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Abstract We present a parallel data structure which
is directly linked to geometric quantities of an underlying
mesh and which is well adapted to the requirements of a
general finite element realization. In addition, we define
an abstract linear algebra model which supports multi-
grid methods (extending our previous work in Comp.
Vis. Sci. 1 (1997) 27-40). Finally, we apply the paral-
lel multigrid preconditioner to several configurations in
linear elasticity and we compute the condition number
numerically for different smoothers, resulting in a quan-
titative evaluation of parallel multigrid performance.

Key words parallel computing, finite elements, multi-
grid methods

1 Introduction

Multigrid methods are a well-established class of solu-
tion methods for algebraic linear systems arising from
discretized partial differential equations (see, e.g., the
textbooks [18,7] for a general overview, and see the spe-
cial issue [13] for an up-to-date summary on recent de-
velopments). Also the parallel implementation of multi-
grid methods is now well established, and parallel con-
cepts are presented, e.g., in [1,11,17,21,23,12,38]. Now,
many fundamental problems in multigrid analysis and
also the main principles for efficient parallel multigrid
realizations are known. In the last years, the focus in
research moved to the application of multigrid methods
to a large variety of problem classes; this is still a chal-
lenge for, e.g., nonlinear and coupled systems. Moreover
we observe that the qualitative multigrid analysis is re-
stricted in most cases to elliptic model problems, and a
detailed quantitative analysis is still out of reach.

Here, we focus on parallel multigrid methods on geo-
metry-based data structures that are well adapted to
unstructured finite element applications as they are de-
scribed in [2]. The main new idea is to avoid any global

numbering by identifying parallel distributed objects by
their geometric position. In particular any degree of free-
dom of the finite element discretization is linked to its
geometric nodal point which directly allows for a parallel
identification of interface values by comparing their posi-
tions. Within the realization of this data model, we con-
sequently use hash map containers (where the geometric
points are used as hash keys), which replace all contain-
ers based on doubly-linked lists or balanced trees in [2].
Note that the advantage of hash-based data structures
in the context of multigrid methods was first observed
in [16].

The paper is organized as follows. In the first part, we
summarize the basic principles of the parallel multigrid
implementation:

◮ We present (in Section 2) the concepts of our new
implementation [29] of distributed meshes, based
on a non-overlapping decomposition of all cells in
the finite element mesh (which is provided by a load
balancing procedure).

◮ This results in an overlapping decomposition of the
nodal points. The coordinates of the nodal points
are used as a global key for all interface points.

◮ On this data structure we define parallel finite el-
ements in Section 3. We require that all solution
and correction vectors have the same values at the
processor interfaces. This is a parallel consistency
requirement.

◮ Finite element stiffness matrices, right-hand side
vectors, and residuals are only accessed additively
via their local contributions on each processor.

This data model is then used for an abstract con-
cept of parallel (geometry-linked) linear algebra (intro-
duced in Section 4), which is well suited for the realiza-
tion of parallel multigrid methods (Section 5). We then
summarize parallel multigrid theory for block smoothing
schemes for nested elliptic discretizations in Section 6.
We finish with numerical experiments (in Section 7) for
the evaluation of the condition number of the parallel
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multigrid preconditioner in dependence on the block size
and on damping factors in the smoothing scheme.

This parallel programming model is designed for max-
imal flexibility, so that it can easily be applied to many
other applications: it is already successfully applied to a
geomechanical problem [32] via an element-based inter-
face to an engineering model, to a problem in biome-
chanics [35], to a triphasic porous media model [33],
to infinitesimal plasticity [30,31], to Cosserat plasticity
[24], to nonlocal plasticity [25], and to periodic eigen-
value computations of photonic crystals [20].

Nevertheless, our data model is quite restrictive and
its design is especially adapted to the requirements of
parallel multigrid methods. A more flexible abstract data
model (including concepts of generic programming) is
presented in [3,4].

2 A parallel mesh model

For a transparent (and—last but not least—also debug-
ging-friendly) parallel code it is required to define an ab-
stract programming model. Here, we present a parallel
programming model based on the concept of Distributed
Point Objects, which allows for a realization of a parallel
finite element code and a parallel multigrid solver with
a minimum of parallel programming overhead. Within
this model, all objects are associated with a geometric
point which is used as a global identification key. The
objects are stored in hash maps using these keys. Note
that this requires rounding error tolerant arithmetic for
the geometric calculations, which is realized by prescrib-
ing a geometric tolerance ǫgeom > 0 for the comparison
of different positions. For simplicity, all quantities will
be described in R

3, and lower dimensional computations
are embedded into 3-d.

We consider a mesh hierarchy (Cj ,Vj , Ej ,Fj) of cells
Cj , vertices Vj , edges Ej , and faces Fj on levels j =
0, ..., J . The coarsest level j = 0 describes the configura-
tion (including the domain and the boundary condition),
and by successive refinement steps we obtain the finest
mesh on level J , where our finite element problem is de-
fined; the intermediate levels will be used only for the
multigrid preconditioner.

Let c ∈ Cj be a cell on level j, Vc ⊂ R
3 be the cell

vertices, Ec be the cell edges, and Fc be the cell faces.
Here, each edge e ∈ Ec is represented by a pair (xe, ye) ∈
Vc ×Vc and its edge midpoint ze ∈ R

3 (which is used in
the corresponding hash map container as the associated
key). In the same way we use the face midpoint zf and
the cell midpoint zc as the corresponding keys of f ∈ Fc

and c ∈ Cj , respectively. The vertices and midpoints are
collected in the set Zc = Vc ∪ {ze : e ∈ Ec} ∪ {zf : f ∈
Fc} ∪ {zc} of hash keys associated to the cell c.

Together, the set of cells Cj define the set of vertices
Vj =

⋃
c∈Cj

Vc, edges Ej =
⋃

c∈Cj
Ec, and faces Fj =⋃

c∈Cj
Fc. An interior face f ∈ Fj is associated to the

pair of midpoints (zc, zc′) of the two cells c, c′ ∈ Cj with
f ∈ Fc ∩ Fc′ . Introducing the exceptional point z = ∞,
boundary faces f ∈ F are associated to the pair (zc,∞).

In parallel, it is required to determine a distribution
of the meshes by a load balancing procedure. In princi-
ple, this can be done independently on every level, and
within an adaptive time-depending simulation it may be
advantageous to redistribute the mesh by a dynamic load
balancing process [10,14,22]. For simplicity, we describe
in this paper only the static configuration with a distri-
bution of the coarsest level and uniform refinement.

On the processor set P = {1, ..., P} , a load balancing
is given by a function

dest0 : C0 −→ P , Cp
0 = {c ∈ C0 : dest0(c) = p} ,

defining a disjoint decomposition C0 = C1
0 ∪ · · · ∪ CP

0 .
This also defines Vp

0 =
⋃

c∈Cp
0

Vc, Ep
0 =

⋃
c∈Cp

0

Ec, Fp
0 =⋃

c∈Cp
0

Fc, and Zp
0 =

⋃
c∈Cp

0

Zc, resulting in overlapping

decompositions of the vertices V0 = V1
0 ∪ · · · ∪ VP

0 , the
edges E0 = E1

0 ∪ · · · ∪ EP
0 , the faces F0 = F1

0 ∪ · · · ∪ FP
0 ,

and the hash keys Z0 = Z1
0 ∪ · · · ∪ ZP

0 .
The overlapping decomposition of the hash keys Z0

defines a set-valued partition map

π0 : Z0 −→ 2P , π0(z) = {p ∈ P : z ∈ Zp
0} .

