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0.1 Abstract

The aim of this thesis is to lay the groundwork for a new and comprehensive theory of slab
avalanche release in dry snow. Simple shear fracture models have long been considered as
standard explanation of slab avalanche formation. These models assume brittle fracture to
take place in a slip plane of zero thickness. The change in strain energy in response to crack
formation then depends only on the shear loading of the slip plane, but not on the compressive
loading. In reality, the fracture process takes place in a weak layer composed of sparsely packed
ice grains. When such a granular aggregate fails, the debris pack tighter and the weak layer
undergoes a reduction in volume, resulting in the subsidence of overlying snowpack layers. As a
consequence, the change in strain energy also depends on the compressive loading of the weak
layer. It is shown that subsidence significantly contributes to the driving force for crack nucleation
and crack propagation, and that failure nucleates as a mixed-mode anticrack and propagates as
a non-linear wave which progressively delaminates the slab over a large area. In the first part of
the work the mechanical energy of an anticrack resulting from a collapsed section in the weak
layer is calculated. The anticrack experiences gravity-induced shear stress τ and compressive
stress σ. It is shown that anticrack energy can be partitioned into a contribution proportional
to τ2 and one proportional to σ2. The energy of a notch can be partitioned into contributions
proportional to τ2, στ and σ2. From the expressions for crack and notch energies, criteria
for fracture propagation are deduced, in particular for cracks of size zero (spontaneous crack
nucleation). It is found that skiers and gaps in the snowpack can nucleate slab avalanches even
if there are no pre-cracked areas in the weak layer. In the second part of this work an asymptotic
solution describing the propagation of fracture in weak layers is proposed. The corresponding
action functional is formulated and non-linear wave solutions with velocity below the shear wave
speed are analysed. Expressions for the propagation velocity, wavelength, deformation profile
and dispersion of the non-linear collapse waves are obtained.

Experimental evidence from field tests confirms the developed criterion for fracture propaga-
tion in weak layers. Experiments on long snow samples, in which the deformation field during
fracture propagation is measured with high precision, confirm the calculated properties of the
collapse waves. The anticrack model explains instabilities known as whumpfs, their connection
with avalanche hazard, as well as the remote triggering of avalanches. The calculation leads to
a two-stage scenario of slope failure. In the first stage, nucleation and propagation of a mixed-
mode anticrack delaminates the slab from the snow below. This process can occur with or
without shear loading and for arbitrary amounts of crack-face friction. In the second stage fric-
tional forces between the crack faces decide whether the slab will slide, causing an avalanche,
or subside, causing a whumpf.
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0.2 Zusammenfassung

Das Ziel dieser Promotionsarbeit ist die Erstellung der Grundlagen für eine neue und um-
fassende Theorie der Auslösung von Schneebrettlawinen. Scherbruchmodelle galten bisher als
Standarderklärung der Schneebrettauslösung. In diesen Modellen wird angenommen, dass ein
spröder Scherbruch ohne Volumenänderung des Materials stattfindet, so dass die Änderung
der Verzerrungsenergie allein von den Scherkräften in der Bruchebene abhängt. Tatsächlich
aber findet der Bruch in einer schwachen Schneeschicht endlicher Dicke statt, die aus lose
gepackten Eiskörnern besteht. Bricht dieses Aggregat, entsteht eine Schuttmasse, die dichter
gepackt ist als das ursprüngliche Material, so dass eine Volumenreduktion eintritt. Dadurch leis-
ten auch die kompressiven Kräfte in der Schneedecke Arbeit. Es wird gezeigt, dass diese Ar-
beit nicht vernachlässigt werden kann. Dabei stellt sich heraus, dass der Kollaps der schwachen
Schneeschicht als Antiriss beginnt und sich in Form einer nicht-linearen Kollapswelle fortpflanzt,
welche die zuvor gebundenen Schneeschichten grossflächig abtrennt. Im ersten Teil der Ar-
beit wird die mechanische Energie eines Antirisses berechnet, welcher aus einem kollabierten
Abschnitt der Schwachschicht hervorgeht. Der Antiriss unterliegt einer Scherspannung τ und
einer Druckspannung σ. Es zeigt sich, dass die Energie des Antirisses in Beiträge propor-
tional zu τ2 und proportional zu σ2 aufgeteilt werden kann. Die Energie einer Kerbe hingegen
kann in Beiträge proportional zu τ2, zu στ und zu σ2 aufgeteilt werden. Aus den analytischen
Ausdrücken für Antiriss- und Kerbenenergie ergeben sich Kriterien für spontane Bruchaus-
breitung. Insbesondere wird das spontane Wachstum von Antirissen oder Kerben der Länge
null untersucht. Damit kann gezeigt werden, dass spontane Bruchnukleation durch Skifahrer
wie auch durch Lücken in der Schneedecke in einer intakten, nicht vorgebrochenen Schwach-
schicht möglich ist. Im zweiten Teil wird eine asymptotische Lösung für die Bruchausbreitung
vorgeschlagen. Das betreffende Wirkungsfunktional wird angeschrieben und Lösungen, die
sich mit einer Geschwindigkeit unterhalb der von Scherwellen ausbreiten, werden analysiert.
Es ergeben sich analytische Ausdrücke für Ausbreitungsgeschwindigkeit, Wellenlänge, Ver-
schiebungsprofil und Dispersion der Kollapswelle.

Feldexperimente bestätigen die Kriterien für die Bruchausbreitung für den Fall künstlich
erzeugter Kerben. Experimente an Schneeschichtungen, bei welchen die Verschiebung
mit hoher Genauigkeit gemessen wurde, bestätigen berechnete Eigenschaften der Kollap-
swelle. Das Antirissmodell erklärt die als Wummgeräusche bekannte Instabilität von Schnee,
ihre Verknüpfung mit Schneebrettlawinengefahr, und die Möglichkeit der Fernauslösung von
Schneebrettlawinen. Die Berechnungen führen zu einem Zweiphasenszenario der Schneebret-
tauslösung. In der ersten Phase entsteht der Antiriss, breitet sich aus, und trennt die aneinan-
dergrenzenden Schneeschichten von einander ab. Dieser Prozess kann auch ohne Scherspan-
nung und mit beliebig grosser Bruchflächenreibung ablaufen. In der zweiten Phase entscheidet
die Reibung, ob das Schneebrett als Lawine abgleitet oder als Wummgeräusch nur absackt.
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0.3 Common symbols

Latin:
c Propagation velocity of collapse wave.
cp Propagation velocity of longitudinal wave, cp = (E/%)1/2.
cs Propagation velocity of shear wave, cs = (kG/%)1/2.
E Elastic modulus of slab material for plane deformation.
E0 Elastic modulus of substrate material for plane deformation.
g Acceleration of gravity.
G Shear modulus of slab material for plane deformation.
G0 Shear modulus of substrate material for plane deformation.
h Slab thickness (slope-normal).
hf Collapse amplitude (slope-normal).
k Timoshenko’s correction factor (k=5/6 for rectangular sections).
l0 Half-length of anticrack at tangency (first crack-face contact).
l Unsupported length of anticrack after tangency, wavelength of collapse wave.
p Line charge on the slab, force per unit width (e.g. N/m).
r Crack half-length
ux, uy Slope-parallel, slope-normal displacement of a point on the slab’s centre line.
V Crack energy.
wf Specific fracture energy of weak layer.
x, y Slope-parallel and slope-normal coordinates.

Greek:
α, β Dundurs’ elastic mismatch parameters for interface cracks.
η Elastic constant, η = [E/(3kG)]1/2 .
µ Coulomb friction coeffcient between crack faces.
ν Poisson’s ratio of slab material.
ν0 Poisson’s ratio of substrate material.
ψ Rotation angle of a cross section of the superstratum.
σ Far-field compressive stress at the surface of the interface layer, σ = −%hg cos θ.
τ Far-field shear stress at the surface of the interface layer, τ = %hg sin θ.
τr Friction force per unit surface of the interface layer, τr = min(|τ |, µ|σ|).
τf Resultant shear stress on weak layer, τf = τ − τr.
θ Slope angle.
θµ Friction angle of crack faces, θµ = arctanµ.
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Chapter 1

Introduction

1.1 Slab avalanches and whumpfs

Snow avalanches occur in two fundamentally different modes. Loose snow avalanches fan out
from one point, entraining granules of snow of low cohesion by collisions. They often occur
during manifest meteorological events such as snow storms or rapid warming. Slab avalanches
are the result of fracture processes which releases a large area of snowpack at once. They
release spontaneously or may be triggered by human activities such as skiing, walking, use
of explosives or driving snow vehicles. Slab avalanches may be considerably delayed with
respect to manifest meteorological events. They originate in the extended failure of a subsurface
layer in stratified snow [53]. As shown in Fig. 1.1, the primary fracture plane is located in
the subsurface layer on the base of the slab [65]. The slab progressively debonds from the
substrate by propagation of fracture along this layer, which subsequently acts as a sliding plane
and erodes. The peripheral wall is a secondary fracture plane resulting from tensile or shear
failure of the slab subsequent to the failure of the weak basal layer [65]. Once the secondary
fracture cuts out a portion of the slab, this portion starts avalanching. In the present work the
fracture process is assumed to take place in dry snow. In this case, no melt water is present in
the primary fracture plane.

The first step in understanding the formation of slab avalanches is the comprehension of an-
other instability typical of snow: the so-called ’whumpf’. A whumpf is a sudden subsidence
of the snowpack over a more or less wide area, perceived by skiers1 as a brief shake of the
snow cover accompanied by more or less perceptible acoustic emission. The term whumpf
is an echoism of this perception. In perennial snow and polar firns, the term ’firn-quake’ has
been used to describe a similar phenomenon [14]. For a long time practitioners have perceived
whumpfs as warning signs of imminent avalanche hazard [8,29,85]. Curiously however, snow-
pack subsidence and whumpfs have received little attention in the snow science literature for a

1When speaking of skiers in the text, any other type of human presence on the snowpack is meant to be included,
e.g. snowboarders, pedestrians, occupants of (motor)sledges and other snow-vehicles.

1



2 Chapter 1. Introduction

Figure 1.1: Fracture pattern showing the basal fracture plane (eroded) and the peripheral wall.
This slab avalanche of exceptional size released spontaneously at Glacier du Vallonnet, France,
on April 4 2007. The slab was over 2 m thick. Photo: A. Duclos, www.data-avalanche.org.

long time. It is only a few years now since whumpfs were first studied systematically in field ex-
periments [40]. Previous to the present work, the role of subsidence in the nucleation of fracture
was obscure and has never been modelled. From the point of view of the established models of
avalanche formation, subsidence was regarded as a secondary process which is subsequent to
shear fracture and plays no direct role in slope failure. Snowpack subsidence and whumpfs are
at times still dismissed today as warning signs of snowpack instability. The following account of
an avalanche incident is extracted from the database www.data-avalanche.org:

”Nous n’avions rien à faire dans une face sud à 15 h ce jour (pourtant la neige encore dure sous
la face sud-ouest nous a fait croire qu’on avait encore un peu de temps). Les 2 woufs avec
tassement du manteau pendant la montée (dans des endroits plats) ont éveillé notre attention
mais auraient dû tirer la sonette d’alarme.” Olivier Lesbros, Petit Pinier, Face SO, 02/2008.2

When afterwards the skiers descended into a large slope, they triggered a slab avalanche but
luckily escaped. One skier was able to ski out of the slab while it was already in motion, the other
was on the edge of the slab and only entrained for a few metres. The two skiers involved in this
incident will certainly pay increased attention to whumpfs during their next outings. Meanwhile,
one goal of the present work will be to find an explanation for the connection between whumpfs
and slab avalanches. In doing so, a simple question needs to be answered: what exactly

2We had nothing to do in a south-facing slope at 3 p.m. this afternoon (however the snow was still hard in south-
western slopes and we thought we had a little more time). During the climb, two whumpfs with subsidence of the
snow cover (on flat ground) raised our concerns but should have rung the alarm bells [translated by author].



1.2. Debris collapse 3

happens in the snowpack during fracture? Is it a simple shear fracture (a local slip) that triggers
the slab avalanche as postulated by the established models?

As a material, snow is an aggregate of small, often monocrystalline grains of ice [6]. The
grains can be approximately spherical, polyhedron-shaped or planar and measure between a
few tenths of a millimetre and a few millimetres in size. They do not generally slip over each other
but are bonded by cohesive forces. Therefore a highly sparse microstructure can be maintained
over time, the bulk density of which can be as low as 50 kg/m3. This granular aggregate is
permanently in a transient state of sintering, driven by grain boundary diffusion, surface diffusion
and sublimation-condensation [3, 6]. Consequently, the granular structure constantly changes
and internal stresses continually adapt to new boundary conditions. This aggregate constitutes,
according to Kirchner [44], a remarkably weak, brittle and unreliable material. Kirchner reported
that the failure strength of fresh snow follows a Weibull distribution with modulus between 1 and
2. Compared with common materials, this value is extremely low. A particular snow specimen
has therefore a high probability to break under a fraction (or a multiple) of the average stress
sustained by many such samples.

Understanding slab avalanches is of direct relevance to the public. Avalanche hazard along
traffic routes implies road and railway closures, hampers public mobility and causes distress to
the temporarily isolated population. Heavy snowfalls vastly disrupt human activities, supplies
and infrastructure but at the same time are a welcome prospect for recreation and winter sports.
The questions how and why snow slopes turn unstable and regain stability, and how a single
skier can trigger vast avalanches involving thousands of tons of snow, place snow avalanche
research into the realm of materials science.

1.2 Debris collapse

Intact snow occupies between two and twenty times the specific volume occupied by its con-
densed phases - water and ice. Once fractured, its debris occupies a fraction of the specific
volume of the previously intact snow (Fig. 1.2). As a familiar example, we may suddenly sink
in when we step over a surface of snow. In fact, this material property plays a key role in the
understanding of whumpf and slab avalanche formation, for loss of volume within the material
implies that previously supported layers may suddenly subside. This process contributes to the
transformation of gravitational potential energy into strain energy and fracture energy.

Flimsy bodies like a house of cards, weak snowpack layers made up of surface hoar, depth
hoar or facetted grains, but also sturdy bodies like a building can undergo volumetric collapse
under failure. The reason is that the intact structure envelops more unoccupied space than the
fractured pile of debris. Other assemblages of grains such as a face-centered cubic packing
of stable, congruent spheres in three dimensions have no ability to collapse when undergoing
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fracture. In that case, fracture is necessarily dilatant3.

In general, as fracture takes place, some materials undergo volumetric changes, which can be
positive or negative. For example, non-cohesive granular assemblages alternate between dila-
tancy and gravitational compaction as a result of stick-slip dynamics under shear [78]. Cohesive
granular assemblages can undergo a reduction in volume in addition to elastic compression,
when applied stress is sufficient to break the cohesive bonds between grains. A physical ex-
ample is given by porous sandstone, which can lose a fraction of its porosity under tectonic
loading [74]. It is observed that the compaction is not evenly distributed throughout the volume
of the sandstone, but concentrates in thin, planar bands named compaction bands. Another
physical example is given in Fig. 1.2 which shows a collapsed and an uncollapsed section of a
subsurface layer of old surface hoar in a seasonal snowpack [37]. The fracture pattern shown
on this photograph was due to a whumpf caused by a skier. The debris collapsed and caused
the snowpack to subside. In this particular case, subsidence propagated for about 8 m and then
came to an abrupt stop. Where this happened, a vertical fracture plane was observed, cutting
through the slab to the surface.

1.3 Cracks and anticracks

The strength of a material depends on the actual physical sample which is observed. Each
individual physical sample contains a unique realisation of inhomogeneities, flaws and cracks,
around which the fracture process may nucleate [27]. As long as the unique realisation of
defects is unknown, the strength of a material is necessarily a random variable. There are two
basic ways to study the effect of cracks and flaws on failure. Either one assumes a continuous
body containing a single crack of variable size and studies the change in energy due to such
a crack in response to applied stress - this is the realm of fracture mechanics - or one views
the solid as a random medium accumulating damage in a statistical sense [2] and resorts to
discretised computational physics to perform simulations of an aggregate of particles, ordered
for example in a lattice [86]. If the levels of damage in the material are high prior to failure, the
discrete description is preferable. If the levels of damage are low, failure is likely to be ruled by
a single dominating crack, or a few of them. In this situation, the continuum description may
be the more appropriate. These two basic ways can, of course, be combined by assuming one
portion of the system continuous and the other discrete. In the present work, the continuum
approach is chosen throughout the system.

Physically speaking, a crack is a disruption of the material in a solid body [27, 36]. In general
terms it can be thought as occupying a portion of space where bonds are broken, of volume V

3This statement was conjectured in 1611 by Kepler in a masterpiece of materials science and mathematics, in
which he searches for an explanation for the hexagonal symmetry of snow flakes [41]. Kepler’s conjecture is now
considered proven, although apparently not to the unanimity of all mathematicians.
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a b

Figure 1.2: Volumetric collapse of debris. a: Arrested collapse due to a whumpf in buried
surface hoar [37]. The debris on the left is less than 1 cm thick; the intact part on the right
is 2 cm thick. Reprinted from the Journal of Glaciology with permission of the International
Glaciological Society. b: Structural collapse of a building during the 1995 earthquake in Kobe,
Japan. Only the middle floor collapsed, the other floors remained comparatively undamaged.
Architectural Institute of Japan [16].

and envelope ∂V (N.B. V can be of measure zero but not ∂V). The disruption locally interrupts
stresses, and therefore is a supplementary boundary condition to the system [1]. Topologically
the internal surface of a crack and the external surface delimiting the entire body are equivalent,
and can be treated in exactly the same manner. The presence of one or more cracks in a solid
affects its internal energy, because the strain field adapts to the particular boundary conditions
determined by the cracks.

A particular type of crack occurs for V = 0 with finite envelope ∂V 6= 0. Such cracks are
essentially planar (”penny-shape” geometry). To understand how the presence of a planar
crack affects the state of a homogeneous, linear-elastic solid, the intact solid (without crack) is
assumed to be subjected to non-zero forces on its external surface (Fig. 1.3). This causes the
solid to deform, resulting in an internal stress field expressed by the Cauchy stress tensor. At
any point, six independent values σij, i, j = 1, 2, 3 describe the state of stress in the intact solid.
Let now a small, isolated crack of very small thickness d be centered in the solid (Fig. 1.3).
This introduces new boundary conditions on the crack surface ∂V ∼= B1 ∪ B2 and therefore a
new stress field σ′ij, i, j = 1, 2, 3. With the convention of summation over repeated indices, the
boundary conditions are of the form σ′ijnj = σi, where the nj are the components of the normal
vector to either B1 or B2 and the σi are the imposed stresses on B1 and B2 (in the following
one can assume σi = 0 for free crack surfaces). Choosing the coordinate system as shown in
Fig. 1.3, one obtains nj = ±δj2, and the boundary conditions become σ′i2 = 0. Therefore, the
internal state is only affected by the crack if either σ12 6= 0, σ22 6= 0 or σ32 6= 0, in which case
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Figure 1.3: Fracture modes: Consider a volume element S containing a portion of crack of small
thickness d and free crack faces B1 and B2. The coordinate system is chosen with the 2-axis
perpendicular to the crack plane, as shown. The crack section is in mode I if only the far-field
stress σ22 > 0 is applied, in anticrack mode if only σ22 < 0 is applied, in mode II if only σ12 6= 0

is applied and in mode III if solely σ23 6= 0 is applied. If any of σ12, σ22 and σ23 appear in pairs,
the crack is in mixed-mode. If d→ 0, then σ11, σ13 and σ33 do not affect the state of the crack.

the solid must deform to accommodate the new boundary conditions on B1 and B2. The other
components of the stress field (σ11, σ13, and σ33) do not interact with the crack (if however the
crack were not entirely planar or d significant, these components would also interact with the
crack, for nj 6= ±δj2). Each of the boundary conditions can be accommodated individually. As
a result of linear elasticity the superposition principle is applicable and the general solution is a
linear combination of the three individual solutions, or modes. The situation where σ22 > 0 but
σ12 = σ32 = 0 is called mode I. Accordingly, σ12 6= 0 but σ22 = σ32 = 0 is called mode II and
σ32 6= 0 but σ22 = σ12 = 0 is called mode III. A crack with only mode II and mode III components
is termed a shear crack.

An anticrack is a crack subjected to a fracture mode in which the displacement field is equal in
magnitude but opposite in sign to a classical mode I crack [18]. In standard materials this mode
is not physically possible because of material interpenetration. In cohesive-granular materials,
loss of cohesion may be accompanied by a reduction in specific volume of the resulting granular
debris, clearing the space required for ’inward’ displacement of the crack faces. Knight and
Knight may be credited for the earliest observation of anticracks in superheated ice, in which
material on either side of a nucleus moves towards the fracture plane due to volume decrease
during melting [45]. Fletcher and Pollard proposed the concept of anticrack as an inverse mode I
crack and applied it to rocks which may go in solution under high applied pressure, resulting in a
deformation field with negative divergence in the surrounding rock [18]. More recently Sternlof,
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Rudnicki and Pollard applied the anticrack concept to explain the formation of compression
bands in sandstone [74]. Altogether it appears natural to apply the anticrack concept to snow.
Fig. 1.2 gives an example where such a inward, anticrack-type fracture with volume reduction
has occurred during a whumpf. The application of the anticrack concept to fracture in snow
and its generalisation to limited volume reduction is the central topic of this work. It should be
emphasised that, contrary to the antimode of mode I, the antimodes of mode II and mode III are
indistinguishable from the modes II and III themselves.

A notch, finally, is a line defect in the outer surface of a body. Notches are caused by manufac-
turing, chemical action or mechanical contact with other solids. In snow they can be produced
artificially with a snow-saw. Notches are likely to be of finite width and therefore allow anti-mode
I displacements.

1.4 Brittle fracture

Brittle materials fail without accumulating significant amounts of plastic deformation. They fea-
ture an elastic stress-strain response until rupture (or nearly so) and fail suddenly. In brit-
tle fracture, cracks tips of atomic sharpness propagate by the successive rupture of atomic
bonds [28,47]. In cohesive-granular materials, where granules replace atoms as indivisible par-
ticles, the scale of a crack-tip is many orders of magnitude larger. In snow, grain size ranges
from 0.1 to about 5 mm, and this is a natural cut-off for the size of a crack tip in snow. Such
cracks are therefore essentially macroscopic.

As opposed to brittle materials, ductile materials accumulate substantial amounts of plastic
deformation before failure. Under sufficient loading, they undergo irreversible changes which
affect their physical properties. Snow is ductile at low deformation rates and brittle at high
deformation rates with a transition region between 10−4 and 10−3 s−1 [58]. As far as processes
with higher rate are concerned, the brittle approximation is reasonable. This simplifies the
evaluation of changes in energy as they can be calculated with elastic field theory, as done in
most models of snow failure [5,12,50,53] .

