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Abstract
Asymptotic regularization (also called Showalter’s method) is a theoretically
appealing regularization scheme for an ill-posed problem T x = y, T acting
between Hilbert spaces. Here, T x = y is stably solved by evaluating
the solution of the evolution equation u′(t) = T ∗(y − T u(t)), u(0) = 0,
at a properly chosen finite time. For a numerical realization, however,
we have to apply an integrator to the ODE. Fortunately all properties of
asymptotic regularization carry over to its numerical realization: Runge–Kutta
integrators yield optimal regularization schemes when stopped by the
discrepancy principle. In this way a common analysis is obtained for such
different regularization schemes as, for instance, the Landweber iteration and
the iterated Tikhonov–Phillips method which are generated by the explicit
and implicit Euler integrators, respectively. Furthermore it turns out that
inconsistent Runge–Kutta schemes, which are useless for solving ODEs,
lead to optimal regularizations as well which can even be more efficient
than regularizations from consistent Runge–Kutta integrators. The presented
computational examples illustrate the theoretical findings and demonstrate that
implicit schemes outperform the explicit ones.

1. Introduction

We are interested in the stable solution of the linear system

Tf = gε (1.1)

where the operator T acts continuously between the Hilbert spaces X and Y. The right-hand
side gε is a perturbed version of the exact data g satisfying ‖gε − g‖Y � ε where ε � 0 is the
noise level. We will assume that g = Tf + with f + in N(T )⊥, the orthogonal complement of
the null space of T. Moreover, the above linear system is considered to be ill posed, that is, the
range R(T ) of T is non-closed in Y.
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Special procedures have to be used for obtaining stable and meaningful approximations
to f +. Those procedures are called regularization schemes (regularizations). Let {Rn}n∈N0

be a family of continuous operators (linear or nonlinear) from Y to X with Rn0 = 0. If
there exists a mapping γ : ]0,∞[ ×Y → N0 such that the worst reconstruction error tends to
zero, i.e.

sup{‖f + − Rγ (ε,gε)g
ε‖X : gε ∈ Y, ‖Tf + − gε‖Y � ε} −→ 0 as ε → 0

for any f + ∈ N(T )⊥, then the pair ({Rn}n∈N0 , γ ) is a regularization scheme for T. The mapping
γ is called parameter choice.

The above convergence is arbitrarily slow unless f + satisfies additional requirements.
Convergence rates can be given, for instance, when f + is in the source set Xµ,� := {|T |µw :
w ∈ N(T )⊥, ‖w‖X � �} for µ, � > 0 where |T | := (T ∗T )1/2. We distinguish regularization
schemes attaining the highest convergence speed in Xµ,� by the concept of order optimality:
the regularization scheme ({Rn}n∈N0 , γ ) for T is called of optimal order in Xµ,� if1

sup{‖f + − Rγ (ε,gε)g
ε‖X : f + ∈ Xµ,�, g

ε ∈ Y, ‖Tf + − gε‖Y � ε} � Cµεµ/(µ+1)�1/(µ+1).

The constant Cµ depends neither on ε nor on �.
A common way to obtain and to analyse potential regularization schemes is using filter

functions: let {Fn}n∈N0 be a family of piecewise continuous functions Fn : [0, ‖T ‖2] → R

with jump discontinuities satisfying

lim
n→∞ Fn(λ) = 1/λ and λ|Fn(λ)| � CF for λ ∈]0, ‖T ‖2]. (1.2)

Defining Rn := Fn(T
∗T )T ∗ ∈ L(Y,X) we have a candidate for a regularization scheme

which needs to be furnished with a parameter choice. As parameter choice γ we will use,
exclusively throughout the paper, the easy-to-implement discrepancy principle of Morozov:
choose a τ > 1 and set

γ (ε, gε) := min{n ∈ N0 : ‖TRng
ε − gε‖Y � τε}. (1.3)

The pair ({Rn}n∈N0 , γ ) is a regularization scheme for T indeed (see, e.g., [2, 11]).
The order optimality of ({Rn}n∈N0 , γ ) can be read from the qualification of the underlying

filter functions which we introduce now: due to the convergence in (1.2) the supremum of
the set {|Fn(λ)| : 0 � λ � ‖T ‖2} grows unboundedly with n. Thus, there exists a sequence
{tn}n∈N0 which diverges to infinity monotonically such that sup{|Fn(λ)| : 0 � λ � ‖T ‖2} =
O(tn) as n → ∞. The qualification µQ of the filter {Fn}n∈N0 is the largest number such that,
for all µ∈ ]0, µQ],

sup
0�λ�‖T ‖2

λµ/2|1 − λFn(λ)| � CQt−µ/2
n as n → ∞. (1.4)

Here, CQ may depend on µ.
Filters furnished with the discrepancy principle yield regularizations of optimal order. A

proof of the following theorem can be found in [2, theorem 4.17] or in [11, Satz 3.4.1].

Theorem 1.1. Let T ∈ L(X, Y ) and let {Fn}n∈N0 be a filter with qualification µQ > 1. The
corresponding sequence {tn}n∈N0 is assumed to fulfil tn/tn+1 � ϑ > 0. Let the parameter choice
γ be the discrepancy principle with τ > sup{|1 − λFn(λ)| : n ∈ N0, 0 � λ � ‖T ‖2]} � 1.

Then, ({Rn}n∈N0 , γ ),Rn := Fn(T
∗T )T ∗, is a regularization scheme for T of optimal

order in Xµ,� for all µ∈ ]0, µQ − 1] and all � > 0.

Let us look at three examples of regularization schemes. All details and more examples
can be found, e.g., in [2, 11].

1 The given exponents of ε and � are indeed the largest possible, see, e.g., [2, section 3.2] or [11, Kap. 3.2.3].
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Example 1.2. Let {tn}n∈N0 be a sequence monotonically diverging to infinity and satisfying
the requirements of theorem 1.1.

1. The filter Fn(λ) = 1/
(
λ + t−1

n

)
leads to the Tikhonov–Phillips regularization where

Rn = Fn(T
∗T )T ∗ = (

T ∗T + t−1
n I

)−1
T ∗. The qualification of the method is µQ = 2.

2. Consider the evolution equation

u′(t) = T ∗(y − T u(t)), u(0) = 0, (1.5)

which has a unique solution u : [0,∞[ → X. Setting Rny := u(tn) we obtain
Showalter’s method, also known as asymptotic regularization. This method has an infinite
qualification, that is, µQ = ∞ as can be seen from Rn = Fn(T

∗T )T ∗ with the filter

Fn(λ) =
{

(1 − e−λtn )/λ : λ > 0,

tn : λ = 0.

3. The ν-methods (ν > 0) are semi-iterative schemes. For scaled T, that is, ‖T ‖ � 1, the nth
iterate fn can be represented by fn = Rny = Fn(T

∗T )T ∗y with Fn(λ) = (
1 − P̃ ν

n (λ)
)/

t

where P̃ ν
n (λ) = P

(2ν−1/2,−1/2)
n (1 − 2λ)/P

(2ν−1/2,−1/2)
n (1) and P (a,b)

n denotes the nth-order
Jacobi polynomial.

