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Abstract: We propose, solve, and discuss a simple model for a 
metamaterial incorporating optical gain: A single bosonic resonance is 
coupled to a fermionic (inverted) two-level-system resonance via local-field 
interactions. For given steady-state inversion, this model can be solved 
analytically, revealing a rich variety of (Fano) absorption/gain lineshapes. 
We also give an analytic expression for the fixed inversion resulting from 
gain pinning under steady-state conditions. Furthermore, the dynamic 
response of the “lasing SPASER”, i.e., its relaxation oscillations, can be 
obtained by simple numerical calculations within the same model. As a 
result, this toy model can be viewed as the near-field-optical counterpart of 
the usual LASER rate equations. 
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1. Introduction 

Reducing or compensating the large intrinsic loss of metal-based metamaterials operating at 
optical frequencies is one of the major challenges in the emerging field of photonic 
metamaterials [1-3]. If this potential show-stopper could be eliminated, many of the 
envisioned applications such as perfect lenses [4] or cloaking [5,6] at optical frequencies 
might actually come into reach. For example, the best fabricated negative-index metamaterial 
structures operating at around 1.4-µm wavelength [7] have shown a figure of merit of FOM=3 
(modulus of real to imaginary part of the refractive index). This experimental result can be 
translated into an absolute absorption coefficient of α = 3×104 cm-1 = 3 µm-1 – which is even 
larger than the band-to-band absorption of typical direct-gap semiconductors such as, e.g., 
GaAs (there, α ≈ 104 cm-1). At first sight, this level of absorption looks quite depressing as 
room-temperature steady-state gain coefficients g=-α of this magnitude are not easily achieved 
at all.  
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Fig. 1. (a) Illustration of a possible geometry for bringing the optical gain from a thin 
semiconductor film (bulk, quantum wells, or quantum dots) close to an array of, e.g., plasmonic 
split-ring resonators. This geometry aims at taking advantage of local-field-enhancement 
effects. The electric-field vector of the incident light lies in the layer plane. (b) Schematic 
illustration of the toy model for a plasmonic (bosonic) metamaterial resonance coupled to a 
(fermionic) two-level-system gain resonance via local-field interactions. This interaction is 
described by the phenomenological (Lorentz) parameter L.  

 
However, an interesting recent theoretical publication by Zheludev et al. [8] – based on 

the concept of the SPASER (surface plasmon amplification by stimulated emission of 
radiation) introduced by Stockman et al. [9,10] in 2003 – has essentially shown that it is not 
the bulk gain coefficient that matters but rather the effective gain coefficient of the combined 
system. Due to pronounced local-field enhancement effects in the spatial vicinity of the 
periodic metallic nanostructure, the effective gain coefficient can be substantially larger than 
its bulk counterpart. As an extended planar periodic arrangement of identical plasmonic 
structures that oscillate in phase due to mutual coupling and that exhibit a sub-wavelength 
period clearly leads to coherent plane-wave emission of light normal to the plane (in close 
analogy to phased antenna arrays), this two-dimensional active metamaterial structure has 
been named the “lasing SPASER” [8]. We briefly mention that further theoretical 
investigations on particular SPASER [11,12] structures, on metamaterials including gain 
materials [13,14], and on lasing SPASER structures [15] have recently been published. Other 
work regarding bringing gain to surface plasmons includes, e.g., [16-19]. Furthermore, 
recently published experiments on active metal-dielectric nanocavities [20,21] already come 
fairly close to the original SPASER [9] idea. 

In the microscopic calculations by Zheludev et al. [8] based on numerical solutions of the 
three-dimensional vector Maxwell equations for specific (two-slit) split-ring-resonator 
nanostructures, the gain medium has been described by a constant (i.e., frequency-
independent and emission-independent) negative imaginary part of the gain medium dielectric 
function. Clearly, it is interesting to investigate modifications of this result  

 
• due to a more realistic frequency-dependent gain,  
• due to gain pinning, and 
• due to dynamic effects. 
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Complete microscopic self-consistent numerical calculations of this sort have not been 
published so far to the best of our knowledge. They may well be feasible, but are certainly 
rather demanding and will have to deal with the specifics of a particular design.  

