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1 Introduction

As the amount of data we nowadays have to deal with becomes larger and
larger, the methods that help us to detect structures in the data and to
identify interesting subsets in the data become more and more important.
One of these methods is clustering, i.e. segmenting a set of elements into
subsets such that the elements in each subset are somehow ”similiar” to each
other and elements of different subsets are ”unsimilar”. In the literature
we can find a large variety of clustering algorithms, each having certain
advantages but also certain drawbacks. Typical questions that arise in this
context comprise:

• Is the algorithm sensitive to small perturbations, i.e. can small changes
in the data (so-called ”noise”) entail large changes in the clustering?

• Is the algorithm sensitive to the order of the data, i.e. can another
order of the data result in a very different clustering?

• How similar are the solutions of two different algorithms?

• If an optimal solution is available: How close is the clustering solution
to the optimal one?

For examining these aspects, it would be desirable to have a ”measure” for
the similarity between two clusterings or for their distance1. In a more gen-
eral context, it can be necessary to combine different clusterings to a single
one, i.e. calculating a ”mean value” of the clusterings. Possible applications
are:

∗The authors gratefully acknowledge financial support from the European Commission
within DELIS (contract no. 001907).

1Every similarity measure can be transformed into a distance measure and vice versa.
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• Combining the results of different algorithms in order to obtain ”ro-
bust” clusterings [17].

• Intregration of already existing clusterings that have been built be-
fore but that cannot be reconstructed (e.g. because the algorithms or
features that were used to build them are not known)[16].

• Many companies store their data not only in one database but the
data is geographically distributed. Often, it is unfeasible to transfer
all data to one place for performing data analysis there because of the
high computational, bandwidth and storage costs. Thus, it is desirable
to have methods for combining decentrally performed clusterings to
one clustering that represents the whole data.

• Legal restrictions force the companies to have several copies of their
data, each copy with a different feature set (certain features must
not be stored together). For cluster analysis, they have to perform
feature distributed clustering and afterwards join the clusterings into
one ”mean value” clustering.

• In social sciences often arise clustering problems with multiple opti-
mization criteria: a typical example is the ”second world war politi-
cians” problem [19], in which many persons were asked to rate the
dissimilarities of second world war politicians. Each person corre-
sponds to an optimization criterion. A good clustering of the politi-
cians should be as close as possible to all the personal ratings. A
common approach to these multiple criteria clustering problems is the
calculation of a ”mean value” of the single criterion clusterings.

These are only some applications in which a ”mean value” of multiple clus-
terings is needed. For this purpose we need a distance (or similarity) measure
for clusterings. This paper gives an overview and some analysis of the mea-
sures that we find in the literature.
In the second section we introduce the basic definitions and some notations.
In section three, four and five we present the measures for comparing clus-
terings that have been presented in the literature so far. The subdivision
into three sections corresponds to two ”natural” divisions of the measures:
Even though the measures can all be derived from the confusion matrix,
they base on different ideas: counting of pairs of elements (Section 3), sum-
mation of set overlaps (Section 4), and the use of the information-theoretical
mutual information (Section 5).
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However, the division also reflects the chronological development of the mea-
sures: the counting pairs measures date from the 1970s and 1980s, the mea-
sures based on set overlaps from the 1990s and the information-theoretical
measures have been developed in the last years (2002/2003).
Till this day, there is no formalization of the problem of comparing clus-
terings. We think that a set of axioms would be helpful in detecting and
defining ”good” measures. As a first step towards such a set of axioms, we
give in Section 6 aspects and properties that have to be taken into account.