In a brittle, homogeneous and isotropic material, a crack subjected to a combination of modes I,
II and III preferentially grows into a direction normal to the mode I loading, effectively reducing its
loading in the shear modes II and III [35]. For this reason cracks tend to propagate in mode I in
such materials. Mode II cracking comes into play in the cracking of layered materials, especially
along weak interfaces, but even interface cracks rarely and consistently develop in pure mode
II, but mix with other mode components when the elastic properties of the materials on either
side of the interface do not match [15,35].
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1.5 Crack energy

The energy of formation of a crack or simply crack energy is the sum of two contributions: Firstly,
the energy expended in creating the new crack surfaces due to cohesive bonding in the fracture
plane. Secondly, the difference in mechanical energy of the system in the final state (containing
the crack) and the system in the initial state (in absence of the crack). Crack energy therefore
depends on cohesion, geometry, applied stress and, if present, on other material defects such
as pores or other cracks. In the present work, in which brittle fracture is assumed, a single
crack is entirely characterised by a single size parameter r (its radius or half-length), and its
crack energy is denoted by V (r). The crack energy function is a powerful tool for analysing
crack stability. It quantifies the energy required to create a crack of radius r in the system, and,
by derivation, the change in energy to expand a crack of radius r by a small amount dr. If the
derivative ∂rV (r) of the crack energy is negative, crack growth is energetically favourable at r.
If ∂rV (r) is positive and crack growth is a reversible process, one would assume that the crack
contracts. However, crack growth is quite often an irreversible process, and obviously so in the
case of collapse. In this case the crack remains stuck at its current size r or disappears in time
through the action of sintering.

The saddle points of the crack energy function and the behaviour in the neighbourhood of r = 0

are of special physical interest and lead to the notion of a critical crack. If a system with a crack
of radius r is in a saddle point of the crack energy function, it fulfills the Griffith-Irwin criterion [27]
and the crack can expand until it encounters a region of growing or constant V (r). If on the other
hand a system contains no macroscopic crack at all, one can equivalently view it as containing
a crack of size r = 0, characterised by the crack energy V (0) = 0. If this system is in a state
where ∂rV (0) ≤ 0, then a crack can nucleate from an infinitesimal fluctuation, at least from the
view of continuum physics. Examples of this situation will be encountered in chapter 4. Once
nucleated, the crack can expand until it hits a configuration where ∂rV (r) > 0. If on the contrary
∂rV (r) remains negative during growth, the crack can cut though the entire system, which is
said to fail. The determination of the saddle points can be carried out analytically or numerically
by solving the equation ∂rV (r) = 0 and ensuring that ∂rrV (r) < 0.



Chapter 2

Review of experimental evidence

Until recently, the validation of theories aiming to explain snow avalanche formation was re-
garded as difficult or even impossible [64] and no data were available for the task. This unsat-
isfactory situation took a turning-point with two very significant contributions: the publication of
the first fracture toughness measurements on snow by Kirchner, Michot and Suzuki in 2000 [43]
and the publication of the propagation velocity of collapse waves in snow by Johnson, Jamieson
and Stewart in 2004 [40]. These contributions triggered the development of new theoretical ap-
proaches, new laboratory experiments and new field techniques. In 2006/2007 several research
teams independently proposed experiments destined to test the initiation and propagation of
fracture in snow [24, 69, 72]. The bottom line of these experiments is to study the stability of
snow samples under the influence of artificial cracks in order to quantify the propensity of the
snowpack to propagate fracture.

2.1 Slope angle

Slab avalanches are generally said to release from slopes steeper than 30◦, but this figure is
rather indicative and occasionally quite lower release angles have been reported [62,65]. Slope
angle however cannot be characterised by a single value, such as an average. The tilt angle
of the snowpack fluctuates considerably in space at various scales and even varies from layer
to layer (especially in wind-loaded slopes). When a slab avalanche is triggered, the spatial
distribution of the local tilt angle of the fracture plane in the release area is likely a decisive
factor but it is rarely reported.

Concerning whumpfs, there seems to be no restrictions on slope angle. Whumpfs are ob-
served on slopes of any angle and occur frequently in horizontal or low-angle terrain. Moreover,
whumpfs triggered on flat ground can be immediately followed by the release of a remote slab
avalanche on an adjacent slope [39]. Relative to the position of the trigger, the remote event
may occur up or down slope, on the opposing flank of the valley (sometimes a kilometre away),

9
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but also within the same slope. In these cases the fracture starts as a whumpf and subse-
quently becomes a slab avalanche within a remote perimeter. Whumpfs and remotely triggered
avalanches have been studied systematically by Johnson [38,39]. They generally involve weak
layers composed of buried surface hoar, faceted grains and depth hoar.

2.2 Snowpack subsidence

The sudden subsidence of stratified snow has been mentioned in scientific publications since
the 1930’s (see Table 2.1). The phenomenon received various denominations: firnstoss, firn
quake1, snowpack collapse and, most simply, whumpf. In most cases the observations were
fortuitous and, except in the case of Johnson [40], none of the narrators were actually prepared
to record the subsidence. Instead, they report an element of surprise as they sensed the snow-
pack collapse under their feet or vehicles, while engaged in other work. The snow surface was
observed to drop by up to several centimetres over a large area [73,79]. The phenomenon was
attributed to the collapse of a subsurface layer of loosely packed ice particles [7]. In most in-
stances it was observed that the subsidence is not instantaneous over the area but progressing
rather slowly, i.e. at ’visible’ speed. Indeed, most narrators report of sensing the velocity of the
collapse front: some describe it as originating from themselves and moving away, others as a
passing perturbation, first approaching, then moving away. Truman [79] visually characterises
the perturbation as wave-like. Bohren and Beschta [7] rule out elastic waves (longitudinal or
shear waves) as carriers for collapse propagation. In the present work, the perturbation that
propagates the subsidence across the snowpack will be referred to by the term collapse wave.
Because of their irreversibility, collapse waves are per se non-linear waves.

In some cases of collapse, acoustic emissions have been reported [14, 73, 79]. The emis-
sion is usually perceived as continuous (not intermittent as is often observed in plastic defor-
mation), and moving along with the collapse front. The sounds were qualified as ’whumpf’,
’whomph’, ’swishing’, ’hissing’, ’crashing’, ’wind-like’, ’train-like’, ’aircraft-like’ or even ’bangs’.
These sounds usually last from a fraction of a second to a couple of seconds, but Truman re-
ports hearing continuous acoustic emission for up to 10 s. Intensities range from inaudible to
quite loud. In the frequency domain, the sound could possibly overlap with infrasound. In some
instances no sound is sensed by the human ear but the collapse is clearly perceived by the
body.

The first successful measurement of the velocity of a collapse wave in snow is credited to John-
son et al. [40]. Geophones were used to measure the arrival times of a collapse wave at an array
of points, finding a propagation velocity close to 20 m/s [40]. At this time much higher fracture
propagation velocities were expected, as proponents of shear models had predicted fracture

1’Firn’ indicates perennial snow, as opposed to seasonal snow. The term stems from the Swiss German ’fern’,
meaning ’last year’.
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speeds between 100 m/s and 1000 m/s [4]. However, the order of magnitude of Johnson’s re-
sult was later confirmed by van Herwijnen [83]. The data collected by Johnson are compiled in
Table 2.2.

Fig. 2.1 shows an example of whumpf as it appears on the surface. The subsidence and the
perimeter of the whumpf, where fracture arrested, are clearly visible. Collapsed weak layers
have been documented photographically on several occasions [37, 65, 69, 83]. One of these
photographical documents [37] is reprinted in the left panel of Fig. 1.2. In this instance the weak
layer was composed of buried surface hoar crystals and the fracture was triggered by a skier
about 10 metres away from the site where the picture was taken. The figure shows the point
where fracture propagation abruptly arrested. The fracture pattern exhibits a transverse fracture
through the slab up to the surface. The stratification shown in Fig. 1.2 is a somewhat remarkable
example, as weak layers often are less conspicuous than this one. Other types of weak layers,
such as faceted crystals and depth hoar also actively propagate fracture. An example of a depth
hoar layer is shown in Fig. 2.2.

The volumetric collapse of a weak snowpack layer has been frequently observed. Van Herwij-
nen [83] reported volumetric collapse in twelve field experiments which involved various types
of weak layers (10 layers composed of buried surface hoar, 1 of depth hoar and 1 of faceted
crystals) and various triggering mechanisms (4 rutschblock tests, 3 cantilever beam tests and 5
instances of skier triggering in the slope). These results convey the message that collapse of
the weak layer is not an exception but the rule in the fracture of snow.

The simultaneity of slope-parallel displacement of the slab (shear strain in the weak layer) and
slope-perpendicular displacement (collapse of the weak layer) during fracture nucleation has
been demonstrated by van Herwijnen and Jamieson [83]. In their experimental setup, the weak

Table 2.1: Observations of collapse waves. Minimum propagation distance d, collapse ampli-
tude hf , velocity c and acoustic emission (AE) of collapse waves in seasonal snow (seas.) and
firns.

Observation Snow cover d [m] hf [mm] c [m/s] AE
Sorge [73] arctic firn - 25 - hiss-crash-hiss
Bradley [8] seas. - - - startling sound
Truman [79] seas. - 10 − 20 6 swish
Bohren et al. [7] seas. 3 − 30 > 10 > 60 whomph
den Hartog [14] antarctic firn 8 km perceivable 330

Jamieson et al. [37] seas. 8 10 - whumpf
Johnson [39] seas. - 1 − 10 - whumpf
Johnson et al. [40] seas. 12.7 2 20 ± 2 whumpf
van Herwijnen et al. [83] seas. - 1 − 12 10 − 40 -
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Figure 2.1: Perimeter of a whumpf, where fracture arrested. The snow surface sank by approx-
imately 1 cm in the collapsed area on the right. This particular whumpf was triggered while
digging a pit, 20 m away from where the image was taken. Photo: J. Heierli.

layer was laid open by exposing a cross-section of the snowpack. The fracture process was
captured on a high-speed video camera and displacements were measured with an accuracy
of 0.1 mm in space and a resolution of 4 ms in time. It was shown that slope-parallel and slope-
normal displacements initiate simultaneously. Importantly, no shear-induced dilation during the
nucleation phase was observed in these experiments. Van Herwijnen and Jamieson also mea-
sured fracture propagation velocities on slopes [83]. The results indicate velocities between 10

m/s and 40 m/s, thus confirming the order of magnitude obtained previously by Johnson [39]. In
summary:

1. There is experimental evidence demonstrating that subsidence is not an exception but the
rule in the fracture of snow [83]. Collapse amplitudes between 1 to 25 mm have been
reported.

2. Collapse waves propagate with various speeds, reportedly 6 − 60 ms−1 in fresh sea-

Table 2.2: Compilation of the characteristic properties of a whumpf in seasonal snow, after
Johnson et al. [40]. The propagation velocity was measured with a string of geophones.

Notation Description Range Units
h Thickness of slab 0.40 m
% Average density of slab 190 kg/m3

%max Maximum density of slab near weak layer 240 kg/m3

hf Collapse amplitude at arrest 2 mm
Age of weak layer 50 days

θ Slope angle 0 deg
c Propagation velocity (mean between 4.75 m to 12.70 m) 20 ± 2 m/s
d Minimum propagated distance from trigger point 12.7 m
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sonal snow [7, 40, 79]. In dense arctic firn, velocities up to about 300 ms−1 have been
reported [14]. These figures are an order of magnitude smaller than the speed of elastic
waves in the corresponding slabs.

3. Collapse waves can travel over long distances, reportedly up to 300 m in seasonal
snow [39], and several miles in polar firns [14]. They can travel for a rather long time
(up to 10 s in seasonal snow, [79] and more in firn). As a consequence, the collapse wave
must be energetically self-sustained.

4. In some instances the transverse failure of the overlying slab can arrest the propagation
of the subsidence (Fig. 1.2).

5. Acoustic emissions are often, but not always, perceived during subsidence. They appear
to cover a wide spectrum of sounds, from a ’wumm’ or ’whumpf’ to hissing, crashing or
banging sounds (Table 2.1).

a b

Figure 2.2: Depth hoar. a: Layer of depth hoar at the bottom of the snowpack (here 10 cm thick).
b: Loosely bonded, polyhedron-shaped depth hoar grains (diameter 4 mm). The cohesion of
these grains is easily disturbed by mechanical action. The geometry of the structure favours a
tighter rearrangement as the bonds break. Photo: Alain Duclos, ALEA.
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2.3 Specific fracture energy

A pivotal analysis of the failure behaviour of snow samples was undertaken in 2000 by Kirchner,
Michot et al. [42–44]. By analysing several hundred homogeneous snow samples, they found
that fracture toughness in shear is about the same as in tension [42], that there is no size
dependence in their measurements of the strength of snow [44], and that the strength of snow
distributes according to a Weibull distribution with extremely low modulus, reportedly between 1
and 2 for various types of snow [44]. Their work incited snow scientists to establish a database
of fracture properties for natural snow. Following Kirchner and Michot’s original work, several
new test methods have been proposed [20, 21, 51, 68–70], including notch experiments which
will be discussed in section 2.4.

In presence of elastic mismatch across an interfacial crack [15], the fracture toughness K is a
complex number and the fracture energy wf relates to K by the relation KK = wfE

∗, where E∗

is an adequate elastic modulus [52] and the overline denotes complex conjugation. In general,
K and wf depend on the fracture mode. Data on the fracture toughness and specific fracture
energy of stratified snow failing along weak layers are still not abundant today. Measurements
are available from four sources [20,51,68,69]. Some relate to mode II fracture, others to mode I
fracture. A compilation of measured fracture energies of weak layers without distinction of mode
is shown in Fig. 2.3. The specific fracture energies of weak layers appear to fall between 0.01

and 0.1 J/m2 with average 0.04 ± 0.01 J/m2 [68].

The fracture energy of a weak snow layer can be compared to the gravitational potential energy
available through its collapse. For a numerical example, the measurements given in Table 2.2
are considered. In that case, the available potential energy %ghhf is 0.75 J/m2 per millimetre
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Figure 2.3: Compilation of measured fracture energies wf , based on data from [20,51,68,69].
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collapse amplitude, which is significantly larger than typical fracture energies with range be-
tween 0.01 and 0.1 J/m2. In the case of Johnson, who reported a collapse by a total of 2 mm,
the excess is a factor fifteen at least. Some of this potential energy may not be converted into
fracture energy but dissipated otherwise. However, a large amount of potential energy is, at
least in principle, convertible into fracture energy. In summary:

1. Low density snow and weak layers appear to undergo brittle fracture. The failure of indi-
vidual samples is most unpredictable.

2. Fracture toughness in shear is about the same as in tension for snow [42]. This is likely
due to the random cohesive-granular structure of snow, in which the microscopic fracture
planes are always loaded in mixed-mode.

3. The fracture energy of weak layers likely ranges from 0.01 to 0.1 J/m2, with mean 0.04

J/m2, but more experimental data should be collected.

2.4 Artificial triggering

At the International Snow Science Workshop in 2006, two new types of field experiments -
designated as PST, ’propagation saw test’ and ECT, ’extended column test’- were presented
with the aim of assessing the propensities for fracture nucleation and fracture propagation in
snow. These experiments were carried out in situ on stratified snow containing a weak layer.
Cuboid samples were carefully isolated from the environment as shown in Fig. 2.4. In PST-type
tests, Sigrist and Schweizer [69] as well as Gauthier and Jamieson [24] notched the weak layer
with a snow saw. Under favourable circumstances, after saw-cutting between 10 cm and 40 cm
this initiated a rapid, self-sustained propagation of fracture to the opposite end of the sample,
debonding the slab on the passage. If tilted enough, the debonded slab would start to slide
en bloc, like a miniature slab avalanche. Under unfavourable circumstances, the notch would
either not become critical at all, or become critical but arrest after propagating a small distance.
A transverse failure of the slab as shown in Fig. 1.2 is then often observed. In ECT-type tests,
Simenhois and Birkeland [72] use a similar geometry but, instead of notching with a snow saw,
they tap on the upper surface to induce the fracture in the weak layer. The possible outcomes
of the ECT test are similar to the outcomes of the PST test. Due to the absence of pre-cracked
areas, this method is very satisfactory from the point of view of nucleation, but quantitative
studies seem to be difficult to model with the present specification. Using either nucleation
method (PST saw cut or ECT tap), the snow specimen can be oriented in an arbitrary direction.
In practice, the PST works best if the sample is oriented with the long side of the cuboid parallel
to the down-slope direction. The ECT is easier to manage when the long side of the cuboid is
oriented sideways, parallel to the contour line.
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a

b

r

Figure 2.4: Notch experiment in field conditions, cutting into the weak layer (dashed) with a
snow saw from uphill. A slightly longer cut than shown gives rise to the sudden propagation
of the fracture through the entire weak layer. a: length of sample in downslope direction, b:
length of sample in slope-lateral direction (parallel to contour line of terrain), r: notch length.
Reprinted with permission of C. Sigrist.

Gauthier’s PST experiments were intended and designed for evaluating the snowpack’s propen-
sity for fracture propagation [24], but something even more important was reported: The notch
experiment worked in horizontal snow just as well as on inclined slopes. Very comparable criti-
cal notch lengths were measured for different slope angles (Table 2.3). In 23 experiments dated
24-01-2006, 17 dated 8-02-2006 and 22 dated 26-02-2006, Gauthier observes that the critical
notch length depends very weakly on slope angle. Sigrist, in his experiment, laid the emphasis
on obtaining a value for the energy release rate at the fulfilment of the Griffith criterion [68, 69].
This experiment is unique in the sense that all necessary parameters to describe the fracture
process were measured independently. These data thus constitute an excellent test case for a
theoretical model. Sigrist’s results are given in Table 2.4. In summary:

1. In-situ experiments have recently been developed to study crack formation and crack prop-
agation in snow [24,69,72]. Failure is triggered artificially by notching or tapping.

2. Fracture propagation takes place on slopes as well as in the horizontal snowpack. The crit-
ical notch lengths needed to trigger fracture propagation are of the order of a few decime-
tres, regardless of slope angle.
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Table 2.3: Notch experiment results from Gauthier and Jamieson (PST). Critical notch length rc,
average slab density % and slab thickness h (measured slope-perpendicularly). Compiled from
data published in [23,25].

Date Slab % [kg/m3] h [m] Slope θ [deg] Notch rc [m] Notch location
24-01-2006 134 0.11 0 0.13 -

134 0.11 30 0.19 low end
134 0.11 38 0.22 low end

08-02-2006 260 0.98 0 0.36 -
233 1.29 23 0.36 top end

26-02-2006 85 0.51 0 0.07 -

Table 2.4: Notch experiment results from Sigrist and Schweizer. Critical notch length rc, average
slab density %, elastic modulus E and thickness h. From data published in [69].

Date % [kg/m3] E [MPa] h [m] θ [deg] wf [J/m2] rc [m] Notch location
27-01-2006 187 7(3) 0.26 30 0.07(2) 0.23(2) top end

2.5 Crack-face friction

An example of the action of friction forces between slab and bed surface is visible in Fig. 1.1.
On the far right of the picture, half a dozen snow blocks came to a rest after moving a few
metres (other arrested snow blocks are visible further behind). The slope angle at this place
was approximately 26◦ ± 3◦, with 22◦ ± 2◦ above and 32◦ ± 2◦ below (measured by A. Duclos
on IGN maps). As the deceleration is due in large parts to the contact forces between slab
and substrate (air friction is small in the initial phase of slab avalanche motion), friction angles
appear to be around 26◦ in this case. However, as the contact surfaces are eroded by the relative
motion, this does not exactly quantify the initial crack-face friction during crack propagation.

In-situ measurements of crack-face friction are not available at present, but a comprehensive
study of dynamic friction of snow has been performed by Casassa, Narita and Maeno [11]
who used shear box experiments to measure frictional forces of snow-snow contacts in the
laboratory. Results are related in terms of a total friction coefficient µ defined as µ = τr/σ, where
τr is the total friction force per unit area and σ is the normal stress across the contact faces. The
relative speed between contact faces in the shear box was varied between 1 m/s and 25 m/s. In
the context of slab avalanche release, measurements for small speeds are of particular interest.
For snow-snow friction between solid blocks Casassa et al. obtain µ ≥ 0.4 [11]. Compatible
results were obtained by sliding blocks over slopes, where µ was found to range between 0.45
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and 0.65 with average 0.58 [10]. Similar values of µ have been reported by Fyffe [20] who
measured µ = 0.4 to 0.5. Fyffe estimated crack-face friction coefficients to take values between
0.4 and 0.7. Attempts to distinguish the contributions of Coulomb friction µcσ and adhesion
a, where µcσ + a = µσ, resulted in small values of a, and sometimes questionable negative
values [11]. Until the role of adhesion is clarified in snow-snow contacts, µ ≈ µc will be assumed
for the present purpose. In summary:

1. Friction coefficients between snow blocks in low-speed contact (about 1 m/s) appear to
take values above 0.4, and perhaps as high as 0.7. Corresponding friction angles θµ =

arctan µ are then above ≥ 22◦, and perhaps as high as 35◦.

2. Crack-face friction cannot in general be neglected in avalanche formation models.

2.6 Young’s modulus of snow

Material properties for various types of snow are compiled in Appendix A. Amongst these, esti-
mates of the Young’s modulus or elastic modulus E are subject to large scatter due to various
types of grains, aggregate structure, bulk density and temperature. E is generally modelled as
a function of bulk density %, regardless of structural parameters. A first compilation of elastic
moduli was given by Mellor [57] in 1975. Recent studies are due to Shapiro [67], Frolov and
Fedyukin [19], Schweizer and Camponovo [66], Takei and Maeno [77] and Sigrist [68]. The
models proposed by these authors can lead to very different estimates of the elastic modulus of
a sample.

An extensive experimental study is due to Scapozza [63] who measured the elastic modulus
of 200 homogeneous field samples under various conditions. The samples consisted of fine-
grained, rounded snow, typical of slab snow. Temperatures ranged from -19 ◦C to -1.8 ◦C. The
measurements were based on uni-axial compression tests with imposed strain. The strain rates
were varied between 10−6 and 2 × 10−3 s−1. Scapozza’s empirical model for Young’s modulus
is obtained by linear regression of lnE and %, leading to:

Ê = E0 exp (%/%0) with E0 = 0.2 MPa, %0 = 67 kg/m3,

where Ê stands for the model estimate of E. Scapozza found that the the residuals E− Ê follow
no identifiable pattern in temperature or strain rate and that his estimate of E is independent of
temperature and strain rate in the tested range. Some calculations in the present work depend
on estimating the value of Young’s modulus, as this property cannot usually be measured under
field conditions. Until a precise model for Young’s modulus for snow emerges, Scapozza’s model
is consistently used in the present work to evaluate Young’s modulus when no independently
measured value is provided in the sources.



Chapter 3

Review of avalanche release models

In this chapter, current theories of snow avalanche release are reviewed and confronted with
both the phenomenology and the experiments presented in the previous chapter. Snow slope
failure has traditionally been described in terms of a ’snow stability index’ [13, 60]. In this ap-
proach, failure is associated with a homogeneous response to loading throughout the entire
material: no local stress concentrations are considered and each volume element is supposed
to carry an equal load. A sample is expected to fail when loaded to a critical level of stress, the
”strength of the material”. The obvious advantage of this approach is its simplicity. The obvious
problem is that nature very much tends to localise damage, rather than to spread it homoge-
neously across a material. The inadequacy of this approach called for methods based on sound
physical principles and the problem of snow failure was approached by the methods of fracture
mechanics and statistical physics. In those, strength is associated with the actual physical sam-
ple, which is considered inhomogeneous in some places. The inhomogeneities are regarded as
discontinuities (flaws or cracks), around which stress concentrations develop and fracture may
take place. The sample is expected to fail according to the specific configuration of discontinu-
ities it contains. Fracture mechanics regards the existence of cracks as given, and studies their
growth. Statistical physics avoids the concept of pre-cracked areas altogether. Instead, failure
is envisaged as a localisation and/or accumulation of damage in the material [86].

