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conditions, the simulated traces are virtually free of

adjustable parameters as C Q 4Cm d C
q
.

It is important to note that in a real system, the

weak transmission regime is accompanied by

Coulomb blockade effects that are not taken into

account in the above model. In the weak trans-

mission regime and T 0 0, using an elastic co-

tunneling approach (23, 24), we have checked that

there is no qualitative change except for the energy

scale that now includes the charging energy so that

D is replaced by D þ e2/C 0 e2/Cm. At large

transmission, the problem is nonperturbative in

tunnel coupling and highly nontrivial. Calculations

of the thermodynamic capacitance exist E(25, 26),
and (27) plus references therein^, but at present, no
comprehensive model is available that would

include both charge-relaxation resistance and

quantum capacitance for finite temperature and/or

large transmission.

Calibration of our admittance measurements is

a crucial step toward extracting the absolute value

of the constant charge-relaxation resistance. As at

GHz frequencies, direct calibration of the whole

detection chain is hardly better than 3 dB, we shall

use here an indirect, but absolute, method, often

used in Coulomb blockade spectroscopy, that

relies on the comparison between the gate voltage

width of a thermally broadened Coulomb peak

(º k
B
T) and the Coulomb peak spacing (º e2/Cm).

From this, an absolute value of Cm can be

obtained. The real part of the admittance of

sample E3 is shown as a function of the dc

voltage V
dc

at the counter-electrode, for a given

low transmission (Fig. 3A). A series of peaks with

periodicityDV
dc
0 370 mV are observed, with the

peaks accurately fitted by Eq. 7. Their width,

proportional to the electronic temperature T
el
, is

plotted versus the refrigerator temperature T (see

Fig. 3C). When corrected for apparent electron

heating arising from gaussian environmental

charge noise, and if we assume T
el
0 ¾(T 2 þ

T
0
2), the energy calibration of the gate voltage

yields Cm and the amplitude 1/Cmw of the

conductance plateau in Fig. 2. A similar analysis

is done in Fig. 3, B and D, for sample E1 using

V
G
to control the dot potential. Here, peaks are

distorted because of a transmission-dependent

background and show a larger periodicity DV
G
0

2 mV, which reflects the weaker electrostatic

coupling to the 2DEG.

Finally, after numerical inversion of the con-

ductance data, we can separate the complex

impedance into the contributionsof the capacitance,

1/Cmw, and the relaxation resistance R
q
. The

results in Fig. 4 demonstrate deviations from

standard Kirschhoff_s laws: The charge-relaxation

resistance R
q
remains constant in the regime

where the quantum capacitance exhibits strong

transmission-dependent oscillations; this con-

stant value equals, within experimental uncer-

tainty, half the resistance quantum as prescribed

by theory (9, 10). In the weak transmission re-

gime, the Landauer formula is recovered because

of thermal broadening, and R
q
diverges as it does

in the dc regime. Furthermore, additional measure-

ments at 4 K prove that the classical behavior is

indeed recovered in the whole transmission range

whenever k
B
T d e2/Cm.

In conclusion, we have experimentally shown

that the series association of a quantum capacitor

and a model quantum resistor leads to a violation

of the dynamical Kirchhoff_s law of impedance

addition. In the fully coherent regime, the quantum

resistor is no longer given by the Landauer formula

but by the half-quantized charge-relaxation resist-

ance predicted in refs. (9, 10).
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(1996).
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Second-Harmonic Generation from
Magnetic Metamaterials
Matthias W. Klein,1,2 Christian Enkrich,1,2 Martin Wegener,1,2,3 Stefan Linden1,2,3*

We observe second-harmonic generation from metamaterials composed of split-ring resonators
excited at 1.5-micrometer wavelength. Much larger signals are detected when magnetic-dipole
resonances are excited, as compared with purely electric-dipole resonances. The experiments are
consistent with calculations based on the magnetic component of the Lorentz force exerted on
metal electrons—an intrinsic second-harmonic generation mechanism that plays no role in natural
materials. This unusual mechanism becomes relevant in our work as a result of the enhancement
and the orientation of the local magnetic fields associated with the magnetic-dipole resonances of
the split-ring resonators.

