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Abstract. Let Ω ⊂ Rn be a bounded Lipschitz domain with a cone-like corner at
0 ∈ ∂Ω. We prove existence of at least two positive unbounded very weak solutions
of the problem −∆u = up in Ω, u = 0 on ∂Ω, which have a singularity at 0, for any
p slightly bigger that the generalized Brezis-Turner exponent p∗. On an example of a
planar polygonal domain the actual size of the p-interval on which the existence result
holds is computed. The solutions are found variationally as perturbations of explicitly
constructed singular solutions in cones. This approach also makes it possible to find
numerical approximations of the two very weak solutions on Ω following a gradient
flow of a suitable functional and using the mountain-pass algorithm. Two-dimensional
examples are presented.

1. Introduction and main result

In this paper we prove existence of positive, unbounded very weak solutions of the
boundary value problem

(1) −∆u = up in Ω, u = 0 on ∂Ω,

where Ω is a bounded Lipschitz domain in Rn, n ≥ 2, with a cone-like corner. To describe
our main result let us assume for the moment that Ω is smooth except for one corner,
where it locally coincides with a cone of cross-section ω ⊂ Sn−1. Such domains will be in
the class of domains with a conical boundary piece, cf. Definition 7 below. Let (λ̃1, ψ̃1)
be the first Dirichlet eigenvalue, Dirichlet eigenfunction of the Laplace-Beltrami operator
−∆B on ω and define the exponent

(2) p∗ =
n+ γ∗

n+ γ∗ − 2
where γ∗ =

2− n
2

+

√(n− 2

2

)2

+ λ̃1.

Note that p∗ depends on ω. Now we can state our main result.

Theorem 1. Let Ω ⊂ Rn be a bounded Lipschitz domain with a conical boundary piece
of cross section ω ⊂ Sn−1 at 0 ∈ ∂Ω. Then there is ε > 0 such that for p ∈ (p∗, p∗ + ε)
there exist at least two positive, unbounded, very weak solutions of (1) blowing up at 0.

The concept of a very weak solution of (1) goes back to Stampacchia [18]. It is a special
kind of distributional solution. The precise definition is given below in Definition 3 and
Definition 4.

The exponent p∗ is called generalized Brezis-Turner exponent, cf. [11]. The original
Brezis-Turner exponent pBT = n+1

n−1
appeared in the work of Brezis, Turner [4] on uniform

a-priori bounds for H1
0 -solutions of boundary value problems similar to (1) on smooth

domains. Recently, Quittner and Souplet [16] explained the precise role of pBT . For
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smooth domains they showed that pBT governs uniform a-priori bounds and regularity
for problems of the type

(3) −∆u = f(x, u) in Ω, u = 0 on ∂Ω,

where f : Ω× R→ R is a Carathéodory-function. Let us point out two of their results.

(i) If |f(x, s)| ≤ C(1 + |s|p) with a constant C > 0 and 1 < p < p∗ then every very
weak solution of (1) is bounded and therefore classical.

(ii) If additionally f(x, s) ≥ −C + λs for some C > 0 and λ > λ1 (the first Dirichlet
eigenvalue of −∆ on Ω) then there is a uniform L∞-bound for every positive
solution of (3).

These results were recently generalized to domains with conical boundary pieces by
McKenna, Reichel [11]. Instead of the Brezis-Turner exponent pBT = n+1

n−1
it was shown

that the statements (i), (ii) above are true provided 1 < p < p∗ with p∗ being the gener-
alized Brezis-Turner exponent of (2). Unlike pBT the generalized Brezis-Turner exponent
p∗ depends on the geometry of ∂Ω and is determined by the conical corner with smallest
cross-section ω ⊂ Sn−1, where smallness is measured by λ̃1 being large. Note that for
locally flat boundary pieces γ∗ = 1 and thus the exponents p∗ = n+1

n−1
= pBT all coincide.

A second major result in the understanding of very weak solutions was achieved by
Souplet [17]. For a given smooth domain and for p > pBT he constructed a nonlinearity
f(x, s) = a(x)sp with 0 ≤ a ∈ L∞(Ω) and a corresponding positive, very weak, but
unbounded solution of (3). This showed that the Brezis-Turner exponent pBT is truly a
critical exponent. In the recent paper of McKenna and Reichel [11] the corresponding
result for domains with conical boundary pieces was proved which shows that also the
generalized Brezis-Turner exponent p∗ is a truly critical exponent.

Until recently, one of the open questions that remained unsolved, was whether positive,
unbounded very weak solutions for the constant coefficient problem (1) do exist. A first
result in this direction on smooth domains has recently been proved by del Pino, Musso,
Pacard [9]. They showed the existence of ε > 0 such that for p ∈ [pBT , pBT + ε) an
unbounded, positive, very weak solution of (1) exists which blows up at a prescribed
point of ∂Ω. Their method is based on a fixed point argument which also allows the
construction of solutions blowing up on k-dimensional subsets of ∂Ω with 0 ≤ k ≤ n− 2.

In this paper we follow a different approach, which has e.g. in the two dimensional
case the advantage of being constructive in the following sense: for a given planar polyg-
onal domain we can give an actual value ε > 0 for which Theorem 1 holds, cf. Table 1
and moreover we can find numerical approximations for the solutions predicted by Theo-
rem 1. The solutions of Theorem 1 are found variationally as perturbations of explicitly
constructed singular solutions in cones. They are of the form u = w + h + z, where w
is the explicitly constructed singular solution in an infinite cone, h a harmonic function
with boundary values −w except at the singularity and z is found variationally as a local
minimizer and as a mountain pass of a suitable functional on H1

0 (Ω). This approach is
then also used for the second major result of this paper: finding numerical approxima-
tions for the solutions of Theorem 1 in the two dimensional case. This is achieved in a
finite element setting by following the analytical ansatz and by finding critical points z
of a suitable functional via steepest decent method and the mountain pass algorithm.

We note that the idea of perturbing an explicitly known singular solution appears
already in Pacard’s work [14]; see also Bidaut-Véron, Ponce, Véron [2] for an explicit
construction of singular half-space solutions. In a recent paper [15] Quittner and Reichel
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used a very similar variational approach for the construction of unbounded very weak
solutions of a problem with nonlinear Neumann boundary conditions.

Finally let us point out an outstanding open problem: the existence of unbounded very
weak solutions of (1) for all exponents above the critical is open both in case of smooth
domains and domains with conical corners. Our numerical results in Section 7 indicate
for the two dimensional case that in practice the actual value of ε is considerably bigger
than the value predicted in Table 1. However, as p increases further from p∗ substantial
numerical difficulties arise. Thus, for large p it remains unsolved both to prove existence
of unbounded very weak solutions of (1) and to find their numerical approximations.

