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Abstract. We show that the realization Ap of the elliptic operator Au = div(Q∇u)+F ·∇u+V u

in Lp(RN , RN ), p ∈ [1, +∞[ , generates a strongly continuous semigroup, and we determine its
domain D(Ap) = {u ∈ W 2,p(RN , RN ) : F ·∇u+V u ∈ Lp(RN , RN )} if 1 < p < +∞. The diffusion
coefficients Q = (qij) are uniformly elliptic and bounded together with their first-order derivatives,
the drift coefficients F can grow as |x| log |x|, and V can grow logarithmically. Our approach relies
on the Monniaux-Prüss theorem on the sum of non commuting operators. We also prove Lp-Lq

estimates and, under somewhat stronger assumptions, we establish pointwise gradient estimates
and smoothing of the semigroup in the spaces W α,p(RN , RN ), α ∈ [0, 1], where 1 < p < +∞.

1. Introduction

Elliptic operators A = Tr(QD2) + F · ∇ with unbounded coefficients on RN appear naturally in
many branches of mathematics, such as probability and mathematical finance. For this reason, the
interest in such operators has considerably grown in recent years. Under mild assumptions one can
construct a semigroup {T (t)} of bounded operators in Cb(RN ) which solves the parabolic equation
corresponding to A. In general, {T (t)} is neither strongly continuous nor analytic in Cb(RN ), in
sharp contrast to the case of bounded coefficients. (See [3], [17], [21], and the references therein.)
Nevertheless, under suitable assumptions on the coefficients one can prove pointwise gradient esti-
mates for the function T (t)f , see [2], [3], [16]. Such estimates are crucial for the investigations of the
inhomogeneous elliptic and parabolic equations corresponding to A, as discussed in, e.g., [3, Chapter
5]. In the prototypical case of the Ornstein Uhlenbeck Operator (and in related cases), there is an
invariant probability measure µ for {T (t)} (i.e, it holds

∫
RN T (t)f dµ =

∫
RN f dµ for all f ∈ Cb(RN )).

One can thus extend T (t) to the weighted space Lp(RN , µ). Here, it can be shown that the semigroup
on Lp(RN , µ) is strongly continuous and analytic and that its generator is the realization of A de-
fined on the weighted Sobolev space W 2,p(RN , µ), 1 < p < +∞, see [5], [15], [20], and the references
therein. The picture changes drastically if one works on the usual Lebesgue space Lp(RN ). As it was
observed in [23], already the one dimensional operator Aϕ(x) = ϕ′′(x)− sign(x)|x|1+εϕ′(x), x ∈ R,
does not generate a C0–semigroup on Lp(R), if ε > 0. One obtains much better results for operators
having a dominating potential, see, e.g., the recent papers [4], [9], [19], [24]. Without a dominating
potential, one has to require strong conditions on F ; for instance linear growth of F , see [8], [18],
or that F grows at most as |x| ln(1 + |x|), see [23]. It turns out that the domain of the generator of
the semigroup on Lp(RN ) is the intersection of the domains of the diffusion and the drift part. (The
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semigroup is not analytic, see [26]). Such results can be used in the investigation of global regularity
properties of the densities of the invariant measure (if such a measure exist), see [23].

In the study of Navier-Stokes equations with linearly growing initial data, systems of the form

(Aϕ)(x) = div(Q(x)∇ϕ(x)) + F (x) · ∇ϕ(x) + V (x)ϕ(x) (1.1)

=
(

div(Q(x)∇ϕi(x)) + F (x) · ∇ϕi(x) +
N∑

j=1

vij(x)ϕj(x)
)

i=1,...,N
,

appear naturally (where x ∈ RN and ϕ ∈ C∞c (RN ,RN )), see [12], [13]. Here one perturbs a diagonal
operator given as in [8], [18], [23], by nondiagonal potential terms, which are bounded in the setting
of [12], [13]. For the applications to Navier-Stokes equations, it is crucial to have gradient estimates
and a precise description of the domain of the realization Ap of A in Lp(RN ,RN ), see [12], [13].
However, if one tries to go beyond linearly growing initial data, one is confronted with more than
linearly growing drift coefficients and with unbounded potentials.

In this paper we consider systems of the type (1.1) where the diffusion coefficients are uniformly
elliptic and bounded together with their first derivatives, ∇V is bounded and the quadratic forms
corresponding to (DF )Q and V are bounded. These assumptions allow for coefficients such that F
grows like |x| ln(1 + |x|) and V as ln(1 + |x|), see Example 2.2. Our first main result Theorem 2.7
shows that the realization Ap of the operator A with domain

D(Ap) =
{
u ∈W 2,p(RN ,RN ) : F · ∇u+ V u ∈ Lp(RN ,RN )

}
,

generates a strongly continuous, consistent semigroup {Tp(t)} = {T (t)} on Lp(RN ,RN ), p ∈ ]1,+∞[ .
We stress that here the crucial point is the characterization of the domain. Under slightly stronger
assumptions on the drift coefficient F , we also show that test functions are a core for Ap. We then deal
with the case when p = 1 and prove that {T2(t)} can be extended from L1(RN ,RN ) ∩ L2(RN ,RN )
to a C0–semigroup on L1(RN ,RN ), using the results for p > 1. This semigroup is consistent with
{Tp(t)} for each p ∈ ]1,+∞[ and its generator coincides with Ap on a core. We can then show that
the semigroup maps Lp(RN ,RN ) into Lq(RN ,RN ), 1 ≤ p ≤ q ≤ +∞, and establish a corresponding
estimate in Theorem 4.2. In the last section we prove analogous norm estimates for T (t) acting from
Wα,p(RN ,RN ) to W β,p(RN ,RN ), where 0 ≤ α ≤ β ≤ 1 and 1 < p < +∞, under slightly stronger
hypotheses. This is done in Theorem 5.8, which follows by interpolation from the pointwise gradient
estimates

|(∇T (t)f)(x)|p ≤ Cpe
ωpt
(
T̃ (t)(|f |2 + |∇f |2)

p
2

)
(x),

|(∇T (t)f)(x)|p ≤ C̃pe
ω̃ptt−

p
2 T̃ (t)(|f |p)(x),

(1.2)

for all x ∈ RN and f ∈ C∞c (RN ,RN ). The inequalities (1.2) are shown in Section 5. Here, {T̃ (t)} is
the semigroup associated with the realization of the operator Ã = div(Q∇) + F · ∇ in Cb(RN ).

For V = 0, we proved Theorem 2.7 in [23] for the operator Ãp = div(Q∇) + F · ∇. However, for
V 6= 0, the result cannot be obtained by perturbating Ãp by V since D(Ap) 6= D(Ãp) ∩ D(V ), in
general, as seen in Example 2.2. In the present proof in the second section we follow the strategy
of [23] in so far that we treat A as the sum of the diffusion part A0 = divQ∇ and the lower order
part B = F · ∇ + V . However, the presence of the (non-diagonal) potential perturbation leads to
various new difficulties throughout the present paper. Some of them are technical, but some are more
fundamental: In contrast to the case V = 0, the group generated by B is not positive and A does not
satisfy a maximum principle, in general. Both properties have been crucial for our previous works [11]
and [23]. To show Theorem 2.7 we apply the Dore-Venni type theorem on sums of non commuting
operators from [22]. The first step is the construction of the (unbounded) group generated by B on
Lp(RN ,RN ). Using a recent result from [10], we can check that B has bounded imaginary powers.
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In view of the known properties of A0 it then remains to verify a (rather sophisticated) commutator
estimate for the resolvents of A0 and B. The case p = 1 and the Lp–Lq estimates can then be settled
using methods from semigroup theory and the Nash inequality in Sections 3 and 4. The proofs of the
pointwise gradient estimates (1.2) in the last section are quite demanding. The basic idea is to apply
the maximum principle Proposition 5.4 for Ã to certain functions constructed from the data and
the semigroups {T (t)} and {T̃ (t)}. The necessary regularity results for this procedure are proved in
Theorem 5.3 which is based on the domain description from Theorem 2.7.

Notation. For k ∈ N ∪ {+∞}, we denote by Ck
b (RN ) the space of all functions f : RN → R which

are continuously differentiable up to the k-th order. We endow Cb(RN ) with the sup norm ‖f‖∞
and Ck

b (RN ) (k ∈ N) with the norm ‖f‖Ck
b (RN ) =

∑
|α|≤k ‖Dαf‖∞. Moreover, by Ck

c (RN ) we denote
the space of f ∈ Ck

b (RN ) having compact support. Similarly, we define the space Ck
b (RN ,RN ) (resp.

C∞c (RN ,RN )) of functions f : RN → RN such that each component fj (j = 1, . . . , N) belongs to
Ck

b (RN ) (resp. to C∞c (RN )). The space Ck
b (RN ,RN ) is endowed with the norm ‖f‖Ck

b (RN ,RN ) =∑N
j=1 ‖fj‖Ck

b (RN ). For p ∈ [1,+∞], Lp(RN ,RN ) is the space of f : RN → RN such that fj ∈ Lp(RN )
for each j ∈ {1, · · · , n}, equipped with the norm

‖f‖p
p =

N∑
i=1

∫
RN

|fi|p dx, if 1 ≤ p < +∞, resp. ‖f‖∞ = max
i=1,...,N

‖fi‖∞, if p = +∞.

In a similar way one defines the vector valued Sobolev spaces W k,p(RN ,RN ) and Slobodetskii spaces
W θ,p(RN ,RN ), θ ∈ ]0, 1[ , and denote by ‖ · ‖k,p and ‖ · ‖θ,p the corresponding norms. By DF we
designate the Jacobian of a function F ∈ C1(RN ,RN ) and by ∇u the vector (D1u, · · · , DNu) for a
function u ∈ C1(RN , X) and a Banach space X. The Euclidean scalar product in RN is denoted by
x ·y or 〈x, y〉, and |x| is the corresponding norm. Also when A is a matrix, we use the notation |A| to
denote its Euclidean norm. When there is no danger of confusion, we use the notation 〈f, g〉 for the
duality pairing between Lp(RN ,RN ) and Lp′(RN ,RN ), where the conjugate exponent p′ ∈ [1,+∞]
of p is given by 1/p + 1/p′ = 1. The open ball centered at 0 with radius R > 0 is designated by
B(R). For every measurable set E ⊂ RN , we denote by χE the characteristic function of E.

2. Generation and determination of the domain in Lp(RN ,RN )

In this section we want to show that the realization Ap of the operator

Au = div(Q∇u) + F · ∇u+ V u, u ∈ C∞c (RN ,RN ), (2.1)

in Lp(RN ,RN ), p ∈ ]1,+∞[ , with the domain

D(Ap) =
{
u ∈W 2,p(RN ,RN ) : F · ∇u+ V u ∈ Lp(RN ,RN )

}
, (2.2)

is the generator of a strongly continuous semigroup {Tp(t)} on Lp(RN ,RN ). Equation (2.1) means
that (Au)j = div(Q∇uj) + F · ∇uj + (V u)j for u = (u1, · · · , uN ) and j = 1, · · · , N . Throughout
the paper we assume that the following conditions are satisfied.

Hypothesis 2.1. (i) Q ∈ C1
b (RN ,RN×N ), the matrices Q(x) = [qij(x)] are symmetric for any

x ∈ RN , and there exist constants α1, α2 > 0 such that

α1|ξ|2 ≤
N∑

i,j=1

qij(x)ξiξj ≤ α2|ξ|2, x, ξ ∈ RN ; (2.3)

(ii) F ∈ C1(RN ,RN ) and there exist constants β1, β2 ≥ 0 such that

|〈DF (x)Q(x)ξ, ξ〉| ≤ β1|ξ|2, x, ξ ∈ RN , (2.4)
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|(F (x) · ∇Q(x))ij | =

∣∣∣∣∣
N∑

h=1

Fh(x)Dhqij(x)

∣∣∣∣∣ ≤ β2, i, j = 1, · · · , N, x ∈ RN ; (2.5)

(iii) V ∈ C1(RN ,RN×N ), ∇V is bounded, and there exists a constant β3 such that

|〈V (x)ξ, ξ〉| ≤ β3|ξ|2, x, ξ ∈ RN . (2.6)

Due to Theorem 2.4 of [23], Hypothesis 2.1(i) and (ii) imply that the (diagonal) operator Ãpu =
div(Q∇u)+F ·∇u with the domain D(Ãp) = {u ∈W 2,p(RN ,RN ) : F ·∇u ∈ Lp(RN ,RN )} generates
a C0–semigroup on Lp(RN ,RN ), 1 < p < +∞. Even if the potential V satisfies Hypothesis 2.1(iii),
it can happen that D(Ap) is neither contained in D(Ãp) nor in D(V ), as shown by the following
example.