In this Letter, we rather propose a simple and general toy model based on a fermionic 
two-level-system resonance (representing the gain medium, e.g., an ensemble of densely 
spaced semiconductor quantum dots) and a single bosonic resonance (representing the 
plasmonic resonance of the metamaterial) – connected to each other via a local-field coupling 
analogous to the local-field Lorentz factor. Interestingly, our toy model can be solved 
analytically for (quasi-) steady-state conditions. Numerical solutions for the time-dependent 
case are also discussed. 

2. Definition of the model  

The physics of our toy model is graphically illustrated in Fig. 1. The key to the model are the 
local field (or evanescent-field) interactions, i.e., the local electric field of the two-level 
system (2LS) is given by the external electric field E  
 

(1) 
 
of the light plus a phenomenological constant, L, times the polarization of the bosonic mode, 
Ppl, i.e.,  

(2) 
 
Correspondingly, the local electric field of the bosonic mode is given by the external electric 
field plus constant L times the polarization of the 2LS, P2LS, i.e.,  

 
(3) 

 
As the spatial separation between the gain film and the plasmonic nanostructures [see Fig. 
1(a)] would be increased along the direction normal to the plane of the gain film, the coupling 
via the plasmonic evanescent field decreases and L is expected to approach zero. Note that we 
have omitted the self-interactions, which can generally also occur via the local fields. In linear 
optics, however, self-interaction merely renormalizes the effective resonance center 
frequency. 

Mathematically, the equations of motion for a fermionic two-level system are the famous 
and well known optical Bloch equations [22]. They can be arranged into the form 

 
(4) 

 
 

(5) 
 

Here p2LS denotes the (dimensionless) complex transition amplitude, f = f2LS the occupation 
probability of the upper level, d2LS the dipole matrix element, E the total electric field, Ω2LS 
the transition frequency, γ2LS the damping (or transverse relaxation) rate, and Γ2LS the 
population (or longitudinal) relaxation rate. The individual electric dipole moment is given by 
the product d2LSp2LS. Multiplying with the volume density of two-level systems, N2LS, leads to 
the macroscopic 2LS polarization P2LS, i.e., to P2LS=N2LSd2LSp2LS+c.c. The equations of 
motion for a corresponding single bosonic mode are strictly identical to Eq. (4) and Eq. (5), 
except that the factor (1-2f) in Eq. (4) has to be replaced by unity, i.e.,  
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Hence, the equation for the occupation fpl of the bosonic mode becomes irrelevant. In analogy 
to the 2LS, the macroscopic plasmonic polarization is given by Ppl=Npldplppl+c.c. 

As discussed above, we assume that the coupling between the two resonances is governed 
by local-field effects. Under these conditions, we simply have to replace the electric fields E in 
Eq. (4) and Eq. (5) by the term given in Eq. (2) and the electric field E in Eq. (6) by Eq. (3).  

We envision that the 2LS is pumped via additional energy levels of the system that are not 
explicitly accounted for in the 2LS model, resulting in an additional effective pump rate, 
Γpump, of the 2LS on the right-hand side of Eq. (5).  

To avoid confusion: Generally, plasmonic nanostructures can have both an electric-dipole 
and a magnetic-dipole response [1-3]. Here, we have focused on the electric-dipole response 
(leading to the polarization P) as only that can couple directly to readily available gain media 
at optical frequencies. Thus, our model is not applicable directly to magnetic-dipole plasmonic 
resonances or to negative-index metamaterials. Yet, it may provide qualitative trends. Our 
model is applicable directly to, e.g., the electric-dipole (Mie) resonances of the “V” structures 
envisioned in Ref. 9, but not to the “dark” modes there. 