T
he concept of metamaterials has changed

the spirit of optics and photonics. Re-

searchers no longer just study the rich

variety of materials provided by nature but have

rather become creative designerswho tailor optical

properties at will, leading to qualitatively new and

unprecedented behavior (1–11). The key is the

nanofabrication of metallic subwavelength-scale

functional building blocks, photonic atoms, which

are densely packed into an effective material. To a

large extent, this emerging field has been stimu-

lated by the 1999 theoretical work of John

Pendry_s group (1), which made two distinct

predictions: (i) They proposed split-ring resonators

as photonic atoms that could lead to magnetism at

optical frequencies—a prerequisite for negative-

index metamaterials. (ii) Furthermore, they pre-

dicted that enhanced and novel nonlinear-optical

properties could arise from such metamaterials.

Although aspect (i) has attracted substantial

attention from both experiment (3–7, 12, 13) and

theory (14–16) in recent years, aspect (ii) has not,

to the best of our knowledge. Experiments have

not been reported, nor has a complete consistent

microscopic theory of the nonlinear optics of

metamaterials been evaluated. This lack of re-

1Institut für Angewandte Physik, Universität Karlsruhe (TH),
Wolfgang-Gaede-Straße 1, D-76131 Karlsruhe, Germany.
2DFG-Center for Functional Nanostructures (CFN), Universität
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Nanotechnologie, Forschungszentrum Karlsruhe in der
Helmholtz-Gemeinschaft, D-76021 Karlsruhe, Germany.
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search is contrasted by the potential of meta-

materials for giant nonlinear-optical response

through local-field enhancements (1, 15) and/or

novel mechanisms. This avenue could, for exam-

ple, lead to ultracompact frequency-doubling

devices. Ultimately, parametric nonlinear-optical

processes (17) in metamaterials might possibly

even be used as a gain mechanism, compensating

themetamaterial absorption losses in, for example,

Bperfect lenses[ (2, 18). Here, we make steps in

direction (ii) and study the lowest-order

nonlinear-optical process, that is, second-

harmonic generation (SHG). We directly com-

pare our experimental findings on arrays of gold

split-ring resonators (SRRs) with the results of a

simple theory based on the magnetic component

of the Lorentz force on metal electrons in the

SRRs—an intrinsic second-harmonic generation

mechanism that plays no role in natural materials.

In fact, in usual nonlinear optics, themagnetic-

field component of the electromagnetic light wave

hardly plays any immediate role at all. Rather,

electric dipoles are excited by the electric-field

component of the light only. There are, however,

some exotic cases of nonlinear optics governed by

the magnetic component that we would like to

recall before describing our own work. Generally,

the magnetic field B enters by means of the

magnetic component of the Lorentz force, F 0
q(E þ v � B), where q and v are the electron

charge and velocity, respectively. Although the

modulus of the q(v � B) term becomes

comparable in strength to the electric component

of the Lorentz force qE only for relativistic

velocities v, it has measurable consequences for

optical frequencies at much smaller velocities.

For example, it can lead to the photon-drag effect

(19), a drift velocity of free crystal electrons that

is proportional to the intensity of light and

directed along the wave vector of light. This

effect is employed in commercially available

infrared photon-drag p-type germanium photo-

detectors and can be interpreted as the dynamic

Hall effect (20). On the same order of perturba-

tion theory in the incident fields, one also gets an

oscillatory electron motion at twice the exciting

light frequency (21). The polarization of the

resulting SHG is again directed along the

incident wave vector of light. Such SHG has

been observed for free vacuum electrons and is

called nonlinear Thomson scattering (19, 21)

or Larmor radiation. All these nonlinear contri-

butions point in the direction of the incident

wave vector of lightKÈ (v� B)È (E� B); they

are longitudinal components, which cannot

propagate in the forward direction. In contrast, a

significant component of the local magnetic field

pointing along the direction of the incident wave

vector of light, as in some of our SRR structures

below, could clearly lead to a transverse com-

ponent of SHG. A transverse component, in

contrast to a longitudinal component, can ef-

ficiently be radiated into the far-field forward

direction. For the symmetry of the structures to be

discussed below, this transverse SHG would be

polarized orthogonal to the electric-field compo-

nent of the incident light, hence perpendicular to

the incident linear polarization.