The ν-method has finite qualification µQ = 2ν (tn = n2).

In the remainder of this paper we will show that Runge–Kutta integrators, applied to
the initial value problem (1.5) and stopped by the discrepancy principle, are regularization
schemes for T being of optimal order in Xµ,� for all µ, � > 0, that is, µQ = ∞.

Remark 1.3. Already at this early stage we take the opportunity to emphasize an important
difference in using Runge–Kutta integrators for solving the ODE (1.5) and for regularizing
the ill-posed problem (1.1). While in the former case we like to approximate the solution u
accurately over a time interval, we are, in the latter situation, interested in finding quickly a
stable approximation of the stationary solution of (1.5). In our subsequent investigations it
will therefore turn out that low order, even inconsistent, Runge–Kutta schemes in combination
with large time steps are best suited for our purpose.

The paper is organized as follows. The next section introduces Runge–Kutta integrators
together with those of their properties which we will need later on. Our above-announced
main result is stated and validated in section 3. Moreover, we give examples of Runge–Kutta
integrators some of which lead to well-known iterative regularization schemes. In section 4 we
discuss implementation issues and study the performance of different Runge–Kutta schemes
for solving numerically an integral equation of the first kind. A close look at the proof of our
main result allows for a generalization covering so-called inconsistent Runge–Kutta schemes
(section 5). Thus, we can design regularization methods converging faster (in a specific sense)
than regularizations from consistent Runge–Kutta integrators. In the final section we comment
on exponential integrators and nonlinear problems.

2. Runge–Kutta integrators

In this section we recall those well-known properties of Runge–Kutta methods which will be
of interest later in the paper. For details and proofs, see, e.g., [1, 3, 9].

Runge–Kutta methods belong to the class of one step methods for the numerical solution
of initial value problems for ODEs,

w′(t) = �(t,w(t)), t > 0, w(0) = w0, (2.1)

with given � : [0,∞[×W → W and w0 ∈ W . Here, W is a Banach space.
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A Runge–Kutta method of s stages with variable time steps {	tn}n∈N ⊂ ]0,∞[ provides
approximations wn to w(tn), tn = ∑n

k=1 	tk , by

wn = wn−1 + 	tn

s∑
i=1

biki(tn−1, wn−1,	tn), (2.2a)

ki = �

tn−1 + ci	tn, wn−1 + 	tn

s∑
j=1

aij kj

 , i = 1, . . . , s. (2.2b)

The given coefficients A = {aij } ∈ R
s×s , b = (b1, . . . , bs)

t and c = (c1, . . . , cs)
t determine

the particular method. The method is called explicit if A is a strictly lower triangular matrix.
Otherwise, the method is called implicit, since linear or nonlinear algebraic equations have to
be solved to retrieve the stages ki, i = 1, . . . , s.

Runge–Kutta methods are compactly represented by the Butcher array

c A

bt =
c1 a11 · · · a1s

...
...

...
...

cs as1 · · · ass

b1 · · · bs

.

Application of a Runge–Kutta integrator to a linear autonomous ODE, that is, �
(
t, w(t)

) =
Mw(t) + v in (2.1), yields the recursion

wn = R(	tnM)wn−1 + 	tnQ(	tnM)v (2.3)

where

R(z) = 1 + zbt (I − zA)−111,

Q(z) = bt (I − zA)−111 = (R(z) − 1)/z,

11 = (1, . . . , 1)t ∈ R
s .

The function R is called the stability function of the method. It is a polynomial for explicit
methods and it is a rational function for implicit methods. The Runge–Kutta method is said
to be of order p if the following asymptotic relation holds true:

R(z) = ez + O(zp+1) as z → 0.

If the stability region

S = {z ∈ C : |R(z)| � 1}
contains the left complex half-plane C−, the Runge–Kutta scheme is said to be A-stable. An
A-stable method with |R(∞)| < 1 is called strongly A-stable. If we even have |R(∞)| = 0,
an A-stable method is L-stable. Strong A-stability and L-stability are crucial properties for
integrating stiff ODEs coming from parabolic problems. Our equation (1.5) can be considered
parabolic with T ∗T as elliptic component.

Example 2.1. Here we list some well-known Runge–Kutta schemes with their stability
functions and their respective orders. For details see, e.g., [1, 3, 9].

1. The implicit Euler scheme is represented by

1 1
1
, R(z) = 1

1 − z
, p = 1.

Its stability region is S = C− and we have |R(∞)| = 0. Thus, it is L-stable.
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2. The SDIRK2 method2 with two stages is given by

α α
1 1 − α α

1 − α α

, R(z) = 1 + (1 − 2α)z

(1 − αz)2
, p =

{
2 : α = 1 ±

√
2

2 ,

1 : otherwise.

It is L-stable for 1 − √
2/2 � α � 1 +

√
2/2.

3. The explicit Euler scheme is represented by

0 0
1
, R(z) = 1 + z, p = 1.

Its stability region is the disc S = {z ∈ C : |z + 1| � 1} with radius 1 centred about −1.
4. Since the stability region of an explicit method is always compact one can ask for its real

stability boundary βR < ∞. By definition, [−βR, 0] is the largest segment of the negative
real axis contained in S. For any explicit Runge–Kutta scheme of order one at least we
have that βR � 2s2 where s is the stage number. The optimal real stability boundary, i.e.,
βR = 2s2, is attained for the optimal polynomials R(z) = Ts(1 + z/s2) where Ts is the
first kind Chebyshev polynomial of order s, see, e.g., [9, theorem V.1.1]. Please note that
T1(1 + z) = 1 + z is the stability function of the explicit Euler scheme.

For the optimal polynomials of order s � 2 there exist inner points z ∈ ]−2s2, 0[
where |R(z)| = 1. A little damping of the optimal polynomials shrinks the maximal
stability boundary a little bit, but yields on the other hand that |R(z)| < 1 for all
z ∈ ]−βR, 0[: choose ω0 > 1, but close to 1, and set

R(z) = Ts(ω0 + ω1z)/Ts(ω0), ω1 := Ts(ω0)/T′
s(ω0).

Here, βR = 2ω0/ω1. For instance, choosing ω0 = 1 + δ/s2 for a positive but small δ, we
obtain βR ≈ (2 − 4δ/3)s2.

There are several ways to construct Runge–Kutta schemes possessing the above-
damped polynomials as stability functions. The approach of van der Houwen
and Sommeijer [15] takes advantage of the three-term recursion for the Chebyshev
polynomials and generates the Runge–Kutta–Chebyshev (RKC) family of order p = 1
(see also [3, chapter IV.2] or [9, chapter V]).