Example 2.2. Let N = 2, p = 2, Q = I, F ∈ C1(R2,R2), and V ∈ C1(R2,R2×2) be such that

F (x) = ln |x|
(
−x2

x1

)
and V (x) = ln |x|

(
0 −1
1 0

)
for |x| ≥ 1.

It is easy to verify Hypothesis 2.1 for these functions. Take a function φ ∈ C1(R+) with φ = 0 on
[0, 1] and φ(r) = (r2 ln r)−1 for r ≥ 2. Define u(x) = φ(|x|) (x2, x1) for x ∈ R2. A straightforward
computation shows that u ∈W 2,2(R2,R2) and F ·∇u(x)+V (x)u(x) = 0 for |x| ≥ 2; hence u ∈ D(A2).
However, |V u(x)| = 1/|x| for |x| ≥ 2 so that V u /∈ L2(R2,R2), u /∈ D(V ), and u /∈ D(Ã2). ♦

As remarked in [23], the estimates (2.3) and (2.4) yield that

|DF (x)Q(x) +Q(x)(DF (x))∗| ≤ 2β1, (2.7)

|divF (x)| ≤ CNα
−1
1 β1 =: ν, (2.8)

for all x, ξ ∈ RN and a constant CN > 0 depending only on N . We further recall Lemma 2.1 of [23].

Lemma 2.3. There exists a global flow ϕ ∈ C1(R× RN ,RN ) such that u(t) = ϕ(t, x) is the unique
solution of the initial value problem

u′(t) = F (u(t)), t ∈ R, u(0) = x, (2.9)

for each given x ∈ RN . Moreover, for some constants M > 0 and γ ∈ R we have

|∇ϕ(t, x)| ≤Meγ|t|, t ∈ R, x ∈ RN . (2.10)

For each fixed x ∈ RN , we denote by U(·, x) the fundamental solution of the Cauchy problem

v′(t) = V (ϕ(−t, x))v(t), t ∈ R, v(0) = IN , (2.11)

where IN denotes the N ×N identity matrix.

Lemma 2.4. We have U ∈ C1(R× RN ,RN×N ), and there exist constants c > 0 and γ ∈ R such

|U(t, x)| ≤ eβ3|t|, (2.12)

|DkU(t, x)| ≤ ceγ|t|, (2.13)

for every (t, x) ∈ R× RN and k ∈ {1, · · · , N}. (Recall that β3 is given by (2.6)).

Proof. It is clear that U ∈ C1(R× RN ,RN×N ). We introduce the function Φξ(t, x) = |U(t, x)ξ|2 for
(t, x) ∈ R× RN and a fixed ξ ∈ RN . Using condition (2.6), we derive

|DtΦξ(t, x)| = 2 |〈V (ϕ(−t, x))U(t, x)ξ,U(t, x)ξ〉| ≤ 2β3 Φξ(t, x),



GLOBAL PROPERTIES OF GENERALIZED ORNSTEIN–UHLENBECK OPERATORS 5

for all (t, x) ∈ R × RN . Estimate (2.12) then follows from Gronwall’s lemma. To verify (2.13), we
notice that

DtDkU(t, x) = DkDtU(t, x) = Dk[V (ϕ(−t, ·))U(t, ·)] (x)

= V (ϕ(−t, x))DkU(t, x) +
N∑

h=1

(Dkϕh)(−t, x) (DhV )(ϕ(−t, x))U(t, x)

=: V (ϕ(−t, x))DkU(t, x) + g(t, x),

for all (t, x) ∈ R× RN . Since DkU(0, x) = 0 for all x ∈ RN , we deduce that

DkU(t, x) =
∫ t

0

U(t− s, x)g(s, x) ds. (2.14)

Inequalities (2.10) and (2.12) and Hypothesis 2.1(iii) imply that

|g(t, x)| ≤ |∇ϕ(−t, x)| |(∇V )(ϕ(−t, x))| |U(t, x)|

≤M‖∇V ‖∞ eγ|t|eβ3|t| =: Ceγ|t|, (2.15)

for γ := γ+β3 and every t ∈ R, where we may assume that γ > 0. From formulas (2.14), (2.12) and
(2.15), it follows that

|DkU(t, x)| ≤ C

∣∣∣∣∫ t

0

eβ3|t−s|eγ|s| ds

∣∣∣∣ = C

γ

(
eγ|t| − eβ3|t|

)
,

for (t, x) ∈ R× RN , i.e., (2.13) holds. �

We now introduce the operators Sp(t), t ∈ R, by setting

(Sp(t)f)(x) = U(t, ϕ(t, x))f(ϕ(t, x)), x ∈ RN , (2.16)

for f ∈ Lp(RN ,RN ) and p ∈ ]1,+∞[ . As we will see in the next proposition, {Sp(t) : t ∈ R} is the
C0–group generated by the lower order part of Ap. Given ϕ ∈ C1(RN ,RN ), we denote by div(ϕF )
the function with the components

(div(ϕF ))j = div(ϕjF ), j = 1, . . . , N.

Proposition 2.5. {Sp(t), t ∈ R} is a strongly continuous group in Lp(RN ,RN ) and

‖Sp(t)‖L(Lp(RN ,RN )) ≤ eνp|t|, t ∈ R, (2.17)

where p ∈ ]1,+∞[ , νp := β3 + ν
p , and ν is given by (2.8). The generator of {Sp(t)} is the operator

Bp given by

D(Bp) =
{
f ∈ Lp(RN ,RN ) : ∃ g ∈ Lp(RN ,RN ) with 〈g, ϕ〉 = 〈f, V ∗ϕ− div(ϕF )〉

∀ϕ ∈ C1
c (RN ,RN )

}
,

(2.18)

and Bpf = g. In particular, if f ∈W 1,p(RN ,RN ) and F · ∇f + V f ∈ Lp(RN ,RN ), then f ∈ D(Bp)
and Bpf = F ·∇f+V f . Moreover, C1

c (RN ,RN ) is a core of Bp. The adjoint of Bp on Lp′(RN ,RN ),
1/p+ 1/p′ = 1, is given by

D(B∗p) =
{
f ∈ Lp′(RN ,RN ) : ∃ g ∈ Lp′(RN ,RN ) with 〈ϕ, g〉 = 〈V ϕ+ div(ϕF ), f〉

∀ϕ ∈ C1
c (RN ,RN )

}
,

(2.19)

and B∗pf = g − (divF )f . In particular, if f ∈ W 1,p′(RN ,RN ) and −F · ∇f + V ∗f ∈ Lp′(RN ,RN ),
then f ∈ D(B′p) and B∗pf = −F · ∇f + V ∗f − (divF )f . Finally, the restriction of {Sp(t)} to
W 1,p(RN ,RN ) is still a strongly continuous group.
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Proof. Step 1. We prove that {Sp(t)} is a strongly continuous group in Lp(RN ,RN ). Let f ∈
Lp(RN ,RN ), t ∈ R, and p ∈ ]1,+∞[ . Since (2.9) is an autonomous problem, we have ϕ(r, ϕ(s, x)) =
ϕ(r + s, x) for r, s ∈ R and x ∈ RN , so that ϕ(t, ·) has the inverse ϕ(−t, ·). Taking into account
(2.10) and (2.12), we can thus estimate

N∑
j=1

∫
RN

|(Sp(t)f)j |p dx =
N∑

j=1

∫
RN

|(U(t, ϕ(t, x))f(ϕ(t, x)))j |p dx

≤ c1

∫
RN

( N∑
j=1

|(U(t, y)f(y))j |2
) p

2 |det(∇ϕ(−t, y))| dy

≤ c2e
d|t|
∫

RN

( N∑
i=1

|fi(y)|2
) p

2
dy ≤ c3e

d|t| ‖f‖p
p,

for some constants c1, c2, c3, d ≥ 0. Hence, Sp(t) is a bounded operator in Lp(RN ,RN ). It further
holds

(Sp(t)Sp(s)f)(x) = U(t, ϕ(t, x))(Sp(s)f)(ϕ(t, x)) = U(t, ϕ(t, x))U(s, ϕ(s, ϕ(t, x)))f(ϕ(s, ϕ(t, x)))

= U(t, ϕ(t, x))U(s, ϕ(s+ t, x))f(ϕ(s+ t, x)), (2.20)

for all s, t ∈ R and x ∈ RN . On the other hand, the uniqueness of (2.11) implies that

U(t, ϕ(−s, y))U(s, y) = U(s+ t, y), (2.21)

for every y ∈ RN . Inserting equation (2.21) with y = ϕ(t + s, x) into formula (2.20), we derive
that {Sp(t)} is a group. It remains to show that t 7→ Sp(t)f is continuous at t = 0 for each
f ∈ Lp(RN ,RN ). Of course, we can limit ourselves to consider the case when f ∈ C∞c (RN ,RN ). For
such an f , estimate (2.12) yields

|(Sp(t)f)(x)− f(x)| ≤ |U(t, ϕ(t, x))(f(ϕ(t, x))− f(x))|+ |U(t, ϕ(t, x))f(x)− f(x)|

≤ eβ3|t||f(ϕ(t, x))− f(x)|+ |U(t, ϕ(t, x))f(x)− f(x)|, (2.22)

for all t ∈ R and x ∈ RN . Since f has compact support, both terms on the right-hand side of (2.22)
vanish outside a compact set H ⊂ RN , uniformly with respect to t ∈ [−1, 1]. (In fact, the first
term vanishes outside ϕ(−t, supp f) ∪ supp f . Since the function (t, x) 7→ ϕ(−t, x) is continuous in
R× RN , there exists a compact set in RN which contains ϕ(−t, supp f) for every t ∈ [−1, 1]). As a
result, both terms on the right-hand side of (2.22) converge to 0 as t→ 0 uniformly in x ∈ RN , and
therefore they converge in Lp(RN ,RN ).

Step 2. We next determine the generator Bp of {Sp(t)}, where p ∈ ]1,+∞[ . Let D̃p be the space
given by the right-hand side of (2.18) and set B̃pf = g for f ∈ D̃p. As a first step, we prove that
C1

c (RN ,RN ) is a core of Bp. For f ∈ C1
c (RN ,RN ), the function u(t, x) = (Sp(t)f)(x) continuously

differentiable in R × RN and Dtu(0, x) = F (x) · ∇f(x) + V (x)f(x) due to (2.16) and Lemmas 2.3
and 2.4. We even obtain that Sp(·)f ∈ C1(R, Lp(RN ,RN )) and Sp(t)f ∈ C1

c (RN ,RN ), for any t ∈ R,
because f has compact support and ϕ(t, ·) is bijective from RN to RN for any t ∈ R. As a result,
C1

c (RN ,RN ) ⊂ D(Bp),

Bpf = F · ∇f + V f for f ∈ C1
c (RN ,RN ), (2.23)

and C1
c (RN ,RN ) is a core of Bp by Proposition II.1.7 of [7]. Consequently, for a given f ∈ D(Bp),

there exist functions fn ∈ C1
c (RN ,RN ), n ∈ N, such that fn → f and Bpfn → Bpf in Lp(RN ,RN )

as n→ +∞. ¿From (2.23) we infer that

〈Bpf, ϕ〉 = lim
n→+∞

〈Bpfn, ϕ〉 = lim
n→+∞

〈fn, V
∗ϕ− div(ϕF )〉 = 〈f, V ∗ϕ− div(ϕF )〉, (2.24)
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for every ϕ ∈ C1
c (RN ,RN ). This means that Bp ⊂ B̃p. To prove the other inclusion, we take a

number ω larger than the growth bound ω0(Bp) of {Sp(t)} and a function f ∈ Ker (B̃p − ωI). Then
we have

0 = 〈(B̃p − ωI)f, ϕ〉 = 〈f, V ∗ϕ− F · ∇ϕ− (divF )ϕ− ωϕ〉, (2.25)
for every ϕ ∈ C1

c (RN ,RN ). Since the functions −F and V ∗ also satisfy Hypothesis 2.1, the above
results show that the operator ϕ 7→ V ∗ϕ − F · ∇ϕ with domain C1

c (RN ,RN ) has a closure C in
Lp′(RN ,RN ) which generates a C0–group. Thanks to (2.8) and the bounded perturbation theorem,
C − divF is also a generator in Lp′(RN ,RN ) having the core C1

c (RN ,RN ). Fixing a sufficiently
large ω > ω0(Bp), formula (2.25) now implies that f = 0; i.e., ωI − B̃p is injective. On the other
hand, ωI − Bp ⊂ ωI − B̃p and ωI − Bp is surjective, so that we deduce Bp = B̃p. The second
assertion concerning Bp is an immediate consequence of the formula (2.18). Moreover, the domain
of C is given by the right-hand side of the equation (2.19). The identity (2.24) further shows that
B∗p = C − divF on C1

c (RN ,RN ), which is a core of C − divF . Hence, the operator B∗p coincides
with C − divF , as asserted.