The paper is organized as follows. In Section 2 we give the exact definition of very weak
solutions and we also provide some background information on the asymptotic behavior
of solutions to linear problems near conical corners. In Section 3 the construction of
singular solutions to (1) on infinite cones is carried out. A further ingredient, on which
our main theorem is based, are Hardy and Hardy-Sobolev inequalities with singularity on
the boundary, cf. Lemma 12. They are proved in Section 4. The proof of Theorem 1 is
given in detail in Section 5. In Section 6 we consider the case n = 2 and we give a lower
bound for the actual value ε from our main theorem. Finally, in Section 7 the analytical
results are accompanied by a numerical method, which is suitable to find numerical
approximations for unbounded, very weak solutions of (1).

2. Definitions and background material

Let δ(x) := min{|x−y|, y ∈ ∂Ω} be the distance function to ∂Ω and set D = supx∈Ω |x|.
We denote by (λ1, φ1) the first Dirichlet eigenvalue, Dirichlet eigenfunction of the operator
−∆ on Ω and we assume φ1(x) > 0 in Ω.

Definition 2. For a given domain Ω ⊂ Rn let m : Ω → [0,∞] be measurable and
1 ≤ p < ∞. Let Lpm(Ω) = {v : Ω → R measurable :

∫
Ω
|v|pmdx < ∞} with the norm

‖v‖p,m =
( ∫

Ω
|v|pmdx

)1/p

.

Brezis et al. [3] have given the following definition for very weak solutions on smooth
domains of the linear problem

(4) −∆u = f in Ω, u = 0 on ∂Ω.

Definition 3. Let Ω be a bounded C2,α-domain. A function u : Ω → R̄ is called a very
weak solution of (4) if u ∈ L1(Ω), f ∈ L1

δ(Ω) and

−
∫

Ω

u∆ψ dx =

∫
Ω

fψ dx ∀ψ ∈ C2(Ω) with ψ|∂Ω = 0.

For Lipschitz domains there are various reasons why the above definition needs to be
modified, cf. [11] Section 6. The following extension of Definition 3, which is in particular
suitable for Lipschitz domains, was given in [11]. For C2,α-domains both definitions are
equivalent.

Definition 4. Let Ω be a bounded Lipschitz domain. A function u : Ω → R̄ is called a
very weak solution of (4) if u, f ∈ L1

φ1
(Ω) and∫

Ω

uη dx =

∫
Ω

f(−∆)−1η dx
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for all measurable functions η : Ω → R with ‖η/φ1‖∞ < ∞. Here (−∆)−1 : L2(Ω) →
W 1,2

0 (Ω).

Remark. Note that |η| ≤ const. φ1 implies that |(−∆)−1η| ≤ const. φ1 by the maximum
principle. Hence

∫
Ω
f(−∆)−1η dx is well defined because f ∈ L1

φ1
(Ω). Both definitions

include what is meant by a very weak solution of (1) on the corresponding smooth and
Lipschitz domains. Note also that a weak H1

0 (Ω) solution of (1) is also automatically a
very weak solution provided 1 ≤ p ≤ n+2

n−2
.

Remark. Nonnegative very weak solutions of (1) are defined by replacing f in the above
definitions by up.

Lemma 5 (Maximum principle). Let Ω be a bounded Lipschitz domain and let g ∈ L1
φ1

(Ω)

with g ≥ 0 a.e. in Ω. Suppose v ∈ L1
φ1

(Ω) is a very weak solution of −∆v = g in Ω with
v = 0 on ∂Ω. Then v ≥ 0 a.e. in Ω.

Proof. The conclusion follows from
∫

Ω
vη dx ≥ 0 for all non-negative η with η/φ1 ∈

L∞(Ω). Hence v ≥ 0 a.e. in Ω. �

Definition 6 (Cone, conical piece). For x ∈ Rn let (r, θ) ∈ [0,∞)×Sn−1 be the spherical-
coordinates of x abbreviated by x = (r, θ). Given an open Lipschitz cross section ω ⊂ Sn−1

let
Cω =

⋃
r>0

rω = {x = (r, θ) : r > 0, θ ∈ ω}

be the corresponding infinite cone. The set

CR
ω = Cω ∩BR(0)

is called a conical piece with cross-section ω and radius R.

Definition 7. A bounded Lipschitz domain Ω ⊂ Cω is called a domain with a conical
boundary piece if there exists a conical piece CR

ω such that Ω ∩BR(0) = CR
ω .

Lemma 8. Let CR
ω be a conical piece and let (ψ̃i)i∈N be an L2(ω)-complete orthonormal

set of Dirichlet eigenfunctions of −∆B on ω with corresponding eigenvalues λ̃i. Define

βi =
√

(n−2
2

)2 + λ̃i and γi = 2−n
2

+ βi. Let v ∈ C2(CR
ω ) ∩ C(C

R

ω ) solve −∆v = λv in

CR
ω with v = 0 on ∂CR

ω ∩ ∂Cω and assume that λ ≥ 0. If g(θ) := v(R, θ) 6≡ 0 then the
series-expansion

(5) v(x) =



(
|x|
R

) 2−n
2
∞∑
i=1

(g, ψ̃i)L2

Jβi
(
√
λ|x|)

Jβi
(
√
λR)

ψ̃i(θ) if λ > 0,

∞∑
i=1

(
|x|
R

)γi

(g, ψ̃i)L2ψ̃i(θ) if λ = 0

converges uniformly for |x| ≤ R′ < R. Hence v(x) = (g, ψ̃1)L2( |x|
R

)γ1ψ̃1(θ)(1 + o(1)) as
x→ 0.

Proof. We provide the proof for λ > 0; the case λ = 0 is a simple adaptation of the
following argument. Note first that r

2−n
2 Jβi

(
√
λr)ψ̃i(θ) with r = |x| solves the equation

−∆v = λv in CR
ω with v = 0 on ∂CR

ω ∩ ∂Cω. Hence (5) is the correct L2-convergent
expansion of v. Recall that

Jν(y) =
(y

2

)ν ∞∑
k=0

(−1)k

k!Γ(ν + k + 1)

(y
2

)2k

.
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Hence
Jβi

(
√
λ|x|)

Jβi
(
√
λR)

(
R

|x|

)βi

→ 1 as i→∞

uniformly with respect to x ∈ Rn. Furthermore, standard regularity (Moser iteration)

implies that ‖ψ̃i‖∞ ≤ Cλ̃i‖ψ̃i‖H1(ω) = Cλ̃
3/2
i ‖ψ̃i‖L2(ω) = Cλ̃

3/2
i . Therefore the series in

(5) is dominated by ‖g‖L2(ω)

∑∞
i=1( |x|

R
)
√
λ̃iλ̃

3/2
i . Weyl’s asymptotic formula, cf. Davies [7]

Theorem 6.3.1, states that C1i
2

n−1 ≤ λ̃i ≤ C2i
2

n−1 for some constants 0 < C1 < C2. In
particular, the multiplicity of the i-th eigenvalue is at most C3i, with C3 = (C2

C1
)

n−1
2 − 1.