Next, we discuss analytical and numerical solutions of the model defined so far. 

3. Linear optical response for fixed occupation 

First, we consider the case of a given (i.e., fixed) occupation f of the 2LS and calculate the 
linear optical response with respect to some probe light with electric field E. As long as the 
system does not exhibit effective stimulated emission, this assumption of fixed f is completely 
unproblematic. This situation can occur under steady-state pumping conditions indeed. In 
contrast, as soon as f is such that the system does reveal effective stimulated emission, the 
situation becomes unstable, hence, it cannot occur under steady-state conditions (also see 
sections 4 and 5). Still, such values of f can be meaningful under transient conditions, for 
example, for a probe pulse with electric field E that follows, with some delay, the excitation 
by a pump pulse at larger photon energies (via the pump rate Γpump described above).  

Under these conditions of fixed f, it is straightforward to solve the above coupled 
equations. Using the usual rotating-wave approximation (RWA) [17], we derive the transition 
amplitudes 
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Here, we have introduced the two resulting coupling frequencies 
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describing the effective back-action of the plasmonic mode onto the 2LS and vice versa, 
respectively. Note that the numerator of the 2LS transition amplitude in Eq. (7) shows the 
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the plasmonic resonance. Strictly speaking, this resonance indexed by “2LS” is a mixed mode 
composed of the 2LS and the plasmonic resonance. Only for zero coupling, this resonance 
becomes that of the 2LS. The denominator of Eq. (7) also contains a resonance. This aspect 
can be interpreted as an eigenfrequency and a damping that are effectively frequency 
dependent, hence, this aspect gives rise to non-trivial lineshapes. As p2LS according to Eq. (7) 
also enters in the numerator of Eq. (8), the spectral dependence of ppl is quite complex as well. 
From this point on, one has two different options to arrive at optical spectra: via a transfer-
matrix approach or via a Maxwell-Garnett effective-medium approach. 

3.1. Transfer-Matrix approach  

The system shown in Fig. 1 can be treated as composed of two films with thicknesses l2LS and 
lpl for the 2LS gain and the plasmonic layer, respectively. The two corresponding dielectric 
functions and refractive indices result immediately from the two macroscopic polarizations 
P2LS and Ppl given above. Normal-incidence intensity transmittance T and reflectance R 
spectra can be computed from the well known transfer-matrix approach [26] for layered films. 
In order to test the relevance of our toy model and in order to adjust the toy model parameters, 
especially the local-field parameter L, we compare such calculations with microscopic 
numerical calculations on the basis of the complete three-dimensional vector Maxwell 
equations. These calculations based on the commercially available finite-difference time-
domain software package lumerical [27] are rather similar to those in Ref. 8, however, with a 
frequency-dependent two-level-system gain resonance (same parameters as for the toy model) 
and for plasmonic split-ring resonators (SRR) roughly similar to the ones discussed in Ref. 24. 
The SRR are lpl=20-nm thick and are arranged on a quadratic lattice with lattice constant 
a=300 nm. The SRR lateral dimensions can be seen from Fig. 1(a). The silver, the SRR are 
assumed to be composed of, is described by the Drude free-electron model with standard 
parameters, i.e., plasma frequency ωpl=1.32×1016 s-1 and collision frequency ωcol=1.2×1014 s-1.  

Selected results are depicted in Fig. 2, where spectra are arranged as a matrix. Obviously, 
the agreement between numerical results in column (a) and analytical calculations with fitted 
parameters in column (b) is very good. In particular, for f=0, a pronounced avoided crossing 
(or “hybridization”) of the two resonances occurs, the splitting of which agrees well. This 
aspect is of utmost importance because the angular frequency splitting is directly related to the 
quantity 2(V2LSVpl)

1/2 – which is proportional to the local-field coupling L [see Eq. (9) and Eq. 
(11)]. We will see below that the coupling strength is crucial for the lasing SPASER. 
Furthermore, the overall agreement for f=1 is very good as well. Here, the reflectance at its 
peak largely exceeds unity, indicative of effective gain of the combined system, whereas the 
transmittance stays well below unity – an aspect that we will explain intuitively below. We 
can conclude that the local-field approximation is well justified under these conditions. 