3. Runge–Kutta methods seen as regularization schemes

A Runge–Kutta method (2.2) applied to the autonomous ODE (1.5), that is, �
(
t, w(t)

) =
T ∗(y − T w(t)

)
in (2.1), reduces to

wn = wn−1 + 	tn

s∑
i=1

biki(wn−1,	tn), w0 = 0,

ki + 	tn

s∑
j=1

aijT
∗T kj = T ∗(y − T wn−1), i = 1, . . . , s.

The above system of equations determining the stages ki is well-posed for appropriate 	tn as
we show in theorems 3.2 and 3.3. A numerical implementation will be addressed in section 4.1.

In view of (2.3) we may also write

wn = R(−	tnT
∗T )wn−1 + 	tnQ(−	tnT

∗T )T ∗y, w0 = 0, (3.1)

2 SDIRK: singly diagonally implicit Runge–Kutta.
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and further, by resolving the recursion, we find that

wn = Rny = Fn(T
∗T )T ∗y

with

Fn(λ) =
n∑

j=1

 n∏
k=j+1

R(−	tkλ)

	tjQ(−	tjλ). (3.2)

Lemma 3.1. We have that

Fn(λ) = 1 − ∏n
k=1 R(−	tkλ)

λ
.

Proof. Taking into account that Q(z) = (R(z) − 1)/z the stated representation of Fn is
straightforwardly established by an inductive argument with respect to n. �

Now we will validate that the family {Fn}n∈N0 is a filter with infinite qualification.

Theorem 3.2. Let T be in L(X, Y ) and let R be the stability function of a Runge–Kutta method
of order 1 at least3.

Then, there is a maximal step size 	tmax > 0 such that for any positive 	tmin < 	tmax

the family {Fn}n∈N0 defined in (3.2) with {	tn}n∈N ⊂ [	tmin,	tmax[ satisfies (1.2) as well as
(1.4) for any µ > 0, that is, µQ = ∞.

In other words, Runge–Kutta integrators with step sizes small enough and bounded away
from zero are regularization schemes of optimal order in Xµ,� for all µ, � > 0 when stopped
by the discrepancy principle.

Proof. Due to the order 1 of the Runge–Kutta integrator we have the Taylor expansion

R(z) = 1 + z + O(z2) as z → 0. (3.3)

Therefore, there exists a positive zmax such that for any positive zmin < zmax there is a bound
r = r(zmin) < 1 for which

|R(−z)| � r(zmin) < 1 uniformly in z ∈ [zmin, zmax]. (3.4)

Observe that r(zmin) → 1 from below as zmin → 0. Define

	tmax := zmax/‖T ‖2

and choose 	tmin < 	tmax. Let {	tn}n∈N ⊂ [	tmin,	tmax[ and let λ ∈ ]0, ‖T ‖2]. Then,
|R(−	tnλ)| � r(	tminλ) uniformly in n. Hence,

lim
n→∞ Fn(λ) = 1/λ

as well as

λ|Fn(λ)| = 1 −
n∏

k=1

R(−	tkλ) � 2,

that is, {Fn}n∈N0 fulfils (1.2).
Now, we determine the qualification of the filter. Below we will verify the existence of a

positive xR such that

R(−x)2 � e−x for all x ∈ [0, xR]. (3.5)

3 Any meaningful Runge–Kutta scheme has order 1 at least since order 1 is equivalent to the consistency of the
method with the underlying ODE. The condition

∑s
i=1 bi = 1 guarantees order 1.



Runge–Kutta integrators yield regularizations 459

For the time being assume the above inequality to hold true. Recall that |1 − λFn(λ)| =∏n
k=1 |R(−	tkλ)|. Let µ > 0 and define tn := ∑n

k=1 	tk, ϑ := tnλ as well as
h(ϑ) := ϑµ/2 ∏n

k=1 |R(−	tkϑ/tn)|. Then,

sup
0�λ�‖T ‖2

λµ/2|1 − λFn(λ)| = t−µ/2
n sup

0�ϑ�tn‖T ‖2

h(ϑ).

First, we consider ϑ ∈ [0, tnxR/	tmax] which gives 0 � 	tkϑ/tn � xR . Here, we have

sup
0�ϑ�tnxR/	tmax

h(ϑ) = sup
0�ϑ�tnxR/	tmax

ϑµ/2

(
n∏

k=1

|R(−	tkϑ/tn)|2
)1/2

(3.5)

� sup
0�ϑ�tnxR/	tmax

ϑµ/2 e−ϑ/2 �
(µ

e

)µ/2
.

If ‖T ‖2 � xR/	tmax we are done. Otherwise, we inspect ϑ ∈ ]tnxR/	tmax, tn‖T ‖2]. As
{	tn}n∈N ⊂ [	tmin,	tmax[ we find that x := 	tminxR/	tmax < 	tkϑ/tn < zmax. Thus,

sup
tnxR/	tmax�ϑ�tn‖T ‖2

h(ϑ) � sup
tnxR/	tmax�ϑ�tn‖T ‖2

ϑµ/2r(x)n � ‖T ‖µ sup
n∈N

tµ/2
n r(x)n.

The supremum on the right is finite since tn < n	tmax. Collecting the pieces we end up with

sup
0�λ�‖T ‖2

λµ/2|1 − λFn(λ)| � CQt−µ/2
n for any n ∈ N (3.6)

where

CQ = max
{(µ

e

)µ/2
, ‖T ‖µ sup

n∈N

tµ/2
n r(x)n

}
.

Since |R(−z)| � 1 for z ∈ [0, zmax], both functions R(−z) and Q(−z) are continuous there.
Hence, K = sup{|Q(−z)| : 0 � z � zmax} < ∞ and

sup{|Fn(λ)| : 0 � λ � ‖T ‖2} 3.2
� K

n∑
j=1

	tj = Ktn (3.7)

for any n ∈ N0. The two estimates (3.6) and (3.7) reveal finally the infinite qualification of
the Runge–Kutta filter {Fn}n∈N0 .

We are not finished yet with the proof of theorem 3.2. It remains to establish (3.5).
From the Taylor expansion (3.3) we see that R(0) = R′(0) = 1. Therefore, R(−x) is
positive for x sufficiently small. Further, for r(x) = R(−x)2 we obtain r(0) = 1 and
r ′(0) = −2R(0)R′(0) = −2. Consequently, the difference d(x) = r(x) − e−x satisfies
d(0) = 0 and d ′(0) = −1 which yields the estimate on the right in (3.5) and completes the
proof of theorem 3.2. �

We have no restriction on the maximal time step, that is, any finite 	tmax is admissible in
theorem 3.2, whenever

|R(−z)| < 1 for all z > 0. (3.8)

In this respect A-stable methods satisfying (3.8) generate regularization schemes which are
convenient to use as no information on the magnitude of ‖T ‖ is required and 	tmax can
be chosen arbitrarily large. Strongly A-stable methods with (3.8) are even more attractive
because zmax = ∞ is admissible in (3.4). Therefore the convergence does not deteriorate for
large time steps.
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Theorem 3.3. Let T be in L(X, Y ) and let R be the stability function of an A-stable Runge–
Kutta method which satisfies (3.8). Let the time steps {	tn}n∈N be bounded from below by
	tmin > 0 and from above by 	tmax.