Hence, the convergence behavior of the series is the same as
∑∞

i=1( |x|
R

)i
1

n−1
i

n+2
n−1 which

converges uniformly for |x| ≤ R′ < R. �

3. Singular solutions on infinite cones

In this section we shall construct a singular solution to the problem

(6) −∆w = wp in Cω, w = 0 on ∂Cω \ {0}
in the infinite cone Cω with cross-section ω ⊂ Sn−1 for p > p∗ given by (2). The idea
for the construction of a singular solution of (6) is to look for a function of the form
w = |x|αφ(θ) with α = −2

p−1
. The above ansatz leads to the following equation for φ

−∆Bφ− α(α + n− 2)φ = φp in ω, φ = 0 on ∂ω.

Lemma 9. Let 1 < p < ∞ if n = 2, 3, 1 < p < n+1
n−3

if n ≥ 4 and λ < λ̃1. Then the
boundary value problem

−∆Bφ− λφ = φp in ω, φ = 0 on ∂ω

has a positive solution φ ∈ H1
0 (ω) ∩ L∞(ω) with

φ =

(
λ̃1 − λ
cp

) 1
p−1

(ψ̃1 + o(1)),

as λ↗ λ̃1. Here cp =
∫
ω
ψ̃p+1

1 dθ and the expansion holds with respect to the H1
0 (ω)-norm.

Proof. Existence for λ < λ̃1 may be obtained via the mountain pass theorem. The
expansion for λ near λ̃1 follows from the standard theory of bifurcation from a simple
eigenvalue. �

Theorem 10. Let p∗ < p < ∞ if n = 2, 3, p∗ < p < n+1
n−3

if n ≥ 4. Then (6) has a

singular positive solution w(r, θ) = r−
2

p−1φ(θ) such that ‖φ‖∞ → 0 as p↘ p∗.

Proof. The statement is a consequence of Lemma 9 and the fact that for a subcritical
problem on ω the L∞(ω)-norm of φ is controlled by the H1

0 (ω)-norm through the standard
bootstrap scheme. �

Lemma 11. Let p∗ < p < ∞ if n = 2, 3, p∗ < p < n+1
n−3

if n ≥ 4 and let Ω ⊂ Rn be a
bounded Lipschitz domain with a conical boundary piece. If w(r, θ) is the solution from
Theorem 10 then wp ∈ L1

φ1
(Ω). Moreover, if h is a bounded harmonic function in Ω with

h = 0 on ∂Ω ∩Bρ(0) then wph ∈ L1(Ω).

Proof. The statement follows from Lemma 8, the estimate w(x)p|h(x)| ≤ const. |x|
−2p
p−1

+γ∗

and −2p
p−1

+ n− 1 + γ∗ > −1. �
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4. Hardy’s inequality

The standard Hardy inequality states that
∫

Ω
u2

|x|2 dx ≤
4

(n−2)2

∫
Ω
|∇u|2 dx for all u ∈

H1
0 (Ω), cf. Opic, Kufner [12]. For space-dimension n = 2 the inequality is trivial because

the right-hand side is infinite. However, if Ω is a domain with a conical corner at 0 ∈ ∂Ω
then the following lemma provides an improvement of the classical Hardy inequality.

Lemma 12. Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain with a conical boundary
piece at 0 ∈ ∂Ω with cross-section ω ⊂ Sn−1. Then∫

Ω

u2

|x|2
dx ≤ CH

∫
Ω

|∇u|2 dx for all u ∈ H1
0 (Ω)

with

CH =

(
(n− 2)2

4
+ λ̃1

)−1

.

Proof. By an approximation argument we may assume u ∈ C∞0 (Ω). The following identity
is the basis of the proof:

(7) 0 =

∮
∂Ω

u2ξ · ν dσ =

∫
Ω

(u2 div ξ + 2u∇u · ξ) dx ≤
∫

Ω

(
u2(div ξ + |ξ|2) + |∇u|2

)
dx

for u ∈ C∞0 (Ω) and a vector-field ξ such that ξ ∈ L2
loc(Ω) ∩W 1,1

loc (Ω). Similar identities
have been used by Barbatis, Filippas and Tertikas [1] for the proof of various other Hardy
inequalities. In our case the choice of the vector-field ξ is done as follows. Recall from
Definition 7 that Ω is contained in the cone Cω. For points x = (r, θ) in the cone Cω
define ψ(r, θ) = r

2−n
2 ψ̃1(θ). Then ψ satisfies

−∆ψ =
λ̃1 + (n−2)2

4

|x|2
ψ in Cω.

We set ξ = ∇ψ/ψ so that

div ξ + |ξ|2 =
∆ψ

ψ
= −

λ̃1 + (n−2)2

4

|x|2
.

Inserting this into (7) we obtain the result. �

For s ≥ 0 and 1 ≤ q <∞ let Lq|x|−s(Ω) be the weighted Lq-space with weight m = |x|−s
as introduced in Definition 2.

Corollary 13 (Hardy-Sobolev inequality). Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz
domain with a conical boundary piece at 0 ∈ ∂Ω. Let 0 ≤ s < n and suppose 0 < q <
2(n−s)
n−2

if n ≥ 3 and 0 < q <∞ if n = 2. Then there exists a constant C > 0 such that(∫
Ω

|u|q

|x|s
dx

)2/q

≤ C

∫
Ω

|∇u|2 dx for all u ∈ H1
0 (Ω).

If s ≤ 2 and n ≥ 3 the inequality also holds for q = 2(n−s)
n−2

. If additionally 1 ≤ q < ∞ if

n = 2 or 1 ≤ q < 2(n−s)
n−2

if n ≥ 3 then the embedding H1
0 (Ω)→ Lq|x|−s(Ω) is compact.

Proof. Suppose n ≥ 3. Let 0 ≤ s ≤ q and notice that our assumptions on q imply s ≤ 2
in this case. We use the splitting

|u|q

|x|s
=
|u|s

|x|s
· |u|q−s
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together with a Hölder-inequality and obtain

(8)

∫
Ω

|u|q

|x|s
dx ≤

(∫
Ω

u2

|x|2
dx
)s/2(∫

Ω

|u|
2(q−s)

2−s dx
)(2−s)/2

.

By the assumption on q we have 2(q−s)
2−s ≤

2n
n−2

. Hence the first term is estimated by the
Hardy inequality of Lemma 12 and the second term by the Sobolev embedding theorem.

Now assume q < s < n. In this case the assumptions on q imply 0 < q < 2. Therefore
we can use the splitting

|u|q

|x|s
=
|u|q

|x|q
· 1

|x|s−q
and Hölder’s inequality to find

(9)

∫
Ω

|u|q

|x|s
dx ≤

(∫
Ω

u2

|x|2
dx
)q/2(∫

Ω

1

|x|
2s−2q
2−q

dx
)1−q/2

.

