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Abstract 

Currently used arrhythmia recognition algorithms 
in implantable cardioverter-defibrillators ofen  fail in 
the discrimination of ventricular tachycardia with 1:l  
retrograde conduction from sinus tachycardia. As new 
approach to solve this problem, we have developed a 
hybrid wavelet-neural network scheme for a recognition 
of antegrade atrial activation (AA) and retrograde atrial 
activation (RA) pattems in endocardial electrograms (EEs). 

Bipolar EEs representing AA and RA were obtained 
during an electrophysiological examination. Consecutive 
beats within data segments of I O  s duration were selected. 
Adapted wavelet packet decompositions were applied to 
extract discriminating scale features in selected beats 
representing AA and RA. A feed forward neural network 
was utilized for classifying the activation patterns based on 
the extracted feature vectors. 

With the developed hybrid wavelet-neural network 
scheme a recognition of all analyzed AA and RA episodes 
was achieved. 

1. Introduction 

The implantable cardioverter-defibrillator (ICD) is 
accepted to be the most effective therapy for preventing 
sudden cardiac death due to ventricular tachycardias (VT) 
[I]. Despite the use of detection enhancements like rate 
stability or sudden onset in third generation ICD-systems, 
inappropriate ICD-therapy occur in up to 13% of the 
patients who received such a device [2]. Whether the 
use of the recently introduced dual-chamber ICDs [3] 
will contribute to a reduction of inadequate therapies is 
currently under investigation. A major challenge for rate- 
algorithms used in these devices is the discrimination of VT 
with 1: 1 retrograde conduction from sinus tachycardia. In 
this case the atrial and ventricular rate is concurrent and 
rate independent morphological analysis techniques can 
be used for discrimination. Here time-domain methods 
based on template matching [4] or neural networks [SI 

0276-6547/00 $10.00 0 2000 IEEE 545 

are known approaches. A drawback of these methods 
is that the classification takes place in the original signal 
space where the dimensionality is often high and features 
being irrelevant for classification are under consideration. 
Recently, the superiority of wavelet decompositions before 
the classification over the direct application of the classifier 
on the original signal space was shown [6,7]. 

We have developed a hybrid wavelet-neural network 
scheme for recognizing AA and RA patterns. For this, 
we applied adapted wavelet packet decompositions for the 
extraction of discriminating scale features in EEs. 

2. Methods 

2.1. Data segments 

The data segments used in this study were obtained 
during a clinically indicated electrophysiological examina- 
tion. A written consent was obtained from all patients. The 
patient population was composed as follows: One group 
with typical atrio-ventricular (AV) nodal tachycardia, 
studied as a model for patients having a spontaneous 
retrograde activation, and another group with clinical 
monomorphic VT. 

In both groups, bipolar endocardial signals were obtained 
from the high right atrium using the distal pair of a 
&French quadripolar electrode catheter with an inter- 
electrode spacing of 0.5 cm (USCI, Bard, Billerica, MA, 
USA). These EEs were recorded during sinus rhythm and 
induced or spontaneously occurring AV nodal tachycardia 
or during induced monomorphic VT with 1: 1 retrograde 
conduction. The endocardial recordings were amplified 
(HBV 20, Biotronik, Berlin, Germany), bandpass filtered 
(40-500 Hz) and digitized at 2 kHz with a 12 bit resolution 
(DT 2824-PGH, Data Translation, Marlboro, MA, USA). 
Data segments of 10 seconds duration were stored for 
subsequent analysis. 
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2.2. Feature extraction 

Consecutive beats within each recorded EE were selected 
by threshold application. A reliable detection threshold was 
defined by 27% of the largest sample amplitude of each 
data segment. After detection each beat was fixed within a 
selection window of 128 ms. With our sampling frequency 
a selected beat x therefore belongs to a signal space 
S c RK, where K = 256. Wavelet-type orthonormal 
decompositions can be implemented via finite impulse 
response (FIR) normalized paraunitary (NP) two-channel 
filter banks [8] as building blocks in a tree-structured 
filter bank (as usual, we assume here the very same two- 
channel filter bank with a zero mean highpass filter on 
each decomposition level in tree). The FIR property of 
the filters corresponds to the application of basis functions 
with a compact support, a necessary condition for capturing 
features being compact in time. 