Then, the family {Fn}n∈N0 defined in (3.2) satisfies (1.2) as well as (1.4) for any µ > 0,
that is, µQ = ∞.

In other words, A-stable Runge–Kutta integrators with step sizes bounded from above and
bounded away from zero are regularization schemes of optimal order in Xµ,� for all µ, � > 0
when stopped by the discrepancy principle.

Proof. Since (3.4) holds for zmax = 	tmax/‖T ‖2 we obtain, as in the proof of theorem 3.2,
that the filter {Fn}n∈N0 fulfils (1.2). Further, we can find an m ∈ N,m � 2, and an xR,m > 0
such that

‖T ‖2 � xR,m/	tmax and |R(−x)|m � e−x for all x ∈ [0, xR,m]. (3.9)

We will verify (3.9) at the end of this proof.
Let tn and h(ϑ) be defined as in the proof of theorem 3.2. Then,

sup
0�λ�‖T ‖2

λµ/2|1 − λFn(λ)| = t−µ/2
n sup

0�ϑ�tn‖T ‖2

h(ϑ)

� t−µ/2
n sup

0�ϑ�tnxR,m/	tmax

h(ϑ)

= t−µ/2
n sup

0�ϑ�tnxR,m/	tmax

ϑµ/2

(
n∏

k=1

|R(−	tkϑ/tn)|m
)1/m

(3.9)

� t−µ/2
n sup

0�ϑ<∞
ϑµ/2 e−ϑ/m = t−µ/2

n

(mµ

2e

)µ/2
.

Additionally (3.7) holds with K = sup{|Q(−z)| : z ∈ [0,∞[} < ∞. Thus, we have the
infinite qualification of {Fn}n∈N0 .

For the proof of (3.9) it suffices to construct a strongly monotone increasing, unbounded
sequence {xR,k}k�2 ⊂ ]0,∞[ such that

|R(−x)|k � e−x for all x ∈ [0, xR,k] and |R(−xR,k)|k = e−xR,k . (3.10)

We construct {xR,k}k�2 recursively starting with xR,2 = xR where xR is from (3.5). Now let
xR,k−1 be known. By

|R(−xR,k−1)|k = |R(−xR,k−1)|e−xR,k−1
(3.8)
< e−xR,k−1

there exists an xR,k > xR,k−1 for which (3.10) holds (recall that R is a rational function). The
constructed sequence {xR,k} grows unbounded. Indeed, assume the contrary. Then, {xR,k}
converges, say, to xR,∞ < ∞. Since |R(−xR,k)| = e−xR,k/k for all k � 2 we find that
|R(−xR,∞)| = 1 which contradicts (3.8). �

The four Runge–Kutta integrators from example 2.1 induce the following iterative
regularization schemes.

Example 3.4. The implicit Euler scheme with R(z) = 1/(1 − z) and Q(z) = R(z) yields the
iteration

wn = (I + 	tnT
∗T )−1wn−1 + 	tn(I + 	tnT

∗T )−1T ∗y

= (I + 	tnT
∗T )−1(wn−1 + 	tnT

∗y)
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which is also known as nonstationary iterated Tikhonov–Phillips regularization. Since (3.8)
and L-stability hold, theorem 3.3 applies. Several authors have investigated the nonstationary
iterated Tikhonov–Phillips regularization before, for instance, Schock [13] and Hanke and
Groetsch [4]. Theorem 3 from [4], which only applies to the nonstationary iterated Tikhonov–
Phillips regularization, is slightly more general than our theorem 3.3 insofar as geometrically
growing sequences {	tn} and unbounded operators are covered.

Fast growing step sizes are attractive because they determine the convergence speed in
the case of unperturbed data:

‖f + − RnTf +‖X � CQ�

 n∑
j=1

	tj

−µ/2

for any f + ∈ Xµ,ρ (3.11)

which follows from (3.6) by standard arguments (see, e.g., [2, 11]). In the presence of noise,
though, large step sizes may cause trouble (see the comments in section 4.2).

Example 3.5. The SDIRK2 method with R(z) = (1 + (1 − 2α)z)/(1 − αz)2 and
Q(z) = (1 − α2z)/(1 − αz)2 yields the iteration

wn = (I + α	tnT
∗T )−2((I − (1 − 2α)	tnT

∗T )wn−1 + 	tn(I + α2	tnT
∗T )T ∗y).

With α restricted to the interval [1 − √
2/2, 1 +

√
2/2] the SDIRK2 method is L-stable and

(3.8) holds. Hence, theorem 3.3 applies.

Example 3.6. The explicit Euler scheme with R(z) = 1 + z and Q(z) = 1 yields the iteration

wn = (I − 	tnT
∗T )wn−1 + 	tnT

∗y = wn−1 + 	tnT
∗(y − T wn−1)

where 	tmax = 2/‖T ‖2 is the maximal step size. Thus, we have rediscovered the Landweber
iteration (see, e.g., [2, chapter 6.1] and [11, Kapitel 5.1]).

Example 3.7. The RKCs method4 with R(z) = Ts(ω0 + ω1z)/Ts(ω0), ω1 = Ts(ω0)/T′
s(ω0),

generates the iteration (see appendix A)

wn,0 = wn−1, wn,1 = wn,0 + µ̃1	tnT
∗(y − T wn,0),

for j = 2, . . . , s

wn,j = µjwn,j−1 + νjwn,j−2 + µ̃j	tnT
∗(y − T wn,j−1),

wn = wn,s,

(3.12)

where 	tmax = 2ω0/ω1/‖T ‖2 and where, for j = 2, . . . , s,

µj = 2ω0Tj−1(ω0)

Tj (ω0)
, νj = −Tj−2(ω0)

Tj (ω0)
, (3.13a)

µ̃1 = ω1

ω0
= Ts(ω0)

ω0T′
s(ω0)

, µ̃j = 2ω1Tj−1(ω0)

Tj (ω0)
. (3.13b)

Please observe that RKC1 is identical to the Landweber iteration. From this point of view the
RKCs methods are generalizations of the Landweber iteration.

Remark 3.8. For the linear problems considered so far only the stability function R determines
the iterative regularization scheme (3.1). Thus, different Runge–Kutta schemes may yield the
same iterative regularization. For nonlinear problems (see section 6.2), however, the Butcher
array, that is, the succession of the stages, comes into play crucially.

4 RKCs method: Runge–Kutta–Chebyshev method of s stages and order p = 1.
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4. Numerical experiments

The Runge–Kutta regularization schemes considered as examples in the former section shall
be illustrated and compared by numerical experiments.