Step 3. In order to show (2.17), we first assume that p ∈ [2,+∞[. Take u ∈ C1
c (RN ,RN ) and

λ > νp, and set f = λu−Bpu. Multiplying both the sides of this equation by u|u|p−2 and integrating
by parts, we obtain∫

RN

f · u|u|p−2 dx = λ

∫
RN

|u|p dx−
∫

RN

(V u · u)|u|p−2 dx−
∫

RN

(F · ∇u) · u|u|p−2 dx

= λ

∫
RN

|u|p dx−
∫

RN

(V u · u)|u|p−2 dx+
1
p

∫
RN

(divF )|u|p dx.

Hölder’s inequality and the estimates (2.6) and (2.8) then yield (λ− β3 − ν/p) ‖u‖p
p ≤ ‖u‖p−1

p ‖f‖p,
so that

‖u‖p ≤
1

λ− β3 − ν
p

‖f‖p. (2.26)

If p ∈ ]1, 2[ , we multiply both the sides of λu−Bpu = f by u(|u|2 + δ)
p
2−1 for δ > 0 and integrate by

parts as above. Then, letting δ → 0+ we again obtain (2.26). Since C1
c (RN ,RN ) is a core for Bp, the

estimate (2.26) holds for all u ∈ D(Bp) by approximation. Inequality (2.17) is then a consequence
of the Lumer Phillips theorem and (2.26).

Step 4. To conclude the proof, we need to show that the restriction of {Sp(t)} to W 1,p(RN ,RN )
is again a strongly continuous semigroup. As in Step 1 we see that t 7→ Sp(t)f is continuous in
W 1,p(RN ,RN ) for any f ∈ C1

c (RN ,RN ). Moreover, equation (2.16) implies that

(DhSp(t)f)(x) =
N∑

k=1

(DkU)(t, ϕ(t, x))Dhϕk(t, x)f(ϕ(t, x)) +
N∑

k=1

(Sp(t)Dkf)(x)Dhϕk(t, x),

for h = 1, . . . , N . Using (2.10), (2.13) and (2.17), we can then estimate ‖∇Sp(t)f‖p ≤ ced|t|‖f‖1,p

for t ∈ R and some constants c ≥ 1, where d = γ + max{γ + γ/p, νp}. Now, the strong continuity of
{Sp(t)} in W 1,p(RN ,RN ) follows by approximation. �

In order to apply the results from [22] to our problem, we introduce the operator

A0ϕ = div(Q∇ϕ), ϕ ∈ C∞c (RN ,RN ),

and we denote by A0 its realization in Lp(RN ,RN ) with the domain D(A0) = W 2,p(RN ,RN ), where
p ∈]1,+∞[ . We fix a number ω larger than the growth bounds of {Sp(t)} on Lp(RN ,RN ) and
W 1,p(RN ,RN ). (We can choose ω independent of p by the proof of Proposition 2.5). We then set

Â0 = I −A0, Bω = ωI −Bp, (2.27)
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where p ∈ ]1,+∞[ is fixed. In the following lemma we compute the commutator of these two
operators. The straightforward proof is omitted, see Lemma 2.3 of [23] for the case V = 0.

Lemma 2.6. Assume that Q,V ∈ C2(RN ,RN×N ) and F ∈ C2(RN ,RN ). Then, we have

[Â0Bω −BωÂ0]ϕ = div{[Q(DF )∗ + (DF )Q− (divF )Q− (F · ∇)Q]∇ϕ}+ (divF )A0ϕ

+
N∑

i,j=1

qij(DiV )Djϕ+
N∑

i,j=1

Di(qij(DjV )ϕ),

for every ϕ ∈ C∞c (RN ,RN ), where (F · ∇)Q∇ϕ = ((F · ∇)Q∇ϕ1, . . . , (F · ∇)Q∇ϕN ) and ((F ·
∇)Q∇ϕk)j =

∑N
i,h=1 Fi(Diqjh)Dhϕk for all j, k = 1, . . . , N .

We can now prove our main generation result.

Theorem 2.7. Assume that Hypothesis 2.1 holds and let p ∈ ]1,+∞[ . Then, the operator Ap =
div(Q∇u)+F ·∇u+V u with the domain D(Ap) = {u ∈W 2,p(RN ,RN ) : F ·∇u+V u ∈ Lp(RN ,RN )}
generates a strongly continuous semigroup {Tp(t)} in Lp(RN ,RN ) and

‖Tp(t)‖L(Lp(RN ,RN )) ≤ eνpt, t ≥ 0, (2.28)

where νp = β3 + ν
p . Moreover, {Tp(t)} is consistent, i.e., {Tp(t)} and {Tq(t)} coincide on

Lp(RN ,RN )∩Lq(RN ,RN ) for all p, q ∈ ]1,+∞[ . The adjoint A∗p is given by A∗pv = div(Q∇v)− F ·
∇v + V ∗v − (divF )v for v ∈ D(A∗p) = {v ∈W 2,p′(RN ,RN ) : −F · ∇v + V ∗v ∈ Lp′(RN ,RN )}.

Proof. We want to employ Corollary 2 of [22] in order to show that Ap−κI is invertible in Lp(RN ,RN )
for each fixed p ∈ ]1,+∞[ and some κ > 0. To this purpose, we must work in complex Banach spaces.
It is straightforward to extend the above results to the canonical complexifications of the spaces we
have considered so far. Recall the definition of Â0 and Bω in (2.27). It is well known that

‖(λ+ Â0)−1‖L(Lp(RN ,RN )) ≤
c

|λ|+ 1
and ‖Âis

0 ‖L(Lp(RN ,RN )) ≤ ceθA|s|,

for a (fixed, but arbitrary) θA ∈ ]0, π
2 [ , λ ∈ C \ {0} with | arg λ| < π− θA, s ∈ R and a constant c not

depending on λ and s. Proposition 2.5 shows that −Bω generates an exponentially stable semigroup
on Lp(RN ,CN ) which is also a group. Taking also into account the functional calculus formulated
in Theorem 3.6 of [10], we infer that there exists an angle θB > π

2 such that θA + θB < π and

‖(µ+Bω)−1‖L(Lp(RN ,RN )) ≤
c

|µ|
and ‖Bis

ω ‖L(Lp(RN ,RN )) ≤ ceθB |s|,

for s ∈ R, µ ∈ C \ {0} with | argµ| < π − θB , and a constant c not depending on µ and s. In order
to apply Corollary 2 of [22] it remains to estimate the operator

C(λ, µ) := Â0(λ+ Â0)−1[Â−1
0 (µ+Bω)−1 − (µ+Bω)−1Â−1

0 ],

on Lp(RN ,CN ), for the above λ and µ. For this purpose, we use an approximation argument. We
consider a family of mollifiers {%n, n ∈ N} and a function ζ ∈ C∞c (RN ,R) such that χB(1) ≤ ζ ≤
χB(2). We further introduce the operator Tn defined by

(Tnϕ)(x) = ζ(n−1x)
∫

RN

%n(y)ϕ(x− y)dy, x ∈ RN , n ∈ N,

for a locally integrable function ϕ : RN → C. Clearly, Tnϕ ∈ C∞c (RN ) for all n ∈ N, Tnϕ converges
to ϕ in W 2,p(RN ) for every ϕ ∈ W 2,p(RN ), and Tnϕ converges locally in C1(RN ) to ϕ for each
ϕ ∈ C1(RN ), as n tends to +∞. We also set Tnf = (Tnf1, . . . , TnfN ) for a locally integrable function
f : RN → CN , F (k) = TkF , q(n)

ij = Tn(qij) and V
(n)
ij = Tn(Vij) for i, j = 1, . . . , N and n ∈ N. The
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operators Â(k)
0 and B

(k)
ω are defined as the operators Â0 and Bω replacing the coefficients Q, F , V

by Q(k), F (k), V (k), respectively. For a given f ∈ D(Bp), we set

Vk,n(f) = Â−1
0 [Â(k)

0 B(k)
ω −B(k)

ω Â
(k)
0 ]TnÂ

−1
0 f,

for every k, n ∈ N. Thanks to Lemma 2.6, we can write

Vk,n(f) = Â−1
0 div

{[
Q(k)(DF (k))∗ + (DF (k))Q(k) − (divF (k))Q(k) − (F (k) · ∇)Q(k)

]
∇TnÂ

−1
0 f

+Q(k)(∇V (k))TnÂ
−1
0 f

}
+ Â−1

0 (divF (k))A(k)
0 TnÂ

−1
0 f

+ Â−1
0

N∑
i,j=1

q
(k)
ij (DiV

(k))DjTnÂ
−1
0 f. (2.29)

We observe that (Â−1/2
0 )∗ is bounded from Lp′(RN ,CN ) to W 1,p′(RN ,CN ). Therefore, the operator

Dk(Â−1/2
0 )∗ is bounded in Lp′(RN ,CN ), and we can thus extend the operator Â−1/2

0 div defined on
C∞c (RN ,CN ) to a bounded operator S : Lp(RN ,CN ) → Lp(RN ,CN ). Letting k → +∞ in (2.29)
and recalling that TnÂ

−1
0 ∈ C∞c (RN ,CN ), it follows that Vk,n(f) converges to the function

Vn(f) = Â
−1/2
0 S

{[
Q(DF )∗ + (DF )Q− (divF )Q− (F · ∇)Q

]
∇TnÂ

−1
0 f +Q(∇V )TnÂ

−1
0 f

}
+Â−1

0 (divF )A0TnÂ
−1
0 f + Â−1

0

N∑
i,j=1

qij(DiV )DjTnÂ
−1
0 f. (2.30)

From Hypothesis 2.1 and estimates (2.7) and (2.8), we know that the maps Q(DF )∗ + (DF )Q,
(divF )Q, (F · ∇)Q, Q, and ∇V are bounded on RN . Therefore, we can take the limit as n→ +∞
in (2.30) and deduce that Vn(f) converges in Lp(RN ,CN ) to the function

V(f) = Â
−1/2
0 S

{[
Q(DF )∗ + (DF )Q− (divF )Q− (F · ∇)Q

]
∇Â−1

0 f +Q(∇V )Â−1
0 f

}
+ Â−1

0

[
(divF )A0Â

−1
0 f +∇V · (Q∇(Â−1

0 f))
]
.

Moreover, there exists a constant c ≥ 0 such that

‖Â1/2
0 V(f)‖p ≤ c ‖f‖p, f ∈ D(B). (2.31)

In order to relate the crucial estimate (2.31) with the operators C(λ, ω), we introduce the maps

Ck,n(λ, µ) = Â0(λ+ Â0)−1(µ+Bω)−1Â−1
0

[
Â

(k)
0 B(k)

ω −B(k)
ω Â

(k)
0

]
TnÂ

−1
0 (µ+Bω)−1

= Â0(λ+ Â0)−1(µ+Bω)−1Vk,n(µ+Bω)−1,

for k, n ∈ N, | arg λ| < π−θA, and | argµ| < π−θB . Take g ∈ Lp(RN ,CN ) and set f = (µ+Bω)−1g ∈
D(Bp). The above results show that Ck,n(λ, ω)g converges to the function

C̃(λ, µ)g := Â
1/2
0 (λ+ Â0)−1

{
Â

1/2
0 (µ+Bω)−1Â

−1/2
0

}
Â

1/2
0 V(f), (2.32)

letting first k → +∞ and then n → +∞. By Proposition 2.5, the operator −Bω generates an
exponentially stable semigroup on D(Â1/2

0 ) = W 1,p(RN ,CN ). The inequality (2.31) thus yields

‖C̃(λ, µ)g‖p ≤
M

|λ|1/2|µ|
‖f‖p ≤

M ′

|λ|1/2|µ|2
‖g‖p, (2.33)

for all λ, µ ∈ C \ {0} with | arg λ| < π − θA and | argµ| < π − θB , and some constants M,M ′ ≥ 0
independent of λ and µ. On the other hand, it holds

〈Vk,n(f), Â∗0ϕ〉 = 〈[Â(k)
0 B(k)

ω −B(k)
ω Â

(k)
0 ]TnÂ

−1
0 f, ϕ〉
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= 〈Â(k)
0 TnÂ

−1
0 f, (V (k))∗ϕ− div(ϕF (k))〉 − 〈B(k)

p TnÂ
−1
0 f, (Â(k)

0 )∗ϕ〉,

for every f ∈ D(Bp) and ϕ ∈ C∞c (RN ,CN ). Letting k → +∞, we derive

〈Vn(f), Â∗0ϕ〉 = 〈Â0TnÂ
−1
0 f, V ∗ϕ− div(ϕF )〉 − 〈F · ∇TnÂ

−1
0 f, Â∗0ϕ〉 − 〈V TnÂ

−1
0 f, Â∗0ϕ〉.