The first term in (9) can be estimated by the Hardy inequality of Lemma 12. The
assumption on q implies 2s−2q

2−q < n and therefore the second integral is convergent. In

both cases the dimension n = 2 poses no further restriction.

The proof of the compactness of the embedding is standard. It follows the pattern of
the above proof and builds on the compactness of Sobolev embedding in the subcritical
cases. �

5. Proof of Theorem 1

The goal of this section is to prove Theorem 1, i.e., the existence of unbounded very
weak solutions of (1). Note that any very weak solution u of

(10) −∆u = up+ in Ω, u = 0 on ∂Ω.

satisfies by Lemma 5 automatically u ≥ 0 and is thus a very weak solution of (1). Here
u+(x) = max{u(x), 0} for x ∈ Ω.

Since Ω is a domain with a conical boundary piece there exists a cone Cω and a radius
ρ > 0 such that Ω∩Bρ(0) = Cω ∩Bρ(0). The proof of Theorem 1 is done variationally by
perturbing the explicitly known singular solution in the cone Cω. A similar idea already
appears in Pacard’s work [14] and was used in a recent paper of Quittner, Reichel [15].
Let w be the singular solution in the cone Cω obtained in Theorem 10. Let h be a
harmonic function satisfying

(11) −∆h = 0 in Ω, h = 0 on ∂Ω ∩Bρ(0), h = −w on ∂Ω \Bρ(0).

Our solution ansatz for (10) is u = w + h + z with z ∈ H1
0 (Ω). For u to be a positive

very weak solution of (10) we need to solve

(12) −∆z = (w + h+ z)p+ − wp in Ω, z = 0 on ∂Ω.

Such solutions can be found as critical points of the functional

J [z] =

∫
Ω

1

2
|∇z|2 −G(x, z) dx

where

G(x, s) =
(w(x) + h(x) + s)p+1

+

p+ 1
− w(x)ps− (w(x) + h(x))p+1

p+ 1
for (x, s) ∈ Ω× R.

Clearly, J [tz]→ −∞ if t→∞ and if 0 < z ∈ H1
0 (Ω). One of the solutions of Theorem 1

will be a local minimizer and the other will be a mountain pass point of the functional J .
7



The remaining structural prerequisites needed for existence of these two critical points
are given in Lemma 16 (Frechét differentiability, weak sequential lower semi-continuity
and Palais-Smale condition) and Lemma 17 (existence of a local minimizer).

We begin by stating some elementary properties of the harmonic function h.

Lemma 14. The function w+h is a nonnegative very weak solution of −∆(w+h) = wp

in Ω, w + h = 0 on ∂Ω. Moreover we have the estimate

0 ≤ −h(x) ≤ φ(θ)|x|κρ−
2

p−1
−κ in Ω

where

κ =
2− n

2
+

√(
n− 2

2

)2

− 2

p− 1

(
n− 2− 2

p− 1

)
and κ > 0 provided n

n−2
> p > p∗.

Proof. By Lemma 5 one has w+h ≥ 0 a.e. in Ω. This implies the estimate 0 ≤ −h(x) ≤
φ(θ)ρ

−2
p−1 on the set ∂Bρ(0) ∩ Ω. Moreover, the function K(x) := φ(θ)|x|κ satisfies

−∆K =
(
(−κ(κ+ n− 2) + λ)φ+ φp

)
|x|κ−2 in Cω.

By the above choice κ is the larger of the two roots of the equation κ(κ + n− 2) = λ =
−2
p−1

( −2
p−1

+ n − 2
)
. Hence K is superharmonic and therefore φ(θ)|x|κρ

−2
p−1
−κ is an upper

bound on −h in Ω as claimed. �

The next lemma provides some basic estimates for G(x, s) and the function H(x, s) :=
G(x, s)− p

2
w(x)p−1s2.

Lemma 15. Let p > 1 and 2 < q < p+ 1. There exists a constant M > 0 such that the
following estimates hold for all (x, s) ∈ Ω× R:

−pw(x)p−1|h(x)||s| ≤ G(x, s) ≤ 2p−1p
( |s|p+1

p+ 1
+
w(x)p−1s2

2

)
+ pw(x)p−1|h(x)||s|,(13)

qG(x, s)− ∂G

∂s
(x, s)s ≤Mw(x)p−1s2 + (q − 1)pw(x)p−1|h(x)||s|.(14)

The constant M in (14) may be chosen as follows

(15) M =


p

2
(q − 1) if 1 < p ≤ 2,

p

2
(p− 1)

(
p− 1

p+ 1− q

)p−2

if p ≥ 2.

Moreover, if 1 < p ≤ 2 then

(16) |H(x, s)| ≤ 1

p+ 1
|s|p+1 + 2p+1|h(x)|w(x)p + 2p|h(x)||s|p

and if p > 2 then

(17) |H(x, s)| ≤ 2p−2(p− 1)p
( |s|p+1

p(p+ 1)
+
w(x)p−2|s|3

6

)
+ 2p+1|h(x)|w(x)p + 2p|h(x)||s|p

8



Proof. For the proof of (13) let first

g(x, s) =
(w(x) + h(x) + s)p+1

+

p+ 1
− (w(x) + h(x))ps− (w(x) + h(x))p+1

p+ 1
(18)

=

∫ s

0

(
(w(x) + h(x) + t)p+ − (w(x) + h(x))p

)
dt.

By convexity g(x, s) ≥ 0 for all s ∈ R. And since

(19) (w+h+ t)p+−(w+h)p
{ ≤ p(w + h+ t)p−1t ≤ 2p−1p(tp + (w + h)p−1t) if t ≥ 0,

≥ p(w + h)p−1t if t ≤ 0

we obtain from (18), (19) that

(20) 0 ≤ g(x, s) ≤ 2p−1p
( |s|p+1

p+ 1
+

(w(x) + h(x))p−1s2

2

)
.

Note that G(x, s) = g(x, s)+((w(x)+h(x))p−w(x)p)s and 0 ≥ (w(x)+h(x))p−w(x)p ≥
pw(x)p−1h(x) due to the negativity of h. Hence we obtain from (20) the desired inequality
(13).

To prove (14) we proceed by showing the existence of a suitably large constant M .
The choice of M given in (15) will be explained in Lemma 20 in the Appendix. First we
claim that there exists M > 0 such that

(21) qg(x, s)− ∂g

∂s
(x, s)s ≤M(w(x) + h(x))p−1s2 ≤Mw(x)p−1s2

where g is defined in (18). By homogeneity, the first inequality in (21) amounts to

(22)
q

p+ 1

((1 + t)p+1
+ − 1− (p+ 1)t

t2

)
≤ (1 + t)p+ − 1− pt

t
+M + p. ∀t ∈ R \ {0}.