We are going to solve the linear integral equation∫ 1

0
k(·, y)f (y)dy = gε(·) with kernel k(x, y) =

{
x − y : x � y,

0 : otherwise.

The integral operator Tf (·) := ∫ 1
0 k(·, y)f (y)dy maps L2(0, 1) compactly into itself. The

equality Tf = g holds true iff g′′ = f and g(0) = g′(0) = 0. Therefore, N(T ) = {0}.

4.1. Discretization

We discretize the integral equation using a projection method. As finite-dimensional
approximation space Xl of L2(0, 1) we choose the space of continuous piecewise linear
functions with respect to the step size hl = 1/(l − 1), l ∈ N, l � 2. Note that Xl is spanned
by the hat functions ϕl,j ∈ Xl, j = 1, . . . , l, which are characterized by

ϕl,j ((i − 1)hl) :=
{

1 : i = j,

0 : otherwise,
i = 1, . . . , l.

Let Pl : L2(0, 1) → L2(0, 1) be the orthogonal projector onto Xl and set Tl := PlT Pl . Now
we are seeking a stable approximation to f + starting from the finite-dimensional system

Tlfl = Plg
ε. (4.1)

To this end we apply a Runge–Kutta scheme to the above equation yielding

Rl,ng
ε = Fn(T

∗
l Tl)T

∗
l Plg

ε (4.2)

with the filter Fn from (3.2). As a stopping rule we work with the modified discrepancy
principle (4.3) below taking discretization effects into account: let ζl ∈ R satisfy ‖T (I−Pl)‖ �
ζl and choose τ > 1. Define

Dl = {
k ∈ N0 : ‖TlRl,kg

ε − Plg
ε‖L2(0,1) � τε and k � ζ−2

l

}
and determine

γ (ε, gε, l) =
{

minDl : Dl �= ∅,

min
{
k ∈ N0 : k > ζ−2

l

}
: otherwise.

(4.3)

The modified discrepancy principle reduces to Morozov’s discrepancy principle (1.3) in the
case when no discretization is performed, that is, Pl = I and ζl = 0. The following error
estimate is essentially due to Plato [10] (see also [11, Kapitel 6.2]).

Theorem 4.1. Let the Runge–Kutta scheme and the chosen step sizes {	tn}n∈N in (4.2) satisfy
either the hypotheses of theorem 3.2 or of theorem 3.3.

If f + ∈ Xµ,�, µ, � > 0, and if ‖Tf + −gε‖L2(0,1) � ε then there is a constant C̃µ such that

‖f + − Rl,γ (ε,gε,l)g
ε‖L2(0,1) � C̃µ

(
εµ/(µ+1)�1/(µ+1) + �

(
ζ

min{µ,1}
l + ‖(I − Pl)T ‖min{µ,2})).

For the numerical computation we need a matrix-based version of (4.2). Therefore we
introduce the matrices Tl , Gl ∈ R

l×l with entries

(Tl )i,j = 〈ϕl,i , T ϕl,j 〉L2(0,1) and (Gl )i,j = 〈ϕl,i , ϕl,j 〉L2(0,1)
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which will be computed analytically for our experiments below. We have that Rl,ng
ε =∑l

i=1(wl,n)iϕl,i iff 5

wl,n = Fn

(
G−1

l Tt
lG

−1
l Tl

)
G−1

l Tt
lG

−1
l ql(g

ε) with ql(g
ε) =

〈ϕl,1, g
ε〉L2

...

〈ϕl,l, g
ε〉L2

,

see [11, Kapitel 6.1.1]. For instance, the implicit Euler scheme (example 3.4) yields the
iteration

wl,n = (
I + 	tnG−1

l Tt
lG

−1
l Tl

)−1(
wl,n−1 + 	tnG−1

l Tt
lG

−1
l ql(g

ε)
)
.

Remark 4.2. Constant time steps 	tn = 	t are especially attractive for implicit methods
from a computational point of view as the matrix of the linear system, which has to be solved
in each iteration step, does not depend on n. Thus, a LU decomposition of the matrix can be
computed in advance reducing the numerical effort.

4.2. Computations

In our first experiments we want to illustrate the error estimate from theorem 4.1 for µ ∈ {1, 2}.
We work with the two different exact solutions f +

1 = T ∗w1, w1(x) = 2 − 9π2 cos(3πx)/2
(example 1) and f +

2 = T ∗T w2, w2 = 1 (example 2). Thus, f +
µ ∈ R(|T |µ), µ ∈ {1, 2}. The

corresponding right-hand sides are g1(x) = x2(x2 − 4x + 9)/12 + (1 − cos(3πx))/π2/18 and
g2(x) = x2(x4/720 − x/36 + 1/16).

To set up the discrete schemes we have to evaluate ql(g
ε), that is, we have to compute

the inner products 〈ϕl,i , g
ε〉L2 . These integrals cannot be determined analytically in general.

We circumvent the problem by working with a discrete right-hand side gε obtained from g via
interpolation and perturbation (xl,j := (j − 1)hl):

gε :=
l∑

j=1

(g(xl,j ) + δ(xl,j ))ϕl,j

where δ : [0, 1] → [−δ, δ], δ > 0, denotes a uniformly distributed random variable. Now
we have

ql(g
ε) = Glg with g = (gε(xl,1), . . . , g

ε(xl,l))
t .

The noise level in gε can be estimated by

‖g − gε‖L2(0,1) � h2
l ‖g′′‖L2(0,1) + δ =: ε. (4.4)

Moreover,

‖T (I − Pl)‖ � h2
l as well as ‖(I − Pl)T ‖ � h2

l .

The last three estimates are verified in [11, Kapitel 6.2.3]. Choosing δ = h2
l we therefore

expect to observe the following error behaviour according to theorem 4.1:

‖f +
µ − Rl,γ (ε,gε

µ,l)g
ε
µ‖L2(0,1) = O

(
h

2µ/(µ+1)

l

)
as l → ∞, µ ∈ {1, 2}.

In principle we are able to determine the numerical value of the reconstruction error
‖f +

µ − Rl,γ (ε,gε
µ,l)g

ε
µ‖L2 exactly. However, we can rely on the trapezoidal rule TRhl

(v) with

respect to the step size hl for evaluating the integral
∫ 1

0 v(t)dt . Indeed,

Err(l) :=
(

TRhl

((
f +

µ − Rl,γ (ε,gε
µ,l)g

ε
µ

)2)/
TRhl

((
f +

µ

)2))1/2
(4.5)

5 As Fn is a rational function the evaluation of Fn(G
−1
l Tt

l G
−1
l Tl ) is well defined (see, e.g., [11, lemma 6.2] for

further details).
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Figure 1. Relative regularization error Err (4.5) as a function of l using the implicit Euler scheme
with 	t = 1 (solid line with �: example 2, dashed line with ◦: example 1). The thin solid lines
indicate decay O(hl) and O(h

4/3
l ) as l → ∞.

approximates the relative L2-regularization error with order h2
l . Thus,

Err(l) = O
(
h

2µ/(µ+1)

l

)
as l → ∞.

