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GLOBAL PROPERTIES OF GENERALIZED ORNSTEIN-UHLENBECK
OPERATORS ON L?(RN RY) WITH MORE THAN LINEARLY GROWING
COEFFICIENTS

M. HIEBER, L. LORENZI, J. PRUSS, A. RHANDI, AND R. SCHNAUBELT

ABSTRACT. We show that the realization A, of the elliptic operator Au = div(QVu)+F-Vu+Vu
in LP(RN,RN), p € [1,+00[, generates a strongly continuous semigroup, and we determine its
domain D(Ap) = {u € WP(RN,RN): F-Vu+Vu € LP(RN,RN)} if 1 < p < +oo. The diffusion
coefficients @ = (g;;) are uniformly elliptic and bounded together with their first-order derivatives,
the drift coeficients F' can grow as |z|log |z|, and V can grow logarithmically. Our approach relies
on the Monniaux-Priiss theorem on the sum of non commuting operators. We also prove LP-L4
estimates and, under somewhat stronger assumptions, we establish pointwise gradient estimates
and smoothing of the semigroup in the spaces WP (RN RN), o € [0, 1], where 1 < p < +oc0.

1. INTRODUCTION

Elliptic operators A = Tr(QD?) + F - V with unbounded coefficients on RY appear naturally in
many branches of mathematics, such as probability and mathematical finance. For this reason, the
interest in such operators has considerably grown in recent years. Under mild assumptions one can
construct a semigroup {T'(t)} of bounded operators in Cy(RY) which solves the parabolic equation
corresponding to A. In general, {T(t)} is neither strongly continuous nor analytic in Cy(RY), in
sharp contrast to the case of bounded coeflicients. (See [3], [17], [21], and the references therein.)
Nevertheless, under suitable assumptions on the coefficients one can prove pointwise gradient esti-
mates for the function T'(¢) f, see [2], [3], [16]. Such estimates are crucial for the investigations of the
inhomogeneous elliptic and parabolic equations corresponding to A, as discussed in, e.g., [3, Chapter
5]. In the prototypical case of the Ornstein Uhlenbeck Operator (and in related cases), there is an
invariant probability measure p for {T(t)} (i.e, it holds [pn T(t)f dp = [on fdp for all f € Cyo(RY)).
One can thus extend T'(t) to the weighted space LP?(RY, u). Here, it can be shown that the semigroup
on LP(RY u) is strongly continuous and analytic and that its generator is the realization of A de-
fined on the weighted Sobolev space W2P(RY 1), 1 < p < 400, see [5], [15], [20], and the references
therein. The picture changes drastically if one works on the usual Lebesgue space LP(RY). As it was
observed in [23], already the one dimensional operator Ap(x) = ¢”(x) — sign(z)|z[*T5¢’(z), = € R,
does not generate a Cyp—semigroup on LP(R), if ¢ > 0. One obtains much better results for operators
having a dominating potential, see, e.g., the recent papers [4], [9], [19], [24]. Without a dominating
potential, one has to require strong conditions on F’; for instance linear growth of F', see [8], [18],
or that F' grows at most as |z|In(1 + |z]), see [23]. It turns out that the domain of the generator of
the semigroup on LP(R™) is the intersection of the domains of the diffusion and the drift part. (The
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semigroup is not analytic, see [26]). Such results can be used in the investigation of global regularity
properties of the densities of the invariant measure (if such a measure exist), see [23].
In the study of Navier-Stokes equations with linearly growing initial data, systems of the form

(Ap)(x) = div(Q(z)Ve(x)) + F(z) - Vio(z) + V(z)p(2) (1.1)

N
= (Av(Q@)Vei(@) + F(@) - Vi) + Y vis(@)ps(@)

Jj=1 ““’
appear naturally (where z € RY and ¢ € O (RY RY)), see [12], [13]. Here one perturbs a diagonal
operator given as in [8], [18], [23], by nondiagonal potential terms, which are bounded in the setting
of [12], [13]. For the applications to Navier-Stokes equations, it is crucial to have gradient estimates
and a precise description of the domain of the realization A4, of A in LP(RY,RY), see [12], [13].
However, if one tries to go beyond linearly growing initial data, one is confronted with more than
linearly growing drift coefficients and with unbounded potentials.

In this paper we consider systems of the type (1.1) where the diffusion coefficients are uniformly
elliptic and bounded together with their first derivatives, VV is bounded and the quadratic forms
corresponding to (DF)@ and V are bounded. These assumptions allow for coefficients such that F'
grows like |z|In(1 + |z|) and V as In(1 + |z|), see Example 2.2. Our first main result Theorem 2.7
shows that the realization A, of the operator A with domain

D(Ap) = {u e W**(RY,R): F- Vu+ Vu e LP(RV,RY)},

generates a strongly continuous, consistent semigroup {7, (t)} = {T'(t)} on LP(RY ,R™), p €]1, +o0].
We stress that here the crucial point is the characterization of the domain. Under slightly stronger
assumptions on the drift coefficient F', we also show that test functions are a core for A,. We then deal
with the case when p = 1 and prove that {T»(¢)} can be extended from L'(RY ,RM) N L2(RN RY)
to a Cg—semigroup on L'(RY RY), using the results for p > 1. This semigroup is consistent with
{T,(t)} for each p €]1,+00[ and its generator coincides with A, on a core. We can then show that
the semigroup maps LP(RY  R¥Y) into LY(RY ,RY), 1 < p < ¢ < +00, and establish a corresponding
estimate in Theorem 4.2. In the last section we prove analogous norm estimates for T'(¢t) acting from
Wer(RN RN to WAP(RN RN), where 0 < o < 8 < 1and 1 < p < +oo, under slightly stronger
hypotheses. This is done in Theorem 5.8, which follows by interpolation from the pointwise gradient
estimates

(VT@H) @) < Cert (TR + V112 ) @),
(VT f) ()] < Cpe® 't 5T (t)(|f17) (),

for all z € RN and f € C°(RN,RY). The inequalities (1.2) are shown in Section 5. Here, {T'(t)} is
the semigroup associated with the realization of the operator A = div(QV) + F - V in Cy(RN).

For V = 0, we proved Theorem 2.7 in [23] for the operator flp = div(QV) + F - V. However, for
V # 0, the result cannot be obtained by perturbating A, by V since D(4,) # D(A,) N D(V), in
general, as seen in Example 2.2. In the present proof in the second section we follow the strategy
of [23] in so far that we treat A as the sum of the diffusion part Ay = div@QV and the lower order
part B = F -V + V. However, the presence of the (non-diagonal) potential perturbation leads to
various new difficulties throughout the present paper. Some of them are technical, but some are more
fundamental: In contrast to the case V' = 0, the group generated by B is not positive and A does not
satisfy a maximum principle, in general. Both properties have been crucial for our previous works [11]
and [23]. To show Theorem 2.7 we apply the Dore-Venni type theorem on sums of non commuting
operators from [22]. The first step is the construction of the (unbounded) group generated by B on
LP(RYN RY). Using a recent result from [10], we can check that B has bounded imaginary powers.

(1.2)
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In view of the known properties of A it then remains to verify a (rather sophisticated) commutator
estimate for the resolvents of Ag and B. The case p = 1 and the LP—L? estimates can then be settled
using methods from semigroup theory and the Nash inequality in Sections 3 and 4. The proofs of the
pointwise gradient estimates (1.2) in the last section are quite demanding. The basic idea is to apply
the maximum principle Proposition 5.4 for A to certain functions constructed from the data and
the semigroups {T(t)} and {T'(t)}. The necessary regularity results for this procedure are proved in
Theorem 5.3 which is based on the domain description from Theorem 2.7.

Notation. For k € NU {400}, we denote by CF(R") the space of all functions f : RY — R which
are continuously differentiable up to the k-th order. We endow C,(RY) with the sup norm | f||c
and CF(RY) (k € N) with the norm ||f|\c§(RN) =2 jal<k D% flloc. Moreover, by C*(RY) we denote
the space of f € CF(RY) having compact support. Similarly, we define the space C¥ (RN, RY) (resp.
C2 (RN, RY)) of functions f : RN — RY such that each component f; ( = 1,...,N) belongs to
CFRYN) (resp. to C°(RYM)). The space CF(RY,RY) is endowed with the norm I fllcr @y mry =
Z;-Vzl 1fillex vy For p € [1, +oc], LP (RN, RY) is the space of f : RY — RY such that f; € LP(RY)
for each j € {1, -+ ,n}, equipped with the norm

ceey

In a similar way one defines the vector valued Sobolev spaces W*? (RN JRN ) and Slobodetskii spaces
WoP(RN RN), 0 €]0,1[, and denote by | - ||z, and || - [|¢,, the corresponding norms. By DF we
designate the Jacobian of a function F' € C*(RN,R") and by Vu the vector (Dju,---, Dyu) for a
function v € C*(RY, X) and a Banach space X. The Euclidean scalar product in RY is denoted by
xz-yor (z,y), and |z| is the corresponding norm. Also when A is a matrix, we use the notation |A| to
denote its Euclidean norm. When there is no danger of confusion, we use the notation (f, g) for the
duality pairing between LP(RY RYN) and )i (RN, RY), where the conjugate exponent p’ € [1, 4]
of p is given by 1/p+ 1/p’ = 1. The open ball centered at 0 with radius R > 0 is designated by
B(R). For every measurable set £ C RY, we denote by g the characteristic function of E.