The two most recent reviews on snow avalanche formation [64, 65] sum up the state of
knowledge reflected by the current models. Since these reviews were written, however, new
experimental results [25, 40, 69] and a new theoretical approach to the failure of stratified
snow [30,32,33] have put a question mark on the general validity of the current models. The new
approach explores the role played by porosity and volumetric collapse in the fracture process.

In the following discussion, if not stated otherwise, elastic deformation is considered as plane
strain. The bulk material is homogeneous with density %, plane-strain Young’s modulus E and
Poisson’s ratio ν. The acceleration of gravity is denoted by g.

19
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3.1 Simple shear models

The release of slab avalanches is commonly related to the simple shear fracture of a weak sub-
surface layer [4,5,12,22,50,53–55,75,86]. The simple shear model goes back to McClung [53]
and was originally developed by Palmer and Rice for over-consolidated clay [59]. The model
has never been validated for snow avalanches [64]. Validation was regarded as ”difficult, maybe
even impossible” [64]. Despite this setback, the simple shear model inspired a considerable
amount of theoretical work dealing with various aspects of shear failure.

3.1.1 Short cracks

Louchet and Faillettaz [50] consider the case of an incipient crack in a subsurface layer of weak
snow. The half-length r of the crack is small with respect to its depth h under the surface
(Fig. 3.1). Physically, the crack is considered to be a planar slip surface of zero thickness in the
weak layer plane. The strata of snow above and below the weak layer are assumed to have
identical elastic properties. In absence of a crack, the weak layer is loaded by gravity with a
uniform shear stress τ = %gh sin θ, where θ is the slope angle. Within the crack, tangential
contact forces between the crack faces reduce the loading stress by an amount τr. The other
components of the stress tensor remain balanced within the crack. Therefore the crack is loaded
in mode II (one of the two cases of simple shear). It is further assumed that the crack can grow
in the weak layer but cannot kink out into the surrounding layers. As a direct application of the
Griffith criterion [27], Louchet and Faillettaz find the following expression for the critical crack
length:

rc =
1

π

wfE

(τ − τr)2
, (3.1)

where wf is the specific fracture energy required to separate a unit area of weak layer. Louchet
and Faillettaz actually derived this equation for τr = 0, but the generalisation is straightforward.
The crack is unstable if and only if its half-length r exceeds the critical length rc. Eq. 3.1 holds

2rg

x

y

h

Figure 3.1: A short crack in a weak layer embedded between layers with identical elastic prop-
erties.
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for r � h and can be used as a condition for a stable flaw to turn unstable. The asymptotic
behaviour of the critical length in Eq. 3.1 is rc ∼ (τ − τr)

−2 for τ > τr. For τ = τr, a critical
length rc does not exist. Assuming Coulomb friction with coefficient µ between crack faces
(section 2.5), a friction angle θµ = arctan(µ) can be defined. The asymptotic behaviour of rc can
then be reformulated in terms of slope angle and friction angle. Using that τ−τr ∝ sin θ−µ cos θ

if θ > θµ and zero otherwise, and expanding rc around θ = θµ in a Laurent series, it is easy to
show that rc ∼ (θ − θµ)−2 for θ > θµ and rc → ∞ for θ ≤ θµ. Physically speaking, on slopes
inclined less than the friction angle, a short slip surface cannot grow. On steeper slopes it can,
but it is increasingly difficult to satisfy the criterion r ≥ rc the closer the slope angle approaches
the friction angle. Summing up:

1. The critical length of short simple shear cracks between strata with similar elastic proper-
ties is given by Eq. 3.1. Cracks can grow if their half-length r is larger than the critical rc
determined by this equation, provided that rc � h.

2. On slopes steeper than the friction angle, the critical length of a short shear crack goes
asymptotically as rc ∼ (θ − θµ)−2. On slopes inclined less than the friction angle, the
simple shear crack cannot propagate.

3.1.2 Long cracks

McClung applied the classical Palmer-Rice model for the growth of slip surfaces in over-
consolidated clay to the formation of dry slab avalanches [53]. The Palmer-Rice model [59]
expresses the condition for a slip surface or cohesive mode II crack to expand into a homoge-
neous and elastic material.

In the Palmer-Rice model, a planar slip surface of characteristic length r is located at depth h
below the surface and assumed (for an unspecified reason) to grow only in its own plane (see
Fig 3.2). The slip amplitude in x-direction is denoted by δ and is a function of x. Shear stress
is transmitted across the slip surface (from one face to the other) according to a known, strain-
softening stress-displacement relation τ(δ). This relation is assumed to decrease monotonically
for δ & 0 and to converge to a constant τr when δ → +∞ (residual friction). The energy required
to separate a unit area of incipient slip surface is then

∫

[τ(δ) − τr]dδ, and is denoted by wf . The
faces of the slip surface are considered to be and to remain in contact all the time. Furthermore,
straining and displacements in the material below the slip surface are neglected [59]. The
deformation of the material above the slip surface is assumed to be one-dimensional in x-
direction and the same across the thickness of the slab. The latter is a reasonable assumption
for r � h. In this case, the two topologies shown in Fig. 3.2 a and b are energetically identical
up to a factor of two.

In snow the situation is somewhat different as the slip surface evolves in a pre-existing weak
layer sandwiched between younger strata on top and older strata below (Fig. 3.3). The presence
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of the weak layer gives a good reason for the slip surface to grow in its own plane. The different
qualities of the strata on either side lead, in principle, to the necessity of taking into account
elastic mismatch. This is avoided by assuming similar material properties for these strata. The
remaining assumptions required to apply the Palmer-Rice model were regarded by McClung
as suitable for snow and inherited. In particular, the assumption that the slab displaces only in
x-direction seemed acceptable to McClung, although it meant that any subsidence (positive or
negative) during the course of fracture had to be ignored. Under these restrictions, the Palmer-
Rice model is applicable. For the case of a linear-elastic material, the following expression for
the critical crack length is obtained [53]:

r2c = 2h
wfE

(τ − τr)2
, (3.2)

where τ = %gh sin θ. At the critical crack length rc, crack-driving forces and crack-resistance
forces are just balanced. If the slip surface is longer than rc, its growth is energetically
favourable. In snow, values for rc computed with Eq. 3.2 are typically 1 metre to a few me-
tres [4, 20, 64, 75], depending mostly on the amount of crack-face friction. According to the
model, a pre-existing shear crack of size r, initially sub-critical (r < rc), can become critical
by the increase of τ during precipitation, which may decrease rc until r > rc, resulting in a
direct action avalanche (occurring during snowfall). For delayed action avalanches (occurring
after snowfall), a mechanism of slow growth of sub-critical, persistent shear cracks has been
invoked, but it has not been made clear where the energy for this process could come from (as
long as r < rc energy is demanded for growth), nor how the process might be initiated.

The crucial problems for the simple shear model are that (i) it does not account for the sub-
sidence of the slab which is often observed and (ii) it does not explain the fracture of weak
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Figure 3.2: The Palmer Rice model considers the formation and propagation of a slip surface in
a homogeneous material. a. Embedded slip surface. b. Step in a slope.
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Figure 3.3: McClung’s model considers a long shear band, slip surface or shear crack (r � h)
in a weak layer embedded between two layers with identical elastic properties.

layers in horizontally stratified snow. The asymptotic behaviour of the critical length in Eq. 3.2 is
rc ∼ (τ−τr)−1 for τ > τr. As previously, a critical length rc does not exist when τ = τr. Using the
same argument as before, the asymptotic behaviour of rc can be reformulated in terms of slope
angle minus friction angle: rc ∼ (θ−θµ)−1 for θ > θµ, and rc does not exist for θ ≤ θµ. Physically
speaking, the result is still the same as in section 3.1.1: on slopes inclined less than the friction
angle, a long slip surface cannot grow. On steeper slopes it can, but again the criterion r ≥ rc

is increasingly difficult to satisfy the closer the slope angle approaches the friction angle, as rc
grows out of bounds (the only difference being a divergence with exponent of -1 instead of -2).
This conflicts with observations. The experiments discussed in section 2.4 have shown that it
is about as easy to form a critical crack in a horizontal stratification as in a 40◦ slope: critical
lengths are about the same. This very much suggests that the shear model neglects some
relevant energy contribution which is convertible into fracture energy.

Another important implication follows from the shear model. A simple shear crack can grow if
and only if τ > τr, as Eq. 3.2 shows. Wherever the residual forces match the gravitational load,
τ − τr = 0 and the crack cannot become critical. Instabilities such as whumpfs, which involve no
or if any, very limited slope-parallel motion, are thus very difficult to understand within the simple
shear model. For the same reason, remotely triggered avalanches cannot be explained, for the
entire portion of slab which was undercut by the shear crack necessarily slips and is expected
to participate in the release.

The simple shear model Eq. 3.2 was updated by Bazant, Zi and McClung [5] by applying an
’effective crack size’ correction cf , which simply replaces rc in Eq. 3.2 by rc + cf :

(rc + cf)
2 = 2h

wfE

(τ − τr)2
. (3.3)

The term cf is assumed to be a positive constant of about half the size of the zone where plastic
flow occurs. The intention of this correction is to deal with non-linear, elastic-plastic effects in the
crack tip zone [76]. However, all previous statements regarding Eq. 3.2 apply for the updated
model, as rc is only shifted by a constant. The essential problems of the shear model are thus
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not addressed by the ’effective crack size’ correction. In summary:

1. On slopes steeper than the friction angle, the critical length of a long shear crack goes
asymptotically as rc ∼ (θ − θµ)−1. On slopes inclined less than the friction angle, the
simple shear crack cannot propagate.

2. The simple shear model conflicts with the observation that fracture propagates across
horizontally stratified snow and does not take into account the subsidence of the slab.
Remotely triggered avalanches are difficult understand within the simple shear model.

3.1.3 Long cracks in a brittle weak layer of finite thickness

Chiaia, Cornetti and Frigo [12] consider a weak layer of finite thickness. The weak layer’s thick-
ness is hw and its shear modulus Gw. Like McClung, they consider a mode II situation in which
the displacement ux(x) of the slab is parallel to the x-direction and uniform across the thickness.
Assuming a long crack and a brittle weak layer, the stress-displacement relation is linear until
the weak layer instantaneously fails, and constant afterwards, i.e. τ(x) = (Gw/hw)ux(x) until
failure and τ(x) = τr after failure1. Based on these assumptions, Chiaia, Cornetti and Frigo find
that the original form of McClungs’ criterion Eq. 3.2 can be maintained if the critical length rc is
replaced by rc + ψ, where ψ = (Ehhw/Gw)1/2,

(rc + ψ)2 = 2h
wfE

(τ − τr)2
. (3.4)

This equation has the same form as Bazant, Zi and McClungs’s effective crack size correction
Eq. 3.3, but the roles of cf and ψ are different. Here ψ relates to the relaxation of elastic strain in
the slab ahead of the crack tips, while cf relates to the size of the fracture process zone, where
irreversible changes take place. It should be emphasised that, assuming brittle fracture, Eq. 3.4
is an exact analytical result, while the ’effective crack size’ correction is an ad hoc assumption.
In summary:

1. Taking into account the finite thickness of the weak layer and assuming it brittle, the critical
length of a shear crack is reduced by an amount given by ψ. Within the assumptions, this
is result is exact.

2. Eq. 3.4 takes the same analytical form as an ’effective crack size’ correction. The essen-
tial problems of the shear model (subsidence of the slab and fracture propagation in the
horizontal) are not addressed.

1The model is actually derived for τr = 0, but the generalisation is straightforward.
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3.1.4 Formation energy for shear cracks

A more general viewpoint can be taken by expressing Eqs. 3.1 to 3.4 as saddle points of a
crack energy function V (r) valid for cracks of any length. For the crack energy to correspond
to a formation energy, V (0) = 0 must be imposed. It is easily shown that the following three
expressions for crack energy (taken in this order) reproduce Eqs. 3.1, 3.2 and 3.4 by demanding
∂rV (r) = 0,

V (r) = 2wfr −
(τ − τr)

2

E
πr2, r � h, (3.5)

V (r) = 2wfr −
(τ − τr)

2

3Eh
r3, r � h, (3.6)

V (r) = 2wfr −
(τ − τr)

2

3Eh

[

(r + ψ)3 − ψ3
]

, r � h. (3.7)

Later in chapter 4 the advantages of taking this viewpoint will become more evident.

3.2 Collapse models

The collapse approach towards weak layer fracture emerged prior to the shear fracture ap-
proach, but was not developed for decades. Reports of subsidence can be found as early as
1930 [73]. Truman very clearly described the physical properties of collapse waves in seasonal
snow in 1973 [79]. Bohren and Beschta proposed in 1974 that the collapse of a prevalent,
structurally weak subsurface layer characterised by weak inter-granular bonding was the cause
of the observed collapse waves [7]. Lackinger thought that the bending associated with the
collapse wave would generate transverse fractures of the type shown in Fig. 1.2, reducing the
circumferential support of a slab undercut by fracture [46].

3.2.1 The flexural wave model

In the 1999/2000 winter, Johnson et al. measured in situ the propagation velocity of a collapse
wave by means of geophones spread out in the snowpack [38, 40]. A collapse amplitude of
about 2 mm and a velocity of 20 ± 2 m/s were measured (see section 2.2). The collapse wave
had spread over flat ground and it was therefore straightforward to estimate the gravitational
potential energy released during the event. Johnson came up with about 1 J/m2 [39]. On the
other hand, the fracture energy of the buried surface hoar that had collapsed during the event
was estimated between 10−2 and 10−1 J/m2, a small amount in comparison [39]. Therefore,
even if only a small amount of the gravitational potential energy released by collapse were
convertible to fracture energy, a new understanding of fracture in snow would be necessary, as
shear fracture models do not account for this process.
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On a conceptual level, Johnson detailed the fracture process as follows: The very first event
of the failure process is the local collapse of a portion of weak layer. As a consequence, the
support of the overlying slab is lost and the slab bends, increasing the shear strain in the still
intact weak layer at the edge of the collapsed zone. Accordingly the weak layer fractures in
shear and the collapse is translated outwards, progressively fracturing the weak layer further
and further, resulting in a bending wave (Fig. 3.4). The shear fracture of the weak layer is
coupled with the propagation of the bending wave, which is modelled as a linear flexural wave
propagating through a free, unsupported slab [39].

With hindsight, this is a remarkable intuitive description of the collapse process, except for
two elements: Firstly, it is unnecessary to insist on the fracture in shear of the weak layer.
Energetically only the microscopical fracture mode matters, which is in mixed-mode due to the
random assemblage of the weak layer. The load increase on the intact weak layer is in any case
both in shear and in compression. Secondly, the interpretation of the bending wave as a linear
flexural wave in a free beam [39] is inadequate for describing a collapse process. Flexural waves
result from a linear differential equation, describing a process that leaves a state of equilibrium
and returns to the same state of equilibrium. Consequently and paradoxically, the actions of
gravity and irreversibility -both essential- were cast aside in Johnson’s model calculations [39].
In summary:

1. If a small amount of the gravitational potential energy freed by collapse is convertible to
fracture energy, a new understanding of fracture in snow is necessary.

2. The collapse wave should not be confused with a linear-elastic flexural wave, which is an
inappropriate approach to a inherently non-linear problem.

3.2.2 The solitary wave model

Based on Johnson’s experimental results [40] and the inadequacy of flexural waves to describe
the phenomenon, Heierli [30] proposed an analytical model for fracture propagation in horizon-
tally stratified snow under steady-state conditions. The model treats the propagating collapse
wave as a non-linear wave in form of a kink-shaped solitary wave (see Fig. 3.4). The main differ-
ence with the previous, flexural wave approach is that the non-linear wave describes a transition
form one metastable state of equilibrium to another state of equilibrium of lower energy. The
most prominent assumption of the model is that the displacement of the slab at the crack front
obeys free fall motion. The main results consist of simple expressions for the propagation speed
and the wavelength of a collapse wave in snow

c4 =
g

2hf

D

%h
, l4 = γ4 2hf

g

D

%h
, γ ∼= 2.331, (3.8)
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Figure 3.4: The collapse wave propagates the fracture front in horizontal terrain by gaining
gravitational potential energy through subsidence. After Johnson [39].

where l is the total wavelength of the disturbance (the total length between loss of support and
recovery of support), and c is the propagation velocity of the disturbance. D is the flexural rigidity
of the slab. In plane strain D = Eh3/12, where E is the plane strain Young’s modulus of the
slab material, % and h are the density and thickness of the slab respectively. hf and g represent
the collapse amplitude and the acceleration of gravity. The two relations in Eq. 3.8 can be put
into the equivalent form:

1

γ2

(

lc
)2

=
D

%h
,

1

γ2

(

l

c

)2

=
2hf

g
. (3.9)

This model was applied to whumpfs and firn quakes and the order of magnitude of the observed
propagation velocities was reasonably reproduced. However, there are limitations to the model.
Firstly, there is no physical solution of Eq. 3.9 for c = 0. Therefore the limit of the static problem
is not contained in the model. Secondly, the model does not take into account the limiting
velocities of shear and pressure waves in the slab. These problems will be addressed later in
chapter 5.

The non-linearity of the model resides in the boundary conditions at the crack front and at
touch-down (Eq. 5 in [30]). This becomes apparent if this equation is written in a form valid in
the entire space accessible to the disturbance: (D/%h) ∂4

x′u(x′) + c2∂2
x′u(x′) + g ϑ(∂x′u(x′)) = 0,

where x′ = x − ct and ϑ stands for the unit step function ϑ(x) = 1 if x > 0 and 0 if not. The
ϑ-function introduces a strongly non-linear effect on u, which is localised in two narrow zones at
the front and at the end of the kink wave. Summing up:

1. The solitary wave model of the collapse wave results in an energetically self-sustained
perturbation and therefore propagation is not limited by the energy initially available during
trigger action, but unlimited in principle.

2. A combination of properties of slab and weak layer determines the wavelength and prop-
agation velocity. The velocities reasonably match measured propagation velocities and
wavelengths of collapse waves.
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3.2.3 Nucleation of collapse waves

Because the solitary wave model does not contain the static limit c → 0, the next obvious step
is the application of the concept of weak layer collapse to the nucleation of a collapse wave
(Fig. 3.5). Heierli and Zaiser [32] proposed a simple model for horizontal snow and shallow
weak layers. The underlying idea is that the collapse of the weak layer frees potential energy
that contributes to the propagation of fracture, by a term which is not accounted for by the simple
shear model and originates in the subsidence of the unsupported slab. The model proposes to
calculate the energy barrier for crack propagation by finding the saddle point in the crack energy
function V (r). Modelling the strain in the deformed slab in terms of the Euler-Bernoulli beam
equation, the following crack energy is obtained:

V (r) ∼=



















2wfr +
8

15
σhf l0

(

r

l0

)5

, h� r < l0,

2(wf + σhf)(r − l0) + V0 , r ≥ l0,

(3.10)

where σ = −%hg is the compressive (thus negative) stress acting on the undisturbed weak layer
and l0 is the crack half-length at which the slab makes contact with the substrate. It is given by
l40 = 2Eh3hf/|σ|. The term V0 simply ensures continuity of the crack energy function at r = l0.
A first condition for propagation arises from the requirement that the energy function decreases
beyond the saddle point at rc, i.e. ∂rV (r) < 0, ∀r > rc. This leads to a necessary condition for
self-sustained propagation [32],

wf ≤ −σhf . (3.11)

Note that the work per unit area σhf is negative, so that the right-hand side of Eq. 3.11 is
positive. Eq. 3.11 expresses that more energy must be released by collapse than is required for
fracture propagation. Otherwise, a saddle point does not exist. Provided that this condition is
fulfilled, the energy barrier for the nucleation of a propagating crack can be expressed as

r4c =
3

4

wf

|σ|hf
l40, Vc =

8

5
wfrc. (3.12)

Any perturbation must overcome this energy barrier to initiate a propagating crack. In summary:

1. This model outlines the basic ideas and methods by which the problem of fracture nucle-
ation in collapsible snowpack layers can be approached.

2. The basic ideas are presented in the simplest possible setting of a shallow weak layer in
horizontal terrain. Mathematical difficulties arising from a complete and accurate analytical
treatment are thus avoided. This work was the foundation of the further investigations
presented here.
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Figure 3.5: The volumetric collapse of a portion of weak layer implies loss of support for the
overlying slab, which bends (not shown) and increases the strain on the crack tips.

3.3 Statistical physics approach

Following a line of reasoning that is entirely different from fracture mechanics, Louchet and Fail-
lettaz suggested that slab avalanche release may be a manifestation of a critical phenomenon
related to the failure of a multi-cracked weak layer. The statement is based upon statistical
field data that indicate a power-law distribution of the measured size of the release zone of
slab avalanches, above a certain lower cut-off size [17,50]. A partially scale-invariant frequency
distribution is not incompatible with a critical phenomenon as a cause of slab failure, but no
proof for it either. If slab failure were indeed a critical phenomenon, the idea of the nucleation of
a single critical crack and subsequent propagation of fracture would be meaningless. It would
have to be replaced by an accumulation of many coalescing damage areas, which at some point
becomes a random fractal set.

Multiple cracking as a cause for slab avalanche release was investigated by Zaiser and Fyffe [21,
22, 86]. In their model, slab avalanche formation is viewed as global failure of a weak layer of
random local strength. The fracture-mechanical concept of pre-cracked areas is abandoned.
Instead, the weak layer is modelled as a lattice in which each site is assigned a random, Weibull-
distributed strength, independent of all other sites. The system is controlled by a slow increase
of loading. Failure is envisaged as an accumulation of damage in terms of failed sites. The
model is designed to understand the nucleation of failure by uniformly overloading the weak
layer. It is implemented as a cellular automaton in which, as in the classical models of avalanche
formation, the loading of the weak layer is assumed to be purely in shear.

Investigation of the computer simulation prior to global failure suggests that slab release is not
related to a critical phenomenon, but to a first-order transition. In general, the spatial pattern
of failed sites does not show sharp line-like or surface-like clusters interpretable as classical
cracks (classical in the sense of the fracture mechanical concept of a crack). Instead it becomes
a distributed set of failed sites, which altogether are not connected, but appear as many clusters
of irregular size and spacing. At small scales, up to a characteristic length, the pattern of failed
sites looks scale-invariant, but above the characteristic length it is no more (the autocorrelation
function of damaged sites is a power-law below the characteristic length and tends in average
towards a constant above). Consequently there is a typical largest damage cluster which acts
in a similar manner as the critical crack of fracture mechanics.