The expected asymptotic behaviour can be observed by numerical computations. In figure 1
the relative error Err is plotted obtained by the implicit Euler scheme with constant time step
size 	t = 1.

Next we will compare different Runge–Kutta schemes in both reconstruction accuracy
and run-time. Here, the choice of the time steps {	tn}n is crucial for meaningful and just
results. The step size control procedures very successfully implemented for solving ODEs
are unsuitable in the present context because we are not interested in solving the evolution
equation (1.5) accurately for long times. Rather we want to get close to the stationary solution
of (1.5) as fast as possible. Accordingly we wish to work with large time steps, compare (3.11).
On the other hand, if we select the time steps too large then the reconstruction Rl,γ (ε,gε,l)g

ε

might over-satisfy the discrepancy principle, that is, ‖TlRl,γ (ε,gε,l)g
ε − Plg

ε‖L2 � τε. Thus
the noise in gε gets amplified and the reconstruction is useless in spite of a small discrepancy.
To avoid noise amplification we recommend monitoring the quotient

ql := ‖TlRl,γ (ε,gε,l)g
ε − Plg

ε‖L2

τε

and accepting Rl,γ (ε,gε,l)g
ε as the approximate solution if ql ≈ 1. Otherwise, Rl,γ (ε,gε,l)g

ε

should be rejected and the last time step should be decreased.
Figure 2 displays the CPU-times6 for computing Rl,γ (ε,gε

1 ,l)
gε

1 (example 1) by the four
schemes: implicit Euler, SDIRK2 with α = 1 +

√
2/2, RKC5, and RKC8. All schemes are

furnished with constant time steps, that is, 	tn = 	t where 	t depends on l for the implicit
schemes. More precisely, for both RKC iterations we set ω0 = 1.01 and 	t = 2ω0/ω1/‖T ‖2

which is only slightly smaller than the maximal time step 	tmax = 2ω0/ω1/‖G−1
l Tl‖2 (RKC5:

	t ≈ 529, RKC8: 	t ≈ 1128). The constant time steps for both implicit methods are taken
to be 	t = l3/2. With these time steps we have that ql � 0.96 for all experiments underlying

6 The experiments have been carried out under MATLAB 6.5 (R13) on an Intel Pentium 4 processor with 2.6 GHz.
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Figure 2. CPU-times for example 1 relative to four integrators stopped by the modified discrepancy
principle (4.3): implicit Euler (solid line with �), SDIRK2 (α = 1 +

√
2/2, dashed line with �),

RKC8 (dashed-dotted line with ◦), RKC5 (dotted line with �). The constant time steps have been
adjusted to yield ql � 0.96 for all four integrators.

figure 2. Therefore the measured CPU-times are comparable, the more so because we did
not count CPU-time for pre-processing operations shared by all schemes. Moreover, the
reconstruction errors (4.5) are virtually identical for all schemes.

As expected the implicit iterations are pronouncedly faster than the explicit ones. In the
plotted range for l the CPU-times behave like O(l2) and O(l4) for the implicit and explicit
schemes, respectively7. Comparing both implicit integrators we observe that the Euler scheme
is twice as fast as the SDIRK2 scheme. While both L-stable methods require about the same
number of iterations to be stopped by the discrepancy principle, one iteration step of the
SDIRK2 scheme is twice as expensive as one Euler step. Thus, our experiments show that
the convergence speed does not necessarily increase with the order of the method. Indeed,
the order of a Runge–Kutta integrator tells nothing about convergence speed in the context of
regularizing ill-posed problems as we will learn in the next section.

We close the present section by comparing numerically the implicit Euler method with
the cg-iteration of Hestenes and Stiefel [5] (cg: conjugate gradients). The cg-iteration stopped
by a modified discrepancy principle akin to (4.3) yields a regularization scheme for Tl ,
that is, the error estimate of theorem 4.1 holds accordingly (see Plato [10, Satz 5.2] or
[11, Satz 6.2.11]). Moreover, the cg-iteration is known to converge rapidly, in fact, under all
Krylov subspace methods (like the ν-methods) the cg-iteration requires the fewest number of
iteration steps when the discrepancy principle is the stopping rule.

To obtain the numerical results presented in figure 3 we increased the constant time
step of the Euler scheme to 	t = 10 l3/2. With this time step the ql of the Euler
scheme are comparable to the ql of the cg-iteration. As a consequence the reconstruction
errors (4.5) are almost identical (figure 3 right). Also the CPU-times required by both
methods do not differ much although the cg-iteration is slightly faster for large dimensions l
(figure 3 left). In our example the numerical effort per iteration step grows like O(l3) and O(l2)

for the implicit Euler integrator and the cg-iteration, respectively. So, the cg-iteration will be

7 For larger l the CPU-times of the implicit schemes grow at least like O(l3) since the LU-decomposition, which has
to be calculated, dominates the numerical effort.
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Figure 3. CPU-times and relative L2-errors (4.5) for example 1 relative to the cg-iteration (dashed
lines with ◦) and the implicit Euler scheme (solid lines with �).

faster for large l as long as it requires less than O(l) iteration steps more than the Euler scheme.
Nevertheless, the implicit Euler scheme is an attractive alternative to the cg-iteration which
offers an additional parameter, the step size, for fine tuning the stopping criterion to reach
ql ≈ 1. Thus, the implicit Euler scheme combines the advantages of iterative and continuous
regularization methods.

5. Synthetic methods: inconsistent Runge–Kutta schemes

In the formulations of theorems 3.2 and 3.3 we required the Runge–Kutta scheme to be of
order 1 at least. This hypothesis is superfluous however. Indeed, in view of (3.3) the assertions
of both theorems remain valid if the stability function of the method has the Taylor expansion

R(z) = 1 + cz + O(z2) as z → 0 (5.1)

where c > 1. We emphasize that the corresponding Runge–Kutta scheme is inconsistent and
therefore useless for solving ODEs.

Can we use the additional freedom (parameter c in (5.1)) to construct schemes which
converge faster than the implicit Euler scheme? In a certain sense the answer is ‘yes’ as we
will demonstrate in the remainder of this section.

Since (1.1) is ill posed, zero is a limit point of the spectrum of T ∗T . Thus, as long
as |R(−z	tmax)| < 1, z ∈ ]0, ‖T ‖2], the eigenvalues close to zero are responsible for the
convergence speed. Accordingly, we should construct a method whose stability function R is
small for negative arguments close to zero. The latter property can be achieved by requiring
c = R′(0) � 1. Altogether we extracted two properties for our desired schemes:

1. |R(−z)| < 1 for z > 0 and |R(∞)| < 1 (no restriction on the maximal time step, see
theorem 3.3),

2. R′(0) � 1 (good damping of contributions of small spectral values).

We present two candidates for potentially outperforming the implicit Euler scheme.