2 Definitions and notations

Let X be a finite set with cardinality |X| = n. A clustering C is a set
{C1, . . . , Ck} of non-empty disjoint subsets of X such that their union equals
X. The set of all clusterings of X is denoted by P(X). For a clustering
C = {C1, . . . , Ck} we assume |Ci| > 0 for all i = 1, . . . , k. A trivial clustering
is either the one-clustering that consist of just one cluster or the singleton
clustering in which every element forms its own cluster.
Let C′ = {C ′

1, . . . , C
′
`} ∈ P(X) denote a second clustering of X. The con-

fusion matrix M = (mij) (or contingency table) of the pair C, C′ is a k × `-
matrix whose ij-th entry equals the number of elements in the intersection
of the clusters Ci and C ′

j :

mij = |Ci ∩ C ′
j |, 1 ≤ i ≤ k, 1 ≤ j ≤ `.

Clustering C′ is a refinement of C (and C is a coarsening of C′), if each cluster
of C′ is contained in a cluster of C, formally:

∀C ′
j ∈ C′ ∃Ci ∈ C : C ′

j ⊆ Ci.

The product C×C′ of two clusterings C, C′ is the coarsest common refinement
of the two clusterings:

C × C′ = {Ci ∩ C ′
j | Ci ∈ C, C ′

j ∈ C′, Ci ∩ C ′
j 6= ∅}.

The product C × C′ is again a clustering, and if C′ is a refinement of C, then
C × C′ = C′.

3 Measures based on counting pairs

A very intuitional approach to comparing clusterings is counting pairs of
objects that are ”classified” in the same way in both clusterings, i.e. pairs of

3



elements of X that are in the same cluster (in different clusters, respectively)
under both clusterings.
The set of all (unordered) pairs of elements of X is the disjoint union of the
following sets:

S11 =
{

pairs that are in the same cluster under C and C’
}

S00 =
{

pairs that are in different clusters under C and C’
}

S10 =
{

pairs that are in the same cluster under C but in
different ones under C’

}
S01 =

{
pairs that are in different clusters under C but
in the same under C’

}
Let nab := |Sab|, a, b ∈ {0, 1}, denote the respective sizes. We have

n11 + n00 + n10 + n01 =
(

n

2

)
.

3.1 Chi Squared Coefficient

The most ancient measures for comparing clusterings were originally devel-
oped for statistical issues. We want to assert the Chi Squared Coefficient
as a representative, since it is one of the most well-known measures of this
kind. It is defined as

χ(C, C′) =
k∑

i=1

∑̀
j=1

(mij − Eij)2

Eij
where Eij =

|Ci||C ′
j |

n
.

As can be seen in [20], there are several variations of the measure. Originally,
it was suggested in 1900 by Pearson for testing independance in a bivariate
distribution, not for evaluating association (which, in the context of cluster-
ing, corresponds to evaluating similarity). The problem in transferring such
a measure to the purpose of comparing clusterings lies in the fact that we
have to assume independance of the two clusterings. In general, this is not
true and therefore the result of a comparison with such a measure has to be
challenged (see Sect. 3.6).

3.2 Rand Index

3.2.1 General Rand Index

Rand’s Index [1] was motivated by standard classification problems in which
the result of a classification scheme has to be compared to a correct classifi-
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cation. The most common performance measure for this problem calculates
the fraction of correctly classified (respectively misclassified) elements to all
elements. For Rand, comparing two clusterings was just a natural extension
of this problem which has a corresponding extension of the performance
measure: instead of counting single elements he counts correctly classified
pairs of elements. Thus, the Rand Index is defined by:

R(C, C′) =
2(n11 + n00)

n(n− 1)

R ranges from 0 (no pair classified in the same way under both clusterings)
to 1 (identical clusterings). The value of R depends on both, the number
of clusters and the number of elements. Morey and Agresti showed that
the Rand Index is highly dependent upon the number of clusters [2]. In
[4], Fowlkes and Mallows show that in the (unrealistic) case of independant
clusterings the Rand Index converges to 1 as the number of clusters increases
which is undesirable for a similarity measure.