Chapter 4

Anticrack nucleation

In this chapter a model of slab avalanche release is developed1. The model describes the
failure of a weak snowpack layer subjected to compression and shear and takes into account the
volume change of the weak layer undergoing failure. The model also takes into account that the
volume reduction is limited: The volume cannot reduce further when the densest (accessible)
packing order of the weak layer debris is reached. Physical examples of weak layers with such
behaviour were shown in Figs. 1.2 and 2.2.

4.1 Energy of formation of a mixed-mode anticrack

Consider the situation shown in Fig. 4.1. The collapsible layer (weak layer) in the snowpack is
embedded between an elastic surface layer (the slab) and a rigid basal layer (the substrate).
The coordinate system C is chosen with the x-axis on the centre-line of the slab, pointing in
downhill direction. The y-axis points into the slope and passes through the crack centre (C is
shown translated on the figure for clarity). The system is assumed to deform in plane strain
relative to the z-direction. All extensive quantities are therefore given per unit length in z. The
slope angle, measured from the horizontal to the x-axis is denoted by θ.

Due to the weight of the overlying slab, the weak layer is initially loaded both in compression and
in shear. Within the weak layer a crack of length 2r is assumed. The crack consists of crumbled
material that occupies less volume than the intact weak layer. As a consequence, the material
surrounding the crack is pushed into the unoccupied space, resulting in inward displacement of
the crack boundary, inverse to a mode I situation. Additionally, under shear, there is a parallel
displacement of one crack face relative to the other, characteristic of a mode II situation. Due to
the combination of inverse mode I and mode II loading, one speaks of a mixed-mode anticrack,
or simply anticrack, implicitly including the presence of both modes [18].

The slab of thickness h is homogeneous with density %, plane-strain Young’s modulus E, shear
1The model presented is this chapter has been introduced in [31].
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Figure 4.1: Mixed-mode anticrack in a weak subsurface layer. a: Anticrack nucleus of small
length in comparison with slab thickness and substrate thickness. b: Anticrack with free, non-
contacting faces. c: Anticrack with partly contacting faces. The slab may or may not slip (white
arrow), depending on the amount of friction between slab and substrate. Legend: spherical
grains: slab material; polyhedral grains: weak layer/substrate (facetted grains, depth hoar); red:
collapsed debris.

modulus G, and Poisson’s ratio ν. The plane strain Young’s modulus is obtained by dividing the
bulk elastic modulus by 1 − ν2. The load acting on the undisturbed weak layer is composed of
a compressive (negative) stress σ = −%gh cos θ and a shear stress τ = %gh sin θ, where g is the
acceleration of gravity. The volume loss reduces the thickness of the weak layer by hf . As a
consequence, the slab experiences both slope-parallel and slope-perpendicular displacements,
ux and uy respectively. As the crack expands and reaches a certain size, denoted by r = l0,
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contact between the opposing faces is established at a single point where uy = hf . This event
is referred to as tangency (Fig. 4.2a). As the crack expands beyond r = l0, the contact locus
becomes an interval centered around x = 0. The positions on the x-axis of the two dividing
points are denoted by r̃ and −r̃ (Fig. 4.2b). Deformation is then constrained by contact forces.
The slope parallel contact forces are modelled as Coulomb friction τr = min(|τ |, µ|σ|) in [−r̃, r̃]
and τr = 0 in [−r,−r̃]∪[r̃, r]. The slope-normal contact forces are modelled as rigid confinement
in y-direction:

uy(x) ≤ hf . (4.1)

The purpose is now to compute the energy of formation of a crack of arbitrary size r. To this
end, the crack energy V (r) is partitioned into fracture energy and mechanical energy [47]:

V (r) = Vf(r) + Vm(r), (4.2)

where Vf(r) is the fracture energy that must be expended to destroy cohesion along the crack
faces. For a crack of length 2r, Vf(r) = 2wfr where wf is the specific fracture energy per unit
crack surface. For a notch of length r, Vf(r) = wfr. The mechanical energy Vm(r) comprises
changes in strain energy and gravitational potential energy of the slab. The contributions from
the weak layer and the substrate are neglected as both are considered rigid for the time being. In
the remainder of this section the aim is to evaluate the mechanical energy in the three situations
shown in Fig. 4.1.

For anticrack nuclei of length significantly smaller than h (Fig. 4.1a), the problem is analogous
to the opening of an interface crack between remotely stressed semi-infinite elastic blocks as
considered by Hutchinson and Suo [35]. One difference is that the tensile stress is replaced by
the compressive stress exerted by the weight of the overlying snow. Mathematically the problem
is thus treated as if the weak layer were infinitely thin and the crack faces were freely penetrating

l0−l0

r−r

a

b r̃−r̃

hf

hf

0

0

0

0

Figure 4.2: Crack-face contact, or tangency. a: For r = l0 the crack faces make contact at a
single point. b: For r > l0, the crack faces are in contact in the interval [−r̃, r̃].
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a b c

Figure 4.3: Mode equivalence. a: Mathematical model for tensile mode I interface crack. b:
Mathematical model for interface anticrack (crack faces penetrate freely). c: Physical model of
anticrack with weak layer of finite but small thickness and volumetric collapse of fracture debris.

each other (Fig. 4.3ab). Physically, the weak layer has a small but finite thickness and there is
no interpenetration but a volume reduction of the fracture debris. The volume reduction allows
the crack faces to bend towards each other (Fig. 4.3c). The situations a, b and c are equivalent
for r � hf and until crack-face contact is established. The other difference resides in the non-
remote loading by gravity. This results in a gradient in the stress field that has to be taken
into account when the nucleus grows substantially. Applying established results for interface
cracks [35], the mechanical energy Vm,0(r) of a mixed-mode anticrack nucleus is obtained:

Vm,0(r) = −πγr
2

2E

(

τ2 + σ2
)

, r � h, (4.3)

where γ is a constant of about one. The subscript 0 in Vm,0 indicates the nucleus situation
r � h. A generalisation of Eq. 4.3 for non-rigid substrates is given later in section 4.4. The
detailed derivation follows in section 4.7.1.

The longer the crack the less accurate is the crack energy expressed by Eq. 4.3. The main
reason for this is the presence of the free boundary at the outer surface of the snow, which
affects the stress field and therefore the mechanical energy. This new situation is approached
by noting that the slab can be considered with reasonable accuracy as a Timoshenko beam if
the crack is sufficiently long. The state of deformation in the slab is then described by the three
displacement fields ux(x), uy(x) and ψ(x) as shown in Fig. 4.4. The two situations shown in
Fig. 4.1 b and c need to be distinguished.

Before tangency, the unilateral constraint Eq. 4.1 is not active. The displacement fields ux,
uy and ψ are free in the anticrack interval [−r̃, r̃]. Outside the anticrack, in the intact portion
[−∞,−r̃] ∪ [r̃,+∞], the fields are constrained by the conditions uy = 0 and ux = hψ/2 (rigid
support of the slab). The energy functional V of the Timoshenko beam subjected to gravity can
be written as

Vm[ux, uy, ψ] =

∫

{Eh

2
(∂xux)2 +

Eh3

24
(∂xψ)2 +

kGh

2
(∂xuy − ψ)2 − τux + σuy

}

dx. (4.4)
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Figure 4.4: Field variables ux(x), uy(x) and ψ(x) according to Timoshenko beam theory. Q is a
point on the centre-line and and moved to Q′ after deformation.

By minimisation of this functional under the given constraints, the fields ux, uy and ψ are ob-
tained. Substitution of these solutions back into Eq. 4.4 gives the mechanical energy of a crack
Vm,1(r) in terms of crack size:

Vm,1(r) = − r3

3Eh

[

λτ (r) τ
2 + λσ(r)σ2

]

, h . r ≤ l0, (4.5)

where

λτ (r) = 1 +
9η2

3η2 + 4(r/h)2
, λσ(r) = 3η2 +

4

5
(r/h)2

r/h+ 9η/4

r/h+ η
. (4.6)

Eq. 4.5 gives the mechanical energy of the crack for r & h but before tangency. The subscript 1
in Vm,1 indicates that this energy contribution stems from the Timoshenko beam. The derivation
of Eqs. 4.5 and 4.6 is quite lengthy and given in section 4.7.2. The constant η appearing in
Eq. 4.6 will resurface throughout the remainder of this text. It is given by

η =

(

E

3kG

)1/2

, (4.7)

where k = 5/6 is the Timoshenko correction factor for a rectangular beam section. It is observed
that η = 1 for a Poisson solid (an elastic body with equal Lamé constants).

Until now, expressions for the crack energy for r � h and h . r ≤ l0 have been obtained.
Eq. 4.3 gives the energy contribution from the crack tip singularities, while Eq. 4.5 gives the
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energy contribution from the Timoshenko deformation field, which replaces the far-field situation
of remotely loaded bodies. An expression for Vm that is found remarkably accurate over the
entire range r < l0 is obtained by simply adding 4.3 and 4.5:

Vm(r) ∼= Vm,0(r) + Vm,1(r), r ≤ l0. (4.8)

The validation of this equation is empirical. Comparison with results using finite element mod-
elling (FEM) shows very satisfying agreement. These calculations and the comparison are
detailed later in section 4.8.

The last case to consider is r > l0, in which the unilateral constraint Eq. 4.1 imposes an upper
limit to the subsidence of the slab (see Figs. 4.1c and 4.2b). The length of the unsupported
portion of slab is l = r − r̃ on the positive half of the x-axis. The length l depends on r and
tends to asymptotic values as r → ∞. Heierli and Zaiser have shown that the dependency
of the mechanical energy on the exact values of l is rather weak [33]. Given the usually large
uncertainties in snow, there is not much point in developing the cumbersome equations which
result from a rigorous treatment. The approximation l ≈ l0 is used instead. As a result, the
displacement field near the crack tip of a long crack is approximated as a translation of the
displacement field for a crack with half-length r = l0. On the positive half of the x-axis the offset
of the translation is r − l0. On the negative half the offset is −(r − l0). Along the intervening
interval x ∈ [−r̃, r̃] the displacement field is constant and equal to hf (see Fig. 4.1c). The
mechanical energy is thus approximated by

Vm(r) ∼= Vm(l0) + 2σhf(r − l0) −
τ2
f

3Eh

[

r3λτ (r) − l30λτ (l0)
]

, r > l0, (4.9)

where Vm(l0) is evaluated according to Eq. 4.8 and τf is the shear stress reduced by friction,
τf = τ + µσ if τf ≥ 0 and 0 if not.

Collecting the previous results Eqs. 4.3, 4.5, 4.8 and Eq. 4.9, and substituting them into Eq. 4.2,
the final expression for the energy of a crack in the weak layer is

V (r) =



























2wfr −
πγr2

2E

(

τ2 + σ2
)

− r3

3Eh

[

λτ (r) τ2 + λσ(r)σ2
]

, r ≤ l0,

V (l0) + 2(wf + σhf)(r − l0) −
τ2
f

3Eh

[

r3λτ (r) − l30λτ (l0)
]

, r > l0,

(4.10)

where V (l0) is evaluated according to first case r ≤ l0. For r > l0, crack energy can be
interpreted as the energy of a shear crack with a fracture energy that is reduced by the energy
σhf recovered from gravitational collapse. Eq. 4.10 gives the energy for crack lengths from a few
centimeters to virtually infinity and, hence, covers all scales from that of the incipient anticrack
nucleus to that of the avalanche. The size of a critical crack follows from the crack length
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that maximises V (r), called the critical crack length. The corresponding value Vc = V (rc) is
the magnitude of the energy barrier. The pair rc, Vc indicates the energy barrier a crack must
overcome to turn unstable. Three cases can be distinguished:

1. For µ ≤ tan θ, the crack energy function V (r) has a unique maximum at rc. The necessary
condition ∂rV (r) < 0 for crack propagation is met for r > rc. This implies release of a slab
avalanche, as the residual crack-face friction cannot support the slab.

2. For µ > tan θ and wf +σhf < 0, there exists again a unique maximum rc. The supercritical
crack propagates but both slope-perpendicular and slope-parallel displacements cease as
the crack faces make contact. This is the case of a whumpf.

3. For µ > tan θ and wf + σhf > 0, the crack energy increases monotonically and the crack
cannot become critical.

The preferred way to test the theory, designated here as method A, is to isolate a long cuboid
of snow containing a weak layer. The weak layer is perforated with a snow saw near the middle,
and a marker is set at this point, as shown in Fig. 4.5 a. An artificial crack is then sawed along
the weak layer until the system becomes unstable (the direction of the cut does not matter). As
soon as the crack starts propagating, the hand is taken off the snow saw. The critical length is
the distance between the blade of the snow saw and the marker and can be compared with 2rc

resulting from Eq. 4.10.

Another possibility, designated as method B, is to notch the weak layer from an edge. The
schematic of the experimental set-up is shown in Fig. 4.5 b and c. Similar experiments have
already been carried out [25, 69] and the results are available in the literature. Because the
topology is different from the previously calculated case, the expressions for crack energy are
affected. It is noted that in Fig. 4.5 b the direction of the x-axis is inverted, affecting the sign of
τ . Following the same steps as previously for the embedded crack, the following expression for
the mechanical energy of a notch is obtained:

Vm,1(r) = − r3

6Eh

[

λττ (r) τ
2 + λστ (r)στ + λσσ(r)σ2

]

, (4.11)

where

λττ (r) = 1 +
9

4
η
( r

h

)

−1
+

9

4
η2
( r

h

)

−2
,

λστ (r) =
9

2
η +

9

2
η2
( r

h

)

−1
,

λσσ(r) = 3η2 +
9

4
η
( r

h

)

+
9

5

( r

h

)2
. (4.12)

The cross-term in στ can contribute positively or negatively to the crack energy, depending on
the sign of the product. A negative value of τ corresponds to a notch from the lower end of the
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Figure 4.5: Configurations for field experimentation. a: Artificial crack embedded in weak layer.
The black dot represents a marker set to show the initial position of the snow saw. b: Artificial
notch on the lower end of sample. c: As previous, but notch on upper end. In b and c, the end
face of the specimen is slope-perpendicular. The saw cut direction is indicated by a white arrow.

specimen (as shown in Fig. 4.5 b). A positive value of τ corresponds to a notch from the upper
end (Fig. 4.5 c). The derivation of the above equations is given in section 4.7.3. Combining
Eqs. 4.2, 4.3 (with a factor 1/2) and 4.11, the final expression for the energy of a notch in a
weak layer can be written as

V (r) = wfr −
πγr2

4E

(

τ2 + σ2
)

− r3

6Eh

[

λττ (r) τ
2 + λστ (r)στ + λσσ(r)σ2

]

. (4.13)

In experiments with vertical instead of slope-normal end faces, a correction to the critical notch
lengths resulting from Eq. 4.13 must be applied (see Fig. 4.6).
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rc
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r′c

h

g

b. r′c ≈ rc − (h/2) tan θa. r′c ≈ rc + (h/2) tan θ

Figure 4.6: Correction of critical lengths in experiments with vertical instead of slope-normal
end faces. a: Notch location at low end of specimen. b: Notch at top end of specimen.

4.2 Generalisation to arbitrary elastic mismatch

In the previous section the model was developed under the assumption of a rigid substrate.
This condition can be relaxed only at the expense of mathematical complications. In one case
however, a general analytical solution is straightforward. Given cracks that are short compared
with slab thickness (r � h) and a finite Young’s modulus of the substrate, the problem can be
solved using results from Hutchinson [35] and Dundurs [15]. The calculation, which is presented
in section 4.7.1, assumes the situation shown in Fig. 4.7, in which the moduli E and G and
Poisson’s ratio ν characterise the layer above the interface and E0, G0 and ν0 the layer below
the interface. In this case the strain energy of an anticrack nucleus is given by

Vm,0(r) = − πγr2

E(1 − α)

(

τ2 + σ2
)

, (4.14)

where

α =
E − E0

E + E0
, (4.15)

γ =
(

1 − β2
)

(

1 + π−2 ln2 1 − β

1 + β

)

. (4.16)

Here, α and β are Dundurs’ elastic mismatch parameters [15]. The parameter α takes values
between −1 when E � E0 and +1 when E � E0. The parameter γ, which depends on β but
not on α, takes a value of about one (physically admissible values are between 0.84 and 1, which
follows from restrictions on β [35]). To compute γ precisely if necessary, Dundurs’ definition of
β can be used, i.e. β = [G(κ0 − 1) − G0(κ − 1)]/[G(κ0 + 1) + G0(κ + 1)], with κ = 3 − 4ν in
plane strain and κ = (3 − ν)/(1 + ν) in plane stress (and accordingly for κ0), see [15]. Eq. 4.3
is obtained by substitution of α = −1 into Eq. 4.14, which corresponds to the limiting case of a
rigid substrate.
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Figure 4.7: Interface crack between mismatching elastic layers. ν, E and G are respectively the
Poisson’s ratio, the Young’s modulus and the shear modulus of the slab. ν0, E0 and G0 are the
corresponding values of the substrate.

4.3 Limiting cases

By imposing additional conditions and constraints, a number of limiting cases can be obtained
from the mixed-mode anticrack model. In particular, the simple shear models [50,53] and previ-
ous collapse models [32,33] can be recovered.

McClung’s simple shear model for long cracks [53] (see section 3.1.2) imposes the constraint
that the slab can only slide in the x-direction, but cannot move in y-direction (i.e. the slab can
neither lift nor subside). In the anticrack model, this constraint is expressed by hf = 0 and
therefore tangency is immediately fulfilled (for r = 0). Consequently l0 = 0 and the second case
of Eq. 4.10 applies. Making these substitutions and observing that V (l0) = 0 when l0 = 0 and
that λτ (r) → 1 for long cracks (Eq. 4.6), indeed recovers Eq. 3.6. This limit of the anticrack
model is therefore equivalent to the model of McClung for long shear cracks.

In order to recover Louchet’s simple shear model for short cracks [50] (see section 3.1.1), it is
observed that in the case of r � h the crack energy is given by V (r) = 2wfr+Vm,0(r), where the
second term on the right-hand side stems from Eq. 4.14. In Louchet’s model, identical elastic
properties above and below the weak layer are considered. This case is obtained by setting
α = 0. Moreover, as no work is done by the compressive forces in the case of a simple shear
crack, this contribution to the crack energy must be removed. This is formally equivalent to
setting σ = 0 in Vm,0(r). Finally, as the crack faces are always in contact, the work done by
the shear stress τ is reduced by crack-face friction. This is formally equivalent to replacing τ by
τf = τ − τr in Vm,0(r). Making these substitutions, recovers Eq. 3.5. This limit of the anticrack
model is therefore equivalent to the model of Louchet for short shear cracks.

The collapse model for horizontal configurations proposed by Heierli and Zaiser [32] (see sec-
tion 3.2.3) considers a sufficiently stiff slab, so that the use of the Euler-Bernoulli beam equation
is justified. Because of horizontality, τ = τf = 0 and σ = %gh (the weight per unit area above
the weak layer). In order to recover this model from the anticrack model presented here, it is
observed that λτ (r) and λσ(r) (Eq. 4.6) tend to 1 and 4

5(r/h)2 respectively, when r → +∞.
Substituting λτ (r) = 1 and λσ(r) = 4

5(r/h)2 into Eq. 4.5 indeed recovers Eq. 3.10.
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The collapse model for slopes proposed by Heierli and Zaiser [33] uses the more accurate
Timoshenko beam model instead of the Euler-Bernoulli model to calculate the strain field. In
the Timoshenko beam model, r is assumed larger but not necessarily much larger than h, and
the more accurate approximation λσ(r) = 3η2 + 4

5(r/h)2 must be used. Substituting this and
λτ (r) = 1 into Eq. 4.5 recovers indeed Eqs. 10 and 14 of [33].

4.4 Nucleus instability

In this section an anticrack nucleus of finite size is considered (i.e. 0 < r � h and r < l0

are assumed). In this case the crack energy of a nucleus is given by V (r) = 2wfr − Vm,0(r),
where Vm,0(r) stems from Eq. 4.14, which is more general than Eq. 4.3 and accounts for elastic
mismatch between slab and substrate.

Excluding any external loads on the snowpack for the moment, the load on the undisturbed
weak layer can be expressed in terms of the weight of the overlying snow. In the coordinate
system introduced at the beginning of the chapter, the shear stress is given by τ = ±%hg sin θ

and the compressive stress is given by σ = −%hg cos θ. Here, % is the density of the slab, h
its thickness and g is the acceleration of gravity. The sum τ2 + σ2 appearing in Eq. 4.14 is
independent of slope angle. Using ∂rV (r) = 0 to find the saddle point of the energy function,
the following condition for instability is obtained:

Nucleus instability ⇔ r ≥ rc, rc =
1 − α

γ
r0 , (4.17)

where r0 = wfE/(πσ
2
0) and σ0 = −%gh. This relation is interesting for several reasons. Firstly, it

expresses that the critical length for a porosity fluctuation or small crack is independent of slope
angle. Slope angle thus plays no role in fracture nucleation in absence of loads other than the
own weight of the snow. Secondly, the condition shows how the stability of a crack nucleus is
affected by the substrate. Assume two situations with identical slab and weak layer, but different
substrates. In both situations, wf , E and σ0 are equal. The only variable parameters are α and γ.
As the variations of γ are small, the situations compare mainly on the basis of α. The expression
for rc shows that, the closer α is to +1, i.e. the ’softer’ the substrate with respect to the slab, the
smaller the critical crack length. Conversely, the closer α is to -1, i.e. the ’harder’ the substrate
with respect to the slab, the larger the critical crack length. Given identical weak layer and slab
with fixed elastic modulus, situations involving soft bed surface appear to be more dangerous
than situations involving hard bed surface. Thirdly, the critical crack length rc can also decrease
when a subsurface layer with very low Young’s modulus forms by sintering within the snowpack,
as is possibly the case for a layer of facetted crystals forming under a dense slab. In this case
α increases and thus rc decreases.
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4.5 Skier instability

The influence of a local line force on the stability of a slope is investigated in this section. The
aim is to describe the conditions under which loads such as those exerted by a skier may cause
extended failure in the weak layer. Consider a crack in an otherwise intact snow stratification
under the action of a line load as shown in Fig. 4.8. To account for the work done by the line
force p = (px, py) acting on the middle of the unsupported slab, the following term ∆V must be
added to the energy functional Eq. 4.4:

∆V [ux, uy] = −pxux(0) − pyuy(0). (4.18)

The calculation of this perturbation is developed later in section 4.7.4. Here, the essential result
is given: The introduction of a line force p at the center of the unsupported slab results in a crack
energy of the form

V (r) = 2wfr −
r

4Eh

(

p2
x + 3η2p2

y

)

+ O(r2) (4.19)

as long as tangency is not established. In order to describe the action of a skier in absence
of cracks, the limit r → 0 is taken. Neglecting the term in O(r2) and imposing the condition
∂rV (0) ≤ 0, the instability criterion can be expressed in the following, simple form:

Skier instability ⇔ wp ≥ wf , wp =
1

8Eh

(

p2
x + 3η2p2

y

)

. (4.20)

If wp ≥ wf , the slope is unstable under the action of the skier. Regarding this condition, a few
observations can be made. Firstly, the line force p which annihilates, according to Eq. 4.20, the
energy barrier for crack nucleation is indeed of the order of the weight of a skier. An example of
this will be given in section 4.9. Secondly, the factor 3η2 ≈ 3 favors the compressive component

h

+r
−r

g

x

y

p
px

py

Figure 4.8: A skier acting as a line force on the center line of slab, which bends (not shown) and
increases the strain on the crack tips.
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py over the shear component px in the reduction the energy barrier. Thirdly, because wp ∝ p2,
the odds of triggering a slab avalanche may significantly increase as the line load p increases.
Hence, according to the model, skiing dynamically or falling (involving loads p which are larger
than the weight of the skier) considerably increases the chances of triggering a slab.