Let P and Q be decomposition operators which are 
associated with the decimators of a two-channel N P  
analysis bank, P :  lowpass, Q: highpass. With the described 
preprocessing of our data, the following decomposition 
turned out to be well suited for our feature extraction task 
since it discards all the irrelevant information, e.g., noise, 
and retains discriminating signal features: 

( Y l l . . .  ,Y6) = (1) 
(Q2P2x,  PQP2x,  Q2P3x,  PQP3x,  QP4x,  P 5 x ) .  

An example of the this decomposition using the well 
known Daubechies filters with 6 filter coefficients for 
the two-channel Np is shown in Fig. 1. From the 
decomposition we extracted a feature vector 6 E F by 

6 = ( & , - . -  ,561 := ( I IYll le ' r - . .  ~ ~ ~ ~ 6 ~ ~ ~ ' ) ~  (2) 

where F denotes our low-dimensional feature space with 
d i m F  = 6. To be independent from the overall signal 
energy, we applied a normalization such that Iltllel = 1. 
In the following we will use the notation tant and tret 
if the underlying pattern x originates from AA and RA, 
respectively. Although we are able to characterize AA 
and RA patterns by a small feature vector, there is no 
guarantee that t represents discriminating signal features 
in the distinct activation patterns when using arbitrary two- 
channel NP building blocks in the tree. Therefore, an 
adaptation of these building blocks is necessary which 
can be realized via the lattice-structure [9, 81. This is 
an efficient implementation of two-channel FIR NP filter 
banks with real filter coefficients that provides a complete 
parameterization of orthonormal wavelet decompositions. 
We parameterized filters of order N = 5 which we already 
used successfully for EE decompositions [ 10, 111. For this, 
a lattice structure with three distinct angles, i.e., design 
parameters, is necessary. It is known that the lattice angels 
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Figure 1. An exemplary decomposition using a standard 
filter bank: (al)  The original EE (2)  and (a2)-(a7) 
the corresponding wavelet packet representation, i.e., the 
reconstructed versions of the sequences yi, i = 1, . . . 6. 

must add to 7r/4 for implementing a highpass filter with a 
zero mean [12, 131. Fixing the last angle of the structure 
to 92 = 7r/4 - 90 - 61, the angles 6 = (90,&) 
are free parameters for the design of the building blocks. 
For the adaptation of the whole decomposition we need 
a discriminant information functional which measures the 
dissimilarity among tant (6) and tret (29) (please note that 
the feature vectors depend now on the angles 6 ) .  For 
this, we applied the J-divergence [6] (that is a symmetric 
version of the more known Kullback-Leibler divergence 
[ 14]), which is defined as 

J((tant (6 ) ,  tret (6))  := 
d i m 3  ,,,e I ,.\ 

>n \ - /  n= 1 

with the conventionlog 0 = -00, log(y/O) = 00 for y > 0, 
0 . (f00) = 0. The pair of angles which maximizes (3) is 
denoted by 8. 

2.3. Classification 

The extracted feature vectors were used as input stimulus 
of a feed forward neural network (FFNN) with one hidden 
layer. This type of neural network is well accepted for 
classification tasks in electrocardiology, e.g., [5, 151. 

Our FFNN consists outward of N(') = dimF= 6 input 
neurons and N(O) = 1 output neuron. The number of 
neurons in the hidden layer was determined empirically. 
Here the restriction to N(H) = 4 neurons has proven to 
be the best compromise between complexity and 
performance. We used the Fermi-function, i.e., T ( p )  = 
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(1 + e-")-1 as sigmoidal transfer function of the neurons 
in the hidden layer. 

An application of this network computes a value p E R 
by 

p = l  i= 1 

Here T represents the threshold vector and do) and 
wiH) are the weights of the output and the hidden 
layer, respectively. The FF" was trained with the 
backpropagation method [ 141 using the pre-selected sets 
of the five antegrade and the five retrograde activations 
which make up the averaged atrial activation patterns 
separately. The training was continued until the squared 
error converged to less than 1 %. 