3.2.2 Adjusted Rand Index

The expected value of the Rand Index of two random partitions does not
take a constant value (e.g. zero). Thus, Hubert and Arabie proposed an
adjustment [3] which assumes a generalized hypergeometric distribution as
null hypothesis: the two clusterings are drawn randomly with a fixed number
of clusters and a fixed number of elements in each cluster (the number of
clusters in the two clusterings need not be the same). Then the adjusted
Rand Index is the (normalized) difference of the Rand Index and its expected
value under the null hypothesis. It is defined as follows [6]:

Radj(C, C′) =

∑k
i=1

∑`
j=1

(mij

2

)
− t3

1
2(t1 + t2)− t3

where t1 =
k∑

i=1

(
|Ci|
2

)
, t2 =

∑̀
j=1

(
|C ′

j |
2

)
, t3 =

2t1t2
n(n− 1)

This index has expected value zero for independant clusterings and maxi-
mum value 1 (for identical clusterings). The significance of this measure has
to be put into question because of the strong assumptions it makes on the
distribution. Meila [7] notes, that some pairs of clusterings may result in
negative index values.
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3.3 Fowlkes–Mallows Index

Fowlkes and Mallows introduced their index as a measure for comparing
hierarchical clusterings2 [4]. However, it can also be used for flat clusterings
since it consists in calculating an index Bi for each level i = 2, . . . , n− 1 of
the hierarchies in consideration and plotting Bi against i. The measure Bi

is easily generalized to a measure for clusterings with different numbers of
clusters. The generalized Fowlkes–Mallows Index is defined by

FM(C, C′) =

∑k
i=1

∑`
j=1 m2

ij − n√
(
∑

i |Ci|2 − n)(
∑

j |C ′
j |2 − n)

=
n11√

(n11 + n10)(n11 + n01)

In the context of Information Retrieval this measure can be interpreted as
the geometric mean of precision (ratio of the number of retrieved relevant
documents to the total number of retrieved documents = n11

n11+n10
) and recall

(ratio of the number of retrieved relevant documents to the total number of
relevant documents = n11

n11+n01
).

Like for the adjusted Rand Index, the ”amount” of similarity of two clus-
terings corresponds to the deviation from the expected value under the null
hypothesis of independant clusterings with fixed cluster sizes. Again, the
strong assumptions on the distribution make the result hard to interpret.
Futhermore, this measure has the undesirable property that for small num-
bers of clusters, the value is very high, even for independant clusterings
(which even achieve the maximum value for small numbers of clusters). Wal-
lace proposed to attenuate this effect by substracting the number of pairs
whose match is forced by the cluster overlaps from the number of ”good”
pairs and from the number of all pairs [9].

3.4 Mirkin Metric

The Mirkin Metric which is also known as Equivalence Mismatch Distance
[11] is defined by

M(C, C′) =
k∑

i=1

|Ci|2 +
∑̀
j=1

|C ′
j |2 − 2

k∑
i=1

l∑
j=1

m2
ij .

It corresponds to the Hamming distance for binary vectors if the set of
all pairs of elements is enumerated and a clustering is represented by a

2A hierarchical clustering of a set X is a hierarchy of |X| clusterings, with the two
trivial clusterings at the top and bottom, respectively, and each level of the hierarchy is a
refinement of all the levels above.

6



binary vector defined on this enumeration. An advantage is the fact that
this distance is a metric on P(X). However, this measure is very sensitive to
cluster sizes such that two clusterings that are ”at right angles” to each other
(i.e. each cluster in one clustering contains the same amount of elements
of each of the clusters of the other clustering) are closer to each other than
two clusterings for which one is a refinement of the other [11]. The Mirkin
Metric is a variation of the Rand Index [7] since it can be rewritten as

M(C, C′) = 2(n01 + n10) = n(n− 1)(1−R(C, C′)).