4.6 Gap instability

The situation of a notch described by Eq. 4.11 can also be encountered in a natural snowpack.
Consider the situation shown schematically in Fig. 4.9, in which a transverse opening in the
snowpack extends across the slab. In skier jargon such openings of the snowpack, if natural,
are known as ’cracks’, but obviously this term may lead to some confusion within the scope of
this work. For this reason such an opening in the snowpack will be referred to as a gap. It is now
asked under which conditions this configuration is unstable and leads spontaneously to failure.

Recalling Eqs. 4.12 and 4.13, and collecting the terms of second and higher orders in r, the
crack energy for each side of the gap can be rewritten as

V (r) = wfr −
3

8

τ2

E
hη2r + O(r2) (4.21)

As in the previous section, the particularly interest lays in the limit r → 0. Neglecting the term
O(r2) and imposing ∂rV (0) < 0 as previously, the instability criterion can be expressed in the
following, simple form:

Gap instability ⇔ wτ ≥ wf , wτ =
3

8

τ2

E
hη2, (4.22)

r

g

Figure 4.9: An open gap in a slope, due to a transverse fault. A crack nucleus in the weak layer
is shown on the upper half, but can equally occur in the lower half. The arrow indicates the
propagation direction. Physically, the situations on each side of the gap, taken individually, are
equivalent to those shown in Fig. 4.5b and c in the limit of r → 0.
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where τ = %gh sin θ. If wτ ≥ wf , the slope is unstable in presence of a gap. Contrary to the two
previous conditions of instability, this one reflects a pure shear instability involving τ but not σ.
Gap instability is favoured by thick slabs (large h) and steep slopes (large τ ).

4.7 Derivations

The detailed mathematical derivations of Eqs. 4.3, 4.5, 4.11, 4.14 and 4.19 are presented on
the following pages.

4.7.1 Energy of an anticrack nucleus.

In order to derive Eq. 4.14, the problem of finding the formation energy of an anticrack nucleus
is mapped onto a solved problem. Physically, it is clear that the repacking of the ice grains
during fracture takes place in a finite volume. The mathematical difficulties which arise from
dealing with the computation of the strain field for a finite separation of slab and substrate can
nevertheless be avoided by considering the equivalence of the three situations a, b and c pre-
viously shown in Fig. 4.3. The situation in panel a has previously been solved by Malyshev and
Salganik [52] and Hutchinson and Suo have reformulated their results in a modern notation [35].
This solution can be applied to the situation of a mixed-mode anticrack at the interface between
two different elastic media. Using the notation introduced in section 4.4 and Fig. 4.7, the energy
release rate −∂rVm,0(r) of an interface crack of length 2r can be expressed as [35,52]:

−1

2
∂rVm,0(r) = (1 − β2)

KK

E∗

=
1 − β2

1 − α

KK

E
, (4.23)

where E−1
∗

= 1
2(E−1 + E−1

0 ), α and β are Dundurs’ elastic mismatch parameters across the
interface, and K is the interface stress intensity factor. The overline denotes the complex con-
jugate operator. It is observed that E∗ = E(1 − α) = E0(1 + α). Next, an expression for the
interface stress intensity factor in Eq. 4.23 is needed. An analytical expression for K has been
given for an isolated interface crack of length 2r between remotely stressed semi-infinite elastic
blocks [35]. For the right-hand tip of the crack:

K(r) = (σ + iτ)(1 + 2iε)
√
πr(2r)−iε, (4.24)

where ε = ln[(1−β)/(1+β)]/(2π). This expression is applicable to the present situation provided
that the crack length is small with respect to the depth of the weak layer, r � h. Substitution
of Eq. 4.24 into Eq. 4.23, integration over r and imposing Vm,0(0) = 0, proves Eq. 4.14. The
constant γ is given by

γ =
(

1 − β2
)

(

1 +
1

π2
ln2 1 − β

1 + β

)

. (4.25)
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Physically admissible values of γ are comprised between 0.84 and 1. Three remarks can be
made. Firstly, in the case of a stiff substrate, α = −1. Substitution of this value in Eq. 4.14
recovers Eq. 4.3. Secondly, in absence of elastic mismatch, α = β = γ = 0. Thirdly, in case of a
stiff substrate, if values of ν are unavailable, a reasonable approximation should be to associate
snow with a Poisson solid. In this case ν = 1/4, β = −1/3 and γ ≈ 0.93.

4.7.2 Energy of an anticrack with free faces

In the following Eq. 4.5 is derived. The problem was posed earlier in section 4.1. In order to
handle the calculation more easily, non-dimensional variables and constants as defined in Table
4.1 are used.

The centre of the anticrack of length 2R is located at X = 0 (see Fig. 4.5a). The slab above
the weak layer is treated as a Timoshenko beam. It is unsupported over the crack length
(until tangency) and supported elsewhere. The variational problem can be stated as follows:
Amongst the virtual displacement fields U1(X), U2(X) and ψ(X) compatible with the conditions
(i) U2(X) ≤ 1 for all |X| < R (no interpenetration of the anticrack faces) and (ii) U2(X) = 0

and U1(X) = ψ(X)/2 for all |X| > R (rigid support of the slab outwith the anticrack), find those
which minimize the crack energy functional

Φ[U1, U2, ψ] =

∫

[−R,R]

{ 3η2

2
(∂XU1)

2 +
η2

8
(∂Xψ)2 +

1

2
(∂XU2 − ψ)2 − TU1 − ΣU2

}

dX

+

∫

[−∞,−R]∪[R,∞]

{ η2

2
(∂Xψ)2 +

1

2
ψ2 − T

2
ψ
}

dX. (4.26)

Table 4.1: Scaled variables (dimensionless numbers and fields).

Variables: Scaling:
Space coordinates: X X = x/h

- Y Y = y/h

Crack (half-) length: R R = r/h

Displacements: U1 U1 = ux/h

- U2 U2 = uy/h

Crack energy: Φ Φ = V/(kGh2)

Fracture energy: Wf Wf = wf/(kGh)

Stress: T T = τ/(kG)

- Σ Σ = −σ/(kG)
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This expression of the crack energy is defined up to a constant which can be obtained by
imposing Φ = 0 for cracks of length zero. The Euler-Lagrange equations of the energy functional
Eq. 4.26 are:

3η2 ∂XXU1 = −T, (4.27)

∂XXU2 − ∂Xψ = −Σ, (4.28)

1

4
η2 ∂XXψ + ∂XU2 − ψ = 0, (4.29)

in the cracked interval [−R,R], and

η2 ∂XXψ − ψ = −T

2
, (4.30)

U1(X) =
1

2
ψ(X), (4.31)

U2(X) = 0 , (4.32)

in the uncracked interval [−∞,−R] ∪ [R,∞]. A piecewise linear form is non-linear if the piece-
wise forms are not identical. The global non-linearity of the Euler-Lagrange equations therefore
resides in their different forms inside and outside the cracked interval [−R,R]. Equations 4.27
to 4.32 can be solved by integrating them separately in [−R,R] and in [−∞,−R] ∪ [R,∞] and
subsequently matching the solution pairs at the pseudo-boundaries at X = −R and X = R. To
begin with, the Euler-Lagrange equations are solved in [−R,R]. The general solution is:

U1(X) = C6 + C5X − 1

6η2
TX2, |X| ≤ R, (4.33)

U2(X) = C4 + C3X +
1

2
C2X

2 +
1

6
C1X

3 +
1

6η2
ΣX4, |X| ≤ R, (4.34)

ψ(X) = C3 +
η2

4
C1 + (C2 + Σ)X +

1

2
C1X

2 +
2

3η2
ΣX3, |X| ≤ R. (4.35)

Except for the coupling through the pseudo-boundaries, the first of these equations is inde-
pendent of the second and third. In order to solve Eq. 4.33 independently, the rotations of the
cross-sections at X = −R and X = R are designated by ψ− and ψ+ respectively. ψ− and
ψ+ are to be determined later. In the following it is useful to define ψs = (ψ+ + ψ−)/2 and
ψa = (ψ+ − ψ−)/2 (where ’s’ stands for symmetrical and ’a’ for anti-symmetrical). The coef-
ficients C5 and C6 are determined by the pseudo-boundary conditions U1(−R) = ψ−/2 and
U1(R) = ψ+/2:

C5 =
1

2

ψa

R
, (4.36)

C6 =
1

2
ψs +

1

6
T
R2

η2
. (4.37)
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Û2

Ũ2

X

X

R−R

ψsψs

−ψa ψa

ψ+ = ψs + ψaψ− = ψs − ψa

Figure 4.10: Deformation profiles Û2, Ũ2 and corresponding rotations ψ(−R) = ψ− and ψ(R) =

ψ+ at the pseudo-boundaries at −R and +R. The symmetrical part Û2 of U2 is associated with
the anti-symmetrical part ψ̃ of ψ. Conversely, the anti-symmetrical part Ũ2 of U2 is associated
with the symmetrical part ψ̂ of ψ.

Attention is now turned to Eqs. 4.28 and 4.29. Inspection of these shows that their solutions can
be decomposed into a sum of a symmetrical term and an anti-symmetrical term (odd derivatives
of U2 pair with even derivatives of ψ and inversely): U2 := Û2 + Ũ2 and ψ := ψ̂ + ψ̃, where
the hat stands for the symmetrical part and the tilde for the anti-symmetrical part (Fig. 4.10).
The coefficients C2 and C4 are determined by the pseudo-boundary conditions Û2(R) = 0 and
ψ̃(R) = ψa:

C2 = −Σ

(

1 +
2

3

R2

η2

)

+
ψa

R
, (4.38)

C4 =
1

2
ΣR2

(

1 +
1

3

R2

η2

)

− 1

2
Rψa. (4.39)

The coefficients C1 and C3 are determined by the pseudo-boundary conditions Ũ2(R) = 0 and
ψ̂(R) = ψs:

C1 =
12ψs

3η2 + 4R2
, C3 = − 2ψsR

2

3η2 + 4R2
. (4.40)

The functions U2 and ψ thus satisfy the relations U2(−R) = U2(R) = 0, ψ(−R) = ψ− and
ψ(R) = ψ+ at the pseudo-boundaries.

Next the solutions in [−∞,−R]∪ [R,∞] are considered. As equations for U1 and U2 are already
known from Eqs. 4.31 and 4.32, the problem is reduced to finding ψ(X) satisfying equation 4.30.
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The general solution is of the form:

ψ(X) = C1e
X/η + C2e

−X/η +
T

2
, |X| ≥ R. (4.41)

With the pseudo-boundary conditions ψ(R) = ψ+ and ψ(−R) = ψ−, the solutions are:

ψ(X) =

(

ψ+ − T

2

)

e−(X−R)/η +
T

2
, X ≥ R, (4.42)

ψ(X) =

(

ψ− − T

2

)

e+(X+R)/η +
T

2
, X ≤ −R. (4.43)

Except for the unknown rotations ψ+ and ψ− at the pseudo-boundaries, which are still to be
specified, the solution in the entire domain of definition [−∞,∞] has now been obtained. By
substituting these results into the energy functional 4.26 for a crack of length 2R and a crack of
length 0, and taking the difference, one obtains

Φ =
1

4
R

(

1 − 4

9

R2

η2

)

T2 − ψsRT − R3

3

(

1 +
4

15

R2

η2

)

Σ2 +
2

3
ψaR

2 Σ

+
η2

R
ψ2

a +
R

1 +
4

3

R2

η2

ψ2
s +

η

2

(

ψ+ − T

2

)2

+
η

2

(

ψ− − T

2

)2

. (4.44)

The expressions for ψ+ and ψ− are determined by minimising the energy functional 4.26 with
respect to ψ+ and ψ−. As simple analytical expressions for ψ+ and ψ− are unavailable, the
problem is reduced to a single variable ∆ψ by imposing ψ+ ∼= T/2 + ∆ψ and ψ− ∼= T/2 − ∆ψ

(N.B. as can be seen from Eq. 4.30, ψ = T/2 is the equilibrium rotation angle in the far-field).
The energy function 4.44 is then minimised with respect to ∆ψ, leading to

∆ψ = −1

3

R3

η(η +R)
Σ. (4.45)

An example of the resulting displacement profile is shown in Fig. 4.11. Combining the last two
results, the integration of the energy functional leads to the final expression for the mechanical
energy of an anticrack

Φ = −λ1T
2 − λ2 Σ2, (4.46)

where

λ1 =
R3

9η2

(

1 +
9η2

4R2 + 3η2

)

, λ2 =
R3

9η2

(

3η2 +
4

5
R2 R+ 9η/4

R+ η

)

. (4.47)

Reverting to dimensional variables yields equation 4.5.
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The half-length l0 = L0h at which tangency between the opposing faces of the anticrack occurs
can be obtained by observing that, except for nearly vertical slopes, Û2(X) � Ũ2(X) around
X = 0 where contact is expected. Hence, the touch-down condition is approximately U2(0) =

Hf . The tangency length l0 is determined by finding the positive real root L0 of

L2
0

(

1 +
L2

0

3η2

L0 + 2η

L0 + η

)

=
2Hf

Σ
. (4.48)

a

b

Figure 4.11: Example for displacement field in the slab, as given by Eqs 4.33 to 4.40, 4.42,
4.43 and 4.45. The four surrounding ticks show the location of the x and y axes. a: Slope
angle θ = 0◦. b: Slope angle θ = 45◦. Data: % = 200 kg/m3, E = 5.0 MPa, r = h = 0.5 m.
Magnification factor for displacement: 175, grid spacing: 5 cm.
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4.7.3 Energy of a notch

In the following Eq. 4.11 is derived. The case of a notch into the weak layer is considered.
Formally, by analogy with the notion of anticrack, one might speak of an antinotch but there is
little reason to do so because notches of finite width can always be loaded in compression. In
order to calculate the mechanical energy of a notch, two cases must be distinguished: The notch
can be sawed into the weak layer from the lower end of the sample in uphill direction (Fig. 4.5b),
or from the upper end in downhill direction (Fig. 4.5c). In horizontal terrain, both situations are
equivalent, but on a slope the results are substantially different. For convenience, the coordinate
system is chosen as shown in Fig. 4.5 b and c. This ensures that x and r are always positive.
Analytically, the only difference between the two cases resides in the sign change of T.

The energy functional of a notch is similar to the case of an embedded anticrack, except for the
integration domain, which now spans from 0 to +∞, instead of −∞ to +∞:

Φ[U1, U2, ψ] =

∫ R

0

{ 3η2

2
(∂XU1)

2 +
η2

8
(∂Xψ)2 +

1

2
(∂XU2 − ψ)2 − TU1 − ΣU2

}

dX

+

∫ +∞

R

{ η2

2
(∂Xψ)2 +

1

2
ψ2 − T

2
ψ
}

dX. (4.49)

In the subdomain [R,∞], the conditions 4.31 and 4.32 apply to ensure rigid support of the slab.
On the boundary at X = 0 and the pseudo-boundary at X = R, the conditions ∂XU1(0) = 0,
U1(R) = ψ+/2, ∂XU2(0) − ψ(0) = 0, U2(R) = 0, and ∂Xψ(0) = 0, ψ(R) = ψ+ are imposed. The
solutions for U1, U2, and ψ are then given by Eqs. 4.33 to 4.35, with

C1 = 0, (4.50)

C2 = −Σ, (4.51)

C3 = −2

3

R3

η2
Σ + ψ+, (4.52)

C4 =
1

2
R2

(

1 +
R2

η2

)

Σ −Rψ+, (4.53)

C5 = 0, (4.54)

C6 =
1

6

R2

η2
T +

1

2
ψ+. (4.55)

By substituting these results into the energy functional 4.49 for a notch of length R and a notch
of length 0, and taking the difference, the following expression for the mechanical energy is
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obtained:

Φ = −R
2

(

1

9

R2

η2
− 1

4

)

T2 +
1

2
ψ+R (RΣ − T) − R3

6

(

1 +
3

5

R2

η2

)

Σ2 +
η

2

(

T

2
− ψ+

)2

. (4.56)

Minimising with respect to ψ+ leads to

ψ+ =
T

2

(

1 +
R

η

)

− Σ

2η
R2. (4.57)

An example of the resulting displacement profile is shown in Fig. 4.12. Combining the last two
results, the final expression for the mechanical energy of a notch of length R is

Φ = −λ1T
2 + λ12 Σ T − λ2 Σ2, (4.58)

where

λ1 =
R

8

(

1 +
R

η
+

4

9

R2

η2

)

, (4.59)

λ12 =
R2

4

(

1 +
R

η

)

, (4.60)

λ2 =
R3

6

(

1 +
3

4

R

η
+

3

5

R2

η2

)

. (4.61)

Reverting to dimensional variables yields Eq. 4.11. Note that, unlike the energy of a crack, the
energy of a notch depends on the sign of T.

Looking for an expression for the touch-down length is not necessary in this case. Contact
between slab and substrate can always be avoided by making the notch sufficiently wide, e.g.
by choosing a thicker snow saw or by using two saws in parallel.

4.7.4 Energy reduction by a line force

In the following a simple treatment of the influence of line loads such as those involved in
skier triggering is given. The problem is posed in section 4.5 and reformulated using the non-
dimensional variables defined in Table 4.1. In addition, non-dimensional loads are defined:

P1 =
px

kGh
, P2 =

py

kGh
. (4.62)
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a

b

Figure 4.12: Example for displacement field in the slab, as given by Eqs 4.33 to 4.35, 4.42, 4.50
to 4.55 and 4.57. The four surrounding ticks show the location of the x and y axes. a: Notch on
lower end. b: Notch on upper end. Data: % = 200 kg/m3, E = 5.0 MPa, θ = 45◦, r = h = 0.5 m.
Magnification factor for displacement: 100, grid spacing: 5 cm.

With these definitions, the energy functional for the configuration shown in Fig. 4.8 can be written
as

Φ[U1, U2, ψ] =

∫

{ 3η2

2
(∂XU1)

2 +
η2

8
(∂Xψ)2 +

1

2
(∂XU2 − ψ)2

−TU1 − ΣU2 − P1U1 δ(X) − P2U2 δ(X)
}

dX, (4.63)

where δ(X) is Dirac’s delta distribution. For the moment, T and Σ are set to nil. The linearity
of the elasticity problem allows later superposition of the gravity-induced strain field. The Euler-
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Lagrange equations of Eq. 4.63 are

3η2 ∂XXU1 = −P1δ(X), (4.64)

∂XXU2 − ∂Xψ = −P2δ(X), (4.65)

1

4
η2 ∂XXψ + ∂XU2 − ψ = 0, (4.66)

in the cracked interval [−R,R]. Neglecting the deformation field outwith the crack, the boundary
conditions U1(±R) = 0, U2(±R) = 0 and ψ(±R) = 0 are used. The solutions of Eqs. 4.64 to
4.66 are:

U1(X) = P1
R− |X|

6 η2
, (4.67)

U2(X) = P2
3η2(R− |X|) + (R + 2|X|)(R − |X|)2

6 η2
, (4.68)

ψ(X) = −P2
X(R − |X|)

η2
. (4.69)

An example of the displacement profile is shown in Fig. 4.13. Using the superposition principle
for linear elasticity, this solution can be combined with the solution for a crack loaded by T,Σ 6= 0

but not by P , which was calculated in section 4.7.2. Thus, redefining U1 as the sum of Eqs. 4.67
and 4.33, U2 as the sum of Eqs. 4.68 and 4.34, and ψ as the sum of Eqs. 4.69 and 4.35,
substituting these into Eq. 4.63 and ordering the terms in powers of R, one obtains:

Φ(R) = − 1

12 η2

(

P 2
1 + 3η2P 2

2

)

R+ O(R2). (4.70)

Reverting to dimensional variables gives Eq. 4.19.

4.8 Numerical verification

In this section the equations derived in section 4.1 are compared with finite element model cal-
culations (FEM). Each system shown in Fig. 4.5 is modelled with ANSYS 11.0 for various crack
lengths r, various slope angles θ and various material properties. The system is gravitation-
ally loaded using the ANSYS command ACEL. For structural modelling, the element SOLID45
is used. This standard but versatile structural element supports large strain capabilities, im-
plements 8 nodes and 3 degrees of freedom per node. The degrees of freedom in width (z-
direction) are removed in order to model a plane strain situation. An isotropic and linear-elastic
material model is selected. The material properties used are given in Table 4.2. The substrate
and the weak layer are modelled as rigid, resulting in strain energy being stored in the slab only.
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a

b

Figure 4.13: Example for displacement field in the slab, as given by Eqs 4.67 to 4.69. The four
surrounding ticks show the location of the x and y axes. a: Slope angle θ = 0◦. b: Slope angle
θ = 45◦. Data: % = 200 kg/m3, E = 5.0 MPa, r = h = 0.5 m, p = 500 N/m. Magnification factor
for displacement: 175, grid spacing: 5 cm.

A denser mesh is imposed at the crack tips. Mesh size was varied to ensure that significant
digits of the calculation are not affected. The strain energy (ANSYS keyword SENE) is summed
over all elements (using the command ETABLE), resulting in total strain energy. This value is
converted to energy per unit width in z and its sign is inverted, thus representing the mechanical
energy of the system per unit width (see Lawn [47], section 1.3). The calculation is run once for
a system with a crack or notch of characteristic size r, and once without a crack or notch. The
difference in mechanical energy between these two states is finally compared to Eqs. 4.10 and
4.13 (in which wf is set to zero to let the crack energy become the mechanical energy).

The results are presented in Tables B.1 and B.2 in Appendix B and Figs. 4.14 to 4.16. The
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Figs. 4.14 and 4.16 a show that the agreement between the analytical solution and the FEM
solution is very satisfactory for embedded cracks (configuration as in Fig. 4.5 a). The Figs. 4.15
and 4.16 b show that the agreement is satisfactory for notches of length r > h, but in general
unsatisfactory for notches of length r < h, especially for those on the uphill side of the specimen
(configuration as in Fig. 4.5 c).

Regarding experimental methods (see methods A and B, section 4.1), the comparison implies
that the crack energy is more accurately estimated when applying method A (artificial crack,
Eq. 4.10) than when applying method B (artificial notch, Eq. 4.13). For this reason, and because
method A reflects more directly the natural situation of an embedded crack and requires no
corrections to be applied for end-face orientation (such as shown in Fig. 4.6), method A is in
general to be preferred to method B when the choice is available.

Table 4.2: Stratification data for examples and graphs. Poisson’s ratio is ν = 0.2, and η = 0.98.