Taking the limit as n→ +∞, this equation and (2.19) yield

〈V(f), Â∗0ϕ〉 = 〈f, V ∗ϕ− div(ϕF )〉 − 〈F · ∇Â−1
0 f, Â∗0ϕ〉 − 〈V Â−1

0 f, Â∗0ϕ〉

= 〈Bpf, ϕ〉 − 〈F · ∇Â−1
0 f + V Â−1

0 f, Â∗0ϕ〉.

Setting ψ = Â∗0ϕ, we obtain

〈V(f), ψ〉 = 〈Â−1
0 Bpf, ψ〉 − 〈F · ∇Â−1

0 f + V Â−1
0 f, ψ〉.

Since test functions are a core for Â∗0, the set Â∗0(C
∞
c (RN ,RN )) is dense in Lp′(Rn,CN ). Propo-

sition 2.5 thus shows that Â−1
0 f belongs to D(Bp) and that V(f) = Â−1

0 Bpf − BpÂ
−1
0 f , for each

f ∈ D(Bp). Inserting this equality into (2.32), we get

C̃(λ, µ)g = Â0(λ+ Â0)−1(µ+Bω)−1[Â−1
0 Bp −BpÂ

−1
0 ](µ+Bω)−1g

= Â0(λ+ Â0)−1(µ+Bω)−1[BωÂ
−1
0 − Â−1

0 Bω](µ+Bω)−1g

= C(λ, µ)f.

Therefore, estimate (2.33) gives

‖C(λ, µ)‖L(Lp(RN ,RN )) ≤
M ′

|λ|1/2|µ|2
,

for all λ, µ ∈ C\{0} with | arg λ| < π−θA and | argµ| < π−θB . Observe thatD(A0)∩D(Bp) = D(Ap)
by Proposition 2.5. Corollary 2 of [22] now shows that the operator κI + Â0 +Bω = (κ+ 1 + ω)I −
Ap, with domain D(Ap), is invertible in Lp(RN ,RN ) for some κ ≥ 0. Taking Proposition 2.5
into account, it is easy to see that A0 + B∗p coincides with the operator div(Q∇) − F · ∇ + V ∗ −
(divF )f on W 2,p′(RN ,RN ) ∩ D(B∗p) and that it is a restriction of A∗p. Moreover, A0 + B∗p is a
generator on Lp′(RN ,CN ) by the above results and Proposition 2.5. Hence, A∗p = A0 + B∗p has
the asserted representation. The remaining claims can be proved using the Trotter–Kato product
formula, Proposition 2.5, and the dissipativity of A0. �

Proposition 2.8. Assume that Hypothesis 2.1 holds and that p ∈ ]1,+∞[ . Denote the components
of Q(x)−1 by rij(x) (i, j = 1, . . . , N). The following assertions are true.

(a) If, additionally,
〈F (x), x〉 ≤ c |x|2 (2.34)

for some constant c > 0 and all x ∈ RN , then the operator Ap coincides with the maximal realization
of A in Lp(RN ,RN ), i.e.,

D(Ap) = {u ∈ Lp(RN ,RN ) ∩W 2,p
loc (RN ,RN ) : Au ∈ Lp(RN ,RN )}. (2.35)

(b) If condition (2.34) holds with −F instead of F , then the space C∞c (RN ,RN ) is a core for Ap.

Proof. (a) It suffices to show the inclusion “⊃” in (2.35). We denote by Dmax,p the space in the
right-hand side of (2.35). Since λI − Ap is invertible for each λ > νp (cf. Theorem 2.7), we have
to establish the injectivity of λI − A on Dmax,p for some λ > νp. Let λv = Av for some λ > νp

and v ∈ Dmax,p. We fix a decreasing smooth function ψ : [0,+∞[→ R, with χ[0,1] ≤ ψ ≤ χ[0,2],
and we set ϑn(x) = ψ(|x|/n) for x ∈ RN and n ∈ N. Then, ϑn ∈ C1

b (RN ), χB(n) ≤ ϑn ≤ χB(2n) ,
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and ‖∇ϑn‖∞ ≤ C for every n ∈ N. We first consider the case p ≥ 2. If we multiply the equation
λv −Av = 0 by v|v|p−2ϑ2

n and integrate by parts, we obtain

0 = λ

∫
RN

|v|pϑ2
n dx+

∫
RN

N∑
h=1

〈Q∇vh,∇vh〉 |v|p−2ϑ2
n dx+

p− 2
4

∫
RN

|v|p−4ϑ2
n〈Q∇(|v|2),∇(|v|2)〉 dx

+ 2
∫

RN

|v|p−2ϑn

N∑
h=1

vh〈Q∇ϑn,∇vh〉 dx+
1
p

∫
RN

(divF )|v|pϑ2
n dx−

∫
RN

|v|p−2ϑ2
n〈V v, v〉 dx

+
∫

RN

2ϑn(x)
pn |x|

ψ′(|x|/n)〈F (x), x〉 |v(x)|p dx. (2.36)

Using the Cauchy–Schwarz and Young’s inequality, we can estimate∫
RN

|v|p−2ϑn

N∑
h=1

vh〈Q∇ϑn,∇vh〉 dx ≥ −
∫

RN

|v|p−2ϑn|Q
1
2∇ϑn|

N∑
h=1

|vh| |Q
1
2∇vh| dx (2.37)

≥ −
√
α2

∫
RN

|v|p−1ϑn|∇ϑn|
[ N∑

h=1

|Q 1
2∇vh|2

] 1
2
dx

≥ −C
√
α2 ‖v‖

p
2
p

[ ∫
RN

|v|p−2ϑ2
n

N∑
h=1

〈Q∇vh,∇vh〉 dx
] 1

2

≥ −C
2α2

2

∫
RN

|v|p dx− 1
2

∫
RN

N∑
h=1

〈Q∇vh,∇vh〉 |v|p−2ϑ2
n dx.

Concerning the last integral in (2.36) we note that its integrand vanishes if |x| /∈ [n, 2n] and that
ψ′ ≤ 0. Assumption (2.34) thus implies that this integral is larger than −c ‖v‖p

p for a constant c ≥ 0
independent of v and λ. Using also (2.6), we can thus derive from (2.36) and (2.8) that

0 ≥
(
λ− β3 −

ν

p

)∫
RN

ϑ2
n|v|p dx− (C2α2 + c)‖v‖p

p.

Letting n→ +∞ and choosing a sufficiently large λ ≥ 0, we arrive at v = 0, so that λ−A is injective
for such λ. If p ∈ ]1, 2[ , we multiply the equation λv −Av = 0 by (|v|2 + δ)(p−2)/2vϑ2

n, where δ > 0.
Integrating by parts, it follows

0 ≥ λ

∫
RN

|v|2ϑ2
n(|v|2 + δ)

p−2
2 dx+

∫
RN

N∑
h=1

〈Q∇vh,∇vh〉ϑ2
n(|v|2 + δ)

p−4
2
(
(p− 1)|v|2 + δ

)
dx

+ 2
∫

RN

N∑
h=1

vhϑn(|v|2 + δ)
p−2
2 〈Q∇vh,∇ϑn〉 dx−

∫
RN

N∑
i,h=1

ϑ2
nFi(Divh)vh(|v|2 + δ)

p−2
2 dx

−
∫

RN

(|v|2 + δ)
p−2
2 ϑ2

n〈V v, v〉 dx. (2.38)

Arguing as in (2.37), we can show that the sum of the second and the third integral in (2.38) is larger
than

−C
2α2

p− 1

∫
RN

(|v|2 + δ)
p
2 dx. (2.39)
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Using the theorem of dominated convergence, we can now let δ → 0+ in (2.39) and in the first, fourth
and fifth integral of (2.38), obtaining

0 ≥ (λ− β3)
∫

RN

ϑ2
n|v|p dx−

∫
RN

N∑
h=1

〈F,∇vh〉vhϑ
2
n|v|p−2 dx− C2α2

p− 1

∫
RN

|v|p dx.

On the other hand, integration by parts yields that

−
∫

RN

N∑
i,h=1

ϑ2
nFi(Divh)vh (|v|2 + δ)

p−2
2 dx

=
∫

RN

ϑ2
n(divF ) |v|2(|v|2 + δ)

p−2
2 dx+ 2

∫
RN

ϑn〈F,∇ϑn〉 |v|2(|v|2 + δ)
p−2
2 dx

+
∫

RN

N∑
h=1

ϑ2
n〈F,∇vh〉vh (|v|2 + δ)

p−2
2 dx+ (p− 2)

∫
RN

N∑
j=1

ϑ2
n〈F,∇vj〉vj (|v|2 + δ)

p−2
2 dx

− (p− 2)
∫

RN

N∑
j=1

ϑ2
n〈F,∇vj〉vj δ(|v|2 + δ)

p−4
2 dx.

So, we derive

−
∫

RN

N∑
h=1

ϑ2
n〈F,∇vh〉vh (|v|2 + δ)

p−4
2 (p|v|2 + 2δ) dx

=
∫

RN

ϑ2
n(divF ) |v|2(|v|2 + δ)

p−2
2 dx+ 2

∫
RN

ϑn〈F,∇ϑn〉 |v|2(|v|2 + δ)
p−2
2 dx.

As above, we can take the limit as δ → 0+ in the integrals on the right-hand side. On the left-hand
side, the function

∑N
h=1 ϑ

2
n〈F,∇vh〉vh (|v|2 + δ)

p−4
2 (p|v|2 + 2δ) can be estimated from above by the

function cnϑ
2
n |∇v| |v|p−1 in the set {δ ≤ |v|2}, and by the function cn δ

(p−1)/2|∇v|ϑ2
n in the set

{|v|2 ≤ δ}. So, the theorem of dominated convergence applies, taking as a majorant the function
cnϑ

2
n (|∇v| |v|p−1 + |∇v|) for δ ∈ ]0, 1], and it yields

−
∫

RN

N∑
h=1

〈F,∇vh〉vhϑ
2
n|v|p−2 dx =

1
p

∫
RN

(divF )ϑ2
n|v|p dx+

2
p

∫
RN

|v|p〈F,∇ϑn〉ϑn dx.

We can now conclude that v = 0 as in the case p ≥ 2.

(b) Suppose that 〈(λ−Ap)φ, f〉 = 0 for some f ∈ Lp′(RN ,RN ), λ ≥ 0, and all φ ∈ C∞c (RN ,RN ).
Standard elliptic regularity, see e.g., [1], then yields that f ∈ W 2,p′

loc (RN ,RN ). Integrating by parts
we, thus, obtain 0 = 〈φ, (λ−A∗)f〉 for the (formal) adjoint A∗ of A, i.e., λf = A∗f . Applying part
(a) to the operator A∗ = div(QDu)− 〈F,∇u〉+ V ∗ − divF , we see that f belongs to the kernel of
λI −A∗p, and hence f = 0 for sufficiently large λ ≥ 0. So assertion (b) has been established. �

3. The generation result in L1(RN ,RN )

Using the results in Section 2, we prove that we can associate a strongly continuous semigroup
{T1(t)} with the realization of the operator A in L1(RN ,RN ).

Proposition 3.1. Assume that Hypothesis 2.1 holds. Then, the restriction of the semigroup {T2(t)}
to L2(RN ,RN ) ∩ L1(RN ,RN ) can be extended to a C0–semigroup {T1(t)} on L1(RN ,RN ) which is
consistent with {Tp(t)}, p ∈]1,+∞[ , and satisfies

‖T1(t)‖L(L1(RN ,RN )) ≤ eν1t, t ≥ 0, (3.1)
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where ν1 = β3 + CNβ1/α1. The generator A1 of {T1(t)} has the cores Dp = {u ∈ D(Ap) ∩
L1(RN ,RN ) : Apu ∈ L1(RN ,RN )} and A1u = Apu for u ∈ Dp, for each p ∈ ]1,+∞[ . In par-
ticular, A1 extends A.