3.5 Other measures

3.5.1 Jaccard Index

The Jaccard Index is very common in geology and ecology, e.g. for measur-
ing the species diversity between two different communities [10]. It is very
similar to the Rand Index, however it disregards the pairs of elements that
are in different clusters for both clusterings. It is defined as follows:

J (C, C′) =
n11

n11 + n10 + n01

3.5.2 Partition Difference

The Partition Difference [19] simply counts the pairs of elements that belong
to different clusters unter both clusterings:

PD(C, C′) = n00

According to [19], this measure is commonly used. In our opinion, it has
too many drawbacks and should therefore not be used: the measure wants
to express a distance, but it is not a distance in the mathematical sense,
since it fulfills neither the identity of indiscernibles-property (you can have
PD(C, C′) = 0, but C 6= C′, e.g. for the trivial one-clustering C and an
arbitrary clustering C′ 6= C), nor the triangle inequality (take two arbi-
trary, non-trivial clusterings C 6= C′ and the trivial one-clustering C′′, then
PD(C, C′′) +PD(C′′, C′) = 0 < PD(C, C′)). The measure is sensitive to clus-
ter sizes and the number of clusters and since it is not normalized, the values
are hard to interpret (what does a distance of 5 mean, when we do not know
the total number of pairs of elements?).
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3.6 General remarks

As mentioned before, the measures presented in this section can all be cal-
culated by means of the confusion matrix M (and the cluster sizes); this is
either obvious from the formula (e.g. for the Fowlkes-Mallow Index) or can
be seen after some transformation (e.g. for the Rand Index, which can be
transformed into a variation of the Mirkin Metric, see 3.4).

For different reasons, these measures do not seem to be very appealing.
Some of them are sensitive to certain parameters (cluster sizes, number of
clusters); think of a pair of clusterings with similarity α ∈ [0, 1] and replace
each element in the underlying set by two elements. Why should the result-
ing pair of clusterings have a similarity other than α? This behavior, as well
as sensitivity to the number of clusters, are undesirable.
Other measures, like the Fowlkes-Mallows Index, suffer from another draw-
back: they make use of a very strong null hypothesis, that is, independance
of the clusterings, fixed number of clusters, and fixed cluster sizes. When
comparing results provided by clustering algorithms these assumptions are
- apart from the number of clusters that is fixed for some algorithms - vio-
lated. None of the algorithms works with fixed cluster sizes. Furthermore,
in practice it would be against the intuition to compare two clusterings when
assuming that there is no relationship between them. In fact, we compare
clusterings because we suppose a certain relationship and we want to know
how strong it is [12].

4 Measures based on set overlaps

Another kind of measure tries to match clusters that have a maximum ab-
solute or relative overlap. This is also a quite intuitional approach, however
the assymetry of some of the measures makes them difficult to use.

4.1 F-Measure

The F-Measure has its origin in the field of document clustering where it
is used to evaluate the accuracy of a clustering solution. Each cluster of
the first clustering is a (predefined) class of documents and each cluster of
the second clustering is treated as the result of a query [14], [13]. The F-
Measure for a cluster C ′

j with respect to a certain class Ci indicates how
”good” the cluster C ′

j describes the class Ci by calculating the harmonic
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mean of precision pij = mij

|C′
j |

and recall rij = mij

|Ci| for C ′
j and Ci:

F(Ci, C
′
j) =

2 · rij · pij

rij + pij
=

2|Ci||C ′
j |

|Ci|+ |C ′
j |

The overall F-Measure is then defined as the weighted sum of the max-
imum F-Measures for the clusters in C′:

F(C, C′) = F(C′) =
1
n

k∑
i=1

ni
`

max
j=1

{F(Ci, C
′
j)}

It can easily be seen that this measure is not symmetric. Thus, this may be
an appropriate index for comparing a clustering with an optimal clustering
solution. However, in general the optimal solution is not know, which makes
an assymetric measure hard to interpret.
In [7], Meila claims, that in [13], Larsen uses a variation of this measure
which is normalized by the number of clusters instead of the number of
elements. She gives an example where this ”Larsen-measure” has a very
strange behavior. However, as can be seen in [13], Larsen does not use this
measure, but also the F-Measure as defined above. Actually, other authors,
as for example Steinbach, Kapyris and Kumar in [15], or Fung in [14], refer
to Larsen when introducing the F-Measure.