Example 5.1. The Runge–Kutta scheme generated by

1 1
1 + θ

, R(z) = 1 + θz

1 − z
,
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is inconsistent if θ �= 0. It agrees with the implicit Euler integrator in the consistent
case (θ = 0). For θ ∈ [0, 1[ the required properties are fulfilled with |R(∞)| = θ and
R′(0) = 1 + θ . The corresponding iteration is

wn = (I + 	tnT
∗T )−1((I − θ	tnT

∗T )wn−1 + 	tn(1 + θ)T ∗y).

We call this method SYNTH1 (synthetic method).
In [13] Schock analysed an implicit iterative method of type

wn = (αnI + T ∗T )−1(αn(I − βnT
∗T )wn−1 + (1 + αnβn)T

∗y)

with αn and βn properly chosen reals. SYNTH1 coincides with Schock’s iteration if
αn = 1/	tn and βn = θ	tn.

Example 5.2. The Butcher array

1 1
2 + θ 1 + θ 1

1 + θ 1
, R(z) = 1 + θz

(1 − z)2
,

leads to a Runge–Kutta scheme called SYNTH2 which is inconsistent for θ �= −1. For
θ = −1 we have the SDIRK2 method with α = 1 which reduces to the implicit Euler scheme.
The desired properties are satisfied for θ ∈ [0, 2(1 +

√
2)[ with R′(0) = 2 + θ . We even have

|R(∞)| = 0. The generated iteration reads

wn = (I + 	tnT
∗T )−2((I − θ	tnT

∗T )wn−1 + 	tn((2 + θ)I + 	tnT
∗T )T ∗y).

Please observe that one step of SYNTH2 coincides with two steps of the implicit Euler scheme
when θ = 0.

For the comparison of two iterative schemes we would like to decide which stops earlier in
general when the discrepancy principle is the stopping rule. To this end we modify an approach
by Schock, see [13, Sec. 4] and [12]: Let S1 and S2 be two iterative schemes generating the
sequences

{
w1

n

}
and

{
w2

n

}
, respectively. We say iteration S1 stops (non-uniformly) earlier

than iteration S2 (with respect to the discrepancy principle) if there is a sequence of operators
{Qn} ⊂ L(Y ) converging pointwise to zero such that

T w1
n − gε = Qn

(
T w2

n − gε
)
. (5.2)

Method S1 is said to stop locally (non-uniformly) earlier than method S2 if (5.2) holds true
and there is a projection P of finite rank such that {Qn(I − P)} converges pointwise to zero.

Theorem 5.3. Let T be in L(X, Y ) with a non-closed range. We consider SYNTH1 with
0 < θ < 1 and the implicit Euler scheme where both schemes share the same constant step
size 	t > 0.

(a) If θ	t‖T ‖2 < 2 then SYNTH1 stops earlier than the implicit Euler scheme.
(b) If θ	t‖T ‖2 � 2 and if T is compact then SYNTH1 stops locally (but not globally) earlier

than the implicit Euler scheme.

Proof . Let
{
w1

n

}
,
{
w2

n

}
and R1, R2 denote the sequences and stability functions of SYNTH1

and the implicit Euler method, respectively. Observe that T wi
n − gε = Ri(−	tT T ∗)ngε, i =

1, 2. Hence, (5.2) holds true with Qn = qn(T T ∗) where

qn(λ) =
(

R1(−	tλ)

R2(−	tλ)

)n

=
(

1−θ	tλ
1+	tλ

1
1+	tλ

)n

= (1 − θ	tλ)n.
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Under (a) we have sup0�λ�‖T ‖2 |qn(λ)| = 1 and limn→∞ qn(λ) = 0 pointwise in ]0, ‖T ‖2]
implying that limn→∞ qn(T T ∗)y = 0 for all y ∈ Y .8

To validate part (b) we construct a projection P of finite rank such that the spectrum of
qn(T T ∗)(I−P) is contained in qn

([
0, 2

θ	t

[)
. Let {(σj ; vj , uj ) : j ∈ N} ⊂ ]0,∞[×X×Y be the

singular system of the non-degenerate compact operator T, that is, T x = ∑∞
j=1 σj 〈x, vj 〉Xuj

with limj→∞ σj = 0 monotonically and {vj } and {uj } are orthonormal bases in N(T )⊥ and
R(T ), respectively. Set

Py :=
∑
j∈J

〈y, uj 〉Y uj , J :=
{
j ∈ N : σ 2

j � 2

θ	t

}
,

yielding qn(T T ∗)(I − P)y = ∑
j �∈J qn

(
σ 2

j

)〈y, uj 〉Y uj . By sup0�λ< 2
θ	t

|qn(λ)| = 1 and

limn→∞ qn(λ) = 0 for λ ∈ ]
0, 2

θ	t

[
, we end with limn→∞ qn(T T ∗)(I − P)y = 0 for all

y ∈ Y . �

Remark 5.4. We formulated theorem 5.3 for constant time steps only. Variable time steps
can also be dealt with: for instance, if {	tn} ⊂ ]

0, 1
θ‖T ‖2

[
is such that

∑
n 	tn diverges

to infinity then SYNTH1 stops earlier than the implicit Euler scheme. This can be seen
from qn(λ) = ∏n

k=1(1 − θ	tkλ) which converges to zero pointwise on ]0, ‖T ‖2] under the
assumptions on the sequence of step sizes.

Due to remark 4.2 we will, however, focus our attention on constant time steps only.

Theorem 5.5. Let T be in L(X, Y ) with a non-closed range. We consider SYNTH2 with
0 � θ < 2(1 +

√
2) and the implicit Euler scheme where both schemes share the same

constant step size 	t > 0.

(a) If (θ − 1)	t‖T ‖2 < 2 then SYNTH2 stops earlier than the implicit Euler scheme.
(Especially, for θ � 1 SYNTH2 stops earlier for all step sizes independently of the
magnitude of ‖T ‖.)

(b) If (θ − 1)	t‖T ‖2 � 2 and if T is compact then SYNTH2 stops locally (but not globally)
earlier than the implicit Euler scheme.

Proof. Denoting by
{
w1

n

}
and

{
w2

n

}
the sequences of SYNTH2 and the implicit Euler scheme,

respectively, (5.2) holds for Qn = qn(T T ∗) where

qn(λ) =
(

1 − θ	tλ

1 + 	tλ

)n

.

We can now proceed as in the proof of theorem 5.3. �

Theorem 5.6. Let T be in L(X, Y ) with a non-closed range. We consider SYNTH1 and
SYNTH2 where both schemes share the same θ ∈ [0, 1[ and the same constant step size
	t > 0.

Then, SYNTH2 stops earlier than SYNTH1.