3.2. Maxwell-Garnett effective-medium approach 

Alternatively, one can approximate the system shown in Fig. 1 as a single effective film with 
thickness l=l2LS+lpl. The advantage as compared to the two-layer approach of the previous 
section is that a single set of optical parameters follows the spirit of a metamaterial and that it 
allows for obtaining a more intuitive understanding. The corresponding effective parameters 
can immediately be derived from Maxwell-Garnett effective-medium theory [recall that the 
electric-field vector is parallel to the plane of the layers, see Fig. 1(a)]. In this case, the total 
effective macroscopic polarization P results as 
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Equation (10) allows for calculating all relevant linear optical properties via the effective 
optical susceptibility χ, the effective electric permittivity ε=1+χ, and the effective complex 
refractive index n=±ε1/2. The sign of the root has to be chosen such that Re(n)≥0. As µ=1 here, 
we can equivalently say that the sign of the root has to be chosen such that the sign of Im(n) is 
the same as the sign of Im(χ). The formulas for the normal-incidence intensity transmittance T 
and reflectance R of a homogeneous slab with complex refractive index n (hence, as µ=1, 
complex impedance Z=Z0/n, with the vacuum impedance Z0) and thickness l=l2LS+lpl can, e.g., 
easily be obtained from Eq. (5.119) and Eq. (5.120) of the review article [3] or from optics 
textbooks (e.g., [26]). 

 

 
 

Fig. 2. Normal-incidence intensity transmittance T (black) and reflectance R (red) spectra. 
From top to bottom row (see schemes on the left-hand side): split-ring resonators only, gain 
film for f=0 only, both combined for f=0, and both combined for f=1. (a) Complete numerical 
finite-difference time-domain solutions of the three-dimensional vector Maxwell equations for 
the geometry depicted in Fig. 1. (b) Same for the transfer-matrix treatment of the toy model. (c) 
Same for the Maxwell-Garnett treatment of the toy model. Model parameters are: Ω2LS=2π×200 
THz, Ωpl=2π×200 THz, γ2LS=7.53×1012 s-1, γpl=29.5×1012 s-1, d2LS=6.5×10-29 Cm, dpl=6.2×10-26 
Cm, N2LS=5.05×1023 m-3, Npl=5.56×1020 m-3, l2LS=50 nm, lpl=20 nm, and L=3.3416×1010 m/F 
such that V2LS=7.1×1011 s-1 and Vpl=6.449×1014 s-1 result.  
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Fig. 3. (a) Toy model complex linear susceptibility χ, (b) complex refractive index n, and (c) 
absorption coefficient α within the Maxwell-Garnett treatment. The solid (dashed) curves are 
the results with (without) local field coupling L. Real (imaginary) parts of complex quantities 
are red (green). The two-level system occupation f increases from top to bottom row as 
indicated. Model parameters are identical to those in Fig. 2. 

 
Examples for linear optical spectra according to the Maxwell-Garnett approach are given 