Proof. Let f ∈ L2(RN ,RN ) ∩ L1(RN ,RN ) and r > 0. Note that f ∈ Lp(RN ,RN ) for p ∈]1, 2[ . Due
to Theorem 2.7, the semigroups {Tp(t)} and {Tq(t)} are consistent for p, q ∈ ]1,+∞[, so that we
simply write T (t) instead of Tp(t). The theorem of dominated convergence and (2.28) yield

‖T (t)f‖L1(B(r),RN ) = lim
p→1+

‖T (t)f‖Lp(B(r),RN ) ≤ lim
p→1

eνpt‖f‖p = eν1t‖f‖1 .

Thus we can extend T (t) from L2(RN ,RN ) ∩ L1(RN ,RN ) to an operator T1(t) satisfying (3.1) for
t ≥ 0. It is clear that {T1(t)} is a semigroup which is consistent with {T (t)}. To show its strong
continuity, we take f ∈ C∞c (RN ,RN ). Since f ∈ D(Ap) for p > 1 by Theorem 2.7, we obtain

T1(t)f − f = T (t)f − f =
∫ t

0

T (s)Af ds =
∫ t

0

T1(s)Af ds, (3.2)

‖T1(t)f − f‖L1(RN ,RN ) ≤ ct,

for all t ∈ ]0, 1] and some constant c > 0 independent of t. Hence, T1(t)f → f in L1(RN ,RN )
as t → 0+, and so {T1(t)} is strongly continuous. The semigroup {T1(t)} leaves invariant Dp,
1 < p < +∞, since it is consistent with {T (t)}. The space Dp is dense in L1(RN ,RN ) because it
contains the test functions. Let f ∈ Dp. As in (3.2) we obtain that

T1(t)f − f =
∫ t

0

T1(s)Apf ds.

Thus, f ∈ D(A1) and A1 = Apf . The last assertion now follows from Proposition II.1.7 of [7]. �

In view of the above results, in the rest of the paper we simply write {T (t)} instead of {Tp(t)}.

4. Lp-Lq estimates

Under Hypothesis 2.1, we want to show that T (t) maps Lp(RN ,RN ) into Lq(RN ,RN ) for all t > 0
and 1 ≤ p ≤ q ≤ +∞ and that there exist two constants M > 0 and ω ∈ R such that

‖T (t)f‖q ≤Mt−
N
2 ( 1

p−
1
q )eωt‖f‖p, t > 0, f ∈ Lp(RN ,RN ). (4.1)

The case (p, q) = (1,+∞) is the main step of the proof of (4.1), and it is treated in the next lemma.

Lemma 4.1. The estimate (4.1) is true for (p, q) ∈ {(1, 2), (2,+∞), (1,+∞)}.

Proof. Step 1: (p, q) = (1, 2). If u ∈ D(A2), integrating by parts yields∫
RN

−div(Q∇u) · u dx ≥ α1

∫
RN

|∇u|2 dx.

As in Step 3 of the proof of Proposition 2.5, we obtain that∫
RN

(λu−B2u) · u dx ≥
(
λ− β3 −

ν

2

)∫
RN

|u|2 dx.

Taking λ ≥ λ0 > β3 + ν/2, we infer

‖u‖2
1,2 ≤ C1

∫
RN

u(λu−A2u)dx, (4.2)

for a positive constant C1 = C1(λ0) independent of u. For 0 6= f ∈ C∞c (RN ,RN ) and λ ≥ λ0, we set

v(t) = ‖e−λtT (t)f‖2
2, t ≥ 0.
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Let δ > 0 be the supremum of t0 > 0 such that v(t) 6= 0 for 0 ≤ t ≤ t0. For t ∈ ]0, δ[ , we have

v′(t) = 2e−2λt

∫
RN

〈T (t)f, (A2 − λ)T (t)f〉dx, t > 0. (4.3)

We recall Nash’s inequality (see e.g., [6, Theorem 2.4.6]) which implies that

‖g‖2+4/N
2 ≤ C‖g‖2

1,2 ‖g‖
4/N
1 (4.4)

for a constant C > 0 and each g ∈W 1,2(RN ,RN )∩L1(RN ,RN ). Since T2(t)f ∈ D(A2)∩L1(RN ,RN )
by Proposition 3.1, we deduce from (4.3), (4.2) and (4.4) that

v′(t) ≤ − 2
C1
‖e−λtT (t)f‖2

1,2 ≤ − 2
CC1

‖e−λtT (t)f‖2+4/N
2 ‖e−λtT (t)f‖−4/N

1 ,

for every t ∈ (0, δ), and hence
d

dt
(v(t)−2/N ) ≥ 4

CC1N
‖e−λtT (t)f‖−4/N

1 ≥M1e
4
N (λ−ν1)t‖f‖−4/N

1 , (4.5)

where ν1 is given by Theorem 3.1 and M1 := 4/(CC1N). Integrating (4.5), we obtain

(v(t))−2/N ≥M1‖f‖−4/N
1

∫ t

0

e
4
N (λ−ν1)s ds ≥M1t‖f‖−4/N

1 ,

v(t) = ‖e−λtT (t)f‖2
2 ≤M

−N/2
1 t−N/2‖f‖2

1 (4.6)

for all t ∈ ]0, δ[ and λ ≥ max{λ0, ν1}. If δ < +∞, the semigroup law shows that v(t) = 0 for t ≥ δ,
i.e., (4.6) is true for all t ≥ 0. By approximation, we arrive at

‖T (t)f‖2 ≤M
−N/4
1 t−N/4eλt‖f‖1, t > 0,

for all f ∈ L1(RN ,RN ).

Step 2: (p, q) = (2,+∞). Based on the representation of A∗2 from Theorem 2.7, as in Step 1 we
can establish the estimate

‖T (t)∗g‖2 ≤M
−N/4
1 t−N/4eλt‖g‖1, t > 0,

for every g ∈ L1(RN ,RN ), λ ≥ λ′0 and some constant λ′0 ≥ λ0. By duality, this inequality leads to

‖T (t)f‖∞ = sup
‖g‖1≤1

∫
RN

〈f, T (t)∗g〉 dx ≤M
−N/4
1 t−N/4eλt‖f‖2, t > 0,

for every f ∈ Cc(RN ,RN ); i.e., estimate (4.1) holds for with (p, q) = (2,+∞).

Step 3: (p, q) = (1,+∞). Steps 1 and 2 imply that

‖T (t/2)T (t/2)f‖∞ ≤ 2N/4M
−N/4
1 t−N/4eλt/2‖T (t/2)f‖2 ≤ 2N/2M

−N/2
1 t−N/2eλt‖f‖1,

for all t > 0 and f ∈ L1(RN ,RN ), where M1 is as above. �

Theorem 4.2. Assume that Hypothesis 2.1 is satisfied. Then, the inequality (4.1) holds for all
1 ≤ p ≤ q ≤ +∞ and some constants M ≥ 1 and ω ∈ R.

Proof. Lemma 4.1 and Proposition 3.1 show that

‖T (t)‖L(L1(RN ,RN ),L∞(RN ,RN )) ≤Mt−N/2eλt and ‖T (t)‖L(L1(RN ,RN )) ≤ eν1t,

for all t > 0 and f ∈ L1(RN ,RN ) and some constants λ ≥ 0 and M ≥ 1. Set ω = max{ν1, λ}. The
Riesz Thorin interpolation theorem, see e.g., Theorem 1.18.4 of [25], then yields

‖T (t)‖L(L1(RN ,RN ),Lq(RN ,RN )) ≤Meωtt−
N
2 (1− 1

q ), t > 0, (4.7)

for all q ∈ [1,+∞]. The assertion now follows by interpolation between (2.28) and (4.7). �
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5. Lp-gradient estimates

In this section, we prove Lp-gradient estimates for the spatial derivatives of the semigroup. We
introduce the operator Ã defined on smooth functions ψ : RN → R by

Ãψ = div(Q∇ψ) + F · ∇ψ. (5.1)

In addition to Hypothesis 2.1, we further assume the following conditions.

Hypothesis 5.1. (i) qij ∈ C2
b (RN ) ∩ C2+α

loc (RN ) for all i, j = 1, . . . , N and some α ∈ ]0, 1[ ;
(ii) there exist a function ϕ ∈ C2(RN ) and a constant λ ≥ 0 such that

lim
|x|→+∞

ϕ(x) = +∞, sup
RN

Ãϕ− λϕ < +∞. (5.2)

Remark 5.2. Assume that Hypotheses 2.1 and 5.1(i) hold and that F satisfies (2.34). Take
ϕ ∈ C2(RN ) with ϕ(x) = |x| for |x| ≥ 1. The function ϕ then satisfies (5.2) (cf. the proof of
Proposition 2.8).

We begin with some preliminary results on local Hölder regularity.

Theorem 5.3. Assume that Hypotheses 2.1 and 5.1 hold. Then, for each f ∈ C∞c (RN ,RN ), the
function u = T (·)f belongs to C1+β/2,2+β

loc ([0,+∞[×RN ,RN ) ∩ C([0,+∞[ ;C1+β
b (RN ,RN )) for each

β ∈ ]0, 1[ , and it satisfies {
Dtu(t, x) = Au(t, x), t > 0, x ∈ RN ,

u(0, x) = f(x), x ∈ RN .
(5.3)

Further, ∇u belongs to C1+α/2,2+α
loc ([0,+∞[×RN ,RN ), where α is given by Hypothesis 5.1(i).

Proof. Let f ∈ C∞c (RN ,RN ). By Theorem 2.7, we have u = T (·)f ∈ C([0,+∞[ ;W 2,p(RN ,RN ))
for every p ∈ ]1,+∞[ . Sobolev’s embedding theorem thus yields u ∈ C([0,+∞[ ;C1+β

b (RN ,RN )) for
all β ∈ ]0, 1[. We now turn our attention to the regularity of D2uk and Dtuk for k = 1, . . . , N . Set
A0ϕ = div(QDϕ) for smooth functions ϕ. Then uk solves the Cauchy problem{

Dtw(t, x) = A0w(t, x) + gk(t, x), t ≥ 0, x ∈ RN ,

w(0, ·) = ϑ(x)fk(x), x ∈ RN ,
(5.4)

where gk = 〈F,∇uk〉+ 〈V u, ek〉 and ek is the k-th vector of the Euclidean basis of RN . Take R > 0
and a smooth function ϑ = ϑR such that χB(R) ≤ ϑ ≤ χB(2R). As it is easily seen, the function
vk = ukϑ solves the Cauchy problem (5.4) with fk and gk replaced with the functions fkϑ and ψk,
respectively, where

ψk := gkϑ− ukA0ϑ− 2〈Q∇uk,∇ϑ〉 ∈ C([0,+∞[ ;Cβ
b (RN )),

for all β ∈ ]0, 1[ . It is well known that the realization A∞ of the operator A0 in Cb(RN ) generates
an analytic semigroup {S∞(t)} such that

DA∞(β/2,∞) = Cβ
b (RN ), DA∞(1 + β/2,∞) = C2+β

b (RN ),

for all β ∈ ]0, 1[, with equivalence of the respective norms, see Section 3.1 of [14]. We further have

vk(t, ·) = S∞(t)(fkϑ) +
∫ t

0

S∞(t− s)ψk(s, ·)ds, t ≥ 0. (5.5)

Since ϑfk ∈ DA∞(1 + β/2,∞) and ψk ∈ C([0,+∞[ ;DA∞(β/2,∞)) for any β as above, we can
apply [14, Corollary 4.3.9] obtaining that Dtvk is (bounded and) continuous on [0, T ] with values in
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Cβ
b (RN ), for each T > 0. Moreover, since A∞(fkϑ) + gk(0, ·) ∈ DA∞(β/2,∞), the function vk(t, ·)

belongs to C2+β
b (RN ) for all t > 0 and

sup
t∈[0,T ]

(
‖vk(t, ·)‖C2+β

b (RN ) + ‖Dtvk(t, ·)‖Cβ
b (RN )

)
< +∞. (5.6)

By interpolation we deduce that

‖vk(t, ·)− vk(s, ·)‖C2
b (RN ) ≤ C ‖vk(t, ·)− vk(s, ·)‖

β
2+β

Cb(RN )
‖vk(t, ·)− vk(s, ·)‖

2
2+β

C2+β
b (RN )