This partition map (also realized by a hash map con-
tainer) is constructed on one processor; then, the restric-
tions πp

0 = π0|Zp
0

are sent to the processors p ∈ P.
In the next step nested refinement can be performed

without communication. In the refinement step from level
j − 1 to level j on processor p ∈ P, a cell c ∈ Cp

j−1 is
refined to cells Cc on level j, defining Cp

j =
⋃

c∈Cp

j−1

Cc

and then the vertices Vp
j =

⋃
c∈Cp

j
Vc. Correspondingly,

an edge e ∈ Ep
j−1 is refined to edges Ee on level j defin-

ing Ep
j =

⋃
e∈Ep

j−1

Ee, and a face f ∈ Fp
j−1 is refined to

faces Fe on level j defining Fp
j =

⋃
f∈Fp

j−1

Ff . In case

of uniform 3-d refinement, a coarse cell c is refined into
8 cells Cc, a coarse face f is refined into 4 faces Ff , and
a coarse edge e is refined into two edges Ee.

Locally, on every processor this defines the partition
map πp

j by πp
j (z) = πp

j−1(z) for z ∈ Vj−1 ⊂ Vj , π
p
j (ze′) =

πp
j−1(ze) for e′ ∈ Ee and e ∈ Ej−1, π

p
j (zf ′) = πp

j−1(zf )
for f ′ ∈ Ff and f ∈ Fj−1, and πp

j (zc) = {p} for c ∈ Cp
j .

This defines the partition map for all keys in Zp
j = Vp

j ∪
{ze : e ∈ Ep

j } ∪ {zf : f ∈ Fp
j } ∪ {zc : c ∈ Cp

j }.
Note that this construction of local partition maps

does not require any parallel communication within the
nested refinement procedure. In addition, it guarantees
local consistency, i.e.,

πp
j (z) = πq

j (z), z ∈ Zp
j ∩ Zq

j .

Following [22], this concept for a parallel data structure
can be directly extended to parallel adaptive refinement
together with a parallel redistribution by introducing
(and communicating) copy elements. Note that copy el-
ements are also used for the parallel realization of an
overlapping domain decomposition method in [34].



A geometric data structure for parallel finite elements and the application to multigrid methods 3

3 Parallel finite elements

A finite element mesh on level j is given by a decom-
position Ω̄j =

⋃
c∈Cj

Ω̄c, where Ωc ⊂ R
3 is the interior of

the cell such that Ω̄c = conv{Vc}. The non-overlapping
cell decomposition defines a non-overlapping domain de-
composition Ω1

j ∪· · ·∪ΩP
j of Ωj with sub-domains Ω̄p

j =⋃
c∈Cp

j

Ω̄c and the skeleton

Γj =
⋃

p<q

Γ pq
j , Γ pq

j = ∂Ωp
j ∩ ∂Ωq

j .

Let Vj = span{φj,i : i ∈ Ij} be a finite element space
with basis φj,i, where Ij is the corresponding index set.
Each basis function φj,i is associated with a dual func-
tion φ′j,i ∈ V ′

j such that 〈φ′j,i, φj,k〉 = δik. To every index

i ∈ Ij we assign a nodal point zi ∈ Ω̄j and—in case of a
system of equations—a component ki.

Let Nj = {zi : i ∈ Ij} be the set of nodal points.
In our programming model we assume Nj ⊂ Zj , which
automatically defines the partition map also on Ij : we
set πj(i) = πj(zi). Let Ij = I1

j ∪ · · · ∪ IP
j be the over-

lapping decomposition of the index set with Ip
j = {i ∈

Ij : p ∈ πj(i)}, and set Np
j = #Ip

j . Note that in parallel
an independent numbering for each local index set Ip

j

can be used. No global numbering is required, since the
realization of the same index on different processors can
be uniquely identified by the pair (zi, ki).

A finite element function vj =
∑

i∈Ij
vj,iφj,i ∈ Vj is

represented uniquely by its coefficient vector (vj,i)i∈Ij

with vj,i = 〈φ′j,i, vj〉. Analogously, a discrete functional
fj =

∑
i∈Ij

fj,iφ
′
j,i ∈ V ′

j is represented uniquely by its

coefficient vector (fj,i)i∈Ij
with fj,i = 〈fj , φj,i〉.

The main idea of parallel finite elements is to distin-
guish clearly the parallel vector representations of finite
element functions and discrete functionals. Thus, we in-
troduce two different vector representations.

Consistent vector representation

The coefficient vector (vj,i)i∈Ij
of a finite element func-

tion vj ∈ Vj is represented in parallel by its local restric-

tions vp
j = (vj,i)i∈Ip

j
∈ R

Np

j which defines a mapping

Ej : Vj −→ V P
j :=

∏

p∈P

R
Np

j

vj 7−→ vj = (vp
j )p∈P

to distributed vectors in the corresponding Euclidean
product space. Moreover, the coefficient vector of a fi-
nite element function is consistent, i.e., the coefficients
coincide on the processor interfaces. Thus, we define the
constrained product space

V j =
{
vj ∈ V P

j : vp
j,i = vq

j,i for q ∈ πp(i)
}
.

We have V j = Ej(Vj), and for vj ∈ V j a unique finite el-
ement function vj ∈ Vj with Ej(vj) = vj is well-defined.

Additive vector representation

In parallel, the assembling of right-hand side vectors
(and also stiffness matrices) usually is done only on the
corresponding sub-domains Ωp

j . This directly gives par-

allel local representations fp

j
= (fj,i)i∈Ip

j
∈ R

Np

j . In or-

der to obtain the full coefficient vector (fj,i)i∈Ij
, parallel

communication is required for the collection of the local
contributions. Obviously, the additive decomposition

fj,i =
∑

p∈π(i)

fp
j,i (1)

depends on the load balancing.

Thus, we use a non-unique representation of func-
tionals in V ′

j in the quotient space

V ′
j = V P

j /V
0
j

factoring out the kernel of the collection operation (1)

V 0
j = {f

j
∈ V P

j :
∑

p∈π(i)

fp
j,i = 0, i ∈ Ij} .