2. GENERATION AND DETERMINATION OF THE DOMAIN IN LP(RN RY)

In this section we want to show that the realization A, of the operator

Au = div(QVu) + F - Vu+Vu,  uec CPRYN,RY), (2.1)
in LP(RN,RY), p €]1, +o0[, with the domain
D(4,) = {ue W*P(RN RY): F-Vu+ Vue LP(RY,RV)}, (2.2)

is the generator of a strongly continuous semigroup {7},(¢)} on LP(RY RY). Equation (2.1) means
that (Au); = div(QVu;) + F - Vu; + (Vu); for u = (u1,--- ,un) and j = 1,--- , N. Throughout
the paper we assume that the following conditions are satisfied.

Hypothesis 2.1. (i) Q € C}RN,RV*N) the matrices Q(z) = [q;j(z)] are symmetric for any
x € RN, and there exist constants a1, o > 0 such that

N
il < Y ()& < mlé?, 2,6 eRY; (2:3)

ij=1
(ii) F € CY(RN,RYN) and there exist constants 31,32 > 0 such that
(DF(2)Q(z)¢, &) < Bilé]?, =6 eRY, (2.4)
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[(F(z)-VQ(x))i| = < B, i,j=1,---,N, z R, (2.5)

N
> Fu(@) Drgi;(z)
h=1

(iii) V € CYHRYN ,RN*N) VYV is bounded, and there exists a constant 33 such that
(V(2),6)] < Bsle®,  x,6 eRY. (2.6)

Due to Theorem 2.4 of [23], Hypothesis 2.1(i) and (i) imply that the (diagonal) operator A,u =
div(QVu) + F - Vu with the domain D(A4,) = {u € W2P(RN RN) : F-Vu € LP(RN ,RY)} generates
a Cg-semigroup on LP(RY RM) 1 < p < +o0. Even if the potential V' satisfies Hypothesis 2.1(iii),

it can happen that D(A,) is neither contained in D(A,) nor in D(V'), as shown by the following
example.

Example 2.2. Let N =2, p=2,Q =1, F € C}(R?,R?), and V € C'(R?,R?*2) be such that

F(z) =In|x| <_;:2) and  V(z)=In|z| <(1) _01> for |z| > 1.

It is easy to verify Hypothesis 2.1 for these functions. Take a function ¢ € C*(Ry) with ¢ = 0 on
[0,1] and ¢(r) = (r?Inr)~! for r > 2. Define u(z) = ¢(|z|) (z2,21) for z € R%. A straightforward
computation shows that u € W2?2(R? R?) and F-Vu(z)+V (z)u(x) = 0 for |z| > 2; hence u € D(Asz).

However, |Vu(z)| = 1/|z| for || > 2 so that Vu ¢ L?(R?,R?), u ¢ D(V), and u ¢ D(A,). O
As remarked in [23], the estimates (2.3) and (2.4) yield that

IDF(#)Q(x) + Q(z)(DF(2))"] < 261, (2.7)

|div F(x)| < Cnai ' =: v, (2.8)

for all #,& € RY and a constant Cy > 0 depending only on N. We further recall Lemma 2.1 of [23].

Lemma 2.3. There ezists a global flow ¢ € C1(R x RN RYN) such that u(t) = ¢(t,z) is the unique
solution of the initial value problem

u'(t) = F(u(t)), teR, u(0) = z, (2.9)
for each given x € RN. Moreover, for some constants M > 0 and v € R we have

\Vo(t,z)| < MeH teR, xRV, (2.10)

For each fixed z € R, we denote by U(-, z) the fundamental solution of the Cauchy problem
V'(t) = V(e(=t,x))v(t), teR, v(0) = I, (2.11)
where Iy denotes the N x N identity matrix.
Lemma 2.4. We have U € CH(R x RN RN*N) " and there exist constants ¢ > 0 and ¥ € R such
U(t,x)| < el (2.12)
|DrU(t, z)| < ce] (2.13)
for every (t,z) € R x RN and k € {1,--- ,N}. (Recall that 33 is given by (2.6)).

Proof. Tt is clear that U € C*(R x RN, RN*N) We introduce the function ®¢(t,z) = [U(t,x)E|* for
(t,z) € R x RY and a fixed ¢ € RY. Using condition (2.6), we derive

D¢ (t, )| = 2[(V(p(—t, 2))U(t, 2)€ UL, ©)€)| < 203 Pe(l, @),
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for all (t,z) € R x RY. Estimate (2.12) then follows from Gronwall’s lemma. To verify (2.13), we
notice that

Dy DyU(t, z) = DpDiU(t, v) = Di[V(p(=t, ) U(E )] ()
N

= V(‘P(_t’w))Dku(t’x) + Z(Dk@h>(_t7x) (DhV)<Lp(—t73;‘))U(t, 3?)
h=1

=: V(p(=t,2)) Dpld(t, x) + g(t, x),
for all (t,z) € R x RN. Since DxU(0,z) = 0 for all z € RN, we deduce that

¢
DyU(t,x) = / U(t — s,z)g(s,z)ds. (2.14)
0
Inequalities (2.10) and (2.12) and Hypothesis 2.1(iii) imply that
lg(t, 2)| < [Vp(=t, 2)[ [(VV)(p(=t,2))[ U, )]
< M||VV ||oo etlesltl = cetl] (2.15)
for 7 := v+ (3 and every t € R, where we may assume that v > 0. From formulas (2.14), (2.12) and

(2.15), it follows that
t
/ oBslt—s] sl g <67|t| _eﬂslt\)’
0

for (t,z) € R x RV, i.e., (2.13) holds. O

| Dl (t, )| < C

=1Q

We now introduce the operators S,(t), t € R, by setting

(Sp(t) ) (@) =U(t, (t,2)) f(p(t,x), xRN, (2.16)
for f € LP(RY,RY) and p €]1,+oo[. As we will see in the next proposition, {S,(t) : t € R} is the
Co—group generated by the lower order part of A,. Given ¢ € C1(RY,RY), we denote by div(pF)
the function with the components

(@iv(gF)); = div(g;F),  j=1,...,N.
Proposition 2.5. {S,(t), t € R} is a strongly continuous group in LP(RY,RN) and
1Sp (Ol £(Lr N mN)) < el t €R, (2.17)

where p €]1,+00[, v, := [ + %, and v is given by (2.8). The generator of {S,(t)} is the operator
B, given by

D(B,) = {f € LP(RY,RY) : 3g € LP(RN,RY) with (g,¢) = (f,V*p — div(pF))
Ve e C;(RY,RV)},
and B, f = g. In particular, if f € WHP(RY RY) and F-Vf+Vf € LP(RN,RY), then f € D(B,)

and B,f = F-Vf+V f. Moreover, C:(RN RY) is a core of B,. The adjoint of B, on LP (RN, RY),
1/p+1/p =1, is given by

D(By) = {f € I RY,RY) : 3g € L RN, R") with {p,g) = (Vio + div(¢F), )
Vo e C;(RY,RY)},
and By f = g — (div F)f. In particular, if f € W2 (RN RN) and —F - Vf 4+ V*f € L¥ (RN, RY),

then f € D(By) and Byf = —F -Vf +V*f —(divF)f. Finally, the restriction of {S,(t)} to
Whp(RN RN) is still a strongly continuous group.

(2.18)

(2.19)



6 M. HIEBER, L. LORENZI, J. PRUSS, A. RHANDI, AND R. SCHNAUBELT

Proof. Step 1. We prove that {S,(t)} is a strongly continuous group in LP(RY,RM). Let f €
LP(RN RN) t € R, and p €]1, +00|. Since (2.9) is an autonomous problem, we have (7, p(s, x)) =
o(r + s,z) for 1,5 € R and z € RV, so that ¢(t,-) has the inverse p(—t,-). Taking into account
(2.10) and (2.12), we can thus estimate

Z/ |pdm—Z/ Ut, ot ) flp(t,x)));|P do

j=1
N P
gcl/ (1@t fw)52) " |det(Vip(t, )| dy
j=1
N P
et [ (S 1HWE)" dy < et 115,
RN 5

for some constants ¢y, c2,c3,d > 0. Hence, S,(t) is a bounded operator in LP(RY ,RY). Tt further
holds

(Sp()Sp()f) () = UL, @(t, 2))(Sp(s) f) (p(t x)) = Ut o(t, 2))U(s, o (s, o(t, ))) [ (s, (t 7))

=U(L, p(t, ) U(s, p(s +t,2)) f(p(s + 1, 3)), (2.20)
for all s,¢ € R and € RY. On the other hand, the uniqueness of (2.11) implies that
Ut o(—s,y)U(s,y) =U(s+ t,y), (2.21)

for every y € RYN. Inserting equation (2.21) with y = o(t + s, ) into formula (2.20), we derive
that {S,(t)} is a group. It remains to show that ¢ +— S,(¢)f is continuous at ¢ = 0 for each
f € LP(RY RY). Of course, we can limit ourselves to consider the case when f € C°(RYN ,RY). For
such an f, estimate (2.12) yields

[(Sp(0) ) (@) = fa)| < Ut ot ) (f(e(t, 2) = (@) + [UE o(t, ) f () — f ()]
< M (p(t,2)) = f(2)| + UL, o(t,2) f(2) — f(2)], (2.22)

for all t € R and x € RV, Since f has compact support, both terms on the right-hand side of (2.22)
vanish outside a compact set H C RY, uniformly with respect to t € [~1,1]. (In fact, the first
term vanishes outside ¢(—t,supp f) U supp f. Since the function (¢,z) — ¢(—t¢,z) is continuous in
R x RY there exists a compact set in RV which contains ¢(—t,supp f) for every ¢t € [-1,1]). As a
result, both terms on the right-hand side of (2.22) converge to 0 as ¢ — 0 uniformly in 2 € RY, and
therefore they converge in LP(RY RY).