≤ C
(
2 sup

t∈[0,T ]

‖vk(t, ·)‖C2+β
b (RN )

) 2
2+β ‖vk(t, ·)− vk(s, ·)‖

β
2+β

Cb(RN )
, (5.7)

for a constant C > 0 and all s, t ∈ [0, T ] and T > 0, see e.g., Proposition 1.1.3(ii) of [14]. Since
vk ∈ C([0,+∞[ ;Cb(RN )), estimate (5.7) implies that vk ∈ C([0,+∞[ ;C2

b (RN )). We next show that
D2vk belongs to Cβ/2([0, T ];Cb(RN )) for all T > 0. Observe that

|vk(t, x2)− vk(s, x2)− vk(t, x1) + vk(s, x1)| ≤
∫ t

s

|Dtvk(r, x2)−Dtvk(r, x1)| dr

≤ |t− s| |x2 − x1|β sup
t∈[0,T ]

‖Dtvk(t, ·)‖Cβ
b (RN ), (5.8)

|vk(t, x)− vk(s, x)| ≤ |t− s| sup
t∈[0,T ]

‖Dtvk(t, ·)‖Cb(RN ), (5.9)

for all s, t ∈ [0, T ], T > 0, and x, x1, x2 ∈ RN . The estimates (5.6), (5.8) and (5.9) yield vk ∈
Lip([0, T ];Cβ

b (RN )). Interpolating C2
b (RN ) between Cβ

b (RN ) and C2+β
b (RN ) and arguing as in (5.7),

we then conclude that vk ∈ Cβ/2([0, T ];C2
b (RN )), so that, in particular, Dijvk ∈ Cβ/2([0, T ];Cb(RN ))

for all T > 0 and i, j = 1, . . . , N . We now prove that Dtvk is β/2-Hölder continuous in [0, T ]
with values in Cb(RN ). Since R > 0 and β ∈ ]0, 1[ are arbitrary and uk ≡ vk in [0, T ] × B(R),
from the results so far obtained, we deduce that uk ∈ Cβ/2([0, T ];C1

b (B(2R))) and thus ψk ∈
Cβ/2([0, T ];Cb(RN )). Theorem 4.3.1(iii) of [14] now implies that Dtvk ∈ Cβ/2([0, T ];Cb(RN )). Thus,
vk ∈ C1+β/2,2+β([0, T ] × RN ) for all T > 0. The first part of the assertion now follows. The
last assertion can be deduced from classical estimates for solutions to nonhomogeneous parabolic
equations on RN with smooth coefficients and inhomogeneities. �

It is well known that, under Hypothesis 2.1 and 5.1, the realization Ã of the operator Ã in Cb(RN )
with the maximal domain

D(Ã) =
{
u ∈

⋂
1≤p<+∞

W 2,p
loc (RN ) ∩ Cb(RN ) : Ãu ∈ Cb(RN )

}
, (5.10)

generates a ‘weak semigroup’ {T̃ (t)} of contractions in Cb(RN ) (see e.g., Chapter 1 of [3] or [17]).
Moreover, for any f ∈ Cb(RN ), the function T̃ (·)f is the unique bounded classical solution to the
Cauchy problem {

Dtu(t, x) = Ãu(t, x), t > 0, x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,
(5.11)

(i.e., it is the unique bounded function u ∈ C([0,+∞[×RN ) ∩ C1,2(]0,+∞[×RN ) solving (5.11)).
Here, the uniqueness is a consequence of the following generalized maximum principle, see e.g.,
Theorem 4.1.3 of [3].
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Proposition 5.4. Assume that Hypotheses 2.1 and 5.1(ii) are satisfied. Let u : [0, T ]×RN → R be
a bounded classical solution of the problem{

Dtu(t, x) = Ãu(t, x) + g(t, x), t ∈ ]0, T [, x ∈ RN ,

u(0, x) = f(x), x ∈ RN ,

where f ∈ Cb(RN ) and g ∈ C(]0, T [×RN ). If g ≤ 0 then u ≤ sup f+ where f+(x) = max{f(x), 0}.
Similarly, if g ≥ 0, then u ≥ inf f−, where f−(x) = min{f(x), 0}.

In the following proposition, we collect some properties of the semigroup {T̃ (t)} needed below.

Proposition 5.5. Assume that Hypotheses 2.1 and 5.1 hold. The following assertions are true.
(i) Let {fn} be a bounded sequence on Cb(RN ) converging locally uniformly in RN to a function

f ∈ Cb(RN ) as n→ +∞. Then, the function T̃ (·)fn converges to T̃ (·)f locally uniformly in
[0,+∞[×RN .

(ii) {T̃ (t)} is a positivity preserving semigroup and d
dt T̃ (t)f = T̃ (t)Ãf for all f ∈ D(Ã) and

t ≥ 0.
(iii) We have |T̃ (t)(fg)| ≤ [T̃ (t)(|f |p)]

1
p [T̃ (t)(|g|p′)]

1
p′ and |T̃ (t)f |p ≤ T̃ (t)(|f |p) for all f, g ∈

Cb(RN ), t ≥ 0 and p ∈ ]1,+∞[.
(iv) If λ ∈ R is such that

〈V (x)ξ, ξ〉 ≤ λ|ξ|2, x, ξ ∈ RN , (5.12)

then, for all p ∈ [1,+∞[ and f ∈ Lp(RN ) ∩ Cb(RN ), it holds that

|T (t)f |p ≤ eλptT̃ (t)(|f |p), t ∈ [0,+∞[ . (5.13)

(v) The restriction of the semigroup {T̃ (t)} to C∞c (RN ) can be extended to a C0-semigroup
{T̃p(t)} on Lp(RN ) satisfying

‖T̃p(t)‖L(Lp(RN )) ≤ eσpt, (5.14)

for all p ∈ [1,+∞ [, t ≥ 0, and constants σp ≥ 0.

Proof. For a proof of assertions (i) and (ii) we refer the reader to e.g., Propositions 2.2.9, 2.3.5, 2.3.6,
4.1.1 and Theorem 2.2.5 of [3].

(iii) Since there exists a positive function G : ]0,+∞[×RN × RN → R such that

(T̃ (t)f)(x) =
∫

RN

G(t, x, y)f(y) dy and
∫

RN

G(t, x, y) dy = 1,

for all x ∈ RN , t > 0, and f ∈ Cb(RN ) (see e.g., Theorem 2.2.5 of [3]), assertion (iii) easily follows
from Hölder’s inequality.

(iv) Because of (iii), we have to show assertion (iv) only for p ∈ [1, 2]. So, let us fix some p ∈ [1, 2].
For f ∈ C∞c (RN ,RN ) and δ > 0, we set vδ(t, x) = (|e−λt(T (t)f)(x)|2+δ)p/2 for (t, x) ∈ [0,+∞[×RN .
Theorem 5.3 shows that the function (t, x) 7→ e−λt(T (t)f)(x) is bounded on [0, T ] × RN and that
it belongs to C1,2([0, T ] × RN ), for every T > 0. Moreover, it is a classical solution of the Cauchy
problem (5.3) with A replaced with A− λI. Therefore, vδ ∈ C1,2([0,+∞[×RN ) and

Dtvδ(t, ·) = p(|e−λtT (t)f |2 + δ)
p
2−1 〈e−λtT (t)f, (A− λI)(e−λtT (t)f)〉

= p(|e−λtT (t)f |2 + δ)
p
2−1

N∑
k=1

e−λt(T (t)f)kÃ(e−λtT (t)f)k

+ p(|e−λtT (t)f |2 + δ)
p
2−1 〈(V − λI)e−λtT (t)f, e−λtT (t)f〉
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≤ p(|e−λtT (t)f |2 + δ)
p
2−1

N∑
k=1

e−λt(T (t)f)kÃ(e−λt(T (t)f)k), (5.15)

for all t ≥ 0. We further obtain

Ãvδ(t, ·) = p(|e−λtT (t)f |2 + δ)
p
2−1e−2λt

N∑
k=1

(T (t)f)kÃ(T (t)f)k (5.16)

+ p(|e−λtT (t)f |2 + δ)
p
2−1e−2λt

N∑
k=1

〈Q∇(T (t)f)k,∇(T (t)f)k〉

− p(2− p)(|e−λtT (t)f |2 + δ)
p
2−2e−4λt

N∑
h,k=1

(T (t)f)h(T (t)f)k〈Q∇(T (t)f)h,∇(T (t)f)k〉.

In view of p ≤ 2 and∣∣∣ N∑
h,k=1

(T (t)f)h(T (t)f)k〈Q∇(T (t)f)h,∇(T (t)f)k〉
∣∣∣

≤
N∑

h,k=1

|(T (t)f)h| |(T (t)f)k| 〈Q∇(T (t)f)h,∇(T (t)f)h〉
1
2 〈Q∇(T (t)f)k,∇(T (t)f)k〉

1
2

=
( N∑

k=1

|(T (t)f)k|〈Q∇(T (t)f)k,∇(T (t)f)k〉
1
2

)2

≤ |T (t)f |2
N∑

k=1

〈Q∇(T (t)f)k,∇(T (t)f)k〉,

equation (5.16) yields

Ãvδ(t, ·) ≥ p(|e−λtT (t)f |2 + δ)
p
2−1e−2λt

N∑
k=1

(T (t)f)kÃ(T (t)f)k

+ p(p− 1)(|e−λtT (t)f |2 + δ)
p
2−1e−2λt

N∑
k=1

〈Q∇(T (t)f)k,∇(T (t)f)k〉

≥ p(|e−λtT (t)f |2 + δ)
p
2−1e−2λt

N∑
k=1

(T (t)f)kÃ(T (t)f)k, (5.17)

for all t ≥ 0. Set w = vδ − T̃ (·)(vδ(0, ·)). Combining (5.15) and (5.17), we derive that{
Dtw(t, x)− Ãw(t, x) ≤ 0, t ≥ 0, x ∈ RN ,

w(0, x) = 0, x ∈ RN .

Proposition 5.4 now implies that

(|e−λtT (t)f |2 + δ)
p
2 ≤ T̃ (t)

(
(|f |2 + δ)

p
2

)
, t ≥ 0.

Due to (i), we can let δ → 0+ and obtain (5.13) for test functions f . For f ∈ Cb(RN ,RN ) ∩
Lp(RN ,RN ), there is a sequence {fn} ⊂ C∞c (RN ,RN ) which is bounded in Cb(RN ,RN ) and converges
to f in Lp(RN ,RN ) and locally uniformly on RN . Now, (iv) follows by approximation.
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(v) Theorem 2.4 of [23] shows that the realization Ãp of the operator Ã in Lp(RN ), p ∈ ]1,+∞[ ,
with the domain D(Ãp) = {f ∈ W 2,p(RN ) : F · ∇f ∈ Lp(RN )}, generates a consistent positive
strongly continuous semigroup {T̃p(t)} satisfying (5.14). Arguing as in the proof of Theorem 5.3,
one sees that u = T̃pf is a classical solution of (5.11) for each f ∈ C∞c (RN ). So, Proposition 5.4
yields T̃p(·)f = T̃ (·)f for test functions f . By approximation this equality holds for all f ∈ Cb(RN )∩
Lp(RN ). �

In the spirit of [11], we next show a proposition which is the main step towards the Lp-gradient
estimates.

Proposition 5.6. Assume that Hypotheses 2.1 and 5.1 are satisfied. Then, there exist constants
Cp > 0 and ωp ∈ R such that

|(∇T (t)f)(x)|p ≤ Cpe
ωpt
(
T̃ (t)(|f |2 + |∇f |2)

p
2

)
(x), x ∈ RN , (5.18)

for all t > 0, x ∈ RN , p ∈ ]1,+∞[ , and f ∈ C∞c (RN ,RN ).