4.2 Meila-Heckerman- and Maximum-Match-Measure

In [8], Meila and Heckerman use another assymetric measure, which they
apply to comparing clustering algorithms. For their study, they do not
compare the results of the different clustering methods among each other,
but they compare each clustering result with an optimal clustering solution
(their study is on synthetic data). For this purpose they use the following
measure:

MH(C, C′) =
1
n

k∑
i=1

max
C′

j∈C
mij

where C is the clustering that is provided by the algorithm and C′ is the
optimal clustering. As for the preceding measure, its assymetry makes it
inappropriate for the general task of comparing clusterings. However, it can
be generalized to the symmetric Maximum-Match-Measure M(C, C′) which
can be determined as follows: look for the largest entry mab of the confusion
matrix M and match the corresponding clusters Ca and C ′

b (this is the cluster
pair with the largest (absolute) overlap). Afterwards cross out the a-th row
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and the b-th column and repeat this step (searching for the maximum entry,
matching the corresponding clusters and deleting the corresponding row and
column) until the matrix has size 0. Afterwards you sum up the matches
and divide it by the total number of elements:

MM(C, C′) =
1
n

min{k,`}∑
i=1

mii′

where i′ is the index of the cluster in C’ that is matched to cluster Ci ∈ C.
Note, that in the case of k 6= `, this measure completely disregards the |k−`|
”remaining” clusters in the clustering with the higher cardinality.

4.3 Van Dongen-Measure

In [11], van Dongen introduces a symmetric measure, that is also based on
maximum intersections of clusters. It is defined as follows:

D(C, C′) = 2n−
k∑

i=1

max
j

mij −
∑̀
j=1

max
i

mij

This measure has the nice property of being a metric on the space of all
clusterings of the underlying set X. However, it ignores the parts of the
clusters outside the intersections (see 4.4).

4.4 General remarks

The preceding measures have the common property of just taking the over-
laps into account. They completely disregard the unmatched parts of the
clusters (or even complete clusters, as the Maximum-Match-Measure). In
[7], Meila presents a nice example that points out the negative effect of this
”behavior” of a measure: take a clustering C with k equal clusters and derive
two variations C′ and C ′′ as follows: C′ is obtained from C by shifting a frac-
tion α of the elements in each cluster Ci to the ”next” cluster Ci+1 mod k.
The clustering C′′ is obtained from C by reassigning a fraction α of the ele-
ments in each cluster Ci evenly between the other clusters. If α < 0.5, then
F(C, C′) = F(C, C′′), MH(C, C′) = MH(C, C′′), MM(C, C′) = MM(C, C′′)
and D(C, C′) = D(C, C′′), which means that for all the measures C′′ is as
similar to C as C′. This contradicts our intuition that C′ is a less modified
version of C than C′′ and is therefore not desirable.
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5 Measures based on Mutual Information

This approach to the comparison of clusterings has its origin in information
theory and is based on the notion of entropy :
The entropy S for an information, e.g. a text T , with alphabet Σ is defined
as

S(T ) = −
∑
i∈Σ

pi log2(pi)

where pi is the probability of finding i in T (more precisely, we have a discrete
random variable Y taking |Σ| values and P (Y = i) = pi). The entropy is
measured in bits and S(T ) · |T | is the number of bits that is needed for
representing T [18].
When applied to clusterings, the meaning of entropy can be described as
follows [7]: assuming that all elements of X have the same probability of
being picked and choosing an element of X at random, the probability that
this element is in cluster Ci ∈ C is P (i) = |Ci|

n . Then, the entropy associated
with clustering C is

H(C) = −
k∑

i=1

P (i) log2 P (i).