Note that the parallel Euclidean inner product

vj · f j
=

∑

p∈P

vp
j · fp

j
, vj ∈ V j , f j

∈ V ′
j

is well-defined in V j × V ′
j . Moreover, this characterizes

the kernel space as the polar space

V 0
j = {vj ∈ V P

j : vj · wj = 0, wj ∈ V j} ,

where the parallel Euclidean inner product is used as the
dual pairing. With respect to this dual pairing we obtain
the adjoint operator to the embedding operator Ej . This
mapping is defined by

E′
j : V ′

j −→ V ′
j

f
j
7−→ fj =

∑

p∈P

∑

i∈Ip

j

fp
j,iφ

′
j,i

and assigns a functional to a distributed vector. Note
that this mapping is not one-to-one. In order to obtain
a unique parallel representation of functionals we assign
p = minπj(i) as the master processor for every index,
and defining the index subset

Ĩp
j = {i ∈ Ip

j : p = minπj(i)
}

yields a non-overlapping decomposition of the index set
Ij = Ĩ1

j ∪ · · · ∪ ĨP
j . This defines the subspace of V ′

j

Ṽ
′

j =
{
f

j
= (fp

j
)p∈P ∈ V ′

j : fp
j,i = 0 for p 6= minπj(i)

}

=
{
f

j
= (fp

j
)p∈P ∈ V ′

j : fp
j,i = 0 for i 6∈ Ĩp

j } .

Note that E′
j restricted to Ṽ

′

j is one-to-one.
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Parallel Euclidean norms in V j and V ′
j

In the parallel Euclidean spaces it is recommended to
use only norms which are induced by norms of the finite
element spaces, since the parallel Euclidean norm of the
product space V P

j

‖vj‖V P

j
=

√∑

p∈P

∑

i∈Ip

|vp
j,i|2 , vj ∈ V P

j

is mesh-dependent and not invariant of the load bal-
ancing. Its absolute order of magnitude has no physical
interpretation. On the other hand the evaluation of in-
duced norms is quite involved, so that for the conver-
gence control of iterative methods the error reduction
with respect to the Euclidean norm is quite efficient (and
up to a mesh-dependent norm equivalence factor also re-
liable).

For consistent vectors in V j we define the norm

‖vj‖V j
=

√∑

p∈P

∑

i∈eIp

|vp
j,i|2 , vj ∈ V j

which is obviously invariant of the load balancing. For
additive vectors in V ′

j the evaluation of the dual norm

‖f
j
‖V ′

j
= sup

‖vj‖V j
=1

f
j
· vj , f

j
∈ V ′

j

requires parallel communication: compute the unique re-

presentative f̃
j
∈ Ṽ

′

j of f
j
; then, we have

‖f
j
‖V ′

j
= ‖f̃

j
‖V ′

j
= ‖f̃

j
‖V P

j
=

√∑

p∈P

‖f̃p

j
‖2 .

Additive operator representation

Let V be a Hilbert space, a(·, ·) : V × V −→ R an ellip-
tic bilinear form, and let A : V −→ V ′ be the operator
defined by 〈Av,w〉 = a(v, w) for v, w ∈ V . For a finite
element space Vj ⊂ V let Aj : Vj −→ V ′

j be the Galerkin
approximation defined by

〈Ajvj , wj〉 = a(vj , wj) , vj , wj ∈ Vj .

The matrix representation Aj : V j −→ V ′
j satisfying

Aj = E′
j ◦ Aj ◦ Ej depends on a suitable decomposition

of the operator. Therefore, we assume that the bilinear
form a(·, ·) allows for a cell-based additive decomposition

a(v, w) =
∑

c∈Cj

ac(v, w) , v, w ∈ V ,

and we assume that the finite element nodal basis func-
tions φj,i have local support such that ac(φj,i, φj,k) 6= 0
only if zi, zk ∈ Nc with Nc = Nj ∩ Ω̄c. This allows
for the parallel assembling of the local stiffness matrices
Ap

j = (Aj,i,k)i,k∈Ip

j
with

Ap
j,i,k =

∑

c∈Cp

j

ac(φj,i, φj,k) , (2)

which together gives the parallel additive matrix repre-
sentation Aj = (Ap

j )p∈P of the discrete operator Aj , i.e.,
we have

Ajφj,i =
∑

p∈P

∑

k∈Ip

j

Ap
j,i,kφ

′
j,k .

Note that within this parallel programming model for a
consistent vector vj ∈ V j the operation

f
j

= Ajvj = (Ap
jv

p
j )p∈P ∈ V ′

j

yields the additive result without parallel communica-
tion.

Parallel assembling

We illustrate the parallel assembling procedure for linear
elasticity with V = H1(Ω,R3) and

a(v, w) =

∫

Ω

ε(v) : C : ε(w) dx ,

where ε(v) = sym(∇v) and C : ε = 2µε + λ tr(ε)I.
Furthermore, let f ∈ V ′ with

f(v) =

∫

Ω

b · v dx+

∫

∂Ω

g · v da

be a load functional, and let uD be Dirichlet data on a
part of the boundary Γ ⊂ ∂Ω.

The continuous problem in linear elasticity reads as
follows: find u ∈ V such that u = uD on Γ and

a(u, v) = f(v)

for all v ∈ V with v = 0 on Γ .
We use lowest-order H1-conforming elements, where

we have the nodal points zi ∈ Vj and components ki ∈
{1, 2, 3} (for other applications we also use edge or face
degrees of freedom). Let φz ∈ C(Ω̄) be the standard
nodal basis with φz(z) = 1 and φz(y) = 0 for z, y ∈ Vj ,
z 6= y, and let e1, e2, e3 ∈ R

3 be the Euclidean basis.
This defines the finite element space Vj = span{φj,i}
with φj,i = φzi

eki
. The associated dual basis in V ′

j is
given by 〈φ′j,i, v〉 = vki

(zi).
Obviously, cell-based assembling is possible by defin-

ing

ac(v, w) =

∫

Ωc

ε(v) : C : ε(w) dx

and

fc(v) =

∫

Ωc

b · v dx+

∫

∂Ω∩∂Ωc

g · v da .

In the assembling process, we have to compute on every
processor the local stiffness matrix Ap

j by (2), the local
right-hand side fp

j
= (fp

j,i
) by

fp

j,i
=

∑

c∈Cp

j

fc(φj,i) ,
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and the local set of Dirichlet indices

Dp
j = {i ∈ Ip

j : zi ∈ Γ}
for essential boundary conditions (note that in general
parallel communication is required to guarantee parallel
consistency of the Dirichlet indices).

The discrete problem in linear elasticity reads as fol-
lows: find uj ∈ Vj such that uj(z) = uD(z) for all
z ∈ Γ ∩ Vj and

a(uj , φj,i) = f(φj,i)

for all i ∈ Ip
j \ Dp

j (i.e., zi ∈ Ω̄ \ Γ ).
There are several possibilities to incorporate essen-

tial boundary conditions into the discrete linear system.
Here, the parallel discrete solution vj ∈ V j is computed
as follows. First, we modify Ap

j and fp

j
locally for the

Dirichlet indices by setting

Ap
j,i,i = 1, Ap

j,i,m = 0 (m 6= i), fp
j,i = uD

ki
(zi)

for all i ∈ Dp
j . Then, solve the linear problem

Ajuj = f
j
,

i.e., find uj ∈ V j such that

(Ap
ju

p
j − fp

j
)p∈P ∈ V 0

j

is satisfied for the parallel defect. Checking of this con-
dition requires parallel communication. In our program-
ming model, this communication is included in extended
operations of parallel linear algebra.