in column (c) of Fig. 2. It can be seen that the qualitative agreement with the transfer-matrix 
calculations shown in column (b) is very good. This is especially true for the lower two rows. 
The upper two rows of columns (c) and (b) are trivially identical (as they refer to only a single 
layer each). Furthermore, column (c) in Fig. 2 also nicely qualitatively agrees with the 
complete numerical calculations shown in column (a), although small quantitative deviations 
do arise. We can conclude that not only the local-field approximation but also the Maxwell-
Garnett effective-medium approximation is well justified under these conditions. 
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Fig. 4. Readers interested in the numerous parameter combinations other than the few selected 
special cases shown in Figs. 2 and 3 may download a software free of cost [25], allowing to 
calculate all relevant quantities of our toy model within the Maxwell-Garnett approach. The 
surface of this software is depicted here. All ten model parameters can be adjusted and the 
spectra change in real time. Default parameters are those of Figs. 2 and 3 and f=1. All 
frequencies and dampings are normalized with respect to the fixed 2LS transition frequency 
Ω2LS=2π×200 THz (corresponding to about 1.5-µm wavelength). 

 
The corresponding Maxwell-Garnett effective parameters are depicted in Fig. 3. Here, the 

solid curves are the complete results. For the dashed curves, the local-field parameter is 
artificially set to L=0. The comparison of solid and dashed curves, respectively, allows for 
assessing the influence of the local-field coupling L. Generally, the absorption lineshape is 
Fano-like – an aspect that we have previously pointed out for coupled classical harmonic 
oscillators [23]. The Fano character becomes especially obvious for f=0 and if one of the two 
resonances exhibits a much larger damping than the other one (not shown here, see Fig. 4). 
More importantly, Fig. 3 also shows the evolution of the absorption spectrum for increasing 
two-level-system upper-state occupation f = 0, 0.50, 0.7426, and 1. As transparency of the 
2LS at f=0.5 is approached, the avoided crossing obviously collapses. Increasing f further, a 
sharp feature develops that becomes infinitely sharp if the gain exactly compensates the loss. 
At this critical point (f=0.7426 for the parameters chosen in Figs. 2 and 3), we expect lasing 
(or “spasing” [9] or “lasing spasing” [8]). We will further investigate this critical value for f in 
the following section. Further increase of f again broadens the spectral features because the 
gain over-compensates the loss. It is important to note that no gain is observed at all in Fig. 3 
in case that the local-field coupling is artificially switched off (dashed curves for L=0). This 
behavior is expected on the basis of the intuitive reasoning in section 1 in terms of the 
effective gain rather than the 2LS gain itself that matters. The discontinuities of Im(n) occur at 
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zeroes of Re(n), where the sign of the root of the electric permittivity has to change in order to 
fulfill the condition Re(n)≥0.  

Intuitively, one might have expected that the intensity transmittance T will exceed unity 
as soon as effective gain occurs (see above). This can be the case, but Figs. 2 and 3 show that 
this is not necessarily the case. At and around the critical point, the real part of the refractive 
index becomes very large compared to unity or close to zero, either of which leads to a large 
impedance mismatch with respect to vacuum that gives rise to a large intensity reflectance R. 
As a result, the transmittance T is well below unity and shows no obvious signs of gain at all. 
We can conclude that transmittance alone is not necessarily a good experimental observable at 
this point.  

As a side remark, we note that this sharp spectral resonance in the real part of the 
refractive index n for the critical value of the occupation f in Fig. 3 implies that the effective 
group velocity is getting extremely small or even zero in a very narrow spectral range. 
Notably, one could furthermore envision dynamic tailoring of the effective group velocity via 
reducing f with respect to the critical value, which is possible by reducing the pump rate Γpump. 
(Steady-state increase of f with respect to the critical value is not possible, see next section). 
These small effective group velocities might be interesting in the context of “slow light”. 

In Fig. 2(c) and Fig. 3, we have intentionally only shown few selected aspects of the 
rather rich behavior of the model. In order to allow for a broad overview, we provide the 
reader with a program free of cost [25] that allows for playing with all parameters of the toy 
model in real time (see Fig. 4). Obviously, each of the two uncoupled resonances has four 
parameters (center frequency Ω, damping γ, dipole moment d, and density N). In addition, the 
important phenomenological local-field coupling parameter L and the two-level-system 
occupation f can be freely adjusted – altogether 10 parameters.  