Proof. Due to Proposition 5.5(iii), we can restrict ourselves to the case p ∈ ]1, 2]. For fixed ε > 0
and p ∈ ]1, 2], we set

v(t, x) =
( N∑

k=1

(uk(t, x))2 +
N∑

k=1

〈Q(x)∇uk(t, x),∇uk(t, x)〉+ ε

) p
2

, t ∈ [0,+∞[, x ∈ RN , (5.19)

where u = T (·)f . The function v belongs to C1,2([0,+∞[×RN ) and it is bounded in [0, T ]×RN for
all T > 0, by Theorem 5.3. We are going to prove that v satisfies{

Dtv(t, x)− Ãv(t, x) ≤ ωpv(t, x), t > 0, x ∈ RN ,

v(0, x) = g(x), x ∈ RN ,
(5.20)

where g(x) := [|f(x)|2 +
∑N

k=1〈Q(x)∇fk(x),∇fk(x)〉 + ε]
p
2 for all x ∈ RN . Since the function

(t, x) 7→ eωpt(T̃ (t)g)(x) solves the Cauchy problem associated with (5.20), Proposition 5.4 will then
yield that v(t, x) ≤ eωpt(T̃ (t)g)(x) for all t > 0 and x ∈ RN . Taking the limit as ε → 0+, we will
thus obtain ( N∑

k=1

〈Q∇uk(t, ·),∇uk(t, ·)〉
) p

2 ≤ T̃ (t)
(
|f |2 +

N∑
k=1

〈Q∇fk,∇fk〉
) p

2
,

for t > 0, and (5.18) will follow thanks to (2.3). So, let us prove (5.20). A long but straightforward
computation gives

Dtv(t, x) = Ãv(t, x) + ψ(t, x), (t, x) ∈ ]0,+∞[×RN ,

where ψ = ψ1 + ψ2 + ψ3 + ψ4 + ψ5 with

ψ1 = −pv1− 2
p

( N∑
i,j,k=1

qijDiukDjuk +
N∑

i,j,k,l,m=1

qijqlmDjlukDimuk

)
,

ψ2 = pv1− 2
p

(
〈V u, u〉+

N∑
j,k,l,m=1

qlmVkjDlujDmuk +
N∑

j,k,l,m=1

qlmDlVkjujDmuk

)
,

ψ3 = pv1− 2
p

( N∑
j,k,l,m=1

qlmDlFjDjukDmuk −
1
2

N∑
j,k,l,m=1

FjDjqlmDlukDmuk
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− 1
2

N∑
i,j,k,l,m=1

DiqijDjqlmDlukDmuk

)
,

ψ4 = p(2− p)v1− 4
p

N∑
i,j=1

qij

( N∑
k=1

ukDiuk +
N∑

k,l,m=1

qlmDmukDiluk +
1
2

N∑
k,l,m=1

DiqlmDlukDmuk

)

×
( N∑

k=1

ukDjuk +
N∑

k,l,m=1

qlmDmukDjluk +
1
2

N∑
k,l,m=1

DjqlmDlukDmuk

)
,

ψ5 = pv1− 2
p

( N∑
i,j,k,l,m=1

qlmDlqijDmukDijuk +
N∑

i,j,k,l,m=1

qlmDilqijDjukDmuk

− 1
2

N∑
i,j,k,l,m=1

qijDijqlmDlukDmuk − 2
N∑

i,j,k,l,m=1

qijDjqlmDmukDiluk

)
.

We first observe that
N∑

i,j,k,l,m=1

qij(x)qlm(x)Djluk(t, x)Dimuk(t, x) =
N∑

k=1

Tr(Q(x)D2uk(t, x)Q(x)D2uk(t, x))

=
N∑

k=1

Tr(Q
1
2 (x)D2uk(t, x)Q(x)D2uk(t, x)Q

1
2 (x))

=
N∑

k=1

|Q 1
2 (x)D2uk(t, x)Q

1
2 (x)|2,

for all (t, x) ∈ ]0,+∞[×RN . It follows that

ψ1 = −pv1− 2
p

(
N∑

k=1

|Q 1
2∇uk|2 +

N∑
k=1

|Q 1
2D2ukQ

1
2 |2
)
. (5.21)

The first and third term of ψ2 can be estimated by means of Hypothesis 2.1(iii). For the second
term, we set V sim = 1

2 (V + V ∗) and note that condition (2.6) implies that |〈Vsim(x)ξ, η〉| ≤ β3 |ξ||η|
for all x, ξ, η ∈ RN . Hence,∣∣∣∣ N∑

j,k,l,m=1

qlmVkjDlujDmuk

∣∣∣∣ = ∣∣∣∣ N∑
j,k,l,m=1

qlmV
sim
kj DlujDmuk

∣∣∣∣
≤

N∑
l,m=1

|qlm| |〈V simDlu,Dmu〉|

≤ β3‖Q‖∞ |∇u|2,

so that

ψ2 ≤ pv1− 2
p

(
β3|u|2 + β3‖Q‖∞|∇u|2 + ‖Q‖∞ ‖∇V ‖∞ |u| |∇u|

)
≤ pv1− 2

p

{(
β3 +

1
2
‖Q‖∞ ‖∇V ‖∞

)
|u|2 +

1
2
‖Q‖∞(2β3 + ‖∇V ‖∞) |∇u|2

}
≤ pv1− 2

p

{(
β3 +

1
2
‖Q‖∞ ‖∇V ‖∞

)
|u|2 +

1
2α1

‖Q‖∞(2β3 + ‖∇V ‖∞) 〈Q∇u,∇u〉
}
. (5.22)
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To treat ψ3, we rewrite it in the more compact form

ψ3 = pv1− 2
p

{ N∑
k=1

〈DFQ∇uk,∇uk〉 −
1
2

N∑
k,l,m=1

DlukDmuk

N∑
j=1

(
Fj +

N∑
i=1

Diqij

)
Djqlm

}
.

Conditions (2.4) and (2.5) thus allow us to estimate

ψ3 ≤ pv1− 2
p

(
β1 +

1
2
β2 +

√
N

2
‖∇Q‖2

∞

)
|∇u|2. (5.23)

Let ε > 0. Using the inequality

〈Q(ξ + η), ξ + η〉 ≤ (1 + ε)〈Qξ, ξ〉+
(
1 +

1
ε

)
〈Qη, η〉, ξ, η ∈ RN , (5.24)

we deduce

ψ4 ≤ (1 + ε)p(2− p)v1− 4
p

N∑
i,j=1

qij

( N∑
k,l,m=1

qlmDmukDiluk

)( N∑
k,l,m=1

qlmDmukDjluk

)

+
(
1 +

1
ε

)
p(2− p)v1− 4

p

N∑
i,j=1

qij

( N∑
k=1

ukDiuk +
1
2

N∑
k,l,m=1

DiqlmDlukDmuk

)

×
( N∑

k=1

ukDjuk +
1
2

N∑
k,l,m=1

DjqlmDlukDmuk

)
=: ψ41 + ψ42.

The Cauchy Schwarz inequality and the definition of v yield

ψ41 = (1 + ε)p(2− p)v1− 4
p

∣∣∣ N∑
k=1

Q
1
2D2ukQ∇uk

∣∣∣2
≤ (1 + ε)p(2− p)v1− 4

p

N∑
k=1

|Q 1
2D2ukQ

1
2 |2

N∑
k=1

〈Q∇uk,∇uk〉

≤ (1 + ε)p(2− p)v1− 2
p

N∑
k=1

|Q 1
2D2ukQ

1
2 |2. (5.25)

Employing (5.24) with ε = 1 and Hypothesis 2.1(i), we further calculate

ψ42 ≤ 2
(
1 +

1
ε

)
p(2− p)v1− 4

p

N∑
h,k=1

〈Q∇uh,∇uk〉uhuk

+
1
2

(
1 +

1
ε

)
p(2− p)v1− 4

p

N∑
h,k,l,m,p,r=1

〈Q∇qlm,∇qpr〉DluhDmuhDpukDruk

≤ 2
(
1 +

1
ε

)
p(2− p)v1− 4

p |u|2
N∑

k=1

〈Q∇uk,∇uk〉

+
1
2

(
1 +

1
ε

)
p(2− p)v1− 4

p |∇u|4
N∑

l,m=1

〈Q∇qlm,∇qlm〉

≤
(
1 +

1
ε

)(
2 +

1
2α2

1

‖Q‖∞ ‖∇Q‖2
∞

)
p(2− p)v. (5.26)
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Estimates (5.25) and (5.26) lead to

ψ4 ≤
(
1 +

1
ε

)(
2 +

1
2α2

1

‖Q‖∞ ‖∇Q‖2
∞

)
p(2− p)v + (1 + ε)p(2− p)v1− 2

p

N∑
k=1

|Q 1
2D2ukQ

1
2 |2. (5.27)

Using Young’s inequality, ψ5 is estimated in a straightforward way by

ψ5 ≤ 3pv1− 2
p

(
‖Q‖∞ ‖∇Q‖∞ |∇u| |D2u|+

√
N

2
‖Q‖∞ ‖D2Q‖∞ |∇u|2

)
≤ 3pv1− 2

p

{
ε|D2u|2 +

(
1
4ε
‖Q‖2

∞ ‖∇Q‖2
∞ +

√
N

2
‖Q‖∞ ‖D2Q‖∞

)
|∇u|2

}
, (5.28)

for every ε > 0. Estimates (5.21), (5.22), (5.23), (5.27) and (5.28) now imply that

ψ ≤ p

{
− 1 +

1
2α1

‖Q‖∞ (2β3 + ‖∇V ‖∞) +
1
α1

(
β1 +

1
2
β2 +

√
N

2
‖∇Q‖2

∞

)
+

3
α1

(
1
4ε
‖Q‖2

∞ ‖∇Q‖2
∞ +

√
N

2
‖Q‖∞‖D2Q‖∞

)}
v1− 2

p

N∑
k=1

〈Q∇uk,∇uk〉

+ p
{
β3 +

1
2
‖Q‖∞‖∇V ‖∞ + (2− p)

(
1 +

1
ε

)(
2 +

1
2α2

1

‖Q‖∞ ‖∇Q‖2
∞

)}
v

+ p

(
1− p+ (2− p)ε+

cN
α2

1

ε

)
v1− 2

p

N∑
k=1

|Q 1
2D2ukQ

1
2 |2, (5.29)

for some positive constant cN , depending only on N . Since p > 1, we can choose ε > 0 such that in
the last term of (5.29) the factor in large brackets vanishes. Using once more the definition of v, we
arrive at (5.20). �

Using Proposition 5.6 we can now prove the second type of pointwise gradient estimates.

Proposition 5.7. Assume that Hypotheses 2.1 and 5.1(i) are satisfied and that F fulfills (2.34).
Then, there exist two constants Cp > 0 and ω̃p ∈ R such that

|(∇T (t)f)(x)|p ≤ C̃pe
ω̃ptt−

p
2 T̃ (t)(|f |p)(x) (5.30)

for all t > 0, x ∈ RN , f ∈ C∞c (RN ,RN ), and p ∈ ]1,+∞[ .

Proof. We first note that Hypothesis 5.1(ii) holds due to Remark 5.2. By rescaling, we can assume
that the constant λ in (5.12) is nonpositive. As in the proof of Proposition 5.6 it suffices to consider
the case p ∈ ]1, 2]. We fix δ, t > 0 and set

Ψ(s) = T̃ (s)
(
(|ϑnT (t− s)f |2 + δ)

p
2
)

:= T̃ (s)
(
(|ϑng(s)|2 + δ)

p
2
)
, s ∈ [0, t],

where ϑn(x) = ϑ(|x|/n) for all x ∈ RN , n ∈ N, and ϑ : R+ → R is a smooth decreasing function
with χ[0,1] ≤ ϑ ≤ χ[0,2]. The function (|ϑng(s)|2 + δ)

p
2 belongs to D(Ã) for each s ∈ [0, t], by virtue

of Theorem 5.3. A straightforward computation shows that

Ã
(
(|ϑng|2 + δ)

p
2

)
= p(|ϑng|2 + δ)

p
2−1ϑ2

n(Ãg · g) + p(|ϑng|2 + δ)
p
2−1ϑ2

n

N∑
k=1

〈Q∇gk,∇gk〉

+ p(|ϑng|2 + δ)
p
2−1|g|2〈Q∇ϑn,∇ϑn〉+ p(|ϑng|2 + δ)

p
2−1ϑn|g|2Ãϑn

+ 4p(|ϑng|2 + δ)
p
2−1ϑn

N∑
k=1

gk〈Q∇gk,∇ϑn〉
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+ p(p− 2)(|ϑng|2 + δ)
p
2−2ϑ2

n|g|4〈Q∇ϑn,∇ϑn〉

+ 2p(p− 2)(|ϑng|2 + δ)
p
2−2ϑ3

n|g|2
N∑

k=1

gk〈Q∇gk,∇ϑn〉

+ p(p− 2)(|ϑng|2 + δ)
p
2−2ϑ4

n

N∑
h,k=1

ghgk〈Q∇gh,∇gk〉

=: p(|ϑng|2 + δ)
p
2−1ϑ2

n(Ãg · g) + p(|ϑng|2 + δ)
p
2−1ϑ2

n

N∑
k=1

〈Q∇gk,∇gk〉

+ p(p− 2)(|ϑng|2 + δ)
p
2−2ϑ4

n

N∑
h,k=1

ghgk〈Q∇gh,∇gk〉+ pψn,

in [0, t]. Moreover,

Ds(|ϑnT (t− s)f |2 + δ)
p
2 ) = −p(|ϑng(s)|2 + δ)

p
2−1ϑ2

n(Ãg(s) · g(s))