Proof. Here, Qn = qn(T T ∗) with qn(λ) = (1 + 	tλ)−n. �

If scheme S1 stops earlier than scheme S2 then S1 requires a smaller number of iterations
than S2 to be stopped by the discrepancy principle. But a smaller stopping index tells nothing
about the overall required numerical operations, that is, about the consumed CPU-time. The
correct quantities to be compared are the products of the number of iterations times the

8 First, show that limn→∞ qn(T T ∗)y = 0 for all y ∈ R(T T ∗). Since R(T T ∗) is dense in Y and ‖qn(T T ∗)‖ � 1, the
uniform boundedness principle yields pointwise convergence.
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Figure 4. CPU-times for example 1 relative to SYNTH2 with θ = 1 (solid lines with �) and the
implicit Euler scheme (dashed lines with ◦). Left: noise level δ = h2

l in (4.4) and constant time
step 	t = l3/2 (same setting as underlying figure 2). Right: noise level δ = 0.02‖g1‖L2(0,1) in
(4.4) and constant time step 	t = 100.

numerical effort per iteration. For instance, SYNTH2 with θ = 1 stops earlier than the
implicit Euler scheme. On the other hand, one iteration step of SYNTH2 is more than twice as
expensive as one implicit Euler step. Hence, SYNTH2 outperforms the Euler scheme whenever
the Euler scheme requires more than twice as many iteration steps as SYNTH2.

Besides speed, accuracy also matters. Here, the error constant, which is the smallest
possible constant C̃µ in the error estimate of theorem 4.1, tells us which method we can expect
to deliver the more accurate reconstruction. Unfortunately, meaningful numerical values for
the error constants of SYNTH2 and the Euler scheme are difficult to obtain and therefore we
leave the accuracy question unanswered analytically.

We did, however, perform some numerical computations. In the left part of figure 4 we
plotted CPU-times needed by both schemes to solve (4.1) with exact solution f +

1 (see first
paragraph of section 4.2 and compare figure 2). In this considered setting SYNTH2 is indeed
slightly faster than the implicit Euler iteration. We observe the very same picture when the
noise level does not decrease to zero as l → ∞: figure 4 displays on its right the CPU-times
for a relative noise level of 2%, that is, δ = 0.02‖g1‖L2(0,1) in (4.4). Please note: in all
computations underlying figure 4 both schemes produced practically identical reconstruction
errors (4.5).

6. Final remarks

6.1. Exponential integrators

Not only Runge–Kutta methods can be used for regularizing (1.1) but also the so-called
exponential integrators. Exponential integrators are Runge–Kutta-like schemes which solve
linear ODEs exactly, see, for instance, Hochbruck, Lubich and Selhofer [7]. The simplest
exponential integrator is the exponentially fitted Euler method. Applied to the autonomous
system

w′(t) = �
(
w(t)

)
, t > 0, w(0) = w0,

the exponentially fitted Euler method produces the sequence

wn = wn−1 + 	tnϕ(	tn�
′(wn−1))�(wn−1)
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where ϕ(z) = (ez − 1)/z and � ′ : W → L(W) is the Fréchet derivative of the mapping
� : W → W (W Banach space). The application of exponential integrators for solving
(4.1) relies on the evaluation of expressions like ϕ(	tnA)v (A and v being a matrix and
a vector, respectively). Hochbruck and Lubich [6] compute ϕ(	tnA)v very efficiently by
Krylov subspace approximations.

As (2.3) holds correspondingly for exponential integrators so do theorems 3.2 and 3.3 (see
Hönig [8]). The numerical experiments presented in [8] reveal the exponential integrators to
be competitive with the implicit Runge–Kutta schemes. However, the choice of the integration
step size 	tn is more subtle because the larger 	tn is the more Arnoldi iterations are required
to obtain a useful Krylov subspace approximation to ϕ(	tnA)v.

6.2. Nonlinear problems

Asymptotic regularization is defined for nonlinear ill-posed problems as well (see Tautenhahn
[14]). Assume that the operator T in (1.1) is nonlinear and Fréchet-differentiable. Then
asymptotic regularization means solving the evolution equation

u′(t) = T ′(u(t))∗(gε − T (u(t))), u(0) = u0,

and taking u(tstop) for a selected stopping time tstop as the stable approximate solution of the
unperturbed problem T (f ) = g.

The application of Runge–Kutta or exponential integrators to the above ODE offers a
variety of new potential regularization schemes for nonlinear ill-posed problems. A good deal
of work remains to be done.

Appendix. The RKCs iteration scheme

Following the ideas of van der Houwen and Sommeijer [15] we construct the iteration scheme
(3.12) starting from the stability function R(z) = Ts(ω0 + ω1z)/Ts(ω0).

We rely on the three-term recursion for the first kind Chebyshev polynomials: T0(z) = 1,

T1(z) = z,

Tj (z) = 2zTj−1(z) − Tj−2(s), j = 2, 3, . . . . (A.1)

Let Rj(z) = Tj (ω0 + ω1z)/Tj (ω0), j = 0, . . . , s. Then, Rs(z) = R(s), and, by (A.1), we have
the recursion: R0(z) = 1, R1(z) = 1 + µ̃1z,

Rj(z) = µjRj−1(z) + µ̃j zRj−1(z) + νjRj−2(z), j = 2, . . . , s,

where the coefficients {µj }2�j�s , {µ̃j }2�j�s , {νj }2�j�s are those from (3.13). Taking into
account that µj + νj = 1, j = 2, . . . , s, we obtain also a recursion for the polynomials
Qj(z) = (Rj (z) − 1)/z: Q0(z) = 0,Q1(z) = µ̃1,

Qj(z) = µjQj−1(z) + µ̃jRj−1(z) + νjQj−2(z), j = 2, . . . , s.

Define wn,j := Rj(−	tnT ∗T )wn−1 + 	tnQj (−	tnT ∗T )T ∗y, j = 0, . . . , s. Then, wn,0 =
wn−1, wn,1 = wn,0 + µ̃1	tnT ∗(y − T wn,0), and

wn,j = µjwn,j−1 + νjwn,j−2 + µ̃j	tnRj−1(−	tnT
∗T )T ∗(y − T wn−1),
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j = 2, . . . , s. We further inspect the right most term. Since Rj−1(z) = 1 + zQj−1(z) we
deduce that

Rj−1(−	tnT
∗T )T ∗(y − T wn−1)

= Rj−1(−	tnT
∗T )T ∗y − Rj−1(−	tnT

∗T )T ∗T wn−1

= (I − 	tnT
∗T Qj−1(−	tnT

∗T ))T ∗y − T ∗T Rj−1(−	tnT
∗T )wn−1

= T ∗y − T ∗T (Rj−1(−	tnT
∗T )wn−1 + 	tnQj−1(−	tnT

∗T )T ∗y)

= T ∗(y − T wn,j−1).

Hence,

wn,j = µjwn,j−1 + νjwn,j−2 + µ̃j	tnT
∗(y − T wn,j−1), j = 2, . . . , s,

and the proof of (3.12) is completed.
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