4. Steady-state gain and occupation pinning 

While any value of the 2LS occupation f∈[0,1] can occur under transient conditions, this is 
not true under steady-state conditions: If the coupled system exhibits a gain that exceeds the 
loss, stimulated emission will eventually reduce the two-level system upper-state occupation 
probability f until some steady-state value is reached – a phenomenon, which is well known as 
gain pinning in the context of a LASER [22,28]. Thus, values of f above that steady-state 
value must be treated with a grain of salt. Also see Ref. 29 for a corresponding discussion 
regarding constraints for negative-index metamaterials due to causality.  

Mathematically, polarization envelopes which neither grow (“too much gain”) nor decay 
(“not enough gain”) obviously need to have constant envelope, i.e., the imaginary part of the 
corresponding eigenfrequency ω of the coupled system has to be strictly zero. Without 
external light field, i.e., for E=0 on the RHS of Eq. (2) and Eq. (3), and for constant pump rate 
Γpump, the two complex-valued eigenfrequencies of the above coupled Eqs. (2)-(6) are given 
by 

 
 

 (11) 
 
 

The behavior of ω in the complex frequency plane versus f (running from 0 to 1) 
according to Eq. (11) is illustrated in Fig. 5. Figure 5(a) corresponds to the degenerate case, 
i.e., to Ω2LS=Ωpl. The other parameters are as in Figs. 2 and 3. In Fig. 5(b), the degeneracy is 
slightly lifted. In Figs. 5(c) and (d), the local-field coupling L is successively decreased. As a 
result, an eigenfrequency with zero imaginary part no longer occurs in (d) [see open circles in 
(a)-(c)]. Let us explicitly evaluate the occupation f corresponding to Im(ω)=0. 
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Zero imaginary part of Eq. (11) immediately translates into the general condition for the 
2LS occupation f  
 
 

(12) 
 
 

If Eq. (12) is fulfilled, the denominator of Eq. (7) becomes strictly zero for the real frequency 
ω resulting from Eq. (11), hence the linear optical response according to Eq. (10) diverges at 
this point.  
 

Case (a): Equation (12) has, e.g., a simple transparent special solution for the important 
degenerate case, i.e., for Ω2LS=Ωpl. We obtain 

 
 

(13) 
 
 

For example, for the parameters of Fig. 2, Eq. (13) leads to f=0.7426 – which is why we have 
depicted this particular value in the third row of Fig. 3. 

Recall that, according to the Pauli exclusion principle, the occupation f in Eq. (13) needs 
to be in the interval [0,1]. Thus, an effective coupling frequency V (= geometric mean of the 
two couplings) smaller than the effective damping γ (= geometric mean of the two dampings) 
leads to values of f exceeding unity. In other words: We have found a critical threshold value 
for the strength of the effective local-field interaction V. For values below that critical value, 
no lasing (spasing) action can occur under steady-state conditions. From Eq. (11), the (real-
valued) lasing SPASER frequency results as ω =Ω2LS=Ωpl.  

The condition of strong coupling V≥γ clearly also implies that an avoided crossing of the 
two-level-system resonance and the plasmonic resonance can be seen in the linear optical 
spectra without inversion, i.e., for f=0 (see previous section). Hence, within our model, the 
avoided crossing can be viewed as a prerequisite for obtaining lasing SPASER action (also 
compare Fig. 5).  

 
Case (b): Another simple special case of Eq. (12) results for identical damping rates, i.e., 

for γ =γ2LS=γpl, but finite detuning ΔΩ =Ω2LS-Ωpl≠0. We derive  
 
 

(14) 
 
 

Clearly, increasing the detuning ΔΩ increases the necessary 2LS occupation f, until eventually 
no physical solution f∈[0,1] occurs any more for γ2 +(ΔΩ / 2)2 > V2. The detuning simply 
reduces the optical gain that is accessible for the plasmonic resonance from the two-level 
system (and so does the damping). From Eq. (11), the (real-valued) lasing SPASER frequency 
results as ω=(Ω2LS+Ωpl)/2. 

