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Variation of the carrier-envelope phase of
few-cycle laser pulses owing to the Gouy phase:

a solid-state-based measurement
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The carrier-envelope phase of a laser pulse has recently become an important quantity in extreme nonlinear
optics. Because of the topological Gouy phase, it changes while the pulse propagates through the focus of a
lens. This variation is measured by a simple solid-state-based approach. The experimental results are ana-
lyzed by comparison with simple analytical model calculations. © 2005 Optical Society of America
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When focusing a monochromatic laser by means of a
lens, the light field acquires a phase with respect to a
plane wave while propagating along the optical axis
szd. This Gouy phase1–3 has been known for more
than a century. Mathematically,4 it can be inter-
preted as a topological phase in analogy with the
Berry phase5 for electrons. An intuitive discussion
can be found in Ref. 6. Propagating from −` through
the focus at z=0 to +`, the wave acquires a p phase
shift relative to a plane wave, which means that the
carrier wave propagates from −` to +` faster than a
plane wave by half a cycle of light—the phase veloc-
ity is superluminal, especially near the focus. On the
other hand, the average group velocity of a laser
pulse, i.e., the average velocity of the envelope, is lu-
minal. Thus the carrier-envelope phase of a pulse
changes while propagating through the focus. This
effect becomes relevant in extreme nonlinear optics7

in which the carrier-envelope phase generally plays
an important role.

The p phase shift caused by the Gouy phase was
directly time resolved in the terahertz regime a few
years ago.8,9 More recently,10 the variation of the
carrier-envelope phase versus the propagation coor-
dinate was measured in the optical regime with an
amplified femtosecond laser system and a sophisti-
cated analysis of photoelectron spectra obtained from
atoms ionized by the intense laser radiation within
the focus. Nevertheless, it would still be interesting
generally to have a simpler and specifically to have a
solid-state-based approach suitable for measuring
the shift of the carrier-envelope phase originating
from the Gouy phase.

In this Letter we present corresponding experi-
ments with a phase-frequency-stabilized 5-fs laser
oscillator and the recently introduced monolithic
carrier-envelope-frequency detection by means of
ZnO crystals in the perturbative regime. The experi-
mental results are compared with calculations of the
carrier-envelope phase based on the Gouy phase for
different focusing conditions.

ZnO crystals indeed play a double role in the ex-
periment (see Fig. 1). A fraction sù40 mWd of the to-
tal average output power s140–180 mWd of our 5-fs

prism-based laser oscillator (a copy of that described
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in Ref. 11) operating at an fr=81 MHz repetition fre-
quency is tightly focused onto a first 250-mm-thick
ZnO crystal with a linear polarization parallel to the
crystallographic cW axis12 (which has no center of in-
version). The beat signal arising from the interfer-
ence of self-phase modulation and the second har-
monic, both generated within the ZnO crystal, is
selected by means of optical filters (3-mm Schott BG
39, 3-mm Schott GG 455, and Coherent 35-5289-000
500-nm short-pass interference filter) and converted
into a voltage signal by a 50-V-terminated photomul-
tiplier tube (Hamamatsu R4332, Bialkali). This
carrier-envelope-frequency signal is fed into a feed-
back loop that controls the angle of the end mirror in
the prism arm of the laser cavity by means of a piezo-
electric actuator with an approximately 1-kHz band-
width. This allows us to stabilize the carrier-envelope
frequency to ff=5 MHz, which is routinely monitored
with a rf spectrum analyzer (Agilent PSA E4440A).
The amplified and filtered photomultiplier signal is
additionally used as a reference for a rf lock-in am-
plifier (Stanford Research Systems SR844).