4 Parallel linear algebra

The basic idea for a reliable, transparent and efficient
implementation of parallel algorithms is the formulation
of all algorithms in function spaces (i.e., in V and V ′)
and the consequent use of consistent vectors in V j for

finite element functions, and additive vectors in V ′
j for

discrete functionals. This automatically yields parallel
algorithms, if two parallel operations for changing the
vector representation are included:

a) A unique additive representation is obtained by

collect : V ′
j −→ Ṽ

′

j

defined by

collect(f
j
)p
i =





∑

q∈π(i)

fq
j,i p = minπ(i),

0 else.

b) A consistent result of local corrections is obtained
by

accumulate : V P
j −→ V j

defined by

accumulate(cj)
p
i =

∑

q∈π(i)

cqj,i .

These two parallel operations require only local commu-
nication with the neighboring processors

Pj,p =
⋃

p∈πj(i)

πj(i) .

In general, the number of processors in Pj,p is small and
should be bounded independently of the total number
of processors P . In our parallel linear algebra, global
communication is required only for inner products.

The parallel data exchange in the collect and accu-
mulate routine is realized by identifying the indices by
their nodal point. We illustrate this procedure for the
accumulation of a distributed vector c = (cp) ∈ V P

j (see
Fig. 1 for the source code of the realization):

S1. On processor p fill exchange buffers

Bp,q ={(cj,i, zi, ki) : i ∈ Ip
j , q ∈ πp(i)}

for all q ∈ Pj,p.
S2. Exchange the buffers Bp,q for (p, q) where Bp,q is

non-empty, i.e., on processor p send Bp,q to all pro-
cessors q ∈ Pj,p. Then, on processor q, receive all
buffers Bp,q for p ∈ Pj,q.

S3. On processor q, read the buffer content (d, z, k) ∈
Bp,q for all p, find i ∈ Iq

j with (zi, ki) = (z, k) and
set cqj,i := cqj,i + d.

The efficiency of this algorithm relies on the efficient
index determination in S3. In our code this is realized
with a hash table which maps every nodal point z ∈ N p

j

to the associated index i ∈ Ip
j with zi = z and ki = 1.

Parallel operators

We consider operators on one level and between two suc-
cessive levels. Together, we distinguish four types of par-
allel operators.

Discrete (differential) operators Aj : Vj −→ V ′
j are

represented additively by parallel distributed matrices

Aj : V j −→ Ṽ
′

j ,

where the operation is defined by

Aj v = collect(Ap
jv

p) , v ∈ V j .

Here, Ap
j ∈ R

Np

j
×Np

j is represented locally by a (sparse)
matrix, and the matrix-vector products Ap

jv
p can be

computed independently, followed by the communication
of the collect routine.
Of course, since the finite element stiffness matrix is
sparse, we use an appropriate storage format for Ap

j .
Preconditioners Bj : V ′

j −→ Vj are represented also
by parallel distributed operators

Bj : V ′
j −→ V j ,

but now the operation is defined by

Bj f = accumulate(Bp
jf

p) , f ∈ V ′
j .
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void AccumulateParallel (Vector& u) {

ExchangeBuffer& E=u.AccumulateParallelBuffer();

for (procset p=u.procsets();

p!=u.procsets_end(); ++p) {

int i = u.Id(p.z());

for (int j=0; j<p.size(); ++j) {

int q = p[j];

if (q == my_proc) continue;

E.Send(q) << p.z();

for (int k=0; k<u.Dof(i); ++k)

E.Send(q) << u(i,k);

}

}

E.Communicate();

for (short q=0; q<procs.size(); ++q) {

while (E.Receive(q).size()

< E.ReceiveSize(q)) {

Point z; E.Receive(q) >> z;

int i = u.Id(z);

for (int k=0; k<u.Dof(i); ++k) {

Scalar a; E.Receive(q) >> a;

u(i,k) += a;

}

}

}

}

Fig. 1 Source code for the parallel accumulation routine.
Here, u(i,k) returns the degree of freedom of uj associated
to the nodal point z = zi and the component k. Internally
in u.Id(z), on every processor a hash table provides a fast
access from the nodal point z to its index i.

Here, the distributed operators Bp
j can be represented lo-

cally by a matrix, but in general only the application to
a vector Bp

jv
p is defined (e.g., for a Gauss-Seidel method,

using the matrix Aj). This is done independently on ev-
ery processor, followed by the communication of the ac-
cumulate routine which is required to obtain a consistent
result.

Within the symmetric multigrid method, we also need
the adjoint preconditioner B′

j : V ′
j −→ Vj which is repre-

sented by transposed operations BT
j : V ′

j −→ V j defined
by

BT
j =

(
accumulate ◦(Bp

j ) ◦ collect
)T

= collectT ◦(Bp
j )

T ◦ accumulateT ,

where we have accumulateT = accumulate, and the ad-
joint collect routine

collectT : V P
j −→ V j

is given by

collectT (cj)
p
i = c

min π(i)
j,i ,

i.e., for every index i the corresponding master processor
minπ(i) sends its value to all p ∈ π(i).

Note that in general the construction of the local
preconditioners Bp

j requires communication. They rely

on the accumulated matrix accumulate(Ap
j ) defined by

accumulate(Ap
j )i,k =

∑

q∈π(i)∩π(k)

Aq
j,i,k .

The prolongation Ij : Vj−1 −→ Vj is represented by
parallel distributed prolongation matrices

Ij : V j−1 −→ V j ,

and the operation is defined by

Ij vj−1 = (Ip
jv

p
j−1) , v ∈ V j−1 ,

where now Ip
j = (Ip

j,i,k) ∈ R
Np

j
×Np

j−1 is a rectangular
matrix.
We assume that this procedure gives a consistent re-
sult without any communication. This requires horizon-
tal consistency of the partition maps, i.e. πj−1(k) ⊂ πj(i)
for all (i, k) ∈ Ij × Ij−1 with Ij,i,k 6= 0. Note that for
standard finite elements and the nested refinement de-
scribed above this condition is satisfied. In more general
situations this requires to enlarge the processor set on
the coarser mesh such that

πj−1(k) ⊃
⋃

Ij,i,k 6=0

πj(i) .

This extension of the processor maps is realized, e.g., in
[2] for locally refined meshes and different load balancing
on different levels by introducing copy elements (a more
general concept including also copy indices is introduced
there). Here, we use a full overlap and set π0(i) = P
for all i ∈ I0 if the coarsest mesh is reasonably small
so that the coarse mesh problem can be solved with a
direct solver.

The restriction I ′j : V ′
j −→ V ′

j−1 is represented by the
transposed prolongation matrices

IT
j : V ′

j −→ Ṽ
′

j−1 ,

and the operation is defined by IT
j f = collect

(
(Ip

j )T fp
)

for f ∈ V ′
j .