Informally, the entropy of a clustering C is a measure for the uncertainty
about the cluster of a randomly picked element. In the case of a trivial
clustering (one cluster or n clusters), we know the cluster of a randomly
picked element, thus the entropy of such a clustering is 0.

The notion of entropy can be extended to that of mutual information, which
describes how much we can on the average reduce the uncertainty about the
cluster of a random element when knowing its cluster in another clustering
of the same set of elements. Formally, the mutual information between two
clusterings C, C′ is defined as

I(C, C′) =
k∑

i=1

∑̀
j=1

P (i, j) log2

P (i, j)
P (i)P (j)

where P (i, j) is the probability that an element belongs to cluster Ci in C
and to cluster C ′

j in C′:

P (i, j) =
|Ci ∩ C ′

j |
n

.
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The mutual information I is a metric on the space of all clusterings. How-
ever, it is not bounded by a constant value which makes it difficult to in-
terpret. As the mutual information between two clusterings is bounded by
their entropies,

I(C, C′) ≤ min{H(C),H(C′)},

a normalization by the geometric or arithmetric mean of the entropies seems
to be reasonable. These normalizations were proposed by Strehl & Gosh and
Fred & Jain, respectively.

5.1 Normalized Mutual Information by Strehl & Ghosh

In [16], Strehl and Ghosh introduce the problem of combining multiple clus-
terings into a single one without accessing the original features or algorithms
that determined these clusterings. For this purpose, they (approximately)
determine the clustering that has the maximal average normalized mutual
information with all the clusterings in consideration, where the normalized
mutual information between two clusterings is defined as

NMI1(C, C′) =
I(C, C′)√
H(C)H(C′)

.

Since H(C) = I(C, C), Strehl & Gosh prefer the normalization by the geo-
metric mean because of the analogy with a normalized inner product in a
Hilbert space. We have

0 ≤ NMI1(C, C′) ≤ 1

with NMI1(C, C′) = 1 for C = C′ and NMI1(C, C′) = 0 if for all i, 1 ≤ i ≤
k, and for all j, 1 ≤ j ≤ `, we have P (i, j) = 0 or P (i, j) = P (i) · P (j). The
treatment of the special case when one of the clusterings is trivial (e.g. the
denominator of the fraction becomes 0) is not mentioned in [16].

5.2 Normalized Mutual Information by Fred & Jain

In order to obtain a good and robust clustering of a given set of elements,
Fred and Jain propose to combine the results of multiple clusterings instead
of using just one particular algorithm [17]. Ideally, the solution should satisfy
three properties:

1. Consistency with the set of clusterings.

2. Robustness to small variations in the set of clusterings.
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3. Goodness of fit with the ground truth information (if available).

Property 1 is modelled by an optimization criterion searching for the clus-
tering that maximizes the average normalized mutual information with all
the clusterings, where the normalized mutual information between two clus-
terings is defined as

NMI2(C, C′) =
2I(C, C′)

H(C) +H(C′)
.

For details about the modelling of property 2, see [17] (property 3 is not
included in the model but used for the evaluation of the results).
As for the previous index, we have

0 ≤ NMI2(C, C′) ≤ 1

with NMI2(C, C′) = 1 for C = C′ and NMI2(C, C′) = 0 if P (i, j) = 0 or
P (i, j) = P (i) · P (j) for all i, 1 ≤ i ≤ k, and for all j, 1 ≤ j ≤ `. The case
of denominator 0 (both clusterings are trivial) is not mentioned.

5.3 Variation of Information

Meila proposes in [7] another measure based on the entropy, which is called
variation of information between two clusterings (by analogy to the total
variation of a function):

VI(C, C′) = H(C) +H(C′)− 2I(C, C′)
= [H(C)− I(C, C′)] + [H(C′)− I(C, C′)] (1)

Informally, the first term of (1) corresponds to the amount of information
about C that we loose, while the second term corresponds to the amount of
information about C′ that we still have to gain, when going from clustering
C to C′.
The variation of information is the only information-theoretical measure
of which a more detailed analysis can be found in the literature. In the
following, we will summarize the main properties of VI, for proofs and
details see [7].