Step 2. We next determine the generator By, of {S,(t)}, where p €]1,+00[. Let D, be the space
given by the right-hand side of (2.18) and set Bpf =g for f € D As a first step, we prove that
CHRY RY) is a core of B,. For f € CHRY ,RY), the function u(t z) = (S,(t)f)(z) continuously
differentiable in R x RY and Du(0,z) = F(z) - Vf(x) + V(z)f(x) due to (2.16) and Lemmas 2.3
and 2.4. We even obtain that S,(-)f € C1(R, LP(RN,RY)) and S,(t)f € CLRN,RY), for any t € R,
because f has compact support and (¢, ) is bijective from RY to RN for any ¢ € R. As a result,
CL(RN,RN) € D(B,),

Byf =F-Vf+Vf for feC{RYRY), (2.23)

and CH(RY,RY) is a core of B, by Proposition I1.1.7 of [7]. Consequently, for a given f € D(B,),
there exist functions f, € CLRN ,RY), n € N, such that f, — f and B,f, — B,f in LP(RN RY)
as n — +o0o. jFrom (2.23) we infer that

<Bpfa ‘P> = hm < pfna ‘P> EI}:OOOCM V¥ — diV((pF)> = <f7 Vi — diV(<PF)>7 (2'24)



GLOBAL PROPERTIES OF GENERALIZED ORNSTEIN-UHLENBECK OPERATORS 7

for every ¢ € CHRN,RN). This means that B, C B,. To prove the other inclusion, we take a
number w larger than the growth bound wy(B,) of {S,(t)} and a function f € Ker (B, — wI). Then
we have }
0=A(Bp —wh)f,¢) = ([, V¢ = F -V — (div F)p — wp), (2.25)
for every ¢ € CL(RN ,RY). Since the functions —F and V* also satisfy Hypothesis 2.1, the above
results show that the operator ¢ +— V*¢ — F - Vo with domain C!(RY,R") has a closure C in
LY (RN, RN) which generates a Cy-group. Thanks to (2.8) and the bounded perturbation theorem,
C — div F is also a generator in L (RN, RY) having the core C! (RN RY). Fixing a sufficiently
large w > wo(B,), formula (2.25) now implies that f = 0; i.e., wI — B, is injective. On the other
hand, wl — B, C wl — Bp and wl — B, is surjective, so that we deduce B, = B The second
assertion concerning B, is an immediate consequence of the formula (2.18). Moreover the domain
of C is given by the right-hand side of the equation (2.19). The identity (2.24) further shows that
= C — divF on CHRY RY), which is a core of C — div F. Hence, the operator B} coincides
with C' — div F', as asserted.

Step 3. In order to show (2.17), we first assume that p € [2,+oc[. Take u € CLH(RY,RY) and

A > vp, and set f = Au— Bpu. Multiplying both the sides of this equation by u|u|P~2 and integrating
by parts, we obtain

/ I -ululP~? dsz/ \u|pdx—/ (V- u)|ulP2 dx—/ (F-Vu) - ululP~? dzx
RN RN RN RN
1
:)\/ \u|pdx—/ (Vu-u)\u|p72dx—|—f/ (div F)|ul? dx.
RN RN P JrN

Hélder’s inequality and the estimates (2.6) and (2.8) then yield (A — 35 — v/p) [|ull2 < [[ul5~" || f],,
so that

flull, < Wﬂfﬂp (2.26)

If p €]1,2[, we multiply both the sides of Au— Byu = f by u(|u|?+ )%~ for § > 0 and integrate by
parts as above. Then, letting § — 07 we again obtain (2.26). Since C}(RY,R¥) is a core for B,, the
estimate (2.26) holds for all w € D(B,,) by approximation. Inequality (2.17) is then a consequence
of the Lumer Phillips theorem and (2.26).

Step 4. To conclude the proof, we need to show that the restriction of {S,(t)} to W1P(RY RY)
is again a strongly continuous semigroup. As in Step 1 we see that ¢ — S,(t)f is continuous in
Whp(RY RY) for any f € CHRN,RY). Moreover, equation (2.16) implies that

N

N
(DrSp(t)f) (@) = D (Dd)(t, (¢, x)) Dreon(t, 2) f(p(t, 2)) + Z () Dy f) (@) Drpr(t, ),

k=1 =1
for h = 1,...,N. Using (2.10), (2.13) and (2.17), we can then estimate ||V.S,(¢t)f|l, < ce®| f|l1

for t € R and some constants ¢ > 1, where d = v + max{% + 7v/p, v, }. Now, the strong continuity of
{S,(t)} in WEP(RN RYN) follows by approximation. O
In order to apply the results from [22] to our problem, we introduce the operator

and we denote by Ay its realization in LP(RY,RY) with the domain D(Ag) = W2?(RYN,R"Y), where
p €]1,+00[. We fix a number w larger than the growth bounds of {S,(t)} on LP(RY RY) and
WLP(RY RY). (We can choose w independent of p by the proof of Proposition 2.5). We then set

Ay =1 — A, B, =wl — By, (2.27)



8 M. HIEBER, L. LORENZI, J. PRUSS, A. RHANDI, AND R. SCHNAUBELT

where p €]1,4+o00[ is fixed. In the following lemma we compute the commutator of these two
operators. The straightforward proof is omitted, see Lemma 2.3 of [23] for the case V = 0.

Lemma 2.6. Assume that Q,V € C?*(RN RN*N) gnd F € C?>(RY,RYN). Then, we have
[AoBo — BuAolp = div{[Q(DF)* + (DF)Q — (div F)Q — (F - V)Q|Vig} + (div ) Aggp

N N
+ Y a;(DiV)Djp + Y Dilais(D;V)p),
ij=1 ij=1
for every ¢ € CX RN, RY), where (F - V)QVyp = ((F-V)QVer,...,(F-V)QVey) and ((F -
V)QVer); = X1 Fi(Digjn) Dur for all jk=1,...,N.

We can now prove our main generation result.

Theorem 2.7. Assume that Hypothesis 2.1 holds and let p €]1,4+00[. Then, the operator A, =
div(QVu)+ F-Vu+Vu with the domain D(Ap) = {u € W*P(RY ,RY) : F-Vu+Vu € LP(RY,RV)}
generates a strongly continuous semigroup {T,(t)} in LP(RN RYN) and

1T () 2(Lr @y mYY) < et t>0, (2.28)

where vy, = f3 + £. Moreover, {T,(t)} is consistent, i.e., {T,(t)} and {T,(t)} coincide on
LP(RN, RN) N LYRN RN for all p,q €]1,+00]. The adjoint A% is given by A%v = div(QVv) — F -
Vv +V*v — (div F)v forv e D(A5) = {v € w2 (RN RN) : —F - Vo + V*v e LP (RY,RN)}.

Proof. We want to employ Corollary 2 of [22] in order to show that A,—xI is invertible in LP(RY ,RY)
for each fixed p €1, +oo[ and some k > 0. To this purpose, we must work in complex Banach spaces.
It is straightforward to extend the above results to the canonical complexifications of the spaces we
have considered so far. Recall the definition of Ay and B,, in (2.27). It is well known that

Oals|
?

I+ Ao) Ml z(zr @y mry) < and  [|AP || z(zo@y ) < ce

c
Al +1
for a (fixed, but arbitrary) 04 €]0, 3[, A € C\ {0} with |arg \] <7 —604, s € R and a constant ¢ not
depending on A and s. Proposition 2.5 shows that —B,, generates an exponentially stable semigroup
on LP(RN,CV) which is also a group. Taking also into account the functional calculus formulated
in Theorem 3.6 of [10], we infer that there exists an angle fp > & such that 04 + 0 < 7 and

— c 18 s
(1 + Bu) (e @y mry) < i and  ||BE || cipoy mry) < ce?Bll

for s € R, p € C\ {0} with |argpu| < 7 — 6p, and a constant ¢ not depending on p and s. In order
to apply Corollary 2 of [22] it remains to estimate the operator

C(A\p) == Ag(A + Ao) H[Ag ' (n+ Bu) ™t — (n+ Bu) ' 451,

on LP(RN,CN), for the above A and . For this purpose, we use an approximation argument. We
consider a family of mollifiers {p,, n € N} and a function ¢ € C°(RY,R) such that XB1) < ¢ <
XB(2)- We further introduce the operator 7;, defined by

Tp)@) = C07'0) [ oupla—ids. v eRY, neN,

for a locally integrable function ¢ : RN — C. Clearly, Ty, € C°(RY) for all n € N, T,,¢ converges
to o in W2P(RY) for every p € W2P(RY), and T,¢ converges locally in C*(RY) to ¢ for each
© € CY(RY), as n tends to +oo. We also set T, f = (Ty, f1,- .., Tnfn) for alocally integrable function

fiRN N, F® = TF, ¢V = T,(q;;) and V\" = T,,(Vi;) for i,j = 1,...,N and n € N. The
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operators A(()k) and Bf,k) are defined as the operators Ag and B, replacing the coefficients @, F, V
by Q%) F(R) V() respectively. For a given f € D(B,), we set

Vea(f) = 45 A BY — BY AT, A 1,
for every k,n € N. Thanks to Lemma 2.6, we can write