Note that – in the entire reasoning of this section – we have deliberately and tacitly 
neglected any optical feedback due to back-reflections from sample interfaces or even from 
mirrors due to propagating electromagnetic waves (i.e., we have set E=0 on the RHS of Eq. 
(2) and Eq. (3)) because our aim has been to discuss the case of pure evanescent-field (or 
local-field) optical feedback. The same holds true for the following section. Experimentally, 
this ideal case could, in principle, be realized by appropriate anti-reflection coatings of the 
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structure at the lasing wavelength. It should be clear, however, that there will be a continuous 
transition from an ideal SPASER to a usual LASER if the relative strength of the far-field 
optical feedback with respect to the near-field (local-field) optical feedback is increased 
continuously. Studying this transition is not subject of the present letter.  
 

 

 

Fig. 5. (a) The two complex eigenfrequencies ω according to Eq. (11). The occupation factor f 
runs from 0 (no pumping) to 1 (complete inversion) along the direction indicated by the arrows. 
Model parameters are chosen as in Figs. 2 and 3. At the crossing with the real frequency axis, 
the imaginary part of ω becomes zero, corresponding to the only possible non-trivial stationary 
solution of the lasing SPASER (see open circle). The occupation f is pinned via this condition 
Eq. (12). The two eigenfrequencies without coupling, i.e., for L=0, are shown by the green 
filled circles. Note that these uncoupled complex eigenfrequencies do not depend on f at all. It 
is instructive to compare the complex eigenfrequencies shown here with the linear optical 
spectra shown in Figs. 2 and 3. (b) Same as (a) but Ωpl→ 0.99×Ωpl, (c) as (b) but L→ L/2, and 
(d) as (b) but L→ L/5. For the latter, stationary SPASER action is obviously no longer possible. 

 
5. Lasing SPASER relaxation oscillations 

Next, we discuss an example for the time-dependent behavior of our toy model [see Eqs. (2)-
(6)]. We consider a pump rate Γpump = Γ0(1-f). The Pauli blocking factor (1-f) acknowledges 
that the upper state of each two-level system cannot be occupied with more than one electron, 
i.e., it guarantees f∈[0,1]. Γ0 shall be zero until time t=0. Then it is switched on to a constant 
value. Also, we seed the polarizations with a tiny but finite value. This is necessary because 
our toy model does not contain any spontaneous emission whatsoever. As a result, the 
transition amplitudes would otherwise be strictly zero – no matter how much gain the system 
develops. Alternatively, one could use a weak external seed pulse of light E(t). None of these 
details is really important, the initial conditions just need to be non-zero.  
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Under these conditions, by inserting the local field according to Eq. (2) for E=0 on the 
RHS of Eq. (2), Eq. (5) in RWA becomes 

 
(15) 

 
Here, we have abbreviated the effective rate of stimulated emission Γstim. For example, for the 
degenerate case, the steady-state lasing threshold (where Γstim=0) is reached for the pump rate 
Γpump = Γ2LSf, with the pinned 2LS occupation f according to Eq. (12). As usual, above this 
threshold pump rate, the effective rate of stimulated emission increases linearly with Γpump, 
i.e., Γstim=Γpump-Γ2LSf. 

Figure 6 shows selected time-dependent numerical solutions of Eqs. (2)-(6) for 
parameters corresponding to those in the caption of Fig. 2. Trivially, the 2LS occupation f 
initially grows linearly in time due to the constant generation rate. At some point, the 
occupation is sufficiently large for obtaining gain (i.e., Im(n)<0, see section 3). From this 
point in time on, the effective rate of stimulated emission Γstim increases exponentially. This 
growth ends when stimulated emission has depleted the gain so much that the system comes 
back to transparency (i.e., Γstim≈0 and Im(n)>0). The resulting sharp emission spikes in Fig. 6 
have a temporal width on the order of a few picoseconds. After each spike, the population 
increases again and the gain recovers. Finally, after several oscillations with decreasing 
amplitude over a time span of hundreds of picoseconds, a steady-state value of f is reached – 
that does not depend on the pump rate Γpump. This aspect reflects the gain pinning already 
discussed in the previous section.  