Case Figures % [kg/m3] E [MPa] h [m] hf [m] wf [J/m2] θ [deg]

a. 4.18 200 5 0.50 0.01 0.07 -
b. 4.14, 4.15 200 2 0.35 0.01 0.04 -
c. 4.17 200 5 0.50 0.001 0.07 40

d. 4.16 200 5 0.35 0.01 0.04 -

4.9 Examples

In this section the structure of the crack energy function is illustrated by a number of examples.
Fig. 4.17 demonstrates the global structure of Eq. 4.10 for various fracture energies. The graph
shows the variation of the critical crack length (abscissa of the maximum) and energy barrier
(ordinate of the maximum) with increasing fracture energy wf . For small values of wf the energy
barrier is reached before the crack faces make contact and the critical length remains relatively
small (r < 1.5h in the example in Fig. 4.17a). For larger wf , the crack faces make contact before
the critical point of the energy barrier is reached. In this case, the critical crack lengths grow
fast as wf increases. This is indicated in Fig. 4.17a by the large increase of rc when passing
from wf = 0.7 J/m2 to wf = 0.9 J/m2, and from wf = 0.9 J/m2 to wf = 1.1 J/m2, compared to the
increase of rc when passing from wf = 0.5 J/m2 to wf = 0.7 J/m2 for instance.

The following numerical applications illustrate the model:

Example 1, nucleus instability: Consider a snow slope with characteristics given in Table 4.2,
case a, and a substrate which is identical with the slab. Dundurs’ elastic mismatch parameter
α and β are then 0, and γ is 1. Applying Eq. 4.17, a pre-cracked section in the weak layer
is expected to become critical if its length exceeds 23 cm. If the slab thickness were 1.5 m
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instead of 0.5 m (but other parameters unchanged), the critical length would be as small as 2.5
cm. Porosity fluctuations of this size may exist in the weak layer, in which case the slope would
release spontaneously. If the substrate is softer than the slab, i.e. α > 0, the critical lengths are
even smaller.

Example 2, skier instability: Consider a skier of mass 70 kg on skies of length 1.70 m, which
results in a line load p of 400 N/m when the skier is moving uniformly. He/she skies a hillside
sloping 40◦ with the horizontal. The characteristics of the slope are given in Table 4.2, case
a. For simplicity the load p is assumed to act in vertical direction, i.e. px = p sin(θ) and py =

p cos(θ). Applying Eq. 4.20, the slope is expected to be stable for skiing as long as p does not
exceed 800 N/m, which represents twice the weight of the skier. If this load is exceeded, the
energy barrier disappears altogether and spontaneous cracks can nucleate and propagate in
the weak layer.

Example 3, gap instability: Consider the same snow slope as in the previous examples with
characteristics given in Table 4.2, case a. Applying Eq. 4.22, the slope is expected to be stable
against gap instability, regardless of how steep it is, because mathematically wτ cannot exceed
wf . If however, the fracture energy of weak layer were lower by a factor of 4, reapplying Eq. 4.22
results in instability for slope angles above 44◦. A similar instability would also occur if the slab
thickness were 1.6-times thicker, i.e. h = 80 cm instead of half a metre.

Example 4, notch experiment: Consider Sigrist’s experiment presented in section 2.4. Sub-
stituting the data given in Table 2.4 into Eq. 4.13 (N.B τ is positive in this case), a polynomial
of degree 5 in r is obtained: V (r) = −0.416r5 − 0.135r4 − 0.0115r3 − 0.0180r2 + 0.0692r. The
maximum of V (r) is found by finding the positive real root of ∂rV (r) = 0 and verifying that
∂rrV (r) < 0. The root with the required properties is obtained for r = 0.35 m.
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Figure 4.14: Verification of the calculation of the mechanical energy Vm(r) for the case of a
crack (configuration as in Fig. 4.5a). a: 30◦ slope; b: 90◦ slope (i.e. vertical). Dots: Finite
element calculation (ANSYS 11.0). Full line: Eq. 4.10 with wf = 0. The vertical line depicts the
length of first contact. Stratification data according to Table 4.2b.
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Figure 4.15: Verification of the calculation of the mechanical energy Vm(r) for the case of a notch
(configuration as in Fig. 4.5b and c). a: saw cut from lower end in uphill direction, accurate for
r ≥ h. b: saw cut from upper end in downhill direction, accurate for r ≥ h but inaccurate
for r < h. Dots: Finite element calculation (ANSYS 11.0). Full line: Eq. 4.13 with wf = 0.
Stratification data according to Table 4.2b.
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Figure 4.16: Verification of the calculation of the mechanical energy Vm(r) in a horizontal snow-
pack. a: case of a crack (configuration as in Fig. 4.5a); b: case of a notch. Dots: Finite element
calculation (ANSYS 11.0). Full line: anticrack model. The vertical line depicts the length of first
contact. Stratification data according to Table 4.2d.
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Figure 4.17: Structure of the crack energy function Eq. 4.10. Data according to Table 4.2c, with
40◦ slope angle. a: Wide range of fracture energies. b: Fracture energies typical of weak layers.
Parameterisation: specific fracture energies wf , shown in J/m2. Vertical line: tangency length,
r = l0. Crack-face friction coefficient after tangency: µ = 0.5 .
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Figure 4.18: Example of the notch energy function Eq. 4.13. a: case of a notch sawed into
the lower end. b: notch sawed into the upper end. Parameterisation: Fracture energies wf

typical for weak layers are shown in J/m2 at the critical point of the energy barrier. Stratification
data according to Table 4.2a, with 40◦ slope angle. Note that the energy barrier disappears for
wf = 0.01 J/m2 (gap instability).





Chapter 5

Anticrack propagation

Once an anticrack becomes critical by crossing the energy barrier, it starts expanding and ac-
cordingly, the slab debonds and subsides. While the volume loss of the weak layer can be
considered to be more or less instantaneous, the subsidence of the slab is progressive and
results in a particular, time-dependent deformation field that transports the collapse event along
the weak layer. This collapse wave is inherently non-linear and triggers the transition from a
metastable state of higher energy to a state of lower energy. The volume difference between
the intact weak layer and the packed debris not only determines the amplitude of the collapse,
but also conditions the velocity and wavelength of the collapse wave.

5.1 Action functional for collapse waves

Unlike the nucleation of an anticrack which is essentially static before becoming critical, the
propagation of a collapse wave is a dynamical process. To solve the problem according to
Hamilton’s principle, the saddle points of the action functional for the collapse wave must be
found. As previously in chapter 4, the system is assumed to deform homogeneously in the
z-direction and extensive quantities are therefore given per unit length in z. Assuming that the
slab deflects as a Timoshenko beam, the action functional S can be written as follows:

S[ux, uy, ψ] =

∫ ∫

{ ρh

2
(∂tux)2 +

ρh

2
(∂tuy)

2 +
ρh3

24
(∂tψ)2

−Eh
2

(∂xux)2 − Eh3

24
(∂xψ)2 − kGh

2
(∂xuy − ψ)2 + τux − σuy

}

dx dt.

(5.1)

In this expression, the rotational inertia is taken with respect to a neutral plane in the middle of
the slab. Compared with Eq. 4.4, there are two differences. Firstly, the integration now spans
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over x and t, and the field variables ux, uy and ψ are functions of both x and of t. Secondly, the
translational and rotational kinetic energies appear in the functional (the first two terms and the
third term respectively).

5.2 General asymptotic solution

In this section the differential equations for the collapse wave are established and solved. In
the following hf is assumed constant, in which case the collapse wave tends to a stationary1

asymptotic state propagating with constant velocity c and wavelength l. There is a clear advan-
tage in performing the calculations in dimensionless variables. In addition to those defined in
Table 4.1, it is convenient to define the dimensionless wave velocity, wavelength, amplitude of
the collapse wave and time:

C =
c

√

kG/%
, L =

l

h
, Hf =

hf

h
, T = t

√

kG/%

h
. (5.2)

The value C = 1 represents a collapse wave travelling with shear wave velocity cs = (kG/%)1/2.
The value C =

√
3η, where η is recalled from Eq. 4.7, represents a collapse wave travelling

with longitudinal wave velocity cp = (E/%)1/2. The dimensionless wavelength L and collapse
amplitude Hf are simply measured in units of slab thickness h.

The asymptotic state is searched with the Ansatz ux(x, t) = ux(x′), uy(x, t) = uy(x
′) and

ψ(x, t) = ψ(x′), where x′ = x − ct. The operators ∂x and ∂t can then be replaced by ∂x = ∂x′

and ∂t = −c∂x′ . The origin of the x′-axis is chosen at the point where tangency occurs (i.e.
where the crack faces make contact), and the crack front is at x = l (as in Fig. 3.4). As the
asymptotic state is stationary, there is no need to carry out the integration over time. The action
functional in the stationary state can thus be replaced by the energy functional:

−Φ[U1, U2, ψ] =

∫

{1

2
(C2 − 3η2) (∂X′U1(X

′))2 +
1

2
C2(∂X′U2(X

′))2

+
1

24
(C2 − 3η2) (∂X′ψ(X ′))2 − 1

2
(∂X′U2(X

′) − ψ(X ′))2

+TU1(X
′) + ΣU2(X

′)
}

dX ′. (5.3)

In the interval [0, L], where no constraints apply, the Euler-Lagrange equations of the above
functional are:

(3η2 − C2) ∂X′X′U1 = −T, (5.4)

(1 − C2) ∂X′X′U2 − ∂X′ψ = −Σ, (5.5)

1Stationary in the sense of all time-derivatives becoming zero.
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1

12
(3η2 − C2) ∂X′X′ψ + ∂X′U2 − ψ = 0. (5.6)

For C = 0, X equals X ′ and the Euler-Lagrange Eqs. 4.27, 4.28 and 4.29 for the static case of
an anticrack are recovered. For C 6= 0, the general solutions of Eqs. 5.4 to 5.6 in [0, L] are:

U1(X
′) =

TX ′2

2(C2 − 3η2)
+ C3X

′ + C4, (5.7)

U2(X
′) = −C5

K2
cos(KX ′) − C6

K2
sin(KX ′) +

ΣX ′2

2C2
+ C7X

′ + C8, (5.8)

ψ(X ′) =
1 − C2

K C5 sin(KX ′) − 1 − C2

K C6 cos(KX ′) +
ΣX ′

C2
+ C7, (5.9)

where K is given by

K =
2
√

3C
√

(1 − C2)(3η2 − C2)
. (5.10)

The equation for K manifests four singularities: two for C = ±1, the other two for C = ±
√

3η.
These singularities delimit three solution regimes: collapse waves with propagation velocity
below shear wave speed, |C| < 1, between shear wave speed and longitudinal wave speed,
1 < |C| <

√
3η, and above longitudinal wave speed, |C| >

√
3η. In the first and third regime, K

is real. In the intermediate regime K is imaginary. In this case the equalities in Eqs. 5.8 and 5.9
apply to the real parts of the right hand sides, in which C5 and C6 are considered complex.

Ahead of the crack front, in [L,+∞], where the constraints U2 = 0 and U1 = ψ/2 apply, the
single remaining Euler-Lagrange equations of the energy functional is:

1

3
(3η2 − C2) ∂X′X′ψ − ψ = −T

2
. (5.11)

For C = 0, Eq. 4.30 is recovered. Denoting ψ(L) by ψ+, the integration of Eq. 5.11 in [L,+∞]

gives

ψ(X) =

(

ψ+ − T

2

)

exp

(

−
√

3(X − L)
√

3η2 − C2

)

+
T

2
. (5.12)

An analogous result is obtained in [−∞, 0] by replacing X by −X, L by 0 and ψ+ by ψ0 = ψ(0).
Joining the piecewise solutions in [−∞, 0], [0, L] and [L,+∞], and substituting these into Eq. 5.3,
results in the expression for the mechanical energy of the collapse wave. As the analytical result
is very cumbersome, this step needs to be carried out numerically.
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5.3 Approximate asymptotic solution

In this section, an approximate asymptotic solution for the equations derived in the previous
section will be given. The solution is approximate because a few assumptions have to be made
in order to obtain an analytical result. The mathematical difficulties reside in the unilateral
constraint Eq. 4.1 , in the singularities appearing in Eq. 5.10 and in the yet unknown rotation
ψ(L) = ψ+ at the crack front, and ψ(0) = ψ0 at the tangency point.

The first assumption is that the collapse wave is slow compared with the velocity of a shear wave
through the slab, which will later be proven self-consistently. In this case K can be approximated
up to a term in O(C2) by

K ≈ K0 =
2C

η
. (5.13)

This linearisation proves reasonably precise for values of |C| up to about 1/2. Next, it is ob-
served that the values for |Σ| and |T| are of the order of 10−3 or smaller in snow. This results
in small rotations ψ+ and ψ0, of the order of 1◦ or smaller. The second assumption is therefore
ψ+ = ψ0 = 0. The third assumption is ∂XU2(0) = 0. This assumption is similar to the one used
to obtain Eq. 4.9, with the difference that the collapse wave is not a simple translation of the tan-
gency state, due to the inertial effects associated with propagation. The integration constants
in Eqs. 5.7 to 5.9 can now be obtained:

C3 = 0, C4 =
1

2

TL2

3η2 − C2
, (5.14)

C6 = 0, C5 = − 2ΣL

η C(1 − C2)

1

sin

(

2

η
CL

) , (5.15)

C7 = 0, C8 = −1

2

ΣL

C3(1 − C2)









CL(1 − C2) +
η

tan

(

2

η
CL

)









. (5.16)

The boundary condition U2(0) = Hf yields the equation for the dispersion of the collapse wave.
Under the condition that Σ 6= 0:

L2

C2





η

L

C(1 − C2)
Ω

(

2

η
CL

)

− 1



 =
2Hf

Σ
, (5.17)

where Ω is the function x 7→ 1/ sin x − 1/ tan x. It is observed that ignoring the square bracket
recovers the second relation in Eq. 3.9 up to a multiplicative constant. The right hand side 2Hf/Σ

represents the square of the time for slope-perpendicular free fall (in dimensionless units).
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The dispersion equation gives an implicit relation linking L with C. This implicit equation cannot
be solved in closed form, but matching (C,L)-pairs can be determined with numerical methods.
The structure of Eq. 5.17 is convenient in the sense that it depends only on two system prop-
erties: η and 2Hf/Σ, and only one of these appears on the left hand side. The structure of the
dispersion equation is shown in Fig. 5.1 for η = 1 and for a wide range of 2Hf/Σ-values. An im-
portant aspect of the dispersion equation is the convergence of the static anticrack solution and
the collapse wave solution for C → 0. This resolves the earlier problem of Eq. 3.9, encountered
in section 3.2.2, which did not contain this limit.

The remaining step is to find the (C,L)-pair(s) for which the energy functional Φ is in a saddle
point. This is obtained by substituting the expressions for U1, U2 and ψ into Eq. 5.3 and carrying
out the integration numerically. The procedure is then as follows: Choose a value of C between
−1/2 and 1/2, and find the associated value L by solving the dispersion equation Eq. 5.17. With
L and C known, compute Φ by numerical integration of Eq. 5.3. Repeat the procedure for other
values of C and find the (C,L)-pair(s) for which Φ(L,C) is stationary. Formally, the procedure
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Figure 5.1: Dispersion of slow collapse waves for η = 1 (equivalent to a Poisson solid) and
values for 2Hf/Σ ranging from 2 to 1024, all possible in snow. The dots on the L-axis represent
the tangency lengths L0 of the static anticrack solution, root of L2

0[1 + 1
3L

2
0/η

2] = 2Hf/Σ. (N.B.
this equation is different from Eq. 4.48, because ψ+ = ψ0 = 0 are imposed.)
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can be written:
find C ∈ [−1

2 ,+
1
2 ] such as

d

dC
Φ(L(C), C) = 0, (5.18)

where the L(C) is obtained from solving Eq. 5.17. The restriction |C| . 1
2 is necessary because

K0 was used instead of K to determine the integration constants C5 to C8.

5.4 Example

Fig. 5.2 gives an example of the procedure 5.18. The data is taken from an experiment that will
be encountered later in section 6.1.1. The graph shows three saddle points of Φ, each repre-
senting a physically admissible solution. The first saddle point occurs for C = 0. The associated
wavelength is L = 3.94 and this solution corresponds to the static case of an anticrack. The
other two saddle points occurs for C = ±0.25. The associated wavelength is L = 3.55 and these
solutions corresponds to the dynamic case of a propagating collapse wave. Note that the C = 0

solution, which represents a supercritical (i.e. unstable) crack, corresponds to a maximum of
the dynamic action functional whereas the propagating solutions at C = ±0.25 minimise the
action functional. Note also that the result C = ±0.25 for stationary propagation justifies the
neglecting of O(C2) terms in Eq. 5.13.

Reverting to dimensional quantities using Eq. 5.2 and Table 4.1, the collapse wave travels with
a propagation velocity c of 26 m/s and with a wavelength l of 1.6 m.

−Φ(C)

C

Figure 5.2: Example of numerical determination of the saddle points of Eq. 5.3. Data: % = 247

kg/m3, E = 8.0 MPa, ν = 0.25, h = 0.44 m, hf = 0.8 cm and θ = 19◦. The 2Hf/Σ-value is 96.
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Discussion

In chapters 4 and 5 the formation and propagation of mixed-mode anticracks in weak subsur-
face layers was examined. Physically, for an anticrack to materialise the weak layer must be
composed of a sparse aggregate of ice grains. As this aggregate fails, the fracture debris packs
more tightly and the weak layer undergoes a reduction in volume. Consequently the support
of the slab is lost over the length of the anticrack and the stress field vanishes on its boundary.
The momentary absence of compressive stress in the fracture debris reduces Coulomb-type
friction to nil. As the opposing anticrack faces make contact, Coulomb-type friction reappears.
Mathematically, the granular structure of the weak layer was neglected. The fracture region
was modelled in the continuum as a mixed-mode anticrack, that is, as two free surfaces in the
interface. Using different approaches for short, intermediate and long cracks, the crack energy
function V (r) was obtained for cracks length from the order of centimetres to virtually infinity.

6.1 Model validation

6.1.1 Experiments

In order to investigate whether or not fracture in weak snowpack layers displays the character-
istics predicted by the anticrack model, van Herwijnen recorded a number of PST-type notch
experiments at two sites in Davos, Switzerland using a high-speed video camera [81, 82]. One
site was located in Davos Stilli, altitude 1560 m, the other in Davos Wannengrat, altitude 2400
m. The snow blocks for the experiment were made between 3 m and 4 m long. On the surface
facing the video camera, black markers were applied at regular intervals, both above and below
the weak layer (Fig. 6.1). The slab thickness was doubled by shoveling loose snow on top of
the natural slab a few hours before isolating the block. The weak layer was then notched with a
snow saw from the lower end. The trajectory of the markers during the fracture process show
the displacement field of the snow around the fracture area. Fig. 6.2 shows the superposition
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Figure 6.1: Davos-Stilli experiment: Single video frame taken immediately before the notch
length r became critical. The operator is notching into the weak layer with a snow saw (rc =

19(2) cm). The weak layer is between the lower two rows of markers. Video: van Herwijnen.

of successive video frames from the Davos Stilli experiment and details are shown in Fig. 6.3.
The progressive subsidence due to the failure of the weak layer is visible on the superpositions.
The sequence of images indicates that the slab subsides first, then slips and finally comes to
a rest. This is confirmed in more detail in [82]. The observed failure sequence is not a simple
mode II fracture, but an anticrack with -in this case- a very small mode II component. Notably,
substantial slip occurs only after the collapse wave has crossed the entire sample (i.e. when
it is entirely detached from its support). The markers below the weak layer (row C in Fig. 6.2)
do not move, or move by less than 0.1 mm during the entire fracture process. This shows that
the substrate remains essentially unaffected by the events. The weak layer in this experiment
consisted of buried surface hoar and one might think that the observed sequence of events is
restricted to this type of weak layer. In fact, this is not the case: the same qualitative results
have been observed on weak layers composed of facetted snow [81,82].

Experimental evidence distinguishing between the anticrack model and the simple shear model
has been provided by Gauthier and Jamieson [25]. Using notch experiments of the PST-type
(see section 2.4), they show that the critical notch length depends weakly on slope angle. These
experiments were discussed in section 2.4 and the results listed in Table 2.3. Using this data,
the Young’s modulusE is estimated using Eq. 2.1. The fracture energywf is estimated by taking
the mode of the fracture energy distribution shown in Fig. 2.3, resulting in a value of wf = 0.03

J/m2. In the 24-01-2006 experiment, the critical notch lengths were found to increase slightly
with increasing slope angle (0◦, 30◦ and 38◦). The dependence is shown in Fig. 6.4. The two
model curves on the same graph show the theoretical results predicted by the simple shear
model [53] and the anticrack model. The results for the shear model are obtained by applying
Eq. 3.2. The results for the anticrack model are obtained by applying Eq. 4.13. This is done as
follows: By substitution of the values of τ , σ, E, η, wf and h into Eq. 4.13, a polynomial V (r)
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Figure 6.2: Davos-Stilli experiment: Superposed contour plots extracted from successive video
frames. a: superposition of frames at t = 0.00 s and t = 0.08 s. b: t = 0.00 s and t = 0.16 s. c:
t = 0.00 s and t = 0.24 s. N.B. t = 0 is the time of the last frame before the crack turns critical.

of degree 5 and real coefficients is obtained. The saddle point is determined by finding the
positive real root of its derivative. This root is the critical crack half-length rc. Fig. 6.4 shows
that the simple shear model presents a singularity for θ → 0 and that the general trend of the
measurements is not reproduced by this model. The anticrack model, by contrast, reproduces
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Figure 6.3: Davos-Stilli experiment: Details of the superposition of video frames, at markers 6
and 24 (see Figs. 6.1 and 6.2). a+b: superposition of frames t = 5.60 s and t = 5.68 s. a+c:
superposition of frames t = 5.60 s and t = 5.76 s. a+d: superposition of frames t = 5.60 s and
t = 5.84 s.

the measurements and especially the general trend in a very satisfactory way. This indicates
that the anticrack model not only delivers better precision than shear models but also gives a
better understanding of the fundamentals of weak layer failure.

A detailed experimental test case has been provided by Sigrist and Schweizer [69]. In this
experiment, of the type shown in Fig. 2.4, all material properties necessary to apply the anticrack
model have been measured, including Young’s modulus (Table 2.4). The mean critical cut length
obtained in 21 field experiments on a 30◦ slope amounted to rc = 23 cm ±2 cm. Using the
material properties given by Sigrist and listed in Table 2.4, and applying the anticrack model
Eq. 4.13 as above, the model predicts a critical crack length of 35 cm ±5 cm (see example
4 in section 4.9). However, this is not the cut length measured by Sigrist: In his experiment
the edges of the sample were vertical, while in Eq. 4.13 the edges are assumed slope-normal.
One can account for the difference by adding ±(h/2) tan θ to rc (see Fig. 4.6). In Sigrist’s case
the correction is −8 cm and therefore the value to compare with Sigrist’s average cut length is
r′c = 27 cm ±5 cm. This is indeed close to Sigrist’s measured 23 cm ±2 cm. In snow science,
where uncertainty is often large, this degree of agreement is very satisfying. By comparison,
the simple shear model [53] predicts r′c = 2.0 m ±0.3 m for the same parameters, which is too
large by one order of magnitude.