Vea(f) = A3t div { [QUY(DFM)* + (DF®)QM — (aiv FP)QM — (FV - v)QM] VT, A5 f

+QW(VVINT, AT |+ Ag (div FO) AN T, A5 f

N
+ A7 ¢ (Div ) DT, AT (2.29)
i,j=1

We observe that (12181/2)* is bounded from L* (RN, CN) to W' (RN, CN). Therefore, the operator

Dk(flglp)* is bounded in L? (RY,CV), and we can thus extend the operator Aal/g div defined on
C® (RN, CN) to a bounded operator S : LP(RY CV) — LP(RN,CN). Letting k — +oo in (2.29)
and recalling that 7, Ay ' € C°(RN,CV), it follows that Vi, (f) converges to the function

Valf) = 432 S{[Q(DF)" + (DF)Q - (aiv F)Q — (F-V)QIVT, A7 f + Q(VV)T, 45" f}

N
+AG (v ) A T, Ay f + Ayt > i (DiV) DT A | (2.30)
ij=1
From Hypothesis 2.1 and estimates (2.7) and (2.8), we know that the maps Q(DF)* + (DF)Q,
(div F)Q, (F-V)Q, Q, and VV are bounded on RY. Therefore, we can take the limit as n — 400
in (2.30) and deduce that V,(f) converges in L?(RY,C¥) to the function
V(f) = 4,2 8{[QDF)" + (DF)Q - (aiv F)Q - (F- V)Q]VA; ' f + Q(VV) A7 ' f |
+ Ag "t [(div F)AoAg " f + VV - (QV(Ag" f))].
Moreover, there exists a constant ¢ > 0 such that
1A VDl <cllfllp,  feDB). (2:31)
In order to relate the crucial estimate (2.31) with the operators C(\,w), we introduce the maps
Cran(\ ) = Ao(A+ Ag) ™ (u+ Bo) ' Ag A B — BM AT, At (u+ B.) ™!
= Ao\ +Ao) " (i + Bo) Wi (i + Bu)
for k,n € N, |arg \| < m1—0a, and |arg u| < 7—0p. Take g € LP(RY,CV) and set f = (u+B,) g €
D(B,,). The above results show that Cj (), w)g converges to the function
CO g = Ay (A + Ao) ™ { Ay > (u+ Bo) A V2 LAYV(f), (2.32)

letting first k& — 400 and then n — +oco0. By Proposition 2.5, the operator —B,, generates an
exponentially stable semigroup on D(A(lj/ %) = WLP(RN,CY). The inequality (2.31) thus yields

!/

~ M M
c(A < — < — 2.33
|| ( 7“)9”10 — |)\|1/2|M|Hf||17 — |)\|1/2|/~L|2”9Hp, ( )

for all A\,p € C\ {0} with |argA\| < m — 04 and |argpu| < m — 0, and some constants M, M’ > 0
independent of A and p. On the other hand, it holds

Ve (1), Asp) = (A BP — BW AT, AT f, o)
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= (AT AT £, (VD) o — div(pF®)) — (BT, AT f, (ASD) ),

for every f € D(B,) and ¢ € C°(RN,CY). Letting k — +o00, we derive
(Vn(F), Ajp) = (AT AG V' — div(pF)) — (F - VT, Ay £, Ayp) — (VT A f, Asep).
Taking the limit as n — +o0, this equation and (2.19) yield
V1), Asp) = (f, Vo — div(pF)) — (F - VA f, Asp) — (VAG [, Agp)
= (Byf, o) — (F-VAG' f + VA 1, Aso).

Setting ¢ = flgcp, we obtain

V(). 0) = (Ag ' Bpf,0)) — (F - VAT f+ VAG f,4).

—
Since test functions are a core for A%, the set A%(C°(RN,RN)) is dense in L (R",CN). Propo-
sition 2.5 thus shows that Aj'f belongs to D(B,) and that V(f) = A;'B,f — B,A; ' f, for each
f € D(B,). Inserting this equality into (2.32), we get

CAm)g = Ao(A+ Ao) " (u+ Bo) Ay ' By — ByAg(n+ Bo) g
= Ao\ + Ao) (1 + Bu) TMBLAGt — Ayt Bul(u + Bu) g
= C\p)f.
Therefore, estimate (2.33) gives
M/
C(A, < SerE
1C( M)Hc(LP(RN,RN)) = |)\|1/2|u|2
for all A\, p € C\{0} with |arg A| < 7—604 and | arg p| < 7—0p. Observe that D(A¢)ND(B,) = D(4,)
by Proposition 2.5. Corollary 2 of [22] now shows that the operator kI + Ay + B, = (k + 1+ w)I —
A,, with domain D(A,), is invertible in LP(RY RY) for some x > 0. Taking Proposition 2.5
into account, it is easy to see that Ag + B} coincides with the operator div(QV) — F'- V + V* —
(divF)f on W2 (R¥ ,RN) N D(B;) and that it is a restriction of A%. Moreover, Ay + B} is a
generator on LP (RN, CN) by the above results and Proposition 2.5. Hence, Ay = Ap + B, has
the asserted representation. The remaining claims can be proved using the Trotter—-Kato product
formula, Proposition 2.5, and the dissipativity of Ag. ]

Proposition 2.8. Assume that Hypothesis 2.1 holds and that p €]1,4+00[. Denote the components
of Q(x)~t by rij(x) (1,5 =1,...,N). The following assertions are true.
(a) If, additionally,

(F(a),z) < clzf? (2.34)
for some constant ¢ > 0 and all x € RN, then the operator Ay coincides with the mazimal realization
of A in LP(RN RN), i.e.,

D(A,) = {u e LP(RY,RN) nW2P (RN, RY) : Au € LP(RY,RM)}. (2.35)

loc

(b) If condition (2.34) holds with —F instead of F, then the space C° (RN, RY) is a core for A,.

Proof. (a) It suffices to show the inclusion “O” in (2.35). We denote by Dyaxp the space in the
right-hand side of (2.35). Since AI — A, is invertible for each A > v, (cf. Theorem 2.7), we have
to establish the injectivity of AJ — A on Dpax,p for some A > v,. Let Av = Av for some A > v,
and v € Dpax,p. We fix a decreasing smooth function 1 : [0, +oo[ — R, with x[0,11 < ¥ < Xx0,2),
and we set ¥, (z) = ¢(|z|/n) for € RY and n € N. Then, ¢,, € CH(RY), xpn) < 90 < XB20)
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and ||V, || < C for every n € N. We first consider the case p > 2. If we multiply the equation
Av — Av = 0 by v|v|P~292 and integrate by parts, we obtain

N
2
0= [ popotdet [ Y QVeTu fop 20k de + P2 [ o 402 Qo). V(o) do
RN RN 1, RN

N
1
2 [ ol o, > @V, Vo do+ o
RN

(divF)|v|p19id:1c—/ [v|P~292 (Vv,v) dx

+ [ 200(2) |l /) (F (), ) o ()P (2.36)

N pn |zl
Using the Cauchy—Schwarz and Young’s inequality, we can estimate

N N
/ lv[P~29,, th<QV19n, Vo) dx > —/ |v\p_219n|Q%V19n| Z |vg] \Q%Vvh| dx (2.37)
RN N

h=1 R h=1

N 1
> @z [ ol 10,0901 10} Vunf?] Tda
RY h=1

N

> —cva ol [ 1Pk Yo (Vi Vo) de]

h=1

1
2

CQ (6]

N

1
> P B — P=292 1o
> 5 /RN [v|P dz Q/RNhE_1<QVvh,VUh>|U| v, dx

Concerning the last integral in (2.36) we note that its integrand vanishes if |z| ¢ [n,2n] and that
¥" < 0. Assumption (2.34) thus implies that this integral is larger than —¢||v[|) for a constant ¢ > 0
independent of v and A. Using also (2.6), we can thus derive from (2.36) and (2.8) that

0> ()\ — s — 5) / 92 [ol? dz — (C%an +2)|[v][2.
P/ JrN
Letting n — +o00 and choosing a sufficiently large A > 0, we arrive at v = 0, so that A — A is injective

for such \. If p €]1,2[, we multiply the equation Av — Av = 0 by (|v|? 4+ 6)P=2)/2p92 | where § > 0.
Integrating by parts, it follows

N
0>\ / w02 (jo]? +8)7 da + / > {QVon, Vo) (v +0)7 ((p = Dol + ) de
R RY h=1

N N
+2/ thﬁn(|v|2+6)%4<QVvh,Vﬁn>dm—/ S 02 F (D on([ol? +8)" da
RN £ RN

i,h=1

- / (]2 + 6) "2 92 (V, v) da. (2.38)
RN

Arguing as in (2.37), we can show that the sum of the second and the third integral in (2.38) is larger
than

2
_¢ 0‘2/ (Jv]? + 6)% da. (2.39)
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Using the theorem of dominated convergence, we can now let § — 07 in (2.39) and in the first, fourth
and fifth integral of (2.38), obtaining

N 2
0> (=) [ = [ SR Vool 2de- S22 [ ura,
RN RN 1 p—1 Jrw~

On the other hand, integration by parts yields that

N
—/ S 02 F (D)o ([0 +8)" da
RN
i,h=1
- / 2(div F) [o2(ju]* +6) 7 da + 2 / InlF,V0,) [o2(j0]* +6) 7 da
RN RN