The remaining fraction of the laser output power is
attenuated by means of homemade metal-coated
100-mm-thin glass slides to an average power of

Fig. 1. Scheme of the experimental setup. The output of a
5-fs mode-locked laser oscillator is split into two balanced
arms. In each arm the light is focused with a Cassegrain
lens (L) onto a ZnO crystal, followed by a set of optical fil-
ters (F), and a detector (D). One arm is used to stabilize the
carrier-envelope frequency of the laser and additionally
serves as the reference (REF) input for a lock-in amplifier.
The other arm delivers the signal (SIG) input for the
lock-in amplifier. The amplitude and phase of the output of
the lock-in amplifier are recorded while scanning the ZnO

crystal of the signal arm through the focus.
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P=6 mW, which is focused onto another
250-mm-thick ZnO crystal by a Cassegrainian lens (a
mirror pair) with a focal length of 5.41 mm and a nu-
merical aperture of 0.5 (Coherent 25-0522). The light
emitted in the forward direction is collected by an-
other Cassegrainian lens (13.41-mm focal length, nu-
merical aperture 0.5, Coherent 25-0555), spectrally
filtered as for the reference signal, sent to another
50-V-terminated photomultiplier tube (Hamamatsu
R4332, Bialkali), and fed into the signal input of the
rf lock-in amplifier. Importantly, the lock-in allows
for measuring the amplitude and the phase of the rf
signal with respect to the rf reference.13 It is clear
that the rf lock-in phase in this arrangement directly
reflects the shift of the carrier-envelope phase of the
laser pulses—apart from an unknown but constant
phase offset owing to the electronics and imperfect
balancing of the two arms.

Figure 2(a) shows the beam width wsz ,v0d of a
fundamental Gaussian beam at laser carrier fre-
quency v0 (with "v0=1.5 eV) within the Fresnel
approximation3 according to

w2sz,vd = w0
2svdH1 + F z

zRsvdG2J . s1d

Here ws0,vd=w0svd is the beam waist in the focal
plane at z=0, and

zRsvd =
w0

2svd

2c0
v s2d

is the Rayleigh length at frequency v. The experi-
mental Rayleigh length zRsv0d can be obtained in two

Fig. 2. (a) Gaussian beam width wsz ,v0d versus propaga-
tion coordinate z in units of the Rayleigh length zRsv0d
=2.8 mm at laser carrier frequency v0. The open circles are
the result of a knife-edge measurement. The corresponding
raw data are shown by the gray-scale plot in the back-
ground. Here 50% of the maximum is set to black and 0%
and 100% are set to white. (b) Lock-in phase (open circles),
which is identical to the shift of carrier-envelope phase
fszd. The solid curves correspond to the theoretical expec-
tation for cases (i)-(iii). Case (ii) is identical to the Gouy
phase. Amplitude A of the lock-in signal is shown by the

gray area at the bottom.
different and independent ways. Both are based on a
least-squares fit [solid curves in Fig. 2(a)] of wsz ,v0d
to the experimental data [open circles in Fig. 2(a)]
that are obtained from a knife-edge measurement
along the vertical direction. This fit delivers the two
fit parameters w0sv0d=0.9 mm and zRsv0d=2.8 mm di-
rectly. As a consistency check, zRsv0d can also be cal-
culated with the above formula, inserting the value of
w0sv0d obtained from the fit. This delivers zRsv0d
=3.0 mm, which is compatible with the above value
within the experimental errors. From a knife-edge
measurement along the horizontal direction we ob-
tain zRsv0d=2.4 mm. The curve labeled (ii) in Fig. 2(b)
is the resulting Gouy phase wGsz ,v0d according to

wGsz,vd = arctanF z

zRsvdG . s3d

For higher-order modes a different prefactor results.6

The open circles in Fig. 2(b) correspond to the mea-
sured lock-in phase for variation of position z of the
ZnO crystal while keeping the Cassegrainian lenses
fixed. z.0 means that the front of the ZnO crystal is
behind the focus. The error bars reflect the statistical
error of the average over ten individual scans. We de-
pict only the phase in the central region of approxi-
mately ±4 mm in which the lock-in amplitude signal
(gray area) has appreciable strength. In this region
the phase increases monotonically. This might seem
surprising at first considering that the ZnO crystal is
more than an order of magnitude thicker than the
Rayleigh length; hence a substantial averaging with
respect to the phase should arise. However, the co-
herence length for phase matching of second-
harmonic generation within the ZnO crystal can eas-
ily be estimated to be of the order of 1 mm on the
basis of the known Sellmeier coefficients for ZnO.14

Thus the effective sample thickness is indeed smaller
than the Rayleigh length. We briefly note that a more
complex behavior of the phase versus z is observed at
elevated powers incident onto the ZnO crystal of the
signal arm (also see Ref. 15). The data shown in Fig.
2 are in the low-intensity limit.