5 Parallel multigrid methods

Based on the parallel operations described in the previ-
ous section we can now define the parallel multigrid pre-
conditioner Bmg

J . This is done recursively, starting with
a solver Bmg

0 ≈ A−1
0 on the coarse level. For small coarse

problems this is done by collecting the matrix A0 on one
processor, otherwise we use a Krylov method with a sim-
ple preconditioner, and we solve the coarse problem only
approximately. For j = 1, ..., J , the multigrid precondi-
tioner is a combination of smoothing Rj : V ′

j −→ V j and
the coarse grid correction (using Bmg

j−1). More precisely,
the symmetric multigrid V-cycle consists of the succes-
sive applications of M preconditioning steps with the
smoother Rj , followed by a preconditioning step with

IjB
mg
j−1I

T
j , and finally again M preconditioning steps
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void Cycle (int j, Vector& u, Vector& f) {

if (j==0) {

u = B_0 * f;

return;

}

for (int m=0; m<M; ++m) {

w = R[j] * f;

u += w;

f -= A[j] * w;

}

d = f * I[j];

c = 0;

Cycle(j-1,c,d);

w = I[j] * c;

u += w;

f -= A[j] * w;

for (int m=0; m<M; ++m) {

w = f * R[j];

u += w;

f -= A[j] * w;

}

}

Fig. 2 Source code for the parallel multigrid V-cycle, i.e.,
for a given additive vector f

j
∈ V ′

j , the consistent multigrid

correction uj = B
mg
j f

j
∈ V j is computed by Cycle(j,u,f).

In this code, w is an auxiliary vector in V j , c is a vector in
V j−1, and d is a vector in V ′

j . The smoother is given by R[j]

and the prolongation is given by I[j]. The restriction IT
j f is

coded by f * I[j], which applies the transposed prolonga-
tion matrix, and f * R[j] applies the transposed smoother.

with the transposed smoother RT
j (see Fig. 2 for the

realization of this cycle).
The corresponding error propagation matrix is de-

fined by

id−Bmg
j Aj =

(id−RT
j Aj)

M (id−IjB
mg
j−1I

T
j Aj)(id−RjAj)

M .

Here, we use the symmetric variant since in our exam-
ples (linear elasticity) the operator Aj is symmetric and
positive definite, so that we can use the multigrid precon-
ditioner within a conjugate gradient method (see Fig. 3).

Condition number of the preconditioner

The efficiency of the preconditioner within the cg method
can be estimated by the spectral condition number of
BJAJ . Since this operator is self-adjoint in V J with re-
spect to the energy inner product

aJ(vJ , wJ) = vJ ·AJwJ , (3)

we can approximate the condition number

κ(BJAJ ) =
λmax(B

mg
J AJ)

λmin(Bmg
J AJ)

(4)

by the Lanczos method, cf. [15, Chap. 9]: starting from
a given residual vector rJ ∈ V ′

J , an orthogonal ba-
sis v0

J , ..., v
K
J (with respect to the inner product (3)) of

void CG (Vector& u, const Operator& A,

const Operator& B, Vector& r) {

double d = r.norm();

double eps = Eps + Red * d;

p = 0;

double rho_0 = 1;

for (iter=0; iter<max_iter; ++iter) {

if (d < eps) break;

c = B * r;

double rho_1 = r * c;

p *= (rho_1 / rho_0);

p += c;

rho_0 = rho_1;

t = A * p;

double alpha = rho_0 / (p * t);

u += alpha * p;

r -= alpha * t;

d = r.norm();

}

}

Fig. 3 Source code for the parallel preconditioned conjugate
gradient method, applied to the residual rJ = f

J
− AJu0

J ,

where u0
J is the start iterate (in this code, c and p are aux-

iliary vectors in V j , and t is a vector in V ′

j). Note that the
parallel linear algebra guarantees the parallel consistency of
this algorithm, so that no further parallel extensions are re-
quired.

Krylov space

{BJrJ , BJAJBJrJ , ..., (BJAJ)KBJrJ}
is computed. Then, the Galerkin approximation H ∈
R

K+1,K+1 of BJAJ with respect to this basis has Hes-
senberg form, and—in the symmetric case—is tridiag-
onal. See Fig. 4 for a prototype implementation of the
Lanczos method (in our applications this can be inte-
grated into the cg method).

Based on the condition number we can estimate the
convergence of the preconditioned cg method: Let uJ

be the solution of AJuJ = f
J
, and let u0

J be the start
iterate. Then, we have in iteration step k

‖uJ − uk
J‖AJ

≤ 2
(√

κ(BJAJ ) − 1√
κ(BJAJ ) + 1

)k

‖uJ − u0
J‖AJ

with respect to the energy norm, cf. [19, Th. 9.4.12].

Parallel smoothing

In our examples, we use in parallel an additive smooth-
ing scheme Rj with (possibly overlapping) block-Gauss-
Seidel relaxations on every processor, i.e., we have

Rj = θ
∑

p∈P

Rp
j

with a damping factor θ ∈ (0, 1]. The local parts Rp
j rely

on an index decomposition Ip
j = Ip

j,1 ∪ · · · ∪ Ip
j,Kp

j

. Let
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double Lanczos (const Operator& A,

const Operator& B,

Vector& r, int K) {

v[0] = B * r;

f[0] = A * v[0];

Scalar s = sqrt(v[0]*f[0]);

v[0] *= 1.0/s;

f[0] *= 1.0/s;

for (int k=0; k<K; ++k) {

Vector w = B * f[k];

v[k+1] = w;

for (int i=0; i<=k; ++i) {

H[i][k] = w * f[i];

v[k+1] -= H[i][k] * v[i];

}

f[k+1] = A * v[k+1];

H[k+1][k] = sqrt(f[k+1]*v[k+1]);

v[k+1] *= 1.0/H[k+1][k];

f[k+1] *= 1.0/H[k+1][k];

}

return SpectralConditionNumber(K,H);

}

Fig. 4 Source code for the parallel Lanczos algorithm. Here,
the vectors v[k] span the Krylov space in V J , and f[k] =

A * v[k] are auxiliary vectors in V ′

J . If the operators A and
B are symmetric and positive definite, H[i][k] is vanishing
for i > k + 1 (up to rounding errors). Note that H[k+1][k] is
non-vanishing as long the Krylov space has full dimension. In
our numerical tests, we use a combination of the cg method
and the Lanczos method, simultaneously solving the linear
system and computing the condition number of the iteration
matrix.

Np
j,k = #Ip

j,k, let Ip
j,k ∈ R

Np

j
×Np

j,k the trivial prolon-

gation matrix, let Ap
j,k = (Ip

j,k)T accumulate(Ap
j )I

p
j,k be

the accumulated Galerkin restriction of the operator Aj ,
and let

Rp
j,k =

(
Ap

j,k

)−1

, k = 1, ...,Kp
j ,

be the local subspace solver. Altogether, this defines for
a given functional f

j
∈ V ′

j the hybrid smoothing opera-

tion cj = Rjf j
as follows:

S1. In parallel, for every processor p set cp,0
j = 0.

S2. On processor p, apply locally the successive sub-
space correction method: for k = 1, ...,Kp

j , com-
pute the actual subspace residual

fp

j,k
= (Ip

j,k)T
(
fp

j
− accumulate(Ap

j )c
p,k−1
j

)

and add the subspace correction

cp,k
j = cp,k

j + Ip
j,kR

k
j,kf

p

j,k
.

S3. Set cj = θ accumulate(c
p,Kp

j

j ).