The Davos Wannengrat experiment provides measured data for a first validation of the collapse
wave calculation [81, 82]. The theoretical estimation of the propagation velocity is carried out
as explained in chapter 5 using the field data presented in Table 6.1 I (see also section 5.4 for
further details). The results of this calculation are compared with the measured velocity in Table
6.1 II. In the experiment, after slowing down from initially 35 m/s, the collapse wave reached
a stationary state in the middle of the specimen [81, 82], attaining a constant speed of of 20

m/s ±4 over a length of 1 m. Then, approaching the opposite end of the specimen the velocity
increased again to reach a final 40 m/s. The stationary velocity of 20 m/s ±4 m/s observed In the
Wannengrat experiment compares favourably with the calculated asymptotic velocity of 26 m/s
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Figure 6.4: Comparison of model calculations and experimental results. Critical crack length
versus slope angle. Squares: PST experiment [25]. Gray line: anticrack model; black line:
simple shear model according to McClung [53]. Material properties as in Table 2.3.

±5 m/s. Other models of fracture speed [4,55,56] predict much higher propagation velocities of
the order of 100 m/s to 1000 m/s [4] or have no theoretical justification [55,56].

In summary, the results discussed in this section indicate that the anticrack model captures the
essential physics of the fracture process of a weak, collapsible layer. Simple shear models on
the contrary conflict in many ways with the experimental evidence. This is not to say that simple
shear fracture never occurs in snow. It probably applies under circumstances when the fracture
plane is strictly not collapsible, e.g. in the case of very compact layers of snow.

Table 6.1: Validation of collapse wave model. I. Material properties for van Herwijnen’s PST
experiments according to [82]. The Young’s modulus is estimated according to Scapozza’s
model Eq. 2.1. II. Comparison of calculated velocity (ccal) and measured velocity (cobs).

I. Data % [kg/m3] E [MPa] ν [-] h [m] hf [m] θ [◦]

Davos Wannengrat, 2/2008 247 8(4) 0.25 0.44 0.008 19

II. Results L l [m] C cs [m/s] ccal [m/s] cobs [m/s]

Davos Wannengrat, 2/2008 3.55 1.6 0.25 104(25) 26(5) 20(4)
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6.1.2 Phenomenology

In this section the qualitative predictions of the anticrack model are compared with the empirical
knowledge on avalanche triggering that has accumulated during decades of snow research and
terrain experience. The phenomenology has been related in sections 1.1, 2.1 and 2.2.

First the correlation of slab avalanche and whumpf events is inspected. From the point of view
of simple shear models, which do not account for volumetric changes during fracture, whumpfs
in horizontal terrain are viewed as an unrelated, different type of phenomenon and consequently
the correlation with slab avalanches is fortuitous. In the anticrack model, the underlying process
is the same. The essential difference between slab avalanches and whumpfs resides in the
amount of crack-face friction and slope angle. A whumpf can simply be regarded as an incom-
pleted slab avalanche which does not slide, due to friction forces between the crack faces which
retain the delaminated mass of snow. This underlines the linkage between the occurrence of
whumpfs and slab avalanches.

Experienced back-country skiers are aware that slab avalanches can be remotely triggered
from adjacent flat ground or from across a slope. This is a natural consequence of the two-
stage scenario implied by the anticrack model (see section 4.1), in which the propagation of the
anticrack and the frictional sliding of the slab are decoupled. As the compressive component of
stress σ never vanishes in skiable slopes, energy for crack propagation is available on slopes
of any angle, including horizontal terrain. Therefore, anticracks can propagate into, across and
out of zones where a net shear stress is absent, i.e. where τ − τr = 0 (or in other terms
where slope angle is smaller than friction angle). Practically this means that anticracks can
climb or descend slopes, and pass a rounded ridge. Simple shear models, in which a one-
stage scenario is implicit (fracture can propagate if and only if crack-face friction is overcome by
gravity), are unable to account for remote triggering. The simple shear crack has not the ability
of the anticrack to cross zones of zero net shear stress, in which the slab does not slide after
the passage of fracture.

As long as the collapsible layer and the slab extend in space, as long as the slab can transmit
strain energy and as long as the release of gravitational potential energy is sufficient to over-
come the resistance to fracture, the collapse wave is energetically self-sustained and can travel
over long distances. This has indeed been reported in some instances [14, 39, 79]. In other in-
stances, whumpfs were arrested after travelling a few metres or decametres, sometimes leaving
a clearly visible perimeter fracture (Fig. 2.1). Thus it seems that there are circumstances where
the slab can transmit collapse waves and other circumstances where it can not do so, or do so
only over limited distances. The arrest of the collapse wave could be due to the presence of
flaws in the slab. Transverse failure may result when the collapse wave hits a flaw. In this case
some or all of the energy transported by the collapse wave is dissipated. The knowledge un-
der which circumstances the slab material is able to transmit a collapse wave and under which
circumstances it is not, could be a major step in understanding and predicting avalanche haz-
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ard [26]. Experience indicates that there may be only a limited time-window in which a slab is
able to propagate a collapse wave. One would certainly like to know more about the conditions
that determine the beginning and the end of that time-window.

6.2 Scaling relations

In chapter 4 crack energy was shown to be a function of crack half-length r, normal stress σ,
shear stress τ and, when crack faces are in contact, resultant shear stress τf (N.B. τf = τ − τr =

τ + µσ if τ + µσ ≥ 0 and zero if not). The scaling behaviour of the crack energy V as a function
of σ and τ is now considered. As mentioned in section 3.1.4, the mechanical energy of simple
shear cracks always scales as

Vm ∝ τ2
f . (6.1)

The index f appears because the slip surfaces in a mode II crack are always in contact. The
mechanical energy of mixed-mode anticracks scales as

Vm ∝















τ2 + σ2, r � h, r < l,

τ2 ⊕ σ2, r & h, r < l,

τ2
f ⊕ σ ⊕ 1, r > l,

(6.2)

and that of notches, prior to contact, scales as

Vm ∝







τ2 + σ2, r � h,

τ2 ⊕ στ ⊕ σ2, r & h.
(6.3)

The summation symbol ⊕ indicates a linear combination (summation after multiplication of the
operand by a constant determined by the theory). In simple shear models, τf = 0 implies
Vm = 0. In the anticrack model, by contrast, neither τ = 0 nor σ = 0 imply Vm = 0. Indeed,
if τ = 0, then necessarily σ 6= 0 and V becomes a function of σ alone, with V (σ) 6= 0; while if
σ = 0, then necessarily τ 6= 0 and V becomes a function of τ alone (or τf), with V (τ) 6= 0 (or
V (τf) 6= 0, unless τf = 0). Physically, this means that in absence of resultant shear stress there
is still energy available for crack growth from the anticrack mechanism.

Despite van Herwijnen’s experimental results [83], speculations re-emerged in recent years that
shear fracture always precedes collapse [55, 56]. In fact this egg-or-hen question makes little
sense. At grain-scale the random aggregate of ice grains fractures in a random combination of
microscopic modes. At larger scales, the scaling relations indicate that both shear and com-
pression contribute to crack energy and therefore to fracture energy. The relative contributions
of shear mode and anticrack mode to crack energy, as the crack expands from nil, can be cal-
culated. At nucleation time, r � h, the partitioning of the crack energy (the shear contribution
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divided by the anticrack contribution to crack energy) is τ2 : σ2 or equivalently (tan θ)2 : 1. In a
slope of 30◦ for example, the ratio is 1 : 3, i.e. there is 25 % energy contribution by the shear
mode and 75 % by the anticrack mode. At 45◦ the partitioning is 1 : 1, or even. For larger cracks,
the relative contribution of the anticrack mode increases until contact between the crack faces
is established (Eq. 4.5). After contact it decreases and, for very long cracks and for τf 6= 0, the
partitioning asymptotically approaches 1 : 0, characteristic of simple shear. However, Eq. 4.9
does not describe a shear crack unless hf = 0. The anticrack contribution in σ never vanishes,
and for τf = 0 it is the only one to provide energy.

It is also possible to compare a small shear crack and a small mixed-mode anticrack, both of
equal size, by computing the ratio of the crack energy of the first with respect to the crack energy
of the second. For the shear crack, the crack faces are always in contact, which gives rise to
Coulomb friction with coefficient µ. For the mixed-mode anticrack, zero Coulomb friction prior
to contact applies (due to the absence of compression of the crumbled weak layer). The ratio
of crack energies (simple shear crack energy divided by mixed-mode anticrack energy) is then
τ2
f : (τ2 + σ2) = (τ + µσ)2 : (τ2 + σ2) = (sin θ − µ cos θ)2 : 1. With µ = 0.4 this amounts to

about 1 : 42 in a 30◦ slope and to about 1 : 9 in a 40◦ slope. This indicates that mixed-mode
anticracking contributes considerably more energy (90 % and more) than simple shear cracking.

6.3 Discussion of model assumptions

The fact that volumetric collapse of weak layers does take place during fracture has been shown
by van Herwijnen and Jamieson in field experiments [80, 83]. These experiments comprised
the most common types of weak layers (buried surface hoar, depth hoar and faceted crystals)
and different triggering mechanisms (rutschblock tests, notch experiments and skier triggering).
Their results indicate that anticracking frequently if not always takes place in weak snowpack
layers. van Herwijnen’s experiments also demonstrate that shear fracture and collapse of the
weak layer occur simultaneously when fracture is initiated [82]. This refutes conjectures that
shear fracture is always first in the formation of slab avalanches.

A number of assumptions were made to obtain the crack energy function: (1) a continuum
crack, (2) brittle fracture, (3) a one-dimensional plane strain configuration and a rigid substrate,
(4) homogeneous and isotropic layers of snow, (5) a fracture energy that is independent of
fracture mode and (6) negligible dissipation. These assumptions are discussed in this order
below.

1. The continuum equations have no knowledge of the randomness of the snow structure at
grain-scale (0.2 mm to 5 mm) and are not applicable at this resolution. In its present formu-
lation, the model has no information on small-scale flaws that are always present because of
the disordered and strongly heterogeneous microstructure of snow on the sub-centimeter scale.
The model only knows of the explicit crack modelled as a boundary condition. In particular, the
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following situations are not accounted for: (i) Screening of the stress field in the vicinity of the
explicit crack, e.g. in presence of multiple weak layers. (ii) Arrest of fracture propagation, due to
transverse cracks as shown in Fig. 1.2. (iii) Crack nucleation by interaction and coalescence of
many small-scale flaws within the same layer.

2. It has been argued that snow is a quasi-brittle material. Accordingly, models of snow failure
should take into account the existence of a fracture process zone of finite extension around the
crack tip. This is typically modelled in terms of a displacement-softening slip surface charac-
terised by a peak strength τp, residual friction stress τr and characteristic softening displacement
δ [53]. Such displacement softening relationships can be used as an ’input’ for finite element
simulations using cohesive crack models [5]. Analytical results derived from cohesive crack
models are obtained in the limit where the fracture process zone is small in comparison with
the system dimensions (see explicitly [53, 59]). This is simply the limit of linear-elastic fracture
mechanics (LEFM), and the expressions obtained are identical to those obtained from LEFM if
one identifies the fracture energy wf with the product (τp − τr)δ. In particular, it can be easily
shown that the present model yields the same results as the ’classical’ cohesive crack models
if one considers the case of pure shear. It was shown in section 4.3 that, in the absence of
volume reduction, the model recovers McClungs’s propagation criterion (Eq. 3.2 in this text or
Eq. 3 of [53]). Hence, the fact that the present model uses a LEFM formulation from the very
beginning does no more (and no less) harm than the assumptions used by other authors to
extract analytical fracture criteria from a more general quasi-brittle treatment.

3. In the model calculation a one-dimensional plane strain configuration and, except for short
cracks, a rigid substrate were assumed. The critical crack size rc and the critical line charge p
were obtained for these configurations. The one-dimensional configuration underestimates rc
and p when compared with a two-dimensional, circular crack. The assumptions of plane-strain
deformation and rigid substrate as well as the Timoshenko formalism overestimate rc and p.

4. A homogeneous isotropic slab, and a homogeneous weak layer and substrate were assumed.
In reality, all material properties of snow are stochastic functions of space. The randomness
of material properties such as the fracture energy wf implies a certain likelihood of precursor
zones for fracture nucleation. Inhomogeneous material properties and geometry also affect
the response of the slab to bending, stretching and compression, which in turn affects the
energy barrier. Whenever random variables are involved, some events depend more on average
properties of the distributions, other more on the tails of the distribution. Those affected by the
tails (e.g. nucleation and arrest) are probably less accurately modelled than those depending
more on average values (e.g. propagation).

5. A key parameter in the calculations is the fracture energy wf , which is defined without speci-
fying whether failure occurs under shear, compression, or mixed mode loading. This implies the
assumption that the energy difference between the states of the weak layer before and after fail-
ure does not depend on the combination of macroscopic loading modes. While it is possible but
not proven that the toppling of individual depth hoar crystals in slope-parallel shear may require
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less energy than their vertical crushing, the situation is altered by the fact that, in a strongly
heterogeneous and random material such as snow, loading is locally always in mixed mode,
which reduces the anisotropy in wf . Therefore it is plausible to expect little mode dependence
of fracture energy. If this proves wrong in practice, wf can be made a function of θ, but Fig. 6.4
does not indicate that this is necessary.

6. Dissipative terms were neglected in the formulation of mechanical energy. Dissipation of
energy may for example increase the critical loads p a skier can apply dynamically to the snow-
pack before it fails. Dissipation may also play a role in the ECT-type experiments proposed by
Simenhois and Birkeland [72] in which tapping on the upper surface of a field specimen induces
the fracture in the weak layer. Until now, the experiments of Johnson, van Herwijnen, Sigrist
and Gauthier [25, 40, 69, 83] can be explained without including dissipative terms other than
crack-face friction.

6.4 Interpretation of the anticrack model

In order to investigate how the anticrack model affects the understanding of avalanche hazard,
its predictions are compared with those of the simple shear model in an ideal situation. The
comparison is illustrated on the concrete example of a snow cover with physical properties as
listed in Table 6.2. Local variations of snowpack properties such as wind-deposits are disre-
garded. Instead, the spatial distribution of slab thickness h is assumed of the form h = h0 cos θ,
where θ is the slope angle and h0 is a constant. This corresponds to an idealised snow cover in
which snow is deposited vertically during snowfall (in the concrete example the slab thickness
is 0.50 m in a slope of θ = 40◦). The weak layer is supposed to extend throughout the snow
cover. Immediately after fracture, the debris of the weak layer is assumed to oppose Coulomb
type friction to slab motion (crack-face friction). In order to illustrate the influence of friction, a
coefficient of µ = 0.5 is assumed, a value proposed by Fyffe [20] and compatible with friction
coefficients µ > 0.4 measured by Casassa [11].

Fig. 6.5 shows critical crack half-lengths calculated with the simple shear model [53] and with the
anticrack model (Eq. 4.10) as a function of slope angle. The graphs show that the predictions
of both models are similar for very steep slopes near 90◦, for which the simple shear model
and mixed-mode anticrack model converge as σ → 0. For lesser slope angles however, the
predictions of both models differ considerably.

Table 6.2: Snowpack properties for the example discussed in this section (symbols: see text).

% [kg/m3] E [MPa] ν η h0 [m] hf [m] wf [J/m2] µ θ [◦]

200 5.0 0.2 0.98 0.65 0.01 0.07 0.5 0 − 90
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The simple shear model (black curve in Fig. 6.5) divides the terrain into slopes in which fracture
can be triggered and slopes in which it cannot, depending on the friction angle θµ = arctanµ.
Untriggerable slopes are characterised by θ ≤ θµ where critical crack sizes rc do not exist.
Triggerable slopes are characterised by θ > θµ, where the critical crack size rc is finite. With
increasing slope angle the critical crack length rapidly decreases, increasing the odds to trigger
failure. In the present example (see Table 6.2) the simple shear model predicts a critical crack
length of 17 m in a slope of 30◦ and of 4.6 m in a slope of 40◦ for a crack-face friction coefficient
of µ = 0.5.

The anticrack model (grey curve in Fig. 6.5) does not divide the terrain into slopes in which
fracture can or cannot be triggered: Except for vertical terrain, the critical crack size rc is always
finite. Given the existence of a collapsible weak layer, triggering a propagating crack is possible
on all slopes, resulting in a whumpf, a slab avalanche or a remotely triggered slab avalanche
if propagation is not arrested underway. The critical crack length to cross the energy barrier
is in fact minimal in the horizontal snow cover. In the example the anticrack model predicts a
critical crack length of 0.25 m in the horizontal, 0.31 m in a slope of 30◦ and 0.37 m in a slope
of 40◦. These lengths are much shorter than the above critical lengths for simple shear cracks
in the same slope. This is a very satisfying result from a practical point of view, as it is difficult
to conceive how a skier could create a shear crack of several metres in diameter (as the shear
model would require) if his zone of influence, determined experimentally, is a meter at most [66].
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Figure 6.5: Critical crack length rc(θ), as calculated with the simple shear model (black curve)
and the anticrack model (grey curve; thin: fracture propagation results in a whumpf; thick: frac-
ture propagation results in a slab avalanche). Increasing µ shifts the asymptote to the right,
decreasing µ to the left. Here µ = 0.5. Data according to Table 6.2.
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A similar analysis applies to the condition for skier instability Eq. 4.20 (Fig. 6.6). This condition
gives the minimal line load p, assumed here to act vertically, for which the energy barrier disap-
pears, resulting in spontaneous crack nucleation. As previously, the simple shear model (black
curve in Fig. 6.6) divides the terrain into slopes in which fracture cannot be triggered (θ ≤ θµ),
where p is out of bounds and into slopes in which fracture can be triggered (θ > θµ), where p is
finite. With increasing slope angle the critical line load p rapidly and monotonically decreases.
For a crack-face friction coefficient µ = 0.5 (as used in Fig. 6.6), the calculated critical line loads
for a simple shear crack are 4.5 kN/m in a slope of 40◦ and 19 kN/m in a slope of 30◦. This
represents 10 to 50 times the load of a skier of 70 kg on 1.70 m skies (which amounts to p = 0.4

kN/m).

As previously the anticrack model (grey curve in Fig. 6.6) does not divide the terrain into slopes
in which fracture can or cannot be triggered. The critical line load to eliminate the energy barrier
is nearly constant up to very steep slopes and amounts to about 0.8 kN/m in the example, which
represents twice the load of the same skier as above. According to the model, skiing swiftly
could thus cause fracture nucleation in the example snow cover. The wide plateau in Fig. 6.6
indicates that triggering an anticrack causing a whumpf or slab avalanche is equally difficult
(or equally easy) on all skiable slopes, regardless of slope angle. However, triggering is often
believed to be easier in steep slopes, as the simple shear model suggests. In fact a rigorous
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Figure 6.6: Critical line charge p(θ), as calculated with the simple shear model (black curve)
and with the anticrack model (grey curve; thin: fracture propagation results in a whumpf; thick:
fracture propagation results in a slab avalanche). Increasing µ shifts the asymptote to the right,
decreasing µ shifts the asymptote to the left. Here µ = 0.5. Data according to Table 6.2.
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risk analysis related to slope angle has never been done and the relation between slope angle
and probability of triggering has never been established [65]. The idea that triggering fracture
is easier in steep slopes is therefore not substantiated. If incorrect, it may originate in biased
perception: while triggering a whumpf is likely to pass unnoticed, triggering a slab avalanche is
obviously not. Whatever the true relation is, is not known at present, but for the time being, one
can conclude that the anticrack model implies that weak, collapsible layers in stratified snow
fail about as easily on flat ground as in steep slopes, regardless of failure being spontaneous,
artificial or triggered by a skier. In one case this proposition has already been anticipated and
proven: Gauthier and Jamieson’s PST experiments demonstrated very weak slope dependence
for the onset of fracture propagation [25].

The analysis shows that it is difficult for a skier to trigger a supercritical shear crack. In the
example, line forces up to 20 kN/m are required. It is considerably easier to trigger a supercritical
anticrack, in which case loads around 1 kN/m are required. Quantitatively, neither the calculated
critical load for a shear crack nor the calculated critical load for an anticrack appear entirely
satisfying: The critical load calculated with the simple shear model seems too high, while that
calculated with Eq. 4.20 seems too low. On the one side, disorder may knock down the energy
barrier. On the other side, model assumptions may result in underestimating the critical loads.
Dissipation results in less work done by the applied load p being available for fracture nucleation.
Moreover, the Dirac-type load p ∝ δ(x) and the Timoshenko beam approximation result in a
very concentrated and therefore efficient, perhaps too efficient load model of the weak layer. A
more detailed model should spread the load on the weak layer over a wider area. With more
knowledge on the effective load distribution at hand, the skier situation could be modelled by
superposition of the present solution using a Green’s function approach.

Avalanche records show that the release of slab avalanches on slopes tilted by less than 26◦

is very exceptional and even a release for angles between 26◦ and 30◦ is rare [20, 65]. These
angles usually relate to the steepest parts of the starting zone on a scale of 20 m × 20 m.
Average angles of the entire starting zone are therefore expected to be somewhat lower.

Apparently, simple shear models explain this naturally: as slope angle decreases, both rc and
p become prohibitively high (as Figs. 6.5 and 6.6 show) and therefore triggering becomes in-
creasingly unlikely the lower the slope angle, and impossible below the friction angle. In fact,
the shear model implies that the minimum angle for triggering an avalanche should depend both
on the amount of loading and on the friction coefficient of the fracture debris (or equivalently its
friction angle).

The anticrack model also indicates that slab avalanches release on slopes steeper than the fric-
tion angle, but the threshold is sharp: Immediately below the friction angle, initiating sustained
fracture results in a whumpf, while immediately above the friction angle, initiating sustained frac-
ture results in an avalanche. There is no gradual increase of hazard with slope angle as in the
shear model, but an immediate transition from whumpfing to avalanching. Moreover, the calcu-
lation shows that if the load is sufficient to trigger a whumpf in flat ground, the same load is also
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sufficient to trigger an avalanche in steeper terrain (Fig. 6.6). A question remains. If crack-face
friction coefficients in the debris can possibly be as low as 0.4 (section 2.5), corresponding to a
friction angle of 22◦, should avalanches not be expected down to slope angles of 22◦? In fact
crack-face friction at the very start of slab motion has yet to be measured. The measurements of
Casassa [11] are merely proxies and only yield indicative values. Still it may be asked whether
such low release angles are theoretically possible or not. The total resistance to slab motion
cannot entirely be reduced to crack-face friction. The snow in place around the delaminated
slab, the stauchwall1 in particular, stabilises the slab against downslope motion. Thus the net
pull on the slab must not only overcome crack-face friction but also some additional resistance.
But this argument does not apply when very large slabs are released, as the relative importance
of the peripheral forces decreases with size. It should then be invoked that planar fracture inter-
faces (as assumed in the model) do not actually exist in nature. Real weak layers and interfaces
are curved and rough at various scales: at the centimetre-scale as shown by Löwe, Egli and
Bartlett. [49], at the metre-scale (”bumps”) and at the slope scale (convexity-concavity). It can
be expected that roughness stabilises the slab against slip, resulting in additional resistance to
be overcome, and hence higher critical slope angles.