N N
+/ Zﬁimwhmuvﬁ+5)¥dm+(p—2)/ S 0R(F, Vos); (v +6)°% da
RY p—1

RN

N
— - 2)/ S 2, Vs 8ol +8)" 7 da

RN “

j=1

So, we derive
Y —4
- / Zﬁi(F, Vop)op (Jv]? + 5)177(p\v|2 +26)dzx

RN 35

= [ B P + 0 e 42 [ 9B P +9)"
RN RN

As above, we can take the limit as § — 07 in the integrals on the right-hand side. On the left-hand
side, the function Y, 92 (F, Vop,)op, (0] + §)"Z" (p|v|? + 26) can be estimated from above by the
function ¢,9¥? |Vu||v[P~! in the set {§ < |[v]?}, and by the function ¢, 6?~1/2|Vv|¥? in the set
{|[v|?> < 4}. So, the theorem of dominated convergence applies, taking as a majorant the function
cn 92 (|Vo| [v]P~1 4 |Vu|) for § €]0,1], and it yields

N
—/ > (F, Vop )92 ]oP~? do = 1/ (divF)ﬁi|v|de+z/ [o|P(F, V)0, da.
RN P Jr~ D Jry

We can now conclude that v = 0 as in the case p > 2.
(b) Suppose that (A — A,)¢, f) = 0 for some f € L' (RN, RN), A > 0, and all ¢ € C°(RY,RN).
Standard elliptic regularity, see e.g., [1], then yields that f € VVli’p , (RN, RY). Integrating by parts

we, thus, obtain 0 = (¢, (A — A*) f) for the (formal) adjoint A* of A, i.e., \f = A*f. Applying part
(a) to the operator A* = div(QDu) — (F,Vu) + V* — div F, we see that f belongs to the kernel of

Al — Ay, and hence f = 0 for sufficiently large A > 0. So assertion (b) has been established. O

3. THE GENERATION RESULT IN L}(RY RY)

Using the results in Section 2, we prove that we can associate a strongly continuous semigroup
{Ty(t)} with the realization of the operator A in L'(RY RY).

Proposition 3.1. Assume that Hypothesis 2.1 holds. Then, the restriction of the semigroup {To(t)}
to L2(RN,RN) N LY RN, RY) can be extended to a Co—semigroup {T1(t)} on LY (RN, RN) which is
consistent with {T,(t)}, p €]1,+o0[, and satisfies

1T ()l 22 e mvy) < €, t>0, (3.1)



GLOBAL PROPERTIES OF GENERALIZED ORNSTEIN-UHLENBECK OPERATORS 13

where 11 = O3 + Cnyf1/a1. The generator Ay of {T1(t)} has the cores D, = {u € D(A,) N
LYRY RN) + Apu € LYRY,RY)} and Aju = Apu for u € D, for each p €]1,+00[. In par-
ticular, A1 extends A.

Proof. Let f € L2(RN,RY)n LY(RY,RY) and r > 0. Note that f € LP(RY,RY) for p €]1,2[. Due
to Theorem 2.7, the semigroups {7,(¢)} and {T;(t)} are consistent for p,q €]1,+o0], so that we
simply write T'(¢) instead of T,(¢). The theorem of dominated convergence and (2.28) yield

ITE) fllLr By rY) = plifg IT#) fllr(BeryrY) < 111_{111 e fllp = eI f]l1 -

Thus we can extend T'(¢) from L2(RY RM) N LY RN, RY) to an operator T} (t) satisfying (3.1) for
t > 0. It is clear that {T1(¢)} is a semigroup which is consistent with {T'(t)}. To show its strong
continuity, we take f € C2°(RY RY). Since f € D(4,) for p > 1 by Theorem 2.7, we obtain
t t
T(0)f ~ f =707 - = [ T A7 ds= [ Ti(s)Af ds, (32)
0 0

1T (t)f — fllor @y myy < ct,

for all ¢t €]0,1] and some constant ¢ > 0 independent of t. Hence, T1(t)f — f in L'(RN RY)
as t — 07, and so {T1(¢)} is strongly continuous. The semigroup {T}(¢)} leaves invariant D,,
1 < p < 400, since it is consistent with {T'(t)}. The space D, is dense in L'(RY,RY) because it
contains the test functions. Let f € D,. As in (3.2) we obtain that

¢

1(0)f ~ = [ Ti(s) A8 ds.

0

Thus, f € D(A;) and Ay = A, f. The last assertion now follows from Proposition I1.1.7 of [7]. O

In view of the above results, in the rest of the paper we simply write {T'(¢)} instead of {T},(¢)}.

4. LP-L9 ESTIMATES

Under Hypothesis 2.1, we want to show that T'(¢) maps LP(RY RY) into LY(RN,RY) for all ¢ > 0
and 1 < p < ¢ < 400 and that there exist two constants M > 0 and w € R such that
|71l < ME=2C"De fll,,  £>0, f € LPRN,RY). (4.1)
The case (p,q) = (1, +00) is the main step of the proof of (4.1), and it is treated in the next lemma.
Lemma 4.1. The estimate (4.1) is true for (p,q) € {(1,2), (2, 4+00), (1, +0)}.

Proof. Step 1: (p,q) = (1,2). If u € D(As), integrating by parts yields
/ —div(QVu) - udzr > oy / |Vu|? d.
RN RN
As in Step 3 of the proof of Proposition 2.5, we obtain that

/ (Au — Bau) - udx > ()\ — s — Z) / lu|? da.
RN 2 RN
Taking A > A\g > 5 + v/2, we infer
ullf2 < C / u(Au — Agu)da, (4.2)
RN

for a positive constant C; = Cy(\g) independent of u. For 0 # f € C°(RY RY) and A > \g, we set
(t) = e NT@)fll5,  t>0.
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Let 6 > 0 be the supremum of ¢, > 0 such that v(t) # 0 for 0 < ¢ < tg. For ¢t €]0, [, we have

W (t) = 262N / (T f, (As = NT(®) fode, ¢ > 0. (4.3)
RN
We recall Nash’s inequality (see e.g., [6, Theorem 2.4.6]) which implies that
244/N 4/N
lgll3™™ < Cllgll3 2 llglly’ (4.4)

for a constant C' > 0 and each g € WH2(RY RNM)NLYRYN | RY). Since Ty(t)f € D(Ax)NLY (RN, RY)
by Proposition 3.1, we deduce from (4.3), (4.2) and (4.4) that

2 2 4/N | — —4/N
V(0) S -Gl N TWSIR2 < — g le M TOAIT e TOSTY
for every ¢ € (0,4), and hence
d _ 4 _ _4/N 4 (r—p —4/N
GO 2 o e NTEAITY 2 Mk O Y, (45)

where v is given by Theorem 3.1 and M; :=4/(CCyN). Integrating (4.5), we obtain
t
(w(e) 2/ 2 M 7Y [ A0 ds = el Y,
0

o(t) = le T (1) FI13 < My VPN £)12 (4.6)

for all t €]0,6] and A > max{Ao,v1}. If § < 400, the semigroup law shows that v(t) = 0 for ¢ > 4,
i.e., (4.6) is true for all ¢ > 0. By approximation, we arrive at

IT()fll2 < My N AN £, t>0,
for all f € LY(RN,RN).

Step 2: (p,q) = (2,+00). Based on the representation of A3 from Theorem 2.7, as in Step 1 we
can establish the estimate

I7(6)glla < M7 YN g, >0,

for every g € LY (RN, RY), A > X\ and some constant A > \g. By duality, this inequality leads to

[Tl = sup [ (LT g)de < M7l e,

gl <1 JRN

for every f € C.(RY,RY); i.e., estimate (4.1) holds for with (p,q) = (2, +00).

Step 3: (p,q) = (1,+00). Steps 1 and 2 imply that
IT@/DT(E/2)f oo < 2V M NN T (/2 £ < 2V NN 1,
for all t > 0 and f € L'(RY RY), where M, is as above. a

Theorem 4.2. Assume that Hypothesis 2.1 is satisfied. Then, the inequality (4.1) holds for all
1 <p<q<+o00 and some constants M > 1 and w € R.

Proof. Lemma 4.1 and Proposition 3.1 show that

IT ()l o(rr @~ vy, Lo @y zyy < MEN2Xand | T(#)] @y zry) < €,

for all t > 0 and f € L}(RY,R”) and some constants A > 0 and M > 1. Set w = max{r,A}. The
Riesz Thorin interpolation theorem, see e.g., Theorem 1.18.4 of [25], then yields

1T )l ot @y mYY, La®N BRNY) < Me“’tt*%(k%), t >0, (4.7)
for all ¢ € [1,400]. The assertion now follows by interpolation between (2.28) and (4.7). O
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5. LP-GRADIENT ESTIMATES

In this section, we prove LP-gradient estimates for the spatial derivatives of the semigroup. We
introduce the operator A defined on smooth functions ¢ : RV — R by

Aip = div(QVy) + F - Vi (5.1)
In addition to Hypothesis 2.1, we further assume the following conditions.

Hypothesis 5.1. (i) ¢i; € CERM)N C* (RN for alli,j=1,...,N and some o €]0,1][;

loc

(ii) there exist a function p € C2(RY) and a constant X\ > 0 such that

lim ¢(z) =400, sup Ap — A\p < +oc. (5.2)
—+00 RN

||

Remark 5.2. Assume that Hypotheses 2.1 and 5.1(¢) hold and that F satisfies (2.34). Take
o € C*(RN) with o(z) = |x| for |z| > 1. The function ¢ then satisfies (5.2) (cf. the proof of
Proposition 2.8).