• VI(C, C′) is a metric on P(X).

• VI(C, C′) is not bounded by a constant value. However, there is an up-
per bound of log n (which is attained for all n, e.g. with the two trivial
clusterings) and if the number of clusters is bounded by a constant K
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with K ≤
√

n, then VI(C, C′) ≤ 2 log K; this bound is attained if n is
a multiple of K2.
This means that for large enough n, clusterings of different data sets,
with different numbers of elements, but with bounded numbers of clus-
ters are on the same scale in the metric VI. This allows us to compare,
add or substract VI-distances across different clustering spaces inde-
pendently of the underlying data set.

• The product of two clusterings C, C′ is ”collinear” with the two clus-
terings:

VI(C, C′) = VI(C, C × C′) + VI(C × C′, C′).

This also implies VI(C, C′) ≥ VI(C, C × C′) with equality for C′ = C ×
C′. Thus, the nearest neighbor of a clustering C is either a refinement of
C or a clustering whose refinement is C. In fact, the nearest neighbor
of a clustering is obtained by splitting one element off the smallest
cluster (or by the corresponding merge process). This means that
small changes in a clustering result in small VI-distances.

• The VI-distance between two clusterings C, C′ with C 6= C′ has a lower
bound of 2

n . Thus, with increasing n, the space of clusterings gets a
finer granularity.

• VI(C, C′) can be computed in O(n + k`): we need time O(n) for
computing the confusion matrix M and time O(k`) for computing
VI(C, C′) from M .

In [7], Meila gives extensions of the variation of information to soft cluster-
ings (each element belongs with a certain probability to each of the clusters)
and to weighted elements (each element is weighted by a non-uniform prob-
ability).

5.4 General remarks

The measures based on information-theoretical considerations seem to be
quite promising because they do not suffer from the drawbacks that we
can find for measures that are based on counting pairs or on set overlaps.
However, they possibly suffer from other disadvantages that we do not know
yet. Here, an extensive examination of these measures, especially the two
versions of the normalized mutual information, is necessary.
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6 A first step towards a formalization

We have tried to give an overview of the measures for comparing clusterings
that can be found in the literature. The authors of the respective books or
papers had different motivations for looking for such a measure, however,
none of them tried to formalize the claims he makes on the measure. We
assume that they all have certain ”basic” claims in common, as e.g. symme-
try (asymmetric measures like the Meila-Heckerman-Measure are used for
the special case of comparing a clustering with an optimal solution), which
should be captured in a set of axioms. As a first step towards a complete set
of axioms defining a ”good” measure for comparing clusterings, we want to
mention properties and aspects that have to be taken into account for this
purpose. Let f be a measure for comparing clusterings of a set X and let C,
C′, C′′ ∈ P(X) be clusterings of X. f should have the following properties:

1. Metric on P(X), i.e. we have

(a) Positivity: f(C, C′) ≥ 0

(b) f(C, C) = 0

(c) Symmetry: f(C, C′) = f(C′, C)
(d) Identity of indiscernibles: f(C, C′) = 0 ⇒ C = C′

(e) Triangle inequality: f(C, C′′) ≤ f(C, C′) + f(C′, C′′)

A less restrictive version, claiming only a distance measure (or semi-
metric) is imaginable, either (which means that we would pass on the
identity of indiscernibles and the triangle inequality).
We prefer the formulation in which the value of f for two clusterings
represents a distance, but it can as well be formulated with f repre-
senting a similarity. In the literature, there are different definitions of
similarity measures, which mostly differ only in the range of the func-
tion: often, it is the unit interval (as for example in [21]), sometimes
it is an arbitrary interval [a, b] ⊂ R (as for example in [22]). Thus,
when following the majority and taking the unit interval as range of
the function, we can express this property in terms of similarity as
follows:
f is a metrical similarity measure on P(X), i.e. we have