The last relation holds as t → +∞ and, provided M > 0, also for t → −∞. Moreover
it holds as t → 0 provided M > pq/2− p. Hence, by choosing M sufficiently large, (22)
holds for all t ∈ R. Recall that G(x, s) = g(x, s) + ((w(x) + h(x))p − w(x)p)s. Hence

qG(x, s)− ∂G

∂s
(x, s)s =qg(x, s)− ∂g

∂s
(x, s)s+ (q − 1)

(
(w(x) + h(x))p − w(x)p

)
s

≤qg(x, s)− ∂g

∂s
(x, s)s+ (q − 1)pw(x)p−1|h(x)||s|

and (14) follows from (21).

The estimate for H is based on the splitting H(x, s) = k1(x, s) + k2(x, s) where

k1(x, s) =
(w(x) + s)p+1

+ − w(x)p+1

p+ 1
− w(x)ps− p

2
w(x)p−1s2,

k2(x, s) =
(w(x) + h(x) + s)p+1

+ − (w(x) + s)p+1
+

p+ 1
+
w(x)p+1 − (w(x) + h(x))p+1

p+ 1
.

First we observe that

k1(x, s) = p

∫ |s|
0

∫ t

0

(
(w(x) + τ sign s)p−1

+ − w(x)p−1
)
dτ dt.

If 1 < p ≤ 2 then clearly |k1(x, s)| ≤
∫ |s|

0

∫ t
0
pτ p−1 dτ dt = 1

p+1
|s|p+1. If p > 2 then using

(19) with p replaced by p− 1 we get

|k1(x, s)| ≤ p(p− 1)2p−2

∫ |s|
0

(
tp

p
+
w(x)p−2t2

2

)
dt.

9



Both estimates for k1(x, s) lead to the first terms in (16), (17). It remains to estimate
k2(x, s). This is done due to

(w(x) + h(x) + s)p+1
+ − (w(x) + s)p+1

+

{ ≤ 0,

≥ (p+ 1)(w(x) + s)p+h(x)

for all (x, s) ∈ Ω× R and hence

|(w(x) + h(x) + s)p+1
+ − (w(x) + s)p+1

+ | ≤ (p+ 1)|h(x)|2p(w(x)p + |s|p).

Applying this estimate twice we find

|k2(x, s)| ≤ 2p+1|h(x)|w(x)p + 2p|h(x)||s|p

which is the remaining term in (16), (17). This finishes the proof of the lemma. �

Lemma 16. For n = 2 let p∗ < p <∞ and for n ≥ 3 let p∗ < p < n+2
n−2

. The functional J

is well-defined on H1
0 (Ω) and continuously Frechét-differentiable. If p is sufficiently close

to p∗ then J is weakly sequentially lower semi-continuous and satisfies the Palais-Smale
condition.

Proof. Well-defined: Recall that w(x) = φ(θ)|x|−2/(p−1). Lemma 15 shows that for J to
be well-defined one needs to verify that∫

Ω

|z|p+1 dx <∞,
∫

Ω

z2

|x|2
dx <∞,

∫
Ω

|z||h|
|x|2

dx <∞ for z ∈ H1
0 (Ω).

Since p < n+2
n−2

the number p + 1 is smaller than the critical Sobolev embedding number
2n
n−2

. Therefore the first integral is finite. The second integral is finite due to Hardy’s
inequality in Lemma 12 and the third integral is finite (after applying the Cauchy-Schwarz
inequality) provided

∫
Ω
h2/|x|2 dx <∞. This follows directly from Lemma 8.

Frechét-differentiability: It is sufficient to prove the differentiability of
∫

Ω
G(x, z) dx. The

Mean Value Theorem implies

G(x, z + v)−G(x, z)− ∂G

∂s
(x, z)v =

∫ 1

0

(1− t)p(w(x) + h(x) + z + tv)p−1
+ v2 dt.

Since |w(x) + h(x) + z + tv|p−1 ≤ C(w(x)p−1 + |h(x)|p−1 + |z|p−1 + |v|p−1) it follows from
Hölder’s and Hardy’s inequalities (mentioned above) and the Sobolev embedding that∣∣∣ ∫

Ω

(G(x, z + v)−G(x, z)) dx− A(z)v
∣∣∣ ≤ C‖v‖2,

where A(z)v :=
∫

Ω
∂G
∂s

(x, z)v dx and ‖ · ‖ is the H1
0 (Ω)-norm. With a similar argument

one sees that the mapping z 7→ A(z) is a continuous map from H1
0 (Ω) into its dual, hence∫

Ω
G(x, z) dx is continuously Fréchet differentiable.

Weak sequential lower semi-continuity: The functional J can be written in the form
J = J0 − J1, where J0[z] = 1

2
‖z‖2 − p

2

∫
Ω
wp−1z2 dσ, and J1[z] =

∫
Ω
H(x, z) dx. The

functional J0 represents the square of an equivalent norm in H1
0 (Ω) if p is close to p∗.

Hence J0 is weakly lower semi-continuous. It remains to consider J1. Note first that the
term |h(x)|w(x)p ∈ L1(Ω) by Lemma 11. If 1 ≤ p ≤ 2 then (16) of Lemma 15 shows that
J1 depends continuously on z ∈ Lp+1(Ω) where 2 < p+ 1 < 2n

n−2
. Due to the compactness

of the Sobolev embedding, J1 is weakly sequentially continuous in H1
0 (Ω).

10



If p ≥ 2 then (17) of Lemma 15 shows that J1 depends continuously on z ∈ Lp+1(Ω)∩
L3
|x|−s(Ω) with s = 2(p−2)

p−1
. The weak sequential continuity of J1 follows from the com-

pactness of the embedding H1
0 (Ω)→ L3

|x|−s(Ω), cf. Corollary 13, provided

3 <
2(n− s)
n− 2

, i.e., p <
n+ 2

n− 2
.

which is fulfilled by our assumption.

Palais-Smale condition: Let (zn)n∈N be a Palais-Smale sequence, i.e., J [zn] is bounded
and J ′[zn]→ 0 as n→∞. Hence if 2 < q < p+ 1 it follows from (14) of Lemma 15 that

o(‖zn‖) = qJ [zn]− J ′[zn]zn ≥
(q

2
− 1
)∫

Ω

|∇zn|2 dx−
∫

Ω

wp−1(Mz2
n + (q − 1)p|h||zn|) dx.

