hautus test fails

for A and C (for arbitrary mλ). Moreover, |c2n+1| ≤ nα−κ+1/2 µ(1/n)−1 for large n, and

so 0 < |cn| ≤ c/n. This fact shows that C is bounded. Finally, the system given by A

and C is approximatively infinite-time observable by [5, Thm.4.2.3].
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