− p(|ϑng(s)|2 + δ)
p
2−1ϑ2

n(V g(s) · g(s))

≥ −p(|ϑng(s)|2 + δ)
p
2−1ϑ2

n(Ãg(s) · g(s)),

for every s ∈ [0, t]. Therefore,

Ψ′(s) = T̃ (s)
(
Ã
(
(|ϑng(s)|2 + δ)

p
2

)
+Ds

(
(|ϑnT (t− s)f |2 + δ)

p
2

))
≥ pT̃ (s)

(
(|ϑng(s)|2 + δ)

p
2−1ϑ2

n

N∑
k=1

〈Q∇gk(s),∇gk(s)〉
)

+ p(p− 2)T̃ (s)
(

(|ϑng(s)|2 + δ)
p
2−2ϑ4

n

N∑
h,k=1

gh(s)gk(s)〈Q∇gh(s),∇gk(s)〉
)

+ pT̃ (s)(ψn(s)),

and, hence,

T̃ (t)
(
(|ϑnf |2 + δ)

p
2

)
− (|ϑnT (t)f |2 + δ)

p
2

≥ p

∫ t

0

T̃ (s)
(

(|ϑnT (t− s)f |2 + δ)
p
2−1ϑ2

n

N∑
k=1

〈Q∇(T (t− s)f)k,∇(T (t− s)f)k〉
)
ds

+ p(p− 2)
∫ t

0

T̃ (s)
( N∑

h,k=1

(T (t− s)f)h(T (t− s)f)k〈Q∇(T (t− s)f)h,∇(T (t− s)f)k〉

× (|ϑnT (t− s)f |2 + δ)
p
2−2ϑ4

n

)
ds+ p

∫ t

0

T̃ (s)ψn(s)ds, (5.31)

for any s ∈ [0, t]. Here and below, the integrals are meant in a pointwise sense. Thanks to (2.34),
we have F (x) · ∇ϑn(x) ≥ 2cϑ′(|x|/n) for x ∈ RN and n ∈ N. This shows that

hn(s) := T̃ (s)[(|ϑng(s)|2 + δ)
p
2−1ϑn|g(s)|2F · ∇ϑn]

≥ 2cT̃ (s)[(|ϑng(s)|2 + δ)
p
2−1ϑn|g(s)|2ϑ′(| · |/n)].

The function in square brackets on the right-hand side is uniformly bounded in n ∈ N, for (s, x) ∈
[0, t]×RN , and it tends to 0 uniform for (s, x) in compact sets as n→ +∞. So, Theorem 5.3 implies
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that

lim inf
n→+∞

∫ t

0

hn(s) ds ≥ 0.

The other terms in ψn even converge to 0 uniformly in [0, t]×RN as n→ +∞. Moreover, the function
(|ϑnf |2 +δ)p/2 and the other terms in the large brackets in the right-hand side of (5.31) are bounded
in [0, t]×RN and converge uniformly in [0, t]×K, for each compact set K ⊂ RN . Proposition 5.5(i)
thus allows us to let n → +∞ in (5.31). Further, using Cauchy-Schwarz inequality and (2.3), we
finally obtain

T̃ (t)
(
(|f |2 + δ)

p
2

)
− (|T (t)f |2 + δ)

p
2

≥ p

∫ t

0

T̃ (s)
(

(|T (t− s)f |2 + δ)
p
2−1

N∑
k=1

〈Q∇(T (t− s)f)k,∇(T (t− s)f)k〉
)
ds

+ p(p− 2)
∫ t

0

T̃ (s)
( N∑

h,k=1

(T (t− s)f)h(T (t− s)f)k〈Q∇(T (t− s)f)h,∇(T (t− s)f)k〉

× (|T (t− s)f |2 + δ)
p
2−2

)
ds

≥ p(p− 1)
∫ t

0

T̃ (s)
(

(|T (t− s)f |2 + δ)
p
2−1

N∑
k=1

〈Q∇(T (t− s)f)k,∇(T (t− s)f)k〉
)
ds

≥ p(p− 1)α1

∫ t

0

T̃ (s)
(
(|T (t− s)f |2 + δ)

p
2−1|∇T (t− s)f |2

)
ds. (5.32)

Applying Propositions 5.5(iii) and 5.6 and observing that (1+ t)q ≤ 1+ tq for all t ≥ 0 and q ∈ [0, 1],
we deduce

|∇T (t)f |p = |∇T (s)T (t− s)f |p

≤ Cpe
ωpsT̃ (s)(|∇T (t− s)f |p) + Cpe

ωpsT̃ (s)(|T (t− s)f |p)

= Cpe
ωpsT̃ (s)

(
|∇T (t− s)f |p (|T (t− s)f |2 + δ)−β (|T (t− s)f |2 + δ)β

)
+ Cpe

ωpsT̃ (s)(|T (t− s)f |p)

≤ Cpe
ωps
[
T̃ (s)

(
|∇T (t− s)f |2 (|T (t− s)f |2 + δ)−

2β
p

)] p
2

×
[
T̃ (s)

(
(|T (t− s)f |2 + δ)

2β
2−p

)]1− p
2

+ Cpe
ωpsT̃ (s)(|T (t− s)f |p),

for all β ∈ R and s ∈ [0, t[. We now choose β = p(2−p)/4 and use Proposition 5.5(iii) and (iv) (with
λ = 0) and Young’s inequality, arriving at

|∇T (t)f |p ≤ Cpe
ωps
[
T̃ (s)

(
|∇T (t− s)f |2 (|T (t− s)f |2 + δ)

p
2−1
)] p

2

×
[
T̃ (s)

(
(|T (t− s)f |2 + δ)

p
2

)]1− p
2

+ Cpe
ωpsT̃ (t)(|f |p)

≤ Cpe
ωps

{
p

2
ε

2
p T̃ (s)

(
|∇T (t− s)f |2 (|T (t− s)f |2 + δ)

p
2−1
)

+
(
1− p

2

)
ε

2
p−2 T̃ (s)

(
(|T (t− s)f |2 + δ)

p
2

)}
+ Cpe

ωpsT̃ (t)(|f |p),
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for each ε > 0. After multiplying by e−ωps, we integrate this inequality from 0 to t. Using also
(5.32), we estimate

(1− e−ωpt)
ωp

|∇T (t)f |p ≤ p

2
ε

2
pCp

∫ t

0

T̃ (s)
(
|∇T (t− s)f |2 (|T (t− s)f |2 + δ)

p
2−1
)
ds

+ Cp

(
1− p

2

)
ε

2
p−2

∫ t

0

T̃ (s)
(
(|T (t− s)f |2 + δ)

p
2

)
ds+ CptT̃ (t)(|f |p)

≤ ε
2
p

Cp

2α1(p− 1)
T̃ (t)

(
(|f |2 + δ)

p
2

)
+ CptT̃ (t)(|f |p)

+ Cp

(
1− p

2

)
ε

2
p−2

∫ t

0

T̃ (s)
(
(|T (t− s)f |2 + δ)

p
2

)
ds.

In the limit δ → 0+, this inequality yields

|∇T (t)f |p ≤ ωpCp

(1− e−ωpt)

{(
ε

2
p

2α1(p− 1)
+ t

)
T̃ (t)(|f |p) +

(
1− p

2

)
ε

2
p−2

∫ t

0

T̃ (s)(|T (t− s)f |p)ds

}
,

for all t > 0. Taking in account Proposition 5.5(iv) (with λ = 0), we conclude that

|∇T (t)f |p ≤ ωpCp

1− e−ωpt

{
ε

2
p

2α1(p− 1)
+
[(

1− p

2

)
ε

2
p−2 + 1

]
t

}
T̃ (t)(|f |p), t > 0.

The optimal choice ε = {α1p(p− 1)t}
p(2−p)

4 yields

|∇T (t)f |p ≤ ωpCp

1− e−ωpt

{
1

(α1p(p− 1))
p
2
t1−

p
2 + t

}
T̃ (t)(|f |p), t > 0.

This inequality implies the assertion. �

We can now prove the main result of this section.

Theorem 5.8. Assume that Hypotheses 2.1 and 5.1(i) are satisfied and that F fulfills (2.34). Let
0 ≤ α ≤ β ≤ 1 and 1 < p < +∞. Then, the function T (t)f belongs to W 1,p(RN ,RN ) for every
f ∈ Lp(RN ) and t > 0, and there exist two constants Mp > 0 and ω̂p ∈ R such that

‖T (t)f‖β,p ≤Mpt
− (β−α)p

2 eω̂pt‖f‖α,p, t > 0, f ∈Wα,p(RN ,RN ). (5.33)

Proof. Integrating (5.18) and (5.30) in RN , we obtain∫
RN

|∇T (t)f |pdx ≤ Cpe
ωpt

∫
RN

T̃ (t)
(
(|f |2 + |∇f |2)

p
2
)
dx

≤ Cp max{2
p
2−1, 1}e(ωp+σ1)t

∫
RN

(|f |p + |∇f |p)dx, (5.34)∫
RN

|∇T (t)f |pdx ≤ C̃pe
ω̃ptt−

p
2

∫
RN

T̃ (t)(|f |p)dx ≤ C̃pe
(ω̃p+σ1)tt−

p
2

∫
RN

|f |pdx, (5.35)

for all t > 0, p ∈ ]1,+∞[ and f ∈ C∞c (RN ,RN ). By density, (5.34), resp. (5.35), can be extended to
every f ∈W 1,p(RN ,RN ), resp. f ∈ Lp(RN ,RN ), so that (5.33) holds for α = 1, 0 and β = 1 (taking
also into account (2.28)). We recall that W θ,p(RN ,RN ) is isomorphic to the real interpolation
space of order θ ∈ (0, 1) and exponent p ∈ ]1,+∞[ , between Lp(RN ,RN ) and W 1,p(RN ,RN ), cf.
[25, (2.4.2.16)]. The assertion now follows from (2.28), (5.34), and (5.35) by means of standard
interpolation arguments. �



26 M. HIEBER, L. LORENZI, J. PRÜSS, A. RHANDI, AND R. SCHNAUBELT

References

[1] S. Agmon: The Lp approach to the Dirichlet problem, Ann. Scuola Norm. Sup. Pisa III-13 (1960), 405-448.
[2] M. Bertoldi, L. Lorenzi: Estimates of the derivatives for parabolic operators with unbounded coefficients, Trans.

Amer. Math. Soc. 357 (2005), pp. 2627-2664.
[3] M. Bertoldi, L. Lorenzi: Analytical Methods for Markov Semigroups, Pure and Applied Mathematics 283, Chap-

man Hall/CRC Press (2006).
[4] G. Cupini, S. Fornaro: Maximal regularity in Lp(RN ) for a class of elliptic operators with unbounded coefficients,

Differential Integral Equations 17 (2004), pp. 259-296.
[5] G. Da Prato, V. Vespri: Maximal Lp regularity for elliptic equations with unbounded coefficients. Nonlinear

Analysis 49 (2002), pp. 747-755.
[6] E.B. Davies: Heat Kernels and Spectral Theory, Cambridge Univ. Press (1989).
[7] K.J. Engel, R. Nagel: One-Parameter Semigroups for Linear Evolution Equations, Graduate Text in Mathematics

194, Springer-Verlag, New York (2000).
[8] S. Fornaro, L. Lorenzi: Generation results for elliptic operators with unbounded diffusion coefficients in Lp- and

Cb-spaces, Discr. Cont. Dyn. Syst. Series A, to appear.
[9] F. Gozzi, R. Monte, V. Vespri: Generation of analytic semigroups and domain characterization for degenerate

elliptic operators with unbounded coefficients arising in financial mathematics. I, Differential Integral Equations
15 (2002), pp. 1085-1128.

[10] M. Haase: A transference principle for general groups and fuctional calculus on UMD spaces, preprint.
[11] M. Hieber, L. Lorenzi, A. Rhandi: Uniform and Lp estimates of the derivatives for parabolic operators with

unbounded coefficients in exterior domains, preprint 425 Dipartimento di Matematica, Università di Parma,
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