Next we use that w = |x|−2/(p−1)φ(θ) and ‖φ‖∞ → 0 as p ↘ p∗. With the help of
Lemma 14 we conclude

o(‖zn‖) ≥
(q

2
− 1
)
‖zn‖2 − ‖φ‖p−1

∞

∫
Ω

Mz2
n + (q − 1)p|h||zn|

|x|2
dx

≥
(q

2
− 1
)
‖zn‖2 − ‖φ‖p−1

∞ MCH‖zn‖2

− (q − 1)p‖φ‖p∞ρ
−2
p−1
−κ
(∫

Ω

|x|2κ−2 dx

)1/2√
CH‖zn‖

≥
(q

2
− 1
)
‖zn‖2 − ‖φ‖p−1

∞ MCH‖zn‖2

− (q − 1)p‖φ‖p∞ρ
−2
p−1
−κ
(
D2κ+n−2|ω|
2κ+ n− 2

)1/2√
CH‖zn‖,

where D = supx∈Ω |x|. Since q > 2 the latter inequality implies that the sequence
(zn)n∈N is bounded in H1

0 (Ω) provided ‖φ‖∞ is sufficiently small, i.e., p is sufficiently
close to p∗. After passing to a weakly convergent subsequence one can show the strong
convergence of this subsequence in a straight-forward manner, cf. Struwe [19], Chapter II,
Proposition 2.2. �

Lemma 17. For p larger but sufficiently close to p∗ there exists α, β > 0 such that
J [z] ≥ α if ‖z‖ = β. In particular, for such p the functional J attains a local minimum
inside the ball Bβ(0) ⊂ H1

0 (Ω) and the local minimizer is non-trivial.

Proof. By (13) and Lemma 14

J [z] ≥
∫

Ω

(
|∇z|2

2
− 2p−1p

( |z|p+1

p+ 1
+ w(x)p−1 z

2

2

)
− pw(x)p−1|h(x)||z|

)
dx

≥1

2
‖z‖2 − 2p−1p

(
Cp+1
p

p+ 1
‖z‖p+1 +

CH
2
‖φ‖p−1

∞ ‖z‖2

)
− p‖φ‖p∞ρ

−2
p−1
−κ
(
D2κ+n−2|ω|
2κ+ n− 2

)1/2√
CH‖z‖,

where Cp is a constant appearing in the Sobolev embedding inequality ‖z‖Lp+1 ≤ Cp‖z‖.
Recall that ‖φ‖∞ → 0 as p↘ p∗. Hence, if p is sufficiently close to p∗ we have

J [z] ≥ 1

4
‖z‖2 − d1‖z‖p+1 − d2‖φ‖p∞‖z‖ = ‖z‖2

(
1

4
− d1‖z‖p−1 − d2‖φ‖p∞

‖z‖

)
11



with appropriate constants d1, d2 > 0. Choosing ‖z‖ = β := ( 1
8d1

)1/(p−1) and assuming

‖φ‖∞ sufficiently small we obtain J [z] ≥ α > 0 as claimed. �

6. Results for n = 2

Lemma 18. For λ < π2/ω2 let φ be the positive solution of

(23) −φ′′ = λφ+ φp in (0, ω), φ(0) = φ(ω) = 0

with ‖φ‖∞ = φ(ω
2
) = α. If α < 1 then

α ≤
[
p+ 1

2

(
π2

ω2
− λ
)] 1

p−1

Proof. Let G(s) = λs2

2
+ sp+1

p+1
. Then

ω

2
=

∫ α

0

dt√
2G(α)− 2G(t)

=

∫ 1

0

α ds√
2G(α)

√
1− G(αs)

G(α)

.

Since by assumption 0 ≤ s ≤ α ≤ 1 it follows that G(αs) ≤ s2G(α). Hence ω
2
≤ α√

2G(α)
·π

2
,

which leads to the estimate on α as claimed. �

Theorem 19. Suppose Ω ⊂ R2 is a domain with a conical boundary piece of cross-section
ω ⊂ S1 = (0, 2π) at 0 ∈ ∂Ω and let D = supx∈Ω |x|. Then p∗ = 2ω+π

π
∈ (1, 5). Recall the

definition of d1, d2 in the proof of Lemma 17. Here, their values are given by

(24) d1 = 2p−1p

(
1

2
√
π

)p+1

(p+ 1)
p+1

2 |Ω|, d2 =
p

2
ρ

−4
p−1D

2
p−1
(
(p− 1)ω

)1/2ω

π
.

The existence of two unbounded very weak solutions of (1) holds provided p > p∗ satisfies

(25)
p+ 1

2

(
π2

ω2
− 4

(p− 1)2

)
≤ min

{
1

p
· π

2

ω2
,
q − 2

2M
· π

2

ω2
,

1

p2p
· π

2

ω2
, (8d2)

1−p
p (8d1)

−1
p

}
,

where M is defined as in Lemma 15. Due to monotonicity with respect to p the inequality
(25) holds for p ∈ (p∗, p∗ + ε) for some ε > 0.

Proof. Note that CH = 1/λ̃1 = ω2/π2 and κ = 2
p−1

stems from Lemma 14. This explains

the value of d2 in (24). The constant d1 is defined as d1 = 2p−1p
p+1

Cp+1
p and Cp is the Sobolev-

embedding constant ‖z‖Lp+1 ≤ Cp‖z‖. By a classical result (combining Lemma 7.12 and
7.14 in Gilbarg, Trudinger [10]) we have in n = 2

Cp =
1

2
√
π

(p+ 1)
1
2

+ 1
p+1 |Ω|

1
p+1

and hence the value of d1 in (24).

To show the sufficiency of (25) note first that by Lemma 18 the left-hand side of (25)
is just an upper estimate on ‖φ‖p−1

∞ with φ as in Lemma 9. Now we follow the steps of
Lemma 16 and Lemma 17.

Weak sequential lower semi-continuity: Here we need pCH‖φ‖p−1
∞ < 1. This amounts to

the first part of the inequality (25).

Palais-Smale condition: This requires MCH‖φ‖p−1
∞ < q

2
−1, which amounts to the second

part of the inequality (25).
12



Boundary point ω ρ D p∗ p∗ + ε

P1 π
√

3
2

√
2 3 3.013242 . . .

P2
π
2

1 2 2 2.007394 . . .

P3
π
3

2√
3

√
5 5

3
= 1.6̄ 1.671374 . . .

P4
2π
3

1
√

16
3
− 4√

3
7
3

= 2.3̄ 2.344770 . . .

Table 1. Table with values of p∗, p∗ + ε at different corners

Existence of local minimizer: As a first step in Lemma 17 one needs 2p−1pCH‖φ‖p−1
∞ < 1

2
,

which explains the third part of the inequality (25). Finally, with ‖z‖ = β = ( 1
8d1

)1/(p−1)

a positive lower bound for J on the sphere of radius β is guaranteed provided 1/8 >

d2‖φ‖p∞(8d1)
1

p−1 . This explains the fourth and final part of the inequality (25). �

From now on we consider the special polygonal domain Ω ⊂ R2 shown in Figure 1 with
interior opening angles π, π

2
, π

3
, 2π

3
at the boundary points P1, P2, P3, P4, respectively.

Figure 1. Domain for numerical experiments

Table 1 gives information on the values p∗, p∗+ε corresponding to the different boundary
points. The table is based on the result of Theorem 19 and was computed with MAPLE.
We have chosen q as the arithmetic mean of 2 and p+ 1. The value ρ gives the size of the
ball Bρ(Pi) around the boundary point Pi such that Ω ∩ Bρ(Pi) equals a conical piece.
The value D gives the biggest distance to Pi inside Ω. In all cases the size of ε is of the
order 10−2.