Note that in the evaluation of the subspace residual in
Step S2 the accumulated matrix has to be used in order
to avoid communication within the local successive sub-
space correction. Since in Step S2 for every k only the

indices in Ip
j,k of accumulate(Ap

j )c
p,k−1
j have to be com-

puted, this step has only the complexity of the subspace
size.

In our examples, we use three block decompositions:

(p) a (non-overlapping) point-block decomposition with

Ip
j,z = {i ∈ Ip

j : zi = z} ,
(c) an overlapping cell-block decomposition with

Ip
j,c = {i ∈ Ip

j : zi ∈ Nc} ,
(r) an overlapping row-block decomposition with

Ip
j,k = {i ∈ Ip

j : Ap
j,i,k 6= 0} .

6 The analysis of parallel multigrid methods

with overlapping block smoothing

We shortly review the multigrid analysis adopted to par-
allel multigrid methods. In principle, we have two op-
tions for the analysis which can be summarized as fol-
lows.

For nested spaces and symmetric elliptic problems,
the analysis of the subspace correction method provides
a unified theory for multigrid methods and domain de-
composition methods, see [36,28]. This is based on

(D) a stable decomposition;

(C) a strengthened Cauchy-Schwarz inequality.

Mesh-independent convergence can be obtained without
any regularity of the problem. The parallel multigrid
method defined in the previous section is a hybrid sub-
space correction method with multiplicative multilevel
corrections, multiplicative local smoothing, and additive
parallel smoothing.

A more general multigrid theory (which can be ap-
plied also to non-nested spaces and non-conforming dis-
cretizations) is based on

(A) an approximation property;

(S) a smoothing property,

see [18,6]. In this setting, mesh-independent convergence
can be obtained only with some regularity of the prob-
lem.

Here, we show how the parallel multigrid method
with local overlapping Block-Gauss-Seidel smoothing can
be analyzed as subspace correction method by combin-
ing arguments from [8, Sect. 8] and [19, Chap. 11].

Operators for the multigrid analysis

In order to prove a level-independent bound for the con-
dition number (4) we analyze the equivalent operator
TJ = Bmg

J AJ in VJ with EJ ◦Bmg
J = Bmg

J ◦ E′
J .
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The parallel multigrid method corresponds to a hy-
brid additive/multiplicative subspace correction method
based on the overlapping decomposition

VJ = V0 +
J∑

j=1

∑

p∈P

Kp

j∑

kp=1

V p
j,kp

with

V p
j,k = {φj,i : i ∈ Ip

j,k} .
We define the embeddings

Ij : Vj −→ VJ ,

Ip
j,k : V p

j,k −→ VJ ,

Galerkin approximations

Aj = (Ij)
′AJIj : Vj −→ V ′

j ,

Ap
j,k = (Ip

j,k)′AJI
p
j,k : V p

j,k −→ (V p
j,k)′ ,

and projections

P0 = (A0)
−1(I0)

′AJ : VJ −→ V0 ,

P p
j,k = (Ap

j,k)−1(Ip
j,k)′AJ : VJ −→ V p

j,k .

This gives for the local smoothing operator Rp
j on pro-

cessor p

id−Rp
jAJ =

Kp

j∏

k=1

(
id−Ip

j,kP
p
j,k

)
,

for the parallel smoother on level j

Rj = θ
∑

p∈P

Rp
j : V ′

J −→ VJ ,

and recursively for the multigrid preconditioner

id−Tj = (id−R′
jAJ)M (id−Tj−1)(id−RjAJ )M

with T0 = I0P0 : VJ −→ VJ . Thus, we have TJ = Bmg
J AJ .

Finite element setting for the multigrid analysis

For the following analysis we assume (by changing the
notation) that homogeneous Dirichlet boundary condi-
tions are included into Vj , so that ‖∇v‖ is a norm. We
assume that the bilinear form a(·, ·) is spectrally equiv-
alent to the Laplace problem, i.e.,

ca‖∇vJ‖2 ≤ a(vJ , vJ ) ≤ Ca‖∇vJ‖2 , vJ ∈ VJ . (5)

Note that in our application to elasticity in R
3 this cor-

responds to a system of three Laplace problems. The
corresponding energy norm is denoted by

|||vJ ||| =
√
〈AJvJ , vJ 〉 , vJ ∈ VJ .

We assume that the spaces V0 ⊂ V1 ⊂ · · · ⊂ VJ are
nested and that Vj is shape regular with size hj = 2−jh0.
This gives the inverse inequality

〈Ajvj , vj〉 ≤ Cinvh
−2
j ‖vj‖2 , vj ∈ Vj

and for the L2 projection Qj : VJ −→ Vj defined by

(QjvJ , wj) = (vJ , wj) , vJ ∈ VJ , wj ∈ Vj

we have the approximation result

‖vj −Qj−1vj‖ ≤ CQhj ‖∇vj‖ , vj ∈ Vj

for j > 0.

Analysis of the smoother

The analysis of the parallel hybrid smoother combines
the additive and the multiplicative smoothing analysis in
[8, Sect. 8]. Therefore, we introduce the symmetrization

(id−R′
jAJ)(id−RjAJ ) = (id−R̄jAJ )

with R̄j =
∑

p∈P R̄
p
j and R̄p

j = Rp
j +Rp

j
′ −Rp

j
′
AJR

p
j .

The smoother estimates depend on overlapping con-
stants. Let Cloc, Cglob > 0 be given by

Cloc = max
p∈P

max
k∈{1,...,Kp

j
}
#{l ∈ {1, ...,Kp

j } : V p
j,l ∩ V

p
j,k 6= ∅}

and

Cglob = max
p∈P

#{q ∈ P : V q
j ∩ V p

j 6= ∅} .

The constant Cloc is bounded independent of the level j
for our examples (p), (c), (r). The constant Cglob de-
pends on the load balancing and is bounded by

max
0≤j≤J

max
i∈Ij

#πj(i)

independently of the number of processors P .
Moreover, we need splitting constants Coverlap, Cpar.

We assume that for all vp
j ∈ V p

j a local decomposition

vp
j =

Kp∑

k=1

vp
j,k , vp

j,k ∈ V p
j,k

exists satisfying

Kp∑

k=1

‖vp
j,k‖2 ≤ Coverlap‖vp

j ‖2 ,

and we assume that for all vj ∈ Vj a parallel decompo-
sition

vj =
∑

p∈P

vp
j , vp

j ∈ V p
j

exists satisfying
∑

p∈P

‖vp
j ‖2 ≤ Cpar‖vj‖2 .

Lemma 1 A damping factor θ ∈ (0, 1) independent of j
exists such that the symmetrized smoothing operator R̄j

is invertible on Vj and such that constants CR > 0 and
ωR ∈ (0, 2) independent of j exists with

〈AjRjAjvj , RjAjvj〉 ≤ ωR 〈Ajvj , RjAjvj〉 , (6)

〈R̄−1
j vj , vj〉 ≤ CRh

−2‖vj‖2 , vj ∈ Vj . (7)

Proof In the first step we show (using [8, Th. 8.2]) that
the local parallel smoother Rp

j satisfies the conditions in
[8, Th. 8.3].