The square modulus of the effective polarization according to Eq. (10) shows a behavior 
closely similar to that of the effective rate of stimulated emission in Fig. 6 (hence it is not 
depicted here). 

The damped oscillation scenario is just the counterpart of the relaxation oscillations that 
are well known from the usual LASER rate equations [22,28]. As usual, the relaxation 
oscillation frequency increases with increasing pumping level [22,28] – a trend that is also 
clearly visible in Fig. 6. This observation emphasizes that our toy model and the usual LASER 
rate equations share certain similarities. Section 3, however, has also shown aspects that do 
not occur in the LASER rate equations at all. Recall that the LASER rate equations address 
the time-dependent emission intensity but they do not address the spectral dependence of the 
optical response at all. 

 
 

 
 

Fig. 6. Switch-on of the lasing SPASER within our toy model leading to pronounced rapid 
relaxation oscillations of the two-level system occupation f and the effective rate of stimulated 
emission Γstim. The pump rate Γpump=Γ0(1-f) with constant Γ0 after time t=0 is parameter. The 
model parameters are identical to those of Figs. 2 and 3, Γ2LS=1010 s-1. The lasing SPASER 
frequency results as ω =Ω2LS=Ωpl. (a) Γ0=4×1010 s-1 (just slightly above threshold) and (b) 
Γ0=6×1010 s-1. 
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6. Conclusions 

In conclusion, we have proposed and analyzed a simple and intuitive model for a (bosonic) 
metamaterial resonance coupled to a (fermionic) two-level-system gain resonance via local-
field (evanescent-field) interactions. Especially the presented analytic solutions might help 
experimentalists in getting a feeling for designing actual SPASER structures. The model 
contains one purely phenomenological parameter L that describes the strength of the local-
field interaction. This parameter needs to be chosen through comparison with numerical 
calculations of the plasmonic nanostructure via the three-dimensional vector Maxwell 
equations. The choice of all other model parameters for a given particular configuration is 
straightforward. To allow the reader for playing with the altogether ten model parameters, we 
provide a corresponding software [25]. Next, analytic results for steady-state gain/occupation 
pinning have been derived. Furthermore, we have presented numerical solutions for the time-
dependent problem that exhibits the usual laser relaxation oscillations. The latter aspect shows 
that our toy model for the SPASER shares similarities with the well established LASER rate 
equations. 

Clearly, our simple modeling leaves plenty of room for future improvements. For 
example, proper treatment of the semiconductor will require accounting for Coulomb 
interaction effects via the semiconductor Bloch equations [22,28]. Furthermore, self-
consistent solutions of the material and the Maxwell equations should include a spatially 
inhomogeneous response of the gain material in the vicinity of the plasmonic nanostructure. 
Finally, if the two-dimensional array of coupled plasmonic nanostructures starts lasing from 
spontaneous emission (rather than being driven homogeneously and coherently as in our toy 
model or in Ref. 8), it is not clear under which conditions a homogeneous coherent solution of 
this complex nonlinear system will actually be stable. Regarding applications of the lasing 
SPASER it is obviously not desirable that the system breaks up into domains. 

Broadly speaking, we have seen that one must not assume that gain can be added to a 
metamaterial just to reduce the losses and leave the metamaterial properties (e.g., magnetic 
permeability or negative refractive index) unaltered otherwise. Strong coupling to a gain 
resonance inherently and unavoidably changes the system, resulting in a new effective system 
with new effective properties that need to be evaluated. 
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