7. Numerical examples for n = 2

In this section we describe how numerical approximations for solutions of (1) can be
obtained. We follow the analytical approach and decompose u = w+h+z. First we show

how one can find numerical approximations for w = |x|
−2
p−1φ and h. Then we explain how

one can obtain z once as a local minimizer of the functional J through a steepest decent
method and once by the mountain pass algorithm. Finally, both the local minimizer and
the mountain pass are improved through an application of Newton’s method.
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7.1. The boundary value problem on the cross-section. The boundary value prob-
lem (23) for φ is reformulated as a system

(26)

{
φ′1 = φ2, φ1(0) = 0,
φ′2 = − 4

(p−1)2φ1 − φp1, φ2(ω
2
) = 0.

Matlab bvp4c function is used to solve (26) on [0, ω
2
] and to compute φ on grid-points

{ i
k
ω
2
}ki=0. Then φ is extended symmetrically to grid points of the interval [ω

2
, ω] and

interpolated by cubic splines between the grid points. In order to evaluate w(x, y) at

point (x, y) ∈ Ω one determines the polar-coordinates (r, θ) and computes r
−2
p−1φ(θ).

7.2. The finite element method. We use a standard approach as described, e.g., in [6].
In order to approximate H1-functions on Ω we take piecewise linear finite elements on a
triangulation T τ = {Ti}i of domain Ω shown in Figure 1 where τ characterizes the size of
the triangles. The triangulation of Ω is done by Matlab’s PDE Toolbox. The numerical
results shown below were computed on a triangulation consisting of 138, 240 triangles
and 69, 585 vertices with an average length of one side of a triangle τ = 1/160.

We use the following standard finite element spaces:

V τ = {ϕ ∈ H1(Ω) : ϕ linear on each triangle Ti}, V τ
0 = V τ ∩H1

0 (Ω).

Next we introduce the notation for the vertices of the triangles. The notation will change
depending on which of the four boundary points P ∈ {P1, . . . , P4} is chosen. Let Γ0 =
∂Ω ∩Bρ(P ) with ρ given in Table 1 and let Γ1 = ∂Ω \ Γ0. Denote:

I : index set of triangle vertices in Ω,
Iint : index set of interior triangle vertices (in Ω),
IΓ0 : index set of boundary triangle vertices lying on Γ0,
IΓ1 : index set of boundary triangle vertices lying on ∂Ω which are not in IΓ0 .

The vertex set I is the union of three disjoint sets I = Iint ∪ IΓ0 ∪ IΓ1 . The coordinates
of the triangle vertices are denoted by{(xk, yk)}k∈I . Let {ϕk}k∈I ⊂ V τ be a set of basis
elements such that ϕk equals 1 at k-th vertex (xk, yk) of the triangulation T τ and 0 at
all other vertices. Then v ∈ V τ can be written as follows

(27) v =
∑
k∈I

vkϕk, v̄ = (vk)k∈I , v̄int = (vk)k∈Iint
, v̄Γ0 = (vk)k∈IΓ0

, v̄Γ1 = (vk)k∈IΓ1
.

The stiffness matrix, which can be computed explicitly, is given by

(28) K =

(∫
Ω

∇ϕi · ∇ϕj dx dy
)
i,j∈Iint

.

The finite element version of problem (12) is to find z ∈ V τ
0 such that

(29) J ′[z]ϕk = (Kz̄)k −
∫

Ω

(
(w + h+ z)p+ − wp

)
ϕk dx dy = 0 ∀k ∈ Iint,

where we write z̄ instead of z̄int for the sake of simplicity, and the functional J will be
evaluated as follows

(30) J [z] =
1

2
z̄TKz̄ −

∫
Ω

(
1

p+ 1

(
(w + h+ z)p+1

+ − (w + h)p+1
)
− wpz

)
dx dy.

The integrands in (29), (30) need to be integrated numerically over each triangle. This
is done using a Fortran algorithm described in [8].
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7.3. Representation of the harmonic correction h. Recall from the definition of
h as a solution of (11) that h attains nonzero values on parts of the boundary. We
reformulate (11) as follows. Choose h(2) ∈ V τ as an arbitrary function coinciding with w
in vertices on Γ1 and being 0 on Γ0, i.e.,

(31) h
(2)
i = w(xi, yi) for i ∈ IΓ1 , h

(2)
i = 0 for i ∈ IΓ0 .

To find h in the form h = h(1) − h(2) let h(1) be the FEM solution of

(32) −∆h̃ = −∆h(2) in Ω, h̃ = 0 on ∂Ω

which leads to

(33) Kh̄
(1)
int = Kh̄

(2)
int +

(∫
Ω

∇ϕk · ∇ϕi dx dy
)
k∈Iint,i∈IΓ1

h̄
(2)
Γ1
.

Therefore the basis coefficients h̄ of h are given by

(34)

 h̄int

h̄Γ0

h̄Γ1

 =

 h̄
(1)
int − h̄

(2)
int

0

−h̄(2)
Γ1

 =


K−1

(∑
i∈IΓ1

w(xi, yi)

∫
Ω

∇ϕk · ∇ϕi dx dy
)
k∈Iint

0
− (w(xi, yi))i∈IΓ1

 .
Note that h depends only on the values of w in the vertices on Γ1 but does not depend
on the choice of h(2). As in the case of the stiffness matrix, the integrals in (34) can be
computed explicitly.

7.4. Steepest decent, mountain pass algorithm and Newton’s method. The
steepest descent method (SDM) and the mountain-pass algorithm (MPA) are both based
on the flow defined by g := ∇J [z] ∈ H1

0 (Ω), the gradient of J at z ∈ H1
0 (Ω) (which is the

Riesz representation of the linear functional J ′[z] ∈ H−1(Ω)). From (29) it follows that
in the discretized case it is computed as

(35) ḡ = z̄ −K−1

(∫
Ω

(
(w + h+ z)p+ − wp

)
ϕk dx dy

)
k∈Iint

for z ∈ V τ
0 .

SDM solves numerically (using a forward Euler scheme) the initial value problem

(36)
d

dt
ζ(t) = −∇J [ζ(t)], ζ(0) = ζ0 ∈ V τ

0

for some initial function ζ0. Lemma 17 states that J attains a local minimum in a small
ball centered at 0. Hence ζ0 = 0 is a suitable choice. We denote zmin the function SDM
converges to.

MPA has first been described in [5]. Here we give a very brief description only. We take
a discretized path {e`}L`=0 ⊂ V τ

0 consisting of L+ 1 points which connects e0 := zmin with
eL such that J [eL] < J [e0]. The endpoint eL can be chosen as a large enough positive
function since limt→∞ J [tz] = −∞ for z > 0 as noted in Section 5. We find the maximum
of J along the path. The point e` where the maximum occurs is moved a small distance
in the direction of −∇J [e`]. This deforms the path and lowers the maximum of J along
it. The deforming of the path is repeated until the maximum cannot be lowered any
more, i.e., until a critical point is reached. We denote this critical point zMP.