The metamaterials under investigation are

planar arrays of SRRs. Each SRR can be viewed

as a small LC-oscillator circuit. The open ends of

a nonmagnetic gold wire form the capacitance C;

the wire itself is a fraction of one winding of a

magnetic coil with inductance L (see insets in

Fig. 1). The corresponding magnetic dipole

moment is oriented perpendicular to the plane

of the SRR. Details of design, fabrication and

linear-optical characterization of the magnetic

metamaterials used here have been described else-

where (5, 6). Briefly, 100-mm by 100-mm two-

dimensional arrays of gold split rings with

variable lateral size l and thickness t 0 25 nm,

on a square lattice with variable lattice constant a,

are fabricated on glass substrates coated with a

5-nm thin film of indium-tin-oxide (ITO) with

standard electron-beam lithography. The eigen-

frequency of our LC circuit scales inversely with

SRR size, provided the eigenfrequency is much

smaller than the bulk metal plasma frequency.

For normal incidence and horizontal polarization,

the electric field of the light can couple to the

capacitance (5, 6), inducing a circulating current

in the coil, leading to an oscillatory magnetic

dipole moment perpendicular to the SRR plane.

This resonant circulating current leads to a

resonant enhancement of the local magnetic

fields. For vertical incident polarization, neither

the electric nor the magnetic component of the

light can couple to the LC resonance. For both

linear polarizations one can, however, excite

the SRR Mie resonance, which is located at

frequencies higher than that of the LC reso-

nance. When exciting the Mie resonance with

horizontal incident polarization, the current in

the SRR bottom arm is accompanied by cur-

rents in the two vertical SRR arms. The latter

two oscillate 180 degrees out of phase; hence,

one gets a nonzero magnetic-dipole moment

(6). In contrast, for vertical incident polariza-

tion, the response of the Mie resonance is

purely electric. Corresponding measured trans-

mittance spectra of the samples investigated

here are shown in Fig. 1. The various observed

transmittance dips correspond to the resonances

discussed above. These two samples as well as

others are located on the same glass substrate

and have been fabricated in one run.

Fig. 1. Summary of measured linear-optical
spectra (black solid curves), shown for two rel-
evant magnetic metamaterial samples located on
the same substrate. The polarization of the
incident light is indicated by the red arrows in
the electron micrographs of the corresponding
structures. The wavelengths of the exciting light
(red) and that of the SHG (blue) are indicated by
dashed lines. (A) and (B) correspond to an array
with small SRRs (l 0 220 nm, a 0 305 nm), (C)
and (D) to an array with large SRRs (l 0 480 nm,
a 0 630 nm). The blue bars highlight the cor-
responding measured SHG signal strengths,
normalized to 100% for the strongest SHG signal
obtained from the fundamental magnetic (or LC)
resonance. The detection noise is about 0.2%. The
approximate polarization of the SHG emission is
indicated by the blue arrows (see also Fig. 2B).

Fig. 2. (A) Normalized SHG signal strength versus normalized incident laser power on a log-log
scale (for the fundamental magnetic resonance in Fig. 1A). The straight line has a slope of two, as
expected for SHG. (B) Measured polarization of the SHG emission represented as a polar diagram,
oriented as the electron micrograph in Fig. 1A.

REPORTS

www.sciencemag.org SCIENCE VOL 313 28 JULY 2006 503

 o
n 

M
ar

ch
 1

9,
 2

00
9 

w
w

w
.s

ci
en

ce
m

ag
.o

rg
D

ow
nl

oa
de

d 
fr

om
 

http://www.sciencemag.org


The setup for measuring the SHG is described

in the supporting online material (22). We expect

that the SHG strongly depends on the resonance

that is excited. Obviously, the incident polariza-

tion and the detuning of the laser wavelength

from the resonance are of particular interest. One

possibility for controlling the detuning is to

change the laser wavelength for a given sample,

which is difficult because of the extremely broad

tuning range required. Thus, we follow an

alternative route, lithographic tuning (in which

the incident laser wavelength of 1.5 mm, as well

as the detection system, remains fixed), and tune

the resonance positions by changing the SRR

size. In this manner, we can also guarantee that

the optical properties of the SRR constituent

materials are identical for all configurations. The

blue bars in Fig. 1 summarize the measured SHG

signals. For excitation of the LC resonance in Fig.