The FFNN was trained such that we have p = 0 for AA 
and p = 1 for RA. As decision threshold which indicates 
whether the underlying beat pattern originates from AA and 
RA we used IE = 0.5 for all patients. Consequently, AA is 
recognized if an application of the FFNN gives p < IE and 
R A i f p  2 IE. 

To improve the reliability of the FFNN decision, we 
applied a so-called X out of Y detector which was also used 
in [5] .  Here a final decision is only made if X out of Y 
classifications of the FFNN are the same. Our whole hybrid 
scheme is shown in Fig. 2. 

Figure 2. The whole hybrid classification scheme 

3. Results 

The decomposition example which is shown in Fig. 1 
can only provide a rough survey of the morphological 
features which are represented on our decomposition levels 
i = 1, . . . ,6 as the representation heavily depends on the 
chosen wavelet packet basis. In the upper layer of Fig. 3 
two averaged activation patterns are shown (AA: (a); RA: 
(b)). Please note, that these patterns do not differ much 
in their time domain representation. A similar statement 
can be made for the feature vectors using a non-adapted 
decomposition, see Fig.3(al) and Fig.3(bl) (here we used 
the same Daubechies filters as above). Indeed we have 
a small J-divergence: J ( t a n t ( 8 D 6 ) ,  5'"'(8D6)) = 0.09 
(we used the natural logarithm in (3) for the numerical 
experiments). But the situation changes when using our 

adapted decomposition, see Fig.3(a2) and Fig.3(b2). Now, 
the feature vector are signi$antly Pissimilar yielding a 
large J-divergence: J(tant (8), tret (8)) = 0.60. 

orglnal  signals 
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Figure 3. Extracted features in averaged activation patters: 
(a) antegrade activation pattern; (b) retrograde activation 
pattern; (al), (bl) the extracted features using a non- 
adapted decomposition; (a2), (b2) the extracted features 
using our adapted decomposition 

The whole hybrid EE classification scheme was applied 
to seven consecutive beats of each data segment which 
were not used for the adaptation and training of the FFWN, 
respectively. WO-hundred and fifty-four data segments 
(AA: 131; RA: 123) were classified by the scheme and 
twenty data segments were discarded by the X out of Y 
detector (we used 6 out of 7). For the classified data 
segments, the outputs of the FFNN are shown in Fig. 4 
for all sets of X=6 beats underlying the classification. As 
noticeable, all individual atrial activations (AA: 726 beats; 
RA: 678 beats) were classified correctly. 
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Figure 4. The results of the FFNN 
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4. Discussion and conclusion 

We have developed a hybrid wavelet-neural network 
scheme for a classification of AA and RA. This scheme 
can be used for discrimination of sinus tachycardia from 
VT with 1: 1 retrograde conduction, a major challenge for 
the currently used ICD-technology. The scheme utilizes 
an adapted signal decomposition technique for feature 
extraction. This innovative approach might contribute 
to overcome known problems of already established 
time domain morphological analysis techniques since it 
leads to an enormous reduction of the dimensionality of 
the problem. In contrast to Fourier-transform domain 
schemes, e.g. see [15], our decomposition captures 
the morphological dissimilarities in the distinct activation 
patters since it maximizes the J-divergence between the 
extracted feature vectors. For the classification we used 
an FFNN which allows an efficient implementation and 
offers a high degree of generalization. Both of these 
properties are very desirable for our task. Note also that 
the efficiency of a filter bank implementation based on 
lattice structure is well known [8 ,  9, 161. In contrast to 
other wavelet packet schemes, i.e, see [6, 171, we used a 
fixed architecture of the decomposition tree. In our scheme 
only the parameters of lattice structure must be changed 
for adaptation. An advantageous property for efficient 
real-time implementation strategies. Our hybrid scheme 
recognized all AA and RA episodes in the given set of data 
segments. Although this result is very promising, we like 
to emphasize that all patients were in supine position and in 
a resting state. Further studies are necessary to evaluate 
whether this method offers the same performance in an 
everyday clinical use, e.g., changing electrophysiological 
properties of the cardiac tissue over time or the presence of 
antiarrhythmic drugs. 
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