Locally, for vp
j ∈ V p

j we define wp
j ∈ V p

j by

(wp
j , φ

p
j ) = 〈Ajv

p
j , φ

p
j 〉 , φp

j ∈ V p
j . (8)
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Since Rp
j is defined as a multiplicative subspace correc-

tion method with local exact solving, we obtain for the
local overlapping Gauss-Seidel smoother

〈AjR
p
jAjv

p
j , R

p
jAjv

p
j 〉 ≤ ωGS〈Ajv

p
j , R

p
jAjv

p
j 〉 , (9)

‖wp
j ‖2 ≤ CGSh

−2
j (wp

j , R̄
p
jAjv

p
j ) (10)

with

ωGS =
2Cloc

Cloc + 1
,

CGS = CinvCoverlapC
2
loc

(cf. [8, Th. 8.2], where the result is adapted to our no-
tation).

Since (10) corresponds to Hypothesis (iv) and (9)
corresponds to Hypothesis (iii), we can apply [8, Th. 8.3].
This gives (6) for a sufficiently small damping parameter
θ ∈ (0, 1) satisfying

ωR := θωGSCglob < 2 . (11)

For vj ∈ Vj define wj ∈ Vj by (wj , φj) = 〈Ajvj , φj〉,
φj ∈ Vj . Again using [8, Th. 8.3] we obtain

‖wj‖2 ≤ CRh
−2
j (wj , R̄jAjvj) (12)

with

CR = max
{
1 + Cglob(1 − θCloc), 1

}CparCGS

θ
.

This shows that the operator R̄jAj is positive definite
and that R̄−1

j : Vj −→ V ′
j is well defined. Moreover, in-

troducing the L2 duality map Dj : Vj −→ V ′
j by

〈Djφj , ψj〉 = (φj , ψj) , φj , ψj ∈ Vj ,

we obtain (wj , R̄jAjvj) = (wj , R̄jDjwj). Since R̄jDj is
symmetric positive definite in L2, this gives the identities

(wj , R̄jDjwj) = ‖(R̄jDj)
1/2wj‖2

〈R̄−1
j wj , wj〉 = ‖(R̄jDj)

−1/2wj‖2 .

Thus, (12) is equivalent to (7).

Corollary 1 We have

〈Ajvj , vj〉 ≤ 〈R̄−1
j vj , vj〉 , vj ∈ Vj . (13)

Proof Since R̄jAj is positive definite (as a consequence
of (10)) and symmetric with respect to a(·, ·), we have

|||(R̄jAj)
1/2vj |||2 = 〈Ajvj , R̄jAjvj〉

= |||vj |||2 − |||(id−RjAj)vj |||2 ≤ |||vj |||2

and thus

〈Ajvj , vj〉 = |||vj |||2 ≤ |||(R̄jAj)
−1/2vj |||2 = 〈R̄−1

j vj , vj〉 .

Analysis of the multigrid V-cycle

The multigrid V(1,1)-cycle (with one pre- and one post-
smoothing step and exact coarse problem solver) is a
successive subspace correction method on

VJ = V0 + · · · + VJ

with approximate solution operatorsRj on the subspaces.
The main observation in multigrid theory is that RjAj ≈
id on the subspaces Wj = (Qj − Qj−1)VJ of “high fre-
quencies”. Analytically, the main property is the corre-
sponding stable splitting

‖∇Q0vJ‖2 +

J∑

j=1

h−2
j ‖(Qj −Qj−1)vJ‖2 ≤ Cstab‖∇vJ‖2

for vJ ∈ VJ , and the strengthened Cauchy-Schwarz in-
equality

|(∇vi,∇wj)| ≤ CCS2(i−j)/2‖∇vi‖ ‖∇wj‖
for vi ∈ Vi, wj ∈ Wj , i < j [5]. We now show that the
analysis in [19, Chap. 11.6] applies also to the parallel
hybrid smoother and to problems which are spectrally
equivalent to the Laplace problem.

Since T 2
0 = T0, we have

||| id−TJ ||| = |||(id−T0)(id−R1AJ) · · · (id−RJAJ )|||2
= |||(id−T0)(id−R̄1AJ) · · · (id−R̄JAJ )||| .

Lemma 2 The condition number κ(Bmg
J AJ) for the par-

allel multigrid method with hybrid smoothing is bounded
independently of J .

Proof We define the smoother dependent norm

|||v|||j =
√

〈R̄−1
j vj , vj〉 , vj ∈ Vj ,

where we set R̄0 = A−1
0 for compatibility (cf. [26]). Then,

Lemma 1 and the stable L2 splitting gives

J∑

j=0

|||(Qj −Qj−1)vJ |||2j ≤ CRCstab

ca
|||vJ |||2 .

Next, Corollary 1 and the strengthened Cauchy-Schwarz
inequality yields for vi ∈ Vi, wj ∈Wj , i < j,

|a(vi, wj)| ≤
CaCCS2(i−j)/2

ca
|||vi|||j |||wj |||j .

Now, estimating ‖(2(i−j)/2)i,j=0,...,J‖∞ ≤ 2 +
√

2 gives
for the multiplicative subspace correction method

||| id−Bmg
J AJ ||| ≤ 1 − 1

C1(1 + C2)2
=: ρmg < 1

with

C1 =
CRCstab

ca
, C2 =

CaCCS(2 +
√

2)

ca

[19, Th. 11.4.3]. Since the operator id−Bmg
J AJ is posi-

tive semi-definite by construction, we obtain

(1 − ρmg)|||vJ |||2 ≤ a(Bmg
J AJvJ , vJ ) ≤ |||vJ |||2

and thus κ(Bmg
J AJ ) ≤ 1

1 − ρmg
.
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Remark 1 SinceRj satisfies (6), the analysis in [37] shows
convergence also for the V (1, 0)-cycle or the V (0, 1)-
cycle. For the symmetric cycle, (6) is replaced by (13)
which is independent of the damping parameter. Never-
theless, sufficient damping is required in order to guaran-
tee that R̄−1

j exists, and indeed we observe in the numer-
ical experiments that damping is necessary for the par-
allel smoother: without damping, the Lanczos method
shows that Bmg

J AJ is not positive definite and thus the
cg method is not convergent.
On the other hand, strong damping should be avoided,
since this increases CR and thus the estimate for the
condition number of the multigrid preconditioner. This
can be also observed in the experiments.

Spectrally equivalent preconditioner

The norm equivalence (5) suggests to use for precondi-

tioning AJ a multigrid preconditioner Bmg,lap
J for the

Laplace problem Alap
J , i.e., 〈Alap

J vJ , wJ 〉 = (∇vJ ,∇wJ )

for vJ , w ∈ VJ . The condition number of κ(Bmg,lap
J Alap

J )
can be estimated from spectral bounds

clap‖∇vJ‖2 ≤ (∇Bmg,lap
J Alap

J vJ ,∇vJ ) ≤ Clap‖∇vJ‖2

which gives

κ(Bmg,lap
J Alap

J ) ≤ Clap

clap
.