We now discuss the relation between the measured
carrier-envelope phase [Fig. 2(b)] and the Gouy phase
shift. Generally, the carrier-envelope phase fszd of
the laser electric field moving in the +z direction,
quoted at a fixed position z on the optical axis,

Estd = Ẽstdcosfv0t + fszdg, s4d

is determined by the Gouy phase but it is not identi-
cal to the Gouy phase. It results from the frequency
dependence of the beam width wszf ,vd in front of the
(ideal) lens at a focal length of z=zf@zRsv0d. This is
an experimentally known fact16,17 that translates
into a frequency dependence of the Rayleigh length
zRsvd, which determines wGsz ,vd and hence fszd as
well as the electric field envelope Ẽstd. Closely follow-
ing the discussion and the nomenclature of Ref. 7, we
can identify three special cases: (i) frequency-

18
independent beam width in front of the lens, (ii)
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frequency-independent Rayleigh length,19 and (iii)
frequency-independent beam waist in the focus.20 To
obtain simple analytical results, we employ two
approximations: First, we assume that the devia-
tions of phase velocity vphase and group velocity vgroup
from vacuum velocity of light c0 are small, allowing
for Taylor expansions. The validity of this approxima-
tion follows from the Fresnel approximation made
above. Second, we assume that the envelope of the
pulse remains undistorted. In this limit the group ve-
locity at the carrier frequency describes the velocity
of the envelope. With this it is straightforward to ar-
rive at the general form for the carrier-envelope
phase:

fszd =
v0

c0
2 E

−`

z

fvphasesz8d − vgroupsz8dgdz8

= wGsz,v0d − v0

]wG

]v
sz,v0d. s5d

Upon working out the derivative we obtain

fszd = arctansZd + F
Z

1 + Z2
, s6d

with the abbreviation Z=z /zRsv0d. Factor F is given
by F=−1 for case (i), F=0 for case (ii), and F= +1 for
case (iii). More generally, this expression for fszd re-
mains valid even for arbitrary noninteger values of
F, in which case F is defined by the scaling

zRsvd ~ vF. s7d

The scalings for the beam waist, w0svd~v+sF−1d/2, and
the beam width at the lens, wszf ,vd~v−sF+1d/2, follow.

The three solid curves in Fig. 2(b) illustrate cases
(i)–(iii). Only for case (ii), where vgroupszd=c0, is the
carrier-envelope phase identical to the Gouy phase
shift, i.e., fszd=wGsz ,v0d. For case (i), fszd has a hori-
zontal slope in the focus because vgroupsz=0d
=vphasesz=0d.c0. For case (iii) the slope of fszd in the
focus is steeper than in case (ii) as vgroupsz=0d,c0
while vphasesz=0d.c0.

Experimentally, it is usually not easy to specify the
frequency dependence of the beam width wszf ,vd in
front of the lens because it results from rather com-
plex processes within the mode-locked laser oscilla-
tor. It would be surprising if this frequency depen-
dence turned out to be negligible [case (i)]. Our
experiment lies between cases (ii) and (iii).

In conclusion, we have realized a simple solid-
state-based technique suitable for measuring the
variation of the carrier-envelope phase of few-cycle
laser pulses in the focus of a lens arising from the to-
pological Gouy phase. The approach is based on the
well-known f-to-2f self-referencing. Importantly, we
have generated the corresponding beat signal in a re-
gion thinner than the Rayleigh length, such that the
local carrier-envelope phase can be measured. Fur-
thermore, unlike other approaches based on multi-
photon ionization of atoms,10 our approach works
with pulses directly from a usual 81-MHz mode-
locked laser oscillator. We have also shown by simple
analytical formulas that the evolution of the carrier-
envelope phase critically depends on the frequency
dependence of the laser beam profile. This frequency
dependence is expected to be affected not only by the
laser system but also by its actual alignment. Our ex-
perimental approach allows for a simple routine
characterization of the resulting local carrier-
envelope phase. In the emerging field of extreme non-
linear optics, such knowledge concerning the carrier-
envelope phase is crucial.
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