We begin with some preliminary results on local Holder regularity.

Theorem 5.3. Assume that Hypotheses 2.1 and 5.1 hold. Then, for each f € C®(RN,RN), the
function v = T(-) f belongs to C’l+5/2’2+’6([0, +oo[ xRN, RN) N C([0, +o0l; C;+'6(RN,RN)) for each

loc
B €]0,1[, and it satisfies
Dyu(t,z) = Au(t,z), t>0, zeRY,
{ ru(t, x) (t,z) (5:3)

u(0,2) = f(x), reRY.
Further, Vu belongs to Clttam’z—’_a([(), +oo[ xRN RN), where o is given by Hypothesis 5.1(i).

Proof. Let f € C°(RY,RY). By Theorem 2.7, we have u = T(:)f € C([0, +oo[; W2P(RN RY))
for every p €]1, +00[. Sobolev’s embedding theorem thus yields u € C(]0, +o00[; C;'Ha (RN, RN)) for
all 8 €]0,1[. We now turn our attention to the regularity of D?u; and Dyuy, for k =1,...,N. Set

App = div(QDy) for smooth functions ¢. Then uy solves the Cauchy problem
Dyw(t,z) = Aow(t,x) + gp(t,z), t>0, xRV,
{ w(0,-) = 9(x) fr(z), z e RY,
where gr = (F, Vuy) + (Vu, er) and ey, is the k-th vector of the Euclidean basis of RY. Take R > 0
and a smooth function ¥ = ¥ such that xpry < ¥ < xper)- As it is easily seen, the function

v, = ug? solves the Cauchy problem (5.4) with fi and gy replaced with the functions fi¢ and ),
respectively, where

Pr = gi0 — updot) — 2(QVuy, VI) € C([0, 400 ; CF (RN)),

for all 3 €]0,1[. It is well known that the realization A, of the operator Ay in Cy(RY) generates
an analytic semigroup {S.(¢)} such that

Da_(B/2,00) = CJRYN),  Da_(1+5/2,00) = CZTPRY),

(5.4)

for all 8 €10, 1], with equivalence of the respective norms, see Section 3.1 of [14]. We further have

Uk(ta ) = Soo(t)(fkﬂ) + /Ot Soo(t - 5)1/%(5, ')d57 t > 0. (55)

Since Uf € Da_(1 + 3/2,00) and ¢, € C([0,+00[; D4 (3/2,00)) for any  as above, we can
apply [14, Corollary 4.3.9] obtaining that D;vy is (bounded and) continuous on [0, T] with values in
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Cf(RN), for each T' > 0. Moreover, since A () + g1(0,-) € Da__(5/2,00), the function wvy(¢,-)
belongs to C§+ﬁ(RN) for all £ > 0 and

sup (ot Mgzoo eny + 1Dkt ) cpny) < +00. (5.6)
te[0,T)

By interpolation we deduce that
8
ok (t,-) — vr(s, Mloz@ny < Cllok(t, ) — vr(s, Gy gy lvr(t, ) — vils, )Iléfziﬁ(ﬂw

<C(2 sup |lue(t s = Vi — ui(s =i , 5.7

(2 0 (el @) o) = o, G Tany, (57)
for a constant C' > 0 and all s,t € [0,T] and T > 0, see e.g., Proposition 1.1.3(ii) of [14]. Since
v, € C([0,4+00[; Cp(RY)), estimate (5.7) implies that vy € C([0, +oo[; CZ(RY)). We next show that
D?vy, belongs to C#/2([0, T]; C»(RN)) for all T > 0. Observe that

t
|vg (t, 22) — vg(s,x2) — vg(t, 1) + vp(s,z1)| < / | Dyvg(r, x2) — Dywg(r, x1)| dr

< |t — s||we — 21)° s[up ] Dok (t, ) op@nys (5:8)
t

ok (t, ) — vi(s, )| <[t - Slts[up] Dot )l ey ) (5.9)
for all s,t € [0,7], T > 0, and z, 71,72 € RY. The estimates (5.6), (5.8) and (5.9) yield v;, €
Lip([0,T7; CZ’?(RN)). Interpolating CZ(RY) between C;? (RY) and CEJFB(RN) and arguing as in (5.7),
we then conclude that vy, € CP/2([0, T]; CZ(RY)), so that, in particular, D;jv;, € C/2([0,T]; Cy»(RN))
for all T > 0 and ¢,5 = 1,...,N. We now prove that D;v, is (/2-Hélder continuous in [0, 7]
with values in C,(RY). Since R > 0 and 3 €]0,1[ are arbitrary and u, = vy in [0,T] x B(R),
from the results so far obtained, we deduce that u, € C?/%([0,T];C}(B(2R))) and thus vy €
CP2([0,T]; C»(RM)). Theorem 4.3.1(iii) of [14] now implies that D,y € CP/2(]0, T); Cp(RY)). Thus,
v, € C1HA/2248([0,T] x RN) for all T > 0. The first part of the assertion now follows. The
last assertion can be deduced from classical estimates for solutions to nonhomogeneous parabolic
equations on RY with smooth coefficients and inhomogeneities. O

It is well known that, under Hypothesis 2.1 and 5.1, the realization A of the operator Ain C, (RN)
with the maximal domain

DA)={ue [} WREERM)NCERY): Aue CRYN)}, (5.10)

1<p<+oo

generates a ‘weak semigroup’ {T'(t)} of contractions in Cy(RY) (see e.g., Chapter 1 of [3] or [17]).
Moreover, for any f € Cy(RY), the function 7'(-)f is the unique bounded classical solution to the
Cauchy problem
Dyu(t,z) = Au(t,z), t>0, zcRY, (5.11)
u(0,z) = f(z), zeRY, '
(i.e., it is the unique bounded function u € C([0, +oo[ xRY) N C12(]0, +-00[ xRY) solving (5.11)).
Here, the uniqueness is a consequence of the following generalized maximum principle, see e.g.,
Theorem 4.1.3 of [3].
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Proposition 5.4. Assume that Hypotheses 2.1 and 5.1(ii) are satisfied. Let u : [0,T] x RN — R be
a bounded classical solution of the problem

Dyu(t,z) = Au(t,z) + g(t,x), t€]0,T[, xR,
u(0,z) = f(x), zeRY,

where f € Cy,(RN) and g € C(]0, T[xRN). If g <0 then u < sup f* where f+(x) = max{f(x),0}.
Similarly, if g > 0, then u > inf f~, where f~(x) = min{f(z),0}.

In the following proposition, we collect some properties of the semigroup {T (t)} needed below.

Proposition 5.5. Assume that Hypotheses 2.1 and 5.1 hold. The following assertions are true.

(i) Let {fn} be a bounded sequence on Cy(RY) converging locally uniformly in RY to a function
f € Co(RN) as n — +oo. Then, the function T(-)f, converges to T(-)f locally uniformly in
[Ol—i-oo[xRN. ) o )

(i) {T(t)} is a positivity preserving semigroup and LT(t)f = T(t)Af for all f € D(A) and
t>0.

(iil) We have |T(t)(fg)| < [T(&)(|fIP)]7 [T(t)(Igl")]7 and |T(t)fIP < T)(|fI?) for all f,g €
Co(RN), t >0 and p €)1, +o0].
(iv) If A € R is such that

(V(2)€,6) < Mg, z,€ € RY, (5.12)
then, for all p € [1,4+oc[ and f € LP(RY) N Cy(RYN), it holds that
T (@) fP < T ()(1f1P), t € [0, +ool. (5.13)

(v) The restriction of the semigroup {T(t)} to C(RN) can be extended to a Co-semigroup
{T,(t)} on LP(RY) satisfying
T ()l 2 (e @y < €77, (5.14)
forallp € [1,4+00], t > 0, and constants o, > 0.

Proof. For a proof of assertions (i) and (ii) we refer the reader to e.g., Propositions 2.2.9, 2.3.5, 2.3.6,
4.1.1 and Theorem 2.2.5 of [3].

(iii) Since there exists a positive function G :]0, +oc[ x RY x RN — R such that
(T NH)= [ Gty fly)dy  and Gt z,y)dy =1,
RN RN
for all z € RV, t > 0, and f € Cp(RY) (see e.g., Theorem 2.2.5 of [3]), assertion (iii) easily follows
from Holder’s inequality.
(iv) Because of (iii), we have to show assertion (iv) only for p € [1,2]. So, let us fix some p € [1,2].
For f € C®(RN,RY) and § > 0, we set vs(t, z) = (|e (T (t) f)(x)|?>+8)P/? for (t,z) € [0, +-00[xRN.
Theorem 5.3 shows that the function (t,z) — e~ (T(t)f)(z) is bounded on [0,T] x RY and that

it belongs to CH2([0,T] x RY), for every T > 0. Moreover, it is a classical solution of the Cauchy
problem (5.3) with A replaced with A — AI. Therefore, vs € C12([0, +00[xRY) and

Dys(t, ) = p(le MT () f1> +6)2 7 (e MT () f, (A — AI)(e M T(t) f))

N
= p(le T f17+6)57 Y e T (1) fHuAle M T(#)f)n

k=1
+p(Je T @) f1P +6) 571 {(V = ADe MT(0) f,e N T(t) )
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N
<p(le™MT@) 17 +6)571 Y e A(e™ (T £)r), (5.15)
k=1

for all ¢ > 0. We further obtain

Avs(t,-) = p(le M T () f|* +6)2 " —2”2 () ) (5.16)
N
+p(le MT () F1* +6)2 e MY (QV(T(1) ks V(T (£)£))
k=1
—p(2 = p)(|e™MT(t) fI? +0)5 2e M Z VAl QV(T(#) f)n, V(T (t) f)r)-
h,k=1

In view of p < 2 and

| Z QYT V(T f)i)|
h,k=1
N
< ST @O HRNTO Ll QYT () )i, V(T () f)n) (QV(T(E) i, V(T(£) f)i)?
h,k=1

7N
2
[N

ST Pl QYT ) e VT 1)) )

N
SIT@FPY (QV(T() Fr, V(T (£)£)),

k=1
equation (5.16) yields

N

Avs(t,) = p(|e ™ MT(8) f1 +8)5 e Y (T(#) AT (1) )

k=1

+p(p—1)(Je MT () 17 +0)5 —WZ QV(T V(T(t)f)k)

N

> p(le M T()f7 +6)5 e MY (T() /AT () f)r, (5.17)

k=1
for all t > 0. Set w = v5 — T(-)(vs(0,-)). Combining (5.15) and (5.17), we derive that
Dyw(t, x) —Aw(tx) <0, t>0, zeR",
w(0,z) =0, z e RN,

Proposition 5.4 now implies that
(e T2+ 0 <T@ (12 +0)F),  t=0.