The problem of the slab sliding as a whole or staying in place as a whole just after it was undercut
by an anticrack could be in fact even more complex. In a random material like snow, the crack-
face friction coefficient µ can be considered a stochastic function of x and, in a real slope,
the slope angle θ can be considered another stochastic function of x. The correlation lengths
of these processes may differ by orders of magnitude, depending on terrain. Moreover, static
friction applies to crack face friction, which in snow can be quite unpredictable due to the rapid
sintering of snow on the scale of seconds, depending on factors such as grain structure and
grain temperature [6]. In the general case the threshold slope angle for the whumpf-avalanche
transition is thus expected to depend on these stochastic functions, on grain structure and grain
temperature. Measuring and forecasting the whumpf-avalanche threshold angle and relating it
to weak layer state would be of great practical value.

Avalanche warning services recommend not to ski steep slopes during periods of increased
hazard. This recommendation appears in a very different light when the explanation is sought
with the shear model or with the anticrack model. Suppose that, as is often the case, one has
limited prior knowledge of the existence of weak layers and no prior knowledge of the spatial
extension of the weak layers in the hill slopes. In the understanding of the shear model, one
would expect that increasing slope angle increases the odds of triggering fracture in a weak layer
(Fig 6.6, black curve). As this not the case in the anticrack model, the reason for avoiding steep
terrain appears to reside in the availability of weak layers with crack-face friction larger than
the local slope angle (or potentially so, because crack-face friction only comes into existence
if failure is actually triggered). But even avoiding these ”hot slopes” will not make the journey
entirely safe, due to the possibility of remote triggering.

1Stauchwall: downslope wall of the perimeter of the release area.
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Avalanche warning services recommend that skiers should observe a minimum clearing dis-
tance between individuals during periods of increased hazard. In the understanding of the
shear model, this recommendation makes sense only in slopes steeper than the friction angle.
In gentler slopes there are no net shear forces to add when a crack forms in the weak layer. In
the light of the anticrack model, this recommendation must on the contrary hold for any slope
angle, including the horizontal. Indeed, the compressive components never vanish and, if two
skiers are closeby, the condition for skier instability is easier to fulfill.

Another conclusion that can be drawn here is that valid signals for the instability of a weak layer
can be found on gentle slopes and even on horizontal terrain as long as fracture nucleation is
concerned (without regard of the subsequent friction problem). Practitioners have known and
applied this idea for a long time, although seemingly without realising how conflicting it is with
the simple shear model of slab avalanche formation, which implies that fracture nucleation and
propagation can only be studied in steep slopes.

6.5 Triggering mechanisms

In chapter 4, a snowpack containing an unflawed weak layer was shown to be fundamentally
metastable, i.e. stable if undisturbed. Instability can only be obtained in this case by a pertur-
bation or by deterioration of the energy barrier. Three mechanisms for fracture nucleation were
proposed, which achieve either the first or the second: nucleus instability, skier instability and
gap instability.

Nucleus instability implies the existence of a pre-cracked area or flaw and therefore is not prop-
erly a nucleation criterion from nil, but a condition for a stable flaw to turn into a propagating
fracture. This condition, given by Eq. 4.17, can only be fulfilled during snowfall as the load on
the weak layer increases or, after snowfall, by deterioration of wf or formation of depth hoar.

Skier instability and gap instability are proper nucleation mechanisms, as they eliminate the
energy barrier for continuum cracks of size zero. The skier instability is dominated by the com-
pression, not the shear, exerted on the weak layer. Indeed, assuming that the line load p acts
vertically, Eq. 4.20 indicates that in slopes inclined less than 45◦, over 75 % of the energy con-
tribution of the skier to the reduction of the energy barrier comes from the slope-perpendicular
component py. This is because py ≥ px for θ ≤ 45◦ and because of the prefactor 3η2 ≈ 3 of py.
In a slope of 30◦ the proportion increases to 90 %.

By contrast, the gap instability is purely a shear instability, as only τ but not σ appears in
Eq. 4.22. Gaps reaching deep into the snowpack are rarely observed in snow and probably
cannot explain many avalanches. The possibility however, cannot be excluded and occasionally
they may be the cause for slab release. The dangerous gap reaches as deep or deeper than
the weak layer (as shown in Fig. 4.9) and its faces must not touch. If there is contact between
the opposing faces, the work of the contact forces increases the energy barrier and decreases
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the chances of spontaneous triggering. Gaps may sometimes be formed by uneven creep of
the snow cover, although this will quite often destroy the weak layer (A. Duclos, personal com-
munication). Gaps may also be created by a skier leaving a deep track in the snowpack. This
of course is not the usual trigger action due to compression of the weak layer described by
Eq. 4.20 and should probably be considered an exception in practice. It indicates however, that
even if the skies sink below the level of the weak layer, the triggering of fracture is still possible.
Gap instability may give back some credit to an old argument by Perla and LaChapelle [61]:
that a transverse fracture surface perpendicular to the slope may in some circumstances be the
primary cause of slab avalanches. The difference with the original idea is that the gap is not
identified with the crown wall, but with the originating point of the basal failure of the weak layer,
from which the fracture may propagate upslope, downslope or in both directions.

The three triggering mechanisms discussed above are propositions that are deduced math-
ematically from the anticrack model in its present form. They are plausible and theoretically
founded but remain conjectures and have to be validated by field experiments. The primary
focus should be whether these mechanisms do or do not exhibit the correct trends, for exam-
ple with slope angle θ (as in Figs. 6.5 and 6.6), with slab thickness h and with loading (e.g. by
adding or removing snow on the surface and repeating the experiment under similar conditions).
Such experiments may indicate in which direction the model has to be developed in the future.

6.6 Further research

Based on the anticrack model, many bifurcations for further research are possible. They can be
grouped into the following topics: crack-face friction, dissipation, disorder and solutions for fast
collapse waves, as briefly discussed below.

1. Crack-face friction poses many questions. Coulomb friction may not be sufficient to describe
crack-face contacts, and adhesion, Newtonian friction, velocity dependence and sintering time
scales may have to be taken into account. Interesting perspectives reside in the measurement
of crack-face friction in PST-type or ECT-type experiments in steep slopes, e.g. by measuring
the acceleration of the slab immediately after complete debonding.

2. Dissipation: Besides irreversible fracture, an important dissipative process for collapse waves
seems to be the formation of transverse cracks across the slab. Fracture arrest appears to be an
important factor for avalanche hazard. Experimental research related to this aspect of collapse
waves has recently been undertaken by Gauthier and Jamieson [25, 26]. Some slabs seem
very effective in transmitting collapse waves, while other slabs seem very effective in stopping
collapse waves. It is not presently known why. A possible reason of arrest is the collapse wave
hitting flaws in the slab, resulting in transverse fracture as shown in Fig. 1.2.

3. Disorder: Microstructural randomness at grain-scale, wind-deposited snow in turbulent air
and countless other factors make snow a very heterogeneous material. As a consequence
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material properties vary randomly in space and the energy barrier becomes a random variable.
The objective is then to obtain a probabilistic expression for the Griffith-Irwin criterion. Yet
another extension is possible. In the present work fracture nucleation was studied on a simple
topology with a single crack. Anticrack physics can be revisited by extending the topology to
a population of interacting flaws within the same weak layer or within different layers. Using
extremal statistics the goal is then to find the probability of global failure of a specimen of given
size under defined loading.

4. Collapse waves: In the development of the collapse wave model presented in chapter 5,
only solutions for slow collapse waves with distinctly sub-shear velocity were obtained. The
calculation also suggests the existence of faster collapse waves, notably super-shear and pos-
sibly even supersonic waves. These possibilities raise interesting theoretical and experimental
questions.





Chapter 7

Conclusion

Like Steven Weinberg’s chronology of the Big Bang’s first three minutes [84], the present work
may be concluded by giving a short account of the first three metres of the little bang that occurs
when a slab avalanche is triggered on a slope. The events are related in terms of the size r of
the expanding failure zone.

The nucleation of an avalanche begins, like the Big Bang, in a blur. The anticrack model tunes in
at a scale of a few centimetres, at which the granular structure no longer impedes a continuum
description of stress and strain fields in the slab. Initially, the slab is not supported homoge-
neously, but at random points by small crystalline grains of ice, the collectivity of which forms
a network called a weak layer. The grains in this network are not equally strong nor equally
spaced. When a small portion of this network fails, it is broken into debris which can pack
tighter than the initial structure. This results in an interruption of the stress field. Both the com-
pressive and the shear components vanish in the small area where the weak layer crumbles.
This ’hole’ in the stress field can be described as a mixed-mode anticrack exposed to the ac-
tion of far-field compressive stress and shear stress. The mixed-mode anticrack may nucleate
in a small zone where the grains are mostly frail and sparsely populated (e.g. Figs. 1.2a and
4.1a). It may also nucleate in stronger and more populated zones through the action of an
external triggering agent, e.g. a skier. A necessary condition for the nucleus to expand is a
monotonic decrease in crack energy. This occurs when the crack length exceeds the critical
size determined by the energy barrier. For heavily loaded slopes this can be a length of a few
centimetres, in lesser loaded slopes a few decimetres, in absence of volumetric collapse it can
be a few metres. Beyond the critical length, crack growth releases more energy than it con-
sumes. Only dissipative processes such as transverse fracture across the slab can now stop
the propagation of the crack. If crack propagation carries on, at some stage the debris will attain
maximum compaction in the middle of the crack (Fig. 4.1c). From that moment on, subsidence
stops and a kink-shaped collapse wave gradually develops, heading out in all directions. This
wave is the carrier for the progressive delamination of the weak layer. A typical wavelength is
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of the order of a metre or a couple of metres, a typical propagation velocity around 20 m/s or 30

m/s. If crack-face friction in the delaminated section is large or the slope angle small, the slab
subsides, resulting in a whumpf. If crack-face friction is small or the slope angle large, the slab
slides, resulting in a slab avalanche. Other scenarios than this one are possible. For example,
a skier may nucleate an unstable crack from nil.

In the following, conclusions which can be drawn from the mathematical model are listed. Re-
garding fracture nucleation, the following conclusions are made:

1. The anticrack model unifies the physics of whumpf and slab avalanche formation, which
were originally thought to be independent. Nucleation and propagation of these instabili-
ties can be described by the same energy function.

2. Under assumptions listed in section 6.3, the energy of formation V (r) of a crack of size r in
a weak subsurface layer of the snowpack has been determined (Eq. 4.10). The maximum
of V (r), if it exists, determines the energy barrier for crack propagation.

3. Within the assumptions of the present model, unflawed and undisturbed slopes are fun-
damentally stable as the energy barrier is always strictly positive in these cases.

4. The energy barrier can disappear altogether by action of a skier (Eq. 4.20) or by formation
of a gap in a steep portion of snowpack (Eq. 4.22), resulting in fracture nucleation even in
absence of a pre-cracked area or shear-deficit zone.

5. Simple shear cracks can neither nucleate nor propagate when crack-face friction sur-
passes the shear load on the weak layer. This limitation does not exist for anticracks.

6. A long anticrack with contacting crack faces cannot be approximated as a simple shear
crack: The anticrack mechanism contributes by decreasing the effective fracture energy
(Eq. 4.9).

7. According to the anticrack model, the release of a slab avalanche is the result of a two-
stage scenario, in which two conditions have to be met separately. Firstly, fracture must be
triggered and propagate in order to destroy cohesion across the weak layer. Secondly, the
shear load on the weak layer must exceed the residual crack-face friction. If the second
condition is not fulfilled, the slab will subside but not slide and the outcome is a whumpf.

Regarding fracture propagation, the following conclusions are made:

1. Collapse waves are driven by both slope-normal and slope-parallel components of gravity,
which never simultaneously vanish for any slope angle. The collapse wave can therefore
climb or descend a slope from adjacent flat ground or propagate across a slope inclined
less than the friction angle. This explains the remote triggering of slab avalanches from
adjacent flat ground and from within the slope.
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2. The collapse wave is dispersive. A combination of material properties and stratification
geometry determines its wavelength and propagation velocity. The velocities are an dis-
tinctively smaller than those of elastic shear waves in the slab.

3. The collapse wave is an energetically self-sustained perturbation and therefore its prop-
agation is not limited by the energy initially available during trigger action. The collapse
wave gets its energy on the spot from the subsiding slab. This bridges the gap between the
small amounts of energy needed to trigger fracture and the comparatively large amounts
of energy needed to release a slab avalanche .

4. One reason for fracture arrest is the interruption of the strain field by the formation of trans-
verse cracks, effectively blocking the flow of elastic strain energy across the slab. Based
on field observations, the formation of transverse cracks not always results in fracture
arrest. Transverse cracks may originate from the collapse wave hitting a flaw.

Regarding model validation, the following conclusions are made:

1. The superposition of successive video frames from the Davos-Stilli experiment (Fig. 6.2)
shows an instance in which the fracture process develops as expected by the anticrack
model.

2. The present theory is confirmed by recent field experiments which have shown that the
critical length of artificial cracks is weakly affected by slope angle, for angles between 0◦

and 40◦. In simple shear models, by comparison, the critical crack length for propaga-
tion of shear cracks along weak layers would increase without bound as the slope angle
decreases towards the friction angle of crack faces.

3. According to first field measurements at Davos-Wannengrat, the model presented in chap-
ter 5 predicts the velocity and wavelength of collapse waves with good precision.

4. The anticrack model is in line with field experience and explains remote triggering of slab
avalanches, the linkage between whumpfs and avalanche hazard and the so far unex-
plained whumpf phenomenon itself.

Regarding model formulation, the following conclusions are made:

1. The mixed-mode anticrack model contains previous shear models [50, 53] as limiting
cases. These cases are obtained by assuming zero volume reduction during failure
(hf = 0). The anticrack model also contains previous collapse models [32,33].

2. The mathematical description of the anticrack is not particular to any specific microstruc-
tural model. The key elements - volumetric collapse of fracture debris and residual friction
- apply to any weak layer composed of grains that can rearrange in a more tightly packed
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order. In snow, this includes layers composed of faceted crystals or depth hoar. Indeed
the present model produces accurate results for field experiments on weak layers of these
types as done by Sigrist [69].

3. The vanishing compressive stress in the cracked weak layer (which is due to volumetric
reduction) gives a natural explanation for zero residual Coulomb friction between crack
faces. This favours the expansion of the crack until contact between slab and substrate is
established.

4. For numerical applications, the anticrack model requires to compute the crack energy
function V (r) as a function of crack or notch size r (Eqs. 4.10, 4.13) and determine for
which r the function attains its maximum.

Regarding the interpretation of the model for avalanche hazard, the following conclusions are
made:

1. In simple shear models the slope angle is a dominant factor for fracture nucleation: Critical
crack lengths strongly depend on slope angle. In the anticrack model, this is not the case:
Critical crack lengths, if at all, depend weakly on slope angle. Moreover, if a load is
sufficient to trigger a whumpf on flat terrain, the same load is also sufficient to trigger an
avalanche in steeper terrain under similar conditions.

2. In simple shear models an increase (decrease) of avalanche hazard is attributed to a
decrease (increase) in length of the critical shear crack: The dependence of avalanche
hazard on slope angle is gradual. In the anticrack model, this view is replaced by a two-
stage scenario: In the first stage, nucleation and propagation of a mixed-mode anticrack
delaminates the slab from the snow below. This process can occur with or without shear
loading and for arbitrary amounts of crack-face friction. In the second stage frictional
forces between the crack faces decide whether the slab will slide, causing an avalanche,
or subside, causing a whumpf.

3. The anticrack model indicates an immediate transition from whumpfing to avalanching as
slope angle increases above friction angle.

4. In presence of flaws on the centimetre scale, stratified snow can collapse under its own
weight, as shown by Eq. 4.14.

5. In skiable slopes, the critical size and critical line load for the onset of crack propagation
are substantially lower for mixed-mode anticracks than for simple shear cracks. This is due
to gravitational potential energy freed by bending of the unsupported slab, a contribution
that is not taken into account by simple shear theories. A second reason is the absence
of Coulomb friction for small anticracks.
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6. The previously unexplained correlation between occurrence of whumpfs and occurrence
of slab avalanches receives a natural explanation, as the underlying physics have been
shown to be identical.

7. As opposed to a shear crack nucleus, an anticrack nucleus is an entity that may not read-
ily disappear by sintering. The void between the faces -if it exists as such- must first be
bridged by vapor transport, before additional transport mechanisms such as surface diffu-
sion can set in. This may give some credit to the existence and persistence of so-called
super-weak spots [64].

8. One can speculate that a contributing factor to slab avalanche hazard is the amount of
crack-face friction appearing in the fractured weak layers: The lower the crack-face friction,
the more total hillside surface is potentially available for avalanching.

Direct applications of the model are:

1. The anticrack model, Eq. 4.13, can be used to analyse notch experiments of the type
proposed by Gauthier and Jamieson [25] and Sigrist and Schweizer [69]. The fracture
energy of the weak layer wf can be deduced analytically with the anticrack model: By
substitution of r = rc, where rc is the measured critical length, into ∂rV (r, wf ) = 0, where
V is given by Eq. 4.13, an equation for wf is obtained. The resulting value for wf can be
substituted into Eq. 4.10 to calculate the critical length of a crack.

2. Snow slope stability can be studied on data from field measurements or on snowpack
model data [9, 48] by substitution of material properties and stratification geometry into
the expressions for nucleus instability (Eq. 4.17), skier instability (Eq. 4.20) and gap insta-
bility (Eq. 4.22).

3. The notch experiments proposed by Gauthier and Jamieson [25] and by Sigrist and
Schweizer [69] can be used for the purpose of determining the critical length for self-
sustained fracture propagation. It is recommended that the length of the specimen should
exceed a few times the critical length rc or a few times the slab thickness h, whichever is
larger. If the sample is shorter, a size effect due to the free boundary at the opposing end
of the notch appears. If the notch experiment is used to create and examine properties of
collapse waves, its length should exceed several times the wavelength.

Many questions have not been addressed by the present model:

1. Disorder was not taken into account in the present continuum crack formulation. An effect
of disorder is the fluctuation in space of the crack energy. The energy barrier for crack
propagation must then be considered a random variable.
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2. The anticrack has been modelled in a 3-layer continuum extending in one dimension for
reason of analytical simplicity. As a real snowpack extends in two dimensions and embod-
ies multiple layers, the analytical expression for the crack energy is affected.

3. While the sustainability of the collapse wave has been addressed in terms of available en-
ergy, it has not been done so in terms of dissipative processes in the slab, e.g. in the for-
mation of transverse cracks. Evidence for transverse crack opening has been observed in
field experiments carried out with A. van Herwijnen. The amount of such damage may play
an important role in fracture arrest, which seems crucial for the evaluation of avalanche
hazard.

4. In the present model the weak layer is assumed to collapse instantaneously (once the
required fracture energy is provided) and Coulomb friction is assumed to appear only
once the faces of the anticrack make contact. Although to some extent justified, this is an
idealisation.

5. The question of how volume reduction during failure is related to the initial structure of the
material has been left aside.

The present model is in many respects an elementary formulation of mixed-mode anticracks in
weak subsurface layers. The price for simplicity is, perhaps, limited accuracy. Although com-
parison with experiments indicates that the accuracy of the model predictions is by all means
usable. The benefit of simplicity is the small number of parameters needed to apply the model.
The traditional simple shear model requires a set of six descriptive parameters: the fracture
energy wf and the crack-face friction µ of the weak layer, the Young’s modulus E, the density %
and the thickness h of the slab, and the slope angle θ. In addition to those, the anticrack model
requires only one more parameter: the collapse amplitude hf .

The raison d’être of the present contribution is to account for volume loss in the fracture area
and to understand the anticrack mechanism which is associated. The results explain why com-
pressive forces are effective in nucleating and propagating failure in a weak layer of snow. The
present theory is still very young. Some of the results are perhaps transitory, but it may already
be said that anticrack physics is now well under way in snow science.



Appendix A

Material properties of snow and ice

Table A.1: Physical properties of dry seasonal snow (slab material and weak layer material).

Notation Description Range Units
Slab material :

% Average density [64] 100 − 300 kg/m3

E Elastic modulus [57,63,67] 1 − 102 MPa
ν Poisson’s ratio [67] 0.2 − 0.35

Weak layer :
wf Fracture energy [69,71]. 10−2 − 10−1 J/m2

µ Friction coefficient for snow contacts [11] > 0.4

Table A.2: Physical properties of ice (multicrytalline). Data compiled from [6,34,44]

Notation Description Value Units
%0 Density (273 K, 105 Pa) 917(1) kg/m3

E Elastic modulus 8.7 − 9.9 GPa
µ Shear modulus 3.4 − 3.8 GPa
η Poisson’s ratio 0.31 − 0.37 -

Fracture :
KI,c Toughness mode I 0.18(7) MPa

√
m

Surface energy :
γsv Solid-vapor 0.109 J/m2

γsl Solid-liquid 0.033 J/m2

γss Solid-grain boundary-solid 0.065 J/m2
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Appendix B

FEM results for crack energies

Tables B.1 and B.2 below list results from finite element modelling of cracks for configurations
as listed in table 4.2. For discussion see section 4.8.

Table B.1: FEM results (Ansys 9.0) for crack energies per unit width for various slope angles θ.

Table 4.2a Table 4.2b Table 4.2b

θ = 0◦ θ = 30◦ θ = 90◦

r [m] Vm(r) [J/m] r [m] Vm(r) [J/m] r [m] Vm(r) [J/m]

0.01 9.90×10−6 0.01 2.42×10−5 0.05 6.61×10−4

0.05 2.89×10−4 0.05 7.07×10−4 0.15 7.23×10−3

0.15 3.21×10−3 0.15 7.83×10−3 0.30 3.18×10−2

0.30 1.89×10−2 0.30 4.34×10−2 0.50 9.72×10−2

0.50 9.29×10−2 0.50 1.99×10−1 0.70 2.08×10−1

0.70 3.12×10−1 0.70 6.36×10−1 0.90 3.74×10−1

0.90 8.33×10−1 0.90 1.66×100 2.00 2.74×100

1.42 5.77×100 1.14 4.28×100 3.00 8.14×100
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Table B.2: FEM results (Ansys 9.0) for notch energies per unit width for various slope angles θ.

Table 4.2a Table 4.2b Table 4.2b Table 4.2b
- case Fig. 4.5b case Fig. 4.5c -

θ = 0◦ θ = 30◦ θ = 30◦ θ = 90◦

r [m] Vm(r) [J/m] r [m] Vm(r) [J/m] r [m] Vm(r) [J/m] r [m] Vm(r) [J/m]

0.01 1.26×10−5 0.01 1.61×10−4 0.01 6.40×10−6 0.01 2.34×10−4

0.05 2.15×10−4 0.05 2.01×10−3 0.02 1.35×10−5 0.02 6.66×10−4

0.15 2.22×10−3 0.15 1.28×10−2 0.05 2.38×10−5 0.05 2.37×10−3

0.30 1.49×10−2 0.30 5.73×10−2 0.10 1.56×10−4 0.10 5.88×10−3

0.50 8.36×10−2 0.50 2.40×10−1 0.15 8.26×10−4 0.15 1.01×10−2

0.70 3.02×10−1 0.70 7.45×10−1 0.30 1.35×10−2 0.30 2.82×10−2

0.90 8.43×10−1 0.81 1.27×100 0.50 1.10×10−1 0.50 6.81×10−2

1.05 1.63×100 0.70 4.60×10−1 0.70 1.31×10−1
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