1A (horizontal incident polarization), we find

an SHG signal that is 500 times above the noise

level. As expected for SHG, this signal closely

scales with the square of the incident power

(Fig. 2A). The polarization of the SHG emission

is nearly vertical (Fig. 2B). The small angle with

respect to the vertical is due to deviations from

perfect mirror symmetry of the SRRs (see

electron micrographs in Fig. 1). Small detuning

of the LC resonance toward smaller wavelength

(i.e., to 1.3-mm wavelength) reduces the SHG

signal strength from 100% to 20%. For ex-

citation of the Mie resonance with vertical

incident polarization in Fig. 1D, we find a small

signal just above the noise level. For excitation

of the Mie resonance with horizontal incident

polarization in Fig. 1C, a small but significant

SHG emission is found, which is again po-

larized nearly vertically. For completeness, Fig.

1B shows the off-resonant case for the smaller

SRRs for vertical incident polarization.

Although these results are compatible with

the known selection rules of surface SHG from

usual nonlinear optics (23), these selection rules

do not explain the mechanism of SHG. Follow-

ing our above argumentation on the magnetic

component of the Lorentz force, we numerically

calculate first the linear electric and magnet-

ic field distributions (22); from these fields,

we compute the electron velocities and the

Lorentz-force field (fig. S1). In the spirit of a

metamaterial, the transverse component of the

Lorentz-force field can be spatially averaged

over the volume of the unit cell of size a by a

by t. This procedure delivers the driving force

for the transverse SHG polarization. As usual,

the SHG intensity is proportional to the square

modulus of the nonlinear electron displacement.

Thus, the SHG strength is expected to be

proportional to the square modulus of the

driving force, and the SHG polarization is

directed along the driving-force vector. Cor-

responding results are summarized in Fig. 3 in

the same arrangement as Fig. 1 to allow for a

direct comparison between experiment and

theory. The agreement is generally good, both

for linear optics and for SHG. In particular, we

find a much larger SHG signal for excitation of

those two resonances (Fig. 3, A and C), which

are related to a finite magnetic-dipole moment

(perpendicular to the SRR plane) as compared

with the purely electric Mie resonance (Figs.

1D and 3D), despite the fact that its oscillator

strength in the linear spectrum is comparable.

The SHG polarization in the theory is strictly

vertical for all resonances. Quantitative devia-

tions between the SHG signal strengths of ex-

periment and theory, respectively, are probably

due to the simplified SRR shape assumed in

our calculations and/or due to the simplicity of

our modeling. A systematic microscopic theory

of the nonlinear optical properties of metallic

metamaterials would be highly desirable but is

currently not available.
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Reducing the Dimensionality of
Data with Neural Networks
G. E. Hinton* and R. R. Salakhutdinov

High-dimensional data can be converted to low-dimensional codes by training a multilayer neural
network with a small central layer to reconstruct high-dimensional input vectors. Gradient descent
can be used for fine-tuning the weights in such ‘‘autoencoder’’ networks, but this works well only if
the initial weights are close to a good solution. We describe an effective way of initializing the
weights that allows deep autoencoder networks to learn low-dimensional codes that work much
better than principal components analysis as a tool to reduce the dimensionality of data.

D
imensionality reduction facilitates the

classification, visualization, communi-

cation, and storage of high-dimensional

data. A simple and widely used method is

principal components analysis (PCA), which

finds the directions of greatest variance in the

data set and represents each data point by its

coordinates along each of these directions. We

describe a nonlinear generalization of PCA that

uses an adaptive, multilayer Bencoder[ network

Fig. 3. Theory, presented as the experiment (see
Fig. 1). The SHG source is the magnetic compo-
nent of the Lorentz force on metal electrons in
the SRRs.
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