Newton’s method is used to improve an initial guess (usually the output of MPA). Its
goal is to find a solution of

(37) F(z̄) := Kz̄ −
(∫

Ω

(
(w + h+ z)p+ − wp

)
ϕk dx dy

)
k∈Iint

= 0
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by computing recursively z̄m+1 = z̄m − (dF
dz̄

(z̄m))−1F(z̄m), where the derivative of F is

(38)
dF
dz̄

(z̄) = K −
(∫

Ω

p(w + h+ z)p−1
+ ϕiϕj dx dy

)
i,j∈Iint

.

7.5. Numerical results. Figures 2–5 show numerical solutions z of (12) and u of (1)
with the singularity of w placed at a boundary point P ∈ {P1, P2, P3, P4} of the domain
Ω shown in Figure 1. For each of the four points P a particular value p > p∗ is fixed and
a local minimizer zmin and a mountain-pass point zMP of the functional J are computed
and improved by Newton’s method. Their graphs are in the first row of Figures 2–5. The
second row of these figures shows contour lines of u = w + h + z where z is the local
minimizer zmin or the mountain pass zMP, respectively. The actual values of p, for which
solutions are produced are considerably bigger than the ones predicted in Table 1.

We first observe that the numerical minimizer zmin is a negative function on Ω in all
four cases. For p close to p∗ its magnitude is rather small, e.g., of order 10−3 in Figure 5.
With growing p the contour lines become more dense close to the corner P and the
magnitude gets larger, e.g., of order 1 in Figure 3.

The mountain pass zMP is positive for p close to p∗, cf. Figure 4 and 5. With growing
p the contour lines become more dense close to the corner P and zMP becomes negative
on a subset of Ω, cf. nodal lines in Figures 2 and 3.

We observed that the shape of the graph of numerical solutions in Figures 4 and 5 does
not change visibly under the refinement of triangulation. In case of solutions in Figures 2
and 3 the contour lines become more dense close to the corner P for finer triangulations.
The nodal line of the mountain-pass solution also moves visibly closer to P . Trying to
increase p even more we ran into substantial numerical difficulties. Therefore, we cannot
conjecture (and it remains completely open) whether (1) possesses unbounded very weak
solutions for large values of p.

Figure 6 shows the singular solution w of (6) restricted to the computational domain
Ω for all the four choices of the cone vertex P and the corresponding choice of p. From
these graphs and those of u it can be seen that u is indeed a perturbation of w.

Appendix

Lemma 20. Let 2 < q < p+ 1. With the choice of the value M given by

M =


p

2
(q − 1) if 1 < p ≤ 2,

p

2
(p− 1)

(
p− 1

p+ 1− q

)p−2

if p ≥ 2.

the following inequality holds

(39) (1 + t)p+ ≤
(

1− q

p+ 1

)
(1 + t)p+1

+ + (q − 1)t+Mt2 +
q

p+ 1

which is equivalent to (22) in the proof of Lemma 15.

Proof. Let l(t) = (1 + t)p+ and r(t) = (1− q
p+1

)(1 + t)p+1
+ + (q−1)t+Mt2 + q

p+1
denote the

left and right-hand sides of (39), respectively. Note that l(0) = r(0) and l′(0) = r′(0).
Let us first show (39) in the case p ≥ 2. This will hold if l′′(t) ≤ r′′(t) for all t ∈ R, i.e.,

(40) p(p− 1)(1 + t)p−2
+ ≤ p(p+ 1− q)(1 + t)p−1

+ + 2M.
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zmin

max=0

min=−0.84
step=0.05

zMP

max=0.83
min=−0.025

positive step=0.05

negative step=0.02

u = w + h+ zmin

step=0.2, contours drawn for u ≤ 20

u = w + h+ zMP

step=0.2, contours drawn for u ≤ 20

Figure 2. Numerical solutions with a singularity placed at P1 for p = 3.5.

zmin

max=0
min=−1.44

step=0.1

zMP

max=2.57,
min=−0.052

positive step=0.1

negative step=0.05

u = w + h+ zmin

step=0.5, contours drawn for u ≤ 50

u = w + h+ zMP

step=0.5, contours drawn for u ≤ 50

Figure 3. Numerical solutions with a singularity placed at P2 for p = 2.35.

Let t0 = q−2
p+1−q be the value where p− 1 = (p + 1− q)(1 + t0). For t ≥ t0 the inequality

(40) holds automatically, while for t ≤ t0 it holds provided

p(p− 1)(1 + t0)p−2 ≤ 2M,

which is true with equality due the choice of M above. Now consider the case 1 < p ≤ 2.
For t ≥ 0 (40) holds provided p(p− 1) ≤ p(p+ 1− q) + 2M , i.e., provided p(q− 2) ≤ 2M .
For t ≤ 0 we argue with first derivatives instead of second derivatives, i.e, we show

17



zmin

max=0
min=−0.59

step=0.05

zMP

max=15.05
min=0

step=1

u = w + h+ zmin

step=1, contours drawn for u ≤ 100

u = w + h+ zMP

step=1, contours drawn for u ≤ 100

Figure 4. Numerical solutions with a singularity placed at P3 for p = 1.9.

zmin

max=0
min=−1.13 · 10−3

step=10−4

zMP

max=10.01
min=0

step=1

u = w + h+ zmin

step=0.05, contours drawn for u ≤ 10

u = w + h+ zMP

step=1, contours drawn for u ≤ 10

Figure 5. Numerical solutions with a singularity placed at P4 for p = 2.35.

l′(t) ≥ r′(t) for t ≤ 0. This amounts to

(41) p(1 + t)p−1
+ ≥ (p+ 1− q)(1 + t)p+ + q − 1 + 2Mt for t ≤ 0.

Combining the two inequalities

(1− q)(1 + t)p+ + q − 1 ≤ (1− q)pt ≤ −2Mt for t ≤ 0 if p(q − 1) ≤ 2M,

(1 + t)p+ ≤ (1 + t)p−1
+ for t ≤ 0.

we obtain (41) provided p(q−1) ≤ 2M . This is guaranteed by the above choice of M . �
18



w (P1, p = 3.5)

step=0.2, contours drawn for w ≤ 20

w (P2, p = 2.35)

step=0.5, contours drawn for w ≤ 50

w (P3, p = 1.9)

step=1, contours drawn for w ≤ 100

w (P4, p = 2.35)

step=0.05, contours drawn for w ≤ 10

Figure 6. Solution w of (6) for cones with vertices and cross-sections
listed in Table 1 restricted to the domain shown in Figure 1 for various
values of p.
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