Due to (i), we can let § — 07 and obtain (5.13) for test functions f. For f € C,(RY,RN) N
LP(RN RN) there is a sequence { f,,} € C°(RY ,RY) which is bounded in C,(RY ,RY) and converges
to f in LP(RY,RY) and locally uniformly on RY. Now, (iv) follows by approximation.
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(v) Theorem 2.4 of [23] shows that the realization flp of the operator A in LP(RN), p €]1, +o0],
with the domain D(4,) = {f € W2P(RY) : F.Vf € LP(RY)}, generates a consistent positive
strongly continuous semigroup {7},(t)} satisfying (5.14). Arguing as in the proof of Theorem 5.3,
one sees that u = T}, f is a classical solution of (5.11) for each f € C>°(RY). So, Proposition 5.4
yields T, (-)f = T(-) f for test functions f. By approximation this equality holds for all f € C,(RN)N
LP(RN). O

In the spirit of [11], we next show a proposition which is the main step towards the LP-gradient
estimates.

Proposition 5.6. Assume that Hypotheses 2.1 and 5.1 are satisfied. Then, there exist constants
Cp > 0 and w, € R such that

(VIO @) < Cert (TP +I9DE) (@), weRY, (5.18)
forallt >0,z € RN, pe]l,+oo[, and f € C (RN, RY).

Proof. Due to Proposition 5.5(iii), we can restrict ourselves to the case p €]1,2]. For fixed ¢ > 0
and p €]1,2], we set

P
2

N N
v(t,x) = (Z ug(t, x 2+Z x)Vug(t, z), Vuk(t,x)>+s> , t€[0, 400, z € RN, (5.19)
k=1 k=1

where u = T(+) f. The function v belongs to C*2(]0, +00o[xR¥) and it is bounded in [0, 7] x RN for
all T'> 0, by Theorem 5.3. We are going to prove that v satisfies

{ Dyv(t,z) — Av(t,z) < wyo(t,z), t>0, xRN,

v(0,2) = g(z), z €RN, (5.20)

where g(z) = [|f

(
(t,x) = er"(T(t)g)
yield that v(t,z) < e
thus obtain

F@)? + 0 Q@)Y fu(x), Vi(x)) + ]2 for all 2 € RY. Since the function
(x ) solves the Cauchy problem associated with (5.20), Proposition 5.4 will then
wrt(T(t)g)(x) for all t > 0 and x € RY. Taking the limit as ¢ — 0%, we will

[NS]

] =

(QVur(t, ). Vus(t, ) )

(Z

for ¢ > 0, and (5.18) will follow thanks to (2.3). So, let us prove (5.20). A long but straightforward
computation gives

N 2
<T@ (1P + D@V V)
k=1

Dw(t,z) = f{v(t, x) + (¢, x), (t,x) €]0, +oo[ xRN,
where ¥ = 11 + 12 + 3 + P4 + Y5 with

N N
_2
Y1 = —pv' P( > qiDiuDjux + Y QileijlukDimuk>a

0,4, k=1 04kl m=1

N
( VU u Z leVk]Dlu]Dmuk: + Z CZllengUg muk>

g,k l,m=1 7,k,l,m=1

N
1
( E qim DlF D ukDmuk - = E F; qulleukDmuk
gkl m=1 j k,,m=1
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1 N
- > DiQiijleDlukDmuk) ;
i,7,k,l,m=1
¢:p(2—p)v1_%§:q-- g:uD-u—k EN: Qrm DmurDiju —I—l i\’: D;qum Dyug Dopu
4 Z iJ kLWL lmmkzlk2 YIm U m Uk
i,j=1 k=1 k,l,m=1 k,l,m=1

N N N
1
X ( g upDjuy, + E QmDmurDjug + 3 E DleleUkDmuk)v
k=1 klm=1 klm=1

N N
1—2
Y5 =pu P ( E QmD1qi; Drur Dijuy + E QmDi1qij Djug D
t,5,k,l,m=1 i,7,k,l,m=1
N N
E Qi Dijum Dy Dy, — 2 E qiijqlmDmukDiluk)
i,5,k,l,m=1 i,9,k,l,m=1

We first observe that

N N
Z Qi (@) qum () Djiug (¢, ) Diug (¢, ) = Z Tr(Q(z) D*uk(t, ©)Q(x) D*uy(t, x))
irjk,lm=1 k=1

Tr(Q? (2) D?uk(t, 2)Q(2) Dy (t, 2)Q? (z))

= 1Q* (@) D?ux(t, 2)Q* (2)[?,
k=1
for all (¢,z) €]0, +oo[xRY. Tt follows that
N N
o (Z Q= Vui* + 3 |Q%D2ukc2%|2> : (5:21)
k=1 k=1

The first and third term of 9 can be estimated by means of Hypothesis 2.1(iii). For the second
term, we set V™ = 1(V + V*) and note that condition (2.6) implies that [(Viim(2)&,m)| < B3 €]|n]
for all z,&,m € RV, Hence,

N N
Z Qi Viej Diw Diug | = Z Qi Vi Dy D,
Jyk,l,m=1 ik, l,m=1
N
< Y gl (V™ Dyu, D)
I,m=1
< 35]1Ql e [Vul?,

so that
Yo <903 (Baful + 53 Qll VP + Qe 9V 1 u] V]

2 1 1
< p0' " { (B + 511Ql 9V lloe ) ul? + 5 1Qlloc (265 + IV V 1) [Vuf?}

2 1 1
<o { (Bs + 511Ql 9V lloe ) lul® + s 12l (205 + [V 1) Qv v} (5.22)
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To treat 13, we rewrite it in the more compact form

N N N N
_2 1
s = pv' { > (DFQVux, Vug) — 5 > DupDpug Y (Fj + ZDiQij>DjQZm}-
k=1 kol m=1 j=1 i=1
Conditions (2.4) and (2.5) thus allow us to estimate
2 1 VN
by <po'7F (B + 5+ L IVQI ) IVul (5.23)
Let € > 0. Using the inequality
1
QE+m.¢+m) < A+)QO+ (1+ )@, &neRY, (5.24)
we deduce
LN N N
Ya < (L+e)p2—pp'~s Y Qij( > leDmukDiluk)< > szDmuijluk)
ij=1 ke l,m=1 klm=1
1 s U al 1 ol
+ (1 + E) ~ Z <ZUkDiuk + 3 Z DinleUkDmuk)
=1 k=1 kl,m=1
(ZUkD Up + Z DngleukDmuk>
k l,m=1

=: P41 + Ya2.
The Cauchy Schwarz inequality and the definition of v yield

N
Y41 = (14+¢)p(2 — p)vl_%‘ Z Q%D2quVuk‘2
k=1
<(1+e)pE2—pu' e Z Q2 D*up Q3| Z QVuk, Vug)

N
<(l+e)p ol %Z Q2 D2, Q% . (5.25)

Employing (5.24) with ¢ = 1 and Hypothesis 2 1( ), we further calculate
N

1
Pyo < 2(1 + g)p(Z —ptTe (QVup, Vug)upuy
k=1

1 1
2 (1 7) 92— p)u'—
+2( + 2 )p2-po

3 |

N
Z <QVqlm7 vqpr>DluthuthukDruk
h,k,l,m,p,r=1

g2(1+ ~)p(2 = p)oFfuf? Zka,wm

k=1

N
1 1 _4
+5(1+ )P =P IVl Y (QVam, Vam)

l,m=1

< (1+1) (2+ 52 1QU< V@I Jp2 — ) (5.26)
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Estimates (5.25) and (5.26) lead to

1 1 _2 al 1 1
vas (14 2) (24 52 1@l V@I Jp(2 = p)o -+ (1 + (2 = ! PRy

Using Young’s inequality, 15 is estimated in a straightforward way by

VN
U5 < 3p0" 7 (1@l [V Qlloe [Vl ID2u] + 2 [Qll 1 D*Qlloc [Vuf?)
_2 1 VN
<3 D2 + ( LIQIL IVQIE + 5 Il I0°Q0: ) IVuP ). (529

for every € > 0. Estimates (5.21), (5.22), (5.23), (5.27) and (5.28) now imply that

1 1 1 N
0 <p{ = 14 5 1Ql (20 + I9Ve) + (51 + 50+ N ivqlz,)

3/1 N P
+ 2 (L1019l + S IRl ) b S Qv v

k=1

+p{h+ 51Q1< IVl + =) (14 1) (2+ g 1@l IVQIL) o

N
+p (1 —p+(2-pe+ Z&) w175 Y 1Q D2 QR (5.29)
1 k=1

for some positive constant ¢y, depending only on N. Since p > 1, we can choose € > 0 such that in
the last term of (5.29) the factor in large brackets vanishes. Using once more the definition of v, we
arrive at (5.20). O

Using Proposition 5.6 we can now prove the second type of pointwise gradient estimates.