(a) 0 ≤ f(C, C′) ≤ 1

(b) f(C, C) = 1

(c) f(C, C′) = f(C′, C)
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(d) f(C, C′) = 1 ⇒ C = C′

(e) |f(C, C′) + f(C′, C′′)|f(C, C′′) ≤ f(C, C′)f(C′, C′′)

Analogous to a metric, a less restrictive version is possible, claiming
only the first three properties, which means that f is a (non-metrical)
similarity measure. Note, that property (e) corresponds to the triangle
inequality for distance measures.

2. No additional constraints, neither on the structure of the clusterings
nor on their relation, i.e. no assumptions on

(a) the cluster sizes

(b) the number of clusters (particularly, |C| and |C′| need not be the
same)

(c) dependencies between C and C′.

This property assures, that the result cannot be adulterated by as-
sumptions on the clusterings which, in general, are not fulfilled. As we
have seen in Sect. 3, there are measures like the Adjusted Rand In-
dex or the Fowlkes–Mallows Index, that use the expected value under
a null hypothesis, assuming independent clusterings and fixed cluster
sizes. In general, both assumptions are violated, since none of the
well-established clustering algorithms works with fixed cluster sizes
and since both clusterings are obtained by clustering the same data
set, which means that there is a relationship between the two cluster-
ings (and by applying the distance or similarity measure we want to
find out how strong it is). Thus, measures that make such assump-
tions on the structure of the clusterings and their relation, cannot yield
reliable results.

3. Independence from the number of clusters.

Measures like the General Rand Index (Sect. 3.2.1) have the undesir-
able property of being highly dependant upon the number of clusters:
random clusterings can have a high similarity just because they have a
large number of clusters. In order to avoid this we need independence
from the number of clusters.

4. Independence from the number of elements

With this property, we make sure that clusterings of different data
sets with different numbers of elements are on the same scale. This is
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important for comparing distance values of clustering pairs of different
data sets. Often, we do this kind of comparison ”automatically”, e.g.
by saying that two clusterings that have distance 0.1 are more similar
than two clusterings of another data set that have distance 0.3. How-
ever, this conclusion is only true if the values are on the same scale.
When we want to compare clustering algorithms, this property allows
us to calculate the ”mean error” for different algorithms, which is the
average of the distances to the optimal clustering for different data
sets.

When thinking of desirable properties of a measure for comparing cluster-
ings, a lot of other properties are imaginable. However, they arise rather
from special applications than from the general case and go beyond the ”ba-
sics” for the general case. An example for such a property would be the
possibility of extending the domain of the function f to the set of all clus-
terings of two different underlying sets. Of course, such a comparison only
makes sense when the two underlying sets have a non-empty intersection.
This property is very important for dynamic clustering, that is, updating a
clustering when the underlying set changes (and thus avoiding the reclus-
tering of the whole data set). In the context of dynamic clustering we want
to answer questions like:

• How large is the distance between the updated clustering and the
reclustering of the updated data set?

• How ”far” is the updated clustering from the optimal one (if it is
known)?

• Can small changes in the data set cause large changes in the clustering?

Note, that for dynamic clustering ”changes in the data” has another meaning
than for static clustering: In the static case, small changes in the data mean
noise (small changes in the values of attributes of the elements) whereas in
dynamic clustering, it means a small number of update operations (insertion
or deletion of elements or changes in the similarity between the elements).
Thus, in the first case we still have a one-to-one correspondence of the ele-
ments in the two data sets while in the second case we loose it.
The first two questions reduce to the ”standard” task of comparing cluster-
ing. However, for answering the third question, we have to compare cluster-
ings of two different underlying data sets and therefor we need a measure
that can be extended appropriately.
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