Then, the condition number of Bmg,lap
J AJ can be esti-

mated from Korn’s inequality

cK‖∇vJ‖2 ≤ ‖ sym(∇vJ )‖2 ≤ 2 ‖∇vJ‖2 , vJ ∈ VJ

and the Lamé parameters µ, λ: from

4µ2‖ sym(∇vJ)‖2 ≤ a(vJ , vJ ) ≤ (2µ+ 3λ)2‖ sym(∇vJ )‖2

we obtain

κ(Bmg,lap
J AJ ) ≤ Clap

clap

2µ+ 3λ

2µ

√
2

cK
. (14)

In the special case of pure Dirichlet boundary conditions
on Γ = ∂Ω we can estimate cK ≥ 1/2 [6, Chap. 5.3],
which yields

κ(Bmg,lap
J AJ ) ≤ Clap

clap

2µ+ 3λ

µ
. (15)

We will see in the numerical experiments below that this
estimate provides a resonable prediction of the conver-
gence.

7 Parallel multigrid performance

We present results for the parallel multigrid solution of
problems in linear elasticity and plasticity. The material
parameters for our tests are given in Tab. 1. For the
parallel experiments we use a Linux cluster with dual
board QuadCore nodes and Infiniband switches. All tests

parameter symbol value

Young’s modulus E 206 900.0 kN/m2

Poisson number ν 0.29

Lamé parameter µ = E

2(1+ν)
80 193.8 kN/m2

λ = Eν

(1+ν)(1−2ν)
110 743.8 kN/m2

yield stress y0 450 kN/m2

hardening modulus H0 0.0001µ

Table 1 Material parameters for linear elasticity and in-
finitesimal plasticity with kinematic hardening.

are realized in our research code M++. For the coarse
problem the matrix A0 is collected on one processor, and
for B0 we use the sparse direct solver [9].

For the quantitative evaluation of the parallel multi-
grid method we consider four different test configura-
tions:

1. In the first test configuration, Ω is the unit cube,
and on ∂Ω Dirichlet boundary conditions are im-
posed. We use a structured mesh with 8J hexahe-
dral cells (i.e., the vertices build a regular Cartesian
grid of mesh size 2−J ). For this example, we have
full regularity, i.e., the solution of the continuous
problem is at least in H2. As a consequence, the
multigrid analysis based on approximation prop-
erty and smoothing property estimates the spectral
radius of the error propagation operator id−Bmg

J AJ

by O(1/M), where M is the number of smoothing
steps.

2. For the second test configuration we only change
the boundary condition: we use Dirichlet bound-
ary condition on the bottom of the cube only, and
Neumann boundary conditions on the remaining
5 faces. Thus, we also have full regularity, but the
Poincaré-Friedrichs constant CPF

‖u‖H1(Ω) ≤ CPF‖∇u‖L2(Ω)

is much larger.
3. In the third test configuration, Ω is a union of

regular cubes but non-convex with reentrant cor-
ners. Thus, we have very limited regularity, and the
multigrid analysis based on approximation prop-
erty and smoothing property only gives poor re-
sults, i.e., a convergence estimateO(1/Mα) for mul-
tiple smoothing with α close to 0. Nevertheless,
since the vertices are a subset of the regular grid
2−J

Z
3, we have optimal shape regularity of the

cells.
4. Finally, we consider an example with an unstruc-

tured mesh with isoparametric hexahedral cells. In
particular, some angles between edges are larger
than 90◦, but the aspect ratio is moderate. The un-
derlying domain Ω is a thick plate with a cylindric
hole (by symmetry, we consider only a part of the
configuration), so that we have full regularity (up
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to the corners induced by the piecewise linear ap-
proximation of the hole). We use Neumann bound-
ary conditions outside of the full configuration of
a plate with a cylindrical hole, and on the bound-
aries which arise from the symmetric reduction, we
use homogeneous Dirichlet boundary conditions in
normal direction of the symmetry planes.

The condition number of the operator Bmg
J AJ is es-

timated by the Lanczos method, see Fig. 5. We test on
two successive levels the point block smoother (p) with
M smoothing steps, and the overlapping smoothers (c)
and (r).

For comparison, we also test the Laplace multigrid
preconditioner Bmg,lap

J applied to the elasticity problem

AJ . The condition number κ(Bmg,lap
J AJ ) estimates the

norm equivalence factor between the elasticity system
and the Laplace problem.

From the performance results in Fig. 5 of the four
test cases we make the following observations:

◮ The condition number of the point block smoother
with M = 1 and the overlapping smoothers (c)
and (r) are nearly independent from the boundary
condition, the regularity, and from the refinement
level in the first three test cases, and the condition
number is significantly larger for the forth exam-
ple. This indicates that multigrid performance with
only a single smoothing step behaves as predicted
by the subspace correction method and mainly de-
pends on the shape regularity (and is best on reg-
ular grids).

◮ Multiple smoothing improves the multigrid perfor-
mance only in case of sufficient regularity in exam-
ples 1, 2, and 4. Asymptotically, we observe for the
spectral radius

ρ(id−Bmg
J AJ) ≈ 1 − 1/κ(Bmg

J AJ ) ≈ O(1/M)

as predicted by the multigrid analysis based on ap-
proximation and smoothing property.

◮ Multigrid performance seems to be uncorrelated
to the norm equivalence factor in Korn’s inequal-
ity which is estimated by the condition number
κ(Bmg,lap

J AJ). We see in the first test example that
the estimate (15) provides a realistic prediction for
this condition number. On the other hand, since
κ(Bmg,lap

J Alap
J ) is close to one in our test, the esti-

mate (14) can be used to estimate the constant in
Korn’s inequality, i.e., we have

cK ≈
(2µ+ 3λ

2µ

)2 2

κ(Bmg,lap
J AJ)

.

◮ Comparing the overlapping smoothers (c) and (r)
we observe that in parallel increasing overlap does
not automatically improve the performance of the
multigrid method. This may be explained by the re-
quirement of stronger damping for the larger over-
lap in the additive part of the parallel smoothing
scheme.

Next, we consider the multigrid performance for the
linearized problem in plasticity, see Fig. 6. Here, we use
the configuration of test example 4, and by increasing the
external load more and more of the domain is plastified.
For the linearization this leads to nearly singular systems
close to the limit load of perfect plasticity (where the
linearization is singular). For the time discretization we
use the backward Euler scheme, and for the nonlinearity
and its linearization in the incremental problem we use
the standard radial return algorithm [27,30]. We can use
this test as a robustness test for multigrid. From the
results we clearly observe that multiple smoothing as
well as overlapping smoothing improves the robustness
of the multigrid performance.

Finally, as a snapshot for the current performance
on production machines, the computing times for a full
time-dependent elasto-plastic simulation (using the same
configuration as above) are presented in Tab. 2. We ob-
serve a good scaling for more processors but due to the
nonlinearity we cannot expect stable computing times in
this parallel experiment.
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Fig. 6 Performance of block Gauss-Seidel smoothing in plasticity. The condition number κ = κ(BJAJ) of the elasto-plastic
linearization for 70 Newton steps (in 20 time steps) is displayed. Multiple smoothing and overlapping block smoothing increases
the robustness of the multigrid method with respect to the increasing plastic region.
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