Proposition 5.7. Assume that Hypotheses 2.1 and 5.1(i) are satisfied and that F fulfills (2.34).
Then, there exist two constants Cp, > 0 and @, € R such that

(VT F)(@)]P < Cpe 't ST (1) (If ) (x) (5.30)
forallt >0,z e RN, f e C®RN,RY), and p €]1,+o0].
Proof. We first note that Hypothesis 5.1(ii) holds due to Remark 5.2. By rescaling, we can assume

that the constant A in (5.12) is nonpositive. As in the proof of Proposition 5.6 it suffices to consider
the case p €]1,2]. We fix §,¢ > 0 and set

W(s) = T(s) (|97t — s)f|*+6)2) := T(s)((|9ng(s)]* + ) 2), s € [0,1],

where 9J,,(z) = 9(|z|/n) for all z € RN, n € N, and ¥ : Ry — R is a smooth decreasing function
with xp0,1] < ¥ < X[o,27- The function (|9,g(s)* + )% belongs to D(A) for each s € [0,1], by virtue
of Theorem 5.3. A straightforward computation shows that

N

A (1092 + )8 ) = p([0ngl? +8)5 192 (Ag - g) + p(0ngl® +0)5 192 " (QVn, V)
k=1

+p([9ngl? +8)E g (QV Dy, VO,) + p(|0ng]? + ) 5710, ]2 A0,

N
+4p([9ngl® +6)7 7 00 Y | gr(QV gk, Vi)
k=1
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+p(p — 2)([0,9* + 6) 57202 |g|"(QV Y, VI,,)

N
+2p(p — 2)([9ngl* + 6)22051g1* Y 9k (QV i, Vo)
k=1

N
+p(p—2)([9ng]”> +6)5 7205 > 9agk(QVgn, Vi)
hk=1

2

=: p([0ngl” +6)2 105 (Ag - 9) + p(|0ngl* +0)2 192 > (QVgx, Vo)
k=1

N
+p(p = 2) (|99 +6)2 7205 D 9ngk(QVgn, Vi) + pihn,
hk=1
in [0, t]. Moreover,
Dy([9nT(t = 5)f[* +8)2) = —p(|9ng(s)|* + 6) 297 (Ag(s) - g(5))
= p([9ng(s)]> + 6)2 9% (Vg(s) - g(s))
> —p(|0ng(s)” +6)% 05 (Ag(s) - g(s)),

for every s € [0,t]. Therefore,

' (s) = T() (A ((Wng(s) 2+ )8) + D, (19T = 5) £ +9)%) )

N
> pi(s) ((an(s)ﬁ L8523 (QVan(s), vms»)
~ - N ~
T plp — 27 (s) <<|ﬂng<s>|2 15200 S gu(9)k()(QVgn(s), ng<s>>> T () (ton(s)),

h,k=1

and, hence,

T (007 +8)F) = (0TS +9)

P
2

t N
>p [ 70 ((WnT(t I 1852 SUQUT( — 8) )i VT~ s>f>k>)ds

k=1
: N
+p(p—2) / T<s>( S (Tt = ) In(T(E = ) PRlQVT(E — 5) f)n, VT(E— 5)f)i)
hk=1

t
x (|9, T(t —s)f]* + 5)5_219;11) ds —|—p/ T(s)yYn(s)ds, (5.31)
0
for any s € [0,t]. Here and below, the integrals are meant in a pointwise sense. Thanks to (2.34),
we have F(z)- V¥, (z) > 2c¥’(|z|/n) for z € RY and n € N. This shows that
hin(s) = T(s)[([9ng ()| +6) 5~ 0nlg(s)PF - V9]
> 2¢T(8)[(10ng(s)* + )5 9alg(s)*9'(| - | /n)].

The function in square brackets on the right-hand side is uniformly bounded in n € N, for (s,z) €
[0,] x RV, and it tends to 0 uniform for (s,z) in compact sets as n — +o0. So, Theorem 5.3 implies
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that
t

liminf [ h,(s)ds > 0.

n—-+o0o 0

The other terms in 1, even converge to 0 uniformly in [0, ¢] x RN as n — +o0. Moreover, the function
(|9, f]? +0)P/? and the other terms in the large brackets in the right-hand side of (5.31) are bounded
in [0,¢] x RY and converge uniformly in [0,¢] x K, for each compact set K C RY. Proposition 5.5(i)
thus allows us to let n — 400 in (5.31). Further, using Cauchy-Schwarz inequality and (2.3), we
finally obtain

T)((512+0)8) = (TSP + )

> ()((T(t—sf|2+5’5 ISQUT( - 5)f >k,v<T<t—s>f>k>)ds

k=1
t N
-2 [ T ( S (Tt — ) (Tt — ) H(QV(T(E — 5) P V(T(t — 5)F)e)
hk=1

x (|T(t - s)f|? +5)’z’—2>ds

> o) | ()((IT(t—sf|2+55 PSQT( - 5)f >k,v<T<t—s>f>k>)ds

k=1
>p(p - 1)a1/0 () (Tt = )12+ 8)E VTt - 5) ) ds. (5.32)

Applying Propositions 5.5(iii) and 5.6 and observing that (1+1¢)? < 149 for all ¢ > 0 and ¢ € [0, 1],
we deduce

NT(0)fP = [VT(s)T(t — 5) /7
< G T(s)(IVT(t — ) fIP) + Coer*T(s) (IT(t — 5)f1")
= Cper* T(s) (IVT(t = ) fI7 (T (= 8)f12 +8) 7 (IT(t = 5) fI* + 6)°)
+ Coer* T(s)(|T(t — 5)f1P)

< Cper® [1(s) (IVT(t = ) fP (Tt = )12 +8)7F )|

< [26) (T = 112 +8)25)] 7 4 Cuer T(s) (1Tt~ ) f19).

for all 5 € R and s € [0,¢[. We now choose 3 = p(2—p)/4 and use Proposition 5.5(iii) and (iv) (with
A =0) and Young’s inequality, arriving at

SIs

VT@F < Cyer [T(s) (19T (¢ = s) 72 (Tt = 5)72 +0)5 )]

ya
2

< [T(s) (Tt = ) 2+ 0)F) |7 + e T()(1£17)
< Gyer{ B4 T (19T = 9P (1710 - )1+ 95
+(

1= 2) 2 (o) (T - ) + 5)5)} + e T (| £17),
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for each € > 0. After multiplying by e~“r%, we integrate this inequality from 0 to ¢. Using also
(5.32), we estimate
(1 —e~)
p

VTS < 5EC, [ T6) (9T = P (7 )P +5)87) ds

+6, (1~ g) e7ts /OtT(s)<(|T(t =~ $)f12+ )% )ds + CT )1 17)

< et ST (1 +0)F) + P11
+C, (1 - g) ere /Ot T(s)<(|T(t —8)f]2+ 5)%)ds.

In the limit § — 07, this inequality yields

VTSP < “oCs {( = —|—t> TP+ (1-2) f/o T(s)(|T(t—s)f|p)ds}7

e~wnrt) 201(p— 1)

for all ¢ > 0. Taking in account Proposition 5.5(iv) (with A = 0), we conclude that

w,C, eb Py _ 2 ~
VTP < =220 {2a1(p 5+ [(1-2) 7 +1] t} TO)(fP),  t>0.

p(2—p)

The optimal choice € = {a1p(p — 1)t} yields

W C 1 P ~
v < 22 pOE R TOUP). 60
L—em | (aap(p—1))2
This inequality implies the assertion. ([l

We can now prove the main result of this section.

Theorem 5.8. Assume that Hypotheses 2.1 and 5.1(i) are satisfied and that F fulfills (2.34). Let
0<a<B<1andl < p< +oo. Then, the function T(t)f belongs to WLP(RN RY) for every
f € LP(RY) and t > 0, and there exist two constants M, > 0 and &, € R such that

(B—a)p
2

IT@) fllpp < Myt~ || 1l t>0, fe W(RY,RY). (5.33)

Proof. Integrating (5.18) and (5.30) in RY, we obtain
[ vr@srds < Gt [ O + V57 )da
RN RN
< Cymax(28 1, 1)t [ (1fP 4 [9£17)d (5.34)
RN

[ IVT@pd < Gt [ T0(1fde < Gt [ ppaa, (5.35)
RN RN RN

for allt > 0, p €]1,+oc and f € C°(RY,RY). By density, (5.34), resp. (5.35), can be extended to
every f € WLP(RN RYN), resp. f € LP(RY,RY), so that (5.33) holds for a = 1,0 and 3 = 1 (taking
also into account (2.28)). We recall that W%?(RN RY) is isomorphic to the real interpolation
space of order § € (0,1) and exponent p €]1,+o0[, between LP(RY RY) and W1P(RN RY), cf.
[25, (2.4.2.16)]. The assertion now follows from (2.28), (5.34), and (5.35) by means of standard
interpolation arguments. O
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